<table>
<thead>
<tr>
<th>Title</th>
<th>乳腺腫瘤におけるMulti-section Magnetic Susceptibility Perfusion Echo-Planar Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>戸崎，光宏；福田，安；福田，国彦</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 63(5) P.214-P.220</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-05-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/14799</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Multi-section Magnetic Susceptibility Perfusion Echo-Planar Imaging of the Breast

Mitsutaro Toza, Yasushi Fukuda, and Kunihiko Fukuda

Purpose: To examine the diagnostic value of multi-section magnetic susceptibility perfusion echo-planar imaging (perfusion EPI) in patients with breast tumors prior to T1-weighted dynamic MRI.

Materials and Methods: MR imaging was performed in 75 patients with pathologically proven breast tumors using a 1.5 Tesla MR unit (MAGNETOM Symphony, Siemens Medical Solutions, Erlangen, Germany). Perfuson on EPI was carried out before, during, and after the injection of 0.1 mmol Gd-DTPA/kg. Two patients had two carcinomas in the same breast, one patient had both a benign and a malignant lesion in the same breast, and two patients had lesions in both breasts. Histopathologically, diagnosis was non-invasive ductal carcinoma in 9, invasive carcinoma in 49, and benign lesion in 22. The first-pass signal intensity loss of the lesions was calculated by perfusion EPI.

Results: Fifty-one of 58 carcinomas but only 4 of 22 benign lesions had a signal intensity loss of 20% or more during the first pass, for a sensitivity of 88% and specificity of 82.

Conclusion: Perfusion EPI can be used as a useful diagnostic tool for differentiation between benign and malignant lesions. It is also thought to be a promising method for diagnosing multifocal breast lesions.

Key words: Breast cancer, Magnetic resonance imaging, Echo-planar imaging, perfusion study

Research Code No.: 521.9

Received Oct. 21, 2002; revision accepted Mar. 10, 2003

Department of Radiology, The Jikei University School of Medicine

はじめに

乳腺癌の画像診断は、存在診断、質的診断、および乳腺の広がり診断に大別される。乳腺癌の質的診断は、一般にマンモグラフィと超音波検査にて行われるが、コンタクト分解能に優れるMRIの有用性が多角に報告されている。T1強調像で行うダイナミックMRI(TW-dynamic MRI)を用いたsensitivityは83〜96%と高い(1)〜(3)、specificityの報告は77〜89%とさまざまなである(4)〜(8)。近年では、T2強調像を用いたperfusion studyにおいてspecificityの向上が報告されており(9)、良悪性の血管新生の差が反映されているためと考えられている。しかし、この手法はT2-w dynamic MRIで濃度を可定し、その重ねにつなげてperfusion studyを行うもので、造影剤の利用が必要であり時間もかかる。また、Delphi法(9)は、造影剤を一度投与すると真のT2強調像は浮かれないことを指摘している。

一方、要された時間分解能と強力な磁化率効果をもつechoplanar imaging(以下EPI)を利用することで、造影T1強調像の間に複数のスライスを同時撮像する方法が報告されており(10)、その有用性が期待されている。今回われわれは、multi-section magnetic susceptibility perfusion EPI(以下perfusion EPI)をT2-w dynamic MRIに先駆けて行い、乳腺癌の質的診断における有用性を検討したので報告する。

対象および方法

1. 対象

当院において、2000年12月から2002年6月の間にperfusion EPIが施行され、組織診断がなされた乳腺癌症例は83例である。その中から、術前化学療法が施行された8例を除いた75例を対象とした。

内訳は、乳腺56例、良性19例である。乳腺癌症例は年齢30〜79歳（平均51歳）、良性症例は年齢26〜69歳（平均41歳）であり、全例で女性である。乳腺58例、乳癌1例、良性1例は対照に病変を認め、計80例（乳癌58症例、良性22症例）を検討した。

乳癌58症例は、非浸潤性乳管癌9例、浸潤性乳管癌44例
Fig. 1 A 46-year-old woman with breast cancer.
A: Following perfusion EPI, dynamic 3D-VIBE was performed 70 seconds (left) and 5 minutes (right) after intravenous injection of contrast material. Sagittal multilobal reformation image (left) and axial image (right) show an irregular enhanced mass.
B: Time-intensity curve of the perfusion study. Dynamic contrast-enhanced T1-weighted image (A) is used to guide identification of the lesion. Note the rapid signal intensity loss of the lesion (1) compared with normal breast tissue (2).
C: Perfusion EPI images were obtained before and 15, 30 seconds after bolus injection of contrast material. Note the marked perfusion effect of the lesion after 30 sec.

(乳頭腺癌12例，充実腺管癌6例，硬化症26例)，他液癌1例，薬剤癌1例，浸潤性小葉癌3例で、腫瘍径は5〜80mm（平均27.6mm）である。良性22例で、線維腺癌12例，囊胞性癌1例，乳頭部腺癌1例，乳管内乳頭腺癌1例，乳腺炎1例，乳腺炎6例で、腫瘍径は8〜80mm（平均23.6mm）である。

2. 検査方法

使用装置はMAGNETOM Symphony（Siemens社製，Erlangen, Germany, 3T装置）を用いた。撮像方法は，患側全乳房を撮像範囲として脂肪抑制併用 3D-VIBE（three-dimensional volumetric interpolated breath-held examination），perfusion EPI，脂肪抑制併用dynamic 3D-VIBEを施行した。また，両側に病変が疑われる症例では両側全乳房を撮像した。

3D-VIBEの撮像条件は，TR/TE=3.7/1.7 msec，フリップ角12°，バンド幅450Hz/pixel，FOV 270×216mm（phase 81.2%），マトリックス256x191，スライス厚48〜60 mm，スライス厚0.5〜1.5mmとして，約35秒間で撮像を行った。perfusion EPIは，single shot EPIを用いecho space 11msec，TE 61msec，フリップ角70°，バンド幅1028Hz/pixel，FOV 245mm，マトリックス128x128，スライス厚5mmで患側乳房全体をカバーできるように設定した。ギャップは乳房の
大ささに合わせて、0〜30% (1.5mm) と適宜変更した。perfusion EPI は、造影剤注射直後から撮像を開始し、約 2 秒間隔で60秒間連続撮像を施行した。造影剤Gd-DTFA 0.1mmol/kgを3ml/secにて自動注入し、終了直後と生理食塩水20mlを注入した。乳癌の信号減衰は注入30秒以内に急速に観察されるので、この間の呼吸停止によるアーチファクトを抑えるため、造影剤注入終了直後から約30秒間の息止めを行った。Dynamic 3D-VIBEの撮像タイミングは、70秒後および5分後から撮像を開始した。

3. 検討方法
1)信号強度減衰率による良悪性的鑑別
perfusion EPI で得られる動的ダイナミック画像で、腫瘍と正常組織組織にそれぞれ関心領域(region of interest; 以下 ROI)を設定して、信号強度の変化を測定した。信号強度減衰率(造影前信号強度-造影後信号強度)/造影前信号強度×100(%)を定義し、造影開始より30秒以内における信号強度減衰率の値を算出した。perfusion EPIの画像はS/N比が低く、また病変以外の乳腺組織も高信号となることが多く、さらに、病変が小さくROIの設定が困難な場合もあるため、dynamic 3D-VIBEの画像を参考にして定義されると一致する部にROIの設定を行った(Fig. 1)。

2)乳癌の組織型と信号強度減衰率
乳癌の信号強度減衰率と組織型との相関の有無を検討した。

結果

1) 信号強度減衰率にによる良悪性の鑑別
良性病変および乳癌の信号強度減衰率(%)は、それぞれ11 ± 2C、50 ± 25(平均値 ± 標準偏差)であった。
Wilcoxon's rank sum testで統計学的有意差が認められた(p<0.001)(Fig. 2)。信号強度減衰率20%を良悪性のサブオフ値とすると、sensitivityは88%，specificityは82%であった(Fig. 3)。

False negative 7例は非浸潤性乳癌1例、浸潤性乳癌2例、粘液性乳癌1例、浸潤性小葉癌3例であった(Table 1)。

Table 1 Histologic findings of breast cancers with a signal intensity loss of 20% or less

<table>
<thead>
<tr>
<th></th>
<th>age</th>
<th>size (mm)</th>
<th>SI loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive ductal carcinoma</td>
<td>47</td>
<td>80</td>
<td>14.3</td>
</tr>
<tr>
<td>Invasive ductal carcinoma: scirrhous carcinoma</td>
<td>51</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>Invasive ductal carcinoma: scirrhous carcinoma</td>
<td>52</td>
<td>16</td>
<td>10.5</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>83</td>
<td>12</td>
<td>2.7</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>47</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>47</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Mucinous carcinoma</td>
<td>41</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

日本医学会誌 第63巻 第8号
非浸潤性乳管癌の症例数は80例である。5例の非浸潤性乳管癌の中で最大であったが、最も乳管の密が線であり、かつ発症乳腺組織を背景としていた。浸潤性乳管癌の2例はいずれも線であった。大きさ、程度、細胞の異型度、骨髄の異型度、他の癌との間にある有意差は認めなかった。粘液癌の症例は、他の組織型の混在がほとんどない純粋な粘液癌であった（Fig. 4）。

Fave positive 4 例は線維組織癌、葉状線癌、乳頭腺癌、乳腺炎の4 例であった（Table 2）。葉状線癌の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢は25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸润性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。

非浸潤性乳管癌の巣状癌が最も多く、しかし線維組織癌の症例は例数が少ない。乳管腫が最も多く、線維組織癌が2例である。乳管腫の4例は、乳管腫の症例は26歳で、大きさは25mmであった。他の11例の線維組織癌は平均年齢45歳、大きさは2個14mmであり、最小年齢が25歳で、最大年齢が45歳で、他の症例に比べて小さい。
められ、80%を超える硬癌は認めなかった。

考察

乳癌と線維腺癌の腫瘍血管密度は、組織学的にもオーバーラップしていることが報告されている1)。良性悪性の鑑別において、T1W-dynamic MRIのspecificityが高い理由と関連があると考えられている。しかし、良性腫瘍の新生血管は構造的、機能的に異なり、これら、動脈像シヤント、未熟な基底膜、周辺細胞の欠如、血管透明性の不明な充進などの特徴をもつ、T2*短縮効果を利用したperfusion studyではspecificityの向上が得られており、乳癌と良性腫瘍のangiogenesisの差や乳癌の新生血管の高い透過性を反映していると考えられている。最初の報告では症例数も少なくsensitivityも100%であったが23)。Kvistadらは72例の乳癌でのsensitivityは79％、specificityは93％と報告している24)。sensitivityをもとにT1W-dynamic MRIのほうが高く、現在の乳癌MRIにおけるperfusion studyの位置づけに明確化されていない。

また、グラディエントエコーを用いた報告25)がほとんどであり、時間分解能の制限からシングルスライスの値をもとにT1W-dynamic MRIの画像を確認する必要がある。すなわちT1W-dynamic MRIの後にperfusion studyを行うことで、検査時間の延長および造影剤（Gd-DTPA 0.1mmol/kg）の増量投与が必要であり、実際の臨床的場で普及しがたい理由と考えられる。またDelileらは、造影剤を一度注入すると真のT2*短縮効果は得られないことを指摘しており26)、さらにDannertらはこの手法でのsensitivityが54％（71）と低いことを報告している27)。これに対し、優れた時間分解能と強力な磁化率効果をもつEPIを利用することで、複数のスライスを同時撮像する方法が報告されている28)。この方法では、乳腺全体をカバーしつつ造影T1強調像の前に撮像可能である。われわれは時間および空間分解能に優れた3D-VIBEを使用し、T1W-dynamic MRIでの巻き込みを防げることなくperfusion EPIを施行している29)。

Orelらは、時間分解能と空間分解能の両者の向上が、最も優れた乳癌MRI評価ツールにつながることを指摘している30)。そして、T1W-dynamic MRIの時間分解能の向上は、perfusion EPIをルーチン検査として組み込むことを可能にするので、その有用性を検討する必要がある。

Kvistadらは、信号強度減衰率20％を良性のカットオフ値とし、15例（21％）のfalse negative症例を報告している31)。
速な信号強度減衰を示さない乳癌は、非浸潤性乳管癌2例、浸潤性乳管癌3例、粘液癌2例、管状癌2例、浸潤性小葉癌1例であった。今回の結果では、false negative症例7例（12%）であり、非浸潤性乳管癌1例、浸潤性乳管癌2例、粘液癌1例、浸潤性小葉癌3例であった。

sensitivityの向上には、EPIによる強力な磁化率の関与していると考えられる。非浸潤性乳管癌では、1例のみが14.3%の信号強度減衰率であった。本症例は、広範な広がりを示し、腫瘍内組織型を背景とした極性性の乳管癌であることが推定的であった。非浸潤性乳管癌と、血管増生の他に、乳管の数を考慮した信号強度減衰による考慮された。粘液癌及び小葉癌では、TIW-dynamic MDRで強い増強効果を示さないことが知られた6, 10, perfusion EPIでfalse negativeになりやすい組織型と考えられた。

浸潤性乳管癌の重型別にみた信号強度減衰率では、硬癌が比較の低い傾向にあった。信号強度減衰率20%以下を示すのは硬癌のみで、80%を超える硬癌に認められた。われわれは、超音波ドプラ法におけるブラスベットが乳癌の腫瘍内線維化の程度と相関を示すことを報告した17。さらに、免疫薬用学的所見を用いた腫瘍血管生成測定において、高度な血管増生を示す乳癌でも非常に強い線維化を示す硬癌では、ドプラ法で得られる血流情報に血管増生の差が反映されないことを報告した10。血管増生と組織型との関係は報告されていないが、画像から得られる血流情報を有する新鮮の計画もまた、腫瘍内線維化の多寡などの腫瘍内組織構造が反映されていると考えられる。今回、信号強度減衰率と組織型との間に統計的有意差は認められなかったが、perfusion EPIのfalse negativeを検討していこうとも、血管増生以外の要因を考慮する必要がある。

false positive症例に関して、Kristalらは線維腺癌1例と乳頭腺1例の計4例（4.5%）を報告している8。今回の結果では、腺管腺癌、葉状腺癌、乳頭腺癌、乳頭腺炎の計4例（18%）であった。腺管腺癌の症例では26歳で、大きさは25mmであった。間質内線維化はfalse positiveであるが、このことと関連する必要がある。葉状腺癌は1例のみであったが、21歳で大きさは80mmと大きいことが高い信号強度減衰率と関連していると考えられた。乳頭腺癌と乳頭腺炎は1例ずつで、ともに若年例であった。これまでの報告8, 10と同様に、perfusion EPIでfalse positiveになりやすい病変と考えられた。

多発病変は1例に認められた。3例は同時乳内癌で、1例はとも乳腺内癌である。同時乳内癌症例は、浸潤性乳管癌が2症例、浸潤性小葉癌が2症例、軽微な線維増殖の症例である。他乳腺内癌症例は、浸潤性乳管癌と線維腺癌、そして両者に線維腺癌の症例であった。多発

病変におけるperfusion EPIの報告はみられないが、従来のスライスを同時撮影することが可能なことから、今後その有用性が期待される。一方、スライス厚は5mmと制限があり、5mm以下の病変の診断能は低いと予想される。

今回の結果では、sensitivityは82%であり、本来perfusion studyに期待される高いspecificityは得られなかった。強力な磁化率をもつEPIが限局血管からの透過性に優れることで、sensitivityの向上とともにspecificityが低下した可能性もある。また、当院では、質的診断を目的としてMRIを施行する症例は、軽微な乳管内皮膚が確認されている症例が多い。すなわち、乳癌内血流を認めない良性病変はMRI検査の対象になりにくくなるが、specificityの低下に関与していると考えられる。このため本検査では良性病変が22例と限られていたが、今後症例数を増やして良性病変の鑑別におけるperfusion EPIの有用性と限界を明確にする必要がある。

また、ROIの設定時に腫瘍を診断する反射障害を含めてしまった可能性があり、増殖血管からの真のperfusionを反映していない場合がある。したがって、perfusion studyの信号強度減衰率は増殖性が高いことを常に念頭に置かねばならない。さらに、造影剤の量や注入速度を敏感に検査することと、後篤証のデータを比較する際にもこれらの点に注意を要する。このようなperfusion studyの欠点をより理解したうえで、高速・高分解能TIW-dynamic MDRの組み合わせの有用性、乳頭腫癌の質的診断基準におけるperfusion EPIの位置づけを、今後慎重に検討する必要があると考える。

結論
multi-section magnetic susceptibility perfusion EPIにおける信号強度減衰率は、良悪性の鑑別に有用と考えられた（p<0.001）。信号強度減衰率20%を悪性性のカットオフ値とすると、sensitivityは88.5%（51/58）、specificityは82%（18/22）であった。

粘液癌と小葉癌は、false negativeになりやすい組織型と考えられた。一方、間質内線維増殖や葉状腺癌は、false positiveになる可能性が示唆された。

信号強度減衰率と乳癌の組織型との関係に統計学的有意差は認められなかった。

多発病変における質的診断の有用性が示唆された。高解・高分解能dynamic MDRとの組み合わせの有用性と乳頭腫癌の質的診断基準におけるperfusion EPIの位置づけを今後検討する必要がある。

以上を終えるにあたり、病理組織学的な指導と御協力戴いた病院病理部河上牧夫教授、鈴木正規助教授に深謝致します。
Multi-section Magnetic Susceptibility Perfusion EPI of the Breast

文献

10) 吉野様子：乳腺腫瘍の鑑別におけるEcho-planar imagingを用いたdynamic susceptibility contrast MRIの有用性について．日本医学会誌 32: 441–446, 1998

13) 戸崎光宏, 福田 宏, 福田愛彦, 他: 3D-VIBEを用いたダイナミックMRIによる乳癌の広がり診断. 日視誌 22: 140–146, 2002

17) 戸崎光宏, 林 伸治, 宮本幸夫, 他: 肉眼浸潤の超音波・ブ ラ診断-特にパラレルブラ法と病理組織学的検討-．日本医学会誌59: 860–866, 1999