
Title Suppression of π0 Condensation in Neutron Star
Matter due to Neutron 3P2 Superfluidity

Author(s) 浅井, 文男

Citation 大阪大学, 1984, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1478

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Suppression of

          due

 T

to

o  Condensation in Neutron

Neutron 3P2 Superfluidity

Star Matter

FUMIOASAI

(PH.D. THESIS)

DEPAR[I]MENT OIF PHYSICS,

       [I]OYONAKA, OSAKA

OSAKA

56o,

 UNIVERSITY

JAPAN



Abstract

    '
   It is investigated how the occur'r'ence of TO condensation in

neutron star matter is affeeted by the neutron 3Pz, superfluidity.

Threshold condition is derived by solving the quasi--particle RPA

equation desc]'ibing TO-like colleetive oscillation. Although there

exist five possible solutions of the 3P2 gap equation, numerieal

calculation of the critical density is preferentially carried out

for a simple case where the spin and orbital angular momenta of a

bound pair are in eomplete alignment.

   It becomes evident that the TO condensation is suppressed by the

neutron 3P2 superfluidity. The suppression, however, turns out very

modest irrespective of the type of 3P2 superfluid states. In con-

elusion the neutron 3P2 superfluidity brings about no significant

change in the TO eondensation threshold predicted so far. 7]his con-

clusion may be applicable to the case of TC eondensation without

serious change.
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1. Introduetion

   An understanding of nuelear matter is important both for the

study of nuclear physics and ast]f'ophysics. Through the 1950's and

l960's remar] able progress has been made to understand properties

of nuclear matter around the normal density (po=O.17fm-'3); the
           '
Brueckner theory revealed that the saturation of normal nuclear

matter originates in the singularity of nuclear forces having a

repulsive core which cancels its surrounding attractive forcesi).

On the other hand, the diseovery of pulsars2) and the advent of

relativistic heavy-ion accelerators have stimulated the study of

nuclear matter at high densities and high temperatures. Up to now

various new phenomena, such as pion condensation, neutron 3P2 super-

fluidity, quantam solidification, abnormal isomers and quark matter,

have been predicted to oecur such extreme conditions3t4). Among them

pion condensation and the neutron 3P2 superfluidity have attracted

special attention owing to their striking astrophysical implications

in eonnection with neutron star phenomena.

   Possibility of pion condensation in neutron stars was first su-

ggested by Migda15) and independently by Sawyer and Scalapino6) from

theoretical .crrounds. This e. hase is expected to be realized beyond

the critieal density somewhat higher than but not far from po7). It

is widely accepted that neutron stars cool predominantly through
escaping neutrinos in their hot early period. If charged pions (rrC)

are present, the B-decay proeesses involving pions drastieally en-

hance the cooling rate of young neutron stars, as first pointed out•

by Bachall and Wolf8) and subsequently reexamined by many authors

with explieit relevance to 7e condensation9-!2). This cooling
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meehanism (referred to as the pion cooling) gives rise to an appre-

ciable lowering of the surface temperature of neutron stars untill

later stages of their stellar evolutioni3-'i6). Recent progress in

X-ray sateLlite observation on pulsars (Crab and Vela) and putative

neutron stars in supernova remnants (Cas A, Kepler, Tycho, RCI`JI03,

sNloo6 etc)i7) has yielded interesting upper limits to the sunface

temperatures of these objects, which are consistent as a whole with
  'standard cooling scenarios without the pion eoolingi4-i6). A natural

interpretation is the absence of pion condensates in these neutron

stars and neutron star candidates. Tatsurnii8) and Fru] awai9), how-

ever, pointed out that development of a typical TO eondensate indu-

ces reduction of the phase space available for neutrino proeesses,

and hence tends to retard the eooling of neutron stars. In addition,

quite reeently the pion+cooling was shown to be less effective in a

realistic situation20). These theoretieal conseguences lead to the

fascinating interpretation that the observational data indicate the
coexistence of Te and TO eondensates. 7]he attraetive nature of the

TN p-wave interaction, which is the dr}iving force of pion conden-

sation, favor's the coexistence of both types of condensates2i). A

definite answer to this question must wait for further investigation

both on the theoretical and observational side.

   It is also of astrophysical interest that pion condensation sof-

tens the equation of state for neutron star matter. The ranges of

masses and moments of inertia of neutron stars, which are the most

accessible mechanieal parameters, are sensitive to details of

the equation of state at densities where pion condensation is likely

to occur. In particular, knorntedge of the maximum allowable neutron

star mass is an important ingredient i'n attempts to identify blael
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holes from measurement of masses of compact objeets. Aceo?ding to
several rnodel ealculations undertaken by now22-2g), the "e conden-

sation, if realized, slightly deereases the maximum values of mass

and moment of inertia allowable for neutron stars. This implies,

although the calculations are rather preliminary due to various

uncertainties, that it may be diffieult by observations of masses
and moments of inertia to identify the effect of the TC condensation.
  '
On the other hand, the TO condensation would have a more striking

influence upon these parameters because its realization corresponds

to a drastic structure change of the nucleon system charaeterized

by remarkable localization25'26). Furthermore, sueh a localization

of nucleons could produce a solid-like core in the deep interior of

neutron stars, and thus eould explain the Vela-pulsar glitch and

the Her X-1 star high-low cycLe phenomena27). It seems therefore

premature at the present sta.cr,e to say something definite about the

evidence of pion condensation in neutron stars.

   Possibility of another new phase, the neutron 3P2 superfluid

state, was notieed soon after the discovery of pulsars in 1967. In

contrast to the ease of pion condensation, the observation of macro-

scopic time scales for glitch relaxation of pulsars offers the con-

vincing proof that some part of neutron star interior exhibits the

3P2 superfluidity28). Besides this observational implication, the

neutron 3P2 superfluidity has substential relevance to the neutron

star cooling mainly through reduction of the neutron specif/ ie heat

i3,29 ). A eonclusive calculation of the 3P2 energy gap indicates

that this phase ean exist in the density region po<p<3po30). Such

densities si-gnificantly overlap wtch densities where pion condensa-•

tion is pr'edicted t• o occu]?. A q'uest• i• on ti,",en. a-iri-ses: I-Io;v i•.s t?Å}':e
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occurrence of pion condensation afÅíected by the neutron 3P2 super-

fluidity?

   Pion condensaticn and the neutron 3P2 superfluidity eharacterize

the phase of nuclear matter at neutron star densities. Because of

their observational bearings on the eooling scenario and rotational

dynamies of neutron stars, interrelation between these phenomena (

coexistence or competition) is considered to be the most promising

subject of study which may provide a criterion for establishing the

existence of Dion condensates in neutron stars. Studies of the             =
interrelation problem have been initiated by the Kyoto group, who

investigated whether or not the neutron 3P2 superfluidity persists

under well-developed pion condensates3i). Their eonelusions are as

foilows: (i)[rhe superfluidity can persist under the typical TO con-

densate described by the ALS mode125), although the superfluidity

in this phase becomes essentially of two-dimensional character3ia'

3ib). (ii)Its pe]?sistenee is delicate under a TC condensate because

the mixture of nucleon isospin states diminishes the pairing corre-

lation3iC). (iii)Such a diminishing effeet is almost compensated by

an enhancement due to a large nucleon effective mass if the TO

condensation is coexistent with the TC one3id). Although obser,va-

tional significance of these results was extensively diseussed, any

positive or negative evidence of pion condensation has not been

extracted yet32). Such a situation motivates us to study further

the interrelation problern in different aspects.

   The aim of this paper is to find out to what extent the occurre-

nce of pion eondensation in neutron star matter is affected by the

neutron 3P2 superfluidity. In the superfluid phase the nucleon

sing!e-I article speetru] is modified to have a .crar., and the Ferni
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surface is difused. One needs to inc]ude these mcdiftcations pro-

perly. We concentrate on the critical density and th]?eshold condi-

tion for the TO condensatfon where `uhe eondensate f]?equency is equal

to zero. Our formulation is based on the rnethod of normal mode within

the range of the random phase approximation. There is a very impor-

tant relation between stability of a Hartree-Fock type state of
           '
many-body systems and solutions of the RPA equation describing some

kind of collective oscillation; if the RPA equation has an imaginary

solution, the Hartree-Fock type state becomes unstable for an infi-

nitismal deformation generated by the coUective oseillation33).

This criterion of tnstability has already applied to the problem of

pion condensation in normal neutron star matter34-36). The super-

fluid ease can be formulated in a similar line of approach; threshold

condition is derived f])om the RPA equation describing TO-like colle-

etive oscillation. The resulting threshold condition has a familiar

forrn if we rewrite it in terms of the TO polarization operator which

reflects the modifications induced by the superfluidity. This pola-

rization operator is evaluated directly with the Feynman rules asso-

ciated with nucleon Green's functions..Sueh an evaluation enables us

to examine properties and physical meaning of the TO polarization

operator in the superfluid phase.

   There exist five types of solutions of the 3P2 gap equation37).

The 3P2 gap equation is a eoupled integral equation for five gap

parameters AmJ(q) (mJ=O,Å}1,Å}2),

     A.J(q)= - l Sd3q'vA(q,q')i 2i2Iiiliq,) Tr[Gv(q')GifiJ(a-')] ,

                                                              (1.l)
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wtth

     [G.J(a)]..,=(g ;2Iga,lsms)(sLmsmLlJmJ)yL.L(a) , (l.2)

     Vx (q,q' )=. p2 .. . S d3 ]?j L(q]')YNx .J (i,2 )V(i,2 )jL(q'r) YxmJ (i,2) •

                                                              (l.3)

Here 8q=(q2-qg)/2Mee with qF and Mee being the Fermi momentum and

nucleon effeetive mass, D(a) is the energy gap, V(1,2) is the

                          •two-nucleon potential and r is the relative eoordinate between two
nucleons with momenta (a,-a).

                                        A     YXmJ(i'2)=.J.iiL+.s(SLMsMLiJMJ)YLmL(")Xsms(i,2) (i.4)

                 '
denotes the spin-orbital angular part of the wave function for a

nucleon pair. The simbol X indecates a set of quantum numbers of

spin (S=l), orbital (L=1) and total (J=2) angular momenta. The

energy gap is related to the gap parameters by

                    D2(a)- ;[vr[At(El)A•(q)], (l.s)

with

                     A(a)iiJA.J(q)G.J(a) • (l.6)

   Solutions of eq. (l.l) are elassified aceording to which of the

gap parameters are dominant.

Sol. I: the solution only with mJ=Å}2 gap parameters.

Sol. 2: the solution only with mJ=O gap parameter•
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These two simple cases were first diseussed by Tamagaki (Sols. I

and 2)38) and by Hoffberg et al. (Sol. 2)39). Thei]? energy gaps

are axially symmetric and deformations of the Fermi sphere are,

respectively, oblate and e. rolate with respeet to the axis of spin

quantization, as sehematically illustrated in Fig. I.

Sol. 3: the solution where miO,Å}2 gap parameters are coupled.

Sol. 4: the solution where mJ=Å}l gap parameters are coupled.
  'Sol. 5: the solution where mJ=O,Å}l,Å}2 gap parameters are coupled.

These solutions have axially asymmetric energy gaps characterized

by complicated angle dependence. The energy gap of Sol. 4 has nodes,

while Sols. 3 and 5 are nodeless. The most general self-consistent

solution, Sol. 5, is considered to represent the ground state of

neutron star matter in the density region considered here, although

all the types of solutions (Sols. 1'v5) are almost degenerate.

   We calculate the critical density for the TO condensation rea-

lized from Sol. 1 where the spin and orbital angular momenta of a

bound pair are in complete alignment. In the numerical caleulation

we take aceount of tuo additional effects arising from the A33(1236)

isobar and NN short-range correlations.

   The contents of this thesis are as follows: The next section is

devoted to the derivation of the threshold condition. In see. 3 the

TO polarization operator is evaluated with the Feynman rules and
                 'its properties are discussed. Numerical results are shown and di•s-

cussed in see. 4. 1"he last section is for concluding remarks.

   7-i-



2. Derivatiori of t• he threshold condition

   '
2.l. HAMILTONIAN

   As far as the TO eondensation is eoncerned, protons admixed in

neutron star matter can be disregarded because of small admixture

(several percent). We start with the following Hamiltonian for the

neutron + TO system (th=c=pion mass=1):
  '

     H=Hi&+Ha+HkN+HrN , (2•1)

     HIOg=g.8qna.nq. , (2•2)

     H:=goopaptap , (2.3)
                                              '     HftN= (4g)2gq,vx(q,q')jlJb:.J(q)bx.J(q') , (2•4)

     HTT•iN=gq 5Bfp(E}'f)).Bn[Il.nq..pB(ap+atp) . (2.s)

                                      '

Her,e a)p=Mp 1 , fp=-ifp//29alp with f and .Q being the TN nt-wave

coupling constant (f2/4T=O.08) and normalization volume, g are the

Pauli spin matrices.

     b:mJ(q)= ori g., Sdq[G.J(q)]..,naj.ntq.t (2•6)

is the boson operator representing a neutron pair with relative

momentum q and angular momenturn quantum numbers X and mJ. The
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Ha.rniltonians HIO g and Hg stand for the neutron and pion free parts,
while HIXgN and iHTI.J eorrespond to the 3P2 pairing and TN p-wave
   '
interactions, respectively. We may treat these interactions sepa-

rately because the most responsible for the pairing interaction is

the spin-orbit force due to exchange of heavy mesons, such as "a",

al and p38).

   Suppose now that the pain'ng interaction is dominant and the

system is in the 3P2 superfluid state. The Hamiltonian H should be

then rewritten in terms of quasi-particle operators. This is done

by making use of the generalized Bogoliubov transformation intro-

duced by Tamagaki38),

      ft,-.=g[u.B(a)nqB-V.B(a)ntqB] ,

                                                            (2.7)
      nNqt.=ZB[u&B(a)n8B-VaB(q")n--qB] ,

where ftqct and Nnt qct are the quasi-e. article operators, UctB(a) and

VctB(a) are elements of the 2Å~2 transformation matrices U(a) and
                                     '  +V(q). Properties of these rnatrices are'summarized in Appendix A.

The transform of H is

     f\. fr O +H O +fr                                                            (2.8)        NT              TN                 ,

     f\ 10g=&Eql\ ll ,, ?iq.'Ko , (2'9)

wher'e Eq=/21&+D2(Ei) and Ko denotes the ground state energy of the

neutron system. Although fr                            eontains four distinct terms with                          T}g
respect to the quasi-particle operat/ o]s, oniy ".he terrc.s i•r•hie]a•
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couple pions to

discussion (see

quasi-pantic1e

Fig. 2);

pair states are relevant to our

i\.N'VZ

    pq

where uT(a)

.gi.fp(&•S).y[ugB(6)vy6(a-s)

    +vg B (.a ) uy 6 (a-s ) ft-qB"q-p6

                         "means the transpose of U(q).

Nt
n qB

](a

Nt
n p-q6

p+atp) ' (2. 10)
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2. . 2 . PI ONIC rNS [I]A BILI TY OF [IrHE SYSTEM

   Since the Hamiltonian fr                             couples ptons to the quasi-particle                          rrN
   'pair states with the quantum numbers of the TO, the system rnay

develops a TO-like collective oseillation. In order' to deseribe

such a kind of oscillation, we introduce the following eigenmode

operator:

     st(k)=s;(k)+sfi(k), (2.u)

     s;(k)=c(k)al+n(if)a.k, (2•i2)

     sNt(ft)=g ,g,.(3'2).y[c.B,y6(ask)fta"E.-q6

                         'XctB,y6(a;k)"-.qBBqdk6] ' (2•l3)

Its eorresponding eigenfrequency is determined from the RPA equation

               [fr,st(k')]=cost(k') . (2.14)
                                      '

The relevant nonvanishing cormnutators are evaluated to be

     [frg,St.(k")]=cok(C('k)al-n(k')a.k) , (2.ls)

     [ ?I i9g ,SitN ( k• ) ]=g ,gi. ( E} ' Q ) ay (Eq'Eq-k )

               Å~ [ C or B ,y6 ( Eil ;k ) ?i [Il f3 ?i il<1 -q6-X o, B ,y6 ( Eil ; k' ' ) i!i-qB?iq-. k6 ] , ( 2 ' 16 )
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[fr

TNO
st(k)]=(gck)-n(r,))f
 T

k2
  q

2
spin

+A(o•k)
    ctY

Å~[U
[[,

ct B
•(q)v Y6

(q-g)k8Bn"','.,6   t+v  or B
(q)u   (a-k)n"

Y6 -qB
nN     ]) q-k6 (2.I7)

[ft.N,S k(k)].      ,(a-k+al)fk 2
          q

2
spin

      (3•+A(u•k)
    ctY

2)
pp

Å~[XoLB,y6 (a;k)(u:B(6)v
p
 ++6(q-k)+U T

i't

  ++6(q-k)v   •  (q))pB

-CorB,y6
      ,++(q;k)(V      u6 ++(q-k)U pB

(a)+vSB(a)u   ++p6(q-k))] . (2.l8)

Cornbining eqs. (2.Il)N(2 .18), we obtain a set of equations

  ++(g(k)-n(k))f kU:B(a)Vy6 ÅÄ+(q-k)

+ (Eq+Eqdk' oo ) C
ocB,y6 ++(q;k)=O , (2.19)

  ++k(k)-n(k))f kV&B(a)Uy6 "+(q-k)

"'  (Eq+Eq-k+es )X
ctB,y6 +-(q;k)=O , (2.20)

(cok-ed)g(k')+e(k)=o , (2.21)

--  12 --



( (D

 k
     -- ++oo)n(k)--O(k)=O , (2.22)

with

  +O(k)=f     k
2
q

2
spin

->. A
(o'k)

ctY
  A(&•k) lup[XctB,y6 (a,k)

   TÅ~(U
   pB

(a)v
p6

(6-ft)+u [[,

#6
(a-g)v   +  (q)-cpB orB,y6

(q;k)

   tÅ~(TV'

   p6
+ÅÄ(q-k)U pB

+(q)+v ,
pB

"(q)U p6
(a-k))] . (2.23)

These equations lead to the eigenvalue equation for co

l=
   f22 co

  kk
 22ed --co k

2
q

 E (&•i})
spin

+A(o•k)   [
pp

vt   (a)u
      Y6 ctB ++(q-k)

ctY Eq+Eq-k
+co

Å~(UT
yB

+(q)v   p6
      [I]++(q-k)+U      v6 ++(q-k)V -(q))+

uT
 oe B

+(q)v Y6 ++(q-k)

pB E +Eq q-k - co

Å~(vt
v6 ++(q-k)U pB(a)+v:B +(q)U p6

ÅÄ+(q-k))] . (2.24)

After some manipulattons, eq. (2.24) is reduced to the eompact form

1=
f2k2

   2
)st q

(E +E )Tr[W t

-qk (a;k)w(a,k)]

( co 2dco 2

k
al 2- ( Eq+Eq-k )2

,

(2.25)
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with

     w(a;k)-u(q..k)(&•R)v(tq)+[u(a)(&•R)v(q.k)]T . (2.26)

A straightforward calculation yields

     Tr [wt (a; i} )w(a; il ) ]= ( 1-21q8q-k/EqEq-k )

      '               +[I]r[(El;•i})TAt(a-ill)(&i})A(Eli)]/2EqEq-k , (2•27)

where A(q') is the 2x2 gap matrix defined by eq. (1.6).

   Eq. (2.25) indicates that the TO pola]?ization ope]cator' in the

superfluid phase should be defined as follows:

                 '
                       '
     i\(Il,co)-- fsk2g-!/-lllgdig:eliXllllillSi;lilllL!-g-i-Il2--]-+EqÅílii[IIii2,l;IW(qk)]. (2•2s)

Eq. (2.25) is then expressed as

                        fr(k,.)

                    1= (2.29)                         22 .                        co -eek

Validity of this definition wUl be verified in the next seetion.
   owing to [vr[wt(Ei;il)w(a;i?)])o, eq. (2.2g) may have an imaginary

solution when the following condition is satisfied:

                    IE -fr(ft,O)/coft. (2.30)

In this case the system ts no long.;er stable :7or '.'{h=..) ',70--]'-i•-l•:aL•

                             - l4 ---•



colleetive

noted that

(2.30) are

phase),

osci]-lati•on; th,e TO condensation develops. ]t should be

the eigenvalue equation (2.29) and threshold eondition
                 '
very similar to those in the normal phase (Fermi gas

    E(i},
l=
    co 2-co

co )

2

k
'

(2.31)

with

  +n(k

      ÅÄ1< -ll(k,

     2(fk)2,co)= 9 2
q

o)/co

o(qF-

2

k'

1q-•kl)-e(q.-q)
          L

(2.32)

  N rN,tu+e q-k-e q
'

(2.33)

where e(qF-q) is

the sharp Fermi

given by eq. (2.

superfluidity.

 the

sea.

28)

 neutron oecupation function corresponding to
                           ' This means that the TO polar'ization operator

includes all the modifications induced by the

--  15 -



2.3. INCLUSION OiT7• THE A33(1236) ISOBAR AND NN SHORT-P,A,NGE

     CORRELATIONS
    '                             '   In the above treatment two important contributions are left out;
                                     'the one coming from the A33(l236) isobar and the other coming from

the NN sho]?t-range correlations.

   Fig. 3 illustrates pion self-energy processes in the normal phase

via the isobar, which greatly reduce the energy of pions in matter,
  'and hence encourage pion eondensation. The contribution of these

processes is evaluated to be

     ii ,,,es ( i} , (" ) = i6 Ssf2k ) 2 g [ ,,- (2 ,, +.A+[ii :Il;lll lil [l[l 2MA -q 2/2M ee )

                                    o(qF-q)
                          + co-(coA+(El+i?)2/2MA-q2/2Mee)] ' (2'34)

where alA(=296MeV) is the mass difference between the isobar and

neutron. For lcoÅ}alAl>>l(El;"k)2/2MA-q2/2Dceel we may neglect the isoba]?

and neut]?on kinetic energies. Then we have

where

turns

phase

         ffF.,(i?,co)= 3g (fk)2p ,tuA, , (2•3s)
                               co -cok

p is the neutron density. Under the same condition eq. (2.35)

out to represent the isobar contribution in the superfluid

without any modifieation beeause coA is much larger than the

                       -l6-



energy gap existing in the quasi-particle spectrum E q•

   [Vhe NN short-range correlations in the one--pion channel arise

mainly from the repulsive core of nuclear forces and exchange of

p-mesons. Their effects are usually simulated by a zero-range

effective interaction of the form4,7),

     HNN= Å} g'(tpt'OiTitp)(tptoiTiV)• (2.36)

Here g' is the density- and momentum-independent eoupling eonstant

(g'>O). Due to this repulsive interaction, the quasi-par'ticle pair

exitations undergo repeated scatterings, which raise the energies

of the pair states, and hence prevent pion condensation. Such

seattering proeesses induce renormalization of the TO polarization

operator, as illustrated in Fig. 4. The matrix element of eq. (2.36)

coupling the pair states with rnomentum k is

          <;it,i?-ElrIH,,Ia,i?--a>-g, . (2.37)

Thus, the renormalized iO polarization operator is given by

     frR(i oo )=fr(Il, tu )+fr(k',co)[g'/(fk)2]ftR(k",oo) , (2• 38)

or

     ffY'R(k'co)= l-gtfrliiill(fk)2 ' (2'39)

We apply the same renorrnalization to the isobar contribution.

   Combining these calculations, we find that the origtnal threshold

                             -- 17 -



condition (2.30) beeomes

l<-fr 5ot (k, o)/coft , (2.40)

with

frR

 tot
 +(k,co)=

?il +(k, tu )+ll
res

(itu)

1-.gt[ft  +ck , co )+n
       res

(kco)]/(fk)2 ,
(2.41)

where rt
res

<k',co) is given by eq. (2. 35).
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3. The TO polarization ope]?ator' in the superfluid phase

3.l. EVALUA[VION OF [VHE TO POLARIZATION OPERATOR BASED ON THE

     FEYNMAN RULES
   [Dhe TO polar,ization operator' ?t(IKt,oo) defined by eq. (2.28) eon-

sists of two pieces frn(ft.,to) and fra(ft,co);

     fr(g,co)=frn(k,to)'fr.(k,co), (3•1)
with

     Tt.(g,,,)- fSk2 g -[/Elgtillg:q'E ilii.I :,,,.i'li-kigEaE k) , (3•2)

                 '     fr.(i,co)- fSk2g-!/-iigtiigc:liil:ilil{l-i-il2illiEiill}ii-i-il)-iiEi22-'E,kliili.O,li,T",IE.lli.ik)"(q)]. (3.3)

we first verify that frn(1,co) and fra(1,ed) represent the proper

seif-- energies indicated in Fig. 5. The indicated diagrams involve

three distinct particle-lines, whieh are, respectively, associated
with the nucleon Gr)een's functions Ft(q), F(q) and G(q), as shown

in Fig. 6. These Green's funetions are derived from generalized

Gor'kov equations for a nonze]?o angulai? momentum pairing40,4i).

DetaUs of the derivation are presented in Appendix B. 7]he Feynman

rules yield the expressions

       i\.ck)- -i -ILISELi gS giO [D]r[(3•2)G(q)(3•2)G(q)] , (3.4)
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     fr.(k)= -i -stg?l-LZ- g i l:.O Tr[(3•2)TFt(k-q)(3•Q)FT(q)] , (3.s)

                                         ++where k and q stand for the four momenta (k,ko) and (q,qo). In

wrieing down eq. (3.5), we have used the relation

     (3•2)yBF;6(k--q)(&'Q)6.FB.(q)

                     =[rr[(3"g)TFt(k-q)(&•2)F[V(q)] .

Inserting eqs. (B.I7)rV(B.I9) into eqs. (3.4) and (3.5), and perfor-

ming the integrals with respect to q,, we readily obtain eqs. (3.2)
and (3.3). It is reasonable to refer to frn(k,co) and fra(k,co) as the

normal and abnormal terms, respectively.
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3.2. PROPER[I]IE.q., OF THE l/gORMAL AND ABNORMAL [I?ERMS

   Anisotropy is characteristic of the 3P2 energy gap. Concerning

the normal term, such an ani,sotropy is smoothed out by the summa-
                     •tion with respect to q. Consequently the normal term depends only

on an angular average of the energy gap,

               52(q)iSda D2(q,a), (3.6)

at qlyqF. Here it should be noted that the averaged energy gaps

52(qF) are almost equal for five possible solutions. For example,

Solr l: 62(qF)=3.37 (rqeV)2,

Sol. 2: S2(qF)=3.37 (MeV)2,

sol. 3: 52(qF)=3.48 (MeV)2, (3.7)
Sol. 4: J2(qF)=3.48 (rqev)2,

Sol. 5: 52(qF)=3.48 (Mev)2,

                                                            Aat EF=100MeV3'). This implies that frn(i?,co) is independent of k, and

moreover its magnitude is almost independent of the type of solu-

tions for the 3P2 gap equation, Setting the energy gaps equal to

zero in eq. (3.2), we can easily see that the normal term is redu-

ced to the ordinary TO e. olarization operator in the normal phase

given by eq. (2.33)•

   The abnormal term is a consequenee of the nonconservation of
neutrons, and thus vanishes in the normal phase. sinee fra(E,co)

reflects the anisotropic feature of the 3P2 superfluid state
thir; ough the factoi? Tr} [ (g• ts"r. ) [['A l' ( Eil- r< ) ( E]' • L"c )A ( Iil ) ] , !.t c..s xn... i- ie .{. t.T ly dvapends
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                    .on the direction of k.

   It is worthwhile to estimate the contribution of this novel
    'term to the TO condensation threshold. Roughly speaking, eqs. (3.2)

and (3.3) yie!d

                    ft.(2,o)ctp, (3.8)

                    i\.(il,O)ctP[D(qli)/EIp]2 , (3•9)

         is the Fermi energy. These relations of proportionalitywhere E       F
imply that the normal term is associated with the behavior of all

neutrons in the system, whereas the abnor?mal ter'm only with that

of paired neutrons near the Fermi surface. Pig. 7 sketches such

situations in an intutive manner. From eqs. (3.8) and (3.9) we have

                    KiISIi. ( k' , O )/[ili. ( i? , O )

                      lr[D(qF)/] F]2• (3.lo)

Considering EF2tlOOMeV and D(qF)YIMeV at the density of interest,

we find

                    KZE IO-4. (3.11)

The contribution of the abnormal term is therefore expeeted to be

negligible.
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4. Numerical results and discussion

    '
4.1. THE 3P2 ENERGY GAP

   In o]?der to caleulate the eritical density for TO condensation

realized from the 3P2 superfluid state, we must in advanee solve

the gap equation (1.1) and obtain a set of gap parameters. Here we

deal with Sol. 1 referred to as the maxirnum lmJl coupling case.

This is sufficient to get general eonclusions which are valid for

all the types of solutions, as we shall see later. In this case

eq. (l.1) becomes38)

     A,(q)= - l Sdq'q'2Vx(q,qt)

                       '                               '
                xgda•,,,,iiii,Tll2,ii:llii.kg,,•• (4•i)

and A2(q)=A-,(q). [Vhe gap matr'ix has a diagonal form;

                                       '

                         A               A,(q)Y,,(q) O

                                      A                      o A, (.q)Y, .-,(q)

The energy gap is given by

          D(El)=ra3/ A,(q)sineq. (ij•3)
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   Eq. (4.1) is soLved by using one of Monbcran's nonlccal separable

Potentials"2),

                 Vx(q,q')= -(T/2)hz(q)hz(q') ,

                                                              (4.4)
                    hz(q)=CAqZ/(q2+aK)(Z+l) ,

   'where Z=1, aA=2.72fm-i and CA=122.5[MeVfm-3]'/2. This potential is

                                                 <400MeV in the lab.adjusted to NN scattering phase shifts up to E                                               NN
system. The gap payameter is very sensitive to the neutron effective

mass Mee. To maximize the gap parameter and thus its effect on the TO

condensation threshold, we take Mee=M=940I{eV, although its realistie

value at neutron star densities is believed to be MeeNO.8M.

   Calculated results are displayed in Figs. 8 and 9. In the momen-

tum and density regions neighboring q=qF and EF=IOOMeV, the displa-

yed curves reproduee fairly well both momentum and density dependen-

ces of the gap parameters caleulated from more realistie two-nucleon

potentials37). On the other hand, the magnitude of A2(qF) and its

existing density region are considerably larger than those obtained

from the conelusive calculation30).

   Since the "Iongan's potential (4.4) has no repulsive core, the

r,esulting gap parameter A2(q) is still positive for qit2qF, wheye

the realistie potentials with repulsive cores yield A,(q) with nega-

tive values. We need not, however, take this discrepancy seriously

because the TO eondensation threshold is insensitive to details of

A2(q) in such a high momentum region.
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4.2. CRI[[ilCAL DENSITY

   The precise value of g' is of erucial importance in determining

the threshold for pion eondensation. Up to now eonsiderable efforts

have been made to achieve a reliable estimate of g'. Reeent inve-

stigations"3-"5) yield values in the region of g'=(O.5NO.7)f2, but

no conclusive value has not been reported yet. Here we treat g' as

a parameter beeause our purpose is not to accomplish a preeise

estimate of the critieal density. The direction of the pion momen-
    +tum k is taken to be parallel to the axis of spin quantization.
                                                          '                                '

     [v.[(E}.I})[VAt(q-il)(&Q)A(a)]. 3qA2(q)A2Åíl;t-'i?l)sin2eq , (4.s)

                       - 4Tlq-kl

                                                '                  D,(Eii.-i}). 3q2A;(ilil-lli)sin2eq , (4.6)

                                  lq-kl                               8T

                                                         'where la-kL=!Etl;F:'5EiEZI51;5' Ilk 2qkcose . with thes6 expressions we can soive

the threshoLd condition (2.40).

   Nurne]?ical ealeulations of the eritical density pc have been

earried out for two eases ',vith and without the isobar contributicn.

Calculated r'esults are plotted in Fig. 10 as a function of g'.

For pkO.5po the neutron 3P2 superfluidity eomes into existenee and

increases the critical density from its values in the normal phase.

Roughly speaking, the inerease in pc defined by

               A Pc i( Pc , s up e -,e -' O' e , n o r m a i ) / Pe , n o ]? m..a i ' ( b' '1 )
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is Di ]?oportional to the m.agnitude of A2(qF).

   Since in the superfluid phase excited states are separated from

the ground state by a finite gap, some excess of energy correspon-

ding to this gap is required to break a neutron bound pair and

excite a TO-like quasi-partiele pair. [rhe TO condensation cannot

take place until the ener'gy gain due to the TN p-wave inter'aetion

exceeds further this extra energy. Such a suppression mechanisrn is

operative only for the neutron bound pairs near the Fermi surface,

while the TO condensation is followed by the change of all neutron

states. Thus, the order of magnitude of Apc is expected to be com-

parable with that of A,(qF)/EF which measures the extent of diffu-

sion of the Fermi surface. The various quantities calculated from

gt=O.6f2 are listed in table 1. In this case Apc is O.13, which is

about an order of magnitude larger than the value of A2(qF)/EF•

This means that the neutron 3P2 superfluidity affects the TO eon-

densation threshold beyond the expeetation. Nevertheless, the

superfluidity induces only a smalX increase in pc compared with the

one resulting from the NN short-range eorrelations.
   We have confirmed that the contribution of the abnormal term of

the TO polarization operator is completely negligible compared with

that of the normal term. The ratio K defined by eq. (3.IO) is ext-

remely small (K=l.6Å~10'3 for g'=O.6f2), which is consistent with

the rough estimation (3.11). Relating this fact with the properties

of the normal term, we are led to the following conelusions: (i)IVe

need not specify the direction of the pion momentum ft; the TO con-

densation favors no particular direction even in the case realized

from the anisotropic 3P2 superfluid state. (ii)Critical densities

are very close for aU the types of so]u•ti•ons (Sols. 1"J5).
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5. Concluding• remarks

    '                             '   We have found that the TO condensation in neutron star matter

is suppressed by the neutron 3P2 superfluidity. The inerease in

the critical density is, however, not more than 309, of its values

in the normal phase, although we have deliberately overestimated

the effect of the superfluidity by employing the maximal gap para-
  'meter. This means that the suppression of the TO condensation is

very modest in the realistic situation, i.e., ApcEseveral percent

in aceordance with A,(qF);eO.6//r2 MeV30). Thus we may conclude that

the neutron 3P2 superf!uidity brings about no significant change

in the TO condensation threshold predicted so fa]ri.

   [Dhis conelusion applies to the case of TC condensation as well.
                 '
A straightforward extension of the formulation presented in see. 2
leads to the TC polarization operator of the form

     ft,(k,.). fsk2 g[ S/-ISiill-ili31iii8 )/.(,))(.,,p-(,) ( ))

                     -s/-!2IsXll.4\l-i().iE))(.Ei)())], (s•1)

                                  q q-k

where 218i)=(q2--qgi)2)/2M(i)i and Eai)= 21ai)2+D(i)2(a) with i=n,p.

In the derivation of eq. (5.1) we have taken aceount of the fact

that the proton iSo superfluid coexists with the neutron 3P2 super-

fluid at the density of interest. Beeause of the charge conservation
law, ftC(k",oo) does not have a term corresponding to the abnoymal term•
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The ene]?gy gaps existing in the nucleon single-partiele spectra
are masked by a large condensate frequency (og')2pion mass>>energy

gaps). Therefore, as far as the threshold condition and critical

density are concerned, it seems unlikely that the neutron 3P2

superfluidity, as weU as the proton iSo superfluidity, has a

notable influence upon the TC condensation. This observation is in

sharp contrast to the well-developed ease where the TC condensation

strongly attenuates the neutron 3P2 superfluidity3!C). Zn this

respect, it is quite interesting to see whether or not the same

situation is realized in our line of approach whieh starts from the

superfluid phase side.

   In this paper we have left another interesting problem untouched:

How does the neutron 3P2 superfluidity behave after the TO conden--

sation develops? Studies of these remaining problems wUl lead to

a deeper understanding of the interrelation between pion conden-

sation and the neutron 3P2 superfluidity.
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Appendix A

    '
                ++P?ope"ties of Urq) and V(q)

                                -+   The transformation matrices U(q) and V(q) are, respectively,

proportional to the unit matrix and gap matrix;

                     •                    U(q)=uqXl ,

                                                            (A

                   vca)- ---\E}rxA(a) ,
                          D(q)

where uq and v q are given by

                               N                    .&- Å}(i+ gg),

                               N                    v&= Å}(1- e), (A

                        D(a)
                  uv= .                   qq                         2Eq

since the gap pa]r'ameter satisfjes A[V(a)=-A(--Ei)=A(El), we have

               ut(q+)-uee(a)-uT(a)-u("El)-u(El) ,

                                                            (A
               vTca)--vc-a)-vca) .

.l)

.2)

.3)
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Appendix B

    '
Deor,ivation of the nueZeon G?een's funetaons

   We start ntth the Hamiltonian

with
      '
     Hpair= Å} gq, ,ji.<6'u',-q'v'tva,2)lap,-av>

                            tt                           Xnq,p,n-q,vtn.-qvnqy . (B.2)

Applying the Hartree-Fock-Gor'kov approximation46) to HB, we have

                '

     HB=H&+Npair)HF

        + Å} g i.[Atu(Eli)n-q.nqv+Au.(Eli)nlllvntq.]

        +correction term. • (B.3)
Here Hpair)Hl7 Co?respond to the Hartree-Foek contributions, which

are taken into aecount by using an effeetive mass approximation

for the nueleon kinetic ene?gy. The order parameters for a nonzeyo

angular momentum pairing are defined by

     AII,(El)ig, gB<EltoL,-at3lv(L,2)lEiy,-Eiv>FllB(El,,o) ,

                                                           (B.4)

     Ap.(a)!g, g3<av,-aiJ1v(],2)lqtn,,,--aT3>.7.••B.(:•i,o) ,
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wher'e Fl3(El',O) and F3ct(El',O) denote the the]:'mal Green's funetions

[ehese definitions guar)antee that Avv(Ei) and A:v(a) satisfy

          A,v(Eil)='-Avp(-Elil) , A:v(Ei)=Aev(Eli) ' (B'5)

                         (q) form the gap matrix A(a). The thermal[Dhe order parameters A                      pv
Greents funetions are defined by

        F[llB(Eil,T--bT')i<[I]i:(n[ll.(T)nÅ}qB(T'))> ,

        Fc,B(q-;'T-T')E<TT(n-qct(T)nqB(T'))> , (B.6)

        Gct B(Elil ,T-- T ' ) :'-<TT( nq ct (T )n[ll B (T ' ) ) > ,

where [rT is the time-ordering operator and the angular braekets

mean an ensemble average in the grand canonieal ensemble.

   The Hamiltonian (B.3) yields the equations of motion
                                        '

        '[ll:.rnq,,(T)=-lllqnq,,(T)-2A,,i,(q"')nÅ}qp(T) , (B•7)
                            p

        'll-:.f'"[llct(T)=-2Iq"llla(T)'iiAIIIia(-Ei])"-qTa(T) ' (B'8)

Combining eqs. (B.7) and (B.8) with eqs. (B.6), we obtain the

equations of motion for the thermal Green's functions

.
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(g-r. +8,)G
oc B

 +(q,T-•T ')-2A
   v ctP

(q')F t
pB

=-6

( --• El , .-. , )

ct B 6(T-T,) '
(B.9)

(}.
,'

 2Iq) Z7 [ll B ( Eli , ,-. t)-2A
   l.i

t (-Ei)G
ctv ]a B

(-q-"
,T-T ,)=o , (B.IO)

It is advantageous

variable T"7). The

are evaluated to be

to employ the Fourier

Fourier transforms of

representation in the

eqs. (B.9) and (B.IO)

       (i(Dn-21fq)(]oc3(Eli,CDn)+SAoru(Ei)l'SB(-'Eli,`Dn)=6ct6 , (B'll)

                       '       <iCDn"2\q)'E'[!lB(q',CDn)'iA&u(-El)(]iyB(-Eil,`D.)=O ' (B'12)

                                                '

Eqs. (B.ll) and (B.l2) are generalized Gor)'kov equations.

   We now assume that the system does not have spin polarization.
This assumption requires that Gor3(El,con) should be diagonal with

respect to the spin indices, whieh is equivalent to the requirement

In

to

this

be

case

          +     2A         (q)A
     p cty

solutions of

Ft
 ocB

(a, to.)=

t
la B

(a)-D

eqs.

2(a)6

<B.ll)

At
 otB

(-a)

ct B

and

.

'

(B.13)

(B.12) are easUy found

co2+8 +D2

 nq
 +(q)

(B.14)
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                 F.,(a•co.)- .,.8gitiii•, •

                               .N                               lco +E                 G.3(a,con)=-ll,llii[IG";g-;("[i'i+eq+D2<q) '

Utilizing analytie continuation"7), we can show that eqs.

N(B.16) lead to the following expressions for the nucleon

functions at zero temperature:

                              '     F[:B(q)= - Ailli-El) [ q,-iq+i. d q,+IIq-ie ] '

                     +     F.B<q)i ' A2:ilii-q) [ q,.-llq+iE - q,+llq-ie ] '

                        rx, N              6                      E +e                                  E -e     GctB<q)" 2gg [-Ei';,-SIEr:'i}I'E-- -E,+iE ' q,2Eg2ie]'

                                    +where q stands for the four momenta (q,qo).

 (B.15)

 (B.16)

CB.14)

G]eeen's

 (B.17)

 <B.18)

 (B.I9)
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 captions

. Deformed Fermi spheres; (a) the case of Sol. 1 and (b) the

  case of Sol. 2. Arrows indieate the direction of spin

  quantization.

. Processes contained in i\mN given by eq. (2.IO).

. Pion self-energy processes via the A3,(l236) isobar.

. Renormalizatibn of ?r(i?,os) due to the NN short--range

  correlations. Shaded triangles are renormalized vertices.

. Proper self-energy diagrams in the superfluid phase; (a)
  the normal one corresponding to frn(rt,oo) and (b) the abnormal

  one eorresponding to fra(k,co).

. The nueleon Green's functions in the superfluid phase.

. Pion self-energy processes producing the normal term (A)

  and the abnormal term (B). Double circles stand for the

  Ferrni sphere with diffused surface. Solid lines connecting

  two nucleons with opposite momenta indicate that these

  nucleons form a bound pair.

. Momentum dependence of the 3P2 gap parameter at EF=100MeV.

. Density dependence of the 3P2 gap parameter at the Fermi

  momentum. The iSo energy gap is also shown for comparsion.
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Fig. IO. Critical densities for the TO condensation realized frorn

    the 3P2 superfluid state (Sol. I). Critical densities in

    the normal phase are also shown with dashed lines for

    comparsion. Lower and upper curves represent the eases

    with and without the isobar contribution, respeetively.
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k 2.8 fm-i
c,super

Pc,super/Po l.8

Pc,normaZ/Po 1.6

Ap
  c

1. 3xlo-• i

?r  (k
a

at

e'O)/frn(kc,O)

p=p   c,super

1.6Å~lo-3

   A2(qF)/EF

at p=p      c,normal

2.5Å~lo-2

Table 1.

g'=o.6f2.

Various quantities calculated from

 The isobar contribution is included.


