|

) <

The University of Osaka
Institutional Knowledge Archive

Tale Anomalous Transport Phenomena on Various Types
of Electronic States in Semiconductors

Author(s) |FET, =

Citation |KFRKZ, 2001, EHIHX

Version Type|VoR

URL https://doi.org/10.11501/3183822

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Anomalous Transport Phenomena
on Various Types of Electronic States

1n Semiconductors

by

Akira Fujimoto

Dissertation on Physics

January 2001

Graduate School of Science
Osaka University

Toyonaka, Osaka



Abstract

The problem of transport property in the semiconductor is in all ages a research
subject which contains a lot of bottomless mysteries. Especially the metal-insulator
(MI) transition in doped semiconductors has been one of the important subjects over
the past years. Below the critical donor concentration for the MI transition, the wave-
function of electrons strongly localizes at a donor site and the electrical conduction is
mainly dominated by the hopping process of electrons. In this case the resistivity in-
créa.ses exponentially with decreasing temperature, and the magnetoresistance (MR)
is positive due to the shrinkage of the wavefunction of electrons and consequently to
the reduced hopping probability. Above the critical donor concentration for the MI
fransition, on the other hand, the type of the electrical conduction is in the weak lo-
calization (WL) regime, and at low temperatures the MR is negative arising from the
destructive quantum interference effect. However, in case of the system with strong
spin-orbit (SO) interaction, the MR is positive in the weak fields, resulting from the
anti-localization (AL) effect.

In this study galvanomagnetic measurements were carried out to investigate the
various kinds of electronic conduction as mentioned above for various types of semi-
conductors such as the bulk crystals and the d-doped samples of Si:Sb, and thin film
InSb, with the donor concentration close to the MI transition. The SO interaction
increases with the atomic number Z of the donor as (Z — Z’)*, where Z’ is the atomic
number of the host material. The anomalous transport characteristics in Si:Sb, which
are different from those of Si:P and Si:As, are expected, because the atomic number
of Sb is much larger than the others. The transport properties of the bulk Si:Sb are
analyzed in the light of the hopping as well as the WL regime. The §-doped samples
have a two-dimensional electronic nature and the scattering probability of electrons
by doped impurities is much larger than that in the bulk samples. Consequently the
AL effect becomes conspicuous. We found that for thin film InSb on GaAs substrate
a carrier accumulation layer is formed at the interface between two materials, and it

exhibits peculiar behavior. For the temperature dependence of the Hall coefficient the



anomalous peak is observed around 140K, and the MR at low temperatures is positive
and shows a steep rise up to 0.3T. We discuss the electronic states in the interface
which can explain our experimental results.

We conclude that the present experimental results for temperature and magnetic
field dependence of the resistivity and the Hall coefficient originate in the electronic
states which strike up hopping conduction, WL effect, electron-electron interaction

and SO interaction at low temperatures.
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1 Introduction

The metal-insulator (MI) transition in doped semiconductors has been one of the
important subjects in numerous experimental and theoretical investigations over the
past years. Fritzsche and Lark-Horovitz [1] have found a negative magnetoresistance
effect in p-InSb for the first time in 1955, and Sasaki and Kanai [2] have observed the
same effect on Ge:Sb in 1956. However it had taken over 20 years to make clear the
physical meaning on the negative magnetoresistance.

For heavily doped semiconductors the wavefunction of the adjoining donor elec-
trons overlap as the donor concentration increases, and thus the transition from the
insulator to the metallic phase occurs. Mott [3] has suggested that the transition oc-
curs when the effective Bohr radius of an isolated donor ag and the Thomas-Fermi’s
screening length become equal, that is, N/3ap ~ 0.25 is satisfied, where N, is a crit-
ical concentration of the MI transition. The criterion N/3ap ~ 0.26 £ 0.05 has been
confirmed from various experiments [4].

As for the MI transition due to the electron correlation effects, it is understood
that the transition from insulator to metal occurs when the lower Hubbard band
(LHB) (D°band) and the upper Hubbard band (UHB) (D~band) overlap [5]. On the
other hand, Anderson [6] has proposed that the transition from metal to insulator
occurs due to the electron localization. The MI transition occurs when the Fermi
energy Er moves from localized states to extended states, in short, Er comes at a
mobility edge Ec. Because of the existence of two origins, i.e., electron correlation
effects (Mott-Hubbard type) and potential fluctuation arising from randomly dis-
tributed impurities (Anderson type), it has been more difficult to theoretically figure
out the problem of MI transition. There still remains some ambiguity as to whether
the MI transition is primarily a Mott-Hubbard type or an Anderson type. The latter
mechanism was principally claimed for many-valley semiconductors in which the ex-
change effect as well as the correlation between carriers stands out.

In addition, the spin-orbit (SO) interaction in the interference effect has been

shown to have a drastic influence on the weak localization (WL). In the systems with



the strong SO interaction, the positive magnetoresistance (MR) in the WL regime
appears, which is known as the anti-localization (AL) effect. The AL effect has been
mainly studied for the metallic thin films over many years [7][8]. On Si:Sb samples
with the impurity concentration near the MI transition, Long and Pepper [9] have
reported the low-temperature anomaly of the resistivity. Paying attention to the fact
that such an anomaly had been never observed in Si:P and Si:As, Kaveh and Mott
have argued that the anomaly is based on the scattering effect related to the SO in-
teraction due to the heavy Sb atoms in Si [10].

In the present study we have investigated the temperature and the magnetic
field dependence of resistance for various kinds of samples and clarified the mecha-
nism of MI transition and the relevant transport properties. Moreover we discuss the
SO interaction effect in the WL regime. We have employed various kinds of samples,
such as the bulk samples of Si:Sb, the Si samples with an Sb §-doped layer and the
thin films of InSb on GaAs substrates. We have especially paid attention to the di-
mensionality of the electronic system and the difference between the bulk crystals and
the §-doped sample. Through the present experiments the positive magnetoresistance
(MR) was observed, which is caused by the AL effect due to the SO interaction in the
é-doped sample, but not for the bulk samples. The extraordinary positive MR in the
weak magnetic field was observed for a thin-film InSb sample in this study. However
such phenomena are not observed for the bulk samples of InSb [11][12][13]. We have
found that the MR sensitively reflects the differences of the electronic system.

We have measured the MR of Si:Sb with the Sb concentration just below the
critical concentration for MI transition. It is made clear that the resistivity at low
temperatures for the sample is dominated by the Efros-Shklovskii (ES)-type variable-
range hopping (VRH), which arises from the long-range Coulomb interaction, and
then the density of states N(E) has a quadratic dependence on E near Er. We have
investigated the characteristic behavior of the MR under various electric current den-
sity and found that the MR strongly depends on the electric current density. For the

sample with a non-metallic nature the positive MR is observed in the low current



density region. A crossover from positive- to negative-MR is found as the current
density increases. It is considered that these phenomena originate from the rise of the
electron temperature and are closely related to the transport in the UHB [14][15].

For the metallic Si:Sb sample whose donor concentration is extremely close to
the critical concentration of the MI transition, we have observed a crossover from
do/dT < 0 to do/dT > 0 by the application of a magnetic field. It is considered that
the term of Hartree type due to direct interaction between electrons becomes larger
with increasing magnetic field. The experimental results have been analyzed with
the theory of electron-electron (e-e) interaction as well as the theory of VRH. It was
found that the result contradicts with the theory of VRH; Moreover the conductivity
is ascertained to show stronger dependence on temperature and magnetic field than
that expected from the theory of e-e interaction [16].

In addition we have investigated the two-dimensional (2D) electron system of
Si:Sb. We have employed some samples with Sb 4-doped layer. In this system the typ-
ical 2D electronic system is produced by the quantum confinement effect in the layer.
In the é-doped layer, doped impurities themselves greatly influence the movement of
the 2D electrons, which differs from the modulation-doped heterostructures such as
GaAs/AlGaAs. We report on the magnetoconductance (MC) of the above-mentioned
d-doped sample, comparing with a bulk Sb doped sample. When the magnetic field
was applied perpendicularly to the doping layer with 0.11 monolayer of Sb atoms,
the positive MC due to the destruction of the quantum interference effect appears.
Interestingly, in very weak fields negative MC appears due to the SO interaction, and
the positive MR is observed in parallel fields [17].

On the other hand, for the metallic Si:Sb sample whose donor concentration is
3.7 times of the critical concentration for MI transition, the positive magnetoconduc-
tivity is observed between 4.2K and 3.1K. The characteristic feature caused by the
AL due to the SO interaction is not explicitly seen. Temperature dependence of con-
ductivity in the absence of magnetic field for the d-doped sample shows a logarithmic

behavior at lower temperatures and that for the bulk sample has the tendency in



proportion to 7. The obtained results are discussed within the framework of the WL
theories.

We have investigated two kinds of samples of InSb, which are thin films grown
on GaAs substrate by molecular beam epitaxy (MBE) method. They have enough
donor concentration to exceed the critical concentration for MI transition. One of
them shows Shubnikov-de Haas oscillation for the MR at low temperatures, and the
other shows the peculiar behavior. The temperature dependence of Hall coefficient
has a maximum around i4OK, which indicates that there are two kinds of electrons
with different mobilities, and the resistivity does not show the striking temperature
dependence with decreasing temperatures. The MR in the perpendicular configura-
tion shows a drastic rise in the weak magnetic field, then decreases with increasing
magnetic field and finally increases again. The obtained results are understood by
taking into account the transport by interface carriers in addition to bulk carriers. It
is reported that for InSb films grown on GaAs substrate an accumulation interface
layer with certain space charges frequently exists. In addition, we found that the MR
in InSb film shows the angle dependence for the direction of the applied magnetic
field and the rapid rise in the weak magnetic fields even in the parallel configuration.

It is considered that the MR mainly arises from the SO interaction in the interface.



2 Theoretical Backgrounds

2.1 Mott’s intuitive explanation

In covalent crystals a monatomic donor is generally considered as an impurity
like a hydrogen atom. When a donor concentration is small, an electron is bound by
a donor at low temperatures and the electron cannot move the whole crystal. In this
case the system shows non-metallic nature. For heavily doped semiconductors, on the
other hand, the wavefunction of adjacent donor electrons overlap and the electrons
can move the whole area of crystal as thé donor concentration iﬁcreases, and as a
result a metallic nature appears.

The strength of Coulomb potential for the donor in crystal is much smaller than
that for a hydrogen atom. Electrons which gather in the circumference of the positive
vcharge, shield the charge of the positive charge. The screened Coulomb potential thus

is expressed with Thomas-Fermi theory,
e r
o(r) =~ eXP(—')\';), (1)

where r is the distance between a donor electron and the positive charge located at
center and Arp is the Thomas-Fermi screening length, which is expressed as

_ KEF 1/2
ATF = 67m62) ; (2)

where k is the dielectric constant and n is the carrier concentration. Mott considered
that a metal-insulator (MI) transition occurs when the effective Bohr radius ap =
kh?/m.e? is equal to the Thomas-Fermi screening length. Therefore the following

formula can be derived.

nf3ap ~ 0.25, (3)

here n, is the critical concentration for MI transition.

For the samples as InSb with an extremely small effective mass, the effective
Bohr radius is very large. Though the wavefunction of the donor electron shrinks
under the magnetic field and thereby the effective Bohr radius becomes small, the MI

transition induced by the magnetic field occurs in the strong magnetic field. Here the



parameter 7y is introduced.
— hwc — a’_B’ ( 4)
2Ry l B

where w, = eB/m, the cyclotron frequency, Ry the effective donor Rydberg constant

v

and lp = (h/eB)Y? is the cyclotron radius. As the magnetic field increases, the
characteristic size of the wavefunctions of electrons becomes smaller. a;; = ap/Invy
shows the effective Bohr radius in the direction parallel to the field and a, = 2ip
shows one in the perpendicular direction [18]. Thus the volume of the electron wave-
function given by (a1)%a;, = 4a%/(v1n~) decreases as B is raised. Once the overlap
between the wavefunctions is sufficiently reduced, the MI transition is expected to

occur according to the following condition
n(a,)’a; ~ 8, (5)

where § = 0.25 is a constant. Various values of & have been reported by a lot of
researchers. For example, Ishida and Otsuka [11] have investigated the critical con-
centration Np, as a function of magnetic field and found the critical concentration
N§, expressed as Ng(ay)%a;; ~ (0.26)%. This relation was found for magnetic fields
up to 1.3T at which a value of a; /a/; is ~ 0.55.

2.2 Anderson Localization

Anderson has considered that no diffusion at all can take place in his model “im-
purity band” [6]. Assuming that the impurity band has the width of level distribution
W, which is much larger than |V|, where |V] is the transfer energy between two levels.
As shown in Fig.2.2.1, when the energy difference between two levels AE = |E; — E»|
is sufficiently small compared with |V|, the wavefunctions have nearly the same am-
plitudes on both side. On the other hand, if AE > |V, the ratio of the amplitudes
is given by |V|/AE(< 1). It implies that the inequality

AE < |V| - (6)

should hold for the wavefunctions to extend to neighboring sites. The probability,

which the energy level on the nearest neighbor site is in the energy region (6), is given
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by |V|/W. The |V|/W gives the probability that the wavefunction extends to the

neighbor site.

{1 v>w)
B {|V|/W (V| <w), ()

where P, represents the probability that the wavefunction extends to the nearest
neighbor site. Using the same argument repeatedly, one finds the probability that the

wavefunction extends to the n-th neighbor site is given by
|4
P Loy ®

where L, is the number of n-th neighbor site. Since L, « n? in d dimensions, B,
tends to zero as n — oco. It means that if W > [V| the wavefunctions are all localized
and the system of electrons becomes an insulator. Since it is metallic in the limit
W — 0, there should be a critical value (W/|V]).. such that if W/|V| < (W/|V|)er
the system is metallic and it is an insulator otherwise. When randomness (or W/|V|)

increases, there appears the MI transition at some point.

2.3 Transport in the Impurity Band and Hubbard Model
Fritzsche [1] has explained the experimental results of the temperature depen-
dence of conductivity on Sb-doped Ge ( Ge:Sb ) using the following formula
€ €9 €3
= - —— — 9
o o1 exp( kBT) + ) eXp( kBT) + 03 exp( kBT), ( )

where €, represents the activation energy of an electron between the Fermi level in
the impurity band and the conduction band and €3 the hopping energy to jump to
the nearest donor site. He has suggested that e, is the energy between the D° and
the D~ states. Afterwards Hubbard [5] has theoretically introduced the following

Hamiltonian to describe this electronic system.

H= Z Z tijCZ,ng- + Ezj— Z Z ﬁia'ﬁi_g- (10)
ij o i o

The first term means that an electron in j-th donor site transfers into the i-th site

at a transition rate t;;, where ¢, and c;, are the creation operators of electron with

11



a spin state o at j site and the annihilation one, respectively. The second term is
all the sum of the Coulomb repulsion energy U between electrons with up-spin and

down-spin in the same site, where 7;, = ¢, c;,. With the hydrogenic 1s wavefunction
¥1,(r) = (mab) ™ exp(——), (1)
D

one can calculate the value of U as

5 e?
= e 12
SK,(ZD ( )

U(= I — A) can be defined as the energy required to transfer an electron from one
neutral donor to another one, where I is the ionization energy and A the electron
affinity. The Hubbard gap corresponds to the e, introduced by Fritzsche. In fact, the
value of Hubbard gap is calculated taking the exchange interaction besides the U into
account. The band which consists of D~ (D°) states is called upper (lower) Hubbard
band. When ¢, disappears, the upper Hubbard band and the lower one overlap, and

then MI transition occurs.

2.4 Scaling Theory

For a long time, it is one of the outstanding problems how the conductivity at
0 K changes as the impurity concentration increases in semiconductor. Mott [19] has
considered that a finite jump of the conductivity occurs at the critical concentration.
According to him, in the metallic regime the conductivity is given by the used Drude

formula,

o (13)

Using the Fermi wave number kr and the mean free path [ = vp7, where vp is the
Fermi velocity, the conductivity (eq.(13)) is written as
2

=k, (14)

g ~

here d is the dimension of the system. In dirty metal, [ might be short, but can

never be shorter than the lattice constant. Therefore the relation kxl > 1 should be

12



established. This suggests that the metallic conductivity has a minimum value.

2
Omin %k?:—Q
0.03¢?

= = (15)

After the advent of the scaling theory, the concept of Mott’s minimum metallic
conductivity was denied. A useful method to deduce the conductivity is the numerical
calculation using computers. However, the calculation is limited to the system with
a finite size L. Thouless et al. [20] have investigated the difference of energy between
the some systems which have the various length.

Abrahams, Anderson, Licciardello and Ramakrishnan have proposed the scaling
theory [21]. They have considered how the dimensionless conductance g(L) changes

as the system size L varies. The following equation is defined as the scaling function.

Bla(r)) = L2AL) (16)

When 3(g(L)) is positive (negative), the wavefunction of electrons is always extended
(localized). The qualitative behavior can be clarified by considering two limiting cases
as L increases, that is, g — oo and g — 0. In the limit g — oo, the system behaves as
a metal so that the conductivity o can be defined independently of the system size.
Then g(L) is given by

9(L) x ¢L%2, | (17)

where d represents a dimension of the system. From egs.(16) and (17),
Blg) ~d—2. (18)

In the limit g — 0, the system tends to be an insulator and the conductance vanishes

exponentially as
L
9(L) ~ exp(—c7—), (19)
A

where ¢ is a constant of the order of unity. Then one gets

B(g) < E}Z' (20)

13



The behavior of B(g) for d = 1,2, 3 is shown in Fig 2.4.1. The following conclusion
is made. (1) In one and two dimensions (2D) the wavefunction of electrons is al-
ways localized. For 2D system, however, the conclusion is not always correct, if the
electron-electron interaction is considered. (2) In three dimensional (3D) system the
MI transition takes place depending on the circumstances.

Especially in the case of 2D system of the large g, the conductivity decreases

logarithmically as the system size increases, i.e., one may assume 3(g) tends to zero

as
a
Blg) = ——. (21)
g
Then eq.(21) is integrated as
L
o(L) = g0 — aln(2), (22)
0

where go is the initial value of g, i.e., go = g(Lo). The logarithmic decrease of g shows
a precursor effect of localization.

In case of large conductance g for 3D system, the function 3(g) is expressed as

!

Blg) ~ 1~ %. (23)

where o is a constant of the order of unity. Putting eq.(23) into eq.(16), the following

equation is obtained.
dg @
g—o L

(24)

Assuming that the conductance in the limit of L — oo is given by g = ooL, the
conductivity o is expressed as

!

a
o~ og+ 'E (25)

For the metallic region in 3D system, the conductivity decreases as the size of the
system increases. The term, which depends on the size, corresponds to the weak
localization effect.

At a first glance, it seems that the size dependence of conductivity such as
eqs.(22) and (25) can never be observed in macroscopic systems. In real systems

electrons interact with one another and with phonons. At finite temperatures electrons

14



are scattered inelastically by these interactions. If the inelastic scattering occurs before
electron reaches the boundary of the region of localization, the memory of the phase
of the wavefunction is lost there. Then the electron starts again the quantum diffusion
from that point. In this way, the electron can arrive at the boundary of the system by
the help of the inelastic scattering. The conductivity is given by egs.(22) and (25) with
replacement of L by the length L. to which an electron propagates by diffusion within
the inelastic relaxation time 7.. Denoting the diffusion constant by D(= v37/d), L.

is given by the diffusion equation as

L.=+/Dr. (26)

The probability of the inelastic scattering 1/7. vanishes at zero temperatures, and is

given at finite temperatures as

1 xT? (p>0). (27)

Te

Substituting egs.(26) and (27) in egs.(22) and (25)
Aoo(T) x pnT (2D), (28)

and

Aos(T) < TP?  (3D), (29)
one finds the conductivity for 2D decreases logarithmically with decreasing tempera-
ture. According to the calculation of conductivity with Kubo formula, the quantum

correction for the conductivity is given by

e? Te pe?

2.5 Weak Localization

In the simple case, a progressive wave ¢® T attributed to an electron interferes
with the scattering wave e~*K" when the backward scattering occurs strongly. Due
to the superposition of these two waves, the standing wave is generated and electrons
localize. The interference effect is the precursor of the formation of the localized states

for electrons.

15



2.5.1 Bergmann’s Treatment

Since the Scaling theory was proposed, a large number of studies on electron
localization have been carried out. Bergmann [7] suggested that conductivity should
be reduced due to the multiple scattering of electrons by impurities. The electron
with the wave-vector k is scattered into a state k'l, then into a state k'z, and finally

into a state —k. This scattering sequence,
k_.)kl__>k2_.)..._>——k, (31)

is drawn in Fig.2.5.1 There is an equal probability for the electron with k to be

scattered from k to —k through another process.
k— k] >k, - —k. (32)

For the two processes the amplitude in the final state is the same. If the amplitudes

Apg and A in the final state are in-phase, the total intensity is given by
|Ar+ Ap|? = |Ar]* + |AL]* + ARAL + ArA} = 4|AP. (33)

As a result of quantum interference, both A3A; and AgAj} are |AJ%. If the two
amplitudes were out-of-phase, the total intensity becomes 2|A|?>. This means that the
scattering intensity is larger than that of the classical scattering by 2|A[?>. In case

that the spin-orbit (SO) interaction is strong, the total intensity is |A[?.

2.5.2 Expression for Magnetoconductance

Under the magnetic field, the component of vector potential

exp(i% / A1), (34)

is added to the phase factor of electron wavefunction, and thus the magnetic field
breaks the time reversal symmetry of the system. Then the phase shift between two
waves induced by the magnetic field is 2e®/k. Accordingly the quantum interference

effect is destroyed by application of the magnetic field, and the electron localization

16



effect is defused and conductivity increases. Therefore negative magnetoresistance
(MR) can be experimentally observed.

In other words, the effect of the weak localization is caused by the interference
of two electron waves which are scattered by impurities but propagate in the opposite
directions along the same closed trajectory, and return to the origin with equal phases.
Therefore, it leads to a suppression of conductivity.

For two dimensional (2D) system, Hikami, Larkin and Nagaoka [22] have de-
veloped the theory with ladder diagram, including the SO interaction. In the weak

magnetic field
e 3_.1 % 2 1_.1 % I
Ao(B) = 2m2h [5\11(5 + 4D7'1) - 4D1y - §\P(§ + 4D7'e) B 4D7'€] (35)
and
1 4 1
12,2 (36)

1 Tso Te

where [p is the cyclotron radius, and the magnetic scattering 7 is ignored. If the SO

~ interaction is weak,

e 1 5 2

Ao(B) = 27T2h\1,(§ + 4D, B 4D1.” (37)
Especially they have expanded eq.(37) for 4D7. /14 << 1
e? 4DeBr.,
for 4D /1% >> 1
e? 4DeBT,

For three dimensional (3D) system, Kawabata [23] has developed the theory
with use of Feynman graph method under the condition that kgl > 1, w.7 < 1 and
l/lg < 1, where kr is the Fermi wavenumber, | = vpr: the mean free path and
w, = eB/m,: the cyclotron angular frequency. Then he defines Ac¢ as its difference
from the value at H =T =0.

Ac(H,T) = Ao (H,T) + Acy(T), (40)

where Aog;(H,T) is the magnetoconductivity (MC) and expressed as

e2

Aco(H,T) = 272hlp

F(9), (41)

17



with

i 1
5) = - —
F(6) szjo(2[\/N+ 14+6—+VN+4] N ESTEY:

where § = 1%/12 and I, = 24/D7.: inelastic scattering length. For § <« 1 (at high

); (42)

magnetic field or low temperature), he expands the right-hand side of eq.(42) in J as
F(8) = 0.605 — 2v/8 + 2.396. (43)

and the leading terﬁ of Ao, is
Ac,(H,0) = 2.90VH. (44)

For 6 > 1 (at low magnetic field), he expands the right-hand side of eq.(42) in power
of 1/(N+1/2+), and

F(6) = 1 i (N + 1 +8)752 = i (45)
T 324, 2 48
then
_ (Tevaje €HT — 2
Aoo(H,T) = oo(5)¥*( ec) CH?. (46)

From the experimental data on MC the inelastic scattering time 7. and the SO scat-
tering one 7., are estimated. And one can see a crossover from B?-dependence to

v/B-one of the conductivity [24].

2.5.3 Physical Viewpoint of Weak Localization

The physical viewpoint of weak localization is discussed from now. It is crucial
that the impurity potential,
V(r)=>_v(r— Ry, (47)
=1
has the time reversal symmetry. Here v(r) is the respective impurity potentials and
r; the position of the impurity. Due to the symmetry, the matrix element for the

scattering from |k> to |k’> should be the same as that from |—k'> to |-k>: ie,

<K|\Vk >=< —k|V|—-K' > . (48)

18



The same symmetry holds for all matrix elements of higher order. The third order
matrix element is illustrated in Fig.2.5.2.

If one puts k’=—k here, both of the two different processes contribute to the
backward scattering. Usually scattered waves of different scattering processes are
incoherent due to the random distribution of impurities, and do not interfere with
one another. In this case, however, two scattered waves of the reversed processes
have the same phase due to the time reversal symmetry, and the interference takes
place. The backward scattering is strengthened by the quantum interference, which
results in the decrease of the conductivity. The detailed derivation is described in § 6

Appendix.

2.6 Spin-orbit interaction
The matrix element of the spin-orbit (SO) scattering is given by
< K,0'|Violk,o >= iuZei(k_k,)'Ri(k X k') - 8o, (49)

where s denotes the spin matrix of electrons. In this case, the relation of the time

reversal symmetry is given by,
<K,d'|Veolk,0 >=< —k,0|V,.|—K,6' > . (50)

In order to explore whether the quantum interference effect is concerned, one has to

know the phase relation between

< K ,0'|Vsolk,o > and < —k, 0’ |Vso|—k',0 > . (51)
And one finds

<K, 0 |Veolk,0 >= — < —k,0'|Vso|—K',0 > . (52)

The above relation means that two waves scattered backward by the reversed processes
have the opposite phase and disappear by superposition. As a result, the backward
scattering is weakened in this case, which leads to the increase of the conductivity

(anti-localization). Due to the SO interaction, magnetoresistance (MR) is positive.
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On Si:Sb samples with the impurity concentration near the metal-insulator tran-
sition, the low-temperature anomaly for the resistivity [9] has been reported and as-
cribed to the effect due to the SO interaction [10]. The interaction increases with the
atomic number Z of the donor as (Z — Z')*, where Z’ is the atomic number of the host
material, i.e., 14 for silicon. The anomaly for the resistivity has not been observed in
Si:P (Z = 15 for P) and Si:As (Z = 33 for As).

It is recognized that two types of SO interaction can be identified. One is due
to the random impurity potentials of individual scattering centers, which leads to the
anti-localization (AL) effect. The other occurs in the systems which lack inversion
symmetry. So far Greene et al. [25] has reported that the low-field MR of InSb-CdTe
heterojunction is positive, which illustrates the importance of the zero-field spin split-
ting for the space-charge layer in narrow gap semiconductor. For GaAs/AlGaAs
MOSFET the positive MR due to the SO scattering is observed [26], which arises
from the crystal-field-induced spin splitting.

In order to investigate the AL effect due to the SO interaction, so far, metallic
thin films have been employed. Bergmann has reported on positive MR with thin
Mg-films covered with some amounts of Au atoms [27]. The superposition with Au
increases SO scattering and the magnitude of positive MR is larger with increasing
the amount of Au. Komori et al. [28] have examined the magnetoconductance (MC)
for the Cu films, Cu-Ag films and Cu-Au films. It is indicated that the MC is mainly

due to the localization effect with SO interaction.

2.7 Electron-electron interaction

When electrons localize due to the random potential, the electron-electron (e-e)
interaction has a great influence on the electron localization. These interactions are
classified into two different channels.

(1) The Cooper channel, which is also called the particle-particle channel, describes
the interaction between electrons of antiparallel wavenumber. The effect produces a

positive MR due to the orbital interference.
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(2) The diffusion channel, which is also called particle-hole channel, describes the
interaction between electrons of parallel wavenumber. The Zeeman effect leads to a
positive MR [29].

For two-dimensional (2D) system Fukuyama [30] has examined the correction
terms in the transport coefficient of e-e interaction. The interaction theory leads to

the following result of the total relaxation time,

11 g 1
— =N 53
Tiot 7'[ + QmeRrT 47r7'T]’ (53)

g=g1+9g2—2(g3 + 94), (54)

where 7 is the relaxation time due to impurity scattering and g; (i = 1,2,3and4) are
dimensionless coupling constants characterizing four distinct processes as for e-e inter-
action. g; and gs (g2 and g4) processes are derived by the diffusion (Cooper) channel
interaction. And g; and g» (g3 and g4) processes represent the exchange (Hartree)
interaction. Temperature and magnetic field dependence of conductance reflect these
interactions.

For three-dimensional (3D) system, Altshuler and Aronov [31] has developed
the theory under the condition kgl > 1, where kp is the Fermi wavenumber and [
the mean free path. As for the temperature dependence of conductivity, T/? correc-
tion, resulting from e-e interaction in the presence of strong impurity scattering, was

calculated as

Aoy(n, T) = m(n)T?, (55)

where m(n) depends on the impurity concentration and reflects the exchange and the
Hartree interaction. Moreover, the importance of e-e interaction for the density of
states (DOS) N(E) near the Fermi energy Er has been suggested. Altshuler and

Aronov showed DOS have square-root dependence,
E—-E
N(B) = NEr) (1 + (B EEly, (56)

where A ~ D /12, D the diffusion constant and ! the mean free path.

Altshuler et al. have suggested an expression of the magnetoconductivity due
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to the DOS corrections caused by the Cooper channel interaction [32] for the 2D and
3D cases. The formula is expressed as,

Bo(B,T) =~z o(B, 1) s 2o, 57

where o is a constant and g(B,T) is the renormalized coupling constant. This ex-
pression is in the weak magnetic field regime for a one-valley semiconductor. Another
form of g(B,T) has been calculated by McLean and Tsuzuki [33] who give

§HB,T) = In(E) + ¥(3) - VG + o),

(58)
where ¥(z) is the digamma function. The function 3 is defined for long phase

coherence times by

o) =2 [ et st 59)

Especially,
() = 1.90 z>1,
PslT) = =¢(B)at2/4 <L,

where ((y) is the Riemann zeta function. For 2D Altshuler et al. have expressed as

(60)

e? 2DeB
Aoy(B,T) = 2h9(B T)pa . T) (61)
and
S # xt
¢2(z) = ]0 sinh? t(l ~ sinh(zt) )dt. 62)
Especially,
_ ) Inz z>1
pa(z) = { ((3)z%/4 z <1, (63)
is expressed.

2.8 Review of the Temperature Dependence of Conductivity
For three-dimensional (3D) system in the absence of magnetic field,
o(T) = 03(0) + mTY2 + BT?/?, (64)

where 03(0) is the zero-temperature conductivity for 3D system. The second term and

the third one are due to the electron-electron (e-e) interactions and the localization,
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respectively. The localization generally gives Ao ~ T?/? when an inelastic scattering
time 7, varies as T77. The e-e interaction theory gives the following formula for the

coefficient m taking mass anisotropy into account [34].

2
02n2h (65)

m =

and

_ir dg
RS /o 1+ (2kr/qs)sin(q/2)’ (66)

where F is the Hartree factor, which is introduced by Altshuler et al. [35]. Taking
the correlation effect into account (36][37], F is simply expressed as F' = [In(1+z)]/z.
Here, z = (2kr/K)?, kr the Fermi wavenumber and K the Thomas-Fermi screening
wave vector. g, the reciprocal screening length given by Ando et al. [38]. The factor

4/3 results from the exchange term. And

B (67)

1 z": sin? 6; cos2 9;
- v i=1 my
where m, = (m2m;)'/3, 6; is the angle between the current and the axis of the
spheroidal energy surface of the ith valley and v the number of the valleys.

For two-dimensional (2D) system
o(T) = 02(0) + Ao (T), (68)

where 05(0) is the zero-temperature conductance for 2D system.

62

T) = ap—r
Ao(T) aT27r2h

InT, (69)

where ar = p + g and the inelastic scattering time can be written 7. x T7P. g is

defined in §2.7.

2.9 Hopping Conduction
2.9.1 Nearest-Neighbor Hopping Conduction

Below the critical concentration for the metal-insulator (MI) transition, electrons

localize on the sites of impurities at low temperatures, but they can hop from one
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localized state to another by absorbing phonons. The concept was first introduced
by Miller and Abrahams [39] and they supposed that an electron on an occupied
site would normally jump to a nearest site with energy AE above it. The hopping
probability W is then given by the form

W & v, exp(—20.R — —A—g), (70)
kgT

where v,, depends on the strength of the interaction with phonons, R the distance
between the electrons on the localized states and o = £~1, where £ is the localization
length. The first term represents the transition probability which depends on the
overlap of wavefunctions expressed by exp(—aR). If aR is small, this term can be

ignored, and then the conductivity in the system is expressed as

o =03 exp(—-];-%), (71)

where o3 is a prefactor and AFE = 3. This process is sometimes called the nearest-
neighbor hopping (NNH) conduction against the variable-range hopping (VRH) con-

duction at sufficiently low temperatures which is explained in the following section.

2.9.2 Mott’s Variable-Range Hopping Conduction

Let me consider the case that aR is not small and the interaction between electrons
is not taken into account. An electron just below the Fermi level jumps into a state
just above it. In this transfer the energy of AFE as expressed in eq.(70) is necessary. As
the electron jumps farther, the choice of states that the electron encounters is greater,
and in general electron will jump to a state for which AF is as small as possible. The
electron jumps a distance R, and it is necessary that there is a state at least within

the distance R in order to hop to another state.

4R

5 AEN(Ep) = 1. (72)

The above relation is an expression for three-dimensional (3D) systems. Here N(Ey)

is the density of states (DOS) at the Fermi energy Er. One puts eq.(72) into eq.(70),
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so the conductivity is proportional to

3
—2aR — .
P20k — e RN (Er). 73)
And one calculates R, to maximize eq.(73)
8nakgTN(E
Rm,a:z: — ( T B9 ( F) )-—-1/4’ (74}
then o(T) is expressed as
T
o(T) = oo exp[~(7)"] (75)
where v = 1/4 is given for 3D systems. And
o3

where a is the reciprocal of the localization length. The temperature dependence of
conductivity, which obeys Mott’s law, has been reported on various systems such as
amorphous silicon [40] and impurity semiconductors [41][42]. An electron jumps from
a state below the Fermi level to a nearby state for NNH conduction and to a distant

state for which AF is as small as possible in the case of VRH conduction.

2.9.3 Efros-Shklovskii Type Variable-Range Hopping Conduction

Considering the Coulomb interaction between localized electrons, a soft Coulomb
gap in the DOS near the Fermi level is created. The temperature dependence of con-
ductivity reflects the gap. The concept has been introduced by Efros and Shklovskii
[43]. They have considered the transfer of an electron from filled donor Z to an empty
donor j, where the state 7 and 7 are occupied and vacant, respectively. The transfer

should increase the energy A;; of the system.

e2

kR’
where & is the dielectric constant, E; < Ep and E; > Er and the third term describes

Ay =E; — E; — (77)

the Coulomb interaction of the created electron-hole pair. E; and E; are assumed to

be at the energy interval of small width e centered at the Fermi level Er. Assuming
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N(Er) = Ny, a mean distance R between the states is determined by the condition
NoR3¢ ~ 1 and R equals (Noe)~V3. If € << A, = €3Ny’*/&%?2, the interaction
energy of the states e2/kR = (e2/k)(Noe)'/? exceeds € and eq.(77) breaks down. Thus
a constant density of states contradicts the eq.(77) and N(E) at |E — Er| < A,
decreases with |E — Ep| and should vanish at the Fermi level. In other words, the

mean distance between the states in the interval ¢ has to be of the order of €?/xe

2
e
N(e)(=—)Pe~1 7
(e)(=)e=1, (78)
therefore,
K3e?
N(e) = 2 (79)
where 7 is a numerical coefficient. For the two dimensional (2D) case, one finds
’ K,2 €|
N =rd. (30)
Using eq.(79) and by analogy with the Mott law derivation one obtains
T
o(T) = avexpl~ ()7, (81)

where Ty = e?/ka. The same result is valid for the 2D system. The Coulomb gap A,
depends on the dielectric constant and will vanish as Kk — oo in the vicinity of the
metal-insulator transition. Therefore the conduction according to the Mott’s law will
be expected. |

In order to tell the hopping exponent v in eq.(75), whether it is 1/4 or 1/2, Zabrod-
skii [44] has clarified the difference of the exponent with a good analysis. When eq.(75)

is satisfied, one has

Inw= —vInT + const. (82)
and
_ Olnp

where p is the reciprocal of the conductivity o. The slope of curve in eq.(82) yields
the hopping exponent v. Zabrodskii has found that all curves for a series of n-Ge in
the range of compensations 0.3 < K < 0.8 approach a straight line with the slope

v = 0.5 with decreasing temperatures.
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2.9.4 Magnetoresistance in Variable-Range Hopping Conduction

The positive magnetoresistance (MR) observed in VRH regime has been attributed
to the shrinkage of the wavefunction of electrons and consequently to the reduced
hopping probability. The theory of positive MR for VRH conduction has been devel-
oped for two cases, namely, for a constant and for a quadratic density of states in the
vicinity of Fermi level. In the low magnetic field region, the positive MR is expressed
by Shklovskii [45] as
where y = 3/4 for Mott type and y = 1/2 for Efros-Shklovskii (ES) type. t is a

numerical coefficient and B the magnetic field. The eq.(84) is derived from the resistor
network model proposed by Miller and Abrahams [39]. Here y = 3v holds, where v is
defined in eq.(75). When we determine the dominant hopping process, Mott’s type or
ES type, it is better to investigate the experimental data in the presence of magnetic
field than those in the absence of it, because the difference of the hopping exponent

appears clearly.

2.10 Two-Band Model

Now the electric current flows in the x-direction and a magnetic field is applied
to the z-direction, then equation of motion on the electron is written using the velocity

v and the electric field F.

d 1
m(= + ;)vz = —e(E; + Byy),
d 1
m(d_t + ;)vy = —e(E, — By,),
d 1
m(EE + ;)vz = —ekE,. (85)
Then the respective components of the conductivity tensor ¢ are expressed as
Oz = Oyy = !
T — vy 1+ (wcT)20'0a
Opy = —0Opp=—mrl 5
v ¥ (wer)?
0,, = 0y, (86)
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where
2

ne‘r
= , 87
0= - (87)
and the cyclotron frequency is written as
eB
We = —. 88
= (58)
We can set J, = 0 for the measurements on Hall coefficient.
o o
E, == == 89
v Oylbz Oz (89)
therefore,
2 2
O.IL‘ID + g

The Hall coefficient and the conductivity for the x-direction under a magnetic field

are given by

E, 1 Ozy
= = 1
Ba BJ, Bo +02, (91)
and
2 2
+
o= gffaﬂ_ (92)

When two types of carriers of which carrier concentration and mobility are

described as n;, ns, 11 and ps, the conductivity and the Hall coefficient are expressed

as
o =) miep; =niel; + noeps (93)
and
R . l Ez Uizy
" B (T 0izz)? + (Cizy)*’

(n1pd 4 nopd) + pipd(na +np) B2 1
(napn + nope)? + p3p3(ny + no)2B2 e’

(14 zb?) +?u2(1 +2)B% 1
(1 + zb)2 + B2p2(1 + 2)2B2 nye’
where £ = ny/n; and b = ps/u;. In the case of the weak magnetic field, Ry is

(94)

approximated by the following equation

1 2 2
RH - = (nll'l’l + n2/‘l‘2)2 . (95)
e (nap + nopn)
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3 Experimental procedures

3.1 Sample Preparation

3.1.1 Si:Sb bulk samples

In this study we have employed some Sb-doped Si samples with the impurity con-
centration of above and below the critical concentration for the metal-insulator (MI)
transition grown by the Czochralski method. The critical concentration for the MI
transition, N, = (3.0£0.2) x 108cm™3, is adopted from the work of Castner et al. [46].
We have determined the donor concentration through the Hall coefficient measure-
ments at 300K. The Characteristics of the samples are shown in Table.1. In addition,
we used sample C#, which has the almost same impurity concentration as that of
sample C. The conductivity at low temperatures for sample C# is smaller than that

for sample C.

Table 1: Characteristics of samples

Sample Np Crystalline P300K Relation between
(x10*¥cm™3) Plane (x1072(2 cm) Np and N¢
A 14 < 100 > 2.06 0.47N¢
B 24 < 100 > 1.37 0.80N¢
C 3.0 <111 > 1.07 1.0N¢
D 7.6 <111 > 0.716 2.5N¢
E 11 <111 > 0.556 3.7N¢

3.1.2 4-doped Si:Sb

Three samples with Sb §-doped layer were supplied by Prof. Fukatsu et al.
[47]. The samples are grown on Si < 100 > substrates by Si molecular beam epitaxy
(MBE) method. After removal of the native oxide by heating the substrate up to
850°C for at least 30 min, a Si buffer layer was grown at 800-850 °C. An Sb adlayer
was subsequently deposited on a 2x1 reconstructed surface at 100-650°C. Finally,
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a capping layer was formed at 550°C by solid phase regrowth of an amorphous Si
overlayer. The sample characteristics are listed in Table 2. Atomic distribution of
Sb in three samples by way of the secondary-ion mass spectrometry(SIMS) is shown
in ref.[47]. It is confirmed that the doped layer remains stable until the sample
is annealed and the broadening of Sb distribution is less than 20nm. 1 monolayer
(ML) corresponds to 6.78x10'* atoms per cm? on Si < 100 > and the respective

concentration is shown in Table 2.

Table 2: Characteristics of samples

Sample | Capping layer | Sb coverage Buffer layer | Concentration
thickness (A) (ML) thickness (A) (cm™2)
F 800 1.0 2000 6.8x10
G 1200 0.11 3560 7.5%x1013
H 800 0.06 500 4.1x10%

3.1.3 InSb Thin Film

We have obtained two kinds of InSb thin film samples from Dr. Shibasaki of
Asahi Chemical Industry Co., Ltd [48]. These samples were fabricated by the MBE
method. The substrates are semi-insulating < 100 > GaAs. The InSb thin films were
grown directly on GaAs substrates, taking no thought of the large lattice mismatch of
about 14%. The lattice constants GaAs and InSb are 5.65 A and 6.48 4, respectively.
According to him, InSb/GaAs hetero interface has a lot of disloéations after the thin
film growth, especially less than 0.5xm, and the electric properties of them depend
on the film thickness. When the film thickness reaches about 1pm, it is possible to
fabricate a stable sample at room temperature, where the mobility is ~54000cm?/Vs
and the sheet resistance is 55~60€2. The InSb thin films with high electron mobility
are expected as magnetic sensors such as Hall elements. Two samples studied in this
work are a non-doped sample and Sn-doped one, whose thickness is about 1uym. The

parameters of the measured samples are shown in Table.3.
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Table 3: Parameters of samples; Resistivity, carrier concentration and mobility at 300K are shown.

Sample |Film thickness| Dopant | Resistivity | Concentration | Mobility
(um) (€2cm) (em™?) (cm?/Vs)

1457 ~1 undoped | 3.86x1073 1.1x10% 1.5x104
1472 ~1 Sn 343x107% | 1.5x10"7 1.2x10*

3.2 Experimental Setups

In the present study we have employed various measurement systems. Measure-
ments down to about 0.4K were carried out using *He cryostat system, which mainly
consists of 3He pot and *He. After the *He pot reaches around 4K, it is pumped and
the 3He pot is cooled with pumped *He. Applying the heater to put 3He gas out
of charcoal, *He condenses in the *He pot. By evaporating 3He, the system reaches
around 0.3K. When we used the system, an ac resistance bridge was used for the
resistance measurements in order to avoid the self-heating effect of samples.

The dc resistivity and Hall coefficient measurements at 4.2K were performed for
directly immersed in liquid He. As for Hall measurement, Hall coefficient is obtained
by averaging out the results measured for the two directions of the magnetic field.
We have employed a Keithley 220 Programmable Current Source and Keithley Model
2001 multimeter. For Hall and magnetoresistance (MR) measurements we employed
a superconducting magnet.

For the measurements above 4.2K, the sample was mounted in a helium re-
frigerator JMTR-4/300K under a computer control. For MR measurements in high
magnetic field up to 10T we used a superconducting magnet JMTD-10T100M. They
were produced by KOBELCO.

For Si:Sb bulk and J-doped samples, the ohmic contacts were fabricated through
the following procedures. The etchant for the sample is CP4 solution, which consists of
nitric acid, hydrotiuoric acid and acetic acid in the proportions of HNO3:HF:CH;COOH=
5:3:3 by volume. The sample was placed in a chamber of 10~3Torr and Au:Sb was

evaporated onto it. Ohmic contacts were formed by annealing in Ar+H, atmosphere
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at 400°C for 30 min. Indium metal was soldered onto the contacts area, where Ag
wire was connected.

As for Si:Sb bulk samples, van der Pauw method was employed when the elec-
trical measurements were performed. On the other hand, in the case of §-doped Si:Sb
sample and InSb thin films, the usual four contact measurements were carried out.
The electrodes of §-doped samples were put on the side of the sample, so electrons

conduct in not only é-doped layer but also the substrates at higher temperatures.
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4 Experimental Results and Discussion

4.1 Results for Sb-doped Si bulk samples

On Si:Sb samples with the impurity concentration near the metal-insulator(MI)
transition, Long and Pepper[9] have reported the low-temperature anomaly of the re-
sistivity. Paying attention to the fact that such an anomaly had never been observed
in Si:P and Si:As, Kaveh and Mott have argued the anomaly qualitatively based on
the scattering effect related to the spin-orbit (SO) interaction due to the heavy Sb
atoms in Si [10]. The strength of SO interaction depends on atomic number and
generally in heavy elements it is stronger than that in light elements. As the other
problem on the MI transition, there still remains some ambiguity as to whether the
MI transition is primarily a Mott-Hubbard type or an Anderson type. The latter type
transition is principally claimed for many-valley semiconductors. We want to make
them clear through the experiments on Si:Sb bulk samples.

Figure 4.1.1 shows the temperature dependence of the resistivity for five samples
with different impurity concentration. Sample A and B with the donor concentration
below the critical one for the MI transition demonstrate that the resistivity increases
with decreasing temperatures. The increase in the resistivity is mainly caused by the
decrease of the conduction electrons (e;-conduction), and the details are described
later. Sample D and E with the donor concentration above the critical one for the
MI transition show a metallic conduction. In general the number of carriers does
not depend on the temperature in a metallic regime and the change of the resistivity
attributes to the temperature dependence of mobility, which results from the acoustic
phonon and the impurity scatterings. The resistivity of sample C shows the maxi-
mum, which is described below in detail.

Figure 4.1.2 shows the temperature dependence of the Hall coefficient for sam-
ples concerned except for sample E, because the Hall coefficient for sample E was
too small to measure due to the large number of carriers. For sample A and B the
Hall coefficient increases as the temperature decreases, that means the decrease of

thermally activated carriers from the donors to conduction band. Temperature vari-
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ation of the Hall coefficient for Sample B is gentler than that of Sample A, which
originates in the difference of the activation energy of donors called as ;. The Hall
coefficients for sample C and D decrease with decreasing temperature, which arises
from the temperature dependence of the Hall factor. The impurity concentration for
Sample C just coincides with the critical one for the MI transition. Judging from
the temperature dependence of the Hall coefficient, sample C is considered to be a

metallic sample rather than an insulating one.

4.1.1 Results for the sample with the impurity concentration below MI transition

The temperature dependence of the conductivity between 20 and 300 K is
shown against 7! in Fig.4.1.3. It is found that the conductivity o is approximated
by the sum of two exponential terms with each characteristic activation energy of
€, = 10.3meV and e, = 2.2meV, where €; represents the activation energy of an elec-
tron from the Fermi level located in the lower Hubbard band (LHB) to the conduction
band, and e, corresponds to that to the extended states in the upper Hubbard band
(UHB) as mentioned in § 2.2. On the other hand, from the temperature dependence
of the conductivity for sample A, we found ¢; = 13.6meV. Characteristic conduction
showing up €; and €3 are not found in present temperature range of measurements.
The difference of the activation energy €, between two samples comes from the dif-
ference in the energy between the LHB and the tail states of conduction band. The
energy €; has been reported in ref.[49] for Si:P, and e, distributes between 0.324 and
1.73 meV in the range of donor concentration between 2.07 and 2.63x10%cm™3. The
deviation from the slope of €; in Fig.4.1.3 is caused by the variable-range hopping
(VRH) conduction at lower temperatures.

Figure 4.1.4 shows a plot of carrier concentration as a function of the reciprocal
of the temperature T-1. This is a typical analysis based on the one-band model and
the slope of the graph corresponds to the activation energy between the conduction
barid and the impurity one. The activation energy obtained from the slope is 8.7 meV

for sample A and 0.52 meV for sample B.
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The first purpose of this study is to examine which type is predominant for the
VRH conduction at low temperatures, Mott type or Efros-Shklovskii (ES) one. The
temperature dependence of the resistivity for sample B is shown in Fig.4.1.5 in the
absence of magnetic field. This dependence appears to obey the ES-type VRH law
in the temperature range between 2.8 and 4.2 K, which is confirmed by plotting the
logarithmic derivative w = —0Inp/8InT (eq.(83)) as a function of the temperature
on a double logarithmic scale as shown in the inset of Fig.4.1.5. The slope of curve
yields the hopping exponent v of eq.(75). Here v = 0.47 and Ty = 320K (for eq.(75))
are extracted from our experimental data, leading to a = 414 with x = 35, for which
we refer to [46]. And the temperature dependence of conductivity between 3.8 and 10
K is shown in Fig.4.1.6 in order to confirm the difference between the nearest-neighbor
hopping and VRH. It illustrates the better fit of T—/2-dependence.

On the occasion of fastening down which type, Mott type or ES type, is pre-
dominant for the VRH conduction at low temperatures, the magnetoresistance (MR)
measurement is a better way because the temperature dependence (3/4 or 3/2) of
MR is stronger than that (1/4 or 1/2) in the absence of magnetic field. The MR
data at various temperatures (T< 4.2K) are shown in Fig.4.1.7. The MR is always
positive and increases with decreasing the temperature. It is found that In p(B)/p(0)
is proportional to B? in agreement with eq.(84). log[ln p(1.5T)/p(0)] against log T is
plotted in Fig.4.1.8. The slope of this graph yields y = 1.6 (eq.(84)). This value is
rather closer to 3/2 than 3/4. Accordingly this results indicate that ES-type of VRH
is predominant at low temperatures. The similar results were obtained on Si:P [50]
and Ge:As [51].

Figure 4.1.9 shows the I-V characteristics and Fig.4.1.10 the electric current den-
sity dependence of the Hall coefficient at various temperatures for sample A. When
the temperature is higher than 40 K, the I-V characteristics follows Ohm’s law, but as
the temperature decreases the deviation from Ohm’s law becomes remarkable. These
phenomena come from the excitation of electrons into higher energy states by electric

fields.
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Similarly, the dependence of the resistivity and the Hall coefficient at 4.2K on
the electric current density for sample B are shown in Fig.4.1.11. In the low current
density the resistivity follows Ohm’s law. It is found that the resistivity decreases
with increasing the current density owing to the rise in the electron temperature.

The variation of the MR p(B) at 4.2K with the current density is shown in
Fig.4.1.12. The positive MR is observed in the low current region. For the insulating
sample, the VRH conduction is dominant at low temperatures and the application of
the magnetic field results in the shrinkage of the wavefunctions of electrons and con-
sequently in the reduced hopping probability as mentioned in § 2.8.4. As the current
density increases, the positive MR is depressed and the negative one appears. Nguyen
et al. pointed out for the first time that the interference of different hopping paths
between initial and final states leads to the negative MR [52]. In this experiment,
however, the electric field most likely forces electrons to excite into higher energy
states, resulting in a change of the electron distribution and its mobility, and thus
produces the negative MR.

The MR in obmic region above 3.5 K is shown in Fig.4.1.13. The negative MR
is not observed at these temperatures. This experimental fact means that the results
induced by the high electric current density are considered due to the hot electron
effect. The positive MR is smaller as the temperature increases. From the temper-
ature dependence of the conductivity in the absence of magnetic field, we conclude
that the MR arises from the hopping at low temperature and e;-conduction at higher
temperatures. _

According to Mott-Hubbard mechanism, the impurity band consists of the LHB
and UHB, which are strongly localized states but both contribute to the electric con-
duction. Assuming the presence of the LHB and the UHB merged with the conduction
band in the higher energy, we can determine the carrier concentration and the mobil-
ity in respective band [53]. For simplicity, we assume that all the electrons are excited
into the UHB at a maximum current density. Let’s make the resistivity and the Hall

coefficient in that case to be p. and R,, respectively. Thus the resistivity p and Hall
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coefficient Ry based on the two-band model can be expressed with egs.(93) and (95)

in § 2.10;
p_(1+2)
e = (T4 ab) (96)
and
Ry (1+z)(1+ zb?) (97)

R, (+zb32
where z is n,/n, b po /. Ny, T, Wy and y; are the concentration and the mobility
in the respective band and the subscript © and ! denote the UHB and the LHB,
respectively. p. is 1/nyeu, and R, is 1/n,e. Moreover, we employed p = (n,u, +
nyr)/(ny, + my) for the mobility obtained from experiments .

The results of the above analysis for n; and n, are shown in Fig.4.1.14 for
sample A and Fig.4.1.15 for sample B. It is found that (1)as the electric current
density increases, the carrier concentration of UHB n, increases, (2)the lower the
temperature is, the more remarkable these phenomena are. Especially, for sample B
at 4.2K, n, ~ 10'® cm~3 and n; =~ 10'® cm™3 are obtained in the ohmic region. The
carrier concentration in the UHB increases to above 2 x 107cm ™2 with the increase of
the electric current density. At low current densities most of the electrons are in the
LHB and some electrons are excited into the UHB as the current density increases.
Moreover, the mobility in the UHB, u.,,, decreases with the increases of current density,
whereas the mobility in the LHB, p;, demonstrates an opposite tendency as shown in
Fig.4.1.16. This effect is qualitatively explained as follows; the ionized donors increase
with the increase of current density, resulting in the decrease of u,, due to the increase
of the scattering rates and the increase of y; due to the increase in the empty donor
states and the increase in the possibility for electrons to hop into another sites.

From the experimental data we try to estimate the energy required for electrons
to be excited to the higher lying energy states using the model by Sclar et al. [54].
The model assumes that the breakdown phenomenon of the I-V characteristics in the
electronic system occurs when the rate of energy gain from the electric field becomes

equal to the rate of energy loss by collision with phonons. According to this model
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the critical field E. for the onset of breakdown is expressed as follows:

2v, € 1
and
e=gI. (99)

where (3 is the numerical coefficient, v, = \/m the velocity of sound, M the mass
associated with the lattice vibration, € thé average energy of electrons and I means
€5. Fig.4.1.17 shows the electric field dependence of the resistivity and the breakdown
phenomenon of the I-V characteristics observed in this experiment. Substituting the
experimental values, E, = 2.04V/cm, p, = 38.0cm?/Vs and I = €; = 2.2meV into
eqs.(98) and (99), we obtain 8 = 0.32 and € = 0.72meV. It is found that € is smaller
than I. It is concluded that electrons are not directly excited to the conduction band,
but to the low energy tail of UHB.

In the next step we will focus on the current density dependence of the MR at
4.2K. The analysis based on the two-band model motivates us to the idea that these
phenomena originate from the rise in electron temperature and the negative MR at
high electric current densities results from the transfer of electrons into the localized
states of the UHB which are assumed to be weakly localized. Consequently, these
data are regarded as composed of two effects, i.e., the reduced hopping probability in
the LHB and the weak localization effect in the lower tail of the UHB. The band tail
should overlaps with LHB at the Fermi level allowing for the transition of Anderson
type. We employ eqgs.(41), (42) in § 2.5.2 and (84) in § 2.9.4 for the analysis of
experimental data. In eq.(42), F(é) has been expanded with the Euler-MacLaurin
development in a series for several functions used in the least squares method with
an accuracy better than 0.1 % [64]. The above consideration leads to the following

expression for the Magnetoconductivity (MC) with eqgs.(41), (42) and (84) as :
1 3 1
Ac(B) = crexp(—c; B +es[2(V2 + 6—\/3)—{(§+5)‘%+(§+6)'%}+E(2.03+6)—%],
(100)
where Ag(B) = o(B)—0(0), c1, co and c3 are the fitting parameters, and § = 0.176/B

was derived from data in this experiment. The first term describes the decrease of the
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conductivity due to the reduced hopping probability and the second one describes the
increase due to the suppression of interference effec’b in the weakly localized states. The
results of the numerical calculation after eq.(100) with proper parameters are shown in
Fig.4.1.12 (solid lines). The best fits are obtained by properly choosing the numerical
values of ¢;, ¢ and c3, which are shown in Table.4. ¢; increases with the increase of the
current density. The weak-localization effect becomes more remarkable as electrons
are excited into the UHB. The arrow in Fig.4.1.18 indicates the characteristic magnetic
field where § = 1 holds. The slope of the MC against the magnetic field undergoes
a change at the critical field as predicted by the weak localization theory. This fact

suggests that the application of the weak localization theory is appropriate.

Table 4: Numerical values of c;, ¢z and c3 in eq.(100) at various electric current densities.

Electric Current C1 Co c3
Density (A/cm?®) | (2 'cm™) (T~2%) (2 lem™1)
0.38 0.902 1.66x1073 | 8.89x10~*
0.75 0.901 1.77x1073 | 5.78x1073
1.5 0.925 2.64x1073 | 5.54x1072
3.8 0.932 2.56x1072 | 1.90x1071
7.5 - 0955 7.29x107* | 4.60x1071

From the analysis based on the two-band model as shown in Fig.4.1.19, it was
found that the conductivity in the respective bands, ¢, and ¢;, increase with an
increase of the electric current density. The conductivity in the LHB is increased to 3
times in magnitude of the value in ohmic region and one in the UHB to 6 times. It is
considered that the parameters ¢; and ¢; are in proportion to the carrier concentration
in the respective bands. Nevertheless, ¢, is almost constant and c3 increases to 500
times. In the present stage we have no answer for the above contradiction. We can
guess that the problems originates from the analysis based on the too simple model,

where we assume that all the electrons are excited into the UHB at the maximum
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electric current density ignoring electrons excited into the conduction band. Above
contradiction should be solved if we analyze the experimental data according to the
three-band model taking account of LHB, UHB and conduction band. However the
analysis is extremely troublesome because it includes six ambiguous parameters. It
has been proven that the parameter c, becomes smaller as the electric current density
increases. This means that the localization length becomes larger and the hopping
probability of electrons in the LHB increases as clear from the experimental results
on the mobility of the LHB g; illustrated in Fig.4.1.16.

Finally we give a few comment on the MR in e;-conduction region. In the case
of e;-conduction, the magnetic field dependence of the activation energy is empirically
expressed as [55]

€2(B) = €(0) + B2, (101)

where < is a constant. This formula is derived from the change of the Hubbard gap
by the application of the magnetic field. The change is induced by a shrinkage of
the D~ and D° wavefunctions and a reduction of the band width. In appearance the
magnetic field dependence of the resistivity for e;-conduction has the similar formula
to eq.(84) related to the MR in VRH conduction. The value -y is usually very small,
so the MR is smaller than that of VRH.

In summary, it is made clear that the transport characteristics at low tempera-
tures for the sample employed in the present experiment are dominated by the ES-type
of VRH for sample B with the impurity concentration proximate to the critical one
for the MI transition, even in the presence of magnetic field. A crossover from the
positive to negative MR has been observed as the electric current increases. We could
estimate the average energy € = 0.72meV required for electrons to be excited to the
higher lying energy states with using the model by Sclar et al. This value empha-
sizes that electrons concerning the conduction are not excited to the conduction band,
but to the low energy tail of the UHB. The current density dependence of the MR
origiﬁates from not the rise in the lattice temperature, but the rise in the electron

temperature. It is the vital force for transfer of electrons from the strongly localized
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states (hopping regime in the LHB) to the weakly localized states (diffusive regime in
the low energy tail of the UHB).

4.1.2 Results for the sample with the impurity concentration near MI transition

Figure 4.1.20 shows temperature dependence of resistivity for sample C under
various electric current densities. The data have peculiar behavior, which are different
from the insulating samples A and B and the metallic samples D and E. Firstly, as the
temperature decreases, the resistivity increase and have a maximum around at 80K.
And then they decrease and have a minimum, after that, begin to increase again. The
same tendency was reported by Sasaki [56] using some Ge samples with Sb above the
metal-insulator transition. And Kurosawa et al. has theoretically interpreted the data
[57]. They pay attention to the temperature T3, where the maximum in resistivity
appears. The temperature T), is proportional to Fermi temperature Tr, thus, the
anomaly in the scattering relaxation time exists around the Fermi surface, i.e. the
scattering time decreases near Fermi surface. As for the sample C, Tr is 83K and T,
is 83K, and they are coincident.

The scattering processes we have to consider are acoustic phonon (deforma-
tion potential) scattering and ionized impurity scattering. Generally the temperature
dependence of relaxation time is 7,, o< T~%2 for acoustic phonon scattering and
Tion o< T3/2. However, for heavily doped semiconductors screening effect is important
and the relaxation time for ionized impurity scattering has T'/2-dependence, taking
the logarithmic factor of Brooks-Herring’s formula [58] into account

1 Z%*N;
Tion - 215/27r1/2m,13/2(eeo)2(kBT)3/2

[n(l + z) — Hix] (102)

and
24m A2 kpT
TR

where Nj is the number of ionized impurities, € the dielectric constant and Azr the

(103)

Thomas-Fermi screening length. When Arr is large enough, electrons are scattered by

the long-range Coulomb potential. On the other hand, when Arr is small, electrons
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need to approach the ionized impurity to be scattered by the short-range one.

1 T-3/2 (Arr > 1)
X
Tion T1/2 ()\TF < 1)

(104)

When temperature of the system is high enough, electrons gain kinetic energy and
come near the ionized impurities, then they can be scattered by the short-range
Coulomb potential. When the Fermi energy is in the region where the scattering
time changes from T—3/2 to T2, the resistivity has a maximum.

As shown in Fig.4.1.20, we have found that T, shifts toward lower temperature
with increasing the electric current densities. Figure 4.1.21 shows the relation between
the electric current density and T)s. Electrons gain energy from the electric field and
the electron temperature rises, the maximum of the resistivity appears at the lower
temperature than that in the ohmic region. In Fig.4.1.22 the calculation result is
shown using eq.(102). It is confirmed that the peak of the resistivity shifts into lower
temperature as the electron temperature rises. As for acoustic deformation potential
scattering, the formula has been given by [59),

1 3 m¥E(ksT)¥?
Tap  23/271/2 R ’

(105)

where E; is the deformation potential constant and ¢; the longitudinal elastic con-
stant. Using various parameters 1/74, = 4.71 x 1037*? is obtained. However, if the
acoustic deformation potential scattering is taken into account, the peak of resistivity
is not explicable with two formulas.

Next we will focus on the transport properties at low temperatures. On the
metallic side of the metal-insulator (MI) transition, negative magnetoresistance (MR)
is often observed at low fields and positive MR at high fields. Theoretical investiga-
tions have clarified the importance of both effects of localization and electron-electron
(e-e) interaction. For the latter, Altshuler and Aronov [31] have developed the the-
ory including the density of states (DOS) correction to the conductivity ¢ under the
condition krl > 1, where kf is the Fermi wavenumber and [ the mean free path. This
behavior leads to T'/2-dependence of conductivity due to the DOS correction.

Experimental studies under a magnetic field give useful information about the
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MI transition. For example, the result on Si:As [60] was interpreted as the magneti-
cally induced change in the critical concentration as well as the correlation-localization-
length exponent. It is in this donor concentration region that Long and Pepper have
reported the low-temperature anomaly of the resistivity [9].

The donor concentration derived from the Hall coefficient at 300K is just 1.0V,
(Sample C). However, the donor concentration should be larger than that estimated
from the Hall coefficient measurements, because electrons are not fully excited into
conduction band even at 300K.

The variation of MR, p(B), at 4.2K with the current density is shown in Fig.4.1.23.
The positive MR is observed in the low current region. As the current density in-
creases, the positive MR is depressed and the negative one appears as well as sample
B in the insulating regime. However the steep change of both the resistivity and the
Hall coefficient is not observed for sample C. The tendency of the electric current
density dependence of MR is similar to that of the insulating sample. In the metallic
regime, the electric current density dependence of MR exhibits the opposite tendency,
which we will describe in the next section.

Temperature dependence of conductivity is shown in Fig.4.1.24. In the absence
of a magnetic field, the differential coefficient of the conductivity with respect to
temperature do/dT is negative. As the magnetic field increases, a crossover to pos-
itive do/dT is observed, which is shown in the inset of Fig.4.1.24. This behavior
demonstrates the effect of magnetic tuning of the critical concentration N (B). The
magnetoconductivity (MC) at various temperatures is shown in Fig.4.1.25, and is al-
ways negative. The positive MC due to the destructive quantum interference is not
observed. For the sample with Np = 3.0 x 10¥cm™2 kgl is estimated at 0.44. The
condition kgl > 1, for which the negative MR is observed and the theory of weak
localization (WL) is applicable, is not fulfilled.

In order to understand these phenomena in the critical region of the MI tran-
sition, we try to analyze our data at the start by assuming variable-range hopping

(VRH) conduction. In the above section, we have observed positive MR for the sam-
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ple whose donor concentration is 0.80N, [14]. Shrinkage of the wavefunction by the
application of the magnetic field results in a reduced hopping probability, giving rise
to a positive MR. In the strong field region, ap(B) > I is satisfied, where ap(B)
is the effective Bohr radius with a magnetic field dependence and I the cyclotron

radius, the positive MR is expressed as [45]

Bl/3T—1/3 ‘ES's t
AB.T) { (ES's type) (106

p(0,T) BY/3T=3/5 (Mott's type).

The localization length is considered to be larger than the cyclotron radius at 5T in
the critical regime. So that, we try to analyze the experimental data of temperature
dependence of resistivity at 5T using the relation, p(B,T) = poexp(tB™T™), where
t is the numerical coefficient. From this analysis we extract n = 0.018, which does
not obey the VRH theory in eq.(106). Moreover, if we take the VRH into account
for the conduction of this sample we meet with a big problem; The inset of Fig.4.1.24
does not show the VRH conduction in the absence of magnetic field because do/dT is
negative. There might be a possibility of a crossover from the metallic regime to the
VRH one with increasing of a magnetic field, however, at 5T the zero temperature
conductivity ¢(0), for which an extrapolation is required, is not zero, so in the range
of up to 5T, the sample belongs to a metallic regime.

As seen in Fig.4.1.24, the temperature dependence of ¢ shows do/dT < 0. So far,
many studies at very low temperatures have reported on T2 dependence (eq.(64))
due to e-e interaction (for example [61]), as shown mentioned in § 2.7. Here we ignore
the term BT for localization because the positive MC due to the WL effect is not
observed.

o(T) = o(0) + mTY2. (107)
The coefficient m results from the exchange and Hartree interaction. The Hartree
term depends on the screening length as mentioned in § 2.8. We have fitted the
data in Fig.4.1.24 (below 1.5K) to eq.(107). First we try to fit it to the formula
o(T) = o(0) + mT?. We find ¢(0) = 64.7Q'em™, m = —2.50"lem 'K P and
p = 0.74. Next we try to fit to eq.(107) and get 0(0) = 65.70 'cm™! and m =
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—3.5Qlcm~!K~%/2. The e-e interaction theory gives the expression for the coefficient
m in eq.(65) of § 2.7. m = —0.61 is extracted from the theory. Our results show
stronger temperature dependence of conductivity than that expected from the theory.
The VRH conduction at low temperatures is denied as above described, and other
effect such as anti-localization effect to strongly increase conductivity should exist.

From the temperature dependence of conductivity, o(0) > 0 is extracted and
the sample certainly belongs to a metallic regime. Shafarman et al. [62] have studied
the concentration dependence of the coefficient m. When the donor concentration is
extremely close to the critical concentration of MI transition, m is positive. As the
donor concentration increases, m decreases and the sign changes, which results from
the Hartree interaction. From the comparison of m with the experimental data and
the theory, it is considered that the donor concentration of sample C is larger than
that estimated from the Hall coefficient at 300K.

According to Altshuler et al. [32], on the other hand, the MC due to the DOS
correction caused by the e-e interaction in the weak magnetic field region for a single-
valley semiconductor is given in eqs.(57), (58) and (59) of § 2.7. Here we employed
eq.(58) and eq.(59) with Euler-MacLaurin developed of several functions used in the
least-squares fit procedures [63] [64]. The experimental data of Fig.4.1.25 are fitted
using eq.(58) and eq.(59). We have tried to fit the experimental data to the expression
o(B,T) = 0(0,T)+ Ac(B,T) with the parameters (0,T) and a. As for the function
ws(z), we used the low and the high-fields approximations. The solid and dashed
lines of Fig.4.1.25 represent the calculated results using the approximation of low
fields (B < 0.7T) and the high fields (B > 2.4T), respectively. We found a = 3.5 in
low field region and o = 3.8 in high field region. However, the theory predicts a = 1
for a normal metal and a@ = 1/4 in the presence of spin-orbit (SO) interaction. The
field dependence of MC is stronger than that expected from the theory. Other effects
to strongly increase negative MC should exist.

In Fig.4.3.26 temperature dependence of conductivity under various magnetic

fields is shown for sample C#. As shown the inset of Fig.4.3.26, interestingly, the



differential coefficient of the conductivity with respect to temperature do/dT at 3T
is negative at higher temperature, but do/dT" changes the sign as the temperature
decreases, which originates from the change of Hartree term. The Hartree factor F'
is a decreasing function of Thomas-Fermi screening length and approaches unity for
short-range interaction (2kr/K — 0), where K is the Thomas-Fermi screening wave
vector. Qualitatively, at higher temperatures and lower magnetic field, electrons have
enough kinetic energy and they interact with short-range Hartree potential. Therefore
Hartree factor F is large and m is negative. The data in Fig.4.3.26 is explicable with
the change of the sign of F'.

Through the experiment and the analyses we have two questions. (1)A positive
MC (negative MR) due to the destructive quantum interference is not observed in
the temperature region where we performed the experiments. For the sample e-e
interaction is much stronger than localization effect. Therefore we do not take the
localization effect into account. Why is not the localization effect observed? (2)Kaveh
and Mott have suggested that the SO interaction would cause destructive interference
and enhance conductivity [10]. The SO interaction might hide a positive MC.

In conclusion, we have observed the change of the sign of do/dT with the increase
of magnetic field in the temperature dependence of conductivity, which originates
from the Hartree potential. It is found that the magnetic-field and the temperature

dependence of conductivity are stronger than that expected from the theory.

4.1.3 Results for the sample with the impurity concentration above MI transition

Figure 4.1.27 illustrates temperature dependence of conductivity in the ohmic
region between 10K and 300K for sample D and E. The temperature dependence
is not an activated type that is characteristic to an insulating sample, but shows a
metallic conduction. As shown in Fig.4.1.2, the Hall coefficient for sample D slightly
decreases as the temperature decreases. The change does not result from the change
of the carrier concentration. In the metallic regime the carrier concentration is con-

sidered to be unchanged below room temperature for Si, so the change of the Hall
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coefficient originates from the Hall factor. Therefore, the temperature dependence
of conductivity depends on the mobility. The scattering processes, which are taken
into account for the sample, are ionized impurity scattering (eq.(102)) and acoustic
phonon (deformation potential) one (eq.(105)). The scattering probabilities for two
processes are calculated as shown in Fig.4.1.28. Comparing the experimental data as
shown in Fig.4.1.27 with the result of egs.(102) and (105), the experimental result
has the smaller temperature dependence and the behavior at low temperatures is dif-
ferent from the experimental result. The temperature dependence of conductivity is
not explicable with two formulas. In fact, electrons are multiple-scattered by screened
Coulomb potential. This is a very complex problem, but Takeshima [65] has treated
it with Green function method. We do not mention it in detail here.

The variation of MR p(B) at 4.2K with the current density for sample E is shown
in Fig.4.1.29. Hereafter we will focus on sample E. In the low electric current density
region (ohmic region), the negative MR is observed for the weak magnetic field. As
the magnetic field increases, the negative MR shows the tendency which changes di-
rection for the positive one. It is considered that this phenomenon originates from the
electron-electron (e-e) interaction. On the other hand, as the electric current density
increases, the negative MR diminishes and the positive one becomes notable. Conse-
quently, this behavior suggests the contribution of the higher lying energy states than
Fermi level yield the positive MR in like manner of an insulating sample. The drastic
change of resistivity in the absence of magnetic field is not observed as well as that of
sample C.

Firstly we have tried to analyzed the experimental data on the low electric
current density region. Here we employ Kawabata’s theory (egs.(41) and (42)) and
e-e interaction theory introduced by Altshuler et al. [32]. § = 1.35 x 1073/B and
z = 2DeB/wkgT = 0.280B were derived from the data in this experiment. Two
formulas have been developed by Euler-MacLaurin series. About Kawabata’s formula
we described in § 4.1.1. The set of formulae for e-e interaction theory is expressed by

Ousset et al. [63] and is corrected by Baxter et al. [64]. Especially, for 0.7 <z < 2.4
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@3(x) is expressed as follows,
@3(z) = —0.03043 +0.22616z + 0.141042* — 0.10293z° + 0.02759z* — 0.0028z°. (108)

Taking into account both the effects of the weak localization (WL) effect (Kawabata’s
theory) and e-e interaction, employing eq.(41), (42), (57) and (108) the MC is written

by the following relation

’ 1 1 3 1 1
Ao(B) = G2(VZH3—VE) —{(G+8)7F+(5+8) 72} + (203 +06)7]
~¢,VB(—0.003043 + 0.22616z + 0.14104z — 0.10293z
+0.027592* — 0.0028z%), (109)

where c; and c, are the fitting parameters. The first term represents the increase of
the conductivity due to the suppression of the interference effect and the second term
represents the decrease due to the e-e interaction. The result of the fit to eq.(109)
is shown with solid lines in Fig.4.1.30. We found that experimental data are fitted
by properly choosing the numerical values of ¢, and c,. But we have a quantitative
problem. According to eq.(41), €%/ (27r2h)\/% is 4.8307em™!/T ( = ¢;). But we
obtained ¢; = 1.36Q cm~!/T from our fit.

Next we have tried to analyze the experimental data on the high electric current
density region. For the typical semiconductors which have some isolated donors (the
wavefunction between the nearest neighbor donors do not fully overlap.), a positive

MR owing to Lorenz force appears. The MR is given by [66]

Ap(B) _ 2
T(BT = Tg(pB)*, (110)

where Ap(B) = p(B) — p(0), p is the mobility, Ty depends on the scattering process
and usually shows the value of ~ 1. For example, Ty is 0.38 for acoustic deforma-
tion potential scattering and 2.15 for ionized impurity scattering. From the result of
the fit to eq.(110) for the experimental data in the non-ohmic region, we have found
Ty = 0.518. On the other hand, we tried to fit the data for the insulating sample in
the low electric current density region, and could obtain T = 1.37 x 10°. A positive

MR in the variable-range hopping regime is much stronger than that of the cause of
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Lorenz force.

For a metallic sample, as well as a insulating sample, the electric current density
dependence of MR originates from the rise of the electron temperature and transfer
of electrons from the WL states to the conduction band (higher lying energy states
than WL ones).

Temperature dependence of conductivity in the absence of magnetic field at
lower temperatures is shown in Fig.4.1.31. The differential coefficient of the conduc-
tivity with fespect to temperature do/dT is negative. In a metallic regime, both of
e-e interaction effect and localization one are important and the temperature depen-
dence of conductivity is expressed as o(T) = 03(0) + mT? 4+ BT?/? (eq.(64)). As
shown in Fig.4.1.31, the component T%/2 is not seen in the experimental data and the
component in proportion to 7" is mainly observed. Therefore the interaction effect is
not considered to be important in the absence of magnetic field for the sample. The
localization effect is more important and the inelastic scattering time 7, is expected
to be ~ T2

Figufe 4.1.32 shows the correction of the MC at various temperatures for sample
E. The strong temperature dependence is not observed and the characteristic feature
caused by the anti-localization effect is not explicitly seen in the figure. In the range
of measurement only a positive MC due to the suppression of the interference effect
is observed. For this sample with Np = 1.1 x 10%cm™3, kgl is estimated at 1.4,
certainly, the condition for WL is satisfied. |

The data are compared with the theoretical expression eq.(109) using the fit-
ting parameters 7. and ag. With only a WL theory, the MC is not satisfactorily
explained. For the experimental data on the electric current density dependence of
MC, the different fitting parameters are employed in order to investigate the degree of
the contribution to localization effect and interaction one. Here we want to evaluate
the inelastic scattering time 7.. The successful fits are obtained as shown in Fig.4.1.32.
The obtained value of ag is about 0.5.

The temperature dependence of the inelastic scattering time 7. is shown in
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Fig.4.2.7 in the next section. The relations of 7. o« 77! is deduced in the range
of our measurement. The result contradicts the one of the temperature dependence
of conductivity in the absence of magnetic field. However, according to Isawa [67],
taking the inelastic scattering due to the screened Coulomb interaction into account,
7. for three dimensional system should be proportional to T at lower temperatures
as well as T~%/2 term at higher temperatures. Our result is qualitatively agreement
with the theory by Isawa and the result on n-GaAs [24]. On the other hand, 7. ~ T1
is also satisfied for a §-doped sample, as we will mention in the following section.

These results for sample E are compared with those for é-doped sample.
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4.2 Results for the j-doped Si:Sb

Spin-orbit (SO) interaction has been shown to have a drastic influence on the
weak localization (WL). In the systems with the strong SO interaction, positive mag-
netoresistance (MR) in the WL appears, which is known as the anti-localization (AL)
effect. AL effect has been mainly studied in the metallic thin films over many years.
For Si:Sb samples with the impurity concentration near the metal—insulé,tor (MI) tran-
sition, the low-temperature anomaly of the resistivity has been reported by Long and
Pepper [9]. However, no one has succeeded in the observation of the anomaly in Si:Sb
thereafter. We try to observe the positive MR due to AL effect, but, as mentioned in
the above section, we could not observe it for bulk Si:Sb samples, and then we employ
d-doped samples.

In é-doped layer, a typical two dimensional (2D) electronic system is produced
by the quantum confinement effect in the layer, since impurity atoms are doped in
a very limited layer. In the d-doped layer the added impurities themselves greatly
influence the transport of the 2D electrons, which differs from the modulation doped
heterostructures such as GaAs/AlGaAs. When heavily doped bulk semiconductors
are grown by various methods, carrier densities are found to saturate. This problem
might originate in the solubility (C = 5.5 x 10%cm™3 at 1200 C for Si:Sb) or the
segregation of dopant atoms. However, if a 4-doping method for Si:Sb is employed, it
is possible to attain the greater carrier concentration. For example, sample F, whose
portion of the occupation of Sb atoms in the d-doped layer is 1.0 monolayer (ML),
has the three dimensional (3D) donor concentration of Np=1.2x10*cm™3.

So far, numerous studies of 2D electronic system on Anderson localization have
been reported. Using 2D electron system in semiconductor inversion layer of Si-MOS,
Kawaguchi and Kawaji [68] have observed positive magnetoconductance (MC) and
fitted it with Hikami et al.’s theory [22], and discussed temperature dependence of in-
elastic scattering time and the concentration dependence of the prefactor a. Kawaji et
al. [69] have found anomalous negative MC due to SO interaction in GaAs/AlGaAs
heterostructure. Bergmann has reported on positive MR (negative MC) with thin
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Mg-films covered with some amounts of Au atoms [27]. The superposition with Au
increases SO scattering and the magnitude of positive MR is larger with increasing
the amount of Au. The scattering probability is proportional to (Z — Z')*, where Z is
the atomic number of doped atom and Z’ that of the matrix. In the present work, we
describe the MC of the above-mentioned §-doped sample and the various relaxation
time deduced from the experimentai data.

In this experiment we have used three kinds of Si samples with an Sb §-doped
layer, which is grown on Si < 100 > substrate by molecular beam epitaxy method.
According to Secondary ion mass spectrometry (SIMS) measurements [47], the broad-
ening of 4-doped layer is about 20nm. The electrodes were put on the side of the sam-
ple, so electrons conduct in not only é-doped layer but also the substrate at higher
temperatures. The valley degeneracy n, is 2 on the Si < 100 > layer.

Figure 4.2.1 shows temperature dependence of resistance for three kinds of sam-
ples. Generally, the differential coefficient of the resistance with respect to tempera-
ture dR/dT for the samples tends to be negative in our range of measurement, and
the dependence show a characteristic behavior for respective samples, since electrons
conduct in both é-doped layer and the substrate at higher temperatures. Temper-
ature dependence of resistance for sample F is similar to that of sample B. Figure
4.2.2 illustrates a plot of resistance as a function of the reciprocal of the temperature
T~1. It is found that the resistance R is approximated by the sum of two exponential
terms with each characteristic activation energy of ¢; = 10.1meV and ¢; = 2.2meV.
If Mott-Hubbard type’s band is assumed, €; represents the activation energy of an
electron from the Fermi level located in the lower Hubbard band (LHB) to the con-
duction band, and €; corresponds to that to the extended states in the upper Hubbard
band (UHB) as mentioned in § 2.3. Unexpectedly, sample F does not show metallic
conduction such as sample D and E, though it includes 1.0ML. We discuss the MR
for sample F later. Sample H, whose portion of the occupation of Sb atoms in the
d-doped layer is 0.06 ML, shows a complex temperature dependence, and we could

not measure MR at lower temperatures because the resistance is too large. In this
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thesis, we do not describe it in detail.

As for temperature dependence of resistance for sample G, whose portion of the
occupation of Sb atoms in the 4-doped layer is 0.11 ML, the resistance rises with
decreasing temperatures between 300K and 160K, and has a peak around 160K. At
lower temperatures, the resistance gently rises as the temperature decreases, not ex-
ponentially. It is considered that electrons mainly conduct in the substrates at higher
temperatures and in 4-doped layer at lower temperatures.

Especially we focus on the sample G, whose concentration corresponds to the 2D
donor concentration of Np=7.5x10cm™2. Temperature dependence of the conduc-
tance below 4.2K under various magnetic fields for the sample is shown in Fig.4.2.3.
As magnetic field increases, the conductance increases in the range of our mea-
surements. In the WL regime, the conductance changes logarithmically as Ag =
arn,(e?/2n?h) In T for 2D system, where

or=p+1- -ZF, (111)

when the intervalley scattering is important and the electron-electron (e-¢) interaction
is considered [70]. In the case of the strong SO interaction, the expression of ar is
defined in § 4.3.1. Here p is an exponent when an inelastic scattering time can be
expressed as 7. o< T~P. F is introduced by Altshuler et al. [35] as described in §
2.8. The prefactors arn, deduced from the experimental data in Fig.4.2.3 are 0.93
‘for B=0T, 0.77 for B=1T, 0.68 for B=2T and B=3T, respectively. The decrease of
arn, with increasing magnetic field was observed. In the absence of a magnetic field
ar is 0.46 if the valley degeneracy n,= 2 in the é-doped layer is taken into account. |

Figure 4.2.4 shows the MC data at various temperatures for sample G in per-
pendicular fields. The positive MC is observed due to the destruction of the quantum
interference by the application of a moderate magnetic field. In particular, the nega-
tive MC is observed in the regime of very weak field. The negative MC is attributed
to the AL effect due to the SO interaction.

The MC data at various temperatures are shown in Fig.4.2.5, where the mag-

netic field was applied in a parallel direction to the d-doped layer. The MC is always
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negative and specific temperature dependence is not seen in our range of measure-
ment. The existence of negative MC in a parallel field indicates that the spin-Zeeman
splitting in the interaction gug B-o is important and the orbital motion is not effective.

Fig.4.2.6 shows the angular dependence of the ratio of the MR, [R(2T)—R(0)]/R(0)
at 4.2K and 2T for sample G. As described above, we observe negative MR in per-
pendicular field (§=0°) and positive MR is observed in the parallel field to the layer
(6=90°). The anisotropy of the MR reflects a 2D nature of the electrons in the 4-
doping layer.

The MC in the WL regime including SO scattering for a perpendicular magnetic
field on 2D system is introduced by Hikami et al. [22], including the prefactors n,ag,

Aoy(B) =n ¢ Sl + i s
LA2) = MOHy SR\ T 4Dny 4Dr,
1B 2

G+ (112)

4D7'€) ~ 4D, 3
where various physical parameters are defined in § 2.5.2. ay in the presence of the

intervalley scattering is expressed as [70],

F _

The experimental data on MC are compared with the theoretical expressions, egs.(112)
and (36), using three fitting parameters n,aq, 7. and 7,. Here we ignored the e-e
interaction effect because we cannot perform the fits of the experimental data without
large ambiguity even though we take the interaction effect into account. Here we wish
to focus on the negative MC due to the AL below O.ST. In consequence, experimental
data fit well to eqs.(112) and (36) after choosing the suitable fitting parameters.
Figure 4.2.7 shows the temperature dependence of the inelastic scattering time 7.
for the sample E and sample G, and the SO scattering time 7, for sample G extracted
from the analyses of MC in Fig.4.2.4. If the condition krl > 1 is fulfilled, the WL
theories are applied, and the value of kz! for respective sample in consideration of the
valley degeneracy is estimated at 2.5 for sample G and 1.4 for sample E, respectively.

As for the inelastic scattering time, the relations of 7. o< T~! for sample G is deduced
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in the range of our measurements. In the previous section, it was reported that 7.
T-! was obtained for sample E. The inelastic scattering is considered to be acoustic
phonon (deformation potential) scattering. According to Altshuler and Aronov [71],
in 2D systems, large momentum transfer processes dominate the e-e interaction and
thus p = 2 is expected at high temperatures, whereas small momentum transfer in
disordered system is dominant at low temperatures and p = 1. For sample G the
inelastic scattering length is 120nm for T=4.2K. These are larger than the thickness
of 5-doped layer d =~ 20nm. Although the SO scattering time is generally considered to
be temperature independent, our result shows a weak temperature dependence. The
ratios 7,,/47. of SO scattering time to inelastic scattering time are 0.75 for T=4.2K
and 0.60 for T=2.9K and thus the strength of the SO interaction in our system is
found to be weaker than that of the thin Mg-film covered with some amounts of Au
atom reported by Bergmann [27], for example, 7,,/47.=0.066 and 0.018 at 4.6K in the
case of a Mg-film with 1% and 4% of Au, respectively.

The theory of the relaxation time related to the SO scattering 7,, has given
by Elliot [72]. Elliott’s mechanism is effective if the scattering is caused by heavy
impurities.

_ T
~ (9- 2Rk}’

where 7 is the elastic scattering time by impurities, g the g-factor of conduction elec-

Teo (114)

tron and R the atomic radius. As the value of R, we employed a lattice constant of
Si. Using 7,, and 7 extracted from the analyses, we deduce |g —2|=1.3x%x10"% The
elastic scattering times 7 extracted from the conductance (conductivity) of sample G
(6-doped sample) and sample E (bulk sample) at 4.2K in the absence of a magnetic
field are 3.0 x 107%s and 2.3 x 10745, respectively. The impurity scattering rate for
sample G is about eight times as large as that of the sample E. From eq.(114) we
calculate 7,, on sample E using the value of g-factor obtained by the above-mentioned
procedures, and extract 7, = 3.5 X 107%. The ratio 7,,/47 = 0.75 for §-doped sam-
ple énd 110 for a metallic bulk sample are found, therefore, the strength of the SO

interaction for a d-doped sample is certainly stronger than that of the bulk sample.
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In order to clearly observe the AL effect for a bulk sample, it is required to increase
the impurity concentration and the sample has to be cooled down to very low tem-
peratures in order to suppress the inelastic scattering rate.

In the magnetic field parallel to the layer, spin-Zeeman splitting plays an im-
portant role, and we need to take both SO interaction and the spin-Zeeman effect
into account. Maekawa and Fukuyama [73] have theoretically studied the effects of

spin-Zeeman splitting and SO scattering in 2D systems. The MC is expressed as

e? T Drt? 1 T  Drt? T Drt?
Ac(B) = 2In(L In(— + =) — In(— + ==)}], (1
where
1 1 4
— ==+, (116)
1 Te Tso
1 1 2
=+ Z21+.J1-
L=t (Eyl-) (117)
and
_ gusB 2

where the spin-flip scattering time 7, is ignored. The results of fits with egs.(115),
(116), (117) and (118) are shown in Fig.4.2.5. The scattering time deduced from the
data is not consistent with the results for the data in a perpendicular fields. Here we
employ only the results deduced from the data in the perpendicular field.

The value of n,ay is approximately 0.4 at each temperature. With the valley
degeneracy n,=2, ag ~ 0.2 is extracted. Fukuyama [74] has considered that o de-
creases as the intervalley scattering increases, and n,ay approaches one as the ratio
of the inelastic scattering time to the intervalley scattering time approaches infinity.
From the temperature dependence of the conductance in the absence of a magnetic
field, we extract ar=0.5. The result of p = 1 deduced from the temperature depen-
dence of the inelastic scattering time does not give a proper value of ar. Moreover it
is found that ar decreases as the magnetic field increases. It is considered that the
rate of intervalley scattering increases by the application of a magnetic field.

Temperature dependence of the resistance for sample F is illustrated in Fig.4.2.8
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in the absence of magnetic field below 4.2K. The dependence does not appear to obey
the formula of a hopping conduction. In order to make the hopping exponent clear,
we try to plot the logarithmic derivative w = —9R/0T (eq.(83)) as a function of the
temperature on a double logarithmic scale. However the good result from the data is
not obtained. Moreover, Fig.4.2.9 and 4.2.10 show MR data at low temperatures in
the fields perpendicular and parallel to the J-doped layer, respectively. Angular de-
pendence of MR is not clearly observed. When a hopping conduction is dominant, it
is known In p(B)/p(0) is proportional to B? with eq.(84). And the MR becomes larger
with decreasing temperatures, however, such a behavior for a perpendicular fields is
not observed and the temperature dependence indicates an opposite tendency. Sam-
ple F might show a metallic conduction at lower temperatures. Two views on sample
F are considered, (1)d-doped layer is broadening and 2D electronic system is not
achieved. (2)The upper levels in the confined potential are occupied, so electrons can
easily transfer into the other layers.

In conclusion, we have observed the negative MC in weak magnetic field due to
the SO interaction in the d-doped Si. On the other hand, the negative MC caused
bybthe AL has not been explicitly observed for sample E because of the small SO
scattering rate by impurities. From the obtained result of 7,,/47, it is concluded that
the strength of the SO interaction for a -doped sample is stronger than that of the

bulk sample.
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4.3 Experimental results for InSb on GaAs substrates

So far concerning the electronic properties of bulk InSb near metal-insulator
(MI) transition a large number of works have been carried out [11][75][76][77]. As is
well known, the effective Bohr radius of the donor in InSb is very large (ap ~ 6504), in
other words the effective Rydberg energy Ry of the donor is very small, on account of
the small effective mass (m, = 0.014my) and the large dielectric constant. Therefore
the parameter v (= hw./2Ry) = 1 is fulfilled at 0.13T in n-InSb (Ry ~ 0.67meV),
and the magnetically induced MI transition has been systematically studied. Here vy
characterizes the effective strength of the magnetic field. Recently InSb is expected
as high-speed devices and magnetic sensors, because the electron mobility is higher
than that of any other III-V semiconductors. In order to utilize it as application
devices, InSb thin layers are grown on semi-insulating GaAs using molecular beam
epitaxy (MBE) method. However, a large mismatch of lattice constant between InSb
and GaAs induces high density misfit dislocations at the InSb/GaAs interface, which
causes the degradation of crystal quality and electrical properties of n-InSb layers.
Recently, a carrier accumulation model based on some experimental results and an
estimated band diagram of InSb/GaAs hetero-interface have been proposed, and it
is found that the electron concentration in the accumulation layer depends on the
surface orientations of substrates [78]. As another example, Hermans et al. have
reported that the large mismatch between InSb layer and semi-insulating InP also
causes carrier accumulation [79]. These studies show the strikingly different transport
properties from bulk InSb.

For thin film InSb on GaAs (100) substrate, two kinds of carriers are expected to
exist in the InSb thin layer and in the interface, and the transport properties depend
on the respective carrier concentration and mobility. Especially we are interested in
the localization effect of electrons at the interface. The Hamiltonian which describes

the spin-orbit (SO) interaction is given by

h -
Hso = ZW—ZE—CE(VV(F) X ]3) -0, (119)
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where c is the light velocity and & the Pauli spin matrix. Indium Antimonide consists
of heavy elements, which results in the stronger SO interaction arising from the band
structure. Accordingly, anti-localization (AL) effect is expected for InSb analogous to
Si:Sb.

Figure 4.3.1 shows the temperature dependence of the resistivity for two sam-
ples in the absence of magnetic field. For the undoped sample we found that the
resistivity significantly increases with decreasing temperatures. The resistivity of Sn-
doped sample at 8.6K is just 1.3 times as large as that at 300K. The resistivity for
the undoped sample is shown in Fig.4.3.2 as a function of 7-'. Between 300 and 200
K the resistivity changes almost two orders of magnitude, but at lower temperatures
the change becomes gentle.

Figure 4.3.3 shows the temperature dependence of Hall coefficient for undoped
sample. Strangely enough, the peak of the Hall coeflicient is observed around 140K,
and the Hall coefficient remains steady as the temperature decreases. The feature re-
minds us of the existence of two types of carrier [63]. The fixed Hall coefficient at low
temperatures suggests that the metallic conduction should exist. The temperature
dependence of the intrinsic carrier concentration shown in Fig.4.3.4 is expressed by

the following formula

n = AT®? exp(— 2,’2"7,). (120)

A = 1.8 x 10%cm™2 and the bandgap E; = 0.23¢V was derived from the data. The
typical bandgap of InSb at 300K is 0.24eV [13]. At high temperatures the intrinsic

region is clearly seen for thin film InSb. On the other hand, the temperature de-
pendence of the Hall coefficient for Sn-doped sample is shown in Fig.4.3.5. The Hall
coefficient at 8.6K is 1.4 times as large as that at 300K. This experimental observation
agrees well with the variation of the resistivity. The Hall coefficient remains constant
below 50 K analogous to the result for undoped sample. Figure 4.3.6 shows the Hall
resistivity p, as a function of magnetic field at 4.2 K. It is found that the Hall re-
sistivity is almost linear for magnetic field in the range of the experiment. In the

case of bulk InSb with low impurity concentration, the magnetic freeze-out effect is
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predominant by application of the magnetic field and more or less the Hall coeflicient
should depend on the magnetic field. The result, however, hardly shows the magnetic
field dependence. This experimental fact suggests that carriers mainly contributing
to the conduction at 4.2K do not originate from the primary InSb thin film. These
phenomena mean that two kinds of carriers with different mobilities exist in thin film

InSb and at the interface between InSb and GaAs.

4.3.1 Magnetoresistance for undoped sample

Figure 4.3.7 shows the amount of change in the transverse magnetoresistance
(MR) for the undoped sample at various temperatures above 4.2 K. At 4.2K the MR
gives a steep rise up to 0.3T and has a maximum at 0.3T. After that it gradually
decreases, taking a minimum at 1.3T and finally increases with increasing magnetic
field. At all events the MR is always positive. The absolute value of MR becomes
smaller as the temperature increases. On the other hand, the MR below 4.2K is
shown in Fig.4.3.8, and the amount of change in MR slightly rises with decreasing
temperature. From the temperature dependence of MR, we found that the transport
properties for the undoped sample show a metallic conduction rather than a hopping
conduction. It is found that the positive MR has the angular dependence as shown
in Fig.4.3.9. The peak of MR shifts to higher magnetic field as the angle 8 increases.
Here 6 is the angle between the magnetic field and the normal line of the InSb thin
film. This feature seems to be a typical two dimensional (2D) nature.

The MR data for the undoped sample above 4.2K is shown in Fig.4.3.10, where
the magnetic field was applied in a parallel direction to the film surface. In this case
the drastic change of the positive MR is not observed, even if the magnetic field in-
creases. This feature should be compared with results of the perpendicular case. At
4.2 K the MR once rises in the weak field, becomes almost constant up to 7.5T, and
finally the MR increases again. Surprisingly, the MR at 77K in parallel configuration
shows negative one in the weak field suppressing the MR which behaves as B2 due to

the orbital effect. Figure 4.3.11 shows the MR for perpendicular and parallel config-
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uration at 4.2K and 77K again.

When the condition gupB > kgT is fulfilled, the spin-Zeeman effect starts to
work. The g-factor for InSb is 51.3 and the relation gugB = kpT at 4.2 K holds
at 0.12T in the system. For bulk InSb the spin-Zeeman effect is important, and the
effect related to the interaction does not depend on the direction of the magnetic
field. So far Morita et al. have reported that the effect appears in the temperature
dependence of conductivity [80]. In the case of GaAs, on the other hand, g-factor is
small and thus the orbital effect is dominant. However, it was found through the MR
measurements at high magnetic field in perpendicular field configuration for InSb that
the spin-Zeemen effect is not predominant and the orbital effect is much stronger. In
the parallel field configuration, the orbital effect is not so effective. From these ex-
perimental results it is concluded that carriers in the primary InSb hardly contribute
to the electrical conduction and ones in the accumulation layer at the InSb/GaAs
interface mainly carry the electrical current. The positive MR in the perpendicular
field configuration at 40K and 77K are essentially different from that at lower tem-
peratures. It originates from Lorenz force and the MR behaves as p(B) ~ B

Judging from the temperature dependence of the resistivity and the Hall coef-
ficient as shown in Fig.4.3.1 and 4.3.3, and from the angular dependence of MR, we
conclude that the accumulation layer exists in the interface and accumulated carri-
ers dominate the electrical conduction at low temperatures. With using two-carrier
(band) model in § 2.9, the carrier concentration and the mobility in primary thin
film InSb and in the interface are discussed. By rewriting eqs.(93) and (95), the

conductivity ¢ and the Hall coefficient Ry can be expressed as follows

o= e(an.B + TLI[I,I) (121)

and

1 2 2
Ry = L(nBKE +1up1) (122)
€ npup +nrir

where ng, n;, up and pr are the concentration and the mobility and the subscript B
and I denote the bulk and interface, respectively. From the experimental data at low

temperatures n; = 1.9 x 10'%cm—3 derived from the Hall measurements is assumed to
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be constant for various temperatures, and ng = (1.8 x 10%°)T%/2 exp(—0.23¢V/2kgT)
is expressed in eq.(120). The results of above analysis for ug and p; are shown in
Fig.4.3.12 for the undoped sample. In regard to the mobility of bulk g, the mobility
increases strikingly as the temperature decreases below 170 K, which originates from
the increase of the relaxation time due to the phonon scattering at low temperatures.
The change of the mobility pp hardly give a great influence on the transport at low
temperatures, because the carrier concentration of bulk ng becomes smaller with
decreasing temperatures as expressed in eq.(120). The mobility expressed by pu; still
continues to decrease in the temperature range below 180K, but the change is not
so large. It is considered that the mobility u; is mainly affected by the interface
roughness scattering and thus does not sensitively depend on the temperatures.

The observation on the temperature dependence of the Hall coefficient and the
analysis based on the two-carrier model motivate us to the idea that MR at low
temperatures is not caused by the carriers in the primary InSb thin film. At first
we will provide further insights into the dimension of the electronic system in the
light of theory related to the 2D and to the three-dimension (3D). In any events, the
concerned theories include the SO interaction. The theory proposed by Hikami et al.
[22] is introduced in egs.(35) and (36) of § 2.5.2. The theory for 3D has been studied
by Fukuyama and Hoshino [81] including the SO interaction, which is ignored in the
theory by Kawabata [23]. It is expressed as follows,

Ac(B)/A = \/I_zF(l—Z—t) +0.5 /T%F(%’) - F(-%‘—)

1
- 1_7(\/2:—\/?;)+\/5—\/t+1, (123)

where A = (\/§e2/27r2h)\)\/:r77:s—0, t = Too/47Te, A = vpT b = (A/l)*(eo/7), t+ =
t+0.5(1 & /T=7). F(2) is introduced in § 2.5.2 by Kawabata. v = (hxB)? and
k = (3m./8my)|g|/ErT. For simplicity, another effects are not taken into account.
Figuie 4.3.13 and 4.3.14 show the comparison between experimental results for the

magnetoconductance (magnetoconductivity) at 4.2K and theories on the 2D and the
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3D systems, respectively. We have confirmed the good coincidence for fitting with
the theory on 2D system. For the fitting with the theory on 3D system, the large
discrepancy is found. It is confirmed that the observed negative magnetoconductance
(MC) in weak magnetic field is explicable with the theory for 2D system, and the
electronic properties of carriers in the interface are the 2D nature at low temperature
beyond mistake.

Temperature dependence of conductance (2D) and conductivity (3D) at low
temperatures are shown in Fig.4.3.15 and 4.3.16, respectively. In the WL regime,
the conductance changes logarithmically as Ao = ar(e?/2n2h)InT for 2D system
(eq.(69)). As shown in Fig.4.3.15 the conductance represented as a function of InT’
has two slopes. Extrapolating the slope at high temperature to T=0, it is found that o
approaches to zero. Thus we make out that in the temperature range investigated the
system does not necessarily obey to the WL regime. On one hand, the pre-factor ar
deduced from the low temperature data is 0.55. With this value of ar we will analyze
various experimental results in the latter paragraph. For 3D system it is known that
the conductivity changes as o(T) = 03(0) + mT*/? + BT as shown in eq.(64) of § 2.7,
where the second and the third terms are due to the Coulomb interaction and the
localization effects, respectively. The temperature dependence of conductivity (3D)
is not explicable with the above equation (eq.(64)), and Fig.4.3.15 seems to be the
better fit compared with the fits of Fig.4.3.16.

In the next step we will discuss on the inelastic scattering and SO scattering
time. The MR in perpendicular field configuration at 77K has the B? dependence in
the weak field. At low temperatures it also shows the B? dependence except for the
low field anomaly. At present we cannot identify whether the origin of the MR is the
Lorenz force or the electron-electron interaction expressed in eq.(63) of § 2.7. The
steep rise of the MR in the weak field at low temperatures is most certainly due to the
SO interaction in the WL region as above mentioned. Consequently, the MR as shown
in Fig.4.3.7 is considered to consist of the anti-localization (AL) effect arising from

the SO interaction and the normal B2-type component. Employing egs.(35) and (36)
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set out by Hikami et al. for the analysis of experimental data, the MC is expressed

as,
e 3_.1 12 12
— — [Z(= B -1 B
o(B) = hoO) +engm 5¥ 5+ o) ~ M ipn,
11 B 2 )
_.2.\1;(5 + 4DT€) B 4DT€] —cB (124)
and
1 4
R (125)

T Tso Te
where ay and c are the prefactors, the second term describes the AL effect and the
third one describes the normal B2-type MR due to the orbital motion of carriers. The

fitting parameters are ay, 7,, 7 and ¢. In case that the SO interaction is strong,

following relations are proved, i.e.,

3
ar=p+1-7F (126)
and
1 F

where p is an exponent for an inelastic scattering time expressed as 7. o T7?. F' is
defined in § 2.8. For fitting of the experimental result we pay attention to the data
below 0.5T. At this junction we have tried two different ways.

The approach for fitting with eqs.(124) and (125) is that ay, 7,, 7. and ¢ are all
used as fitting parameters and the result of fitting at 4.2K (dashed line) is shown in
Fig.4.3.17. In the process of fitting, various values between 0.70 and 2.5 for ay are
obtained, but the values of ay below 4.2K are almost same and it is 0.74 on average.
Figure 4.3.18 shows the SO scattering time and the inelastic scattering time derived
from the best fit. In order to evaluate these scattering times, the physical parameters
of n =81x10%m™3, 7 =6.2 x 107®s, D = 8.1 x 10™*m?/s and Er = 10.4meV are
employed with use of m, = 0.014myq. As for the inelastic scattering time the relation
of 7. < T! is obtained. It is found that 7, does not show the stronger temperature

dependence than 7., which is caused by the temperature independence of scattering
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centers. Even at higher temperatures, 7. > 7 holds, where 7 is the elastic scattering
time by impurities, this system attains the WL states. The thickness of the interface
region d is estimated from the MR measurement in parallel field configuration as
shown in Fig.4.3.9. At 7.5T the MR in parallel field configuration begins to increase,
and this indicate that the orbital motion became possible in the interface region due
to the shrinkage of the characteristic length [g, and that 2d > [p is satisfied. Ip at
7.5T is 18 nm and the inelastic scattering length I, (= v/D7.) and the SO scattering
one I,, (= v/D7.,) at 4.2K are 130nm and 100nm, respectively. Accordingly, 2d < I,
lso holds at 4.2 K, and the electronic system shows the 2D nature.

As the temperature dependence of the inelastic scattering time is not so strong at
low temperatures, p ~ 0 holds. By comparing the results obtained from the analyses
with egs.(126) and (127), we found that ar = 1-3F/4 =0.55and ay = —1/2—F/2 =
—0.74, and F' = 0.60 and 0.48 are obtained. They are better values compared with
the results for the 4-doped Si:Sb in the previous section. The discrepancy of F' comes
from the reason that we put p ~ 0 for latter case, or another reason should be the
weak SO interaction.

What is the origin of the strong SO interaction at low temperatures? In the case
of bulk InSb, the effect of SO interaction arising from the band structure is dominant,
that leads to the AL effect [80][81]. However, for InSb thin film on GaAs substrate,
carriers in the interface region of GaAs/InSb dominate the transport properties at
low temperatures, and carriers in the primary InSb thin film hardly contribute to
the transport at low temperature. There is a possibility that the SO interaction due
to the lack of the inversion symmetry is effective as described above in § 2.6. The
observation of complicate structures on Shubnikov-de Haas (SdH) oscillation for a
doped InSb thin film suggests the zero-field spin splitting of the conduction band.

The problem is discussed in the following section.
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4.3.2 Magnetoresistance for Sn-doped sample

Figure 4.3.19, 20 and 21 show the MR at 4.2K for Sn-doped sample. The MR
shows SdH oscillation, and the system is a degenerate semiconductor. The oscillation
becomes more notable for the parallel configuration than that for the perpendicular
field. The amplitude of the SdH oscillation does not sensitively depend on the tem-
perature between 2.8K and 4.2K. Figure 4.3.22 shows the MR at 4.3K up to 8T, and
Fig.4.3.23 illustrates the results as a function of B!, which subtracts MR from B?
and differentiate MR twice with respect to B, in order to make clear the peak of
oscillation. We confirmed that the oscillation has a period of 1/B. Around 0.35T! a
peak has a shoulder in the higher field region and the second differential of MR show
two dips. In the case of InSb, g-factor is large, so the spin-splitting of Landau levels
is expected at higher magnetic field. The experimental result is considered to reflect
it.

As is well known, the extremum of SdH oscillation appears when Fermi level Er

and one of Landau levels coincide.
meEp 1

e B (128)

where w, is the cyclotron frequency. Figure 4.3.24 shows the result against the charac-

(n+3) =

teristic magnetic field where the extremum appear. Certainly the relation of eq.(128)
is satisfied. Fermi energy Er =45meV is obtained from the slope of the data, and the
Eg corresponds to 7.3 x 10%cm™3. From the Hall coefficient at low temperatures as
shown in Fig.4.3.5, n = 1.1 x10'cm™3 is obtained. The difference of carrier concentra-
tion is considered to come from the contribution of electrons in only an accumulation
layer for the SdH oscillation, and both in the accumulation layer and InSb thin film
for the Hall coefficient.

For Sn-doped sample, complicate structures on SdH oscillation are not observed.
Therefore, electrons do not occupy some quantized levels in the accumulation layer.
Moreover, the zero-field spin splitting of the conduction band, which results from the
SO interaction due to the lack of the inversion symmetry, is not observed. We stress

that electrical conduction for the system originates from the carriers in the accumu-
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lation layer, not in the primary InSb thin film. It is considered that a steep rise of
MR for undoped sample originate from the SO interaction strengthened by the strain

in the GaAs/InSb interface.
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5 Conclusion

In this study galvanomagnetic measurements were carried out to investigate the
various kinds of electronic conduction for various types of semiconductors such as the
bulk crystals and the d-doped samples of Si:Sb, and thin film InSb, with the donor
concentration close to the metal-insulator (MI) transition. The experimental results
for temperature and magnetic field dependence of the resistivity and the Hall coef-
ficient originate in the electronic states which strike up hopping conduction, weak
localization (WL) effect, electron-electron (e-e) interaction and spin-orbit (SO) inter-
action at low temperatures.

It is made clear that the transport characteristics at low temperatures for the
sample B with the impurity concentration below the MI transition are dominated by
the Efros-Shklovskii type of variable-range hopping conduction. A crossover from the
positive to negative magnetoresistance (MR) has been observed as the electric current
increases. The current density dependence of the MR originates from the rise in the
electron temperature. It is the vital force for transfer of electrons from the strongly
localized states (hopping regime in the Lower Hubbard Band) to the WL states (dif-
fusive region in the low energy tail of the Upper Hubbard Band). The results support
the idea that the MI transition is Anderson type.

As for sample C with the impurity concentration near the MI transition, the
change of the sign of the differential coefficient of the conductivity with respect to
temperature do/dT with the increase of magnetic field has been observed, which
originates from the Hartree potential. It is found that the magnetic-field and the
temperature dependence of conductivity is stronger than that expected from the e-e
interaction effect. Other effect such as anti-localization effect to strongly increase
conductivity should exist.

For a metallic sample (sample E), a crossover from the negative to positive MR
has been observed as the electric current increases. The current density dependence
of MR originates from the rise of the electron temperature and transfer of electrons

from the WL states to the conduction band (higher lying energy states than WL ones).
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The positive MR caused by the anti-localization (AL) effect has not been explicitly
observed in the weak magnetic field.

On the other hand, the positive MR in weak magnetic field due to the SO in-
teraction has been observed in the J-doped Si. The ratio 7,,/47. = 0.75 for d-doped
sample and 110 for a metallic bulk sample are found, therefore, the strength of the SO
interaction for a d4-doped sample is certainly stronger than that of the bulk sample.
MR shows the angular dependence. At high fields, negative MR in perpendicular
field and positive MR are observed in the field parallel to the d-doped layer. The
anisotropy of the MR reflects a two dimensional (2D) nature of the electrons in the
0-doping layer. Temperature dependence of conductance changes logarithmically, re-
sulting from 2D WL effect.

A carrier accumulation layer is formed at the InSb/GaAs interface, which re-
sult in peculiar behavior. For the temperature dependence of the Hall coefficient the
anomalous peak is observed around 140K, which means the existence of two types
carrier. As well as the é-doped sample, the anisotropy of the MR reflects a 2D nature
of the electrons in the interface. The MR at low temperatures is positive and shows
a steep rise up to 0.3T, arising from the AL effect. 75, < 7. holds for InSb thin film
sample, on the other hand, 7,, > 7, for the §-doped sample. The strength of the SO
interaction for the InSb sample is stronger than that of the J-doped sample, which

reflects the magnitude of positive MR in the weak magnetic field.
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6 Appendix

In a normal metal with the electron concentration n and the effective mass m,
the conductivity is given by the Drude formula (eq.(13)). For the impurity scattering,

the scattering rate is written as follows
1
; = z W(k, k’)(l — COS Hkk,), (129)
kl

where W(k,k’) is the scattering probability from the state k to the state k', G the
angle between the initial wave-vector k& and the final wave-vector /. When a lot of
impurities are randomly distributed, the potential V() in the position r is given in

eq. (47). The scattering rate using Born approximation is expressed as,

2
Wk k) == < | <KIVIk > [ >imp 6(Ex — Ee), (130)
where < --- > represents the average on the impurity distribution. The matrix

element for the scattering <k’|V|k> is written with the Fourier transform of the

impurity potential v; and the volume in the system €2

1 . ’
' - = itk-k')r 53
<K|\Vik> 9 /V(r)e &°r

1
= Uk Pk (131)
and
. 4
pk-k' = Z ez(k_k )R1'. (132)

In order to calculate eq.(130), we need the following value

< lpk—k’l >imp—=< Zzez(k—k,)(R‘_RJ) >imp - (133)

J
The terms on ¢ = j give the number of impurities N;, and the terms on ¢ # 7 vanish,

taking the average over the random distribution of impurities. Thus, the average of

< |pr—k'| >imp is given as follows
< lpk—k'l >imp= N;. (134)

These results are substituted with eq.(129)

1 271'71,‘ N,
; = - Z ‘Uk—k'l26(Ek — Ekl)(l — COS Gkk,), n; = -—Q— (135)
k/
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Assuming the impurity potential v(r) is a short range type and ignoring the wavenum-

ber dependence of vi_x/, namely

Vgt = |v], (136)
then eq.(135) is expressed as
- = ol (137
T R e

where p is the density of state on the Fermi surface per unit volume and per spin.
Eq.(137) is equivalent to eq.(13).

Though the random potential formed by impurities does not have the spatial
symmetry, it is important to notice that the impurity potential eq.(47) has the time
reversal symmetry. Due to this character, the matrix element for the scattering from
|k> to |k’> should be the same as that for |[k’> to |—k> scattering. The matrix

element for the scattering from |k> to |k’> by a impurity-1 is given

1 . X
<K|Vk> = 5/6_‘k"rv(r — Ry)ekT

- L _ seitk-K')Ry (138)
Q k-k

On the other hand, the matrix element for the scattering from |—k’> to |—k> by a

impurity 1 is also given as follows

< —k|V|-K > = %/eik""v(r — R)e KT

= flz—vk_k:ei(k‘k,)'Rl : (139)

Therefore, the following relation is approved, i.e.,
< K|\V|k > =< —k|V|—K >;. (140)

The time reversal symmetry holds not only for the term derived from Born approx-
imation, but also for all matrix elements of higher order. For example, the matrix

element of the third order is also confirmed such relation as eq.(140)
<K|VIk > 3=< —k[V|—k' >3, . (141)
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Assuming that the matrix elements for the respective scattering processes are V,, V;,

V., - - -, the total transition probability of the scattering W is expressed as
W < |V> >imp, (142)

where

V=V, +Vi+Vo+---. (143)

Here the each matrix element has the phase which depends on the position of the
impurity, for example, ¢~k R1_ ¢R-ky Rz ... for the term of the Born approxi-
mation. Therefore the product of the different matrix elements vanishes on the average

over the random distribution of impurities and the following expression is obtained
W o (|Val? + Vo[> + [Vef* +- ). (144)

If one puts k’=—k into eq.(141), taking into account the time reversal symmetry as
eq.(140),
< —k|VIk > =< —k|V|k >§) (145)

the matrix elements for two different scattering processes become perfectly equal. As
|V.| = |V3| holds for two scattering processes ¢ and b, and the phases for the respective
processes are different each other, the transition probability is 2|V, |?>. When V, =V,
holds such as eq.(141) in consideration of the phase, the transition probability is
expressed as |2V,|? = 4|V, |%. In this case two scattered waves for the reversed processes
have the same phase due to the time reversal symmetry, and the interference take

place.
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Fig.2.2.1 An electron is transfered between two levels with energy E; and Es by
transfer V. The wavefunctions of stationary states are shown schematically for two

cases: (a)AE =0 and (b)AE > |V|.
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Fig.2.4.1 The behavior of 5(g) is shown schematically for d = 1,2, 3.
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Fig.2.56.1 The electron in the eigenstate of momentum & is scattered via two com-
plementary series. g;, g, g3 and g, represent the change of momentum.
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Fig.2.5.2 The third order scattering processes whose matrix elements are equal to
each other due to the time reversal symmetry.
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Fig.4.1.14(c), (d) n, (solid circles) and m; (open circles) at various temperatures
derived from the two-band model at (c) 20K and (d) 40K.
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Fig.4.1.15 mn, (solid circles) and n; (open circles) at 4.2K derived from the two-band
model.
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Fig.4.1.16  p, (solid circles) and y; (open circles) at 4.2K derived from the two-band
model.
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Fig.4.1.17 Electric field density dependence of resistivity at 4.2K for sample B. The
critical field E, = 2.04eV.
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Fig.4.1.18 Magnetoconductance for 7.5 A/cm? at 4.2K. The arrow shows the char-
acteristic magnetic field where 6 = 1 holds.
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Fig.4.1.21 Electric current density vs Tjp; where the maximum of the resistivity
appears.
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Fig.4.1.22 The results of calculation with Brooks-Herring formula. AT, represents
the rise of electron temperature from the lattice temperature. As the electron tem-
perature increases, the peak shifts into lower temperature.

96



5 T T T T T T T T T T

4L —e—11A/c’ o

 —a—28A/cm’ / -
X 42K §
31 —a—39A/cem’
2L —©—48A/ cm’ / /

Ap/p(0)x 100

Magnetic Field (T)

Fig.4.1.23 Electric current density dependence of MR at 4.2K.
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Fig.4.1.24 Temperature dependence of conductivity in the absence of a magnetic
field. The inset shows the temperature dependence of conductivity under various
magnetic fields.
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Fig.4.1.25 MC at different temperatures. The solid and dashed lines represent the
result of fits using the approximation of low and high fields, respectively.
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Fig.4.1.26 Temperature dependence of conductivity under various magnetic fields.
The inset shows the temperature dependence of conductivity at 3T.
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Fig.4.1.27 Temperature dependence of conductivity between 10K and 300K for sam-
ple D and E.
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Fig.4.1.28 The results of calculation on the relaxation time due to acoustic phonon
and ionized impurity scattering (solid lines). The dashed line represents the sum of
two terms 1/7 = 1/74 + 1/Tion.
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Fig.4.1.29 The variation of MR p(B) at 4.2K under the various electric current
density.
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Fig.4.1.30 The MC at 4.2K in 2.0A/cm? (solid circles). The solid line represents
the result of fit to eq.(109).

100



251

250

249

248

247

c (Q'1 cm’ )

246

sl
0 1 2 3 4 5

Temperature (K)

Fig.4.1.31 Temperature dependence of conductivity in the absence of a magnetic
field. The solid line represents the relation o(T") = ¢(0) + BT.
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Fig.4.1.32 The correction of the MC at various temperatures. The solid circles and
the solid lines are the experimental data and the fits with eq.(109). The dashed lines
represent the zero of the correction for respective temperatures.
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Fig.4.2.2 Resistance as a function of the reciprocal of the temperature 7~* for sam-
ple F.

102



o
O
A
A
4

3
Temperature (K)

\®)

Fig.4.2.3 Temperature dependence of the conductance under various magnetic fields
for sample G. The solid lines shows the fits obtained from analyses with the relation
o(T)=0(0)+alnT.
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Fig.4.2.4 The MC at various temperatures for sample G in perpendicular field. The
negative MC is observed in the region of very weak magnetic field. The open circles
and the solid lines show the experimental data and the fits with eqgs.(112) and (36),
respectively.
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Fig.4.2.5 The MC at various temperatures for sample G in the field parallel to the
0-doped layer. The open circles and the solid lines show the experimental data and
the fits with eqgs.(115), (116), (117) and (118), respectively.
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Fig.4.2.6 The angular dependence of MR, [R(2T) — R(0)]/R(0) at 4.2K and 2T for
sample G. :
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Fig.4.2.7 Temperature dependence of the inelastic scattering time 7, for sample E
and G, and the SO scattering time 7, for sample G derived from the analyses of MC.
The relation of 7. < T! for both samples is obtained.
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Fig.4.2.8 Temperature dependence of resistance for sample F below 4.2K.
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Fig.4.2.9 The MR at low temperatures for sample F in perpendicular field.
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Fig.4.2.10 The MR at low temperatures for sample F in the field parallel to the
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Fig.4.3.1 Temperature dependence of resistivity for two samples on thin film InSb.
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Fig.4.3.2 Resistivity as a function of T~! for undoped sample.
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Fig.4.3.3 Temperature dependence of Hall coefficient for undoped sample.
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Fig.4.3.4 Temperature dependence of the intrinsic carrier concentration.
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Fig.4.3.5 Temperature dependence of Hall coefficient for Sn-doped sample.
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Fig.4.3.6 Hall resistivity p,, as a function of magnetic field at 4.2K.
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Fig.4.3.7 MR data above 4.2K in perpendicular field.
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Fig.4.3.8 MR data below 4.2K in perpendicular field.
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Fig.4.3.9 Angular dependence of MR at 4.2K. 6 is the angle between the magnetic
field and the normal line of the InSb thin film.
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Fig.4.3.10 MR data above 4.2K in parallel field.
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Fig.4.3.11 MR data at 4.2K and 77K for the direction of magnetic field § = 0° and
90°.
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Fig.4.3.12 Temperature dependence of mobilities pp (solid circles) and p (solid
triangles) derived from the two-carrier model.
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Fig.4.3.13 The fit with the theory by Hikami et al. for 2D systems. Open circles and
solid line represent the experimental data at 4.2K and the result of fit, respectively.
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Fig.4.3.14 The fit with the theory by Fukuyama and Hoshino for 3D systems. Solid
circles and line represent the experimental data at 4.2K and the result of fit, respec-
tively.
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Fig.4.3.16 Temperature dependence of conductivity as 3D system.
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Fig.4.3.17 Magnetoconductance data (open circles) at 4.2K. The results of fit (solid
line) is shown.
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Fig.4.3.18 Temperature dependence of the inelastic scattering time 7, the SO scat-
tering time 7, derived from the analyses of magnetoconductance. And the elastic
scattering time 7 deduced from the temperature dependence of conductance and Hall
coefficient is shown, too.
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Fig.4.3.19 MR data at 4.2K for a perpendicular field.
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Fig.4.3.20 MR data at 4.2K. The direction of magnetic field is shown in the figure.

116



60 T * T ' i ¢ i

W
(9}
T

(¥4
O
T

3 5 ] n I L I n M
0 1 2 3 4
Magnetic Field (T)

Fig.4.3.21 MR data at 4.2K. The direction of magnetic field is shown in the figure.
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Fig.4.3.22 MR data up to 8T at 4.3K for a perpendicular field.
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Fig.4.3.24 The result against the characteristic magnetic field where the extremum
appear. The slope is in proportion to Fermi level.
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