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Abstract

It is investigated how the occurrence of n’ condensation in
neutron star matter is affected by the neutron °*P, superfluidity.
Threshold condition is derived by sclving the quasi-particle RPA
equation describing w%-like collective oscillation. Although there
exist five possible solutions of the *P, gap equation, numerical
caiculation of the critical density is preferentially carried out
for a simple case where the spin and orbital angular momenta of a
bound pair are 1n complete alignment.

It becomes evident that the 7° condensation is suppressed by the
neutron 3P, superfluidity. The suppression, however, turns out very
modest irrespective of the type of *P, superfluid states. In con-
clusion the neutron 3P, superfluidity brings about no significant
change in the 7©° condensation threshold predicted so far. This con-
clusion may be applicable to the case of nc condensation without

serious change.
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1. Introduction

Ah understanding of nuclear matter is important both for the
study of nuclear physics and astrophysics. Through the 1950's and
1960's remarkable progress has been made to understand properties

of nuclear matter around the normal density (p°=0.l7fm-3

); the
Brueckner theory revealed that the saturation of normal nuclear
matter originates in the singularity of nuclear forces having a
repulsive core which cancels its surrounding attractive forces!?).

On the other hand, the discovery of pulsars?) and the advent of
relativistic heavy-ion accelerators have stimulated the study of
nuclear matter at high densities and high temperatures. Up to now
various new phenomena, such as pion condensation, neutron P, super-
fluidity, quantum solidification, abnormal iscomers and quark matter,
have been predicted to occur such extreme conditions?®'*). Among them
pion condensation and the neutron 3P, superfluidity have attracted
special attention owing to their striking astrophysical implications
in connection with neutron star phenomena.

Possibility of pion condensation in neutron stars was first su-
ggested by Migdal®) and independently by Sawyer and Scalapino®) from
theoretical grounds. This phase is expected to be realized beyond
the critical density somewhat higher than but not far from p07). It
is widely accepted that neutron stars cool predominantly through
escaping neutrinos in their hot early period. If charged pions (ﬂc)
are present, the B-decay processes involving pions drastically en-
hance the cooling rate of young neutron stars, as first pointed out
by Bachall and Wolf®) and subsequently reexamined by many authors

9—12>
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with explicit relevance to m~ condensation This cooling



mechanism (referred to as the pion cooling) gives rise to an appre-
ciable lowering of the surface temperature of neutron stars untill
later stages of their stellar evolution!®T!%). Recent progress in
X-ray satellite observation on pulsars (Crab and Vela) and putative
neutron stars in supernova remnants (Cas A, Kepler, Tycho, RCW1l03,
SN1006 etec)!’”) has yielded interesting upper limits to the surface
temperatures of these objects, which are consistent as a whole with
sténdard cooling scenarios without the pion cooling!*~!®). A natural
interpretation is the absence of pion condensates in these neutron
stars and neutron star candidates. Tatsumi'!®) and Frukawa'!®), how-
ever, pointed out that development of a typical m° condensate indu-
ces reduction of the phase space available for neutrino processes,
and hence tends to retard the cooling of neutron stars. In addition,
quite recently the pion cooling was shown to be less effective 1in a
realistic situation??). These theoretical consequences lead to the
fascinating interpretation that the observational data indicate the
coexistence of m° and 7° condensates. The attractive nature of the
m™N p-wave interaction, which is the driving force of pion conden-
sation, favors the coexistence of both types of condensates?'). A
definite answer to this question must wait for further investigation
both on the theoretical and observational side.

It is also of astrophysical interest that pion condensation sof-
tens the equation of state for neutron star matter. The ranges of
masses and moments of inertia of neutron stars, which are the most
accessible mechanical parameters, are sensitive to details of
the equation of state at densities where pion condensation is likely
to occur. In particular, knowledge of the maximum allowable neutron

star mass is an important ingredient in attempts to identify black



holes from measurement of masses of compact objects. According to
several model calculations undertaken by now??~2%), the ¢ conden-
sation, if realized, slightly decreases the maximum values of mass
and moment of inertia allowable for neutron stars. This implies,
although the calculations are rather preliminary due to wvarious
uncertainties, that it may be difficult by cbservations of masses
and moments of inertia to identify the effect of the m° condensation.
On the other hand, the w° condensation would have a more striking
influence upon these parameters because 1its realization corresponds
o a drastic structure change of the nucleon system characterized
by remarkable localization?®7%%), Furthermore, such a localization
of nucleons could produce a solid-like core in the deep interior of

neutron stars, and thus could explain the Vela-pulsar glitch and

the Her X-1 star high-low cycle phenomena?’). It seems therefore

premature at the present stage to say something definite about the
evidence of pion condensation in neutron stars.

Possibility of another new phase, the neutron P, superfluid
state, was noticed soon after the discovery of pulsars in 1967. In
contrast to the case of pion condensation, the observation of macro-
scopic time scales for glitch relaxation of pulsars offers the con-
vincing proof that some part of neutron star interior exhibits the

P, superfluidity??®).

Besides this observational implication, the
neutron 3P, superfluidity has substential relevance to the neutron
star cooling mainly through reduction of the neutron specific heat
1312%) A conclusive calculation of the °P, energy gap indicates
that this phase can exist in the density region po<p<3003°). Such

densities significantly overlap with densities where pion condensa-

tion 1s predicted to occur. & gquestion then arises: How 1s the



occurrence of pion condensation affected by the neutron P, super-
fluidity?

Pion condensatiocn and the neutron 3P, superfluidity characterize
the phase of nuclear matter at neutron star densities. Because of
their observational bearings on the cooling scenario and rotational
dynamics of neutron stars, interrelation between these phenomena (
coexistence or competition) 1is considered to be the most promising
subject of study which may provide a criterion for establishing the
existence of pilon condensates in neutron stars. Studies of the
interrelation problem have been initiated by the Kyoto group, who
investigated whether or not the neutron 3P, superfluidity persists
under well-developed pion condensates®!). Their conclusions are as
follows: (i)The superfluidity can persist under the typical wn° con-
densate described by the ALS model?®), although the superfluidity
in this phase becomes eseentially of two-dimensional character?®!a!
31b), (i1i)Its persistence is delicate under a m° condensate because
the mixture of nucleon isospin states diminishes the pairing corre-
lation®!C). (iii)Such a diminishing effect is almost compensated by
an enhancement due to a large nucleon effective mass if the 7°
condensation is coexistent with the m° one31d). Although observa-
fional significance of these results was extensively discussed, any
positive or negative evidence of pion condensation has not been
extracted yet?®?). Such a situation motivates us to study further
the interrelation problem in different aspects.

The aim of this paper is to find out to what extent the occurre-
nce of pion condensation in neutron star matter 1s affected by the
neutron P, superfluidity. In the superfluid phase the nucleon

single-particle spectrum is modified to have a gap, and the Fermi



surface is difused. One needs to include these mcdifications pro-
perly. We concentrate on the critical density and threshcld condi-
tion for the m° condensation where the condensate frequency is equal
to zero. Our formulation 1s based on the method of normal mode within
the range of the random phase approximation. There is a very impor-
tant relation tetween stability of a Hartree-Fock type state of
many-body systems and solutions of the RPA equation describing some
kind of collective oscillation; if the RPA equation has an imaginary
solution, the Hartree-Fock type state becomes unstable for an infi-
nitismal deformation generated by the collective oscillation??).

This criterion of instability has already applied to the problem of
pion condensation in normal neutron star matter3*—3®)., The super-
fluid case can be formulated in a similar line of approach; threshold
condition is derived from the RPA equation describing n%-like colle-
ctive oscillation. The resulting threshold condition has a familiar
form if we rewrite it in terms of the =° polariZation operator which
reflects the modifications induced by the superfluidity. This pola-
rization operator is evaluated directly with the Feynman rules asso-
clated with nucleon Green's functions. Such an evaluation enables us
to examine properties and physical meaning of the 7° polarization

operator 1n the superfluid phase.

There exist five types of solutions of the °*P, gap equation?®?).
The 3P, gap equation is a coupled integral equation for five gap

parameters A (q) (mJ=O,il,i2),
J

1 A Cam)
b (@)= - —T,—gdsq'wq,qwz Tee (31)6 (8] ,
J u /“’2 2, H My
eqr D7 (at)

(1.1)



with

5 = .]_‘_ 1 1 V(S a
-[GmJ(q)]OG, (5 500 ISmS)(wLmSmLIJmJ)YLmL(q) s (1.2)

V. (q,q')= ) gdsrj (gqr)v¥®  (1,2)v(1,2)j.(q'r)y¥ (1,2)
AN spin L Amp 2 > L Amg T

(1.3)
Here gq=(q2-q§)/2M* with A and M* being the Fermi momentum and
nucleon effective mass, D(J) is the energy gap, V(1,2) is the
two-nucleon potential and T is the relative coordinate between two

R > ->
nucleons with momenta (q,-q).

v, (1,2)= J (SLmSmL[JmJ)YLmL(§>XSmS<1,2> (1.4)

my=mp +mg

denotes the spin-orbital angular part of the wave function for a
nucleon pair. The simbol X indecates a set of quantum numbers of
spin (S=1), orbital (L=1) and total (J=2) angular momenta. The

energy gap 1s related to the gap parameters by

D2 (&)= —TrlaT(@a@1 , (1.5)
with

A=l o (@) (@) . (1.6)
m J

I J

Solutions of eq. (1.1) are classified according to which of the

gap parameters are dominant.

Sol. 1: the solution only with m.=%2 gap parameters.

Sol. 2: the solution only with mJ=O gap parameter.



These two simple cases were first discussed by Tamagaki (Sols. 1
and 2)38) and by Hoffberg et al. (Sol. 2)°?). Their energy gaps

are axially symmetric and deformations of the Fermi sphere are,
respectively, oblate and prolate with respect to the axis of spin
quantization, as schematically illustrated in Fig. 1.

Sol. 3: the solution where mJ=O,i2 gap parameters are coupled.

Sol. 4: the solution where mJ=il gap parameters are coupled.

Soi. 5: the solution where mJ=O,il,i2 gap parameters are coupled.
These solutions have axlially asymmetric energy gaps characterized
by complicated angle dependence. The energy gap of Sol. 4 has nodes,
while Sols. 3 and 5 are nodeless. The most general self-consistent
solution, Sol. 5, is considered to represent the ground state of
neutron star matter in the density region considered here, although
all the types of solutions (Sols. 1v5) are almost degenerate.

We calculate the critical density for the wo_condensation rea-
lized from Sol. 1 where the spin and orbital angular momenta of a
bound pair are in complete alignment. In the numerical calculation
we take account of ftwo additional effects arising from the A33(1236)
isobar and NN short-range correlations.

The contents of this thesis are as follows: The next section 1is
devoted to the derivation of the threshold condition. In sec. 3 the
0 polarization operator is evaluated with the Feynman rules and

its properties are discussed. Numerical results are shown and dis-

cussed in sec. 4. The last section 1s for concluding remarks.

~J
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2. Derivation of <the threshold condition

2.1. HAMILTONIAN

As far as the 1% condensation is concerned, protons admixed in
neutron star matter can be disregarded because of small admixture
(several percent). We start with the following Hamiltonian for the

neutron + m° system (A=c=pion mass=1):

H= HV+H HHtE ; (2.1)
-1.
H'=) € n' n (2.2)
N qa g gqa qo
H'=)w ala (2.3)
m P PP,
p
LS A ACITL PRSI NNICON (2.4)
aq’ m, Mg J
=] ] £,(3-B) gn! (a +al ) (2.5)
TN pg a8 ag™ qa Q-pB8 —p. .

Here mp=¢p2+l s fp=—ifp//29wp with f and Q being the mN p-wave
coupling constant (£2/47=0,08) and normalization volume, 5 are the

Pauli spin matrices.

(q>— Ly gda[e (@)1 .0 nf (2.5)

V2 og! My 0c' qo -qo'

is the boson operator representing a neutron pair with relative

momentum q and angular momentum quantum numbers X and ms. The



Hamiltonians H% and Hg stand for the neutron and pion free parts,
1 i

while H&N and HnN correspond to the %P, pairing and mwN p-wave
interactions, respectively. We may treat these interactions sepa-
rately because the most responsible for the pairing interaction is
the spin-orbit force due to exchange of heavy mesons, such as "o",
w and p%®).
Suppose now that the paliring interaction is dominant and the

system is in the *P, superfluid state. The Hamiltonian H should be
then rewritten in terms of quasi-particle operators. This is done

by making use of the generalized Bogoliubov transformation intro-

duced by Tamagaki?®?),

.1..

n, - - .
n a-ZEUaB(q)an—VaB(Q)n_qB] L)

© g
(2.7)

ot _ . -> + _ >

"N ot . .
where nqa and nqa are the quasi-particle operators, Uas(a) and
>
v B(q) are elements of the 2x2 transformation matrices U(Jd) and
£ .
V{(q). Properties of these matrices are summarized in Appendix A.

The transform of H is
_110 0
ﬁ—ﬁN+Hﬂ+ﬁﬂN ’ (2.8)

0 vt
o szqnqa Ko s

(2.9)
where Eq=/%é+D2(a) and K, denotes the ground state energy of the
neutron system. Although ﬁwN contains four distinct fterms with

respect to the quasi-varticle operators, only the terms which

'_J

__9_._.



couple plons to quasi-particle palr states are relevant to our

discussion (see Fig. 2);

¥ A7 T £ (D) (Ul (V.. @-5)ul T
TN pq spin o) ay- aB Y8 aB p-qsé
(@ (G- X J(a_+at ) (2.10)
a3/ ys AP Moqgligops - PpTEp ) .

where UT(a) means the transpose of U(a).

— 10 —



2.2, PIONIC INSTABILITY OF THE SYSTEM

Since the Hamiltonian ﬁﬂN couples pions to the quasi-particle
paif states with the quantum numbers of the n?, the system may
develops a m%-like collective oscillation. In order to describe

such a kind of oscillation, we introduce the following eigenmode

operator:
sT(®)y=sT(y+s) B, (2.11)
sT(@)=g(@af+n(®ra_, , (2.12)
s§<§>=§ sgin(g'ﬁ’av[cas,ys(E;K>H;eﬁi—qa
o,y s (GOM_ B 57 (2.13)

Its corresponding eigenfrequency is determined from the RPA equation

.f.

iy, sT @) 1=ust (@) . (2.14)

The relevant nonvanishing commutators are evaluated to be

(80,57 (6) 1=u, (2(®)af-n(B)a_) , (2.15)

[HO S%(K)]=Z I (G-k) (B +E

N2 4 spin ay q—k)

> > vt ot _
(3308360567 Xag, ys

Y

> > N
(a; M _gfg s ,(2.16)

_— 1] —



(S0 (B)1=(e@-n@nre, [ [ (3-8

m q spin ay
S - > vt At + > > v v 1
xLUaS(q)VYG(q—k)annk_q6+VaB(Q)UY6(q k)n_anq_ksJ R (2.17)
+ , > T > A >
(H ,sT(k)l=(a +al)f, ] 1 (3:%) _(3-K)
wN?TN k "k’"k q spin oy Hp
x[x (&8 (U2 (@)v_ (F-B)+uT  (F-K)V_ ()
aB,ys =? uB ok us o8
-z (&5 (v (@-B)u_(@)+vT (DU (§-K))] (2.18)
aB,ys =’ ué eB uB pS ’ ’
Combining egs. (2.11)v(2.18), we obtain a set of equations
> > T - > >
(E(k)—n(k))kaaB(q)Vyé(q_k)
+(Eq+Eq_k—w);a6’Y6(q;k)=0 , (2.19)
> -> + > - >
(£(F)-n(®)) £, V10 (DU, 4 (3-F)
_(Eq+Eq—k+w)XaB,Y5(q;k>=o , (2.20)
(v —w)E(k)+6(K)=0 , (2.21)



(wk+w>n(ﬁ>-@(§)=o , (2.22)

with

e)=f, I I G, Grk) [xye . 5(@E)

-> > > m -> o -> > o
B(q)vpé(q—k)+Uu6(q—k)vp6<q)—ca8,yé(q’k)

< (V) 5 (3-R)U o (@)+77 (3D (3-K)) ] (2.23)

These equations lead to the eigenvalue equation for w

. + -> > >
N ~ V_ .(Q)U_.(q-k)
1= k™ k z Z —). —>‘ aR 'Y(S

E +E +w
a g-k

T -> > o>
Uyg (D)V, 5 (@-K)

E

+E -w
q g-k

+ > > -> + > > >
X(Vus(q‘k)Upg(Q)+Vug(q>Upa<q"k)>] (2.24)

After some manipuiations, eq. (2.24) is reduced to the compact form

£2k? (E_+4E )Tr[wf(E;E)W(a;E)]
1= a4 g-k

(2.25)
(wz—wi)ﬂ q wz—(Eq+Eq_k)2 s

— 13 —



with

WG R)=U(G-K) (G- 1)V(D)+U@) G 10V @E-0)1T . (2.26)

A straightforward calculation yields

N
€

+ > > > _ A"
TI’[W (Q3k)w(q:k)]"(l—€q q—k

/EEqoi)

> 2Tt > > > 0 >
+Tr[ (o-k) ™A (Q-k)(O'k)A(Q)]/2EqEq_k s (2.27)

where A(E) is the 2x2 gap matrix defined by eq. (1.6).
Eq. (2.25) indicates that the m% polarization operator in the

superfluid phase should be defined as follows:

+,> > <> o
L prp2 (Eq+Eq_k)Tr[w (q;k)W(q;k)]_
M(k,w)= 25— ] TR . (2.28)
d q" “a-k
Eq. (2.25) is then expressed as
X(k,w)
1= — . (2.29)
w*—w,

Validity of this definition will be verifled in the next section.
Owing to Tr[w+(a;E)W(a;§)];O, eq. (2.29) may have an imaginary

solution when the following condition is satisfied:
1< -H(K,0) /w2 . (2.30)

In this case the system is no longer stable for

— 14 —



collective oscillation; the m° condensation develops. It should be
noted that the eigenvalue equation (2.29) and threshold condition

(2.30) are very similar to those in the normal phase (Fermi gas

phase),
H(E,w)
l= —— (2.31)
wz_wz 3
1 -1(%,0)/w? , (2.32)
with
N 2 0(a,-]d-k|)-8(a,-q)
m(Fey= 28Ry _F ’ (2.33)
q w+eq_k—€q

where @(qF—q) is the neutron occupation function corresponding to
the sharp Fermi sea. This means that the n° polarization operator
given by eq. (2.28) includes all the modifications induced by the

superfluidity.



2.3. INCLUSION OF TEE Aj33(1236) ISOBAR AND NN SHORT-RANGE
CORRELATIONS

In the above treatment two iImportant contributions are left out;
the one coming from the A;;(1236) isobar and the other coming from
the NN short-range correlations.

Fig. 3 illustrates pion self-energy processes in the normal phase
via the isobar, which greatly reduce the energy of pions in matter,
and hence encourage pilon condensation. The contribution of these

processes 1s evaluated to be

N 2 o(a,=a)
n (%,w)= l6é£k) [ — E
q w-(2w+wA+(q-k)Z/ZMA-q2/2M*)

O(qF-q)
+ e 1, (2.34)
w-(wA+(q+k)2/2MA—q2/2M*)

where mA(=296MeV) is the mass difference between the isobar and
neutron. For ImimA|>>|(EIE)Z/2MA-q2/2M*I we may neglect the isobar

and neutron kinetic energies. Then we have

O s 32 a2 “a
Hres(k,w) 5 (fk)2p . (2.35)
k

where p 1s the neutron density. Under the same condition eq. (2.35)
furns out to represent the isobar contribution in the superfluid

phase without any modification because Wy is much larger than the

_— 16 —



energy gap existing in the quasi-particle spectrum Eq

The NN short-range correlations in the one-pion channel arise
mainly from the repulsive core of nuclear forces and exchange of
p-mesons. Their effects are usually simulated by a zero-range

effective interaction of the form“'7’),

Ho~ &' o 0 Glo 0 . (2.36)
Here g' is the density- and momentum-independent coupling constant
(g'>0). Due to this repulsive interaction, the quasi-particle pair
exitations undergo repeated scatterings, which raise the energies

of the pair states, and hence prevent pilon condensation. Such
scattering processes induce renormalization of the 7m° polarization
operator, as illustrated in Fig. 4. The matrix element of eq. (2.36)
coupling the pailr states with momentum k is

>

'->—>'7 > > o>
<a',k-q'[Hygla,k-q>=g' . (2.37)
Thus, the renormalized w° polarization'operator is given by

YRR, o) =N (E, )+ M (E,w) e/ (710 21 (F,w) (2.38)

or

N M(k,w)
K,w)= — . (2.39)
1-g'M(k,0)/(fk)?

We apply the same renormalization to the isobar contributicn.

Combining these calculations, we find that the original threshold

—_ 17 —



condition (2.30) becomes

1-1E (&0 /w2, (2.40)

with

M(k,w)+T_ (K,w)
res (2.41)

ﬁR (ﬁ,w)=
tot 1-g' [H(E,w)+0__(K,0)1/(£k)*

where Hresiﬁ,w) is given by eq. (2.35).

—_ 18 —



3. The 7°% polarization operator in the superfluid phase

3.1. EVALUATION OF THE w° PCLARIZATION OPERATOR BASED ON THE
FEYNMAN RULES
The 7° polarization operator ﬁ(ﬁ,w) defined by eq. (2.28) con-

sists of two pieces ﬁn(ﬁ,w) and ﬁa(i,m);

ﬁ(ﬁ,w)=ﬁn(ﬁ,w)+ﬁa(ﬁ,w) R (3.1)
with
N (E+E ,)(1-€ € /EE_ )
ﬁn(k’w)= f;kz Z q q—f g q—kz qa g-k , (3.2)
q w -(Lq+mq_k)

(2 +E_ )Tl G102 (@-5) B-x)a(@)]

(3.3)

E E 2_(E _+E 2
q 2 a q_k[w ( a q_k)_]

We first verify that ﬁn(ﬁ,w) and ﬁa(ﬁ,m) represent the proper
self— energies indicated in Fig. 5. The 1ndicated diagrams involve
three distinct particle-lines, which are, respectively, associated
with the nucleon Green's functions F+(q), F(q) and G(gq), as shown
in Fig. 6. These Green's functions are derived from generalized
Gor'kov equations for a nonzero angular momentum pairing®*®'%1).
Detalls of the derivation are presented in Appendix B. The Feynman

rules yield the expressions

21 2 dq N N |
£ k| ) d Tr{(o-k)G(q)(o-k)G(a)] , (3.4)
a

ﬁn(k)= -1

— 19 _



_>2 dq _+/\ _)A
k|® v g Ll (31 TF (k-a) (B K)FT ()], (3.5)
2m

where k and g stand for the four momenta (ﬁ,ko) and (a,qo). In

writing down eq. (3.5), we have used the relation
> + >
~ T A
=Tr[(3-k) F ' (k=q) (3+K)F (q)]
Inserting eqgs. (B.17)Vv(B.19) into egs. (3.4) and (3.5), and perfor-
ming the integrals with respect to q,, we readily obtain egs. (3.2)

and (3.3). It is reasonable to refer to ﬁn(ﬁ,w) and ﬁa(ﬁ,w) as the

normal and abnormal terms, respectively.

—_— 20 —



3.2. PROPERTIES OF THE NORMAL AND ABNORMAL TERMS

Anisotropy is characteristic of the 3P, energy gap. Concerning
the normal term, such an anisotropy is smoothed out by the summa-
tion with respect to a. Consequently the normal term depends only

on an angular average of the energy gap,
5%(q)=(aq D*(g,a) , (3.6)

at qEqF. Here it should be noted that the averaged energy gaps

52(qF) are almost equal for five possible solutions. For example,

Sol. 1: D% (qp)=3.37 (MeV)?,
Sol. 2: D®(qp)=3.37 (MeV)?,
Sol. 3: D*(qp)=3.48 (MeV)?®, (3.7)
Sol. 4: D*(qp)=3.48 (MeV)?,
Sol. 5: D*(qg)=3.48 (MeV)?,

at EF=lOOMeV37). This implies that ﬁn(ﬁ,w) is independent of 2, and
moreover its magnitude is almost independent of the type of solu-
tions for the ®P, gap equation. Setting the energy gaps equal to
zero in eq. (3.2), we can easily see that the normal term is redu-
ced to the ordinary w° polarization operator in the normal phase
given by eq. (2.33).

The abnormal term is a conseguence of the nonconservation of
neutrons, and thus vanishes in the normal phase. Since ﬁa(ﬁ,w)
reflects the anisotropic feature of the 3P, superfluid state
TA+ > >y

~
(q-%) (3-1x)A(Q)], it explicitly depends

through the factor Tr[(d-k)

— 21 —



on the direction of K.
It is worthwhile to estimate the contribution of this novel
term to the 7° condensation threshold. Roughly speaking, egs. (3.2)

and (3.3) yield

ﬁn(E,O)«p , (3.8)

N> 5 .

I (&,0)«p(D(ay)/EL]% , (3.9
where EF is the Fermi energy. These relations of proportionality
imply that the normal term i1s associated with the behavior of all
neutrons in the system, whereas the abnormal term only with that
of paired neutrons near the Ferml surface. Fig. 7 sketches such
situations in an intutive manner. From egs. (3.8) and (3.9) we have

_ > y >

K:ﬁa(k,O)/nn(k,o)

2[D(ap)/Exl? . (3.10)

Considering EFEIOOMeV and D(qn)X1MeV at the density of interest,

we find

k¥10™"% (3.11)

The contribution of the abnormal term is therefore expected to be

negligible.
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4, Numerical results and discussion

4,1, THE %P, ENERGY GAP

In order to calculate the critical density for n° condensation
realized from the 3P, superfluid state, we must in advance solve
the gap equation (1.1) and obtain a set of gap parameters. Here we
deal with Sol. 1 referred to as the maximum |mJ| coupling case.
This is sufficient to get general conclusions which are valld for
all the types of solutions, as we shall see later. In this case

eq. (1.1) becomes??)

= 2
A, ()= - —= S dq'q'*V, (a,q")

dq! S (4.1)
/%é,+(3/8ﬂ)A§(q')sin26q,

N (3/8m)Az(q')sin?6 _,
x g !

and Az(q)=A_2(q). The gap matrix has a diagonal form;

(Q) 0

A(d)= , ) (4.2)

AZ(q)Yll

0 a,(Q)Y,_, (@)

The energy gap is giliven by

D(§)=/3/8wA2<q)sineq : (L.3)

_— 23 —



Egq. (4.1) is solved by using one of Mongan's nonlccal separable

potentials®?),

Vy(a,a')= =(n/2)h,(q)h, (a") ,
(4.4)

_ L, 2, 2,(1+1)
hz(q)-ch /(q +aA) s

where 1=1, a,=2.72fm~! and CA=122.5[Merm'3]1/2. This potential is

A
adjusted to NN scattering phase shifts up to ENN<uOOMeV in the 1lab.
system. The gap parameter is very sensitive to the neutron effective
mass M¥, To maximize the gap parameter and thus its effect on the 7°
condensation threshold, we take M#¥=M=940MeV, although its realistic
value at neutron star densities is believed to be M¥X0.8M.
Calculated results are displayed in Figs. 8 and 9. In the momen-

tum and density regions neighboring aQ=ay and E_=100MeV, the displa-

F
yed curves reproduce fairly well both momentum and density dependen-
ces of the gap parameters calculated from more realistic two-nucleon
potentials®’). On the other hand, the magnitude of Az(qF) and its
existing density region are considerably larger than those obtained
from the conclusive calculation?®?).

Since the Mongan's potential (4.4) has no repulsive core, the
resulting gap parameter Az(q) is still positive for q%ZqF, where
the realistic potentials with repulsive cores yield Az(q) with nega-
tive values. We need not, however, take this discrepancy seriously

because the m° condensation threshold is insensitive to details of

A,(q) in such a high momentum region.
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4,2, CRITICAL DENSITY

The precise value of g' is of crucial importance in determining
the threshold for pion condensation. Up to now considerable efforts
have been made to achleve a reliable estimate of g'. Recent inve-
stigations*3®—*?) yield values in the region of g'=(0.540.7)f?, but
no conclusive value has not been reported yet. Here we treat g' as
a parameter because our purpose 1s not to accomplish a precise
estimate of the critical density. The direction of the pion momen-
tum E is taken to be parallel to the axis of spin quantization.

Then we have

3qA2<q>A2<;a-E;>sinZeq

4m|g-k|

el (5.1 7T (G-%) (3. 1) (3) 1= . (4.5)

L . 3a%02(|3-k|)sin?%e
D?(g-k)= — a (4.6)
8m|a-k|

where !a—§l=/a2+k2—2choseq. With these expressions we can solve
the threshold condition (2.40).

Numerical calculations of the critical density S have been
carried out for two cases with and without the isobar contribution.
Calculated results are plotted in Fig. 10 as a function of g'.

For pz0.5p0, the neutron 3p, superfluidity comes into existence and
increases the critical density from its values in the normal phase.
Roughly speaking, the increase in Po defined by

/ (L,

Ap = -0 )
SPe =% super” °c,normai’’ Pc,normal °
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is proportional to the magnitude of Az(qF).

Since in the superfluid phase excited states are separated from
the ground state by a finite gap, some excess of energy correspon-
ding to this gap is required to break a neutron bound pair and
excite a w%-like quasi-particle pair. The 1% condensation cannot
take place until the energy gain due to the nN p-wave interaction
exceeds further this extra energy. Such a suppression mechanism 1is
operative only for the neutron bound pairs near the Ferml surface,
while the w° condensation is followed by the change of all neutron
states. Thus, the order of magnitude of Apc is expected to be com-
parable with that of Az(qF)/EF which measures the extent of diffu-
sion of the Fermi surface. The various quantities calculated from
g'=0.6f% are listed in table 1. In this case Apc is 0.13, which is
about an order of magnitude larger than the value of AZ(qF)/EF'
This means that the neutron 3P, superfluidity affects the 1% con-
densation threshold beyond the expectation. Nevertheless, the
superfluldity induces only a small increase in P compared with the
one resulting from the NN short-range correlations.

We have confirmed that the contribution of the abnormal term of
the m° polarization operator is completely negligible compared with
that of the normal term. The ratio « defineq by eq. (3.10) is ext-
remely small (k=1.6x10"3% for g'=0.6f2?), which is consistent with
the rough estimation (3.11). Relating this fact with the properties
of the normal term, we are led to the following conclusions: (i)We
need not specify the direction of the pilon momentum ﬁ; the w° con-
densation favors no particular direction even in the case realized
from the anisotropic *P, superfluid state. (ii)Critical densities

are very close for all the types of solutions (Sols. 1v5).
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5. Concluding remarks

We have found that the n°‘condensation in neutron star matter
is suppressed by the neutron 3P, superfluidity. The increase in
the critical density is, however, not more than 30% of its values
in the normal phase, although we have deliberately overestimated
the effect of the superfluidity by employing the maximal gap para-
mefer. This means that the suppression of the m° condensation is
very modest in the realistic situation, i.e., Apcéseveral percent
in accordance with Az(qF)§O.6//§ MeV3%). Thus we may conclude that
the neutron 3P, superfluidity brings about no significant change
in the m° condensation threshold predicted so far.

This conclusion applies to the case of wc concdensation as well.
A straightforward extension of the formulation presented in sec. 2

leads to the r° polarization operator of the form

v (n) ,.(n) v(p) ,m(p)
(l+eq /E )(l-eq_k/Eq_k)

k2 I
Q (n) (p)
2 “Bq ek

ﬁc(i,w)=

_v(n) ,-(n) v(p) ,m(p)
(1 €q /Eq )(l+€q—k/quk)

w+E M) 4g(P) o -
! q-k

. . 2 . * . / . 2 . 2
where %él)=(q2—q§l) )/2M(l) and Eél)= gél) +D(l) (a) with i=n,p.
In the derivation of eq. (5.1) we have taken account of the fact
that the proton !S, superfluid coexists with the neutron 3P, super-

fluid at the density of interest. Because of the charge conservation

AV}
law, HC(E,w) does not have a term corresponding to the abnormal term.
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The energy gaps existing in the nucleon single-particle spectra
are masked by a large condencsate frequency (wé_)fpion mass>>energy
gaps). Therefore, as far as the threshold condition and critical
density are concerned, it seems unlikely that the neutron 3P2
superfluidity, as well as the proton s, superfluidity, has a
notable influence upon the ¢ condensation. This observation is in
sharp contrast to the well-developed case where the n° condensation
strongly attenuates the neutron *P, superfluidity?'¢). In this
respect, it 1s quite interesting to see whether or not the same
situation is realized in our line of approach which starts from the
superfluid phase side.

In this paper we have left another interesting problem untouched:
How does the neutron 3P, superfluidity behave after the 7° conden-
sation develops? Studies of these remaining problems will lead to

a deeper understanding of the interrelation between pion conden-

sation and the neutron 3P, superfluidity.
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Appendix A

Properties of U(g) and V(g)
The transformation matrices U(a) and V(a) are, respectively,

proportional to the unit matrix and gap matrix;

U(a)=u x1 ,
(A1)
> Vg ->
V(Q)= > XA(Q) 5
D(q)
where uq and Vq are given by
g
a_ _1 a
U= 3 (1+ )
q
V]
2 1 Eq
VT (1- -2 , (A.2)
q
D(3)
uv. =
a
. . . T, > - -
Since the gap parameter satisfies A~ (q)=-A(-g)=A(q), we have
vT(@)=v*(D)=v" (@)=v(-D)=v(d) ,
(A‘3)

VT () =-v(=3)=v(3)
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Appendix B

Derivation of the nucleon Green's functions

We start with the Hamiltonian

Hy= HN+Hp ip s (B.1)

with
1

palr 2 dq' spin

qruvn_qv\)vn_q\)nqu (B.2)

Applying the Hartree-Fock-Gor'kov approximation®®) to Hy, we have

H, =H2+ )

B N palr HF

1 + o LI
—~ 77 [a +A n
2 g EV[ op(Dm_g gty (g R g,

+correction term . : (B.3)

Here Hpair)HF correspond to the Hartree-Fock contributions, which
are taken into account by using an effective mass approximation
for the nucleon kinetic energy. The order parameters for a nonzero
angular momentum pairing are defined by
Ta@no

(B.4)




where FZB(a',O) and Fsa(a',o) denote the thermal Green's functions.

These definitions guarantee that Auv(a) and sz(a) satisfy
2t (@)=ax (@) (.5)
Ly (@ Sua) . .

IRY Vu ?

The order parameters Auv(a) form the gap matrix A(a). The thermal

Green's functions are defined by
F;B(E,T—T')E<Tf(nga(r)niq8(r'))> s
Fog(@y1=1")E<To(n_ (On g ('))> (B.6)
Gy (dsT-T)E-<To(n ()0l (11))>

where T. is the time-ordering operator and the angular brackets
mean an ensemble average in the grand canonical ensemble.

The Hamiltonian (B.3) yields the equations of motion

3 v >t

S?ﬁqa(T)"Eqnqu(T)'EAuu(Q)n—qu(T) , (B.7)
LN I N s

E?nqa(T)“ eqnqa(r) gAau( q)n_qu(T) . (B.8)

Combining eqgs. (B.7) and (B.8) with egs. (B.6), we obtain the

equations of motion for the thermal Green's functions



(%? +gq)Ga6(a,T—r')-gAuu(a)FZB(—a,T—T')
=_60L86(T-T') s (B.9)
(%? -%q)F;B(asT—T')_EAZU(—E)GMB('E,T-T')=0 s (B.10)

It is advantageous to employ the Fourier representation in the
variable t*7). The Fourier transforms of eqgs. (B.9) and (B.10)

are evaluated to be

. n > > _F - _
(1wn-eq)GaB(q,wn)+§Aau(q)FuB(-q,wn)—éas R (B.11)

. N + > ‘ + > > _
(1wn+eq)Fu8(q,wn)+§Aau(—q)GUB(—q,wn)—O . (B.12)

Egs. (B.11l) and (B.1l2) are generalized Gor'kov equations.
We now assume that the system does not have spin polarization.
This assumption requires that Gaaka,wn) should be diagonal with

respect to the spin indices, which 1s equivalent to the requirement

.i.

ZAau(q)AU

> o
L B(q)—D (q)éaB . (B.13)

In this case solutions of egs. (B.l1ll) and (B.1l2) are easily found

to be

(B.14)
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= ) AOLB(‘--S)
F (g,w_)= — (B.15)
. N
> 1wn+€
GaB(q’wn)— - . : (B.16)

2 -}-r\_, 2 -
Wy €q+D (q)

Utilizing analytic continuation®*’), we can show that egs. (B.14)
V(B.16) lead to the following expressions for the nucleon Green's

functions at zero temperature:

+ ->
-I- AOLB(_q) 1 1
Fogla)= - [ — - —1, (B.17)
2Eq qo-Eq+1€ q0+Eq—1€
| Byg(-2) 1 1
Fgla)= - [ e —1, (B.18)
2Eq qo-Eq+1e q0+Eq—1€
i E_+¢ Eq-%
Gygla)= [———+ i—1, (3.19)
2Eq qO—Eq+1€ q0+Eq—1€

where q stands for the four momenta (a,qo).
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Figure captiocns

Fig. 1. Deformed Ferml spheres; (a) the case of Sol. 1 and (b) the
case of Sol. 2. Arrows Iindicate the direction of spin

quantization.
Fig. 2. Processes contained in ﬁnN given by eq. (2.10).
Fig. 3. Pion self-energy processes via the A,,(1236) isobar.

Fig. 4. Renormalization of ﬁ(K,w) due to the NN short-range

correlations. Shaded triangles are renormalized vertices.

Fig. 5. Proper self-energy diagrams in the superfluid phase; (a)
the normal one corresponding to ﬁn(ﬁ,w) and (b) the abnormal

one corresponding to ﬁa(ﬁ,w).
Fig. 6. The nucleon Green's functions in the superfluid phase.

FPig. 7. Pion self-energy processes producing thé normal term (A)
and the abnormal term (B). Double circles stand for the
Ferml sphere with diffused surface. Solid lines connecting
two nucleons with opposite momenta indicate that these

nucleons form a bound palr.

Fig. 8. Momentum dependence of the *P, gap parameter at E_=100MeV.

F
Fig. 9. Density dependence of the 3P2 gap parameter at the Fermi

momentum. The 'S, energy gap 1s also shown for comparsion.



Fig. 10.

Critical densities for the 7° condensation realized from
the %P, superfluid state (Sol. 1). Critical densities in
the normal phase are also shown with dashed lines for
comparsion. Lower and upper curves represent the cases

with and without the isobar contribution, respectively.
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k 2.8 fm—!
c,super

pc,super/pﬂ 1.8

pc,normal/po 1.6
-1
Apc 1.3x10
ﬁa(kc,O)/ﬁn(kc,o)
1.6x10"3
at p=pc,super
2.5x1072
at p=pc,normal

Table 1. Various quantities calculated from

g'=0.6f%. The isobar contribution is included.



