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Abstract 

We consider the problem of choosing a single allocation from the set of feasible 

allocations in economic environments. We may use mechanisms which determine the 

final allocation on the basis of preferences of agents. However, selfish agents may 

manipulate their preferences in order to achieve an allocation in their favor. To overcome 

this difficulty, we must design strategy-proof mechanisms in which truthful revelation of 

preferences is a dominant strategy for each agent. In this thesis , we study the possibility 

of designing strategy-proof mechanisms in several economic environments. 

In Chapters 2 and 3, we consider the mechanism design problem for the allocation of 

an indivisible good when monetary compensation is possible. In Chapter 2, we consider 

the possibility of designing strategy-proof and Pareto efficient mechanisms on finitely 

restricted preference domains. First, we show that there is no strategy-proof and Pareto 

efficient mechanism on some preference domains consisting of a sufficiently large but 

finite number of quasi-linear preferences. Next, we prove that there is no strategy-proof, 

Pareto efficient, and equally compensatory mechanism on arbitrarγpreference domains 

consisting of more than three quasi-linear preferences. 1We conclude that the impossibility 

of strategy-proof and Pareto efficient mechanisms is very strong. In Chapter 3, we give 

up Pareto efficiency and try to understand the structure of strategy-proof mechanisms. 

We characterize the set of strategy-proof, individually rational , equally compensatory , 

demand monotonic mechanisms. Those mechanisms have the following properties: (i) 

they determine the allocation of monet紅ycompensation depending only on who receives 

the indivisible good; (ii) they allocate the indivisible good to one of the pre-specified one 

or two agent(s); and (iii) they disregard preferences of agents other than the pre-specified 

agent(s). This characterization enables us to understand that those mechanisms are very 

inefficient and asyrnme町lC.

In Chapters 4 -6, we consider the mechanism design problem for the provision of 

public goods. In Chapter 4 , we consider the effect of partial exclusion on the design of 
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strategy-proof mechanisms for the provision of a fixed sized public project, that is , one 

indivisible unit of a non-rivalrous good. For the case of a non-excludable public project, 

we characterize the unanimous mechanisms by strategy-proofness , individual rationality , 

and citizen sovereignty. For the case of an excludable public project, we characterize the 

largest unanimous mechanisms by strategy-proofness, individual rationality, demand 

monotonicity, and access independence. We conclude that partial exclusion always 

improves the efficiency of strategy-proof mechanisms. In Chapter 5, we consider the 

effect of fixed costs on the design of strategy-proof mechanisms for the provision of 

public goods. First, we consider the case of a cost function without fixed costs. We show 

that the minimal provision mechanism is the unique mechanism satisfying strategy-

proofness, individual rationality, and the full-range property. Next, we consider the case 

of a cost function with positive fixed costs. We show that the restriction of the range of 

mechanisms is necessary for designing strategy-proof and individually rational 

mechanisms. This result implies that the existence of fixed costs limits the variety of our 

choices , and it is less desirable in terms of efficiency. In Chapter 6, we reconsider 

Serizawa's (1996) characterization of strategy-proof, individually rational, no 

exploitative, and non-bossy mechanisms for the provision of public goods. He leaves an 

open question whether or not non-bossiness is necessary for his characterization. We 

show that strategy-proofness , individual rationality , and no exploitation imply non-

bossiness. As a corollary , we provide a new characterization of strategy-proof, 

individually rational, and no exploitative mechanisms. 
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Chapter 1 

Introduction 

We consider the problem of choosing a single allocation in econorruc environments ・

When a society consisting of several agents has to choose from the set of feasible 

allocations, it may rely on a certain mechanism which deterrrunes the final allocation on 

the basis of preferences of agents. Formally, a mechanism is a function which associates 

a feasible allocation with each combination of preferences of agents. We would like to 

design mechanisms which choose a desirable allocation (e.g. an efficient allocation , an 

equitable allocation, etc.) for each combination of preferences. Since preferences of 

agents are private information, agents are required to report their preferences in order to 

implement mechanisms. However, selfish agents may manipulate their preferences in 

order to achieve an allocation in their favor. As a result, the allocation chosen by the 

mechanism is desirable on the basis of reported preferences of agents , but may be far 

from desirable on the basis of true preferences of agents. This is the problem of 

manipulation. To overcome this problem, we must design mechanisms in which truthful 

revelation of preferences is a dorrunant strategy for each agent. We call such mechanisms 

strategy-proof(Gibbard, 1973; Satterthwaite, 1975). Agents have no incentive to 

manipulate their preferences in strategy-proof mechanisms. Strategy-proofness is an 

attractive requirement from the viewpoint of decentralization. An advantage of strategyｭ

proof mechanisms is the weakness of the assumption on informational requirements. 

Each agent is assumed to know his own preference, but not assumed to know other 

agents' preferences (in con仕astto Nash-type implement:ation) or prior distribution of 

preferences (in contrast to Bayesian implementation). In this thesis , we study the 

possibility of designing strategy-proof mechanisms which satisfy the other normative 

criteria in several econorruc environments. 

In Chapter 2, we consider econorrues with a single indivisible good and a transferable 
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good. The indivisible good can be consumed by only one agent. The transferable good、

regarded as money , is used for compensation. As examples , consider the division of an 

estate consisting of a house and cash in a bereaved family , and the allocation of a single 

task and bonuses in a firm. We consider mechanisms which determine who consumes the 

indivisible good and how much compensation the other agents receive on the basis of 

preferences of agents. We reg紅dthe following two axioms as desiderata for 

mechanisms. The first axiom is strategy-proofness. The second axiom is Pareto 

efficiency (the allocation chosen by the mechanism is always Pareto efficient). We 

consider the possibility of designing strategy-proof and Pareto efficient mechanisms in 

economies with an indivisible good and money. A general result of Holmstrりm(1979) 

implies that there is no strategy-proof and Pareto efficient mechanism on the set of all 

quasi-line紅 preferences. However, it is well known that the possibility of designing 

strategy-proof mechanisms depends on the size of the preference domain of the 

mechanisms. Therefore, we tackle the question whether or not strategy-proof and Pareto 

efficient mechanisms exist given some restrictions of the preference domain of the 

mechanisms. 

First, we consider some finite restrictions of the preterence domain in order to 

understand how strong the impossibility result is. We show that there is no strategy-proof 

and Pareto efficient mechanism on some preference dornains consisting of a sufficiently 

lぉ"gebut finite number of quasi-line紅 preferences. The impossibility result holds true 

even on finitely restricted preference domains. A possible drawback of this result is that 

the preference domains consist of a very large number of preferences when the number of 

agents is large. Next, we impose an auxiliary axiom narned equal compensation (the nonｭ

consumers of the indivisible good receive the same amount of monet紅y compensation) 

and consider the possibility of such mechanisms on small preference domains. We show 

that there is no strategy-proof, Pareto efficient, and equally compensatory mechanism on 

arbitrary preference domains consisting of more than three quasi-line紅 preferences.

Finally, we describe the structure of strategy-proof and Pareto efficient mechanisms on 

very small preference domains consisting of two or three quasi-linear preferences. We 
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conclude that the impossibility of strategy-proof and Pareto efficient mechanism 

inevitable since such small preference domains are very unrealistic. 

In Chapter 3, we consider economies with a single indivisible good and a transferable 

good. By the results of Chapter 2, we must give up Pareto efficiency in order to design 

reasonable strategy-proof mechanisms. We think of the following four axioms as 

desiderata for mechanisms. The first axiom is strategy-proofness. The next two axioms 

are individual rationality (all agents end up no worse of:f than at the status quo) and equal 

compensation, which 紅erelated to equity. The last axiom is demand monotonicity (the 

consumer of the indivisible good is unchanged when the consumer increases his demand 

for the indivisible good and no other agents increase their demand) , which is a weakening 

of Pareto efficiency. In this chapter we characterize the set of mechanisms which satisfy 

these :four axioms on the set of all quasi-linear preferences. As a result, we answer the 

questions (i) how inefficient strategy-proof mechanism:s are , and (ii) how asymmetrγ 

strategy-proof mechanisms are. 

First, we show that if a mechanism satisfies strategy-proofness, equal compensation, 

and demand monotonicity , then it satisfies the constant transfer property (the allocation of 

monetary compensation depends only on who receives the indivisible good). Second, we 

prove that any mechanism which satisfies four axioms 鴿locates the indivisible good to 

one of the pre-speci白edone or two agent(s) , and disregards preferences of agents other 

than the pre-specified agent(s). When the set of potential consumers of the indivisible 

good consists of two agents (without loss of generality" we call them agents 1 and 2) , we 

define two types of mechanisms. The decisive mechanisms require that agent 1 (agent 2 

respectively) get the indivisible good if he w如ts it under a pre-specified monet紅y

compensation, and agent 2 (agent 1 respectively) get the indivisible good without 

compensation otherwise. The unilaterally unanimous mechanisms require that agent 1 

(agent 2 respectively) get the indivisible good if both agents want agent 1 (agent 2 

respectively) to get it under a pre-specified monet紅y compensation, and agent 2 (agent 1 

respectively) get the indivisible good without compensation otherwise. When the set of 

potential consumers consists of only one agent, we define the dictatorial mechanisms (one 
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of the agents always consumes the indivisible good without compensation). Finally 司 we

provide the following characterization: a mechanism satisfies strategy-proofne… 
individual rationality , equal compensation, and demand monotonicity if and only if it i 

decisive , unilaterally unanimous , or dictatorial. This characterization enables us to 

understand that those mechanisms 紅every inefficient and asymmetric. 

In Chapter 4 , we consider the provision of a fixed sized public project, that is , one 

indivisible unit of a non-rivalrous good. We first consider the case that the public project 

is non-excludable. As examples, consider the provision of national defense, pollution-

control devices, fireworks displays , and street lighting. Here we consider mechanisms 

which determine whether to provide the project and how to divide the costs among 

agents. We next consider the case that the public project is excludable. As examples , 

consider the provision of cable TV, computer networks, airports , and highways. Here we 

consider mechanisms which determine whether to provide the project, how to divide the 

costs among agents , and who is allowed to consume the project. 

Moulin (1994) characterizes "the conservative equal-costs mechanism" by coalitional 

strategy-proofness, individual rationality , and symmetry for the provision of non-

excludable public projects. Moreover, he proposes "the serial mechanism" for the 

provision of excludable public projects, and shows that the serial mechanism Pareto 

dominates the conservative equal-costs mechanisms. 

In this chapter we provide some characterizations by strategy-proofness instead of 

coalitional strategy-proofness for the provision of excludable versus non-excludable 

public projects. These characterizations enable us to unclerstand the effect of p紅tial

exclusion on the design of strategy-proof mechanisms. We regard the following axioms 

as desiderata for mechanisms. The first axiom is strategy-proofness. The next four 

auxiliary axioms 紅eindividual rationality, demand monotonicity ((i) the set of consumers 

of the project cloes not shrink when the demancl of no agent decreases; and (ii) the set of 

consumers of the project is unchanged when the demand of no current consumer 

decreases and the demand of no cuηent non-consumer increases) , citizen sovereignty 

(society has access to either level of the project) , and access independence (each agent has 
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access to either level of the project regardless of other agents' preferences). 

First, we consider the case of a non-excludable public project. Constant cost sharing 

pre-specifies a cost sharing pattern for society, and requires that if the project is provided , 

then agents should share its cost according to the cost sharing pattem. Serizawa (1996) 

shows that constant cost sharing is a necessary condition for strategy-proofness in the 

two-agent case. We prove that constant cost sharing is a necess紅y condition for strategyｭ

proofness and individual rationality in the n-agent case. The unanimous mechanisms are 

defined as follows: (i) they are constant cost sharing; and (ii) they provide the project if 

each agent's willingness to pay is larger than or equal to his cost sh訂e. We characterize 

the unanimous mechanisms as the set of strategy-proof, individually rational , and citizen 

sovereign mechanisms. 

Second, we consider the case of an excludable public project. Semiconstant cost 

sharing pre-specifies a cost sharing pattem for each coalition, and requires that if the 

project is provided for agents in some coalition, then those agents should share its cost 

according to the cost sharing pattem for the coalition. V¥T e prove that semiconstant cost 

sharing is a necess紅y condition for strategy-proofness in the two-agent case, and it is a 

necess紅y condition for strategy-proofness, individual rationality , and demand 

monotonicity in the n-agent case. The largest unanimous mechanisms are defined as 

follows: (i) they 訂e semiconstant cost sharing; and (ii) they provide the project for the 

largest coalition such that the willingness to pay of each member of the coalition is larger 

than or equal to his cost sh訂e. We characterize the largest unanimous mechanisms as the 

set of strategy-proof, individually rational , demand monotonic , and access independent 

mechanisms. 

Comparing the two classes of mechanisms , we conclude that p訂tial exclusion alway 

improves efficiency , that is, it is always possible to design some largest unanimou 

mechanism (for an excludable public project) which Pareto dominates a given unanimous 

mechanism (for a non-excludable public project). 

In Chapter 5, we consider the provision of public goods. Moulin (1994) characterizes 

"the conservative equal-costs mechanism" by coalitional strategy-proofness , individual 
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rationality , and symmetry in economies with one private good and one public good. Hi 

result relies on the assumption that public goods can be produced without fixed costs. It 

is more natural , however, to assume that we need positive fixed costs to produce public 

goods. 1n this chapter we incorporate the consideration of fixed costs , and provide 

several characterizations by strategy-proofness instead of coalitional strategy-proofness. 

We introduce the notion of a cost sharing rule, which associates a cost sharing pattern 

with each level of public goods. Assuming that a cost sharing rule is exogenously given , 

we consider mechanisms which determine only the level of public goods. One 

interpretation of this model is that the revision of tax rules is less frequent than public 

decisions. We think of the following two axioms as desiderata for mechanisms. The first 

axiom is strategy-proofness. The second axiom is individual rationality. We characterize 

the set of strategy-proof and individually rational mechanisms. 

First, for the sake of comparison, we consider the case of a cost function without fixed 

costs. 1n economies with one private good and one public good, we show that the 

minimal provision mechanism is the unique mechanisITl satisfying strategy-proofness , 

individual rationality , and the full-range property (any feasible level of the public good is 

attainable by the mechanism) for a certain class of cost sharing rules. 1n economies with 

one private good and several public goods, it follows from a general result of Zhou 

(1991a) that there is no strategy-proof and individually rational mechanism. 

Next, we consider the case of a cost function with positive fixed costs. Since the cost 

function has fixed costs , it has the non-convexity. Thus , any cost sharing rule must have 

the non-convexity. We present the set of strategy-proof and individually rational 

mechanisms by restricting the range of mechanisms to recover the convexity of the cost 

h紅ing rule. Those mechanisms are the variants of the nlﾎnimal provision mechanism. 

Conversely, if the restriction of the range of mechanisms is not sufficient to recover the 

convexity of the cost sharing rule, the non-convexity prevents us from designing 

strategy-proof and individually rational mechanisms. These results imply that we must 

restrict the range of mechanisms if we want to design strategy-proof and individually 

rational mechanisms. 1n other words , the non-convexity of cost sharing rules limits the 
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variety of our choices , and therefore it is less desirable in terms of efficiency. 

In Chapter 6, we consider the provision of public goods. In contrast to Chapter 5, we 

consider mechanisms which determine both the level of public goods and how to divide 

the costs among agents. Serizawa (1996) characterizes the set of "semiconvex cost 

sharing schemes determined by the minimum demand principle" by strategy-proofness , 

individual rationality, no exploitation, and non-bossiness in economies with one private 

good and one public good. However, there is a criticisnrl on the non-bossiness axiom 

since the economic interpretation of non-bossiness is not so clear. Moreover, he leaves an 

open question whether or not non-bossiness is necessary for his characterization. 

Therefore, it is an interesting question what class of mechanisms is characterized without 

non-bossiness. We show that any strategy-proof, individually rational , and no 

exploitative mechanism must satisfy non-bossiness in economies with one private good 

and one public good. As a corollary, we characterize the set of semiconvex cost sharing 

schemes dete口ninedby the minimum demand principle by strategy-proofness, individual 

rationality, and no exploitation. 



Chapter 2 

Strategy-Proof and Efficient Allocationl of an Indivisible Good 

on Finitely Restricted Preference Domains * 

2.1. Introduction 

We consider economies with a single indivisible good a.nd a transferable good.1 The 

indivisible good can be consumed by only one agent. The transferable good, regarded as 

money , is used for compensation. We consider allocation mechanisms which determine 

who consumes the indivisible good and how much compensation the other agents receive 

on the basis of preferences of agents. We regard the following axioms as desiderata for 

mechanisms. The first axiom is strategy-proofness. A Inechanism satisfies strategy-

proofness if truthful revelation of preferences is a dominant strategy for each agent. The 

second one is Pareto efficiency. A mechanism satisfies Pareto efficiency if it always 

chooses a Pareto efficient allocation. We study the possibility of designing strategy-proof 

and Pareto efficient mechanisms. 

The possibility of designing strategy-proof mechanisms depends on the size of the 

preference domain of the mechanisms. In a social choice framework , Gibbard (1973) and 

Satterthwaite (1975) establish the impossibility of strategy-proof mechanisms when the 

preference domain is "unrestricted" , whereas Moulin (1980) and Barbera and Jackson 

(1994) characterize a rich class of strategy-proof, Pareto efficient, and anonymous 

mechanisms when the preference domain is restricted to "single peaked" preferences. 

In two-agent pure exchange economies, Zhou (1991 b) shows that there is no strategy-

proof, Pareto efficient, and non-dictatorial mechanism on the usual economic preference 

domain , and Schummer (1997) proves the same impossibility result even when the 

事 This chapter is based on Ohseto (1999c). 

I This type of economies has been studied in much of the 1iterature. For details, see Tadenuma and 

Thornson ( 1993 , 1995). 
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preference domain is restricted to (i) "homothetic" preferences, or (ii) more than three 

"linear" preferences. Therefore, the impossibility of strategy-proof and Pareto efficient 

mechanisms is well established in the two-agent case. 

However, when we consider economies with private goods, there is a crucial 

difference between the two-agent case and the case of rnore than two agents. Satterthwaite 

and Sonnenschein (1981) point out that there exist strategy-proof, Pareto efficient, and 

non-dictatorial mechanisms in the case of more than two agents. However, it is very 

difficult to characterize such strategy-proof mechanisms because of the concept of 

strategy-proofness and the presence of private goods. ~fhen some agent (e.g. agent 1) 

changes his preference and others remain unchanged , strategy-proofness puts constraint 

on agent 1's consumption bundle directly , but on other agents' consumption bundles 

indirectly (e.g. through budget balance). Satterthwaite and Sonnenschein (1981) 

introduce non-bossiness to overcome this difficulty. Barbera and Jackson (1995) also use 

non-bossiness in order to characterize the set of strategy-proof and anonymous 

mechanisms in the case of more than two agents. However, we do not invoke non-

bossiness since the economic interpretation of non-bossiness is not so clear. 

We consider the possibility of strategy-proof and Pareto efficient mechanisms in 

economies with an indivisible good and money. A general result of Holmstrりm (1979) 

implies that there is no strategy-proof and Pareto efficient mechanism on the set of all 

quasi-line紅 preferences.2 First, we consider some finite restrictions of the preference 

domain in order to understand how strong the impossibility result is. We show that there 

is no strategy-proof and Pareto efficient mechanism on some preference domains 

consisting of a sufficiently large but finite number of quasi-line紅 preferences. The 

impossibility result holds true even on finitely restricted preference domains. A possible 

drawback of this result is that the preference domains consist of a very large number of 

preferences when the number of agents is large. Next, we impose an auxiliary axiom 

2 To escape the impossibility result, one may weaken the incentive criterion from strategy-proofness to 

Bayesian incentive compatibility (d'Aspremont and Gerard-Varet, 1979; Myerson and Satterthwaite, 

1983). 
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、qual compensation" and consider the possibility of such mechanisms on small 

preference domains. We show that there is no strategy-proof, Pareto efficient, and 

equally compensatory mechanism on arbitrary preference domains consisting of more 

than three quasi-line紅 preferences. Finally, we describe the structure of strategy-proof 

and Pareto efficient mechanisms on very small preference domains consisting of two or 

three quasi-linear preferences. We conclude that the impossibility of strategy-proof and 

Pareto efficient mechanisms is inevitable since such small preference domains 紅e very 

unrealistic. 

This chapter is organized as follows. 1n Section 2.2, we introduce notation and 

definitions. In Section 2.3 , we show the main impossibility result on sufficiently large 

but finite preference domains. 1n Section 2 .4, we show some impossibility results on 

small preference domains. 1n Section 2.5 , we summarize the results. 

2.2. Notation and Definitions 

We consider econornies with a single indivisible good and a transferable good. The 

indivisible good can be consumed by only one agent. The transferable good, regarded as 

money , is used for compensation. Let N = { 1,…,n} (nミ2) be the set of agents. For each 

iεN， the consumption space of agent i is the set of pairs (tj ， Xj)εRx {O, 1 }, where tj 

denotes money he receives and Xj denotes his consumption of the indivisible good. The 

amount of money each agent receives may be negative. Each agent iεN has a quasi-linear 

preference on his consumption space. Let U A be the set of all quasi-linear preferences on 

Rx {O, 1} which can be represented by a quasi-linear utility function Uj(tj , Xj)=tj+Vj(Xj). 

For each UjεUA， let 入(ui) denote agent i's willingness to pay for the indivisible good, that 

is, Uj(tj ， O)=Uj (tj- 入(Uj) ，1) for all tjεR. We consider an arbitrary preference domain U 

which is a finite subset of U A. Let #U denote the number of preferences in U. A 

preference profile is a list u=(u 1, • • • ，u n)εUn. Let M be the amount of money which is 

allocated to agents. We assume that M is known and fixed. The set of feasible allocations 

is Z={Z=(tl ，... ，tn;Xl ，"'，Xn)ε Rnx{O ， l}nl エ tj = M and エ Xj = l}. The set of feasible 
ieN ieN 

transfer allocations is ZT={t=(tl ,. ..,tn)E Rnl L. tj = M}. A mechαnism (defined on UI1) i 

nu 
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a function f: U n• Z , which associates a feasible allocation with each preference profile. 

Let F(Un) be the set of mechanisms (defined on Uり. Given fεF(U n ) and uεu n ， we write 

as f(u)=(t}(u) ,...,tn(u);x}(u) ,.…,Xn(u)) , fj(u)=(tj(u) ,Xj(u)) , and ft(u)=(t}(u) ,...,tn(u)) 

Given fE F(Un), let Cf(U)= {iεNI xj(u)=l} denote the consumer of the indivisible good at 

uεun . Given uεun ， iεN ， and UjεU， the notation (百j ，U_j) represents the preference profile 

obtained from U after the replacement of Uj by Uj ・ Weintroduce the main axioms. 

Definition 2.1. A mechanism f，εF(Un) satisfies strategy-proofness i百 for all Uεun ， 

iεN ， and UjεU ， uj(fj(u))三Uj(fj (Uj , U_j)). 

Strategy-proofness states that truthful revelation of preferences is a dominant strategy 

for each agent. If a mechanism fE F(Un) does not satisfy strategy-proofness , then there 

exist UεUn ， iεN ， and UjεU such that uj(fj (百j ， U_j))>Uj(fj(u)). We then say that agent i can 

manipulate f at U via Uj ・

Definition 2.2. A mechanism f，εF(U n ) satisfies Pareto efficiency iff for all UεUn ， 

there is no zεZ such that [for all iεN ， Uj(tj ， Xj)三Uj(fj(u))] and [for some iεN ， 

Uj(tj , Xj)>uj(fj(u))]. 

Definition 2.3. A mechanism fEF(Un) satisfies equal compensαtion iff for all Uεu n 

and i, j~ Cf(U) , tj(u)=tj(u). 

Equal compensation requires that the non-consumers of the indivisible good should 

receive the same amount of money. 

The following lemma is a well known result, and the proof wiU be omitted (see e.g. 

Mas-Colell , Whinston , and Green (1995) , p. 862). 

Lemma 2.1. A mechanism fE F( Un) satisfies Pareto φ・ciency ~f and only if for all 

uε u l1 ， Cr(u)cArgmax ( λ(Ui) } . 
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2.3. Sufficiently Large but Finite Preference Domains 

A general result of Holmstrりm(1979) implies that there is no strategy-proof and Pareto 

efficient mechanism on the set of all quasi-line紅 preferences.

Theorem 2.1. (Holmstrりm， 1979). There is no strategy-proof and Pareto effi・cient

mechαηismj主 F(U幻 3

Notice that the preference domain considered in Holnlstrりm(1979) contains an infinite 

number of preferences. We consider the possibility of st:rategy-proof and Pareto efficient 

mechanisms on some finite subsets of quasi-line紅 preferences. Given two integers a, b 

arbitrarily , let [a,...,b] denote the set of integers between a and b inclusive. Let 

U [a ,b]= {UiεUAI 入(Uj)ε[a ，…，b]}. 

The following lemma presents a necessary condition of strategy-proof and Pareto 

efficient mechanisms when the preference domain is restricted to U [a ,b]. It states that if 

agent j consumes the indivisible good at preference profile u, and if the other agent i can 

consume it by changing his preference, then the amount of money agent i receives 

decreases by 入(uj)-1 at least and 入(Uj)+1 at most. In other words , agent i must pay 入(Uj)-

1 at least and 入(Uj)+1 at most in order to consume the indivisible good. 

Lemma 2.2. Assume that a mechanism j色町U[a ， b]) satiぞfies strategy-proofness αnd 

Pareto ~がcie町y. For αlluεUム+1 ,b-l]' iε N， and 五iε U[a ， b]. ザ Cr(u)= {jj可ij=Cr (ui， u- iJ, 

then λ(Uj少l三tJu)-tJ五i. U-i)~λ(uj)+l. 

Proof. Suppose first 伽t for some uεULib-ll ， iεN ， and UjE U [a ,b] , 

Cf(U)= {j }判 i}=Cf(Ui ， U-i) and ti(U)-tj(Uj ， U_j)<入(uj)-1. Let ÛjεU [a ,b] be such that 

入(立j)=入(uj)-1. It follows from Lemma 2.1 that Cf(立j ， u_i) :;t {i}. By strategy-proofness , 

.3 By using a general result of Holmstr� (1 979) , Schummer (1998) proves that there is no strategy-proof 

and Pareto efficient mechanism on the set of all quasi-linear preferences in economies with multiple 

匤divisible goods and money. 
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fi (立i ， U_j)=(ti(U),O). Since Ûi (ti(可， U・ i ) ， l ) =立i( tï(Ui ， U-i)+入(ÎÛi) ， O) >Ûi( ti(U ) ー

入(Uj)+1 +入(立ï) ，O)=Ûi (ti (U) ，O) ， agent i can manipulate f at (立i ，U-i) via 百i .

Suppose next that for some UεULIb-l]'iεN ， and UiE U[a ,b] , 

Cf(U )={j}判 i }=Cf(百i ，u_�) and ti(U)-ti(Ui , U-i)>入(Uj)+1. Let 立iεU [a ,b] be such that 

入(Ûi )=入(Uj)+1. It follows from Lemma 2.1 that Cf(丸 U・ i)={i}. By strategy-proofness , 

fi (立i ， U-i)=(ti(Ui , U-i) , 1). Since Ûi(ti(U) ，O)=古i(ti(U)四入(Ûi) ，1 )>Ûj(ti (Ui , U-i )+入(Uj) +1-

入(立j ) ，1 )=Ûi(ti(Ui , U-i) , 1), agent i can manipulate f at (立i ， U-i) via Ui. Q.E.D. 

We show the non-existence of strategy-proof and Pareto efficient mechanisms on a 

sufficiently large but finite number of quasi-linear preferences. 

2"+2n2-2n-2 
Theorem 2.2. Let U[a ,b] be such that b-α> 一一一. There is no strategy-proof 

n-l 

αndPαreto efficient mechanismfEF(U[a ,b]J 

Proof. Suppose that there exists a strategy-proof and Pareto efficient mechanism 

た F(U[a ， b])' For each iεN ， let uj ， utεU [a,b] be such that 入(uj)=a+i and 入(ut)=b-i. Then , 

211_2 T , T T* 
入(Uï)< . .<入(U~)<入(U~)<. ..<入(Ut) and 入(時)ー入(uh)>17 LettJ =i二 (巾t}. Let 

U *={UεU * I there 紅ean even number of agents who reveal ut at u} and ﾛ >;< = {uεU * I there 

紅e an odd number of agents who reveal ut at u}. By bu匂et balance, we have that 

エ ti(u)=M
ieN 

エ ti(u)=M
ieN 

for all UεU >;< ， and 

for all uεU. 

(2.1 ) 

(2.2) 

We provide necess紅yconditions on ti ( ・ ) for any pair of preference profiles where 

only agent i reveals different preferences, that is, (uj , U-i ), (ut , U-i)εU >;< . We consider the 

following six cases. 

Case 1. Let (uj , U-i)εU and (ut , U-i)εU * be such that Cf(uj , U-i)={j} with j 壬i. It 

follows from Lemma 2.1 that C f(ut , uィ )={j}. By strategy-proofness , 

ti(uj ,u-i)-ti(ut,u-i)=O. (2.3) 

Case 2. Let (uj , U -i)εU * and (ut,u-i)EÛ* be such that Cf(uj,u-i )= {j} withj:::;i. It 

follows from Lemma 2.1 that Cf(ut , U_j)= {j}. By strategy-proofness , 

ti(uj , U-i)-ti(ut , U_i)=O. (2.4) 

13 



Case 3. Let (uj , U-i)εU and (ut， u・i)εU * be such that Cf(uj , U-i)={j} with i<j<n. 

Suppose that agent j reveals uj at (uj , U-i). Since 入(uj) <入(u~)<入(u~) ， it follows from 

Lemma 2.1 that Cf(uj , U_i):;t {j}. This is a contradiction. I-Ience , agent j reveals uj at 

(uj ,u_J It follows from Lemma 2.1 that Cf(ut,u-i)={i}. It follows from Lemma 2.2 that 

入(uj)ー l~ti(uj ， U-i)-ti(U七 U-i)~入(uj)+1 (2.5) 

Case 4. Let (uj , U_i)E U* and (ut , u・i)εU be such that Cf(uj, U-i)={j} with i<j<n. 

Suppose that agentj reveals uj at (uj ， u・ i)' Since 入(uj)<入(u~)<入(u古)， it follows from 

Lemma 2.1 that Cf(uj ， u・ i) :;t{j}. This is a contradiction. Hence, agent j reveals uj at 

(uj ,u-i)' It follows from Lemma 2.1 that Cf(ut,u-i)={i}. It follows from Lemma 2.2 that 

入(uj)-l 壬ti(uj ， U-i)-ti(ut, U-i)三入(uj)+1. (2.6) 

Case 5. Let (uj , U-i)εU and (ut , U-i)εU * be such that Cf(uj , u・ i)={j} with i<j=n. That 

is , (uj , u-i)=(uïぃ・叫-1'ut). It follows from Lemma 2.1 that Cf(ut, U-i)= {i}. It follows 

from Lemma 2.2 that 

入(ut)ー l~ti(uj ， U-i)-ti(ut, U-i)三入(ut)+1. (2.7) 

Case 6. Let (uj , U-i)εU * and (117， u，i)εU* be such that Cf(uLu-i)={jjwith i<j=n.That 

is , (uj , u-i)=(uï ，一.，u~). It follows from Lemma 2.1 that Cf(ut,u-i)={i}. It follows from 

Lemma 2.2 that 

入(u~)ー l~ti(uj ， U-i)-ti(ut, U-i)三入(u~)+1. (2.8) 

We count the number of inequalities derived in Cases 3 and 4. Fix any j (:;t 1,n). The 

condition Cf(uj ,u_i)= {j} requires that ul=uï ,...,Uj-l=Uj_l ,Uj=uj. Each agent k=l ,..., j-1 

is a possible candidate for agent i. Each agent l=j+ 1 ,...,n reveals either u� or uj. Thus , 

for any j (:;t 1,n) , we derive U-1).2n-J inequalities. By the summation throughj , we have 

thatE o-l)?j=2{主l G-l) アj)-E G-1)Y叫ル1+2n-2+ . . . +2勺(叫)=212-2(n-

2)=2{エ 2j } ーヱ 2j_2(n-2)=2n-22-2(n-2)=2n-2n. Notice that each case provides the same 

number of inequalities for any j (:;t 1 ,n). Therefore , each case provides 2 n-l_n inequalities. 

We count the number of inequalities derived in Cases 5 and 6. The condition 

Cf(uj ,u_i)={n} requires that ul=uï ，...， Un-l=U~_l' Each agent k=l ，.・.， n-1 is a possible 

candidate for agent i. Agent n reveals either u~ or u~. Thus , we derive 2(n-1) inequalities 

otice that each case provides the sむne number of inequalities. Therefore, each case 
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provides n-1 inequalities. 

We consider the summation of all the equations (or inequalities) in (2 .1 ), (2.3) 、 (2. 5 ) ‘

(2.7) and all the equations (or inequalities) multiplied -1 in (2.2), (2 .4), (2 .6), (2.8). For 

each uεU* and iεN ， the te口ntj(u) appears once in (2.1) and once in one of (2 . 3 ) ー (2. 8 ) .

For each uεU andiεN， the term tj(u) appears once in (2.2) and once in one of (2 .3 ) ー

(2.8). Notice that the terms tj(u) cancel out each other in the summation process. Since 

(2.1) and (2.2) provide the same number of equations , the terms M cancel out each other 

in the summation process. Since (2.5) and (2.6) provide the same number of inequalities 

for any j (:;t 1,n) , the terms 入(uj) cancel out each other in the summation process. 

Therefore, the summation provides the inequality -2 n+2+(n-1){λ(u~)ー入(u~) } S;O壬2n -

2+(n-l ){λ(u~)-入(u~)}. Since 入(u~)-λ(u~) >ユニ~， the left-hand inequality is a 
n-1 

contradiction. Q.E.D. 

2.4. Small Preference Domains 

In this section we consider the possibility of strategy-proof, Pareto efficient, and equally 

compensatory mechanisms on small preference domains. That is , we tackle the question 

whether or not, given any restriction of the preference domain, such mechanisms exist. 

We describe a fundamental structure of strategy-proof, Pareto efficient, and equally 

compensatory mechanisms. We show that those mechanisms almost satisfy the constant 

transfer property: transfer allocations depend only on who consumes the indivisible good. 

We introduce some formal notation and definitions. A tr・ansfer allocαtionβmction is a 

function π:N→ZT ， which associates a feasible transfer allocation with each consumer of 

the indivisible good. For each iεN ， we let π(i)=(π1 (i)，...，πj(i) ，.. .,1tn(i)) , where 1tj(i) 

represents the amount of money agent j receives when agent i consumes the indivisible 

good. Let rr denote the set of tran牧r allocationμlctions. A mechanism fE F(Un) 

satisfies the consωnt tranφr property on V. (v. cUn) relαtive to πε 刀 i百 for all uε v. ， 

[Cf(u)={i} ニコ ft (u)=π( i )]. 

Given an 紅bit町 preference domain U, we let up , u{εU be such 伽t

入(uP)三入(U j)三入(u{) for all UjE U. Such up and u{ exist uniquely since U is a finite subset of 
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quasi-linear preferences. Given the Cartesian product of the preference domain Uへ we let 

r(un)={uεUnl there is at most one agent who reveals up at u}. 

Ohseto (1999b) shows that any strategy-proof , Pareto efficient , and equally 

compensatory mechanism f，εF(U~) satisfies the constant transfer property on u~ relative 

to someπε I1. When the preference domain is finitely restricted, we can show the 

following limited version of that result.4 

Lemma 2.3. If α mechαnism fiモ F(Un ) sαtisfies strαtegy-proofness， Pareto c:汀lciency，

αnd equal compensαtion， then f sαtisfies the constαnt trα:nsfer property on T( Uれ) relαtÎve 

to some πEII. 

Proof. It is sufficient to show that Cf(U)=Cf(百) implies f( u )=f(百) for all u, Uεr(u n ) . 

Without loss of generality, we assume that Cf(U)=Cf(函)=:{ 1 }. It follows from Lemma 2.1 

that only agent 1 may reveal u? at u, U. It follows from Lemma 2.1 that 

Cf(U? ,U-l)=Cf(U? ,U-l)={ 1}. By strategy-proofness , f 1 (u)=f1 (u? ， u・ 1) and 

f1 (百)=f1(u? ，玩 1) ' By equal compen淵ion ， f(u)=f(u7 , u・]) and f(百)=f(u? ，U-l). It follows 

from Lemma 2.1 that Cf( uいふu3 ， • • • ，Un)=Cf(U?，叫ん，…ん)={1}. By strategy-

proo白ess ， f2(u? , u_l)=f2(UいらU3 ，.. . ,Un) and f2 (u? ，江 1 )ゴポU1ui，b ， ん). By equal 

compensation, f(u? , U-1 )=f(u? , u~ ， U3 ,... ，u州lnρ1) and f(u? , 百玩-1ο)=f(u叶1均11い，λ， uιI

a叩pp判lying the same argument to the remaining agents, we have that f(u)=f(u? , u~ 1) and 

f(百)=f(u? ， u~]). Therefore , f(u)=f(U). Q.E.D. 

We show the non-existence of strategy-proof, Pareto efficient, and equally 

compensatory mechanisms on arbitrary preference domains which consist of more than 

three quasi-line紅 preferences.

4 Let u={ur， u~ }， where 入(u?)=l and 入(u~)=2.Let n=3 and a mechanism fεF(Un) be such that 

f(u1 , uï , u~)=f(u~ ， uï , U3)=( -1 ,112,112; 1 ,0,0), f(uj , u~ ， u3)=f(u~ ， u~ ， u ~)=(2/3 ， -4/3 ,2/3 ;0,1,0), 

f(u吋1)，いい'パ， uιI

satisfies strat臼egy-p戸ro∞ofness ，Pareto efficiency, and equal compensation, but does not satisfy the constant 

transfer property on Un. 
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~圃』

Theorem 2.3. Let 町三4. There ﾎs no strategy-prooj~ Pareto efficient, and equally 

compensαtoγymechαnismfiモ F( むれ). 

Proof. Let uf, up , uf，可 be preferences in U such that 入(uf)<入(up)<入(uf)<入(u?)

Suppose that there exists a strategy-proof, Pareto efficient, and equally compensatory 

mechanism fE F(Un). It follows from Lemma 2.3 that f satisfies the constant transfer 

property on r(Un) relative to some 1tE I1. Notice that (叶，.. . ， u~) ， (U) ,... ， U~)E r(U n), and 

for all iεN ， (uP , U~j) ， (u?, U~j)εr(un). First, we assume that Cf(u1 ,. .. ， u~)= {j}. It follow 

from Lemma 2.1 that for all i吋， Cf(uP ， u~j)={i}. By strategy-proofness , 

Uf(1t j (j)，O)三Uf(1t j (i) , 1) and UP(1ti(i), 1)三UP(πiU) ， O). Hence , 1t j(i)+入(Uf)壬1t j (j)三πj(i)+λ(uP)

for all i:;tj. Adding up these inequalities for all i:;tj , we have that Iπj (i)+(n-

1)入(ur)~Iπj (j)三エ1tj(i)+(n-1)入(uP). By budget balance Iπj (j )=M， we have that (n由
i;tj i;tj ieN 

1)λ(ur)~M- Iπj(i)壬(n-1)入(uP). Next, we assume that Cf(U) ぃ.，U自)={k}. It follows 

from Lemma 2.1 that for all i北， Cf(u?， u~j)={i}. By strategy-proofness , 

ur(πj(k) ， O)三ur(1t j(i) ，1) and u?(πj(i) ， l)三u?(1t j(k) ， O). Hence , 

1tj (i)+入(UD~1t i(k)~1t j(i)+入(u?) for all i:;tk. Adding up these inequalities for all i:;tk , we 

have that エ πj(i)+(n-1)入(uD~Iπj(k)三エ πj(i)+(n-1)入(u?). By budget balance 
i;tk i;tk i;tk 

エ πj(k)=M ， we have that (n-1)入(uD三Mーエ πj(i)壬(n-1)入(u?). Since 入(uP)<入(uD ， this is 
ieN ie 

a contradiction. Q.E.D. 

We have two corollaries to Theorem 2.3. The first one follows from the fact that equal 

compensation is vacuously true when n=2. The second one follows from the fact that 

envy-freeness (Foley , 1967) implies Pareto efficiency and equal compensation in our 

model (Svensson , 1983). 

Corollarヲ 2. 1. Let n=2 αnd #U?三4. There is no str，αtegy-proofαndPαreto efficient 

mechanismfiε F(Un).5 

5 Schummer (1998) shows a similar result in economies with multiple indivisible goods and money. 
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Corollary 2.2. Le t 町三4. There is no strategy-proof and enνyてfree meclzanisl7l 

fモ F(U I1 ).も

Next, we characterize the set of strategy-proof and Pareto efficient mechanisms on 

very small preference domains in the two-agent case. The following two theorems show 

that strategy-proofness puts some constraint on transfer allocation functions. It turns out 

that there is a trade-off between the restriction of the pre~erence domain and the constraint 

on transfer allocation functions. The arguments are much the same as Lemma 2.3 and 

Theorem 2.3 , and the proofs will be omitted. 

Lemma 2.4. Let n=2. lf α mechanismfEF(Un) sαtisfies strαtegy-proofness and 

Pαreto efficiency, then f satisfies the constant transfer properη on un relαtÎve to some 

πε 刀.

Theorem 2.4. Let n=2 and #U=3. Assume that U={uf, uf, uf), where 

λ(uf)<λ(uf)<λ(uf). A mechanismj主 F(Un) satiポes strategy-proofness αnd Pareto 

ザlciency if and only if (i) for all uε un， Cr似たArgmax ( λ(Ui)) ， and (ii) f satiゆes the 
ﾎEN 

constant tr，αnsfer properη on Unrelαtive to some 冗モ II ， where ヱ πi(i)=M-Â(uf). 
ﾎEN 

Theorem 2ふ Let n=2 and #U=2. Assume thαt U={uf, uf), where λ(uf)<λ(uf). A 

mechanismfEF(UI1) satiφ白 strategy-proofness and Pareto ゆciency if and only if(i) 

for all uε un， Cr(u)cArgmax { λ(uiJ)， and (ii)fsatisfies the constant trans_作rproperty 0η 
ﾎEN 

ul1 relative ω some 7rEII , where M-Â(uf)壬ヱ πliJ三M-)~，(uf).
ﾎEN 

As in the two-agent case , we can design strategy-proof, Pareto efficient, equally 

compensatory mechanisms on very small preference dornains in the n-agent case. 

6 It also fol1ows from a general result of Tadenuma and Thomson (1995) that there is no strategy-proof 

and envy-仕ee mechanism f，εF(U~) 
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Example 2.1. Let #U=3. Assume that U={uf,uP ,uf }, where 入(吋)<入(uP)<入(uf)

Consider mechanisms fεF(un) such that for all uεun ， (i) Cf(u)cArgmax {入(ui)} ， (ii)

刷 M-(n1)入(uf2_ flおor 凶机如制d (i川咋M円t州 f白()町m叫3訂川川rは川al峠Cfば(uω). Thωh悶

mechanisms satisfy strategy-proofness, Pareto efficiency , and equal compensation. 

Example 2.2. Let #U=2. Assume that U={uf,uPL where λ(uf) <入(uP). Consider 

mechanisms flεF(U n) such that for all uεun ， (i) Cf(u)cAぽgmax {入(Uj)} ， (ii) 
ieN 

刷 M-(Il)入 foriE Cf(U)，加d (iii) 町 (u)=竺1_for all j~ Cf(U) , where À(Uf)~À' ~À(uP) 

Then , these mechanisms satisfy strategy-proofness, Pareto efficiency , and equal 
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2.5. Conclusion 

We studied the problem of allocating a single indivisible good when monet紅y

compensation is possible. A genera1 result of Holmstrりm. (1979) implies that there is no 

strategy司proofand Pareto efficient mechanism on the set of all quasi-line紅 preferences.

We considered some finite restrictions of the preference domain in order to understand 

how strong the impossibility result is. We proved that there is no strategy-proof and 

Pareto efficient mechanism when (i) the preference domain consists of a sufficiently large 

but finite number of quasi-line紅 preferences (Theorem 2.2) , or (ii) the preference domain 

consists of more than three quasi-linear preferences and equal compensation is imposed 

on mechanisms (Theorem 2.3). We conclude that the impossibility result is very strong 

since such drastic restrictions of the preference domain are very unrealistic. 
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Chapter 3 

Strategy-Proof Allocation Mechanisms 

for Economies with an Indivisible Good 料

3.1. Introduction 

We consider economies with a single indivisible good and a transferable good. The 

indivisible good can be consumed by only one agent. The transferable good, regarded as 

money, is used for compensation. This chapter looks for desirable allocation mechanisms 

which determine who consumes the indivisible good and how much compensation the 

other agents receive from the consumer. We think of the following four axioms as 

desiderata for mechanisms. The first axiom is strategy-proofness. Strategy-proofness 

states that truthful revelation of preferences is a dominant strategy for each agent. It is an 

attractive requirement from the viewpoint of decentralization. The next two axioms are 

related to equity. They are individual rationality (all agen1ts end up no worse off than at the 

status quo) and equal compensation (the non-consumers of the indivisible good receive 

the same amount of monetary compensation). The last axiom is demand monotonicity, 

which requires that the consumer of the indivisible good remain unchanged when the 

consumer increases his demand for the indivisible good and no other agents increase their 

demand. This requirement is necessary for Pareto efficiency , but rather weaker than 

Pareto efficiency. We attempt to design mechanisms that satisfy these four axioms. 

There is a huge literature on strategy-proofness. It is well known that strategy-

proofness is a strong requirement in a social choice framework. The Gibbard-

Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) states that any strategy-proof 

mechanism whose r加gecontains more than two outcomes must be dictatorial. Under the 

requirement of Pareto efficiency, the p紅allel impossibility results can be established in 

** This chapter is based on Ohseto (l999b). 
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economic environments. Zhou (1 991b) , improving upon Hurwicz (1972) and Dasgupta‘ 

Hammond , and Maskin (1979) , shows that strategy-proofness and Pareto efficiency 

imply dictatorship in two-agent pure exchange economies. Hurwicz and Walker (1990) 

prove that any strategy-proof mechanism is generically Pareto inefficient in a model that 

includes pure exchange economies with a transferable good. These results suggest that 

we should give up Pareto efficiency in order to construct reasonable strategy-proof 

mechanisms. Barbera and Jackson (1995) characterize the set of strategy-proof, 

anonymous, and non-bossy mechanisms in pure exchange economies. The class of such 

mechanisms is rather rich; moreover, those mechanisms fulfill satisfactory properties of 

coalitional strategy-proofness , envy-仕eeness (Foley , 1967), and individual rationality. 

Serizawa (1996, 1999) presents similar characterizations in economies with one private 

good and one public good. Their characterizations enable us to understand how inefficient 

strategy-proof mechanisms are. 

In economies with an indi visible good and money , it follows from a general result of 

Tadenuma and Thomson (1995) that there is no strategy-proof and envy-free 

mechanism.7 Although envy-freeness is a concept of equity, it implies Pareto efficiency in 

these economies (Svensson, 1983). It also follows from a general result of Holmstrりm

(1979) that there is no strategy-proof and Pareto efficient mechanism in these economies. 

In this chapter we adopt individual rationality and equal compensation as mild 

requirements of equity , and demand monotonicity as a minimum requirement of 

efficiency. We will check in the next section that each axiom is strictly weaker than envyｭ

freeness , and these axioms together do not imply Pareto efficiency in these economies. 

First, we show that if a mechanism satisfies strategy-proofness, equal compensation, 

and demand monotonicity, then it satisfies the constant transfer properザ (the allocation of 

monetary transfer depends only on who receives the indivisible good). Second, we prove 

that any mechanism that satisfies our four axioms allocates the indivisible good to one of 

the pre-specified one or two agent(s) , and disregards preferences of agents other than the 

7 They establish a more general resu1t that any subcorrespondence of the envy-free coπespondence i 

manipulable in the sense of Hurwicz (1972). 
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pre-specified agent(s). When the set of potential consumers of the indivisible good 

consists of two agents (without loss of generality , we call them agents 1 and 2) , we 

construct two types of mechanisms: the decisive mechanisms and the unilaterally 

unanimous mechanisms. Decisiveness requires that agent 1 (agent 2 respectively) get the 

indivisible good if he wants it at the cost of a pre-specified level of compensation, and 

agent 2 (agent 1 respectively) get the indivisible good without compensation otherwise. 

Unilateral unanimity requires that agent 1 (agent 2 respect:ively) get the indivisible good if 

both agents want agent 1 (agent 2 respectively) to get it under a pre-specified monetary 

transfer, and agent 2 (agent 1 respectively) get the indivisible good without compensation 

otherwise. When the set of potential consumers consists of only one agent, we construct 

the dictatorial mechanisms: one of the agents always consumes the indivisible good 

without compensation. Finally, we provide the following characterization: a mechanism 

satisfies strategy-proofness , individual rationality , equal compensation, and demand 

monotonicity if and only if it is decisive, unilaterally unanimous, or dictatorial. This 

characterization enables us to understand that those mechanisms 紅e very inefficient. 

Moreover, those mechanisms have serious asymmetry (e.g. (i) the decisive mechanisms 

determine allocations on the basis of only one agent's preferences; and (ii) the unilaterally 

unanimous mechanisms and the dictatorial mechanisms always gu紅antee one of the 

agents at least the utility level of having the indivisible good without compensation). In 

contrast to Barbera and Jackson (1995) , the presence of an indivisible good induces 

serious asymmetry in mechanisms. 

This chapter is organized as follows. In Section 3.2, we introduce notation and 

definitions. In Section 3.3 , we describe a fundamental structure of strategy-proof, 

individually rational, equally compensatory, and demand monotonic mechanisms. In 

Section 3.4, we provide a full characterization of those mechanisms. In Section 3.5 , we 

summarize the results and state some remarks. 

3.2. Notation and Definitions 

Let N={ 1,…,n} (n~2) be the set of agents. Consider a single indivisible good and a 
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transferable good. The indivisible good can be assigned to only one agent. The 

transferable good, regarded as money , is used for compensation. The society must decide 

who consumes the indivisible good and how much compensation the other agents 

receive. A consumption bundle of agent i is a pむr (ti ， Xi)εRx {O, 1 }, where tiεR 

represents the net monetary transfer which agent i receives (if ti>O) or agent i pays (if 

ti<O) , and Xiε{0 ， 1} denotes agent i's consumption of the indivisible good. The set of 

feasible allocations is Z={ (t} ,... ,tn;x} ,... ， X n)εRnx {O ， l}nl ヱ ti=O and ヱ xi=l}. The set 
ieN ie 

of feasible transfer allocations is ZT = { (tl , .. • ， tn)εRnl エ tj:=O}. 
ieN 

Each agent iεN has a preference on his consumption space Rx {O, 1 }. Let U be the set 

of all quasi-linear preferences which can be represented by a quasi-linear utility function 

Ui(ti ,Xj)=ti+Vi(Xj) , where O=Vj(O)<Vj( l)<+∞• 8 For each UjεU， let 入(Uj)=Vj (l )-Vj(O). We 

can interpret 入(Uj) as agent i's willingness to pay for the indivisible good, that is , 

Uj(tj ， O)=Uj(tj-入(Uj) ，1) for all tiεR. Notice that UiεU and UiεU are identical preferences if 

and only if 入(Ui)=入(Ui). A list u=(u} ,... ，U n)εun is called a preference profile. 

For each coalition C in N , let -C represent coalition N¥C. Let (玩c ，u-c) denote the 

preference profile whose i-th component is Ui if iεC and Uj if ie: C. When C= {i }, we 

simply denote (U{i}, U_{i}) by (Ui, U_j). 

A mechanism is a function f: Un• Z , which associates a feasible allocation with each 

preference profile. For each uεun ， we let f(U)=(t}(u) ,...,tn(U);Xl(U) ,...,xn(u)). Let ft and 

fi be functions such that for each uεu
n ， ft(u)=(t](u) ,...,tn(u)) and fi(u)= (ti(U) ,Xj(u)) , 

respectively. For each Uεu n ， let Cf(U)= {iεNI xi(u)=l} represent the consumer of the 

indivisible good, and NCf(U)={iεNI Xj(u)=O} represent the non-consumers of the 

indivisible good. Notice that #Cf(u)=l and #NCf(u)=n-l for each uεu n . Let Rf={iENI 

there exists some UεUn such that Cf(U)= {i} } denote the set of agents who have an 

oppo口unity to receive the indivisible good through the mechanism f. 

We think of the following four axioms as desiderata for mechanisms. 

This implies that the indivisible good is a "good" for all agent. This is not a restrictive assumption 

Lnce we present impossibility result 
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Definition 3.1. A mechanism f satisfies strategy-proofness iff for all Uεun ， iεN ， 

and UjεU ， uj(fj(u))三Uj(fj(Uj ， U_ω. 

If a mechanism f does not satisfy strategy-proofness, then there exist some UεUn ， 

iεN ， and UjεU such that uj(fï(uj , U_j))>uj(fj(u)); thus we say that agent i can manipulate f 

at U Vla Uj. 

Definition 3.2. A mechanism f satisfies indiνidual rationαlity iff for all Uεu n and 

iεN ， uj(fj(u))三Uj(O ， O).

Definition 3.3. A mechanism f satisfies equal compensation iff for all UE Un and i, 

jεNCf(U) ， tj(u)=町 (U).

Definition 3.4. A mechanism f satisfies demand moηotonicity iff for all u , Uεun 

such that 入(百j)>入(Uj) for iεCf(U) and 入(百j)三入(Uj) for all jE r、~Cf(U) ， Cf(U)=Cf(百). 

Strategy-proofness states that truthful revelation of preferences is a dominant strategy 

for each agent. lndividual rationality requires that all agents should end up no worse off 

than at the status quo. Equal compensation requires that the amount of monet紅y transfer 

should be the same for all non-consumers of the indivisible good. Demand monotonicity 

requires that an increase of the consumer's demand and non-increase of the nonｭ

consumers' demand should not change the consumer of the indivisible good. 

These four axioms are independent as shown in Examples 4.2 -4.5. Here we present 

simple examples which draw a clear distinction between strategy-proofness and demand 

monotonlclty. 

Example 3.1. Let n=3 and a mechanism f be such that for all Uεu3 ， if 入(U3)三 1 ， then 

Cf(u)={ 1} and ft(u)=(O ,O,O) , and if 入(u3)<I ， then Cf(u)={2} and ft(u)=(O ,O,O). Then , f 
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satisfies strategy-proofness, individual rationality , and equal compensation , but does not 

atisfy demand monotonicity. 

Example 3.2. Let n=2 and a mechanism f be such that for all uεu2 ， if 入(U l )三入(U 2) , 

then Cf(U)={ l} and ft(u)=(ü ,Ü) , and if 入(Ul)<入(U2 ) ， then Cf(u)={2} and ft( u)=(Ü,ü). 

Then, f satisfies demand monotonicity , individual rationality, and equal compensation , 

but does not satisfy strategy-proofness. 

Example 3.1 shows that strategy-proofness does not imply demand monotonicity 

under the requirements of individual rationality and equal compensation: to check that f 

violates demand monotonicity , it is sufficient to see that Cf(U)={ 1} when 

入(Ul)=入(U2)=入(u3)=1 ， and Cf(百)={2} when A(Ul)=2，入(i12)=入(U3 )=上. This mechanism 
2 

depends only on agent 3's preferences and never a110cates the indivisible good to agent 3. 

However, it is possible to construct a mechanism which satisfies our axioms except 

demand monotonicity, which incorporates preferences of a11 agents , and which potentia11y 

a110cates the indivisible good to any agent (see Example 3.4). Example 3.2 proves that 

demand monotonicity does not imply strategy-proofness under the requirements of 

individual rationality and equal compensation: to check that f violates strategy-proofness, 

it is sufficient to see that Cf(U 1, U2)= { 1} and Cf(U 1 ，百2)={2} when 入(Ul)=入(U2)= 1, 

入(u2)=2. This example also satisfies Pareto efficiency defined below. A similar example 

that contains any number of agents wi11 be constructed in Example 3.7. 

We then discuss the relationships between our axioms (especially demand 

monotonicity and strategy-proofness) and Pareto efficiency. In this model, Pareto 

efficiency can be represented as fo11ows (see e.g. Mas-Colell , Whinston , and Green 

(1995), p. 862). A mechanism f satisfies Pareto el丹・ciency iff for a11 uεu n ， 

Cf(u)cArgmax {入 (Uj)}. We prove that Pareto efficiency irnplies demand monotonicity , 

but not vice versa. 

Lemma 3.1. If α mechanism f sαtisfies Pαreto efficiency, then f sαtisfies demand 
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monotonlClty. 

Proof. Consider any Uεun . 1t follows from Pareto efficiency that Cf(U)= {i} implie 

入(Uj )三入(Uj) for alljお. Consider any uεun such that 入(百j ) >入( Uj ) for iεCf(U) and 

入(uj)壬入(Uj) for all jεNCf(U). 1t is clear that 入(百j)>入(Uj) for all j:;ti, and thus it follows 

from Pareto efficiency that Ct(百)={i}. Q.E.D. 

Example 3.3. Let n=2 and a mechanism f be such that: for all Uεu2 ， if 入(ul )~l ， then 

Cf(U)= { l} and ft(u)=( -1 ,1) , and if 入(u])<l ， then Cf(u)={2} and ft(u)=(O ,O). Then , f 

satisfies strategy-proofness, individual rationality , equal compensation, and demand 

monotonicity , but does not satisfy Pareto efficiency. 

Example 3.3 shows that demand monotonicity does not imply Pareto efficiency: to 

check that f violates Pareto efficiency, it is sufficient to see that Cf(U)={ 1} when 入(ul)=l ，

入(u2)=2. This example also proves the existence of the mechanism which satisfies our 

four axioms (it is a member of the decisive mechanisms which we will define in Section 

3.4). 

1t follows from a general result of Holmstrりm(1979) that there is no strategy-proof 

and Pareto efficient mechanism. Example 3.2 proves that Pareto efficiency does not imply 

strategy-proofness, and Example 3.3 proves that strategy-proofness does not imply 

Pareto efficiency. Therefore, strategy-proofness and Pareto efficiency are independent. 

We finally discuss the relationships between our axioms and envy-freeness. A 

mechanism f satisfies envy-freeness iff for all UεU and i, jεN ， uj(fj(u))三Uj(fj(u)). A 

general result of Tadenuma and Thomson (1995) implies the non-existence of strategyｭ

proof and envy-free mechanisms. 1t follows from Lemmas 1 and 2 in Tadenuma and 

Thomson (1995) that envy-freeness implies individual rationality. 1t is evident from the 

definitions that envy-仕eeness implies equal compensation. It follows from the fact that 

envy-freeness implies Pareto efficiency (Svensson , 1983) and Lemma 3.1 that envy-

freeness implies demand monotonicity. Therefore, our a氾oms except strategy-proofnes 

むe strictly weaker than envy-仕eeness. The relationships among our axioms , Pareto 
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efficiency , and en vy -freeness 紅e illustrated in Figure 3.1. 

3.3. Preliminary Results 

In this section we describe a fundamental structure of strategy-proof, individually 

rational , equally compensatory , and demand monotonic mechanisms. First, we prove that 

those mechanisms have some constancy relative to transfer allocations , that is , those 

mechanisms specify the s紅nepattem of transfer allocations whenever they allocate the 

indivisible good to the same agent. 

Atran砕r allocαtionβmction is a functionπ:N→ZT ， which associates a feasible 

transfer allocation with each consumer of the indivisible good. For each iεN ， we let 

π(i)=(π1 (i) ，...，πj(i)ぃ . ，1t山)) ， where πj(i) represents the amount of money which agent j 

receives when agent i consumes the indivisible good. Let I1 denote the set of trans_声r

αllocation functions. A mechanism f satisfies the consωnt tran砕rproperty relative to π 

ε 刀 ifffor all uεun ， [Cf(U)= {i} コ ft(u)=π(i)]. A mechanism f satisfies the co則的nt

tran牧rproperty iff for someπεIT， f satisfies the constant transfer property relative toπ 

Theorem 3.1. If a mechαnismf satiぞfies strategy-proo_介less， eqLωl compensαtion， 

and demand monoωniciη， theηfsatiポes the constant trαn砕rproperty. 

To prove this theorem, we have prepared the following usefullemmas. 

Lemma 3.2. For any mechanism メ U=(Ui， U-i)ε un， and 五iε u， iff satiぞfies strategy-

proφless， fJu)=(tJu)， l)， αnd λ伝i)>λ(u ï)， then fJLh U-i)=:(tJu) , 1). 

Proof. Suppose toward contradiction that fi(Ui , U_i)=(t j(Ui , U-i) ,Xi(Ui , U-i))=t=(ti(U) , 1). If 

Xi(Uj , U_i)=O and tj(Uj , U_j)>tj(u)+入(Uj) ， then since ui(tj(u) ， l)=uj(tj(u)+入(Uj) ，O) ， agent i can 

manipulate f at U via Ui. If Xi(Ui , U_j)=O and ti(百j ， U_i)<tj(U)+入(Ui) ， then since 

Ui(ti(U) , 1 )=Ui(ti(U)+入(百j) ，O) ， agent i can manipulate f at (Uj, U-i) via Uj ・If Xj(百i ， u-i)=O ，

then it must hold that tj(u)+入(Uj)三tj(Uj ， U-i)三tj(U)+入(Uj) ， which contradicts 入(百j)>入(Ui). 

Hence , Xi(Ui , U_i)=1. It is clear that Xj(Uj , U_j)= 1 and tj(Uj , u_):;ttj(u) contradict strategy-
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proofness. Q.E.D. 

Lemma 3.3. For any mechanism メ u=(U i. U-i共 un ， and 玩iε u， if f satisfies strategy-

proofness, fd u)=( tJ u), 0)， αnd Â(Ui)>λ而i)， then fdui, u-iJ=:( tJ u) , 0). 

Proof. Suppose toward contradiction that fj (百j ， U_j)=(tj(百j ，U_j) ,xï(Uj , U_j));t(tj(u) ,O). If 

Xj(Uj , U_j)= 1 and tj(Uj , U_i)>tj(U)-入(Uj) ， then since Uj(tj(u) ， O)=Uj(tj(u)ー入(Uj) ， l) ， agent i can 

manipulate f at U via Uj. If Xj(Uj , U・i)=1 and tj(百j ， U_j)<tj(u)-λ(瓦j) ， then since 

百j(tj(u) ,O)=Uj (tj (u)ー入(Uj) ， l) ， agent i can manipulate f at (Uj , U_j) via Uj ・ If Xj(Uj ,u_j)=l , then 

it must hold that tj(u)ー入(Ui)三tj(Uj ， U_j)三tj(U)ー入(Uj) ， which contradicts 入(Uj)>入(百j). Hence , 

Xi(Uj , U_j)=O. It is clear that Xj(Uj , U_j)=O and tj(Uj , U_j)訓j(U) contradict str剖egy -proofness. 

Q.E.D. 

Lemma 3.4. Assume thαtα mechαnism f satisfies strαtegy-proofness， equαi 

compensαtioれ， αnddemαndmonotonicity. For αII u, uモ un such thαtλ(Ui)>入，(Ui)for 

iモ Cr(u) α:nd λ(五j)く入，(uj) for all jε NCr(u)， it holds thαt f( u) = f(u) . 

Proof. It follows from Lemma 3.2 that fj(u)=fj (百j ，u-J By equal compensation , it 

holds that f(u)=f(uj , U_j). Choose arbitrarily jεNCf(U). By demand monotonicity , it holds 

th瓜 Cf(百 {j ，j} ， U_{i ，j} )=Cf(U)={i}. It follows from Lemma 3.3 that fj(uj ， u_j)=ち (U{ j.j } , U -{ j ,j }) . 

By equal compensation, it holds that f(百j ， u_i)=f(u{j ,j}' u_{j ,j JI)' Repeat this argument 

successively to all kεNCf(U) with k;tj. Then, we have f(u):=f(百). Q.E.D. 

Proof of Theorem 3.1. Choose any u, Uεun such that Cf( U )=Cf(百). Consider 

五εu n such that 入(立i)>max{ 入(Uj) ，入(Uj)} for iεCf(U)=Cf(百) and 入(uj)<min {入(Uj) ，入(Uj)} 

for all jεNCf(U)=NCf(瓦). It follows from Lemma 3.4 that f(u)=f(�) and f(u)=f(立). 

Hence, it holds that ft(u)=ft(百). This implies that f satisfies the constant transfer property. 

Q.E.D. 

Theorem 3.1 puts a strong restriction on the structure of mechanisms , but no 

restriction on the choice of transfer allocation functions. The following lemmas provide 
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some necess紅yconditions on transfer a11ocation functions. 

Lemma 3.5. Assume that a mechanism f satiぞfies the constant transfer property 

relative ωπεrr. Iff satiポes individual rationality, then there exists iε Rf such that 

π(i)=(O，...， O). 

Proof. For each iεRf' there exists uεun such that Cf(U)= {i}. By individual 

rationality, it must hold that tj(u)=πj(i)~O for a11 jE NCf(U). By budget balance, 

tj(u)=1t j(i)三O. Therefore , 1t j(i)三o for all iεRf. Suppose toward contradiction that there is 

no agent kεRf such that 1tk(k)=O, that is ， πj(i)<O for a11 iεRf. Consider Uεu n such that 

孔(Uj)>1t j(i) for all iεRf. It fo11ows from individual rationalilty that tj(め=πj (i)ミー入(百i) for 

iεCf(u)cRf， which contradicts the construction of Uj ・ Q.E.D.

Lemma 3.6. Assume that a mechanism f satiφies the consωnt tran砕rproperty 

relative ωπεrr. Iff satiポes strategy-proofness, indi1ノidua l' rationality, equal 

compensation, and demand monotonicity, then there exist no two agents i, jE Rf such that 

π(i)= π(j)=(O，...， O). 

Proof. Let Rf= {iεRflπ(i)=(O，.. .,0) }. Assume, on the contrary , that there exist two 

agents i , jE Rf. Since i , jεRf， there exist u，百εun such that Cf(u)={i} and Cf(U)={j}. 

Consider Ûεun such that -入(立k)>1tk(k) for a11 kεRf\哀f and 入(û，)<min {入(u ，) ，入(U，)} for 

alllEN. Consider 百j ，句εU such that 入(江j)>入(Uj) and 入(句)>入(町). It fo11ows from 

Lemma 3.4 that f(ωu川1)刺)

fち収jメ]バ(百句j ， 立丘-j)=可(0 ，λ1り). We show that Cf( 古) is indeterminable. If Cf( 自)= {k} for some kE Rf¥ Rf, 

then tk(Û)=πk(k)ミー入(Ûk) by individual rationality , which contradicts the construction of 

ﾛk. If Cf(ﾛ)= {l} for some lε長f\{ i }, then since fj(û)=(O,O) , agent i can manipulate f at 立

via Uj. If Cf(ﾛ)= {i }, then since f j(Û)=(O,O) , agent j can manﾌlpulate f at ﾛ via Uj. 

Q.E.D. 

These lernmas show that there must be asymmetry in mechanisms , that is , there is only 

one agent who can consume the indivisible good without compensating the other agents. 
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3.4. Main Results 

In this section we provide a full characterization of strategy-proof, individua11y rational , 

equa11y compensatory, and demand monotonic mechanisms. First, we show that those 

mechanisms have serious asymmetry , that is , the set of potential consumers of the 

indivisible good through the mechanisms consists of at most two agents. 

Theorem 3.2. lf a mechanism f sati宅fies strategy-proofJVless, indùノidual rationality, 

equal compensation, and demand monotonicity, then #Rr52. 

Proof. Assume , on the contrary , that #Rf~3. Without 10ss of generality , we assume 

that Rfコ{1 ,2 ,n}. It fo11ows from Theorem 3.1 that f satisfies the constant transfer 

property re1ati ve to someπεrr. It fo11ows from Lemmas 3.5 and 3.6 that there exists on1y 

one agent iεRf such thatπ(i)=(O，...， O). Without 10ss of generality , we assume that 

1t(n)=(O ,…,0). Hence ， π(i):;t (O，…，0) for a11 iεRf\{n}. By individual rationality and 

budget balance , 1tj(i)<O for a11 iεRf\{ n}. By equa1 compensation, 1tj(i)>O for a11 iεRf\{ n} 

and al1 j釘. Since Rρ{ 1,2} , there exist u, u'εu n such that Cf(U)={ 1} and Cf(U')= {2}. 

For all iεRf\ { n} , choose some 斗U such thatλ(町<min{λ(Uj) ム(u)} and -入(可)>πi(i). 

For all jε-Rfu{n} ， choose some 玩jεU such that 入(町)<min{ 入(Uj) ム(uj )}. Choose some 

Ûl , ﾛ2E U such that 入(立1)>入(UI) and λ(む)>入(u~). It fo11ows from Lemma 3.4 that 

f(u)=f(店 1 ，U-l) and f(u')=f(む， U-2). Hence , Cf(ﾛ 1 ，江 l)={1} and Cf(む，U-2)={2}. Choose 

some Ul , U2εU such thatπ1(2)ーπ1 (1)>入(Ul)>ーπ1(1) and 1t 2 (1)-1t2(2)>入(U2)>ー 1t2(2). The 

fo11owing steps lead to a contradiction (see Figure 3.2). 

Step 1. Cr (u l，瓦 1)={1}.

By individua1 rationality , ifCf(Ul ,U_l)={k} for any kεRjへ {l ，n }， then 

tk(江 1 ， U-I)=πk(k)三ー入(Uk) ， which contradicts the construction of Uk. Notice that 

UI(π1 (1)， 1)=U1(π1 (1)+入(U1) ， 0)>百 1 (O ,O)=Ul (π1 (n) ,O). If Cf(百 1 ，百-1)={n }， then agent 1 

can manipulate f at (百 1 ，百-1) via ﾛ 1 ・ Hence， we have that Cf(íU1 , U-l)= { 1 }. 

Step 2. Cr (u2， 瓦2)=(2).

By individual rationality , if Ct(U2 ,U-2)={k} for any kεRf\{2 ，n }， then 
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tk(U2 , U-2)=1tk(k)ミー入(Uk) ， which contradicts the construction of Uk. Notice that 

U2(π2(2) ， 1 )=U2(π2(2)+入(U2) ，O)>U 2(0 , O)=U 2 (π2(n) ， 0). If Cf(U2 ，百-2)={n }, then agent 2 

can manipulate f at (U2 ，百-2)via Û2 ・ Hence ， we have that Cf(U2 , U-2)= {2}. 

Step 3. j向{ 1 ， 2} ，瓦{ 1,2}) is indeterminable. 

By individual rationality , if Cf(U{ 1,2} ,U-{ 1,2})={k} for any kεRf\ { 1 ,2,n }, then 

tk(百{1 ,2} , U_ { 1,2} )=1'Ck(k)ミー入(Uk) ，which contradicts the const:ruction of Uk. Notice t:hat 

百 1(1'C 1 (2) ,0)=u 1 (π1 (2)-入(百 1) ， 1)>百 1 (π1 (1), 1) and 

U2(π2( 1 )， 0)=U2(π2(1)ーλ(百2) ， 1)>u2(π2(2) ， 1). If Cf(百{ 1,2} , u.. {l ,2})= { 1} or {n }, then agent 

1 can manipulate f at (百 {1 ， 2} ，玩{1 ,2}) via U 1. If Cf(江{1 ,2} , U_ { 1,2})= {2 }, then agent 2 can 

manipulate f at (百ぃ，2} ，立 {1 ，2})via U2. Therefore , Cf(U {l,2} ,tl_{1 ,2}) is indeterminable. 

Q.E.D. 

Theorem 3.2 is a tight result. We present mechanisms which satisfy any three axioms 

and the condition #Rf> 2. 

Example 3.4. Let πε I1 be such that 1'Cj(i)=O for all i, jE N. A mechanism f satisfies 

the constant transfer property relati ve toπ ， and for all uεU4 ， Cf(U) is defined as follows. 

入(U4)三 1 入(u4)<1

λ(U2)三 1 入(u2)<1 入(U2)三 1 入(u2)<1

入(U3)三 l 入(u 1)三 1 {4} {3} {4 } {3} 

入(u1)<1 {2} {2} {2} {2} 

入(u3)<1 入(Ul)三 1 { 1 } {3} { 1 } {3 } 

入(u1)< 1 { 1 } {4 } { 1 } {4 } 

Then , f satisfies strategy-proofness , individual rationality , equal compensation, and 

#Rf=n=4 , but does not satisfy demand monotonicity.9 

9 This example is suggested by Miki Kato. It is also possible to construct this type of mechanisms with 

more than four agent 
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Example 3.5. Let πεrr be such thatπj(i)=ー(n-i) for all iεN ， 1tj(i)=1 for all i, jεN 

with i<j , and πj(i)=Ü for all i, jεN with i>j. A mechanism f satisfies the constant transfer 

property relati ve toπ ， and for all uεun ， if 入(u j) >n-i for sorne iεN\{n} and 入(Uj)三n-j for 

alljεN with i>j , then Cf(u)={i }, and if 入(Uj)壬n-j for all jε I\r\ {n }， then Cf(u)={n}. Then, 

f satisfies strategy-proofness , individual rationality , demand monotonicity , and #Rf=n , 

but does not satisfy equal compensation. 

Example 3.6. Let πεrr be such thatπj(i)=ー (n-l) for all iεN and 1tj(i)= 1 for all i, j ε N 

with i:;tj. A mechanism f satisfies the constant transfer property relative toπ ， and for all 

uεun ， if 入(uj)>n for some iεM{n} and λ(Uj)三nfor all jεN with i>j , then Cf(u)={i }, and 

ifλ(Uj)三n for all jεM{n }， then Cf(u)={n}. Then, f satisfies strategy-proofness , equal 

compensation, demand monotonicity, and #Rf=n, but does not satisfy individual 

rationality . 

Example 3.7. Let a mechanism f be such that for all uεUn ， 

cdu)=Ipip{Mgm以{入(Uj)} }，刷
l陪eN

jεNCf(U). Then, f satisfies individual rationality , equal compensation, demand 

monotonicity , and #Rf=n, but does not satisfy strategy-proofness. 

The first three examples do not use information of preferences effectively. In Example 

3.4, each agent's preferences have no influence on whether or not he gets the indivisible 

good, and the configuration of transfer allocations. In Exarnples 3.5 and 3.6, the 

mechanisms determine allocations without incorporating agent n's preferences. In 

contrast, the last example uses preferences effectively and satisfies Pareto efficiency at the 

cost of strategy-proofness. 

Next, we characterize the set of mechanisms that satisfy strategy-proofness, individual 

rationality , equal compensation, demand monotonicity, and #RF2. We find again 

asymmetry in those mechanisms, that is , they determine allocations only on the basis of 

preferences of agents in Rf. 
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Lemma 3刀. If α mechanismf sαtisfies strαtegy-proofness， individuα1 rα tionaliη， 

equα1 compensαtion， demαnd monotonicity， α:nd #Rf =2, then f(u) =f(URr' U-Rr) for all u, 

瓦巳 un .

Proof. For simplicity of arguments , we assume Rf= { 1,2 }. Suppose toward 

contradiction that f(u):;tf(u{ 1 ,2} , u_{ 1,2}). It follows from Theorem 3.1 that f satisfies the 

constant transfer property relative to someπεn. Thus , Cf(U):;tCf(U{ 1 之} , u _ { 1 ,2 } ). W i th 0 u t 

loss of generality, we assume that Cf(U)= { 1} and Cf(U{l ,2} , u_{ 1 ,2 })={2}. There exists 

some k (3~k~n) such that Cf(u {1 ，...， k} ，百ー {l ，...， k})={1} and 

Cf(U い ，...， k -l }, U_{ l ,.. .,k-l })={2}. It follows from individual rationality and Lemmas 3.5 

and 3.6 that either 1tl (1)<1t2(2)=0 orπ2(2)<1t l(1)=0. Consider the case of 

π1 (l)<1t2(2)=0. By equal compensation ， πk (l )>πk(2). Hence, agent k can manipulate f at 

(U{ 1 ,...,k-l} , u_{ 1 ， ...，k ・ l}) via ub which contradicts strategy-proofness. The other case is 

similar. Q.E.D. 

We define two classes of mechanisms which depend only on preferences of potential 

consumers. 

Definition 3.5. A mechanism f is decisiνe iff (A1) Rf= {i ,j} for some i, jE N , (A2) f 

satisfies the constant transfer property relative to someπε I1 such thatπi (i)=-(n-1 )p<O , 

πk(i)=p>O for all k礼 and π ，u )=0 for alllεN ， and (A3) for all uεun ， [入(uj)>(n-1 )p コ

Cf(u)={ i}] and [入(uj)<(n-1 )p コ Cf(u)= {j } ] , w here p is a positi ve real n umber. 

Definition 3.6. A mechanism f is unilaterally unanimous iff (B 1) R戸{ i,j} for some 

i, jE N , (B2) f satisfies the constant transfer property relative to someπε I1 such that 

πj (i)=ー(n-l)p<O ， 1tk(i)=p>O for all k:;ti, and 1tlU)=O for allIE=N , and (B3) for all uεUn ， 

[入(Uj)>(n-l )p 加d 入(Uj)<P コ Cf(u)={i}] and [入(uj)<(n-l)p or 入(Uj ) >P コ Cf( U ) = {j } ] , 

where p is a positive real number. 
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Here , P represents the amount of the transfer from agent i to each of the other agent 

when agent i receives the indivisib1e good. (A1) and (B1) say that the set ofpotential 

consumers consists of two agents indexed by i and j. (A2) and (B2) say that the 

mechanism satisfies the constant transfer prope口y relative to some transfer allocation 

function in which agent i pays the equal 出nountof money to the other agents when he 

gets the indivisible good and agent j pays nothing when he gets it. (A3) says that agent i 

gets the indivisib1e good if agent i wants it under a given transfer allocation , and agent j 

gets the indivisible good otherwise. (B3) says that agent i gets the indivisib1e good if 

agent i wants it and agent j does not want it (hence, both agents want agent i to get it) 

under a given transfer allocation , and agent j gets the indivisible good otherwise. Figures 

3.3 and 3.4 illustrate the structure of the decisive mechanismls and the unilaterally 

unanimous mechanisms respectively. 

Lemma 3.8. 11 α mechanism 1 satislies strategy-proφless， individual rationality, 

equal compensation, demand monotonicity, and #Rr =2, then 1 is decisi1ノe or unilαterally 

unαnlmous. 

Proof. Assuming that f is not decisive , we show that f is unilaterally unanimous. (B 1) 

is trivial. (B2) is straightforward from Theorem 3.1 , Lemmas 3.5 and 3.6, and equa1 

C叫ensation. W恥e叩叩p戸仰ro仰ve (仰倒B3). L凶et仰t印P= ず古了〔π爪州川附1バρ(iωi). N尚似ti附iにC∞e

lゆ)ゆp ∞ u町i(伏π爪州lバ(ωiり)， 1り)=引u叫li(伏7πtiρ(i)+入川(似何ωu町ωli川i) ，冷刈O的)=u吋li以1バ(-(nト叶-1ゆ)冶p+は入(何Ui) ，冷O的)>刈u町li[川(ρO仏ω，ρ刈O的)=引u叫li(1t i (j) β)] ， and 

[入(Uj)>P ∞ Uj(πj (j)， 1)=uj(πj (j)+入(uj)， ü)=Uj(入(Uj) ， ü)>Uj(p ，ü)=Uj(πj( i) 冷)]. 

Step 1. For αlluε un such that λ(ui)<(n-1)p， Cr(u)={j). 

Assume , on the contrary, that Cf(u)={i}. By individual rationality , it must hold that 

tj(u)=πj (i)=-(n-l)pミー入(Uj). It contradicts 入(ui)<(n-1 )ρ 

Step 2. For αlluε un such that λ(u iJ >(n-1)p αnd λ(Uj)<P， Cr( u)= {i}. 

Since iεRf， there exists Uεu n such that Cf(u)={i}. For all UjεU such that 入(ui)>(n-

l)p , it must hold that Cf(Ui ,U-i)={i}; otherwise agent i can manipulate f at (Uj ,U_i) via Uj. 

For all Uj , UjεU such that 入(ui)>(n-1)p and 入(Uj)<P ， it must hold that 

Cf(U{j ,j} ,U_{j ,j} )={i}; otherwise agentj can manipulate f at (U{j ,j}, U_{j ,j}) via Uj. By Lemma 
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3.7, we obtain a desired conclusion. 

Step 3. For all uε un such that λ(u iJ三(n-l )p and λ(Ujかp， Cr(u)={j). 

Since f is not decisive, there exists ûεun ， where 入(立j)>(n- 1 ) p ， such that Cf(立)={j }. 

For all UjεU such thatλ(Uj )三(n-1)p ， it must hold that Cf( Uj ,íU_j )={j}; otherwise agent i 

can manipulate f at � via Uj. For all Uj , U町jε U such t出ha瓜t 入(何1u1h1 )》三三~ (卯nト-1り)P and 入川(U町1有j)>P ， it mus引t 

hold t出ha瓜t Cf如(れωu町川I円(れ仏ω1しj ，jルj

By Lemma 3.ブ7 ， we have a desired conclusion. Q.E.D. 

The definition of the decisive mechanisms does not specify an allocation for all uε Un 

such that 入(Uj)=(n-1)p. Let UA={uεUnl 入(uj)=(n-1)p and 入(Uj)<P }, U B= {uε Unl 

入(Uj)=(n-l)p and 入(Uj)=P }， and Uc={uεUnl 入(Uj)=(n-l)p and 入(Uj)>P}. We use the 

notation Cf(U)={k} for some Ucun and kεN when Cf(u)={k} for all Uε U. We consider 

necessary conditions on allocations for preference profiles in UA, UB, and Uc ・ Ifthere 

exist u，面εUA such that Cf( u)= { i} and Cf(む)={j } , then by Uj=玩j and Lemma 3.7 , agent j 

can manipulate f at u via Uj. Hence, it must hold that either Cf(U A)= {i} or Cf(U A)= {j } . 

Similarly, it must hold that either Cf(Uc)={i} or Cf(Uc)={j}. It follows from Lemma 3.7 

that either Cf(U B)= {i} or Cf(U B)= {j }. We can find the following eight patterns for the 

specification of allocations for UA, UB, and Uc ・

[α 1] Cf(UA)={i }, Cf(UB)={i }, Cf(Uc)={i}. 

[α2] Cf(UA)={i }, Cf(UB)={i }, Cf(Uc)={j}. 

[α3] Cf(UA)={i }, Cf(UB)={j }, Cf(Uc)={j}. 

[α4] Cf(UA)={j }, Cf(UB)= {j}, Cf(Uc)={j}. 

[α5] Cf(U A)= {i }, Cf(U B)= {j}, Cf(UC) = {i }. 

[α6] Cf(UA)= {j}, Cf(UB)={i }, Cf(Uc)={i} 

[α7] Cf(UA)= {j}, Cf(UB)={i }, Cf(Uc)={j}. 

[α8] Cf(U A)= {j}, Cf(U B)= {j }, Cf(U c)= {i} . 

Similarly, the definition of the unilaterally unanimous mechanisms does not specify an 

allocation for all UεUn such that [入(U j)=(n-l )p and 入(uj)~p ].， and [入(u j)> (n-1 ) p and 

入(U j) = P ]. Le t U D= { UεUn l 入(U j)>(n-l ) p and 入(Uj) =P}. We can find the following eight 
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pattems for the specification of allocations for UA, Us, and Uo・

[゚ 1] Cf(UA)={i }, Cf(Us) ={i }, Cf(Uo)={i}. 

[゚2] Cf(U A)= { i }, Cf(U s)= {j }, Cf(U 0)= { i } . 

[゚3] Cf(U A)= {i} , Cf(U s)= {j }, Cf(U 0)= {j } • 

[゚4] Cf(U A)= {j }, Cf(U s)= {j }, Cf(U 0)= { i } . 

[゚5] Cf(U A)= {j }, Cf(U s)= {j }, Cf(U 0)= {j } • 

[゚6] Cf(UA)={i }, Cf(Us)={i }, Cf(Uo)={j}. 

[゚7] Cf(U A)= {j}, Cf(U s)= {i}, Cf(U 0)= {i } . 

[゚8] Cf(U A)= {j }, Cf(U s)= {i }, Cf(U 0)= {j } • 

Theorem 3.3. A mechanism f satisfies strategy-proofness, indilノidual rationality, 

equal compensation, demand monoωnicity， and #Rf =2 if and only if (i) f is decisive with 

one of [α1} -[α4}， or (ii)fis unilaterally unanimous with one of [゚l) -[゚5}. 

Proof. It follows from Lemma 3.8 that if f satisfies strategy-proofness , individual 

rationality, equal compensation, demand monotonicity, and #RF2, then f is decisi ve or 

unilaterally unanimous. It is easy to show that if f is decisive with one of [α5] -[α8 ]， 

then f violates strategy-proofness. Similarly, it is easy to show that if f is unilaterally 

unanimous with one of [ß6] ー [ß8 ]， then f violates strategy-proofness. This proves 

necessity. Straightforward proofs of sufficiency are omittedl. Q.E.D. 

Finally , we characterize the set of mechanisms that satisfy strategy-proofness , 

individual rationality, equal compensation, demand monotonicity, and #Rf= 1. We 

introduce the dictatorial mechanisms: there is an agent who always consumes the 

indivisible good without compensation to the other agents. 

Definition 3.7. A mechanism f is dictatorial iff there is an agent iεN such that for all 

uεun ， f j (u)=(O, l) and fj(u)=(O ,O) for allj釘.

The following theorem is straightforward, and the proof will be omitted. 
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Theorem 3.4. A mechanism f satiぞfies strategy-proofness, individual ra tionaliη， 

equαl compensation, demand monotonicity, and #Rf =1 ifαnd only if f is dicfatorial. 

3.5. Conclusion 

1n the previous section we divided the set of mechanisms into three classes based on the 

number of potential consumers, and we characterized the set of strategy-proof, 

individually rational , equally compensatory, and demand monotonic mechanisms for each 

of the classes (Theorems 3.2 , 3.3 , and 3.4). 1t may be convenient to sum up those results 

as the following theorem. 

Theorem 3.5. A mechαnism f satisfies strategy-proφless， individual rationality, 

equal compensation， αnddemαnd monotonicity if and only if (i) f is decisive with one of 

fα1] -[α4]， (ii) f is unilαterally unanimous with one of [゚l} -[ß5}, or (iii) f is dictatorial. 

These t廿ee types of mechanisms have the following comrnon properties: (i) they 

determine the allocation of monetary transfer depending on who receives the indivisible 

good; (ii) they allocate the indivisible good to one of the pre-specified (one or two) 

agent(s); and (iii) they disregard preferences of agents other than the pre-specified 

agent(s). 

1t follows from a general result of Tadenuma and Thomson (1995) that there is no 

strategy-proof and envy-free mechanism. Although our axioms of individual rationality , 

equal compensation, and demand monotonicity are strictly weaker than envy-freeness , it 

is impossible to construct attractive mechanisms wruch satisfy strategy-proofness , 

individual rationality , equal compensation, and demand monotonicity. This 

characterization shows that the presence of an indivisible good yields serious asymmetry 

in mechanism山

1t follows from a general result of Holmstrりm (1979) that there is no strategy-proof 

and Pareto efficient mechanism. However, it was not yet clear how inefficient strategy-
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proof mechanisms 訂e. This characterization enables us to understand that those 

mechanisms 紅e very inefficient. It is easy to see that any decisive mechanism, unilaterally 

unanimous mechanism, or dictatorial mechanism fails to achieve a Pareto efficient 

allocation for many preference profiles. 



|St附針Pr仙less I 

Individual Rationality 

Envy-Freeness Equal Compensation 

Pareto Efficiency Demand Monotonicity 

Figure 3.1. The relationships among six axioms. 
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Chapter 4 

Characterizations of Strategy-Proof Mechanisms 
*** for Excludable versus Non-Excludable Public Projects 

4.1. Introduction 

We address the mechanism design problem for the provision of a fixed sized public 

project, that is , the provision of one indivisible unit of a non-rivalrous good. Some public 

projects 訂e non-excludable by nature. We first consider that case. The issue there is to 

decide whether to provide the project and how to divide the cost of producing it, if 

produced. Some public projects c如 bemade excludable by appropriate methods. Cable 

TV is an example. We next consider this possibility. Here the question is still whether to 

provide the project and how to divide the cost of producing it, but also who is allowed to 

consume it. The main axiom we impose on mechanisms is strategy-proofness (Gibbard, 

1973; Satterthwaite, 1975). Strategy-proofness requires tha1t truthful revelation of 

preferences should be a dominant strategy for each agent. We also introduce four 

auxiliary axioms. Individual rationality requires that all agents should end up no worse 

off than at the status quo. Demand monotonicity requires that (i) the set of consumers of 

the project should not shrink when the demand of no agent decreases , and that (ii) the set 

of consumers of the project should be unchanged when the 白mandofno cu汀ent

consumer decreases and the demand of no current non-consumer increases. Citizen 

sovereignty requires that society should have access to either level of the project. Acces 

independence requires that each agent should have access to either level of the project 

regardless of other agents' preferences. 

For the provision of non-excludable public goods , Serizawa (1996) characterizes the 

et of strategy-proof, individually rational , and "non-bossy" (Satterthwaite and 

H・ This chapter is based on Ohseto(] 999a). 
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Sonnenschein, 1981) mechanisms, which he calls "semiconvex cost sharing scheme 

determined by the minimum demand principle" .10 Those mechanisms are very far from 

being Pareto efficient since they divide the cost of producing the public good according to 

a fixed cost sharing rule. Non-bossiness substantially n訂rows down the class of 

strategy-proof mechanisms , and thus plays an important role in his characterization. 

However, this property stands on weak normative ground. Therefore, a characterization 

without non-bossiness is an important extension of his result. 

For the provision of non-excludable public goods , Moulin (1994) characterizes "the 

conservative equal-costs mechanism" by imposing coalitional strategy-proofness , 

individual rationality, and symmetry. For the provision of excludable public goods , he 

proves that "the serial mechanism" satisfies coalitional strategy-proofness, the stand alone 

test, and symmetry, and Pareto dominates the conservative equal-costs mechanism.11 

Coalitional strategy-proofness is very meaningful, but it is a stronger requirement than 

strategy-proofness and non-bossiness. It is an interesting question what class of 

mechanisms is characterized by strategy-proofness instead of coalitional strategy-

proofness.12 Moreover, we would like to know how the class of strategy-proof 

mechanisms enlarges if we drop symmetry. 

First, we consider the case of a non-excludable public project. We introduce the 

notions of "constant cost sharing" and "the unanimous mechanisms". Constant cost 

sharing pre-specifies a cost sharing pattern for society , and requires that if the project is 

provided, then agents should share its cost according to the cost sharing pattern. Serizawa 

10 Serizawa (1996) considers the case of the continuous provision , whe:reas we consider the case of the 

discrete provision. However, his result applies to the case of discrete provision as well. The sarne 

cornrnent applies to Moulin (1 994) , Saijo (1 991), and Serizawa (1999) discussed later 

ハ The stand alone test is stronger than individual rationality. Saijo (1991) proves that there is no 

rnechanisrn which satisfies strategy-proofness and the stand alone test for the provision of non-excludable 

public goods. 

12 Serizawa (1999) proves that the conservative equaトcosts rnechanisrn is the unique mechanism which 

atisfies strategy-proofness, individual rationality , and symrne汀y for the provision of non-excludable 

public good 
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(1996) shows that constant cost sharing is a necess紅y condition for strategy-proofness in 

the two-agent case. We prove that constant cost sharing is a necessary condition for 

strategy-proofness and individual rationality in the n-agent case. The unanimou 

mechanisms are defined as follows: (i) they 紅e constant cost sharing; and (ii) they 

provide the project if and only if each agent's willingness to pay is larger than or equal to 

his cost sh紅e. We characterize the unanimous mechanisms as the set of strategy-proof, 

individually rational , and citizen sovereign mechanisms. 

Second, we consider the case of an excludable public project. We introduce the 

notions of "semiconstant cost sharing" and "the largest unanimous mechanisms". 

Semiconstant cost sharing pre-speci白es a cost sharing pattern for each coalition, and 

requires that if the project is provided for agents in some coalition, then those agents 

should share its cost according to the cost sharing pattem for the coalition. We prove that 

semiconstant cost sharing is a necess紅y condition for strategy-proofness in the two-agent 

case, and it is a necess訂y condition for strategy-proofness, individual rationality , and 

demand monotonicity in the n-agent case. The largest unaniJmous mechanisms are defined 

as follows: (i) they are semiconstant cost sh紅ing; and (ii) they provide the project for the 

largest coalition such that the willingness to pay of each meInber of the coalition is larger 

than or equal to his cost sh紅e. We characterize the largest unanimous mechanisms as the 

set of strategy-proof, individually rational , demand monotonic , and access independent 

mechanisms. 

Comparing the two classes of mechanisms , we conclude that admitting partial 

exclusion always improves efficiency , that is, it is always possible to construct some 

largest unanimous mechanism (for an exc1udable public project) which Pareto dominates 

a given unanimous mechanism (for a non-excludable public project). Moreover, the 

i紅gestunanimous mechanisms 紅e very attractive for their simplicity: (i) each agent ha 

only to report his willingness to pay; and (ii) there exists a simple algorithm to calculate 

the final allocation. 

Before closing this section , we discuss the relationship between our results and the 

work of Deb and Razzolini (l 999a, 1999b). For the provision of an excludable public 
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project, they focus on a particular member of the 1紅gest unanimous mechanisms (which 

they call "the auction like mechanism" or "the serial cost sharing"), which divides the cost 

of the project among the consumers of the project equally. They characterize thi 

mechanism by strategy-proofness, individual rationality , sylmmetry, and some auxiliary 

axioms (日irectional non-bossiness" and "free entry" (1 999a); 、ppersemicontinuity" and 

"voluntariness" (1999b)). The comparison of their and our characterization results m叫匂S

it clear that symmetry substantially n紅rows down the class of strategy-proof 

mechanisms. 

This chapter is organized as follows. In Section 4.2, we introduce notation and 

definitions. In Section 4.3 , we characterize the set of strategy-proof, individually rational , 

and citizen sovereign mechanisms for a non-excludable public project. In Section 4 .4, we 

characterize the set of strategy-proof, individually rational , demand monotonic, and 

access independent mechanisms for an excludable public project. In Section 4.5 , we 

discuss the validity of admitting p紅tial exclusion. 

4.2. Notation and Definitions 

Let N={ 1,…,n} (n2::2) be the set of agents. We consider the provision of a fixed sized 

public project, that is , there is one indivisible unit of a non-ri valrous good yε{0 ， 1}. The 

cost function c(y) is normalized in such a way that c(O)=O and c(1)=1. We assume that 

the public project is non-excludable in Section 4.3 and excludable in Section 4.4. 

The consumption space of agent iεN is the set ofpairs (Xj ,yj)ERx{O , l }, where Xj 

denotes his cost share and yj denotes his consumption of the project. The set of feasible 

allocations is Z={ Z=(Xl ,. • • ,xn;Yl ,.. • ,Yn)E R nx {O , 1 } nl ヱ xi==c(m停 yi) and Xj三o for all 

iεN}. The set of feasible cost shares is �.= {s=(s 1, • . • ， Sn)ε Rnl L si=l and Sj三o for all 

iεN} . 

Each agent iεN has a preference on his consumption space. We assume that 

preferences can be represented by a utility function Uj(Xi , yi). Each preference Uj is 

continuous and strictly decreasing in xi , strictly increasing in yi , and satisfies the 

following property: for all xiεR， there exist XiεR and 支iεRsuch that Uj(支j ，1 )=Uj(Xj ,O) 
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and Uj(支j ， 0)=Uj(Xj ， 1). Let U be the set of all such preferences. For each U jε U‘ let 入(U j)

denote agent i's willingness to pay at the status quo , that is , U j(入 (U j) ，1 )=U j(O,O). 13 A list 

U=(Ul , '" ，U n)εU n is called a preference profile. 

Let 2N be the set of all coalitions in N, where のε2N . For each coalition Cε2N\{ の， N} ，

let -C represent coalition N¥C. Let (uc, u-c) denote the preference profile whose i-th 

component is 百i if iεC and Uj if i~ C. For simplicity of notation , we write (百{i} , U_ { i}) a 

(u j , U_ j) and (u { iル U-{i ，j}) as (U j,j ,U_j,-j)' 

A mechanism is a function f: Un• Z, which associates a feasible allocation with each 

preference profile. Given a mechanism f and a preference profile u, we write 

f(U)=(XJ(U) , . ..,Xn(U);Yl(U) ,.. .,Yn(u)) . We use the notation x(u)=(x](u) , ...,xn(U)) , 

y(U)=(Yl(U) ,...,Yn(u)) , and fj(u)=(Xj(u)ぷ(U)). For simplicity of notation , we abbreviate 

y(U)=(O,…,0) as y(u)=O and y(u)=( 1 ，.・.， 1) as y(u)=l 

For each UεUn ， let lf(u)={iεNI Yi(U)= 1} represent the set of users of the project. We 

call agents in lf(u) the included agents , and agents in N¥lf(u) the excluded agents. 

We introduce three central axioms on mechanisms. 

Definition 4.1. A mechanism f satisfies strαtegy-proo_斤:leSS iff for all UεUn ， iεN ， 

and UiεU ， uj(fj(u))三Uj(fj(Uj ，U_j)). 

Definition 4.2. A mechanism f satisfies individual rationality iff for all UεU n and 

iεN ， uj(fj(u))三Uj(O ， O) .

Definition 4.3. A mechanism f satisfies demand monotonicity iff for all u，証εUn ，

(i) [入(百j)注入(Uj) for all iεN コ lf(百)コIf(U)] ， and 

(ii) [入(Uj)芝川町) for all iElf(U) and 入(百j)三川町) for all j~ If(U) 二今 If(u)=If(百)]. 

Strategy-proofness requires that truthful revelation of preferences should be a 

13 The assumption that u1 is strictly increasing in yi implies th at 入 (Ui)>O .
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dominant strategy for each agent. Individual rationality requires that all agents should end 

up no worse off than at the status quo. Demand monotonicity requires that (i) the set of 

included agents should not shrink when the demand of no agent decreases , and that (ii) 

the set of included agents should be unchanged when the delmand of no included agent 

decreases and the demand of no excluded agent increases.14 

We introduce two axioms concerning access to the project. 

Definition 4.4. A mechanism f satisfies citizen soνereignty iff there exist u，百εu n

such that y(u)=O and y(u)= 1. 

Definition 4.5. A mechanism f satisfies access independence iff for each iεN ， there 

exist Ui ，百1εU such that for all U-iεu n - 1 ， Yi(Uj , U_j)=O and Yi(Uj , u・i)= 1.

Citizen sovereignty requires that society should have access to either level of the 

project. Access independence requires that each agent should have access to either level of 

the project regardless of other agents' preferences. It is clear that access independence is 

stronger than citizen sovereignty. 

We use Pareto dominance for welfare comparisons between two mechanisms. A 

mechanism f Pareto dominates another mechanism f iff (i) for all uεu n and iεN ， 

ui(fi(u))三Uj(fi(U)) ， and (ii) for some uεun and iεN ， uj(fi(u))>Ui(fi(u)). A mechanism f 

weakly Pαreto dominates another mechanism f iff (i) holds. 

4.3. Strategy-Proof Mechanisms for a Non-Excludable Public Project 

In this section we consider mechanisms for the provision of a non-excludable public 

project satisfying the following non-excludability assumption. 

14 When we only consider the set of quasi-line訂 preferences ， the premise of the second part of demand 

monotonicity is the same as that of Maskin monotonicity (Maskin , 1999), but the conclusion of the 

econd part of demand monotonicity is strictly weaker than that of Maskin monotonicity. 
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Assumption 4.1. (Non-Excludability). Given a mechanism f, either y(u)=O or 

y(u)=1 for each uεun . 

Definition 4.6. Gi ven sε~ ， a mechanism f is constant cost sharing relative to s iff 

for all UE Un, [y(u)=O コ x(U)=(O，…，0)] and [y(u)=1 コ x(u)=s].

A mechanism is constant cost shαring iff for some sε ム fis constant cost sharing 

relative to s. Constant cost sharing pre-speci自己s a feasible cost share for society. If a 

mechanism is constant cost sharing, then it is very far from being Pareto efficient. 

However, Serizawa (1996) proves that constant cost sharing is a necessary condition for 

strategy-proofness in the two-agent case. 

Theorem 4.1. (Serizawa, 1996). 1f N= (1 ,2), and a mechanism f satisfies strategy-

proofness, then f is constant cost sharing. 

We prove that constant cost sharing is a necess但γcondit:ion for strategy-proofness 

and individual rationality in the n-agent case. 

Theorem 4.2. 1f a mechanism f satisfies strategy-proofness and indiìノidual

rationality, then f is consωnt cost sharing. 

Proof. The argument consists of two steps. 

Step 1. For αlluεUn， iεN， and 瓦iε U， ify(u)=l and Â(Ui)<λ同i)， then f( U)=f(iii, U-i). 

Suppose that f j(u)t:f iCuj , U_j). Since y(江i ，U_j)= 1 contradicts strategy-proofness, 

fj (百j ， U_j)=(O,O). By individual rationality , Xj(u)三入(Uj). Since Xj(u)<入(百j) , 

百j(Xj(U) ，1 )>Uj(O,O) , and thus 百i(fj(u))>百j(fj(Uj ， U_j)) , which contradicts strategy-

proofness. Therefore , fj(u)=fj(uj , U_j). Suppose that x(u)t:x(百j ，U_j). Then , there exist 

j ， kεN U,kt: i) such that Xj(u)>Xj(Uj , U_j) and Xk(U)<Xk(Uj , U_j). Let Uj' UkεU be such that 

Xj(U)>入(Uj)>Xj(Uj ，U_j) and Xk(U)<入(Uk)<Xk(百j ，U_j). By strategy-proofness and individual 

rationality , y(Uj , U・j)=O and Y(Uj ,b U- i.-k)=O , and thus x(Uj' U_j)=(O ,…,0) and 



X(Ui .k, U-i ，・ k)=(O，…，0). By strategy-proofness , Y(Ub U・k)=1 and Y(Ui 小 U ・し _j)=1. Let 

Si=Xi(Ub U-k) 加d Ei=Xi(EiJ ， 11 ・i. -j). By strategy-proofness , ui(fi(Ub U-k))泊i(fi(Ui ‘ k ，U-i.-k)) 

叩d ui(fi (百j ， U_j))三ui(fi(Ui小 U_j ， _j)) ， and thus Uj(Sj , 1)三Uj(O ， O)之ulSj ，1). By strategy-

proofness，百i(fi (百 j .j , U -j, _ j) )三瓦j(fi (百j ， Uづ)) and 百j(fj(百i ， k ， U-i ， -k))三百j(fi(Ub U-k)) , and thu 

ulSj ， l)三百j(O ， O)三百j(sj ， l). Since Uj and Uj 紅e strictly decreasing in agent i's cost share ‘ it 

follows that Sj=Sj ・ This implies that 入(Uj)=入(Ui) ， which is a contradiction. 

Step 2. f is constant cost sharing. 

Suppose that there exist u，五εun such that y(u)=y(u)= 1 and x(u):;t=x(百). Let ﾛl εUbe 

such that 入(Û1)>入(U1) and 入(立1)>λ(玩1). By Step 1, f(u)=f(ÍÌ1,u_l) and f(u)=f(立 1 ， U-l). 

Applying this argument to the remaining agents successively, we have that 

f(û)=f(u)学f(u)=f(û) for some ûεUn ， which is a contradiction. Q.E.D. 

These theorems 訂e tight. Example 4.1 shows that strategy-proofness is necessary for 

Theorems 4.1 and 4.2. Example 4.2 shows that individual rationality is indispensable for 

Theorem 4.2. 

Example 4.1. Let n=2 and a mechanism f be defined by 

f(u)=( 入(Ul) ，入(U2_)_; 1) for all uεUn such that 入(U1)+入(U2)三 1 ， and f(R)=(O ,O;O) 
入(Ul)+入(U2) 入(Ul)+入(U2)

otherwise. Then, f satisfies individual rationality , but is not constant cost sharing. 

Example 4.2. Let n=3 and a mechanism f be defined by f(u)=(上，~，0;1) for all uεu n 
3'3 

such that 入(U3)三 1 ， and f(u)=(~，上，0;1) otherwise. Then , f sat:isfies strategy-proofness , but 
3'3 

is not constant cost sharing. 

Next, we examine when the project is provided. Given UE:: Un and sεム let

A(u ， s之)={iεNI 入(Uj)三Sj} denote the set of agents whose willingness to pαY is larger than 

or equal to their component of s, and A(u ， s ，>)={iεNI 入(Uj)>Sj} denote the set of agents 

whose willingness to pay is strictly larger than their component of s. 
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Definition 4.7. Given sεð ， a mechanism f respects the unαnll111り) relative to s iff (i) 

f is constant cost sharing relative to s, (ii) for all Uεun ， [A(u ， s之):;tN コ y(U)=O] ， and (iii) 

for all Uεun ， [A(u ， s ，三)=N コ y(u)=l]. Given sεム amechanism f respects the weak 

unanlmlか relative to s i旺 (i) and (ii) hold, and (iii)' for all Uεu n ， [A(u ， s ，>)=N コ

y(u)=l]. 

Unanimity relative to s says that the project is provided if and only if all agents 

approve the provision of the project coupled with the cost share s. We prove that the 

unanimous mechanisms are on the Pareto frontier of the set of strategy-proof, 

individually rational , and citizen sovereign mechanisms. 

Theorem 4.3. (i) If α mechanism f respects the unanimity relative ω some sε .1， then 

f satisfies strategy-proφless， individual rationality, and citizen sovereignty. 

(ii) σα mechanism f satiポes strategy-proofness, individual rationality, and citizen 

soνereignty， then f is weakly Pareto dominated by α unanimous mechanism f relative to 

some sε .1. 

Proof. (i) We show that f satisfies strategy司proofness. Let uεun ， iεN ， and UjεU. We 

consider the following three cases. If iεA(u ， s 之)， then fj(u)==(O ,O) and Uj(O ,O)>Uj(Sj , 1). 

If iεA(u ， s ，三)=N ， then fj(u)=(sj , l) and uj(sj ， l)三Uj(O ， O). If ﾌE= A(u ， s之):;tN ， then there 

exists jE N U釘) such that je: A(u ， s 之)， and thus fj(u)=fj(uj , U_j)=(O ,O). It follows that 

uj(fj(u))三Uj(fj(Uj ，U_j)) in all cases. It is clear that f satisfies individual rationality and 

clt1zen soverelgnty. 

(ii) The 紅gumentconsists of two steps. 

Step 1. f respects the weak unanimity relative to some sε L1. 

By Theorem 4.2, f is constant cost sharing relative to some sεð. Suppose first that for 

omeuεun ， A(u ， s ，三 ):;tN and y(u)= 1. Let ie: A(u ， s 之). It is clear that f j(u)=(sj , l) and 

Uj(O ,O)>uj(sj , l) , which contradicts individual rationality. Suppose next that for some 

uεun ， A(u ,s,> )=N and y(u)=O. By citizen sovereignty , there exists Uεun such that 

y(U)= 1. Since f is constant cost sharing relative to s, f何)=(s~1). By strategy-proofn邸内
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f) (u 1, U-l)=(S) , 1). Since f is constant cost sharing relative to s, f(u 1, U-l )=(sJ). If the 

remaining agents change preferences from Uj to Uj successively , we have that f(u)=(s; 1), 

which is a contradiction. 

Step 2. f is weakly Pareto dominated by the unanimous mechaηism f relatiνe to s. 

By Step 1, f(u)=f(u) for all uεun such that A(u ， s之):;tN or A(u ,s,>)=N. Let uεun be 

such that A(u ， s之)=N and A(u ,s,> ):;tN. 1t follows that either f(u)=f(u)=(s; 1) or 

[f(u)=(s; 1) and f(u)=(O ,...,O;O)]. Since Uj(Sj , 1)三Uj(O ，O) for all iεN ， f weakly Pareto 

dominates f. Q.E.D. 

4.4. Strategy-Proof Mechanisms for an Excludable Public Project 

1n this section we consider mechanisms for the provision of an excludable public project. 

We introduce some definitions. A cost sharing rule is a func�n π: 2N\{ の}→ll ， which 

associates a feasible cost share with each possible set of users of the project. For each 

Cε2N\{ の}， let n:(C)=(πl(C) ，・..九l(C)) ， Let TI denote the set of cost sharing rules. 

Definition 4.8. Gi ven πεTI ， a mechanism f is semiconst，αnt cost sharing relative to π 

iff for all uεun ， [1f(u)=の二今 x(u)=(O ，...， O)] and [1f(U)=C (:;t②)コ x(u)=π(C)].

A mechanism f is semiconstant cost sharing iff for some 1tεTI ， f is semiconstant cost 

sharing relative toπ. Semiconstant cost sharing pre-specifies a feasible cost share for 

each possible set of users of the project. The number of possible feasible cost shares is 

equal to the number of possible coalitions. If a mechanism is semiconstant cost sharing , 

then it divides the cost of the project according to a finite set of feasible cost shares , and 

thus it fails to achieve Pareto efficiency. This structure is quite similar to that of 

mechanisms in Barbera and Jackson (1995). 

We prove that semiconstant cost sh紅ingis a necessary condition for strategyｭ

proofness in the two-agent case. 

Theorem 4.4. If N={1 ,2), and a mechanismf satiザïes strategy-proofness, then f is 



semiconstant cost sharing. 

Proof. Suppose that there exist u，百εun such that If(U)=If(百) and x(u):;tx(u). Consider 

the following two cases. 

Case 1. If(U)=If(U)=N. 

Let f(U)=(Sl ,S2 ;1, 1) and f(U)=(Sl ,S2;1 ,1). Without loss of generality , assume that 

S I>Sl and S2<S2. Let Ûl , Û2εU be such that 入(Ûj)>Sj and 入(Û2)>S2. By strategy-

proofness , f 1 (五 I ， U2)=(Sl ， 1) and f1 (立 1 ， U2)=(言 1 ， 1) ， and thus by strategy-proofness , 

f(Ûl ,U2)=(Sj ,S2;1 ,0) and f(Ûl ,U2)=(Sl ,S2;1 ,1). By strategy-proofness , f2(Ul ,Û2)=(S2 , 1) 

and f2(Ul ,Û2)=(S2 , 1) , and thus by strategy-proofness , f(Uj ,tì2)=(Sj ,S2;1 ,1) and 

f(Ul ，む)=(S1, S2;0, 1). Since f(u 1, ﾛ2)=(S 1, S2; 1,1) and 入(Ûj)>s 1, by strategy-proofness , 

f j(Ûj ,Û2)=(Sl ,1). Since f(Ûl ， U2)=(互い s2;1 ， 1) and 入(立2)>S2 ， by strategy-proofness , 

f2(� 1, Û2)=(S2 ,1). It follows from Sj >Sj that s 1 +S2>S) +s2=1 , which is a contradiction. 

Case 2. If(U)=If(U)= {i}. 

Without loss of generality , let i=l. Let f(U)=(S1 ,s2;1 ,0) and f(百)=(Sl ， S2;1 ， 0). Without 

loss of generality , assume that s j >言1 and S2<S2. Let ÛjεU be such that 入(立 1)>Sj ・ By

Case 1, f(Ûl ,U2)=(Sl ,S2;1 ,0). Let S2 , s2ER be such that U2(S2 , 1)=U2(S2 ,0) and 

面2(S2 ，1 )=U2(S2 ,0). Let Û2εU be such that Û2(S2-ε， 1)=む(S2 ，0) and Û2(S2-8 , 1)=む(S2 ， 0)

for someε， 8>0. By strategy-proofness , f2(Ul , Û2)=(S2 ,0). Since S2>S2三0 ，

f(百)， Û2)=(互い s2;1 ，0). By strategy-proofness , f)(Ûl ,Û2)=(Sl ,1) and f2 (古 1 ， Û2)=(S2 ,0). It 

follows from Sl>Sl thatsl+s2<Sl+S2=1 , which is a contradiction. Q.E.D. 

We prove that semiconstant cost sharing is a necessarγcondition for strategy-

proofness , individual rationality , and demand monotonicity in the n-agent case. 

τhωrem 4.5. If α mechanism f sαtisfies strαtegy-proofness， individual rationality, 

and demand monotonicity, then f is semiconstant cost sharing. 15 

15 It follows immediately from this theorem that ザ a mechanism f satisfies strategy-proofness, individual 

rationality, denzand monotoniciη， and syl7l nzetη， then f is senziconstant cost sharing relative to π乍刀 ，

","!here for each Cε 2N\(の} ， πNC)=上forall iεC， and rcf(C)=OforalljεC 
ICI 
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Proof. The argument consists of three steps. 

Step 1. For all uεUn， iεN， and 五iε U， if yJu}=l and Â(Ui}<λ(ui) ， then f(u}=/{而i，lLiY . 

By demand monotonicity , If(U)=lf(Uj , U_j). Suppose that x(u):;tx(Uj , U_j). By strategyｭ

proofness , Xj(u)=Xj(Uj , U_j). Then , there exists jεN (j釘) such that 0壬Xj(U)<Xj(百j ，U-i). Thi 

fact and individual rationality imply that jE If(亘j ， U_j) , and thus jεIf(U). Let UjεU be such 

that Xj(u)く入(Uj)<Xj(百j ，U-i). By strategy-proofness , fj(uj , U_j)=(Xj(u) , 1). By strategy-

proofness and individual rationality , fj(Ui ,j' U_i ,_j)=(O,O). Since 入(Ui)<入(Ui) ， this 

contradicts demand monotonicity. 

Step 2. For all uεUn， iεN， αnd 五iε U， ifyJu}=O and Â(Ui}>λほi}， thenf(u}=f(玩i，U-i}' 

The 紅gumentis very similar to that of Step 1. 

Step 3. f is semiconstant cost sharing. 

Suppose that there exist u，面εUn such that If(U)=lf(百) andl x(u):;tx(u). Let � 1 εUbe 

such that 入(Û1)>入(U1) and 入(古1)>入(瓦1)if 1εIf(U)=lf(玩)， and 入(立1)<入(U1) and 

λ(古1)<入(U1) otherwise. By Steps 1 and 2, f(u)=f(立 1 ，U-1) and f(u)=f(立 1 ，玩 1)' Applying 

this 紅gumentto the remaining agents successively, we have that f(立)=f(u ):;tf(玩)=f(û) for 

some GεUn ， which is a contradiction. Q.E.D. 

These theorems are tight. Example 4.1 shows that strategy-proofness is necessary for 

Theorems 4.4 and 4.5. Example 4.2 shows that individual rationality is necessary for 

Theorem 4.5. The next example shows that demand monotonicity is indispensable for 

Theorem 4.5. 

Example 4.3. Let n=3 and a mechanism f be defined by 

(i) f(u)=(~， ~，O ・ 1 ， 1 ，0) for all UE Un such that [入(Ul)>land 入(U2)~~] and 入(U3)ミ 1 ，3 '3 ，~，~，~，~ / ~~~ -~~ -~ ~ ~ -_&& _&&_-L'-'-1/-3 -~&- '-'-L/-3 

(ii) f(u)=(O ,O,O;O,O,O) for all UεUn such that [λ(Ul)<上 or 入(U2)<~] and 入(U3)三 1 , 
3 

(iii) f(u)=(~， ~，O ・ 1 ， 1 ， 0) for all Uεun such that [入(Ul)三2._and λ(U2)~~] and λ(u3)<1 ， and 
3'3'~'~'~'~ / ~-- ----~ - ----------L'-'-1/-3 ----'-'-":'/-3 

(iv) f(u)=(O ,O,O;O ,O,O) for all uεun such that [入(Ul)<Z or 入(U2)くよ] and 入(U3)<1. 
3 

Then, f satisfies strategy-proofness and individua1 rationality, but is not semiconstant cost 

haring. 
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Next , we examine when the project is provided and who are the users of the project. 

Given UεUrl ， πε I1， and Cε2N\{ ø }, let A(u ，1t: (C)之)={iεCI 入(Uj)三1t: j(C)} denote the set 

of αgents in coαlition C whose willingness to pα:y is lαrger thα:n or equαl to their cost shαre 

specified by π， and A(u ，π(C) ，>)={iεCI 入(Ui)>πi(C)} denote the set of agents in coalitiol1 

C whose willingness to pα:y is strictly lαrger thαn their cost shαre specified by π. 

Lemma 4.1. If α mechanism f satisfies strategy-proofness, individual rationality, 

demand monotonicity， αnd access independence, then f is semiconstant cost sharing 

relative ω some πεrr ， αndforall uε un and Cε 2N\{Ø} , 

(i) [A(u， n(C) ，三炉C=今 fr(u炉C]， αnd

(ii) [A(u， n(C)， >)=C 二今 fr(u)-:::;)Cj.

Proof. By Theorem 4.5 , f is semiconstant cost sharing relative to someπε I1. 

(i) Suppose that there exist uεun and Cε2N\{ ②} such that A( u ，π(C)之):;tC and If(U)=C. 

There exists some iεC such that i~ A(u ，1t: (C)之) and fi(u)=(1t: j(C) , 1) , which contradicts 

individual rationality. 

(ii) By access independence, there exists uεun such that If(百 )=C. Let iεC. Suppose first 

that 入(Ui)注入(uï). By demand monotonicity , If(百)=If(ui ，玩j). Suppose next that 

入(Ui)<À(Ui). Since fi(U)=(πj(C) ， l) and 入(Ui)>πj(C) ， by strategy-proofness , 

f j(Ui ,U_i)=(1t: i(C) , l). Since iElf(uj ,u_i) and 入(Ui)<入(Uj) ， by demand monotonicity , 

If(U)=If(Uj , U_j). Hence, If(Uj , U_i)=C in both cases. Applying this argument to all iεC 

successively, we have that If(uc,u-c)=C. Let C=Cu{i~CI 入(Ui)<入(百i)}' By demand 

monotonicity, If(uc', u_c')=C. Since 入(Uj)注入(Ui) for all i~ C , by demand monotonicity , 

If(U)コC. Q.E.D. 

We now introduce two additional conditions on cost sharing rules. A cost sharing rule 

πis user monotonic i百 for all C , Cε2N\{ の} such that CコC ， πi(C)三1t: j(C) for all iεC.A 

cost sharing rule πis user liable iff for all Cε2N\{ の}， 1t:i (C)>� for all iεC andπj(C)=ü 

for all j~ C. User monotonicity requires that the share of the cost of the included agent 
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should not increase when the set of included agents expands.16 U ser liability requires that 

the included agents should pay something and the excluded agents should pay nothing.17 

Let n denote the set of user monotonic and user liable cost sharing rules. We show that 

user monotonicity and user liability 訂enecessary conditions for strategy-proof, 

individually rational , demand monotonic, and access independent mechanisms. 

Lemma 4.2. {σf α mη'lechα仰nl臼smη'l fsaαti毛析f戸zes straαtegy-proofnれ'less， indilν川ノJidωuαal raαtionαalμitηy心
' 

demand monoωnicity， and access independence, then f is sefniconstαnt cost sharing 

* 
relαtive to some user monotonic and user liable cost sharing rule πε 刀.

Proof. By Theorem 4.5 , f is serniconstant cost sharing relative to someπεn. First, 

we show thatπis user monotonic. Suppose that there exist C, Cε2N\{ ②} such that Cコ亡

and 1tj(C)>1tj(C) for some jεC. By access independence , there exists uεU n such that 

If(u)=C. For all iεC， let 百iεUbe such that 入(百j)三入(Uj) and 入(百j)>πj(C). Let u=(uc , u-c). 

By demand monotonicity , If(u)=C. Hence , ~町j(何U)=(ο伏7π州t

π州jバ(♂向C)>沈入(印G向匂j)>河πj(♂め亡。). S臼ln附C印eAκ((向G向いj，バ，u_百江-j) ，スπ(めε。)，>川，ム刈>刈)=Cξう， b句y Lemma 4.1 , If爪(瓜向G向J'瓦百江-j炉)~コC. Hence , 

jεIf(立j ，u_j). By strategy-proofness , fj(立j ，百ォ )=(πj(C) ， 1), which contradicts individual 

rationality . 

Next, we show thatπis user liable. Let Cε2N\{ の}. By access independence, there 

exists uεUn such that If(u)=C. By individual rationality , 1tj(C)=Xj(u)=O for all i~C. 

Suppose thatπj (N)=O for some jεN. By access independence, there exists uεUn such 

that If(u)=N¥{j}. For all iεN\ {j }, let UjεU be such thatλ(百j)三入(Uj) and 入(Uj)>πj(N). By 

demand monotonicity, If( Uj' U_j)=N¥ {j }. Since λ(Uj)>1tj(N)=ü ， A((uj , U_j) ，π(N) ，>)=N. By 

Lemma 4.1 , If(uj , u_j)=N, which is a contradiction. Hence, 1cj(N)>O for all iεN. Since π 

is user monotonic , 1t j(C)~1t j(N)>O for all Cε2N\{ の} and iεC. Q.E.D. 

16 The idea of user monotonicity is much the same as that of "population monotonicity" introduced under 

a different name by Thomson (l 983a, 1983b) in the context ofbargaining. 

17 The notion of user liability is technically the same as that of "strong individual rationality" introduced 

by Roth (1977) in the context of bargaining. However, the meaning is somewhat different since we 

consider here the cost sharing problem. 
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Next, we identify the largest coalition whose members at a given preference profile 

approve the provision of the project coupled with the pre-specified cost sharing rule. A 

coalition Cε2N\{ の} is the largest unanimous coalition at uε []fl relative ωπεI7* iff(i) 

A(u ，π(C)之)=C ， and (ii) A(u，1t(亡)之)7:C for all Cε2N\{ の} such that CコC and C7:C. The 

largest unanimous coalition is unique if it exists. To check this , suppose that there exist 

two largest unanimous coalitions C and C at uεU n relati ve toπεrr . N otice that CctC and 

CctC. Since πis user monotonic , 1t j(C)三πj(CuC) for all iεC and 1t i(C)~1ti(CUC) for all 

iεC. Since A(u，π(C)之)=C and A(u，1t (C) 之)=C，入(Ui)三πj(CuC) for all iεCuC. Hence , 

A(u ，π(CuC) 之)=Cし，C ， which is a contradiction. 

Definition 4.9. Given πεrr , a mechanism f respects the largest unan�ity relative 

to πiff (i) f is semiconstant cost sharing relative toπ ， (ii) for all uεun ， if there is no 

largest unanimous coalition at u relative toπ ， then If(U)=の， and (iii) for all uεun ， if C is 

the largest unanimous coalition at u relative toπ ， then If(U)=C. Given πε 日， a 

mechanism f respects the weakly largest unanimity relative ωπi百 (i) and (ii) hold , and 

(�)' for all uεu n ， if C is the largest unanimous coalition at u relative toπ ， then If(u)cC 

and [A(u ，π(C)ム)=C コ If(u)=C]. 

Largest unanimity relative toπsays that the project is provided for the largest coalition 

whose members approve the provision of the project coupled with the cost share specified 

by π ， and the project is not provided if no such coalition exists. The largest unanimous 

mechanisms 紅e simple in two respects: (i) they need little information, that is , each agent 

has only to report a positive real number 入(Ui); and (ii) there exists a simple algorithm to 

implement them. We prove that the largest unanimous mechanisms むe on the Pareto 

frontier of the set of strategy-proof, individually rational , delnand monotonic , and access 

independent mechanisms.1 

18 Deb and Razzolini (l 999a, 1999b) focus on the largest unanimous mechanism relative toπ%日 *

otice that 百leorem 4.6 and Footnote 15 lead to an alternative characterization of that mechanism 
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Theorem 4.6. (i) lfα mechαnism f respects the largest unanimity relative to S017le 

πε刀 ， then f satisfies strategy-proofness, indiνidual rationality, demand mono toniciη， 

αnd access independence. 

(ii) If a mechanismf satisfies strategy-proo_丹'leSS， indiνidual rationality, demand 

monotonicity, and access independence, then f is weakly Pareto dominated by a 1αrgest 

* unanimous mechanism f relative to some πε II. 

Proof. (i) First, we show that f satisfies strategy-proofness. Suppose that there exist 

uεun ， iεN ， and UjεU such that uj(fi(uj , U_j))>ui(fj(u)). Let C=If(U) and C=IfCUj , U-i). Let 

iεC and iεC. Since πis user monotonic, CctC. Since πis user monotonic , 

A(u ，π(C)之)=C and A((uj , U-i) ，n: (C) 之)=C imply that A(u ，π(CuC) 之)=CuC. This 

contradicts the fact that C is the largest unanimous coalition at u relative toπ. Similarly, 

the case of i(l C and iE C leads to a contradiction. Let iεC and i(lC. Since A(u ， n: (C) ，三)=C ，

Uj(πj(C) ， l)三Uj(O ， O). Hence , uj(fj(u))三Uj(fj (百j ， U_j)) , which is a contradiction. Let i(l C and 

i(l C. Hence, fi(u)=fi(Ui , U_j)=(O,O) , which is a contradiction. 

Next, we show that f satisfies demand monotonicity. Let u，百εUn be such that 

入(百i)三入(Uj) for all iεN. Let C=If(U) and C=If(U). Since A(u，n: (C)之)=C implies that 

A(u， π(C)之)=C ， it follows that CcC. Let u, Uεun be such that 入(Uj)三入(Uj) for all iεIf(u) 

and 入(Uj)三入(Uj) for all j(l If(U). Let C=If(U) and C=If(U). Since A(u ，π(C)之)=C implies 

that A(u， π(C)之)=C ， it follows that CcC. Suppose that C:;tC. Since πis user monotonic , 

A(u ，n:(C)之)=C and A(U， π(C) 之)=C imply that A(u，π(C) 之)=C. Therefore , If(U)コC ，

which is a contradiction. 

It is clear that f satisfies individual rationality and access independence. 

(ii) The argument consists of two steps. 

Step 1. f respects the weakly largest unanimity relatiνe to some πε II. 

By Lemma 4.2 , f is semiconstant cost sharing relative to someπεn . Suppose that 

there is no largest unanimous coalition at u relative toπ. By Lemma 4.1 , If(U):;tC for all 

Cε2N\{ の}. Hence, I f(U )=の. Suppose that C is the largest unanimous coalition at u 

relative toπSince πis user monotonic , A(u ，π (C) 之):;tC for all Cε2N\{ の} such that 
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ξctC. By Lemma 4.1 , If(u):;tC for all Cε2N\{ の} such that C1CZC. Hence , If(u)cC. 

Suppose that C is the largest unanimous coalition at U relative toπ ， and A(u ，π (C ) ，> ) =C. 

By Lemma 4.1 , If(u)コC. Hence, If(u)=C. 

Step 2. f is weakly Pareto dominated by the largest unanimous mechanism f relative to 

π. 

Letuεu n be such that C is the largest unanimous coalition at u relative toπ ， and 

A(u ，π(C) ，> )学C. Therefore, If( u )=CコIf(u). Since πis user nlonotonic , uj(fj(u))三uj(fj(u))

for all iElf(u). Then , fi(u)=(πj(C) ， 1) and fi(u)=(O ,O) for all iE C¥If(U). Since 

A(u ，π(C)之)=C ， uj(fj(u))三uj(fj(u)) for all iε C\If(U). It is clear that f j{u)=fi(u)=(O ,O) for 

all i~ C. Hence, uj(fj(u))三uj(fj(u)) for all iεN. It follows froill the definitions of the 

mechanisms that f( u )=f( u) for all other uεun . Therefore, f weakly Pareto dominates f. 

Q.E.D. 

Finally, we explain how to find the largest unanimous coalition at uεU n relati ve to 

πε 日*.Suppose that A(u，Tt(C)之):;tCfor some Cε2N\{ の}. Let Cε2N\{ の} be such that 

CcC. Since πis user monotonic, ifπ(C) is rejected by some iεC， then π(C) is also 

rejected by iεC. Hence , A(u，1t (C) 之)=Cimplies that CcA(u ，π(C) 之). With this 

observation, we present the following algorithm which implements the largest unanimous 

mechanisms. 

Algorithm 4.1. The foliowing α19orithm implements the largest unanimous 

* mechα:nismfrelαtive to 冗モロ.

Step 0: Collect uモ un

Step 1: Let C=N. 

Step 2: 1f A(u， n(C) ，三)=C， then go to Step 5. 

Step 3: If A(u， n(C)，三)=の， then go to Step 6. 

Step 4: Let C=A( u, n( C)之)αndgo to Step 2. 

Step 5: Ir(u)=C αれd x(u)= π(C); end. 

Step 6: Ir(u)=の αnd x(u)=(O,… ,0); end. 
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4.5. Conclusion 

We characterized two classes of strategy-proof mechanisms for the provision of a fixed 

sized public p問ect. Partial excludability of the project led us to the set of largest 

unanimous mechanisms , whereas the non-excludability of the project led us to only the 

set of unanimous mechanisms. We compare these two classes of mechanisms , and justify 

P紅tial exclusion for the design of strategy-proof mechanisms. The following remark 

formally states that the largest unanimous mechanisms perfOIID better than the unanimous 

mechanisms from the point of view of efficiency. 

Remark 4.1. The largest unanimous mechαnism f relative to πε II Pareto dominates 

the unanimous mechanism f relati1ノeto sε ，1， where π(N)=s. 



Chapter 5 

Strategy-Proof Mechanisms in Public Good Economies 

5.1. Introduction 

When a society provides public goods, it has to determine the level of public goods to 

produce and how to di vide the costs among agents. A mechanism is a function that 

describes the decision-making based on preferences of agents. Moulin (1994) 

ch訂acterizes "the conservative equal-costs mechanism" by coalitional strategy-proofness , 

individual rationality , and symme町y in economies with one private good and one public 

good. His result relies on the assumption that public goods can be produced without fixed 

costs. It is more natural , however, to assume that we need positive fixed costs to produce 

public goods. In this chapter we incorporate the consideration of fixed costs , and present 

not only positive results but also negative results. These results shed light on the 

boundary between possibility results and impossibility results. 

We study mechanisms that satisfy two basic axioms. The first axiom is strategy-

proofness. A mechanism satisfies strategy-proofness if it is a dominant strategy for each 

agent to reveal preferences truthfully. Moulin's result is quite appealing, because it is well 

known that strategy-proofness is a strong requirement in geIlleral environments. The 

Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) establish that, under 

minor conditions , any strategy-proof mechanism must be dictatorial. Recently , Barbera 

and Peleg (1990) and Zhou (1991 a) prove similar powerful impossibility results. The 

second axiom is individual rationality. A mechanism satisfies individual rationality if all 

agents end up no worse off than at the status quo. No agent lacks an incentive to 

participate in individually rational mechanisms. We characterize the set of strategy-proof 

and individually rational mechanisms in more natural econorrnc environments. 

材料 This chapter is based on Ohseto (1997). 
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We introduce the notion of a cost sharing rule , which associates a cost sharing pattern 

with each level of public goods. Assuming that cost sharing rules are exogenously given 

we consider mechanisms that determine the level of public goods. One interpretation of 

this setting is that the revision of tax rules is less frequent than public decisions. 

Moreover, the set of cost sharing rules we deal with is restricted to a reasonable one. That 

is , we require that cost sh紅ingrules have the same properties (continuity , convexity , 

etc.) as the cost function. The equal cost sharing rule (the costs 紅e divided among agents 

equally) and proportional cost sh紅ingrules (the costs 紅e divided among agents 

according to a given proportion vector) are examples of this set. 

First, for the sake of comparison , we consider the case of a cost function with no fixed 

costs. In economies with one private good and one public good , we show that the 

minimal provision mechanism is the unique mechanism satisfying strategy-proofness, 

individual rationality, and the full-range property for any cost sharing rule. The full-range 

property is the condition that any feasible level of the public good is attainable by the 

mechanism. If we turn our attention to the case of one private good and several public 

goods , the result drastically changes. That is , it follows frorn a general result of Zhou 

(l991a) that there is no strategy-proof and individually rational mechanism. 

Next, we consider the case of a cost function with positive fixed costs. Since the cost 

function has fixed costs, the cost function has the non-convexity. Thus , any cost sharing 

rule must have the non-convexity. We present the set of strategy-proof and individually 

rational mechanisms by restricting the range of mechanisms to recover the convexity of 

the cost sharing rule. Those mechanisms are the variants of the rninimal provision 

mechanism. Conversely, if the restriction of the range is not sufficient to recover the 

convexity of the cost sharing rule, the non-convexity prevents us from constructing 

trategy-proof and individually rational mechanisms. These results imply that we must 

restrict the range of mechanisms if we want to design strategy-proof and individually 

rational mechanisms. In other words , the non-convexity of cost sharing rules lirnits the 

variety of our choices , and therefore it is less desirable in terms of efficiency. These 

results also describe the boundary between possibility results and impossibility results ・
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To conclude this section, we relate our results to recent work on the characterization of 

strategy-proof mechanisms in public good economies. Barbera and Jackson (1994) 

present a full characterization of strategy-proof mechanisms. Their work does not specify 

the cost function explicitly, and does not apply to the case of a cost function with positive 

fixed costs. Serizawa (1996) characterizes the set of strategy-proof, individually rational , 

and non-bossy mechanisms in economies with one private good and one public good. 

Since the economic interpretation of non-bossiness is not so clear, we do not invoke on 

this condition. Serizawa (1999) characterizes the set of strategy-proof, individually 

rational , and symrnetric mechanisms in economies with one private good and one public 

good. His characterization is a refinement of Moulin (1994) since it identifies the 

conservative equal-costs mechanism by using strategy-proofness instead of coalitional 

strategy-proofness. Applying his results to the case of non-convex cost functions leads to 

impossibility results , which are closely related to our impossibility results. 

This chapter is organized as follows. In Section 5.2 , we introduce notation and 

definitions. In Section 5.3 , we consider the case without fixed costs. 1n Section 5 .4, we 

study the case with fixed costs. In Section 5.5 , we sumrnarize the results. 

5.2. Notation and Definitions 

Let N={ 1,…,n} (n~2) be the set of agents. There are two types of goods x and y , where 

x is a (one-dimensional) private good and y=(Yl ,... ,Ym) is an m-dimensional vector of 

public goods. Public good i can be produced at any level yi in Yi=[O ,Yi max]. The capacity 

yi max is finite for all i. Let Y=I1 Yi ・ 19 A cost function of public goods is given by 

C(Yl ,... ,ym). We assume that c(O ,...,O)=O , C(Yl ,... ,ym) is continuous and convex on Y 

except at the origin (0,…,0) , and C(Yl ,... ,Ym) is strictly increasing in each yi. Let X=R+ 

denote the possible range of the costs. 

19 The assumption that the space of public goods is a Cartesian produclt is made for simp1icity. We only 

use the convexity of that space in Theorems 5.2 and 5.6. When agents have a limit of their cost share , the 

et of possible combinations of public goods has the convexity in this model , and thus theorems still 

hold in this case. 
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A consumption bundle of agent iεN is (y 1,... ，ym~Xi) ， whe:re Xi is agent i's share of the 

costs of producing y=(y J,... ,Ym) units of public goods. Each agent iεN has a preference 

on YxX , which can be represented by a utility function ui. For each agent , let U denote 

the set of possible preferences , which consists of all continuous , strictly convex and 

monotonic (non-decreasing in y J,... ,Ym and non-increasing in Xi) preferences on YxX. 

Given any uiεU and any set BcYxX, Argmax(ui~B) denotes the set of maximal 

consumption bundles of ui on B. If Argmax(ui~B) consists o:f a single consumption 

bundle , we use argmax(ui~B) to represent the unique member of this set. A list 

u=(u J , . • • ,Un)E Un is called a preference profile. Given 民Un ， i, jεN ， UiEU , and 向εU ，

we denote by (Ui , U-i) the preference profile obtained from u after the replacement of ui by 

Ui , and by (百i ， ûj , U-i ,-j) the preference profile obtained from U after the replacement of ui 

and Uj by 百i and 向

A cost sharingルnctionfor agent i is a function πi: Y→X， which associates agent i's 

share of the costs with each level of public goods. A list π=(π ぃ... ，πn) is called a cost 

sharing rule. 

Definition 5.1. For any cost function c , a cost sharing rule π=(1t i)i E N isfeωible iff 

for all YεY，エ πi(y)=C(y).
iEN 

For any cost function c, let I1c denote the set offeasible cost sharing rules. 
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(1) For any cost function c, the equal cost sharing rule ， πl(y)=-「 for

all iεN ， is feasible. 

(2) For any cost function c, any proportional cost sharing rule ， πi(y)=PiC(y) where Pi>O 

for all iεN and L Pi= 1, is feasible. 
iEN 

Given anyπε I1c ， the set of feasible allocations is Zπ={ (y:;x 1,... ,xn)1 yεY and Xi=1ti(y) 

for all iεN} ， and the set of feasible consumption bundles of agent i (that is , agent i's 

consumption space) is Zf= { (y~xi)1 yE Y and Xi=πi(y)} . 
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Given anyπεTIc ， a mechαnism is a function fIT: Un→Zπ， which associates a feasible 

allocation with each preference profile. The range of fIT is denoted by R(fIT). Let #R(fIT) 

and dim(R(fIT)) denote the cardinality and the dimension of the projection of R(fIT) on Y, 

respectively. Let ff be a function corresponding to fIT that associates a feasible 

consumption bundle of agent i with each preference profile. The range of ff is denoted by 

R(ff) . 

The notion of cost sharing rules is found in Mas-Colell (1980) and Mas-Colell and 

Silvestre (1989). They define the concept of cost share equilibrium as a unanimously 

preferred allocation suppo口edby some cost sharing rule. Although any cost share 

equilibrium is Pareto efficient, there is no cost share equilibrium on some fixed Zπfor 

most preference profiles. Hence, any mechanism fIT usually fails to achieve Pareto 

efficiency. 

We introduce two main axioms. 

Definition 5.2. A mechanism fIT satisfies strategy-proofness iff for all uεUn ， iεN ， 

and UjεU ， Uj(tf(u))三Uj(ff(Uj ，U_j)). 

Strategy-proofness states that truthful revelation of preferences is a dominant strategy 

for each agent. If a mechanism fIT does not satisfy strategy-proofness, then there exist 

some uεu n ， iεN ， and 百iεU such that Uj(tf(百j ， U_j))>Uj(tf(u)) , and therefore we say that 

agent i can manipulate fIT at u via 百j.

Definition 5.3. A mechanism fIT satisfies individual rationality iff for all uεu n and 

iεN ， uj(ff(u))三Uj(O ，...， O;O).

Individual rationality requires that all agents should end up no worse off than at the 

status quo. 

The following lemma is useful in the subsequent sections. 
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Lemma 5.1. (Barbera and Peleg , 1990; Zhou, 1991 a). Gルen any cost sharing rllle 

πε 口。すα mechanism flt satisfies strαtegy-proofness， (y; π(y))モ R(fπ)and 

(y，' πJy)) =αrgm以，(ui;R(fi
lt)) for αlli モ N， then flt( u)=(y; π(y)). 

Proof. Since (y;1t(y))εR( fIT), we can choose uεun such t.hat fIT(百)=(y ;π(y )). Suppose 

toward contradiction that fIT(u):;t (y;π(y)). Let zí=fIT(Ul ,.. .，Uj ， llj+l ，'"瓦n)for i=O,…,n. 

Then , zO=(y;π(y)) and zn:;t (y;π(y)). Hence , there exists j (l ~j三n) such that zi-l =(y ;π(y)) 

and zi :;t (y;π(y)). Therefore , agent j can manipulate fIT at (u 1,. .. ,Uj' Uj+ 1,... ,Un) via Uj. 

Q.E.D. 

5.3. The Minimal Provision Mechanism: The Case without Fixed Costs 

In this section we consider the case where the cost function is continuous , convex , 

strictly increasing, and c(O,...,O)=O. That is , the cost function has no fixed costs. We 

impose the following assumption on cost sharing rules , whic:h requires that cost sharing 

rules should have the same properties as the cost function. 

Assumption 5.1. Each cost sharing rule π=(1t j)jeN satisfies the following properties: 

each 1tj is continuous , convex , strictly increasing, and c(O,…,0)=0. 

Let I1c be the set of feasible cost shαring rules sαf々のJingAssumption 5.1. For any cost 

function c , the equal cost sharing rule and all other proportional cost sharing rules belong 

to I1c. 

5.3.1. The Case with One Public Good 

We consider economies with one private good x and one public good y. Since each cost 

sharing function πj is convex and each preference Uj is strictly convex , the maximal 

consumption bundle of Uj on Z~ is uniquely determined. Notice that given any cost 

sh紅ingrule π ， the useful information about each preference Uj reduces to its restriction on 

the consumption space Z~. Moreover, since there is a one to one and onto projection of 

Z~ on Y, we can regard the restricted preferences on Z~ as preferences on Y 
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For any n: ε TIc a如n凶d峠U , let (y幻山f〈引:(何川U町川lj

yγ*可川(何ωu川)=叫n y k u i ) 

Definition 5.4. The minimal pro\ノision mechanism fIT * associates (y * (u );π(y * (U))) 

with each Uεun .20 

Although we define the minimal provision mechanism in the form of direct revelation 

mechanisms, it works in a simple manner as follows. Each agent iεN has only to reveal 

his maximal c∞onsump伊戸tionbundle (σyガ山~ (卯u山川π爪i(σyガ山~ (何Ui))) 0ぱf1ωU坪1

chooses the minimum y訂:(1ωaωs the level 0ぱft出he pu山blicにcg伊O∞O吋d and divides the c∞osts amon時g 

agents according toπ. 

Lemma 5.2. For aηY cost sharing rule πε IIo the minimal provision mechanism fπ * 

sαtisfies strαtegy-proofness αnd individual rationality. 

Proof. Consider the res廿iction of UjE U on Zf. Let Uj denote the set of all preferences 

on Zf obtained by such restriction. Since each cost sharing fu削lonπj is convex and 

prefe印nce Ui is strictly convex, each preference in Ui is single peaked on Zf.21 Then , the 

usual argument on single peakedness proves that fπ * satisfies strategy-proofness (see 

Black (1 948) , Moulin (1980) , and Barbera and Jackson (1 994) , for details). Further, 

since 0三γ(u):~::S ~(Uj) for all UE Un and iE N , single peakedne:ss implies that 

Uj(O ;O)~Uj(y * (U); n: i(Y、1)))壬Uj(y ~ (吋;n: j(y ~ (Ui))). This show:s that fIT * satisfies indi vidual 

rationality. Q.E.D. 

We introduce the definition of the full-range property and characterize the set of 

20 The minimal provision mechanism chooses a cost share equilibrium for any uε u
n 

such that 

γ(u)=y~ (Ui) for al1 iεN 

21 A preference Ui is single peaked on zf iff y'<y"<yt (Ui) implies 
判~ . ... ... 

U I(y';π i(y'))<UI(y";πi(y"))<Ui(yi (U i)川(yi (Ui))) 加d yi (Ui)<y"<y' implies 

U i(Y~ (U i)九 (yt (Ui)))>Ui(y";π i(y"))>UI(y' ;7ti(Y')). 
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strategy-proof, individually rational mechanisms with the ful1-range property. 

Definition 5.5. A mechanism rc satisfies the full-range properηiff for all 

yε[O ，Ymax] ， there exists uεun such that rc(u)=(y;π(y)). 

Theorem 5.1. For any cost sharing rule たI10 the minimal proνision mechanis11l 

fπ * is the unique mechαnism satiめling strategy-proofness, individual rationality, and the 

full-range property. 

Proof. 1t follows from Lemma 5.2 that rc * satisfies strategy-proofness and individual 

rationality. It is clear that rc * satisfies the full-range property. We prove uniqueness. 

Suppose toward contradiction that there exists a mechanism rc other than rc 寓 that

satisfies the premises of the theorem. The allocations of rc and f1t * 紅e different at some 

uεun . We consider two possible cases. 

First, suppose that there exists Uεun such that f1t(u)=(yl ;:Tt(yl )), where yl <y、1) (see 

Figure 5.1). Without loss of generality , we can assume Y * (u)=y~(Ul)三沿い2)三 勾~(un)

by permuting indexes of agents. Then , it holds that y* (u)=y 1 (u l)::;t y~(Un) ， otherwise it 

follows from Lemma 5.1 that f1t( u )=(y * (u);π(y* (u))). Let j be the smallest index such t出ha叫t 

y *可、、(れu併I

Uk(匂y;ぶω(れ似UkυJよ);刀7πt町恥k以<(y叫;ぶω(れ何Ukωk))リ)=瓦両k以<(0伐;0め). Then, by the construction of 同 , f1t(Uj ,U_j)=(y2; π (y2)) , 

where y2Eε [O ，yイy幻j(ω何u町刷1有j

h加01凶d心s t出ha瓜t y2~壬勾Y1 , otherwise a勾ge叩ntりJ ca如nma釦nl中pu叫la蹴t匂e f1tπ a剖tu v吋ia 司 Similarly , 

f1t (Uj , Uj+ 1, U_j ,_[j+ 1州y3 ;n:(戸))， where y3E [O ,yj+l (Uj+l)] , 0伽wise indi vidual rationality 

is not satisfied for agent j+ 1. Hence, it holds that y3~y2 ， otherwise agent j+ 1 can 

manipulate f1t at (Uj' U_j) via Uj+l' Applying this argument to each agent k such that 

y * (u)均~(Uk) successively, we obtain f1t(Ul ，. . .， Uj_l ， Uj' 一. ,un)=(y;n:(Y)), where 

子三yl<y * (U). However, it follows from Lemma 5.1 that 

f1t(Ul , .・・，Uj_ ぃ百j ，. • .ぷn)=(y勺l); n: (y 本 (u))). This is a contradiction. 

Next, suppose that there exists uεun such that 0(u)=(y1 ;n:(y 1 )), where y勺l)<yl (see 

Figure 5.2). Without loss of gene凶ity ， we assume y* (u)=y;(ul)gd(U2)三壬y~(Un). Let 
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百lεUbe such that 紅gmax(百 1 ;Z~)=(y* (u);n 1 (y勺1))) ， and for some Y2ε(y不 (u)51) .

Ul(y2;π1 (y2))=u 1 (0;0). It follows from individual rationality for agent 1 that 

fIT(百]， U-l)=(γ;π(γ)) ， where y3ε[0 ，y2]. Choose y4 such that 

Ul(Y4;π) (γ))=ulGl;π) cY)))， if any. Ifthere is no such y4 , then any y3ε[0 ，y2] i 

strictly prefe汀ed to y 1 at u 1, and thus agent 1 can manipulate 0 at u via u). Hence, there 

exists such y4. Notice that for all yε(Y4 ， yl) ， Ul(y;πl(y))>Ul(yhπl(y4))=U)(yl;πl(Yl)). 

If y3ε(γ ， y2] ， then agent 1 can manipulate 0 at u via Ul ・ Then ， y3 must be in [0,y4]. 

Hence, it holds that y¥;y4 <y* (百 1 ，U-l). Appl ying the first argumen t to (五 1 ， u_))εU n leads 

to a contradiction. Q.E.D. 

Moulin (1994) studies mechanisms that determine both the level of public goods and 

the cost share. He characterizes the mechanism satisfying coalitional strategy-proofness , 

individual rationality , symmetry, and the full-range property. The proof of his theorem 

consists of two steps. First, he shows, from a result of Moulin (1993) , that any 

coalitional strategy-proof and symmetric mechanism divides the costs equally. Next, he 

shows , from a result of Barbera and J ackson (1994) improving upon Moulin (1 980) , that 

any mechanism satisfying his four axioms provides rninimal public goods. 

On the other hand, Theorem 5.1 applies to mechanisms that determine only the level of 

public goods , assuming that the cost sharing rule is exogenously given. However, we 

use only strategy-proofness, individual rationa1ity , and the full-range property. All the 

results in Sections 5.3 and 5.4 co打espond to Mou1in's second step. They can be 

extended to his type of results , because our class of cost sharing rules includes the equal 

cost sharing rule. 

In addition to strategy-proofness and individual rationality , the full-range property 

plays an important role in Theorem 5.1. Even if we drop the full-range property , a similar 

result still holds when we consider the set of mechanisms whose range contains the 

origin , and is closed and connected. However, the existence or the uniqueness of 

trategy-proof and individually rational mechanisms is strongly dependent on the range of 

mechanisms. Several range conditions 紅e discussed in Section 5.4. 
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5.3.2. The Case with Several Public Goods 

We consider econornies with one private good X and two or rnore public goods Y 1, • • • ,y m 

(m~2). 1n contrast to the case of one private good and one public good, we can derive the 

following negative result from a general result of Zhou (1991a). 

Theorem 5.2. For any cost sharing rule πε IIo there is no mechanism f7r satisfying 

strategy-proofness, indiνidual rationality, and dim( R(門店2. 22

Proof. Consider the restriction of UjεU on Zr. Let U j denote the set of all preferences 

on Zr obtained by such restriction. Let U denote the set of all continuous and strictly 

convex preferences on Y. For each vεU ， we can find some UjεUj such that Uj and v are 

the same preferences with respect to the public goods components since each cost sharing 

function πj is continuous, convex , and strictly increasing, and each preference Uj is 

continuous , strictly convex , and monotonic. Hence, U j includes the set of all continuous 

and strictly convex preferences with respect to the public goods components. 1n such an 

environment, a general result of Zhou (1991a) proves that strategy-proofness and 

dim(R( fIT) )三2 imply dictatorship.23 We show that dictatorship is inconsistent with 

indi vidual rationality. Suppose that agent iεN is the dictator. Let uεUn be such that 

紅gmax(uj;R(ff))=(Yl ，... ,Ym;Xj):;t(O,...,O;O) and argmax(uj;Zj)=(O ,...,O;O) for some j釘

A dictatorial mechanism fIT associates (y;π(y)) ， where y=(YI ,... ,ym) , with uεUn . 

1ndividual rationality is not satisfied for agent j because 

Uj(O ,... ,0; O)>Uj(fj(u) )=Uj(y;πj(y)). Q.E.D. 

5.4. Impossibility Results: The Case with Fixed Costs 

22 If the range of mechanisms is only one-dimension (that is , the range is a straight line through the 

origin with respect to Y) , the minimal provision mechanism is the unique mechanism satisfying strategyｭ

proofness , individual ratíonality , and the full-range property along the one-dimensionalline. 

23 A mechanism f is dictatorial iff there exists agent iεN ， who is cal1ed the dictator, such that for all 

uεun 
and ZiεR(tf) ， ul(tf(u))~UI(Zi). 
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In this section, we consider the case where the cost function lhas positive fixed costs ・

Each cost function c is represented by the form C=Cf+Cv, where Cf is the fixed cost 

function and CV is the variab1e cost function. We assume that cf(O ,...,O)=O , 

Cf(Yl ,... ,Ym)=C >0 if (Yl ,... ,Ym):;t(O ,…,0) , and CV is continuous , convex , strictly 

increasing , and CV(O,...,O)=O. No cost sharing ru1e considered in Section 5.3 is feasib1e 

in such a situation since it is not feasib1e sufficient1y near the origin. We deal with cost 

sharing r此s in which each cost sharing functionπj is represented byπj=π(+πi ， where 

πf is a fixed cost sharing function and πi is a variab1e cost 山ring function. We impose 

the following assumption on cost sharing rules. 

Assumption 5.2. Each cost sharing ru1e π=(7t j)jeN=(π(+πi)ie N satisfies the 

following properties: for each iεN ， πf(o ，...，O)=O ， πf(Yl ，... ，Ym)=ξi >0 if 

(y 1, • • • ,y m):;t (O ,…,0) , where エ ξi=C， and πi is continuous, convex , strict1y increasing , 
ieN 

and 1ぐ (0 ，…，0)=0.

Let TIc be the set of feasible cost sharing rules sati宅fyingAssumption 5.2. For any cost 

function c , the equa1 cost sharing ru1e and all other proportiona1 cost sharing rules belong 

to TIc. Notice that any cost sharing ru1eπεTIc divides fixed costs among every agent, 

namely , every agent has to pay the share of fixed costs Ci if public goods are provided. 

Thus , each cost sharing function πi is not convex ne紅 the origin, and πi is not 

continuous at the origin. 

5.4.1. The Case with One Public Good 

We consider economies with one private good x and one public good y. Since each agent 

has positive fixed cost share, each cost sharing function 7tj is neither continuous nor 

convex on the who1e domain. The restriction of any UjεU on Z~ is no 10nger single 

peaked. Hence, the minimal provision mechanism does not work as in the case without 

fixed costs. However, if we restrict the range of mechanisms properly , the minimal 

provision mechanism may satisfy strategy-proofness and individual rationality. The 
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fo11owing two lemmas indicate how to restrict the range of mechanisms. 

Lemma 5.3. Gi1ノen any cost sharing rule πε IIe ， ザα mechanism fTr satiぞfiesstrategy-

proofness, then R(f勺 is closed.24 

Proof. Choose any (y;π(y))εClosure(R(f1t)). If y=Ü , (y;π(y)) is an isolated point of 

z1t, and thus (y;π(y))εR( f1t). We consider the case of yε(Ü ，Ymax)' Choose uεu n such 

that argmax(ui;Zf)=(y;TCi(y)) for a11 iεN. Suppose toward contradiction that 

f1t(u)=(子;rr(デ))， where 子学y. We can choose y' and y" such that yε(y' ， y") ， 

Ui(ゲ ;πi(ゲ) )>Ui(Ü;Ü) , Ui(ゲ ;rri(ゲ ))>Ui(デ;rri(デ))， and Ui(y";πi(y"))>Uj(デ;TC1(デ)) for a11 iEN. 

Since (y;rr(y))εClosure(R(f1t))， there exists some (y;rr(y))εR(f1t) such that yε(y' ， y"). For 

all iE N , choose UiεU such that 紅gmax(Ui ;Zf)=(y;πi(Y))' Then, f1t(百 1 ， U_l)=(yl;π(yj )), 

where ylε Y\(y' ，y") ， otherwise agent 1 can manipulate f1t at u via Uj ・ Similarly ，

f1t(U 1, U2 , U・ 1 ， _2)=(y2;rr(y2)) ， where y2ε Y\(y'ゲ')， otherwise agent 2 can manipulate f1t at 

(Uj ,U-l) via U2. Applying this argument successively, we obtain f1t(u)=(yn;rr(子勺)， where 

ynE Y\(y',y"). It contradicts the fact that f1t(u)=(y;π(y)) by Lemma 5.1. Therefore, 

f1t(u)=(y;π(y)) ， and thus (y;π(y))εR(f1t). The remaining case of y=y max is similar. 

Q.E.D. 

Lemma 5.4. Given αny cost shαring γule 冗モロ~， if α mechαnism fTr satisfies 

individuα1 rationαlity， then (0;0， … ， 0)モ R(fπ).

Proof. It is straightforward from the definition of individual rationality and the 

existence of UiεU such that argmax(ui;Zf)=(�;�). Q.E.D. 

These range conditions 訂e necess紅y and sufficient for the existence of strategy-proof 

and individually rational mechanisms in the case without fixed costs. However, they are 

not sufficient in the case with fixed costs. 

24 A closed range of mechanisms is a necessary condition for strategy-proofness in several environments. 

See Barbera and Pe]eg (1 990), Zhou (1 991a), and Barbera and Jackson (1994). 
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Definition 5.6. A cost sharing ruleπεIIc is essentially conνex on WC Y iff each πl 

nT 25 lS convex on w 

In the above definition it is not required that W be a convex set in Y. For anyπεIIc 

and any WcY, let Zπ(W)={ (y;π(y))1 YεW} and Zf(W)={ (y;πj(y))1 YεW}. Figures 5.3 

and 5.4 give some examples of Zf(W) , where πi is convex on a closed set W. The 

maximal consumption bundles of UjεU on Zf(W) consist of a single consumption bundle 

or two consumption bundles , when W is closed and f is esseJrltially convex on W. Denote 

such consumption bundles by (yt(ui)lw;πi(yt(Ui)lw)) and (y~ (ui)lw;1t i(ガ (ui)I~)) ， where 

yt(ui)lw 三y~(ui)lw. Notice that if yt(ui)Iw7=Y~ (ui)lw for some UiE U , then (y;π(y)) !l Zπ(W) for 

allyε(yf(Ui)|w， ykui)|w)For anyuεun ， let y+(u)lw=rniP yt(ui)lw and y*(u)lw=rniP y~(uj)lw 
ieN 一 i e N

For any uεun ， let T(u)={iεNI y+(u)lw=yt(uj)lw and γ(u)lw=y~ (uj)lw} be the set of agents 

with minimal demand for the public good. We define a class of mechanisms similar to the 

minimal provision mechanism defined in Section 5.3. 

Definition 5.7. Given a cost sharing rule πεIIc and a closed set W CY such thatπlS 

essentially convex on W and 0εW， a mechanism f1t into Zπ(VV) is in the class of minimal 

proνision mechanisms iff it associates either (y+(u)lw;π(y+(u)lw)) or (y*(u)lw;π(y* (u)lw)) 

with each uεun . 

Notice that this definition allows that a mechanism f1t into Zπ(W) associates 

(y+(u)lw;π(y+(u)lw)) for some uεun ， and (y*(u)lw;π(y*(u)lw)) for another uεu n . 

We characterize the set of strategy-proof and individually rational mechanisms with the 

range condition R(f1t)=Zπ(W). The condition R(f1t)=Zπ(W) ll1eans that f1t satisfies the full-

range property on W. 

25 Notice that any proportional cost sh訂ingrule πis essentially convex on WcY if and only if the cost 

function c is convex on W. 
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Theorem 5.3. For any cost sharing rule πε IIc and any closed set WC Y such tlzat π 

is essentially convex on W and 0ε W， α mechanism fTC into Zπ(W) satisfies strategy-

proofness, individual rationaliの， and R(f勺=Zπ(W) if and only if it is in the class of 

minimal proνision mechanisms and it satisfies the following Condition ( α).・

for any u, UE UIl such thαty+(u)lwヲ+(両Iw*y 汁uj|w=y *仰い T(u)コ T(u)， and Ui=lii 

for all iε T(玩)， it holds that either fTC(u)=(y+(u)lw;n(y+(u)lw)) or 

F向)=(y *伝)I w，・π(y *同)I w)).

Proof. Necessity. It follows immediately from Theorern 5.1 that if a mechanism f1t 

into Zπ(W) satisfies strategy-proofness, individual rationality , and R(fTC)=Zπ(W) ， then it 

is in the class of minimal provision mechanisms. Here we show that it satisfies Condition 

(α). Suppose toward contradiction that a mechanism f1t into Zπ(W) satisfies strategy-

proofness, individual rationality , R(f1t)=Zπ(W) ， and that for some u，玩εu n such that 

y+(u)lw=y+(U) Iw*γ(u)lw=y * (百)Iw， T(u)コT(百)， and Uj=Uj for all iE T(u) , 

fTC(u)=(y* (u)lw;n(y* (u)lw)) and f1t(u)=(y+(百)Iw;π(y+(u)lw)). 

Consider some i~T(u) ， if any. Notice that, by the definition of T(U), 

百j(y*(u)lw;πj(y*(u)lw))>百j(y+(u)lw;nj(y+(u)lw)) since πi is convex on W and Uj is strictly 

convex. It follows from strategy-proofness and the fact that f7t into Zπ(W) is in the class 

of minimal provision mechanisms that fTC(uj , U_j)=(y+(厄)Iw;π(y+(百)Iw)). Repeat this 

紅gumentfor all i~ T(百) and notice that Uj=Uj for all iεT(u). f[ence , we obtain 

fTC( u )=(y+(u)lw;π(y+(u)lw)) ， which is a contradiction. 

Sufficiency. Suppose that a mechanism f1t into Z7t(W) is in the class of minimal 

provision mechanisms and it satisfies Condition (α). Choose any UεUn.lf 

y+(百)lw=Y * (百)Iw， then it follows from a similar 訂gument to Lemma 5.2 that no agent can 

manipulate fTC at U. Consider the case of y+(U) I w>tγ(U) lw. For each iεT(U)， one of the 

maximal consumption bundles of Uj on Zf(W) is given by f1t(百). For each i~ T(u) , agent i 

may be able to change the allocation of f1t in his favor by changing his preference into 

omeujεu. 

If f1t(百)=(y+(u)lw ;π(y+(めIw)) ， we consider the following six cases. 

Case 1. y *(百)lw<yt(uj)lw
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Case 2. y*(u)kv=yt(uj)lw 

Case 3. y+(百)1~=yt(Uj)lwand y *(u)lw=y~(uj)lw 

Case 4. y+(u)lw=yt(uj)lw=y~ (uj)lw 

Case 5. yt(uj)lw<y~ (uj)lw=y+(百)Iw

Case 6. y~ (uj)lw<y+(百)Iw

In Cases 1, 2, and 3, preference profile U and (Uj , U-i) satisfy the premises of Condition 

(α). Therefore , it holds that F(uj , U_j)=(y+(百)Iw;π(y+(U) lw)) since 

fIT(u):;t(y * (u)lw;1t (y * (函)Iw)). In Case 4, since F is in the class ()f minimal provision 

mechanisms , it holds that fIT(Uj ，江j)=(Y+(百)Iw;π(y+(U)lw)). In Cases 5 and 6, it holds that 

either F(uj , U-j)=(Yiト(u ï)lw;π(yt(Uj)lw)) or F(uj , U_j)=(y~ (uj)lw;π(y~(Uj)lw)). Since πj lS 

convex on W , Uj is strictly convex, and y+(百)lw<yt(Uj)lw，it is clear that ff(Uj ，江 j) is not 

any better than ff(u) for i~ T(百) at Uj. It is easy to check the case of 

F(u)=(y*(u)lw;1t(y*(u)lw)). Therefore, for each i~T(玩)， agent i can not manipulate fIT at 

百εun . Then , F into Zπ(W) satisfies strategy-proofness. Not:ice that 

0::;)ぺu)lw::;y 本 (u)1ぷy~ (uj)lw for all UE Un and iεN. Since 1tj is convex on W and any UjεU 

is strictly convex , it holds that 

Uj (O;O)::;Uj (y+(u)lw;πj(y+(u)lw))釦j(y、l)lw ;1t j(y* (u)lw) )::;Uj(y ~ (uj)lw;1tj (y ~ (uj)lw)). This 

implies that fIT into Zπ(W) satisfies individual rationality. It is clear that R(F)=Zπ(W). 

Q.E.D. 

In the class of minimal provision mechanisms , we choose the following mechanism 

and call it the minimal provision mechanism henceforth. We will show that the minimal 

provision mechanism is on the Pareto frontier of the class of the minimal provision 

mechanisms. We say that a mechanism :F weakly Pareto dominates f7t iff for all Uεu n and 

iεN ， uj(ff(u))三Uj(tf(u)).

Definition 5.8. Gi ven a cost sharing rule πεTIc and a c10sed set W cY such thatπis 

essentially convex on 羽T and 0ε 羽T ， the minimal provision mechαnism fπ * into Zπ(W) 

associates (y*(u)lw;π(y*(叫ん)) with each Uεun . 
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Theorem 5.4. For any cost sharing rule た IIc and any closed set WcY such tlzat π 

is essentially convex on Wand 0ε W， αny mechanism f7r into Z勺W) satiゆingstrategy-

proofness, indiνidual rationality, and R( f勺=Z勺W) is weakly Pareto dominated by the 

minimal proνision mechanism fπ * into Zπ(W). 

Proof. It follows from Theorem 5.3 that any mechanism fIT into Zπ(W) satisfying 

strategy-proofness, individual rationality , and R(fIT)=Zπ(W) is in the class of minimal 

provision mechanisms. Clearly , y+吋(ω州u吋州)川|いw壬勾yγf戸ぺ*可、(れω州u吋州1)川|いW壬yガ山~(卯u町附1j

is convex on W and Uj is strictly convex, it holds that 

Uj(y+(u)lw;πj(y+(u)lw))~Uj(y*(u)lw;πj(y*(州w))壬1以y~ (Uj)lw;1t i(Y~ (uj)lw)) for all 取un and 

iεN. Since fIT * into Zπ(W) always chooses (y* (u)lw;π(y*(u)lw)) ， any mechanism fIT into 

zπ(W) satisfying the premises of the theorem is weakly Pare1to dominated by fIT :;< into 

Z冗(W). Q.E.D. 

We consider the opposite case ofTheorem 5.3. We define the non-convexity of cost 

sharing rules on a triplet T , three distinct points in Y , and show that it is impossible to 

construct s廿ategy-proofand individually rational mechanisms if the range of mechanisms 

includes three allocations which induce the non-convexity of cost sharing rules. 

Definition 5.9. A cost sharing rule πεTIc is essentially ηon-conνex on a triplet TcY 

iff eachπi is non-convex on T , that is , 1tj(y2) >斗ヰπj(yl) +止y'πj(y3) for 
Y'-Y' Y"-Y' 

T={yl ， y2 ， y3εY I yl<y2<y3} .26 

Theorem 5.5. For any cost sharing rule πε 刀~ I there is no mechanism f7r satiめJing

strategy-proo_外1，eSS， individual rationality, and such that R(fπ) contains Zπ(T)for some 

triplet TcY on which f is essentially non-conνex. 

26 Notice that any proportional cost sharing rule πis essentially non-convex on some triplet TcY if and 

only if the cost function c is non-convex on 丁 For any subset WcY, any proportional cost sharing rule 

πis either essential1y convex on W or essentially non-convex on some triplet TcW. 
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Proof. Suppose toward contradiction that there exist a mechanism f1t and some tr中let

TcY which satisfy the premises of the theorem. Since each variable cost sharing function 

π~ is convex on Y , 0εY must be included in this triplet T. Let 0 , y' , and y" (O<y'<y") be 

the elements of T. Let S(y') and S(y") be some closed segments in Y including y' , y" , 

respectively. Let S([y' ,y"]) be some closed segment in Y inc:luding S(y') and S(y"). 

Denote the boundary points of S by Bd(S). If y"学Ymax， choose S(y') , S(y") , and 

S([y' ,y"]) such that y'~Bd(S(y')) ， y"~Bd(S(y")) ， S(y')nS(y")=の，

Bd(S(y'))ハBd(S([y' ，y"]))=の， Bd(S(y") )nBd(S([y' ， y"]))ごの， O~Bd(S([y' ， y"])) ， and that 

f is essentially non-convex on {O}uBd(S(y")). If y"=Ymax , choose S(y') , S(y") , and 

S([y' ,y"]) such that y'~Bd(S(y')) ， {y"} :;tS(y") , S(y')ハS(y")=の，

B d (S (y') ) nB d (S ( [ゲ，y"]))=の， O~Bd(S([y' ，y"])) ， and that f is essentially non-convex on 

{O} uBd(S(y")). We can find the following four types of preferences for each agent (see 

Figures 5.5 -5.8). 

(i) Uj: argmax(ui;Zf)=(y';1t j(ゲ)) and Ui(y;πj(y))=Ui(O;O) for all yεBd(S(y')). 

(ii) 江j: argmax(江i;Z?)=(yH;πj(Y")) ，日i(y;πj(y))=五j(O;O) for all yεBd(S([y' ,y"]))\ {y"} , 

andElGl;πlGl))=五j cY2 ;πj(y2)) for yl ， y2εBd(S(y"))\{y"} . 

(iii) ﾛj: argmax(琮 ;Zf)=(y';πi(ゲ))，立j(y;1t i(y))=Ûj(O;O) for all yεBd(S([y' ， y"]))\{ y"} , 

and Ûi(デ l;πj(デ 1))=立i(y2;1t j(y2)) for テ l ， Y2εBd(S(y')).

(iv) Uj: argmax(ui;Zf)=(y";1ti(y")) and Uj(y;πi(y))=瓦i(O;O) for all yεBd(S(γ))\{y"}. 

Notice that Ui(y;1tj(y))>Ui(O;O) for all yεS(y') and Ûi(y;πi(y))>Ûi(O;O) for all yεS(y"). 

By Lemma 5.1 , f1t(u)=(ゲ ;π(ゲ)). Even if agent n changes his preference into Un, 

individual rationality for agent 1 requires f1t(un, u-n)=(y;π(y)) ， where yε{O }uS(y'). If 

y=O, agent n can manipulate f1t at (un, u-n) via un since un(y' ;'1t n (y'))>百n(O;O). Hence, 

yεS(y'). Again, individual rationality for agent 1 requires f1t(百n-l ， Un, U-[n-l ]， -n)=(Y;π(y)) ， 

where yε{O}uS(y'). If y=O, agent n-1 can manipulate f1t at (Un-l ,Un ,U-[n-I] ,-n) via Un-I 

since 江n・ 1(y;1tn-l (y) )>Un・ 1(0;0) for all yεS(y'). Hence , YE S(y'). Applying this argument 

successively, we obtain 

f1t(u] ,U-l )=(y;π(y)) ， where yεS(y'). (5.1 ) 

By Lemma 5.1 , f1t(函 1 ， U2 , U_] ,-2)=(y" ;1t(y")). Individual rationality for agent 2 requires 
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pt(ÛI ,U2 ,U_I ,_2)=(y;n:(y)) , where yε{O }uS(y"). If y=O, agent: 1 can manipulate fIT at 

(ÛI ， U2，江 1 ， -2) via U 1 since ﾛ 1 (y";n: 1 (y"))>立 1(0;0). Hence, we obtain 

fIT(古 1 ,u2 , U_I ，・ 2)=(y;π(y)) ， where yεS(y"). 

By Lemma 5.1 , fIT(百)=(y";n: (y")). Individual rationality for agent 1 requires 

pt(ﾛ 1, U_ 1)=(テ;n:(子))， where yε{O}uS([y' ，y"]). If y=O, agent 1 can manipulate fπat 

(ﾛ 1 , U_ 1) via U 1 since 立 1(y";n:l (y"))>立 1(0;0). Hence, we obtain 

fIT(ﾛ 1 ，江 1)=(子;n:(デ))， where yES([y' ,y"]). 

(5.2) 

(5.3) 

If y~S(y') ， it follows from (5.1) and (5.3) that agent 1 can manipulate fIT at (ÛI ,U_I) 

via u 1 since ﾛ 1 (y;π1 (y))>ﾛl (y;π1 (y)) for all yεS(y') and yεS([y' ,y "])\S(ゲ). If 弘 S(y") ，

it follows from (5.2) and (5.3) that agent 2 can manipulate fIT at (立)，百-1) via U2 since 

U2(y;n: 2(y))>百2(y;n:2(Y)) for all yεS(y") and yεS([y' ，yl])\S(y"). Therefore，テ mustbe in 

both S(y') and S(y") , which contradicts the assumption that S(y')ハS(y")=の Q.E.D.

5.4.2. The Case with Several Public Goods 

We consider econornies with one private good x and several public goods YI ,... ,ym 

(m2::2). We present the same negative result as in the case of no fixed costs. 

Theorem 5.6. For any cost sharing rule πε IIc ， there is no mechanism fn satiめllng

strategy-proφ'less， indiνidual rationality， αnd dim(R(fりた2.. 

Proof. Suppose toward contradiction that there exists a rnechanism pt which satisfies 

the premises of the theorem. It follows from the same reason as Lemma 5.4 that 

individual rationality requires (0,.. .， 0;0，…，0)εR(fπ). Since dim(R(pt))三2 ， we can choose 

y' , y"εY such that (y';π(y'))εR(pt) ， (y";π(y"))εR(pt) ， and 0 , y' , y" are not on a straight 

line. Consider the case of y' , y"~Bd(Y). Let S(y') and S(y") be some closed sets in Y 

including y' , y" , respectively. Let S({y' ,y"}) be some closed set in Y including S(y') and 

S(y"). We can choose sufficiently large and strictly convex sets S(ゲ)， S(y") , and 

S( {y' ,y"}) such that y'~Bd(S(y')) ， y"~Bd(S(y")) ， S(y')nS(y")=の，

Bd(S(y'))nBd(S( {y' ,y"} ))=0, Bd(S(y"))ハBd(S( {y' ,y"} ))==の and O~Bd(S( {y' ,y"} )). 

Here, a sufficiently large set means a set including points near the origin. Then , we can 
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construct the preferences used in Theorem 5.5. AlI the other cases are similar. The rest of 

the proof is the same as Theorem 5.5. Q.E.D. 

5.4.3. The Case of Linear Cost Sharing Rules 

As a corollary of Theorems 5.5 and 5.6, we present a simple negative result. Let Ilc be 

the subset of IIc satiめling the followiηg Assumption 5.3. 

Assumption 5ふ Each variable cost sharing function n:j' is linear. 

Corollary 5.1. For any cost sharing rule πε IIc , there is no mechanism fn satiぞかllng

strategy-proゆess， individual rationaliη， αnd #R(fりさ3.

Proof. It follows immediately from Theorem 5.5 when the range of mechanisms is 

one-dimension, and from Theorem 5.6 when the range of mechanisms is greater than 

one-dimension. Q.E.D. 

5.5. Conclusion 

We showed that the minimal provision mechanism is the unique mechanism satisfying 

strategy-proofness, individual rationality, and the full-range property in economies with 

one private good and one public good when the cost sh紅ing rule has the convex 

property. Even if the cost sharing rule has positive fixed cost:s and thus it includes a nonｭ

convex portion , the proper restriction of the range of mechanisms guarantees that the 

minimal provision mechanism satisfies strategy-proofness and individual rationality 

Conversely , if the restriction is not sufficient, the implied non-convexity of the cost 

sharing rule leads to an impossibility result. Moreover, we proved that there is no 

strategy-proof and individually rational mechanism in econolrues with one private good 

and several public goods. 
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Chapter 6 

Strategy-Proof and Individually Rational l¥1echanisms 

for Public Good Economies: A Note ***料

6.1. Introduction 

We consider economies with one private good and one public good. We consider 

mechanisms that determine both the level of the public good and how to divide the costs 

among agents. Serizawa (1996) characterizes the set of mechanisms named 、erruconvex

cost sharing schemes determined by the minimum demand principle" by strategy-

proofness , individual rationality , no exploitation, and non-bossiness. However, there is a 

criticism on the non-bossiness axiom since the economic inte:rpretation of non-bossiness 

is not so clear. Moreover, he leaves an open question whether or not non-bossiness is 

necessary for his characterization. Therefore, it is an interesting question what class of 

mechanisms is characterized without non-bossiness. We show that if a mechanism 

satisfies strategy-proofness, individual rationality , and no exploitation, then it also 

satisfies non-bossiness. As a corollary , we characterize the set of strategy-proof, 

individually rational , and no exploitative mechanisms. 

6.2. Notation and Definitions
27 

Let N={ 1,…,n} (n三2) be the set of agents. There is one private good and one public 

good. For each agent iεN， we denote agent i's endowment of the private good by ej. The 

initial amount of the public good is assumed to be zero. The public good can be produced 

using the private good which is regarded as money. For each agent iεN， we denote agent 

i's consumption of the private good by Xj. The amount of the public good is denoted by 

y. The cost function c(y) of the public good is a continuous and increasing function from 

*** This chapter is based on Deb and Ohseto (1999). 

27 We follow the model in Serizawa (1996). 
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-・・.

R+ to R+ su山hatc(O)=O and for all yE~， lim il].f c(y+E) -C(YL> 0 , 
E •+ü f二

lim sup c(y+ε) -c(y) く∞， lim inf ~(y) ー c(y-εL> 0, lim sup 豆丘三立さL< ∞. The set of 
E • +0 E E → +0ε 

feasible allocations is Z= {(x 1, • . . ,Xn ;y)εR~+ll c(y)=エ (ej-Xj)}.

Each agent iεN has a preference on R~ which can be represented by a utility function 

Uj(Xj ,y). Let U be the set of continuous , strictly convex , and strictly increasing 

preferences on R~. A list u=(u 1,... ，u n)εUn is called a preference profile. We denote 

generic elements of U by Uj , Uj , Ûj ,..., and generic elements of Un by u, U, 

respectively. Given UεUn ， i, jεN ， UjEU , and 向εU， we denote by (百j ，U_j) the preference 

profile obtained from u after the replacement of Uj by 百j ， and by (Uj , Ûj , U_j ,_j) the 

pぱérenceprofile obtained from U afl町批 replacementof Uj and Uj by Uj and 琮. The 

upper contour set and the lower contour set of UjεU at (支j ，Y)εR~ are defined by U C( U j; 

(天j ，y))= {(Xj ,y)1 Uj(Xj ， y)三Uj(支j ， y)} and LC(Uj; (支j ，y))= {(xi ,y)1 Uj(支j ， y)三Uj(Xj ， y)} , 

respectively. A mechanism is a function f: Un• Z, which associates a feasible allocation 

with each preference profile. Given a mechanism f and UεUn ， we will write 

f(U)=(Xl(U) ，...，X山l);Y(U)) and fj(u)=(Xj(U) ,y(u)). 

Definition 6.1. A mechanism f satisfies strategy-proofness i百 for all UεUn ， iεN ， 

and 百iεU ， ui(fj(u))三ui(fj(Uj ，U_j)). 

Definition 6.2. A mechanism f satisfies indiνidual rationality iff for all UεUn and 

iεN ， uj(fi(u))三Uj(ej ， O).

Definition 6.3. A mechanism f satisfies no exploitation iff for all UεUn and iεN ， 

Xj(U)壬ej ・

Definition 6.4. A mechanism f satisfies non-bossiness iff for all Uεun ， iεN ， and 

UjεU ， [fj(u)=fj(uj , U_j) コ f(u)=f(Uj ，U_j)]. 

Strategy-proofness states that truthful revelation of preferences is a dominant strategy 
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for each agent. lndividual rationality requires that all agents end up no worse off than at 

the status quo. No exp1oitation requires that no agent receive the private good in addition 

to his endowment of the private good. Non-bossiness requires that by changing his 

preferences, no agent can change the al1ocation without changing his consumption 

bund1e. 

6.3. Results 

Theorem 6.1. If a mechanism f satiぞfies strategy-proofness, indilノidual rationαlity， 

and no exploitation, then f satisfies non-bossiness.
28 

Proof. Suppose that a mechanism f satisfies strategy-proofness , individua1 rationality , 

and no exp1oitation. The proof is divided into three steps. 

Step 1. Suppose that y( u)=y(u) αndf(u)手f(u) foγsome u， lた U I1 . Then, for αれY iEN , 

there exists some Ui lモ Usuch that y(五ÌJ U-i)=Y(ui, u-iJ and f(u� u-iJ手f(ui瓦-).

Case 1. Xj(u)=Xj(u). 

We can choose some UjεU such that for all XjεR+， 

UC(百j; (Xj ,y(u))) (� LC(uj; (Xj ,y(u))) = {(Xj ,y(u))} , and 

UC(百j; (Xj ,y(u))) (� LC(百j; (Xj ,Y(u))) = {(Xj ,y(u))}. 

(6.1 ) 

(6.2) 

By (6.1) , strategy-proofness implies fj (江j ，u_j)=fj(u). By (6.2) , strategy-proofness 

implies fi (江i ，江i)=fj(u). Hence, y(百j ， U_j)=y(百j ，江i). The proof of this case is comp1ete if 

f(Uj , u_J;tf(uj , U-i). Assume to the contrary that f(むj ， u_i)=f(江j ， 1工 i). Then , it ho1ds that either 

f(u):;t f(百j ，U_j) or f(函):;t f(江j ，U_j). Without 10ss of genera1ity , we assume that f(u):;t f(百i ，U-i). 

Since the al1ocation is ba1anced and fj(u)=fj (百j ， U_j) , we can choose some agent j:;ti such 

that xj(u)>xj(江j ，U_j). We can choose some újεU su山hat

UC(Ûj; 月 (u)) ハ LC(uj; 月 (u)) = {ち (u)} ， and (6.3) 

28 It fol1ows frorn Deb, Razzolini, and Seo (1995) and Ohseto (1999a) that strategy-proofness, individual 

rationality , and no exploitation irnply non-bossiness for the case of the binary provision of the public 

good (narnely , y=O or y=l) . 百1Î stheorern generalizes the result to the case of an arbitrary set of the level 

of the public good. The case of the binary provision or the continuous provision follows as a corol1ary of 

this theorem. 
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UC(ﾛj; (町，0)) (� LC(uj ; ち(百i ， U-i)) ハ{ (Xj川Iy三y(U)} =の (6.4 ) 

This construction is possible since f satisfies no exploitation (see Figure 6.1). B Y 

(6.3) , strategy-proofness implies fj(立j ，u_j)=fj(u). By (6 .4), strategy-proofness and 

individual rationality imply y(百i ， Ûj , U-i ,-j)<y(Ui , U-i). By strategy-proofness , 

ui(fi (立j ， U_j))三ui(fi (江i ， Ûj , U-i ,-j)) and 百i(fi (百l' 向， U ・ i ， -j))之江i(fi (立j ，U_j))' Hence , by (6.1 ), it 

must hold that fi (百i ，ﾛ} U-i ， _j)=fi (立j ， U・j)' This contradicts the fact that 

y(江i ， GJ'u-i ，ーj)<y(江i ， U-i)=y(U)=y(Ûj , U_j) 

Cαse 2. Xi(U):;tXi(U). 

We can choose some UiεU which satisfies (6.1) and (6.2) for all XiεR+ ・ By strategyｭ

proofness, fi (江i ， U ・ i)=fi(u) and fi (江i ， u_j)=fi (百). They imply Y(Ui , U-i)=Y(百i ，U-i) and 

f(百j ， u_i):;tf(百i ，U-i). 

Step 2. It holds thαt f( u)=f(u) for all u, uモ un such that y( u)=y(U). 

Assume to the contrary that y(u)=y(u) and f(u):;t f(百) for some u, UεUn. By Step 1, 

there exists some U IεU such that y(百 1 ， U-I)=Y(江1 ，江 1) and f(百 1 ，U_ 1 ):;tf(百 1 ，百-1)' Repeatedly 

applying Step 1 to the remaining agents , we can find U2E U，江戸 U ，...， U n-1εU such that 

y(Un, u-n)=y(扇町江n) and f(u n, u_n):;tf(un，江n)' Therefore , applying Step 1 to agent n leads 

to a contradiction. 

Step 3. f sαtisfies non-bossiness. 

It is obvious that for all UE U n, iεN ， and UiεU ， [fi(u)=fi(Ui , U-i) コ y(U)=y(Uj ，U-i)]. It 

follows from Step 2 that for all UεUn ， iεN ， and UiεU ， [y(U)=y(Ui , U-i) 二今 f(u)=f(百i ，U-i)]. 

Therefore , f satisfies non-bossiness. Q.E.D. 

We wiU explain the non-redundancy of the three axioms of strategy-proofness , 

individual rationality , and no exploitation for this theorem. Notice that any mechanism 

satisfies non-bossiness in the two-agent case. Each example below satisfies two axioms 

out of three , but does not satisfy the axiom of non-bossiness. 

Example 6.1. Let n=3 , e1=e2=e3=1 , and c(l)=1. Let a nlechanism f be such that for 

alluεUぺ ( i ) ifu1(0 ， 1)ミU1 (1 ,0), U2(0 , 1)三U2 (1，0) ， and U3(0 , 1)三U3 (l，0) ， then 
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f(u)=(0 ,1,1;1), (ii) iful(0 ， 1)三U1 (1 ,0) , U2(0 ，1)三u2(l，0) ， and U3(0 , 1 )<U3(1 ,0) , then 

f(u)= (1,0 , 1;1), and (iii) iful(0 ,1)<Ul (1,0) or u2(0 ,1)<u2(1,0) , then f(u)= (l, l ‘1;0). 

Then, f satisfies individual rationality and no exploitation, but does not satisfy strategy-

proofness or non-bossiness. 

Example 6.2. Let n=3 , el=e2=e3=1 , and c(1)=1. Let a mechanism fbe such that for 

all uεu n ， (i) ifu3(0 ， 1)三U3 (1，0) ， then f(u)=(O , 1,1; 1), and (ii) if U3(0 , 1 )<U3(l ,0) , then 

f(u)=( 1 ,0 , 1; 1). Then , f satisfies strategy-proofness and no exploitation , but does not 

satisfy individual rationality or non-bossiness. 

Example 6ふ Let n=3 , el =e2=e3= 1, and c( 1)=~. Let a mechanism f be such that for 
2 

all uεun ， (i) if U3(0 , 1)三u3(2 ，0) ， then f(u)=(三， 1 ， 0;1) ， (ii) ifu3(2 ，0)>U3(0 ， 1)三u3 (l， 0) ，
2 

加制=(l ，j，川， and (州fu3(l ， 0)>町(川，伽削=(1， 1 ， 1;0). Then, f山

strategy-proofness and individual rationality, but does not satisfy no exploitation or non-

bossiness. 

6.4. Conclusion 

Serizawa (1996) defined the set of mechanisms called "sem昱onvex cost sharing schemes 

determined by the minimum demand principle".29 He characterized it by the four axioms 

of strategy-proofness , individual rationality , no exploitation, and non-bossiness. Now 

we establish the following new characterization as a corollary of his and our results.
30 

Corollary 6.1. A mechanism f satisfies strategy-proo_βtess， individual rationality, 

αnd no exploitatiぴ1.if and only if f is a semiconvex cost sharing scheme determined by the 

minimum demαnd principle 

29 Refer to Serizawa (1996) for the precise definition. 

30 Using Theorem 6.1, most of the results in Serizawa (1996) can be reestablished without the non-

bossiness axiom. For example, it can be shown that strategy-proofness, individual rationality. and no 

exploitation imply coa1itional strategy-proofness ・
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