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HOLOMORPHIC VERTICAL LINE BUNDLE OF THE TWISTOR
SPACE OVER A QUATERNIONIC MANIFOLD

TOSHIMASA KOBAYASHI

ABSTRACT. The vertical bundle of the twistor fibration over a 4-dimensional self-dual
manifold is a holomorphic line bundle and plays an important role in a study of the twistor
space. On the other hand, the vertical bundle of the twistor space over a quaternionic
manifold is not a holomorphic line bundle, in general. We shall give the condition for a
vertical bundle to be a holomorphic line bundle.

1. INTRODUCTION

We are concerned with holomorphic structures on the vertical bundle of the twistor
fibration over a quaternionic manifold.

For an oriented m-dimensional conformal manifold M, we may consider a Weyl struc-
ture D on M, which is a symmetric linear connection preserving the conformal structure
of M. Over M, there is a line bundle L associated to the CO(m)-principal bundle of M
and the representation A — |detA|% of the linear group. Thus a Weyl structure D on
M induces a linear connection D* on L. In the case of m = 4, if the curvature of D*
is a self-dual 2-form, then D is called a self-dual Weyl structure. While it is known that
if M is a 4-dimensional self-dual manifold, then there is a complex 3-manifold Z fibered
over M by a family of projective lines. Z is called the twistor space of M. The vertical
bundle © of Z is considered as a complex line bundle over Z and has a natural Hermitian
metric. We choose a Weyl structure D on M, then a linear connection V on © is induced
by D. If the curvature of V is of type (1,1) relative to the complex structure on Z, then
we call V a Chern connection. A Chern connection on © induces a holomorphic structure
that renders © a holomorphic line bundle over Z. In particular, if D is the Levi-Civita
connection of a self-dual metric on M, then the induced connection V on © is a Chern
connection, and ®2© is isomorphic to the dual bundle of the canonical bundle of Z as a
holomorphic bundle.

Gauduchon showed that for a 4-dimensional self-dual manifold, a linear connection V
on © is a Chern connection if and only if a Weyl structure D that induces V is self-
dual. Furthermore, if M is compact, he classified the types of the conformal structures
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admitting holomorphic sections on ®”O. Using these results and a vanishing theorem, he
proved that if the conformal class of M contains a metric with negative scalar curvature
then the twistor space of M does not contain any nontrivial divisor.

A 4n-dimensional manifold (n > 2) is called quaternionic if it has a GL(n,H)Sp(1)-
structure preserved by a torsion-free connection. We note that if n = 1 then GL(1,H)Sp(1)
= CO(4). Salamon showed that there is a twistor space Z over a quaternionic manifold
M. The fiber Z, over each point x € M is a real 2-sphere, which parametrizes almost
complex structures on T, M, and the total space of Z admits a complex structure. There-
fore, we regard the notion of quaternionic manifold as a generalization of that of self-dual
manifold and examine quaternionic manifolds and their twistor spaces.

In the next section, we recall the twistor space of a quaternionic manifold. We express
a twistor space and its vertical bundle as associated bundles with the GL(n,H)Sp(1)-
principal bundle and representations of GL(n,H)Sp(1). Thus we see that a connection
D on a quaternionic manifold induces a connection V on a vertical bundle. Further,
we may describe the curvature RY of V explicitly, and see the relation between the
curvatures RV and RP. In Section 3, we recall representations of the structure group
GL(n,H)Sp(1) and the first prolongation of its Lie algebra. Combining the Clebsch-
Gordan formula and the formulas of irreducible decompositions of GL(n, H)-modules, we
describe the first prolongation as a GL(n,H)Sp(1)-module. In Section 4, we shall study a
curvature of a quaternionic manifold by means of representation theory. We consider RP
as a 2-form with values in the Lie algebra gl(n,H) & sp(1) of GL(n,H)Sp(1). From the
first Bianchi identity, we see that R” determines an element of a Spencer cohomology. By
using some irreducible decompositions of GL(n, H)Sp(1)-modules, we have the irreducible
decomposition of a curvature of a quaternionic manifold. In Section 5, we have the
main theorem. From the results in Sections 3 and 4, we may describe a curvature of a
quaternionic manifold explicitly. We shall obtain the condition for the vertical bundle of
the twistor space of a quaterniohic manifold to have a Chern connection. We also find
that this condition corresponds to the condition for a Weyl structure to be self-dual in
the case of a 4-dimensional self-dual manifold. In Section 6, we deal with hypercomplex
manifolds. A 4n-dimensional manifold that has a GL(n,H)-structure with a torsion-free
connection is called a hypercomplex manifold. We note that the class of hypercomplex
manifolds is included in that of quaternionic manifolds. It is known that a hypercomplex
manifold has a unique torsion-free connection. It is called the Obata connection. Applying
the theorem in Section 5 to the case of a hypercomplex manifold, we see that an Obata
connection induces a Chern connection on a vertical line bundle.

The author would like to express his gratitude to Professors Takashi Nitta and Shin
Nayatani for their valuable advice and kind encouragement.




2. TWISTOR SPACES

Let M be a quaternionic manifold, which is a real 4n-dimensional manifold, n > 2, with
a GL(n,H)Sp(1)-structure admitting a torsion-free connection. We choose a connection
D out of such connections. We denote by E, H the standard complex representations of
GL(n,H), Sp(1) on C?*, C? respectively. The complex vector spaces E and H possess
antilinear structure maps v — ¥ commuting with the action of the respective groups and
satisfying © = —v. Such representations are called quaternionic. Then the complexified
cotangent bundle of M has the form

(2.1) (T*M)® =~ E ®¢H,

where E, H are vector bundles associated to representations E, H respectively. The
symmetric powers S*H (k > 0) are the irreducible complex representations of Sp(1). If k
is even, then S*H has a real structure induced from the structure map of H, so we regard
it as a real vector space. In particular, S*H is the adjoint representation of Sp(1). There
is an Sp(1)-invariant skew form wy € A?H* which induces an isomorphism H = H*.
Using the inclusion S*H — H @ H =, H® H* = EndH, we may identify sp(1) with
S?H. Let (, ) be the inner product on S?H C H ® H induced by wy. If J, K € S?H,
then as endomorphisms of T'M,

(2.2) JoK+KolJ=—(J Kl

We consider the bundle

Z ={J e S*H|(J, )}/? = /2}
whose fiber Z, over a point x € M is a real 2-sphere. From (2.2), an element J € Z,
defines an almost complex structure on 7, M. The bundle 7 is called the twistor space of

M. Let 7 be the natural projection from Z to M and © the vertical tangent bundle on
Z. For any point J € Z,, we have a natural identification

O;={A€SH|JoA=—AoJ},

where ©; = T,Z, is the fiber of © at J. The bundle ©® admits a complex structure
determined by
jA =Jo A, Ae @J.

An inner product (, ) on ©; is induced by the embedding of ©; in S?H. J is compatible
with (, ), so © has a canonical hermitian structure. We denote by Q®) the Kéhler form
on ©; (J € Z,) induced by (, ). Let vP denote the vertical projection from T'Z to ©
with respect to D. Any vector U on Z, at a point J, is represented by

U= (UD(U),X),
3



where X = 7,(U) is the projection of U in T, M. Thus we obtain an almost complex
structure J on Z defined by

JU = (J o (U), JX).

Salamon showed that J is integrable when M is a quaternionic manifold. We define II
the orthogonal projection of 7*S*H onto © such that for any point J of Z,,

M7 (A) = A—- %(A, J)J, A€ S*H.

A connection D on M induces a connection D¢ on S?H via the adjoint representation
of Sp(1). We denote by 7*D4¢ the pull back connection on 7*S?H. We may define a
hermitian connection V on © as follows :

V =TIl o n* D44,

more explicitly,
- —— 1
VyA=D4A - 5<A, NP ),  UeT;Z,

where A is a vertical vector field on Z defined by
A(J)=T7(4), AeS*H, JeZ,.

We may compute the curvature of V as follows.

Lemma 2.1 ([3]). Let RY denote the curvature of the hermitian connection V on ©
induced by a connection D of M. Then we have

1
(1) RjeA=309(CB)IA,
(2)  RizA=0,
(3) R} A=T[RP(X,Y), A,

where A,B,C € ©;, X, Y € T, M, X, Y is the horizontal lift of X, Y respectively, and
RP is the curvature of D.

Proof. (1) We note that [B,C] = Q®)(B,C)J and (2.2), we have
RycA = VEVeA—VeVzA—V 544

— Va(-{4,)0) - Vo(-5{A ) B)
_ —%{((A,VBJ))C—((A,VCJ>)B}
_ %((A,C)B—(A,BW)

= %Q(")(C, B)JA.
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(2) We note that [X, B] is vertical, we have
Ry 4A = VBVzA-V3zVA—Vz5A
= Vs(DFA) - Vi(~5(4, 1))

1 1 ———
= —5(DFAB + DA 1)B)

1 1
= —5(DX'A, 1B+ S((DF'A,J) + (A, D'T))B
= 0.
(3) We note that RP** = d(Ad)(RP) = ad(RP), we have
R} yA = ViVyA-VyVzA—Vz5A

= Vi(D$?A) - V¢ (DEA) — D¢y A
— D{AD$1A — DDA — DA
= IY(RP™(X,Y)A)

= II'[RP(X,Y), Al O

From this lemma, we see that RV is J-invariant in cases of (1) and (2). In (3), [, | is
the bracket of the Lie algebra g = gl(n, H) @ sp(1) of the structure group GL(n, H)Sp(1).
RP is a 2-form with values in g and A is in ©; C S2H = sp(1), so we take notice of the
component on sp(1) of RP in Section 5. By virtue of representation theory, we examine
the curvature of a connection on a quaternionic manifold.

3. REPRESENTATIONS OF GL(n,H)Sp(1)

We denote by G the structure group GL(n,H)Sp(1) of M. Let gi) be the first pro-
longation of the Lie algebra g of G and T the representation of G corresponding to the
tangent bundle. We have

gC EndT =TT,
then g is defined to be the kernel of the skewing mapping
9:gQT* = T ®A*T*.
We shall determine the above homomorphism for g = gl(n,H) @ sp(1) = E*E & S?H.
Tensor products are indicated either in the usual way or simply by juxtaposition. From

(2.1), we have

gT*= (E*E® S*H)® EH,
5




and
TQAT* = E*H®A*(EH)
~ E*H® (S*E ® A*ES*H).

There is a contraction ¢ : E* ® S?E — E, so by Schur’s lemma, E appears in E* ® S*E,
and we have

(3.1) E*®S’E~E®C,
where C = kery. In a similar fashion, we see
(3.2) E*®ANE~E®D.

C and D are both irreducible. Combining the above isomorphisms and the Clebsch-
Gordan formula

. min(3,k) .
(33) SH®SH= ﬁ §itk=2rp.

we have

Lemma 3.1 ([8]).

g T 3EH®CH® DH @ ES*H,
TQAT* ~ 2EH®CH&®DH® ES*H®© DS*H,

IR

where nEH denotes an isotypic component isomorphic to the direct sum of n copies of
EH.

From this lemma, we obtain

Proposition 3.1 ([8]).
gV = kerd =~ EH.

We represent the isomorphism in Proposition 3.1 more precisely. There is one copy of
EH in each of the three terms on the right-hand side of

0@ T* = (Cwsi(nH) &sp(l) ® EH.

We take a basis {e;}2", of E, such that €; = €jin,€j4n = —€; (j = 1,...,n), and
i=1 J 2 J 7

an SU(2)-basis {h, 1} of H (wg(h,k) = 1), where v — © are antilinear structure maps
6




commuting with the action of GL(n,H) or Sp(1) and satisfying & = —v. Let {e?}?*,
denote the dual basis of E*, then

2n
ar = Y (¢*heih — €*heih)esh € C® EH,
=1
n ] B " 1
az = Y _(e*heth — e'heih)e:h — 501 € sl(n,H) ® EH,
=1
2n

a3 = Z{2e"heihelﬁ — (e'he;h + e*he;h)e h} € sp(1) @ EH,

=1
are representatives of the element e;h in each of the three copies of FH, and ker 0 is
spanned by the element

1
(3.4) a = n; o + 20 +

2n
= > {(e'heih — e'hesh)erh + 2(e‘herh — etheyh)esh

=1

+2ethe;heih — (e'hesh + e*he;h)e b}

By using (3.4), in Section 5, we may describe a curvature of a quaternionic manifold

concretely.

4. CURVATURE OF A QUATERNIONIC MANIFOLD

We consider the Spencer complex
RN g('r) ®As—lT* N g('r—l) @ AST* — g(7‘—2) ® As+1T* —

where g denotes the r-th prolongation of g, where g =g, gV = T. The cohomology
at the point g™~V ® AST* is denoted by H™*(g).

For a quaternionic manifold M with a torsion-free connection D, the curvature R? of D
lies in g ® A2T*. The first Bianchi identity implies that R = 0, and hence RP represents
the cohomology class in H%?(g) of the sequence

gV RT* — g A*T* — T @ A*T™.

In order to decompose these spaces, we introduce some irreducible decompositions of
GL(n,H)-modules. First,

(w1) E®S?E~S’EF,
" EQANE=ANE®F,
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where modules F' and F” are irreducible, and F' = F” via Schur’s lemma. Secondly,

E*® S*E =~ S2E ¢ U,
(4.2) ®
E*@NE=ANEQV,

with U, V irreducible, and from (4.1) and (4.2),
) E'QE®SPE~SXE®U @ E*F,
TV |E'@E®NEXNEQV @ E'F.

We see that both left-hand members in (4.3) contain £ ® E from (3.1) and (3.2), thus we
have that

E*F=S’EGANEDW,
for some irreducible module W. Thirdly,

A EH)= AN*ES°H ¢ FH.

Combining the above decompositions and the Clebsch-Gordan formula (3.3), we have

Lemma 4.1 ([8]).

g AT = 2S?E@2NEoUeW e (2S’E®3NEoV o W)S’H ¢ A’ES*H,
TQANT =2 SPEQNEoW e (SPE@2°EeVoW)S*He (NPEaV)S'H.

On the other hand, from (2.1) and Proposition 3.1, we have
(44) gV ®T*~EH®EH=S?E®ANE o (S*E®AE)S*H.

Thus we see that the components of g ® A*T* minus those of (gi¥) ® T*) all occur in
T@A3T* with the exception of U. Using Schur’s lemma, we may check that 9 : g A*T* —
T ® A3T* has full rank. Hence we obtain

Proposition 4.1 ([8]).
H"(g) = U.

Therefore, the curvature RP has the form

(45) RP =00 _u®t)+ Ry,

where v; € g, t* € T*, and Ry € U, i.e., RP decomposes into irreducible GL(n, H)Sp(1)-

components in S*E, A%E, S?ES?H A?ES?*H, and U.
8




Remark. In the case of a 4-dimensional conformal manifold, we see that gV @ T* =
S’E@Co S?ES?H & S?H and HY?(g) = U @ S*H. Thus a curvature has its components
in S?E, C, S?ES®*H, S?H, U and S*H. If M is self-dual, then the S*H-component
vanishes. The components lying in C, S?ES?H, and U correspond to the parts of the
scalar curvature, the traceless Ricci curvature, and the self-dual Weyl tensor, respectively.
And the S?E-component and the S?H-component correspond to the self-dual part and
the anti-self-dual part of the curvature of D’ respectively.

5. CHERN CONNECTIONS

Let X be a complex manifold and £ a Hermitian line bundle over X. A Hermitian
connection on L is called a Chern connection, if its curvature is of type (1,1) with respect
to the complex structure on X. It is well-known that for any fixed Hermitian structure
on L, there is a natural bijection between Chern connections and holomorphic structures
on L, obtained by identifying a Chern connection with its (0,1)-part. In Section 2, we
have seen that the twistor space of a quaternionic manifold is a complex manifold and its
vertical bundle is a Hermitian line bundle. In this section, we shall obtain the condition
for a Hermitian connection on the vertical bundle to be a Chern connection.

We extend the curvature R of a torsion-free connection on a quaternionic manifold to
a complex bilinear form, also denote it by R, on TMC. We see that the U-component
Ry of R is gl(n, H)-valued. So from (4.5), we also see that the sp(1)-component of R is
constructed by the vectors eyhe h, eyhe h, e,hegh, and e he h in g @ T* ~ EH @ EH.
We denote the coefficients of these vectors by apq, apg, 0454, and oz respectively. On the
other hand, from (3.4), we may express the component on sp(1) of R as follows :

R(ePh, e%h)s2p = apgh - b + bpgh - b,

R(ePh, e%h)sepr = apgh - b+ bpgh - b+ cpgh - i,
R(eh,e®h)s2g = apgh - b+ bggh - b+ c5oh - b,
R(ePh,e%h) 2y = bsgh - b+ csah -

where a - b means the symmetric product of a and b. We note that coefficients a,q, ap;,
Apq; Dpg; bpg, bsqy Ud, Cpg, Coq, Cpg AN Qpg, Qisg, Qpg, 0455 satisfy the following relations :

Opq = Upg — Qgp, Apg = —Qlpg, Ajg = Olgp,
(5.1) bpg = Qg — Qgp, bpg = —Qpg — Qgp, bg = pg + g, bsg = Qgp — iy,
Cpg = —Qgps Cig = Opg, Cpg = Qgp — Qg (p,g=1,...,2n).

9




At first, since a curvature is skew-symmetric, its complex coefficients satisfy

(apq = —Qgp, Gpg = —4gp,
bpq = —bap, bpg = —bgp, bpg = —bgp,
(5-2) § &g = —Capy oz = —Cap
apg + apq = bsg, Cpg + Coq = Dpg,
(Opg — bpg — bsg + g =0 (p,g=1,...,2n).

Next, the curvature R is real, i.e., R(X,Y) = R(X,Y) for X,Y € TM®, where %
is the operation of complex conjugation, so that its coefficients also satisfy the following
conditions (5.3) :

4

o (1< k<n)

e T (1<j<nn+1<k<2n)
~CGrm (M+H1<j<2m,1<k<n)
(s (v +1<5,k<2n)
(s (1<jk<n)

oz = | Trkn (1<j<nn+1<k<2n)
Crmpen  (MT1<j<2n,1<k<n)
| —Cren (R 1<k <2n)
~bem (1<jk<n)

B = b (1<j<nn+1<k<2n)
borm  (MH1<j<2m1<k<n)
| b (R +1<5,k<2n)

' ke (LSS k<n)

by = ~brmkn (1sjsﬁ,n+1§kgzn)
by, (M H1<5 <201 <k <n)
b (D 1<k <2n).

Moreover, we assume that R is of type (1,1). From Lemma 2.1, we see that RV is of
type (1,1) if and only if R satisfies the condition

IV ([RP(JX,JY) — RP(X,Y), A]) = 0
10
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for each X,Y € T, M and A € ©,;. We take a real basis
(X7 = eih + er*mh,

Y7 = /=1(e’h — eIt"h),

77 = e#tnh — elh,

| W7 = V=1(e’*"h + eh)  (G=1,...,n)

(5.4)

onTMC, andput J = ah-h-+bh-h+ch-h. Since J is a real operator, i.e., J = J, and (J, J) =
V2, we have ¢ = @,b = —b and 4ac—b? = 1. For each A € @5, A=dh-h+eh-h+ fh-h,
we also have f = d,e = —e,4df —€? = 1, and 2af — be + 2cd = 0 (i.e., (J,A) = 0).
We compute the condition () for the basis (5.4), we obtain the following conditions for
coefficients of R (5.5) :

ajr + b;m + bﬁﬁfc ~ G = 0,

Ak — b + b — Cik = 0,

Jk4n J4nk

@jk+n = b3 + b — G = 0

@jkn + bt + O — G = 0

bik + b = 0,
bix — bz = 0,
byirn — bz = 0,
bjktn + b = 0,
bjtnktn + 035 =0,
bjtnktn — b5 =0 (j,k=1,...,n).

For example, we compute (*) for X7 and X*, then we have
I’ ([RP(J X7, JX*) — RP(X?,Y*), A))
= {2e(a;r + bjm + bm,—c — 03') — 4d(bjx + b;—?r’zk?/n)}h -h
+{4f(a]k + b;m + b]/-Fﬁl:t — C}]}) + 4d(aj+nk+n — bjk+n — bj-l—nk — ml)}h . h
+{26(a54nkn = biktn — bjnk — Cmmm) + 4 Ok + b)Y - B
= 0,
for each A. So we get some equations in (5.5).
From (5.2), (5.3) and (5.5), we obtain

(5.6)  apg=cs and by =bzz=0  (p,g=1,...,2n).
11




(5.7) :

A
Bix
Cik
Dj
Esx
F
e
Hj

L
T
K
Ljk
M;z
Ny

(0 (1<pa<n)

g — O (1<p<nn+1<qg<2n)
—Os (n+1<p<2m,1<qg<n)
(05~ (n+1<p,g<2n)
'—amm (1<pg<n)

oz — { O 1<p<nn+1<g<2n)
Upgen  (M+1<p<20,1<g<n)
|~y (0 +1<p,g<2n)

Qpg = Qgp, Qg = Qgp,

Opg — Qgp = Qgp — Qg (paq:1>72n)

by the vectors

ejh,ekﬁ - ejﬁekh + €j+nhek+nﬁ - ej+n7wk+nh,
V—=1(e;herh — ejhexh — €jinherinh + €jinherinh),
e;herinh — ejherynh + e;inherh — ejinherh,
V=1(e;herinh — esherinh — ejinherh + ejinherh),
e;hexh + exhesh + ejynhersnh + expnhesinh,
V=1(e;herh + exhe;h — ejpnherinh — ertnhejinh),
ejhexinh + exqinhesh — ej4mherh — exhejinh,
V=1(e;hersnh + exinhe;h + ejinherh + exhejinh),
j4nhekinh + exynhejinh + ejﬁekﬁ + ekﬁejﬁ,
V—=1(ejsnherinh + expnhejinh — e;hexh — exhesh),
ekfzejh + ejﬁekh - ek+nhej+nﬁ — ej+nhek+ni~z,
V=1 (exhesh + ejhexh + exinhesinh + ejinherinh),
exinhesh + ejhersnh + exhejinh + e;inhexh,
V=1(exinhe;h + esherinh — exhesmh — ejinhexh)

12
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Using the relation (5.1), we may rewrite the conditions (5.3) and (5.6) as the following

In (5.7), we note that the first 2 conditions correspond to (5.3), and the last 3 conditions
correspond to (5.6). From (5.7), we see that the curvatures of type (1,1) are constructed

(jk=1,...,n)

over R. We note that g ® T* = EH @ EH = S*E & A’FE @ (S*E & A*E)S°H.
We may sce that the above vectors are all in S?2E & A’E & S2ES®H and span S*E &



A*E @ S?ES?H. More precisely, S?E, A*E, and S?ES*H are spanned by {A; +
Akj, Bjk + Bkj, Cjk — ij, Djk + ij}, {Ajk — Akj, Bjk — Bkj, Cjk + ij, Djk — ij}, and
{Esk;, Fjk, Gy Hjky Liy Tk, Aji+ Arj+ 2Kk, Bik+ Bij + 2L, Cjg + Crg + Mg + My, Dy —
Dy; + Njx — Nyij}, respectively. Hence we obtain the following

Theorem 5.1. Let M be a quaternionic manifold with a torsion-free connection D, and
O the vertical bundle of the twistor fibration Z. Then the linear connection V on © induced
by D is a Chern connection if and only if the curvature RP of D has no component in
A2ES%H.

Remark. The condition for the curvature R” of D to have no component in A2ES*H
in Theorem 5.1 corresponds to the condition for a Weyl structure to be self-dual in the
case of a 4-dimensional self-dual manifold (¢f. Remark in Section 4).

Example. If (M, g) is a quaternionic Kéhler manifold with Levi-Civita connection D,
then D induces a Chern connection. Because the components of the curvature R? lie in
NE@U .

6. HYPERCOMPLEX MANIFOLDS

A 4n-dimensional manifold M with a GL(n, H)-structure admitting a torsion-free con-
nection is a hypercomplex manifold. Therefore the family of quaternionic manifolds con-
tains that of hypercomplex manifolds. Applying the results of Sections 3 and 4 with the
Lie algebra gl(n, H), we obtain

Theorem 6.1 ([8]).
gl(n, )V =0,

HY(gl(n,H)) = U & S2E.

For any two torsion-free G-connections V(Y and V® | the difference V(Y — V® belongs
to g. From the first equation in Theorem 6.1, we see that a torsion-free GL(n,H)-
connection is unique if it exists. We call it the Obata connection. And we also see that
the curvature of an Obata connection has the components in U & S?FE. Hence an Obata
connection induces a Chern connection.

13
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