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WZFE D MR (Fri M-A R DIERR) | £ DRI b D HAZ OFIE L ~L | 36 L OMREE
ERE, ZRBLEY A 7 VERBRICE > TEWNT THADLZ &L LTz,
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B2 — 28 ERIE

MEEREE T & L C— RISV B0 % AR AR 460 N/mm2 27 Z A @ 30mm J& TMCP $f
A & L7z, Table 2-1 12/b525% 4y, Table 2-2 (b OFEMIMERL . % L C Fig.2-7 {2
52T NN/ A= ik TN

Table 2-1 Chemical composition of base metal (unit: mass%)

C Si Mn P S Cu Ni Nb Ti Ceq

0.07 0.23 1.51 0.007 | 0.001 0.30 0.48 0.010 | 0.015 0.38

Note) Ceq=C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5

Table 2-2 Mechanical properties of base metal

Tensile test Charpy impact test CTOD test
0.2% proof stress | Tensile strength Yield ratio VTrs CTOD at -50C
(N/mm?) (N/mm?) (%) (C) (mm)
467 557 84 —110 1. 55

mE R EMAELFIH Ly T2 L —X
—Z M, 1mm RIS LT AL
5ki/mm > SAW ZJ@ a4 fUE L 7o iR Y
A 7 NEAE L RIS U, BE) AR
%R E L 7= Rosenthal DT *2 12 X - THs
BERY A 7V ERTR L, ThE 20 AT v 7D
v Cirl S ek, RBRgIC 7 e 77 4
LCRBR AT o 72, MENTIRILER T A LK
LIKFET A ZAE N ITH 2 LI2 K-> T 200C
FTOHMPHE > I 2 L— b L7z WEEE 100°C, L, LS Tl iiE % 7 1
77 LEVBESEL Z EIXTE R o7, 2000CLL FOMREHFITZEm & Lic, B A
JWIFIRK3EIET (ZHOBEHERAEZZ T HEZAET) 1TV, —FEA, 2HH, 3[H
BOEEY A 7 V% 2 OREMEVREEIZ X 5 T, ZALEI Tpr, Tpaw Tps &5 G Tilk
Bl L7z, 8L L2 A 7 LDl % Fig.2-8 12~ T,

2 OANZ Dl s

Fig. 2-7 Microstructure of base metal
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Fig. 2-8 Examples of simulated thermal cycles for 5 MJ/m heat input weld

2 DEY A 7 V% OREREIE, INEETEE 20keV @ SEM, 5 LT 200keV @ TEM (Z &
S>THEIELTZ, SEM W8l Tid, IS o 2 B EMT v FiE ™Y 20T M-A
FRE ORI AT o7z, FTo, MRBIEE & 1THIZ, Fig. 2-9 12T X 9 iR A &2 W T
HIRToO5 3R (Fig.2-9(a)) . -30°C TOUIR & £ & 51358k (Fig.2-9(b)) . 8 L T-10C,
B30 CEHE L -50C T CTOD 7k (Fig.2-9(c)) %5 L7-, UIR & 5I5EaERIX, ikl
JEREA SEM THIZRT 572D ENi L7=H DT, Fig.2-9(d) -3 48T, ikl L7k A %

HUODRRIZIE - THIW L. Wik DWW TR L7z 2 Be MR v F{EE2 AW Tk %
BUH L7z, Bk & Wik 4 [RIRF (28152 L7z, CTOD allRid, #&tb) R SN, 57
16



T EELAEK 1.3mm 5 U723 LTz,

z&‘ b ) }@_
(a) -———-—-“' ,. ] \_...——.___-——;. y
L:GLIOJ, i
e 15 —
R0.25+0.25
® - —3Ee—
[t
45°
60°
— —gli 33 1
. a=3,
© | ;
10 55 ]

Fig. 2-9 Shape and dimensions of test specimens machined from HAZ
simulation test bars: (a) for tensile test, (b) for notched tensile test, (c) for
CTOD test, and (d) SEM observation method for notched tensile test
specimen (unit: mm)

52— 3H FHx OEEEY A 7 VTR LN DM L £ OMMRITEE ., R

2—3—1 HHfk#Es
AREBRICEWNCIE, ERL7=@EY ., HEAZLSK/Mm @ SAW #HE L TEH Y, D
< EHHBIRD A — AT F A MRRITVBIZAER LIZIBA — AT A MRIZRIZ X » T

AIEN2EBZ26N5DT, MARBIEL LTI M-AMBOIZIE, EOZICER LT, &
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RIEE TOZREEEIC L DB Z B Lz, ZREEEPGCERTOME IOV TR,

—RIZERH S T2 HE

FGHAZ (Fine Grained HAZ).
(Sub-Critically reheated CGHAZ) ?® 4 fEI|Z 35
B — 7 BT, ARFRSC T Table 2-3 D L 9 ITEH

5k 12), 44)
ICCGHAZ (Inter-Critically reheated CGHAZ),
T oMM Lo, T e oSO

L7,

\ZHE > T, UACGHAZ (Unaltered Coarse Grained HAZ).

SCCGHAZ

Table 2-3 Classification of HAZ microstructure of multipass weld

Peak temperature of first Peak temperature of subsequent HAZ microstructure
thermal cycle (Tp,) thermal cycle (Tp,)
_____ Melting point ~ 1250C |  UACGHAZ
_ _ . 1250 ~ 850°C FGHAZ
Melting point ~ 1250C [~ 850 ~ 700°C [T ICCGHAZ T
(CGHAZ) 7200 < asoc T SCCGHAZ
""""""""" 450 ~ | UACGHAZ
_____ Melting point ~ 1250C |  UACGHAZ
1250 ~ 850°C 1250 ~ 850°C FGHAZ
(FGHAZ) | 850 ~ 7000C |  ICHAz
""""""""" 700~ | FGHAZ
S . Melting point ~ 1280C |  UACGHAZ
oAz | 1250 ~gs0C T FGHAZ
850 ~ ICHAZ
Fig. 2-10 | SEM BLE2 S 7o RERY MRk 27 ALk - s CBLER S 7o LRk

PEIZEL TV L, KELH

ST C2EBEOMBNFEET D Z Enbind, O EDIE, M-A

R DBR 72N LI 7 AR L7 b O T, 25 ORI Tpr A EIRD CGHAZ IR
WA S NI TR SN D, A T4 MEBIREEIZBWT, 2O miZR{iby
O ZEDLTICERINDG T 2T, "M =T 4 v 7 7274 FEFESED, M-A fH
MII_NA =T 47 T7=2TA4 b« TAMIZEWMV RSN T, £ HOTHR L7 TH
%Y,

REBRCTHIEINTZ L OO L SOMBIFEIX, M-A HESBLRICHTIH L b O TH
V. HE O M-A RIS THAMEOHOHETH D, T BHE Y m < RWGE
Tp2. BREE LOLAICBRIND, ZoRE, FAEICIEXFERICRY o
FTNT 274 MRELBEIND, ThbDL, A—ATF A ML EITHEHREREZE L
TRY TFNT 2T 4 MPERK L, BEPENLTRBRILLTEA—AZAT T A F2Y M-AfH
Wizt oL Bbhs,

UACGHAZ & ICCG 72\ LiX SCCGHAZ ik /3 BRIk Tlx AT 7 AR D M-A A3
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ICCG S |
12}
HAZ S g}l
o
I
i =B}
/! ]
§ L
---o-—- Double cycl
5 —O0— Sing| ' Ie
HAZ | i s s 2} nale eyele
- S L
i S
s Lol ¢+ o
e 3 600 800 1000 200 1400
F Fig 2-10 Shape and distribution of Peak temperature Tp,,Tpz (°C) -
martensite islands for each HAZ-classified Fig 2-11 Fraction of martensitic islands vs.
microstructure peak temperature (heat input=5kJ/mm)
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B S NTZD . M-A RO R ST BRI K D8 LoMED & Y | UACGHAZ
THIE SN DR RO HRIZE W M-A #if&iX, ICCG 72\ LiZ SCCGHAZ Ti3%< 7
Wi ST SLFEY DT AR E T o TV D, 72720, M-A KRk O HFER 2 JIE L7 fE R,
Fig. 2-11 {Z/R 9180 . M-AFERRORIZIEWN T, MHFIZKRE REWVIIBEShRh o7z,
1400°CIZ —[EIINEA S 7172 UACGHAZ THRK L 72 & M-A KL 22 125 108 R B8 1 BAMER 1
Lo THAE LR, ERRELERS 1.1~13 OFmREFE~YALT VA N THD I & 1R
Sz, —HFRHHOT7 =74 MZOWTEFREIF 2T o7fR. 7274 ol
g LR, 7 = T4 Nh& LUT 0 Bagaryatskij O i G ABIRICEH D8 A 2 A kD5
WEIHT GO biv7e (Fig. 2-12)
[100]c//[110],. [010]c//[111],. [001]c//[112], (2-1)
THEARA T A MR DT =T A4 PR AL EA FB ORI EREA LTV D08,
FiWEAFIO 7 =T A4 " OHTH LT A XA bOBFAICHIR USRI EE IR
TW5 %),

@Ferrite

o Cementite

Fig 2-12 Transmission electron micrographs of
UACGHAZ, (a) bright field image, (b)
diffraction pattern and (c) its schematic
representation (Tp;=1400°C)
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Fig. 2-12 O 7 =7 A FHIZTFERARA F A S ORI 728 A Z A M &I TE 722 &
nh, SEBEZELTNWD 7 =74 MARIIHE ITHY T2 & E 260, TEM BIEMAOH
BEABHERIFIC 7 = T A MG DT NIHTH LD T A o Z A ikl L T &
&b, T7ebb, UACGHAZ #lfkH o7 = 7 4 MAITIRE AR O Ll i /e
774 MHEZEKRLTWAE D EEZ LD,

Z D UACGHAZ 78 [RIH OEY A 7 W Ko CTHMBAS N 5HE, FINEVEE MK
FAUTHIH O UACGHAZ fIRRIERED AR Sdu, 7o & 2 o — vy =MIRE E T s iz
& LTH Fig. 2-10 @ ICCGHAZ IZ/R L7zl v | FEARR MG R STV D, 7272
L. M-A #ifkiZE pElEshie 7 AR E 720 SRROEA 2 4 N HREIFFCBIZE S
HE 927D (Fig2-13), ZDLE, BRI 7 =T 4 FOHMHER->TEY | B IE
HASD IR ERMEE S, UACGHAZ O 7 =74 MAICERTHE L > T D 1
DEZEZDHBND,

QCementite

® Martensite

Fig 2-14 Transmission electron micrographs of
ICCGHAZ subjected to 600°C third thermal

e . - cycle: (a) bright field image, (b) diffraction
Fig 2-13 Transmission electron pattern and (c) its schematic representation
micrographs of ICCGHAZ (Tp1=1400°C. Tp,=750°C. Tps=600°C)
(Tp1=1400°C. Tp,=750°C)
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Z D ICCCGHAZ IZB W THIZ Sz M-A #fkiIZ. —#81% UACGHAZ @ M-A fHif% D
GO BHERBLTAER LI O EEDNDSN, bbbl T7=2T 14 NMITHoT2EZ A
MOERLTNDEDLH DL EEZ BN, EEE, Fig.2-11 THIE L72 M-A #Hiko &)
RYPIEY . ICCGHAZ 1281 5 M-A M &l UACGHAZ F1 D M-A FAFkEITKFET,
2[E H OB A 7 WATKAFE L TEE L, HAIC K o TIZ UACGHAZ XV & M-A Ff%k23 K
BICARShAZE 050 55, Kim 5 ¢, BS4360 Gr.50D ##%  0.14%C Sl LTIl
B A 7 ViR A FEhiE L TR 0 L 1350°CHNEAD Tpy 1 7 /LFFIC bl L T, 800°C
D 2[EIH DY A 7 NVEZ T2 Tpo A 7 AKM D EH, M-A LR EITR 40% 845 =
EEHE LTINS,

ICCGHAZ M BEE R LICHHY T 5 & 5 Z2RIRIk D =B H OBY A 7 V&2 2T o6

(SCCGHAZ) (2 H 41 UACGHAZ Dk A 72 R8Tk AK S %, 7272 L. M-A ik
DRI HETe & B 2 S DN, Fig. 2-14 1Rk L7z & 912 Tps=600C DEY A 7 L% 5 1T 7=
SCCGHAZ H1lZ, 8tk A v Z A RUSMT~ILT A MfkS—E8lmsh-, 2oz
ElE. REBROMEM T, WS S KImm O%A, —HAR L7z M-A fili#kiT 600°CH
FEDT 8= A 7 OV TIHEHHIC O LW & 2 WRE-> T\ 5D,

Ll b, FRZEIEL IO L & S Dd UACGHAZ, ICCGHAZ, SCCGHAZ (2% L C
M OHMAEBIER L CE, 7274 ML M-AMBOE SEONFIZZELTHH D0,
774 MHUZT 2RO M-A KRS T Z B o TH L TV D &0 9 Ak FRIVREI S
FOFEEMAINTNDEZ ENRboT,

2 —3—2 HAZ HEH O AOTEE

Fig.2-15 35 LUV Fig.2-16 (2, W1 7 ikl & “®HH 1 7 ViR (Tpi=1400°C) (ZfE
5 LB DRAIPEE D2 b &, = 2 C. Fig.2-16 HOWF ¢, u i, BS7448 Hitk 40
IR ST CTOD R DB A D ZEZ R LT D (c 1TBHER 2 b7 T (fa<
0.2mm) fEE L 72Kf> CTOD K 6 ¢, uldd 2 BRE DM 2 > - %6 (Ja=0.2mm)
D Ou, IWFDRWGE TR KR EAICELZFIIEOND dm. 22 NThrd),

HF A 7 VRBRICEB WL, S MIEURE DR T I > THlRM SIXHFIIR T
DS, 0.2%0 I KR A — AT F 1 NFli~ o -y R SIS B & AL 7= B A R
AR T3 2Hm 27~ L, Fig.2-10 OffEBIE TR LI LI, AU IF L7 =274 b
AL L7283 M-A KRR AR T D Z L IZxIE LT b, 7272 L, B NEEEE 23 22 REBH
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IRRICE LR WG EITIE 0.2% M NI R Rt 2 O 2 T oo B & 220 (ElkE > TV D (—
e DBER LIREEILL L OWRETH > Th ., PREFIFHRAELN T2 DITBER LI kI35 85
20N, —J7, [RFL CTOD fEIZH A A 7 VINEMREE DR NI E- T, Sl9RIR S &I B
P EFLTWD 2 E RN,

——O~—— Single cycle" —QO—-— Single cycle
~—-8-—- Double cycle (Tp, =1400°C ) -—-@--~ Double cycle (Tp, =1400°C)
///I E 'IA -
E
O |
£ O osf
€ 600 s F
= © [
~ Q
n [e)
— 500} ~ OlfE
© =
gf _ 005F
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2 0 s
4V} ——— e )
' o
© 300 BlM // |ICC|G 1 F;G L |UA(|:G 00! |- BlM/// IIC?G ] l:IG L JUAch
RT 800 1000 1200 1400 RT 800. 1000 1200 1400
Peak temperature Tp,,Tp, (°C) Peak temperature Tp;, Tp2(°C)
Fig 2-15 Variation of tensile properties in Fig 2-16 Variation of critical CTOD in single
single and double cycle tests and double cycle tests

Tp1=1400°CHZIZ Tp, D BV A 7 Va3 R iz \WTiE, 518RE S| 0.2%if /)
2 2 Bl OMBGEEEIZME ) REREZEIRVD, o —y ZHHREBICIZA SN TGS
IIEEF R LTW5, ZoMfmE, Fig2-11 TEE L= M-A &0 Tp2 {17 & 1T
BETHY ., Tp=1400°C O ~HEHEY A 7 A Tld o — y “AHREICINBA S =358 O F,
T ZMRD M-AFHREN FAMEEFF > THOBL T\ D & v o 3l U7 R E 2 R L T
HZEERELTNDEDEZEZ BIND, — T, Tp IZfF O RS CTOD fE D EALILIEH
IZHEECTH Y | Tpo A FIROEAITITMEZ CTOD BNH L L TWB Z Enbond, Bk
[ZFBWTIE, M-A FHIEDEL S oW SV TIRICEAT T 5 2 & & BTV RIRBIR S & 5
bDOEEZOBND,

Fig.2-17, Fig.2-18 %, bl L7=—&EV A 7 Vv TEEOR LK T35, Tpi=1400C,
Tpz=750°CH A 7 Apflzxt LT, BIZ3EE DT o/ 3—H% A Z V%5 LI REZ R LT
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W5, THEELTIE, 3EIEOT V8= A 7 LDOFEIZ L o> THEHIEIL L, 811X
UEET D2 EEAMIFFL TV, EROBRIT, TRICK LT, MEHIRZME (LD Z &
<HEFMEL L, CTOD ¥UMEICIZHIfE R RIT R b2 h o7z, 3 — 1 THIRRBIEE LT
WY T U= YA 7T M-ARBRD RN 3EIT L TR o7 2 & EEER S D
LDOEEZOLND,
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02% PS,
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_LBZ cycle
(Tp; =1400°C, Tpz =750°C)
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Fig 2-17 Influence of third thermal cycle on
tensile properties of ICCGHAZ
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Fig 2-18 Influence of third thermal cycle on
critical CTOD of ICCGHAZ



2—3—3 RERE
FERGEN) T OIS T FR R 2 45
#9572, Fig.2-9(0)D /) v FfF &
FlARFBRIC K - T3 otz S
AUTZ IR RE TR BB T & -30°C Tl
I S 7, AT O FER i ORI i
o DOFm T O WAk &[RRI 8
KL/ E., TN OREI R
HAZ ff i k- T, LT L)
el RE AR LT (Fig.2-19),
(1) UACGHAZ : Wirimiid 58472 8%
PRflkiE 2 = L. Bk M-A ik & 22
Y HALE T tear line NEIE X7,
W R mE T OWmE Iz T &
FiFBEINT, —r bR AEL
TEBUNE RN Z O F FEHE L TR
ric e~ b o Ebh b,
(2) FGHAZ : SRR, 70 e PR A e
IZE > T L TR . M-A fEifk7
WLIERY 7 =T A MREEL
TV A ZOWUNRRA RPLEA
Al LT, RHE T ORI,
M-A Mk & 7 =7 A h & DOSfmicE
B L Te AN A R3S BlE S,
INEREERLTT 1 > 7 VR
'-S0 EEBEZILND,
(3) ICCGHAZ : fififii% UACGHAZ
ERBRICEEBRE Cd - 7223, i A
FIZIEW < SO RFZERBUN & KD
BN, Thb o3t

. Fracture
surface

Section

| Section

FigZ-19“|‘:”ractued surface and sectional
microstructure of notched round bar tensile test
specimens
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WENWT =T A FTRRREDY A X THY | HEBAITEBIROBF] 2R T - 72,
WNERPBELG WV THY . O ER L TRAEABBICESTZbDEE RS
D,

IO DR ZZHEIZ LT, M-A MR 7 2 K72 HAZ #ii#k538 (UACGHAZ,
ICCGHAZ, fth) &3LiR7e HAZ #ifk0%H (FGHAZ, fi) L1237 T, Bl EORERRER A
HEHL7ZDD Fig. 2-20 Th 5, Z Z Tid, BRA CTOD & M-AffREDRFEE L TERRL
THhiz, ZORER. M-AFEENZ 251X LR CTOD EME T35 2 & bbb,
Z7E L, ZO[EIE M-A MRTERRIC K > TRZRY | M-A ik 7 ZROGEIT, R
CTOD D M-A M ER AL L W BFETH - 72,
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Fig 2-20 Relation between critical CTOD and
fraction of martensitic islands (heat input: 5
kJ/mm)

Fig.2-20 DFEFEOHF T, 7 ZROMEEIL 1 ROEMEARTEHE I TNDI DD, |
Wk L7238 Y . UACGHAZ & ICCGHAZ Tix M-A M HEICE VA & Y . UACGHAZ Tl
M-A FREEDSBCRIZ A LT3, ICCGHAZ Tl M-A A oW S v Cestm v 7 A
We7roTEBY, BEOHN M-AFBEEGETZo7c, TORE. ICCGHAZ DJ5H
MIEREFIRDITEZ D L) THDH, M-A HMBEEOIENME~DOAE LW ) Hh D &
L&, EHH0T7 AR M-AFGIEREORREDOEENNHLbDEEZEZBND,
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— AR EY) ) TMCP 82t L T, ZIEEHE HAZ ok %2 M-A (kO ERE %
FlE LTRIZE L. £ ORBAIME ., BIERME~ORELMAE L-MAR, LT O
X5V (Wl

(1) HAZ iz M-AMRIZREIC K > THfET D & T RAZ A 7 EHIREZ A TR
TE D,

(2) HAZ ORI DT A5 A THRRIEL. S NEGEEE [ INEL S L 2 UKL

(UACGHAZ) . £h s RIS L7z ICCGHAZ, & 5\ &7 v/ —IR B
(ZFFINEA S UTORRIE SCCGHAZ, TR SN D, —J7, SR A 73 i RiE o A4
— AT A MEITIMEAZ L7z FGHAZ, 72\ LiZ FGHAZ 23 Z ALLL T O FEE IR 1 PR N X
AT tEk, BRI NS,

(3) ZAREATOMEKTIE, T—ATF A MRRIZFE—D T AITHAR D D WIZEETRIR
D M-A TR FETI LTI 0 | ORI A58 < PR T D65, —MBICHRE L& < 722
D, EIMEITIR T LT, BB OME L S 2 2, Z OMBRBLIIZRTH S T =T
A M —HZE->TWDH EEbiv, 7=7 4 MIB S RFE L BREIZERE LI2IRE L 72
STWD I eI,

(4) ZOMBIRROFER, T A X A 7 CTIIEESINERE M-A RIS KE EKFLT
ZEL, M-A #EEENZ VI ERMIETST 5, 2720, ZORBRKROF T, MikEEEl
KDL L, M-A MDY K 0 BEWFEIRIR & 72 5 72 ICCGHAZ D J573, M-A 73 & <
Btk o> UACGHAZ X 0 & BBER AL 3R 5 (DL = B M S BLEL S iz,

(5) UK LTHIRZ o 7Ok Tid, BRIRD M-ARRER T X L7 =T A ML
FARENBAER L TR Y BT 2 AR R RS T < 20 EEIRFIS, HibL Y = Z
A P EEROHFE oo TWD Z Linh, —MICHEEIFE T U, S igm < | sl
IRIEPEREEIC X > T4 5,
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o 3E WA OBVERRIC BT D IREALM OB
33— 1H FHS

2 EICBWT, HAZ OIS bICR LT M-AMRRDS KR E R XER - ThHhHZ L &
R, M-A FABEDNIEERY A 7 NI L > TED LB L, TNENOMEN LD X
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J5460 N/mm? 7 5 Z®D TMCP $fl—FEE OB Th o7, MEF. 370 BEE Db FR 5 H3
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X, FE2EDOE 1HiCHE TN (Fig.2-1). B~ A A FOERRT D X975kt L

12 A0Sy . WIEABADIHZ M-A RN 2 < AT 5 2 L 2k~ Fig3-1 13555

Fig.3-1 Effect of cooling time on size and distribution parameters
of martensite-austenite constituent

Tc, Cooling time from 800°C to 500°C(s)
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FERT D K9 7, By, WERIEOLEIC M-AERENS L 705 2 L 2 RRINICE
AEL7ZH D EMRTE 5,

100.0p
b lon (Je/001) = A axp [~y (X~ (X om) ]

- DOUBLE CYCLE {1400%C + 800%C)

L TRIPLE CYCLE {1400C+8000+4500)
dtg. s = 40 sec.

10.0¢

104

CTOD Deterioration Factor, ru(1/wt%)

0.1 LI

Cr Mo Hb W M 8 ]
ELEMENT

Fig.3-2 CTOD deterioration factors for alloying elements ( CTOD deterioration factor ry is

defined by the equation in the figure, where &c is the CTOD value in mm, [X]u is the

concentration of alloy element “M” added in weight percent, [X]om is the concentration of

element “M” in the base composition steel. Hiher ry means greater deterioration.)®”

HT50 DFRE L~ L O EHI LT, 3 2 BT 72 L 5 72 HT60 (23 W Bt fb
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nT A D) REMIDOFENEZT O D, £ TRETEEICZOBENS, ~A 7
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L. REMDOEND, OWTIZIHAZ ODEIMEIC G 2 D BIZOWTBERL THAL I L
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H3— 2fH1 EEEAGEETIZRT D RE DAL

3—2—1 ZFEBHE

FT. BEHEBEEBIE) ~ A /a7 aA [REMDOFEE 2T 57-DIZ, Table 3-1
AT By & T 6 OIS As-rolled #4 23 BRICHE L7z, 7272L. No.4 & Nob5 @
FEBHE, SHT 3 *Nc & » THIE S, 1140°C THIEA—JERE S A7 B4 1S SHT 47T 900°C
CFINEVE . FREEEIE LTRSS Tz,
Plain-C filofhiic, ~17m7nA L LCTizaaAL, TOENRRLH 28, Ti, Nb
MAEEHA L, REELV-SIVORR D IFEHEELE AL TND,

Table 3-1 Chemical compositions

Chemical compositions (mass%)
No | Steel c si Mn | Ni Ti Nb Sol.A N Ti/N a'gomic Hea’itemp.
I ratio (©)
1 |Plain-C | 0.13 | 0.21 | 1.00 | — — — | 0.044 | 0.0020 — 1120
2 |Low-Ti | 013020098 | — |0.017| — | 0.045 |0.0035 1.4 1120
3 |Ti-Nb 012|031 |147| — |0.015| 0.016 | 0.024 | 0.0047 0.9 950
4 |Ti-Nb ]0.05]0.21 | 1.29 | 0.25 | 0.019 | 0.013 | 0.061 | 0.0061 0.9 1140-900
5 |Ti-Nb ]0.08|0.19 | 1.28 | 0.24 | 0.018 | 0.016 | 0.027 | 0.0048 1.1 1140-900
6 |High-Ti|0.09 | 042 |158| — |0.057| — |0.016 | 0.0030 5.6 —
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Fig 3-4 Histograms of particle diameter as a
function of heat input for No.2 low Ti steel
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Fig 3-6 Histograms of particle diameter as a
function of heat input for No.3 Nb-Ti steel
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DIZH LT, NObC IXEGITIRIR L CTA—AT F A MRIE ST 2 B8R T, £ 72,
o CON, A7 a7 nf BEOGHELEMEBEZEI IS5, REMD OB
RSN OR T & LT, BHERTORED DR E SIT K > TR EE D A EH R
6T 572, BEEABORWRAIRZREEALOGAEITITBET H20ERH D & Bbihvd,

WIZ, HAZ ORI Z R L T DS 2 O EDORTFTh D M-A fHfkICk LT,
~AruT7TuADEZHREEZEZ THhD,

ARKETIIvA 7 a7 v REMDDOEACEZIBNNT TE N, TOEBITENG K
ZIMOREBIZE T, A—=RAT T A FOBWEBIC L HREFREITENRELLNET
b5, UL, 1FEAEOBMARENDITIEEIIC I > TEBELTLE ), B
B A 7 W ANRREIZ BT D y = o BREEENTIT, R LIZREMMOZETIZTLE AL
Wb DEZEZBRD, LML, WL > T LT RE(MIZ. v~ 7aT7aA
TLHEBRO RIS O T 5 Z &1/ . WEIF D y — o ZBREZEEIC S K4
G252 ked, b, A—AT7 T A4 VOGP EINTy > aBELIELE,
FZORER . A—ATF A FPMERIRE THEALTM-AFBNER LS 2D EEZ NS,
oA 7T, R LDy 2 o BBIMHZIRIT. A 70T vl BN A —AT
FA P OERS AT D0 L REKEOEE. TRbbH, KMAOBENREZEHES TS
Solute drag Zh5% @ & % W AR R 2L T HI L THER BB 2 £ ko9 5205 °0)
Ny —aREIZENTHEHbDEEZIBND,

42



(a)10°C/s  (Do=100pm) -(a)10°C/s  (Do=100pm)|
3 o
R v e | S v
e | N el \
3 B 2 X
o N o T
Ser N\ v : N w
o Nb Yy o . R %
Ly 550' Qo
E \ ‘o, E \\ -
e [
600t \
0 002 004 006 008 0 002 004 006 0.08
8ot (b)0.5°C/s  (DO=100pm)| (b)0.5°C/s  (Do=100pm)
o 3]
S v S
v mob RO T e
2 N Ti 2
o ha o
[N . [ 9
Nb Q
g 200+ \ £
@ @
— —
m- A A L 1 .l
0 002 004 006 008 0 002 004 006 008
soluble atom (wtl'l.) soluble atom (wt %)
(a) Un-deformed (b) 50% deformed at 900°C

Fig.3-18 Effect of Nb, V and Ti in solid solution on the y — « phase transformation

temperature
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EAB D EDO KD H D DI/ > TEIZGEITIT Z OF R TOHERREE X272 0 &
<7ppEEbid 2, 10kImm UL FOSRABILZET L, PoMMETYH, 2ki/mm TRE
LR IRFE AN L. Skd/mm AR TIZIE R O e S LR IR R DI 3Bl S
Do FWHEE TIZd 223, AER 2kIImm DG IZITRA D78 ) O RE D EREEC
FoTEHELEEEy > aBEL, offFICbEEl e~ 7 a7 oA BRER L E EIE
FHEORETHEAT O HDLEZALND, BR vy oo BBREGIKRT T2 00,
M-A RS ER LW DD EBbiLd, EORHE, 2kiimm TIXAER L7 = 74 Ml
L TEY ., M-AMBRPEET S5 THA D,
Table 3-2 D**Ns

D**Ns (x10* nm/ x m?)
Low-Ti steel High-Ti steel No0.3 Nb-Ti steel
Base metal 25.7 37.2 8.5
2kJ/mm simulation 6.4 18.4 4.9
5kJ/mm simulation 320 34.5 7.9
10kJ/mm simulation 28.3 23.1 12.7
20kJ/mm simulation 25.8 34.8 23.9
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Fig.3-20 Characteristics of metal carbides
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Fig.3-21 Diffusion coefficients of some elements in austenite steel
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Fig.3-22 Assumptions in numerical calculation for dissolution of
spherical carbide or nitride
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d_C 12 8( 2.D. @] @(%j (3-1)
dt  x° ox OX ox \ dt
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C=Cp X - Zftdp, C=Ci HRHur (3-2a)
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oC

—=0 3-2b

o (3-2b)
FRHNZB T 2HEASFMFITUTOL I ICRED

C=Cp at x=£/2, C=Ci at x=£/2 (3-2¢)
RECBITLEENT VAN

d(x) aC N
c.—C)2W_p %] a x=£'2 3-3
( P ) dt (ax} at = (3-3)

772U, C IR VA 1 O
FRIZ Cp 3k - E(bWIZIT 2 B EAR 1 OIREE,
F72 CilldS I T 2 RERS s R [ s I - DR L
t PXIER
x VLR« b F LD & O R,
E1x (BKB) Bk - EMOERE,

S 31T 5 B E R R ORE CHTRE (4) IZXk o T BER S RDHND
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Fig.3-23 Definition of terminology for finite difference calculation
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HAEEIE 21T 5 7201z, L ED$% Crank-Nicholson Bl D745 R EHI 5 &
FEARGDEUTOLH ICEBRTE 5, 771, =2 CALAHEL. Fig323 0k 5ic
EFRTDH

an+1 _an _ N —n . Cn+1j+1 _Cnflj+l + Cn+1j _Cnflj . d(é:/Z)HUZ (3-5)
At 4 [(L2)-ler2) (L=’ r2)]
D-N?2 . lejﬂ — 2an+1 —I—Cn,ljJrl N Cn+1j - 2an +Cn*1j
2 | -2 {u)-Ern)f
) D-N .
ZFMI? ) n.{(l_/z)—(é"+1 +§")/4}}

Cn+1j+l_cn—1jJrl + Cn+1j_Cn—1j
(Lr2)-(e™r2) (L12)-(¢'/2)

ZIT, JINREOCRBMAT v B ERTIRTTH Y . ] BEIORERI AT v 7128
TAE. 1 DBROEEM ATy D RS OEE R,
FEREIC, BEARSRERG-20)TESERTERLTLHLEUTOL TR D

GGl gy, CNlm‘CTM 4 Cua =Cy/ (3-6)
At (Lr2)-(£712) " (L12)-(g112)

Fo, REICBTDEENT U AFMEAB)ILLTFOL 1T D -

E2)-'72)  pN e+ -c)) (3-7)
At 2.c,-c)) W2-E12)

KBB)~B-NEHET DI LICE>» T, ROBNFEANELND -
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f bvy + C1Vo =d;
A bv, + CoV3 =d,
aszVvy + bvs + c3vs =ds
< — (3-8)
an-1Vn2 t+ bvna + Cnavn = dna
K anVN-1r T bVN :dN
Z T,
vn = ¢t (3-9a)
-
_ a, A
B = _Wi+1 (\Nj+1)2 ,n #N (3-9b)
\ 2A
j+l 2 = N
L i)
b= 14 A (3-9¢)
fw )
_ a, A
Ch = Wi (\N " )2 (3-9d)
dn = [ A A i1y ZAS NOL T W (3-9¢)
W' ) fw?) W )
—oc) 4| - A .c, ,n=1
Wj+l (VVJJrl)Z
< O _ Al |1 22 lci- o A e, |-2e,
W fwi) fw?) W' )
,n#*1727»>n # N
- ZAZ-CN_1]+ 1+ Z_Az .c,/|-2¢,) ,n=N
L W) fw?)

Wi=L/2-&1/2

(3-9f)
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_N-n [51“ 5’) D-N-At
xn = 1T 5T i £ 1 g (3-99)
4 2 2 ZF vl n{Lr2)-(g g )/4}}
4 N
A:%Z'At (3-9h)

= 2T, R(B9)TDC MIREBABLORBNTL > TRDD ZENTE D,

ZO=FERARIES (tridiagonal linear system) DS HREFUILL FOT LT Y X4 B2
M ZLlZE-oT, BHITHES ZENTES

Vy =7\ (3-10a)
v, =y — 9 Via =N N2, L (3-10b)

B
~ Bi=b, y=d/p (3-10c)
B =b — 2 i=2,3, ..., N (3-10d)

< Bia
yoodimR T i=2,3, ... N (3-19)

~ B

R AR LT D EE L TN DD T, SMIEER OB L 15 - 2
fEELS, FRHIRIRENOU TO I IIZRODL ZENTE S

1 _ 4z ( Lj (3-20a)

c (3-20b)

NV (X BALATE R OB - 2 kDK,
L3R - b ORI E
VK - EM%¢@%ﬁmlﬁmﬁ@ﬁf(iW\
213 (OCopIHIREE %) REH R oD AR RV T AR DR EE
E@ﬁ@@l%mﬁ®¥ﬂﬁf
Y,
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Table 3-3 Summary of Precipitate Data

Density* Solubility product Logio[M][N]=Sa-Sb/T**
Compound 5 - .
(g/mm?®) In ferrite In austenite
Sa Sb Sa Sb
NbC 7.79x 10° 3.2 9090 3.2 7690
NbN 7.30 3.57 10460 3.57 9660
Tic 491 4.03*** 8968*** 4.03 8720
TiN 5.39 4.39! 17089! 3.82 15020
Note) * After Toth®”
* Mainly after Houghton'®
ikl Extrapolated data from the solubility product in ¢ -ferrite
! After Kasamatsu et. al’™®
Table 3-4 Summary of Diffusion Data
Phase Diffusing D=Deexp(-Q/RT)
species Do(mm%s)  Q (kcal/mol) Reference
Nb 480 239 70
Ferrite Ti 160 239 70
C 6.3 91.0 62
N 0.78 79.1 62
Nb 492 285 70
. Ti 14 249 70
Austenite C 74 159 62
N 91 169 62

BAEFHE I H W= ERE %% Table 3-3 35 X O Table 3-4 [Z7”9°, 3 ClZRiR L7255 3
— 2HiB L OB 3 — 481, TNEIUFig. 3-14 (AMRERE) . Fig. 3-21 (A—ATF A
RS L LT b oBEO—HE KR L TR LT,
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TThHY ., BAMEELHEEZRGA)TRESND (] TEERE LN, BEHREE
THEDBEENT AT I EIRIES T, BIZH(B-5)~GB-7)DES RN T
FEEINTWD, £Z T, BOUIRLOEDFHRICKIT DBEDRELEIT L7201, b
LM P =2 NVDBEENT A2 TF =2y 7 L, MELRDPLHEZIT T, 95—
OiF, My o= —3HEIES bOTHY, eI T AROEKR, BEIETA
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Fig. 3-24 Variation of calculated dissolution time with node spacing
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Fig. 3-25 Variation of calculated dissolution time with time interval
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Diffusion range

(@) Initial condition at ambient (b) After t sec at temperature T

Fig. 3-26 Illustrative dissolution process of precipitate

Fig.3-26 IZRd % & 912, JVDtiZd DIRET t BTz - 72 HEE T, 1R » 2L A g
LT TERIBIBORE SE25RT, X(B-21)TEEND fIE. Fig.3-26(b) T TR Z I
7~ Z OWEHB ORI EZ R L2 DO THY , JDEAVAENE T2 ORBESRICIZE
LY IDIBRELARD L LITESE, TADLEHRELRB TS 2 Lichs,
2D DEFEND., Fig.3-26(0) DRHRER A AE LT, (3-4) DRI L FEERIZ KD
LOICERTE S

log,, w =Sa—-Sh/T (3-22)

TEBURSE D IHRE OB TH Y . R(323) TRIND Z LMD, R(3-22)ILIRFE L HHE
B e LTk - (O fRIREZHEE T DR & D,

D=D,exp (— %J (3-23)

Z 2T, Dy iEREH, JEHOTEE T LIk E 5 ES (Frequency factor) |

Q IFHIEHDIEME L= R/ —

R ITKURESL
Th D,

£ %RD D T2 DITE R VEIZ DWW T, ARECTHER LR RO - (b ok

REOT—HIPBHETHZ LN TE S, #ilRIE, NbC X Nb-Ti SO RA h AT 4 %
IZIE2T NDC L REHL D ZLICR > THEETE D, £o. TOMOYHERITT TIZ
Table 3-3 & 3-4 TH X LTV 5D T, Table 3-5 (2 FHHIC LB A Sl 2 368 L TR L 72,

[FZ P, REEERR 1 B Tl e T 3 5EE., BLO2 OB TEHMAE T 2K
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KEB22)MEROTFERBRIFFIIR Lz, 1 I NABEHEOL G %2, 2 0 IIRABE
BEOGEEREL WD, £, BMOBESIZOWTIE, Ti ROK « /WIS LT
No.2 #ifl (Table 3-1), Nb RDfK - 2%t L CTiE No.3 £ (Table 3-1) DfE% HV 7z,

Table 3-5 DFHEAE R Z 75 & NbC 23 bR T4 2 Z L 23002523, NbN K
Db TiIC OBEMRIRLE DT D ERIZ/ > TV D, NN OFEMEEFEDRBD TN RENT &
N, CENOEFENRL L THIUENDN OIF 9 BNEFERETEL bbb Th o
N, EEICEASNTWDL CENNELD b 2HES Z NI Enb, FHEMBRTIL TIC
DIEFRIBE D TR EL 7o TWnd, £72, NbC OFAIC 1 E 2 0 CIEMRIREIC K E
TRFE R NIOBE X, NbC RTINS WD TH 5,

A 3 — 3EIT/R L7 Fig. 3-19 IXIAEDFEHRIRRE TOREFE R A2 N— R I L=
ERRE THY , SEIOETIVTEET S Z L2 L o> TX Y BLEITE WA 2 H
ETHZENTELHHLDOEEZZLND,

Table 3-5 Rough estimation of dissolution temperatures for some carbides and nitrides

Dissolution temp. (*C)

: * *ok — —
fl\? :ttr):gg (1/|\:jm2) (i m) ?rgz/s) (3mo|) Sar* | ST =1 sec | t=20 sec
TiC 3 0.289 | 0.14x10™ | 249000 | 4.03 8720 1216 1093
NbC 150 0.0408 | 4.92x10™ | 285000 | 3.20 7690 1057 1028
TiN 0.3 0.913 | 0.14x10™ | 249000 | 3.82 | 15020 >1400 >1400

NbN 5 0.224 | 4.92x10™ | 285000 | 3.57 9660 1141 1039
Note *:  Ns values were estimated from the particle size distribution data in this chapter.

x| =1/(2,/NS ) that was estimated by square.

***- The data used in Table 3-3 and 3-4.

¥3— 65

YbzA
=i

Ti, Nb ZUSHN L 728fIckf LT, 2 ~20kd/mm OEEEAEZE X = L— b L7 IRHEEL
YA 7 NVELE L, Ti, Nb ORE(ORRER L O OMEIC 5 % 5 %5
L7cfE R, LU Offiam a5 7,
(1) TiN EAROHT LS D R ZEACI TSR K - T — 7R < £ TITIXIE R
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LTLED,

(2) B2 Nb, C 2% < EATKE Ti-Nb HEREMDOLEITIE, BHEE—

JIRETH I — B LT LE DN, 20K, FzlcTi & N ZEEICEHATLREL

Y (8 — 2 REE T O/ 235,

(3) —HYEMRL7= Ti, Nb X, EEROHEARENEWGS (AMAOKREWEE) 12

MHENEFE CTHATH U CHRIRED & 72 D03, BETEE O WS (AZBWO/NSWEE)
ATHITHE T~ U v 7 ZZEE LTREETERE T 5,

(4) ZOX ) ICHEBERAPLMPICER LZEE0 Ti 220 LIE Nb iE, v — o EHEZ

M L. EEEGCBH OWEICZ R B e 525 LE2 605,

(5) Ti BELUND DRECIEMT 5 E TIEA—AT FA ORI EZHHl L, 4 —

AT FA MR AZE L THAZ IMEIC B A 52 5, R Ti & Nb 2853 L 7-8ilic

WTIE, EfE (2) ORRICE S TH—ATF A MRIZIRKLETHLEEDRZH V. Ti 720

LI Nb BARINOGE L0 & HAZ BIMEIC 5 2 5 BT 72 B

Fo. BEHEAETICBT 2R e oFEcoONW T, kit~vA 7 v 7 uA Lok
BT, CHFAEF LR EIN X 72, ZOER, LT ORimE 57,

(6) Aw i, BN OB, BEAVER LIRS, ~A 7 a7 v LERREEEZ 525
23, BN TERERB IR RE N2 LD, v A 7 e T aA REMMIZEDA—ATF
A MRIEREMHEZRIT RN b DO EEZ BT,

(7) AerOFE LT, A—ATF A P OILBOEEA Ti 2 Nb (ZH# LT 3 #iL
FREL BEEMHRRIZI W THEH) EIRE ORf R 5 BN & U THHTH L, RABYSE
BOGAIZIZT7 = 74 MEARERET 25601 H 5B 265,
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I

AR ZREUEPEET HAZ O 2 3 L T 2 A

FHa4— 18 HE

H 2 BEIZR W T, BT E O 4 DB A 7 VIR L T & 225E8% DY HAZ ITTB
S A, B & ORREOEIMEIZEIZ A — AT F A MR E M-A RIS Bl E L TnWbh 2 &
ERIE LT, BIZE3IETIE, #lTPolRiHEL LTy 7ur7es (BLOFRrY)
WD DREAD O, FHFEBZEL T, A=A T FA FORE., HEoOy —
LREEZ 2L, R HAZ OBIEICS KRB Z 52 TnD 2 L&, Ehdl
ZBLTHZRE L, 2720, 2RO THAE L7-DIX, EEEkEFEHAZ Fo—
HOMAMRZARE LR L 2 L— M TH D . EEBHERIEE ~« ORI
KHLTHLNTEbDTHL, Tobb, MBI —HK2MEME AL TRBY ., flx OfEfk
PIRAE LTV 2856 0 5732 2 JE FRAHAR D © OBHER R OB SOV TR L TE 7,

—J5. B1IETHER L@ | EEROEHGEE FI25 LT HAZ @ CTOD #lEk % %
Mg 5L, ZORBERDIEIOOZEITLSHLNTED, —KIZ LBZ &L OBRFMR T
Uoid Z ENZWVA, 507 CTOD i & SRR OB & 2 BSOS T 5
ZEETERN ST, EEEO CTOD BB TIEL DX DORAT HHIN & LT, WIS
T 2 MENREEOFENMESBER LTV LB X HLD, Thbbh, IREAR. HAZ,
FHHARE &\ 5 EARAD L~V O 38 AR 1922 2z, HAZ HPICIRIET BRI L ~L D
SR D F 70 D KRk D 4340 23, CTOD 5 A B R S i IS A — 7R MR T 2 51 S 2 Ly
I AR AT 208 DOXBELR AR >TNDH b D EER T,

2 BBV T, FEIR A 460N/mm2 7 5 A D TMCP 8liC331F 5 HAZ | D &R AR
WENTNOH T DHRIEE %, BB A 7 VR BRICE > Tl LTz, 22T, R
FIZBWTHHE2ETHWZO LE UME [ CEBAZTHERE Lok E Fioxt LT,
PRGBS CTOD 3B % % ha L, 15547 CTOD #RBRAE R & FELEV 1 7 LEBRIC

R DAL 7o AR PE & DO BIMRIZ DWW TR 21T - 72,

Q

2

H4— 28 ZEECERERTFOBEIZR T 5 CTOD ik
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HEPTEHEEE 2 EOFHA T L 72 (R A 460N/mm2 7 7 A @ 30mm JZ TMCP T
0%, KRREDY 7~ — VI Lo TEAGEEBEF 2 /ER Uiz, S Table 4-1
ICRTIEY FE2ETY I a2 b— FATo LB AZSKIMM OZJFE#HTh 5, 7272 L,
AWFIENC BT HIEA R TIX, FERM E T Fusion line 23RJEICEEIZITL 725 & 9

(. bR DFEEIZ R T O X4 Tz > THZ L, CTOD

AR AN RFIZ 2 Tz

BrE L7, 5O NTREERE ORI 3 J OB MEE % RER OF5 R & bhik L T Table
4-2 3 XU Table 4-3 12777,
FU T Even-match Ot L 72 > TV 5,
Table 4-1 Welding conditions for SAW

Table 4-3 LV o518 Y . B L ESRIZSIRER S

Heat input | Welding current | Arc voltage Welding speed Preheat and interpass
(kJ/mm) (A) V) (mm/min.) condition
5 700 30 250 No preheat
Interpass temp. < 150°C
Weldl_ng Welding pass sequence Groove shape
material
FS
Wire:US49A T —_
4mm dia. 7(8) 18 45
Flux:PFH55S -
—_— l bR 30
AWS A5.17 1 17
F7A6-EH14 ~3 v e 45
BS
Tabale 4-2 Chemical compositions of base metal and weld metal (mass %)
C Si | Mn P S Cu | Ni Nb Ti Al N Ceq
BM | 0.07 | 0.23 | 1.51 | 0.007 | 0.001 | 0.30 | 0.48 | 0.010 | 0.015 | 0.037 | 0.0024 | 0.38
WM | 0.08 | 0.24 | 1.52 | 0.007 | 0.003 | 0.31 | 0.48 | 0.010 | 0.015 | 0.036 | 0.0029 | 0.40
7¥)  Ceq=C+Mn/6+ (Cu+ Ni)/15 + (Cr + Mo + V)/5
Tabel 4-3 Mechanical properties of base metal and weld metal
0.2%proof stress | Tensile strength | Yield ratio Charpy vTrs | CTOD at -50C
BM 467 N/mm* 557 N/mm* 83.8 % -110 &C 1.55 mm
WM 530 N/mm’ 588 N/mm* 90.1 % -36 =C 0.37 mm
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ERL U 72188500 K BRACTREA O HAZ HURIEIZ Wbk & 2 A7z, HE#ED Bx
2B %4 7 (B=30mm) @ CTOD B H *© 2T, RBRIEEE-50°CICH VT =T
CTOD B & Fhi L 7= UIRESIIMEHE SR U & U ORI 7 < A2t 5 LT,

YP460MPa class TMCP steel welds

Bend test ,at-50°C
a/W=30/60
Critical Total
Specimen ¢TOD B UACGHAZ EEMICCGHAZ CGHAZ
No. (mm) - | ZBSCCGHAZ [FGHAZ | Size (mm)

BS

|

FS Specimen thickness 30mm

Line of fatigue precrack
f Fracture initiation point

! Su=092 7.8
2 | §u=068 3.3
3 | 8u=0.39 8.2
4 | 5u=022 11.4
5 | 8c=0.17 8.7
6 | 8c=008 13.3
7 | 8§c=0.08 ﬁﬁ% 8.9
8 | §c=007 ﬁlM& 6.8
9 | §¢c=005 W%@% 9.0

Fig. 4-1 Critical CTOD and classification of microstructure along the fatigue
crack front

i

HTE
755 T 5 R

=

RO O HAZ ML 8122 L7z D9, Fig. 4-1 1043 B U7 BRA CTOD s L O
SR b ORLRRBLEG R 2 =T

FH
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Z 2T, HAZ HOAAEICBIT 2BVEIREIL, (A ¥ — VER THEH S ) S8
E'— R Fusion line, 3 XN HAZ-RHBERRE N E 0 5 OBREEZRIE L, Rk @ik
o TIREMBNREE 28 95 2 LIl »> TRIE LT, T 2T, HAZ-RMBERIC 1T 2 5%
ENENRE % 850°C & L CHHE L7,

d__@0-T,) J(Tmp-T,)-(p-To)
dy \/UD—TO) \/(I'mp—TO)—\/(SSO—TO)

d : ¥#E fusion line 7> & o T B EHEE
Oduaz - HAZ @TIJE\

(4-1)

Tmp : FARLEEE (1400°C) |
Tp : S MEMRE (°C).
To : SOFHRREE (°C)

ki

HAZ #1355 2 0> Table 2-3 L [Al—DER THF LT, £72, Figd-1 TRERKEN
A D HAZ #2303 L b UACGHAZ IZ72 H 72 WIEENH D DI, Ak L7z@ v | REH
2 TR Z DT T LTe T IR B EH O AN AR LT L b I/ S AT o> Tngny
72O TH D,

9 A D CTOD R TH LIRS CTOD fEIZITRERIEHSE AV 0.92mm 7>
5 0.05mm O#HIPHTEIL LT, 7272 L, mWIRE CTOD {E2 S b v 7=7li i Tl

97T & RSEERRRIZ IS 1T 2 HAZ HRLE O Sl 2 0 2 MBI 23588 B 47z, HAZ-CTOD
AR 63 D R ICRUE ST

BHIHEN 0O HAZ BT \

X PR R 5 5 R E B LT Eo; LN

I 5 & Figd-2 MEHNnD 7, £ 06 ° \\

HAZ HUKILOD 560 5 B INT  § 04 o

Bl fE, AR CTOD G T35 & 02 4 \.\
RSN D b DD, HAZ #l 0

0O 2 4 6 8 10 12 14 16
Rtk O FEIE N R LTy < IZREV, Total CGHAZ size. Lanuas (mm)

i i Fig.4-2 Effect of total CGHAZ size on critical
FHREEA WAL 8D Z b CTOD

Do
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Flo, EORABAIZBWTEH, bPIMSEDOKRKE VW ICCGHAZ (Inter—Critically
reheated CGHAZ) 7355 T & &5k LICAAE L TWAIZ b 53, ICCGHAZ LISt O (&
AT SREENRFEAE LTV D S DREVY, BT No.5~9 OB TId, 1895 T & ZUEhii
(Z HAZ MK 22 < B ATV DI b4 53 RS ICCGHAZ MRRALIE LIS 2 B FEAE L
TWDHDOR¥EL Bz 5TV,

U EOBEFER D, bRV RS CTOD flIZkt LTIk LBZ DIFEN K & e %
BEZT0a 500 43 LHETOEAICBWT LBZ MR A %2 X2 IR 59,
IO ER PG L TnDH b o & b,

4 — 3H ZERREEGCEIOSARAIRRR AT D BRI O HEE

LU EoiABR I K OWRETRE RIZ K o TG BT o CTOD B IC k1T 5 (API RP2Z
DXG372u N LITH 2 B Table2-3 OAEMKIX /372D EFR SN D) LBZ DAF(ED B
HUERN D O ANPGRS Tz, L L, (a) Fig4-1 O LBZ MNEY / v T EICHEE
ICHFIET 2B OGA, EOX I L THENRREAET D LBZ NEIRENIZDn?
(b) ZOREER L L THIEINTZIRR CTOD EOEWIE ZbHRD2 D002 (b5
Fig. 4-2 ® Total CGHAZ X V £ [RSL CTOD % HIREIZRELT 5 /3T A — X —[IHFIEL 20D
2?) . HOBEMITK LTI KR E LTINS LTy, & 2 T, Fig. 4-1
D &5 72 HAZ #fE M LL EIZ HAZ O/ A 2 3 ICHEE 32 2 & 2 et LT
7

TCIZH 2 BV T, A& R CIE#ES &2 8L L7281 7 LR A 32l L T
BY . BAHMEOTRE - EIMEZE EOREDEY A J VFFICH LT H OREHETE D
FEE ORBRAERNIES TN D, TI T, BL2EOT— XM HEE HAZ T OB 725
HIPERE DA & 3RO D TTHEIZDOWTHE R TH D, ZORICREL D D05, 52 ETH
ONTT =2 IIRE VB2 T — 2 ThHhoHENH 2 EThHDH, £T. ZNHLDOT—X
B HAZ 1 oOfEfk D@ 22 2 2 NH, SMET 2 TIEE2 R L Th 5,

F2REIIBIT L _HEY A 7 AOREIE, —BIHOMBVEE Z 1400°CIZ[FHE L7z,
Fio, ZHEAYA Z VBT S B BB X O RE OMENEE & Z e 1400°C, 750°C
WZHEE LTz, TDOX I RBONTFKET THOLNTZENETNDOEY A 7 VM ORI HE

A
(AT

ANSN
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FaFRNY L LT, e B g LA T OB 2 2 2 72 LU FIORIRE 2 8% 1T T,
ERERIRBY A 7 VO aE TIT 52L& Ui, 2L, B2EICBITLIMO &
Ak, —EH, “HEHEBIO=ZEIHOFEY A 7 Va2, TN EMBYEEIC & -
TTpi. Tpaw Tps W OHRRFTHHIT LI L &I D,

Table 4-4 Interpolation procedure

Effect of Tp; and Tp Effect of Tps
TP, Tp: Applied test data Applied additional tempering effect
= 1950°C Double cycle test Tempering effect by Tp; that is evaluated as
= data (1400°C+ Tp,) | follow is added to the Tp;-and-Tp, effect:
__ | Linear interpolation
1528"(: between the above
and the below
=700C Single cycle test
data where Tpy is
o~ | @ssumed to be Tp;
=1050C %0 300 600 700

Tps (°C)
Variation of CTOD = 0.
Single cycle test Effect by Tp; is evaluated by the same method as
data of Tp; the above tempering effect.

<700°C —

BE -
A, Tp A 700CEL L&A (ZEHOEY A 7 LV THA—ZAT A4 MuInL D56

A-l. Tp,2 1250°CE# B2 D5 A21E, Tp,=1400C & 4% (1250°CA 2 DiEEIC
MERE N DB A 7V TIEA—AT T A FOMKIAEDBEETHY . WmHY A 7)1
TIET7 =74 NEERDBIH S D Z D, (ZZFBERIRIREEHE LS 5 1,
M-A FHAR D AR R TERE, BIZRKE RIEBWVIRWEBET 5),

A-2. Tp,78 1050 CHKIHDGAIZIE, —HIHOEY A 7 VO RA2EHST S (—EA
DIMEMEFE DS Z DT & D5 A 2%, MBRHSHIRL O A — AT F A F &2 b |
WHEIZ 7 = T A4 MEOERPMEE ST = T4 MHLOMEE 720070,
ZD XD 7S B HOBY A 7 VTHA—AT A MEESND DO ThHILIX,
IR 7RI R FIE R A OBVBIEIIKF T 5 L B2 6 D),

A-3. 1050°C=Tp, =1250COMHERIZH 2 5E 121X, Tp, 2% 1050°CAIm 8 & Y 1250°C
#8x DOWfFGER AR T 5 Z LIk > TR ZHEET 5,

B. Tp:2 700°CARIEDHE -
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B-1. TpaTp:sLRIUERZGLTZOTT o R—Y A7 VLB L, ZHEOEERED
AN 2 (—RICIEF IR BEIAF CThiX, Tpa 2 700°CATM T Tpz 23 Tp;

UEDIRE L7225 Z LITET V),

B-2. T N—H A 7 )LD EIT Table 4-4 [ R$HY L 55 (B 2 =m0 FERAERIZILS

S, MEHEAORMELE b d),

PLEoHFEZEH LT, #l21E HAZ FORNEIZB T 5 2 7 a2 B CTOD i

(-50C) ZHEELTHD L, Figd-3 D LD
OB HND, 22Tl CTOD 23
WIHAIZAFRR AR T T 5120t Tz 12
KT TV RBEE T Z HWT, HAZ H1iZ

B 5 CTOD DO 5AT A2 FKBLL TV D,

ZDEHIZLT HAZ F10 X 7 a7k
MRS LN DD TH DD, okl
X% I\ CIABEE T CTOD 3R 5L 4 3T
FTHIZY T U EDOFEIC LD I 7 2l
FEOHEEN Z LR b D THLNE I D%
HANCHRIE L TB LERH L, Lol
HAZ Ol # DAL EIZ I T 5 5] 8RR
CTOD FE % B K O THGIET 5 Z &1
B EARFRRIZHT, £ 2T, SIERHE & Ofd
BN RV S 5RBR 20 L CL Z ORRGE L E i
LTHDHZELE LT

E9. B2 BOFBEY A 7 LB TH
BREFPED D7 > TV D3R A Ik LT S
ARBRA M L, SR E A S TR TE D
E D DT HTZ, £ DGR, Fig.d-4 DR

C:EQD value (m}Q)

\

Weld

\mel

Fig. 4-3 Example of estimation result of
microscopical CTOD value distribution

B ELNTZ, 2T, F2ETOHEBEY 1 7 Wz T, AB1kI/Imm OB E
AT NAMITHT 2 BRFE R L ZD ORLTHY , MBS DOEILT ¢ v 1— A 98N TIHi L

724 VIR U 5 [FIOWEREFROFEEMEZ VTV A
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Figd-4 X0, Uy v — A S & 0.2%0M OB Z En3bnd, K oSEf
1Z. Cahoon D BAAZ "N #E U CEBRIITKD b =R@4-2) V2RO TRLELDTH 5,

0.2%0, Hv_

3 (J%s}n°eﬂﬂ%ey)

g

0.2% oy : 0.2%Ifiit 7] (N/mm2) .
Hv : 7 o I — Al X
ey 1 0.2%ifif 7J 12517 5 E 7 =0.0055,
n : N CAE{LFEEC=0.12 - In(1429/0.2% o)) *O ™),
g : HE NN =9.80665m/s2.

(4-2)

K(4-2) ZEBEMBEAIS L THRONIZbDTH 50, BV A 7 Vil 2B
FIE BEREY A 7 AT LTH LKCEE LTWD, =B A 712 L TEa e

280

260

240

220

200

Vickers hardness

180

160

Fig. 4-4 Relation between Vickers hardness and 0.2%

Heat input |5KJ/mmi1KJ/mm
Singlecycle! O A
Double cycle| © A

Triplecycle. @

300 400

0.2% proof stress (N/mm?)

500

l
600

proof stress for HAZ simulation test specimens

700

VBT, e B EE
2 Acy RUL T &7 =[|IHD
BA A I NV EZT T MR
DRI ERAC DT L. [
PERSY gt b SN VN R A
MARN ERT2HGELEZH
No, S IIFERADOHTIE
72 < BEAR% DI TR IC b B
X DHD, Fig.d-4 TIIME S
ZI A OH DO E LTHEL
TWHTzh, FERME & D7E8
NDREL oo LB
Lo ZOZEEY A T NI
X9 2t 0 SERNE & H(4-2)
& DFEFIIHI 8ON/mM? T v |
B x 9 L Table 4-4 OHEE TIE

WZBIT DT o R— A T NVOHIEEICHYE T 5, 7725, Table 4-4 O FNEIZ X 5 R0k
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THNCBHT=o T, T o _X—=P A T NVOFIEEITDRIT X, 0.2%IM XY ¢ v 1 — A5l
S & (4-2) ORABRTELSxICT 20D b s,

ET, I TlX Table 4-4 OJFIETHEE L7z HAZ D X 7 a7t /15540 & | RSO
i SHIERE R B (4-2) IZ K> TROTM Ao MA ikt 2 2 LIk - T, ADROFHE
TR ITHED LISV THGEEL TH 5D,

210
200
190
180
170

210
200
190
180
170

Vickers hardness

210
200
190
180
170

e Experimental
o Estimation

(a)

(b)

~~
(2]
e

O wf c— . — B — - —— - C— > G— —— - — . G— - G— W —— " Su— - O— - —— o o—n D— GD w— . G - —

b
r

(mm)

Fig. 4-5 Comparison in Vickers hardness between experiment and the estimation

Z DT O [R CIRBESME CRIBR IR T 2 BUE L. HAZ H 0 0.2%Il I 0 43 A H
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EXZER LT, Fig.4-5 O RTONRZEDORERTH B0, MHONREL 72 5I120E->T
BETRST DI LICL - T, 2onmkEZHFEIL L THD, —FH, Vg v I—ARK
BRix. B 30mm Ot EE 7S (a) 10mm, (b) 15mm, BE (c) 20mm HEH
[FHZ A 2 T2 IZ I T, Fusion line 22 B REFFIZ A 22> T 0.25mm D & FTHEHE L 7z,
WL 9.8N & L7, RIS, TNHEDY 4 v I —ADFLIRITHE T HALEICB VT,
M7 FHME 5 (4-2) 1Ko TEE LY ¢ v —ZESH RO Fig. 4-5 DLEMANT LR L
TR L7,

B S OFERME & PRI E OxbisciE, (a) OMETEETRELS 2Vbo0, (b) B
EO (c) OMETIFIEFRICRGFTHDL Z Enbnd, (a) ONE CTHEHAMEE THE &
DFIERHE Y BL o T2 IR & LTIE, Fig. 4-5 OIRBEZJEREGIEN D D581 |
ZOMETEZL OFE#EE— FRER->TEBY . £ E— RO Fusion line DL D R
IR TE T, WEICEHOREL -T2 EAEET L L b s,

WTFHICLTH, ZOMIHWREORAELERL T, ERIE L FHHEME L OxfISIT
BliFTthdrEEXOLND, £ T, Fig. 4-1 THET CTOD &k & it L 724 HAZ Wriaiic
% LT, HAZ D X 7 a B2 AR E D S AT IR BE 2 Bk L7 FYECEFE LT B 2 &
& L7,

FA— AR PRERAIRRRE A LR U 7o R A SRR

Fig. 4-1 ® HAZ Wi loxf LT, 2 7 RIYRSALIEIZ I D 0.2%i00t /) 3 L ORS CTOD

A G LR % Fig. 4-6~4-14 123, 2B DX TIE, &80 % Fig. 4-3 L[]
72 HAZ im0 2 ZRoeo . B8 K OYE S T & Z0eiR ECo—kotmnmm L LTFE
RLTHD, T2 L, SR TP OREIIET AT, Table 4-3 (TR L7=MERELE L7z,
IO DRES KNG, LT Z LB EIND,
(1) CTOD kR CHEME & DR Il EmlE L7 (BST7448% @ 6u %A 7?) No.l
~4 OFRERAIE, R IT T & AR b ORI 60% I TR IR 72 R T CTOD 451k
IR0 Te, ZTAUD OFRERAITIN TR, IS AR AT 7 T & AR b D R
PRI 72 <. BT, RETRSA CTOD iz, EH M L OERE G TRk
LEFTCHo T,
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(2) No5~9 OB ISy / v FHk EOWIENES T/RBATHNZEIME SR 1251k LT

A A L TRV, £ OB I s @R IR < g o T BB S vz,
IO ORBRA TN T, BEER A ST RPN EIE D S0 L 7o fEdfrE L, (A
IRELZT 71 D @O @ CR B O BB IS AL LT e, 7272 L, 2 OfER A SIS T 59
MBI TR D o 72 b DD T U B EIWED e b Bk LTALE Tl R o Tz,

BT, B SNBSS T 2 R 2 iR 9 5 72 012, I AR I
BT D MBIREDFEMNS . EOMEIZBIT OMMERIET 5 THAIM, R
CTOD fiti % ERCIAIERD ik THEE Uiz, 20 b OHEEAE & AT T 5 ER 6
BFoNTz~ 7 a iR CTOD fii & 362, Table 4-5 (278 L7z, fEE AN IR & e R % £
OIS H A Lz § ¢ #4 7 O0RBA Tid, B A B W THEE Sh iz B
FITPRS CTOD I3 %Ak T-0> 32 CTOD fi & = Ok, 3 L OMEM BERANIFIE—F L T
Wi, TO—ENHEZT, RPTHEEZ TR 27 OICHW - FIEIZZ SR b D TH
0. £, AR E AT 5 HAZ O4JE CTOD RS F ik, MER A S O J/jPThIEl
LT HHDOTHDLHEEXLND,

Fig. 4-1 O4JZ CTOD iBRIZ I 1T 9% 7 T & R ctm ORI FER R L OHEE ST
FePE A DR SALTCB Y | R AR R T L b 20 B CRATANICEIME D B b
FAL LT T Tlde o7z, HAZ T CEIMED I & 51k L TV S EiFTIE ICCGHAZ &35 %
HAL5H M ICCGHAZ 7> Bk 33842 U 7= 308k 13, Fig. 4-1 35 L UY Table 4-5 (2R 3718 D) |
IRDHBA T 2 RKDHTH-7- (No.8 & No.9), BRF CTOD 736 u %7~ L7z No.l~4
OFER R TITREEITMRL HAZ (FGHAZ) & 2 W I AN HAZ (ICHAZ) & HiE &
MTAHRE D & B FAE L Tz, Nob~7 O A CIIMEEI L o — v BRERLL T DT /83—
SRS INEA S 72 CGHAZ (SCCGHAZ) /B384 L THs b (RS CTOD fE2% 0.17~0.08mm
ThoTe, LaL., Nol~4 ORI I7 T & oL b o RRE o S8 m 45101
ICCGHAZ fHiiZ & A TWiaho72b DD, No. 5~7 ORRER I IR H Je i 12
ICCGHAZ Ik % & A TW I b ) & Tk IX SCCGHAZ b 34 L T, Zb D 2
&, HAZ @ CTOD BRICH W T, IR b IO S L L= E i b4 L b FE
THHLOTIERNE VR D,
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Fig. 4-6 HAZ property distribution maps for specimen No.1 (8 u=0.92 mm)
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(a) 0.2% proof stress distribution map

Critical CTOD at -50°C (mm)

Fig. 4-7 HAZ property distribution maps for specimen No.2 (8 u=0.68 mm)
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Fig. 4-8 HAZ property distribution maps for specimen No.3 (& u=0.39 mm)
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Fig. 4-9 HAZ property distribution maps for specimen No.4 (& u=0.22 mm)
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Fig. 4-10 HAZ property distribution maps for specimen No.5 (6 ¢=0.17 mm)
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Fig. 4-11 HAZ property distribution maps for specimen No.6 (& ¢=0.08 mm)
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Fig. 4-12 HAZ property distribution maps for specimen No.7 ( 6 ¢=0.08 mm)
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Fig. 4-13 HAZ property distribution maps for specimen No.8 ( 6 ¢=0.07 mm)
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Fig. 4-14 HAZ property distribution maps for specimen No.9 ( 6 ¢=0.05 mm)
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RBRF No.5~9 (ZxI T Rt A X (Fig.4-6~4-14) 75, TREEIZEIME S REFTAIICS,
L TWDEEHOOL D BI AL, TORAEET A FREHIZM A2 ERRICE < ko7
TEIR DA M 95 Z & 2B L, BHERRAE L 20D OMEOIROAERIE, £%7°
ULHEMEOR AL LIZEIT TlERnn, 12 A EO%E, I T E A5t ETib
JEV RFTME L RER & 72 > TWie, FRRIC L CL 0.2%IMM A2 L Cd ., AR AR AT i
HIRW R PR LRI ALE LTz, 75, R CTOD fEDIR MGG ORI AL
K& 72 JRpifafb itk a2 A & LT Y | MR Z O RIEK X 728 Pl b fedk o b & —
H]LTWD,

Table 4-5 Estimated properties at fracture initiation points

Estimated local properties at fracture initiation points Observed
Peak temperature (C) e . 0.2% proof | Critical | critical CTOD
No. Clz_;135|f|cat|on of stress CTOD for welded
Tp: Tp. Tps micro-structure (N/mm?) (mm) joints (mm)
1 1155 983 612 FG HAZ 482 0.93 0 u=0.92
2 1103 751 419 IC HAZ 456 0.60 0 u=0.68
3 1201 1051 578 516 0.78 0 u=0.39
FG HAZ
4 1218 683 524 528 0.18 0 u=0.22
5 1383 601 621 0.09 6 ¢=0.17
6 | 1358 660 303 SCCG 570 0.09 § ¢=0.08
HAZ
7 1261 571 393 603 0.10 6 ¢=0.08
8 1314 800 467 564 0.07 6 ¢=0.07
ICCG
9 1291 751 422 HAZ 577 0.02 5 c=0.05
1298 592 295 609 0.09 s

MO 2 1k, T A RO AR S OFIBEREE S ~ LT v B RIR
IIFE L TWD Z & EiT 572012, WL OO IRO BT ki (LHZ: Local Hard
Zone) \Zxt9 2 BIEME FIZEBT D LHZ N - SMEBOIS B0 Hi 2 T Lz, 2 DT D
fER. LHZ AAEROBER RIS TOEFITERWARIE ) FIZBW T (RO RR R 2 &
PN BRI D7) T TC) . LHZ 132 O A iBEs K ONEmE 2 b FIR Lin 5 —J5, LHZ O
FAFRELRRYEmSRoTHRIR LR, SV ZEZH 5T L,

VI EORERE RN | BERARY) — 26T 2 2@l HAZ 16 OREER A & 2L
TOXIICHMTE D,
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HAZ @ CTOD #ER I B 2 AfT L7236, £ 37 LHZ JEL OUE O R 55 7>
OWIVERR DA E D, L L. LHZ O5ih 38 P ORI o ¥R T & 5 TRATIIC
IS EA L, AR AR OGNS, & 2 AN, LHZ TR /AT EiER T &
LI, EPrOBHEEICK L THEPITE LI EOPHELZF L TEHLT, 2D LHZ ®
BEh s O RN FEET D,

Z O AR LHZ AMERWEIE L~ U2 D RO % SE L, R A No.1~4 &
KIS (PR AR < 7 D ARE P I f5 C) 9% 97 & SRR BT 7 R AT ek
BEIR S EAE L 22 WA ICIE, RO R AR O 2 Rn e M 268 X > C A
SNHEEZBND,

FA4— 58 fhEEm

VAT HAZ S O OB R 2 T 2 72912, 35 2 B Clld L7 k& v
CRZJFEHER TR 5 CTOD sl A Fli L7z, [FIFEIZ, HAZ X 7 miy7e #4405k
DOHEWPIMEE 2 HEE T 5 HIEZHFE L, 2l X o TER L7 HAZ R oMERe s X
> THEHTF CTOD RERDOMER A M L7z, T OFER. LLTF O & 1572,

(3) SfkT HAZ #> CTOD RUBRDFER, 15 S ALIZERF CTOD DX 52 & MIEFITK
TN LR LT,

(4) BS HMEDZIEERE HAZ SO FEIEICIE> THBE LIk LTo
CGHAZ D b — & LA XA TERFL CTOD ZHF L TH D & RN HELI TS L9
ICHEIZHBEIEH DB DD, CGHAZ i b —F /LA A/NE < 72 HIZFEAHBIE ) - 72,
(5) BT 7 v MREDORE—OBLEN ORI ZIMZ 572012, 5 2 EOFHBLIRER
TR ZFH LT, HAZ NOBAHR&OMmE /), R CTOD $#ite a7 — 2 i+ 2 Z &2k -
THEET 2 FIEZBAF LT,

(6) ZOHETFIEIZL-THOLNII 7 alRIHIONMAE, ~4 71y IT—ARK
B B DA U RO I O 04 %, HAZ O— 8OV THlg L7 SR, JEHIc X
WRIIEDMF DAL, X 7 v B PEREHEE T E D2 S R S huTz,

(7) BAFE UT-HEE k& AT, FEHkT CTOD R HAZ WilZi1T 2 2 7 il
Mif /7. BRS CTOD M DOHEE A XA (EfL L, FEfkF CTOD sRAE R & bk L7z,
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(8) = DfER, AL SIXH T RATHNCEIE DS L L=k (LBZ) Th 25 & FIKFZ,
it 3O @ EFUR OSER (LHZ) OSEESIZHY LT\, 2720, 2ofaid, 3L
W T & SR ECROMIMEOLL LI @A IR S Ao dz, T7b b, BT LHZ Ol
FEAAIRFIC LBZ 72> TV DR RAET 5 Z Lo,

(9) MHRAERTHEE L7z X 7 a iR CTOD fEIL, EifkF TH LIRS CTOD
il & Bey Lt &2 o Le,

(10) U EOBEFERN D, kT CTOD B icth il E 52 72546, 8
PHORALIEB DO VEIPEZE A X 0 MR % 521 7o LHZ S50 CHBIERR R AN R B AL, & D
53 DEE L~ MEWIE B, TOREATNOBIENFEET LD LEZ BN,
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5 5 B R BRI O BB R B 2 SRd 4 2 MLk A

FBo5— 11 #5

INETOEICKIT Diml LY. ZEEEZZT 5 HAL OBEZ B L TW DM
EHEBRM 72 ZR & LT, A— AT A MRRICRE SN DM OMKILE, BLO7 =
FTA NSO “JEiiik s L TAEKRT D M-A MRS EE 8 XER - CTh D Z L 2b
Mmotz, LU, AR 2 IZHIN L T o 7238541, M-A #LAk B IRIXIR B2 AL 1
I T—HEM L 72%, BICKABMICIXOM L Tb 32 Z ERmsshTnd
U, FThbb, EEABOZEIC E S T, HAZ SIS BIC K95 M-A Mk oD B Bs R R A5 L,
THZELILRDIDITTHD, & TAN, 1RO HALZ BIMEDIFFER VT, Z DI FExSR
CIRDUHEANBNL, DABAT L@ L e DI B D WITHBIEEEC e D K5 72K
ANBRHREI )Y, OB ONITRON T W2, £ LT, AiEOEEICIE, FIT M-A FHfk
b & LTR8BS, BB OHAITIL, FICA—AT A MR bz F0 & Lo
MBLEE, DMT DIV, M-A RO R E9 5 X 9 IR BB T O HAZ DRILE FF &
W T FHlIT 720,

Z ZTARETIE, DABD D RABE THEEABNE LT 56 O EHERRR 72 HAZ
BIMESZRLR T OB b &2 TR T D8R DI A E T 5 2 & L Lz,

55— 28 RABNEHRA OME

FEEROREIZADHNT, RABWEEN Z IV E TOiam D N— A L7 TETo/NAZL
ZRBUEHELE EDO X I IRA TR S TWVDOMNIONT, ZOHTIEY K- TEHEL TR
CZ&ET %,

RABESH DR 2 BRI R B DR L CTH D & INABZ TR & i L T
LIFD 3 DDOREBREVRET HND, . T D OWIRIEWIZER L TREMIZH KA
BRI O ZBAL BN TL 5,

(1) Bz

83



RABIEHE D B ITREDFREZ LI 5 O EEESROBHEEIT) 2L TH Y,
AU o THEBEREED B L T0E | FfEiICIiE 1 CHRIFEEE 21T 9 K 90 1tk o 7,
ZD1D, HAZ TR NAIZ R D HEEZ T2 2 L3 7e<, HAZ OFEITEAI D 1 B A
JIVTREDZ L LD,
(2) mikREFHORE?
%3%@%%2&i:v~yay?ﬁ%éﬂkﬁﬁﬁ%%&wﬁwae\%ﬁﬂﬁb
WY RABIRBE O AITIE CGHAZ 73 B — 7 IR FEAHTIC R+ 2 R 3 3R 12 & <
D, ZDO, —MEKOR - BTN 0, KER TIN b, 20 LIEA A UL
R RE L TA—AT A MREEIHRZRBIZ LA ERLR>TLEI, ZOE—JR
FETE T bR ERBRIEY 2 B ST O [ LA —R2 T F A MR E I
FRIHT 2 5EH 5 2 6D 08 FEARITIZRABEBED CGHAZ IZB W TiEA—A T
A MR EZIEITOZEIRZEAERARTH DL EBXTHN L,
(3) HAEIE 2 EE
RABVEBEIZBWTZIT S

T T D T ] B 2 M SRR R
EL e\ T URIOKA formula) ¢ 2500 L AT, £ D% DBE]

400y TIRENSAK C | mmomERIcRs. ZomE.
T A e | EEOBNRTHERT DL R
> Qi b | emgm bl L C 508G
-i i ' 1 ZEELRFNERLRL 2D,
£ 400 \ MAN SR ] IR Fig 51 R IAZEEE O
S T N\ U Pem 1 s £ Mg R LIERIT
pod S N 1 525 KAREEROBED

i 1 ZRGHEEEZ 2T HAZ 13

300f (c)WT60(QT) 1 CHEEMEFLTLEI, 20K

- 0204 Pem {5 ngmim i 22 0 -5
200_(81?3”i ?E....“. e 1 AL Fig 52 TR Y . HAZ BE

1 5 10 100 SUXCE (IIW % A T DRFEL &)
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Fig. 5-1 Comparison of Hma>7<6)value between measured b K ABAEEC $5U T HAZ &5

and predicted by four formula
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TR OILF S TREDH DLV OBEIETHILLTLES Z & &R D,
Fo. REMDITE -2

¥ T | L L LR AL T T T 1 1 T T
FEMBAES VTR 5 1 T : Lok 1
e L
bAHN, BIR LT~ /a7 u E
@©
'-. —
A TTHERRHE, ERITFHEMH § 081
RFICHTH L. D HCCTHIR 7 - g . _
B ETERT D L 75, 5
g L E =A+B. (P CE)
Toky KL L RED  § o4 Hmax=A+B- (Pem or _
i3y = o REFBICITT LA L E HT50 ~80 steels SMAW bead weld
- . OM_C(%wmw%m@@m ]
BIG- L7 < 70 % LB DI, IS Permn (%) =0.17 ~0.36 Tp (°C)=20,100,200
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Fig. 5-2 Comparison of coefficients of linear
IZER LT E £k - 72 o AR correlation between Hmax (HV10) and carbon

g s - equivalents Pcm or CE (1IW) for high strength steels
3. ZIEHBATA L ORE of carbon contents 0.03 to 0.25%"®
HEz2HEEZHND,

51 FOD Fig. 2-6 |2/ L2l Y . M-A RO &I HAZ OWAEE KA L, mAELE
FEIZIERIACIEELS R o T2 B AR, BB A—AT T A MR 72T 4 b & IRAEIITHE L T
LEWV, M-AMRRPSHET D @G ST D,

RABERE DS ITIE, UL EISR R X 5 3 DDBEKNNLEHE &7 BixoT
BN EEN, 1E> THAZ EIMEAZ SR L TW O IEemER S 2 E Clci#Eim L7
LONHIEI PO TN EEBEZLNS, £2 T, ZORESMNEROEbE, FEEEDFHEER
ZBLT, RETHEL TN ZEET 2D,

#55 — 3HT KRB BB EINE 2 SCid 4 2 Mk 22 A

5—3—1 3FEBRIIE
(1) $EaATEL

HEERAS & L CIEZREAR A 320~350 N/mm? 7 5 A D 2 FEFE® TMCP £l % F\ 7=, Table 5-1
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(BB DALy 2, 2 CHGERER A 1. 5B 2 T/ ABAZ B IR RO HAZ 1 M-A
FEAFA A WM BHTIE W R TH O | HEEH B I ZFHI RABHIZERGT S -k
Thh, R ZIEHLTAE—AT A " ETHT 2 BN 25 H L TEERD 7
= 7 A MR Z AT TE 5 X 90 bR L7 o TV D, Z OGS B 1250 T
(X, HIZH 6 = 6 — 3SR WNTE DR EH O BRI OWTEEMICHIAT 5,

Table 5-1 Chemical compositions of tested base metals (unit: mass%)

Steel C Si Mn P S Cu Ni Nb Ti B Ceq

A 0.07 10.22 | 1.40 | 0.0120.002 | 0.22 | 0.36 | 0.015 | 0.018 — 0. 35

B 0.06 |0.14 | 1.36 | 0.007 | 0.002 | 0.02 | 0.01 | 0.007 | 0.008 | 0.0011 | 0.30

Note) Ceq =C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V) /5

(2) BBV A 7 LR

HAZ #fkIE, ek 2> SERBL L 72 11 x 1lmm Wi o FRaRBR Aokt LT, ks
INEVR S X 2 b— 2 — BRI L o CREMIC HAZ OZT 2B A 7 Vil 352 b
IZR-oTHBE L, wEEAZE LT, 5, 15, 60kJ/mm @ 3 ffHZARE L CHEBLRERZ %
i U7z, — MR DS CTIX, WEEABLS kJ/mm TIEZREIERE & 720 | M-A RIS IR L 7z
JRIFTMEALIRIR TEGWRIEE 2 2 e n (B2 8, ZOMREERML LTI OBEEAE
ERE LT, T2, ARITEERABRORERNECERZBNTNLDT, ZEEY A
7 VT 5T, RTHBEEAIE L2 A 7 L 0RBRE Uiz, BHEAEL 15, 60
kJ/mm TIIRFEN 2 KABEEZE L TBY . A IR 10 28 nm OIS FAB #5482,
FCB¥#:, — L7 ki A O RABGEHE AT L7258 OREBMRBEHEABTH Y |
BEIIEIERNOHFIRICH LT L7 ha AT ZESEEIT o 1256 OWRBEABERFE L
TWb,

FHT 28D A 7 i, BELEEIR (RS « JERK) Z{E L7z Rosenthal O
FRMTRE DI K > TR Tz, FHR LY A 75K 20 27 » 7 OP R T L =%
VIia b= = BRI T n T AL THET L, 2L, WA T 200C LA T &g o
T AR, IRERIE 280 kD TR & s Ui, FERBRICIRERIE Y v 7 Z J2fE
R LTZE A 7 V% Fig. 1ITRT,
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Fig. 5-3 Simulated thermal cycles
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i SFRERIL, BV A 7 L 2 T TR O PRI S LT U o 0 — A E 98N
CHEME L7z, Wi 5 @& pT OREME O T E Z iRk o & & L CTHIE LT,

L HAZ ORI Z T~ 5 T2 OIS YA 7 VA 5 L2 ARG 7 7 & Fig.5-4
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Fig. 5-4 Geometry of CTOD test specimen (unit: mm)
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Fig.5-5 Microstructures of thermally simulated specimens
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Fig.5-6 Variation of prior austenite grain sizes with heat input
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MM REARE LB DO TH DM, WA MBI DABYIITCOLBIERTX 5,

WA D5k]/mn DA M-A KL AL TERY . WA MERRIT 7 2K D
JEHEL 72> T D, AB 15 KJ/mn DGEIT S M-A MRS BIZZ S 528, M-A KRR SRIR
Lo TEY, FJARODT7 =274 MIB>TAERIZIL TV HDODETHEILTWNS Z
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Fig. 5-7 Observation of M-A constituents by SEM
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Table 5-2 Area fractions of M-A constituents

Area fractions of M-A constituents (%)
Steel
5 kd/mm 15 kd/mm 60 kJ/mm
A 1.4 1.6 0.3
B 1.1 0 0

(2) BMAMEE D21l

Fig.5-8 L 9N O E THIE L/ v H— RS (HV10) HIERE R TH D, AR
5 kJ/mm (ICBWTIE, #A, BIICE v I—AM S 190 5 H V. 60 F c il ir v gRE
LAYLIZELTWD SN D0, BEEABOEINC S TR IR LTV 5,
7272 L. $l B OGAITEEEAEL 60 k]/mm TOHALNARKE <, —fi% 50 F 2 diDifmE 1
SIS A E TR T LT\, Fig. 5-5 (TR L7Zi@Y ., B TIFRIN 7 =T 1 k
DAERIMEESILTEY . 60 k]/mm OHEFITITIIFE—RT v F 27 —T7=274 hep
STNDHZ EIZKknT o0& Bbivs,
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Fig.5-8 Variation of Vickers hardness with heat input
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Fig. 5-9 Variation of critical CTOD at -50°C with heat input

5—3—3 #%

PLEORBRER CHE LA L LTiE, M-A R/ N AZMAI T O A HAZ EiPE D251k
IS LTRY . ABMRINT HIEE- T M-A MR A RV LTS L. Z 08t~
DEFBN 2R D e bnrole, —75. RABOGEIZIL, A, CTOD fHIZH W T

MMM CRERERNAELTEY , ML LA —AT T A b2 b OZEREMIK DE W
93



ERLTWDLEEZOND,

Z 2T, RABEREICH T 2RI 2 ISR T 5720, Rk OREEIZR
B DN D B2 DN DMEEAL P EFT A2 & & Lz, SHBEAY A7
JVERBR T AR EE SRR CHEMERIZ BT L, SEM (1 X 2 Wrm @220 5 J1SG05517" o Ji fEak
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Fig. 5-10 Fracture facet size with heat input
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Fig.5-11 Critical CTOD vs. fracture facet size
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9. T H, CTOD BB 1A — AT A MRIRITHAT L7 AL CREEN R L TR 6
T FRCBEBEABN R E { Ro 7258123, BRREZEOMBKICIHA— R T A F DR,
FEATIL, HEOREAMR SN 2R LTI LD LEEZI LD,

PERDRFFE ¥ Cld, HAZ BIMEIZ 6 U R AL & RIS M-A AR OB b K& W2 &
PG SN TSN, A EIORBEETIE A O REITAMICHA TWLRY, Z0
B, AROKRMETIFAERT S M-A MBRENEFEITDRNT LB REL TWDH,
Fig.5-7 THIZ L2 Y | M-AMERIIABAD/NZ W5 k] /mm DGHE DI T ZWRITARK L T
W5, ZOEEE, WO T =7 A4 MHUTEEF O 7 2R M-A KRR H R S U CEEETE
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HOTHIRICEERKIICHE L THY, 7= T4 MHT M-AMBROGFEICHESND
L7 REITHBHEL TE, CTOD MR RO UE L T D bD & Ebivd, 3TH2
BETRLIZEY . M-A DRIR D 5037 2RISR U 7RI M-A &IZ X - TR A
FIET 203, M-A DBLIRITAER L 72 RO 5 A 121E M-A EOEIVEIZ k2 5288 3
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FfEREOZE L, & LT HAZ BIE~OREIZOWTIHAE LSRR, UL FoOfma &7,
(1)HAZ 2B 2 M-A R N ABAD G E T DB AR L ABAO I A > THR LT,
7el2 L. ZOWRT LRI O B 2 = 1T 7,

(2) A—=ATFA MRBIL, EHEABOBIIAE > THIRISH R Lz,

(3) BEABDOEITHE S HAZ BIME~D Z U HBEROEE L LT, A— AT F A b
BITIBEABUE ORI KA LT 5, 7272 LA—RA T4 MRiD HAZ $itEIC x4 5 8
BIIATE TIZ 0 o T2, — T M-ARERIZE AR T D/ DA BVDBFAICB O TR HAZ
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n7 uA LROEERSA I NVFOLAF v I RBERELICOVWTHEL, vA 71
T aA B & e o TeRED A — AT F A MR BIHI SR & B L 72RO M-A RERRAE
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Mo HAZ 80 % 1) | S & 2 ik et TR W TR 21T - 72, UL, %5 EDORR
MO BMEICR STy . WEABRD NS ZEEEL D56 & BHEABNKRE L
HRAEHE L 2 556 L Tk, HAZ 812 R L TW D RFR R > Tnd, I T,
WHE ZNEIUKT T DM G FEN R D Z D, ENENOHE ZREICH > T
Ham L CDS TR D D, BHEARD RN E < ZIaiEEEn i S 2R3 7228
MIZIEPERSEM B CTH v . ZhICHE LR o it FIEIC O W TE P 2 /i TRF L
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ZIE, FERRE L 22 AT e T — & 38 L O IE e i B PR AEARHINIZ B U CHEBIRRE 2N Bk X
NTW5D, BEM TH LD OEE L HIC, EEoEER TRBRICL->T, Zhbo
ANBEZBA D Z EOIERHERDOTHOL ) ZENVELRDL, 0L ) 72Kk ELOHE
b0, WEEEEY IV NABOZBEE S E TIEOTRE > TRY ., S s LT
A ORPE T U7z M-A FRRIC £ D HAZ BIESB LA K& RFRE L 72 > TL B,

FICE2HETHMA L@ Y | NABZEEEE HAZ O8IPEIL, M-AFFEOTEZRE & &I
KBS D, £ Z CUREEREEY ASIA O HAZ BIvEE R IZ, M-A FRRRHIETE IS IFER S
NHZ &L, ZZTET M-AFRRBOAEKRE LIRS D FEICONTEZTHD,

%3 HED Fig. 3-2 T/RaL/c@EY . C. N, Si, L T~v¥A4 77w AThH%ND, V
LDITHENFFC M-A RO AR ZIE L, HAZ B2 Pb sS85 2 &b, Th b OHEY
BORERTREZERET2HLERH 5D, LovL, ZbOmFiL, FRHCEHOMEE F
AR b RE <, WP ORMEL KT 5 72 OITIIM o F ik THlZ ik L e & 8k 5@
ENARTHZLLRD, TORDITRBANLRFEIT TMCP IETH Y | HMELES D
JEF&80(bd 2 2 &1 Ko THRESRRIR AL L. o ZRERUE < CHIM O MR 2 &
DHIEILE ST (ERBRENMET L) Zfo it ., Bk c X2 BEEmlc
O Tz T 522 &N TESH, LarL, TMCP {EIC X » Tl EEICHiM & ik L C
b, FINEAE N D HAZ Tl S OIL PRI K> TIRED HDFRE L~LIZHIRED L
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IR e b D L5, £ 2T TMCP T Z THEIZ M-A #fk D AR A2 Il 5 FB &5
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Fig. 6-2 Carbon profiles adjacent to interface
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IbFT D HEREZOND, WEABD/NS WIBERIEY ORHIZBW T, R0 TiN
Wi zFIH Lz HAZ HA—Z27F A FOMKILIHEI NG TH 5 Bbinvs, 7272 L,
F3ETHMA LM@Y, BINEEHIBEE T ORI TINRVWEDIZT L2 ENNET
oY, HED Nb & ODBEEEMNZFI LI B H o Ti-Nb k= Lo o Bt 2 (24 %
ZENAEMTHAS D,
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BORICKT 2 EHEEORENE DR LTRESELL LD TH D,

T AV IO AF T ABERIZEBVTUL, 20 HARED HIEFERIE K AIITHILT
$Y . SHELL #£i% AUGER & I'EiEh 5 TLP (2 T, MARS, RAM-POWELL, URSA,
BRUTUS &\ o 7= TLP &k 4 L% LT\
ST, & DR O TR BRI OFLEk N B &
DX LI TWo7, MARS X SHELL fho> |
2HHDOKE TLP TH Y, WIFEOWHIR L E
L TCTOREIZM 2 2 HEMED BT LW E
BANER SN, ZOWEORTAA VTR
O P RE S SR BR JE 23 BE5E S vz,

Zhbo TLP FIESIRILZ o M 8 pT
\Z X - T, Critical, Special, Primary, Secondary,
Tertiary &\ o727 T RIZHHAINTEY
B L~ WEEL L ~OLIEK 7 T AT K
STRRDN AR TETHEENTE DL X7
BAF 72BN T X TO 7 7 RTx L TH
RENT, TR0, APL 2WPCHEL 72
TMCP S8 =T D2 7 AT &z, BT
Critical 27 7 A DHIMIZIT API RP2Z*ZHE L
72 HAZ-CTOD (2B 2 E RN B & S
NienT, o/ ABLIEEEN HAZ xt
KRR 2T, BAR & SRkl
UTIZHRLIEARTH D -

(1) API RP2Z IZHLE SN/ & TOERHE
ABGEAIZ IV T, BUELL L@
HAZ-CTOD #%:%-10°CIZ3\ Thk
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(3) ETAOWEN T FTREL 35 X ) mEmWIREEZ AT 5 Z &,

Table 6-1 Representative chemical composition for 3” Grade 60
C Si Mn P S Nb Ti Other elements | Sol.Al | Pcm
0.07 { 0.13 | 1.51 | 0.003 | 0.002 | 0.01 | 0.01 Cu, Ni, etc. 0.009 | 0.18
Note: Pcm= C + Si/30 + Ni/60 + (Mn + Cu + Cr)/20 + Mo/15 + /10 + 5B

B OMREE T E S DO, K Pem— K Al—f& Nb - Ti 22— & L7oksy
REHRIE LTz, RFEN72 LS5 % Table 6-1 (2777, C, Si. Al # K<z 52 &I
Ko THAZ EIMEDYGEZ XY | F/NROME Nb—Ti O Fii & RN & - T TMCP 8o
REBF5RE &ARIREIPE O WIS 24517 L7z, i, TMCP I X 2 8UETTEICRB W T H E R
REEHNMIEL SND Z &b, #i7 L— R « IEMIZ TMCP &%/l < BE -
BHH LTz, FRZERMIZH LTI TO X 9 RG24 BHA L TRIEEHIZH 72 -
776

(1)  HIEELERAERT O TRIZB T DA — AT A NRIOMRALIZ LD BRI % W)
ExE5,

(2) JEYIZREE - ARIEFEFHIZ IS T 5+ 72 BRI O S 2 2 il 2E TREfR L. FRIC
R R SR D ARSI L 2 1 %

(3) JEIEOTHZZT A —AT F A MR & BRI ab S B 7012 (203 m J AL e
ATV, BREELIEVED N T U R & F D D,

Ak L7238 Y . MARS-TLP @ Critical 7 7 A DJEHifIZ1E APl RP2Z (ZH#EL 7=
HAZ-CTOD MRE%Z FERE T 2 E R S N B & S5 725, SHELL #EOERIL APL 2Z LY
LEILWEDTH -7, YD API RP2Z% T 1.5~4.5 kiimm OE#EABE B R—F %
£ 9572 SHEORBEABRTORBMAHE STV, SHELL 4R Tl EiasE A
BN 0.7 kiimm & Sz, FOEMIIEAL T —L RO FCAW T, IEHERIEAZMN 2
DEI RV DTEO T T, WEABBMETTUL, MEOZT 28 1 71
TIEFICRIMR b DL | WHREDN ERT 2, ZORE, HAZ EiT_A F A MERE
DMRIE S, ZIEEEHES O HAZ IMEIIBE L3 < 70 d, BITZ O 0.7 kiimm OFHET
IXEBE BRI 2 SR & U, WICEBEAEL 4.5 KIImm O5121% 250°CLL BT 5 X 91
BIE SN, TROLIEHERED HIER OWEE N T 2 ARG T, R &%
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HORE D ENREE D B
AT 2008, Zo
API RP2Z DHETHE (2005 4EJERR) Y
IEREORBR 7L L > TV D,

API2W & 7' L— K 50 (2% L Clix 4 4 > FJE (101.6 mm) £ T, 7 L— R 60K L

TIE3A U FE (76.2mm) £ TOREMER A EN L7-, Table6-2 IzDThEhd/ L
— NI KRE TOHRORMIEREFRESEREZ R L2 D TH D, Pem fH 0.18%LL T, [RFEF
fE 0.39%LL D HAZ B RNIZERGET L7k C#Ficxt LT, ik L7z TMCP iE£% M L T
FEsh TRy, BMMREBIZREZ T2ICmET 5D Th o7,

AR IR 72 HIBREE £ Th D /N —T DIEPEM CTHM HAZ SO %
RERBROIPNTH D, B, ZO/NABATORERBR T L% D
WZELH &, BUE TS SHELL 5257 API

Table 6-2 Base metal test result

4” Gr. 50 37 Gr. 60
Test Items
Test Result | API2W | Test Result | API2W
Yield strength, N/mm? 381413 | 345-483 | 441458 | 414 —586
ients“e Tensile strength, N/mm? | 496 —530 | 448, min. | 537 —551 | 517, min.
es
Elongation, % 27-34 23, min. 30-35 22, min.
vE.40¢, Joule 411 -419 | 41, min. 350-396 | 48, min.
Charpy
Test JTrs, C -89 97
Z-Tensile Reduction of area, % 75-77 (30, min.) 65-72 (30, min.)
Test
DWTT NDTT, C -65 --- -90 ---
CTOD Test | Critical CTOD, mm 1.14, min. 1.69, min.
at -30°C
A0 241 -380 | (41, min. 229 - 260 | (48, min
506 Strain Charpy vE_40, Joule ( ) ( )
Aging Test NDTT, C -60 -70

Note: () indicates the Supplementary Requirement in API 2W.

HAZ $UPERRA D 72 30 DB TIL APl RP2Z OBIEICHEL . K BT &2 1ER L C
Ffi S#v7z, Table 6-3 13C OWREM FRIERMF 2R LI b O TH D, HAZ BT T ]
(CBNT, ¥yl —ikli & CTOD FBRIC - TR L 72, Fig. 6-4 12
&£/ 72 HAZ—CTOD iR oW &I ;. 0~ 7 v ik Z <3,

@ fusion line B4y
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Table 6-3 Welding conditions for 4” Gr. 50 and 3” Gr. 60

Heat Input Low Middle High
Welding
Method GMAW SAW SAW
) e
— &
A
1R +2 | 42.2
Groove Shape
|z7iz
_ ¥
¥
30° 25 30" 125
4" C'r. S0 A" Gr. 6
Welding 1st Pass:0.7kJ/mm | 1st Pass:3.0kJ/mm | 1st Pass:3.0kJ/mm
Condition 2nd--:0.7kJ/mm 2nd--:3.0kJ/mm 2nd--:4.5kJ/mm
Wire:DW-55L (1.2¢) | Wire:#W-36 (3.2¢) Wire:#W-36 (3.2 ¢)
Welding (AWS ER80S-G) Flux:BL-55 (Bond Flux:BL-55 (Bond
Material Shielding gas: CO, type) type)
100% (AWS F7P8-EH14) (AWS F7P8-EH14)
Preneat Ambient 100°C 250°C min.
Temperature
Interpass Ambient 250°C max. 250°C min.
Temperature
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(b) 4.5 kJ/mm SAW
Fig. 6-4 Typical macro-etched section of the HAZ CTOD specimens for 4” Gr.50 steel, showing

positions of fatigue precrack tip

Fig. 6-5 [ZVAHAK T O /54 2 v, HAZ O LT < 22 < . & TOEESME TR
BERNA—N—~ v FOMFLRSTNDLZ ERDND,
Fig. 6-6 (3ME 1/4 t &, Fusion line ICBIT 5 ¥ L E—RERGEREZ R LTELOTH D,
IFIFIRE-60°C & T 100 ) DL EDOE WK = KL F =035 51T\ 5,
Fig. 6-7 (2%, #4488 . CGHAZ, SCHAZ (L EIZ 3\ T, sABRIEE-10°C T3 L 7= CTOD
FEARSRA R 3, CTOD #BAI% BS7448% 12, Bx2B % A 7@ 3 Al 3B 12 k-
THENE L7z, CTOD FRBRITMIEEF LIt 2B OB Z I+ 5 7212, v v LB —iK
BRE D HIEIERRBRFIETH D03, & HAZ (LB W TS 2l e 3 2 ZE R & A
LTWDZENbID,
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(b) For 3” Gr. 60

Fig. 6-5 Hardness distribution of welded joints at mid-thickness location
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Fig.6-6 Charpy test results at fusion line (, at quarter thickness)
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(b) For 3” Gr. 60
Fig. 6-7 CTOD test results
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VLB DN AL JE R HAZ 63 2 sl Bt R CHEFES L7218 Y . M-A KRR D AERL
Z N D BLE D D ROy RR F S AU AR C— 1K Si— 1 Al— & Nb - Ti 2 — R |2 L 7= /40
BRiE, FEEIC HAZ S W TEN 22 A9 5 2 L 3 R S 47z, Fig. 6-8 13 L
=M ELOEREH CCT X (Continuous Cooling Transformation diagram) % i~ 7-fE 8 CTH 5
B, 7= T4 MERRHPIEFICRES L, BnHEERTL Y =71 MEENRELD Z L
ERLTWD, T72b5 K 15CH < HWE TOMHEEE (800—500°CHH] DM EIREH] 20
M) TIEIHAZETHL Y =74 MEBPEITLTAELLZ Z 2R L TWD, ZHUE5
~10 ki/mm DEEEAERFO fusion line DM AR IS T D2, 2 /S AR ICHA—
AT A MESnleBmEbEZ 5 L. RINABOLAIZH LB HAZ I TIZ7 =71 b
ERERMEESING W LEZRLTND, T2bbL, B~ A T4 FMEERIH SN TH
H2 M-A RIS ERR LN Z & 2k > TV D,

he3:870°C

Tenmperatuvre ('C)

Vickers 0.1 X0.2 0.3 N0.4 X0.3Y0.6 X0.7Y0.8%0.9 XG.10 NO.11 X0.12
hardness 62) @GOG @

1 | I | 1 | I |
1 3 10 B 102 3 103 5 10+

Coaling tine fron Aey (sec)

Fig. 6-8 CCT diagram of the steel for 3” Gr. 60, austenized at 1350 C

CDOEIRHAZEH TD 7 =T A MEREMHENFOFE R, HAZ S L L#E< 720
Z DR RN B IAELICS <72 D, Fig. 6-9, 6-10 ITHIR DIt Z A2 BAYT
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FEhi U 7= HAZ Feimhl SaklR, BLd v BRACIRRE BN G BR D5 R 2 7”3, HAZ sl S iRBR
1Z 0.7 KImm O/NABNT, IO TEVEL CIEEA TR TH D, CGHAZ TH By

I — A TE A0 REIZEE->TWND, £/, & y BSEERNRETIL, @ o
KBRS TH D 1.5 kIImm OIEEABII 7O Z & .06 kI/mm D/ ANZVT & (RIREIL T
ELTEBLT., B OBREICBIT DI KB RE CIETEDLLE RN L 2REB LT
W5,
300
. CGHAZ
S l\.——l’.\- o
> s °
<200 | g—h—o—o—F
a SCHAZ
(]
_E 150 H 10 10
(1] o o
T 5
2 4
100 1 1 1 3 1 1 1
BASE 1 2 3 BASE 5
METAL METAL

Fig. 6-9 Bead-on-plate hardness test result for 3 Gr. 60 steel
At 0.7 kJ/mm of heat input, and with ambient preheat (22-24°C)

100

o 90 [H] : 3 mlI/100g

s 80 Preheat : 13~16°C

o 0 F

© 28 I ® : Surface Crack

X 40 } " : Section Crack

S 30 F A : Root Crack

s 20 |

o 10 f Ano
0-‘-‘---I----I----I-

0.5 1 1.5 2

Heat Input (kJ/mm)

Fig. 6-10 y-groove weld cracking test result for 3” Gr. 60 steel with 3 ml/100g diffusible hydrogen
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Fig. 6-11 {ZFEFRIC SHELLMARS TLP 71 ¥ = 7 b DT v F M I FAFE S b
BtOFAR I G A~ T, BAFE S HiMIE, BRAL D AT D Z &2 HIIZ, Gr.50
& Gr. 60 i HICFl Ry NEA TE D L HICHFFSNTVD, TOME, KTa vz
MZxF LT, =R TR TOHREIED DIF 7R TH S0, Fig. 6-11 TRINDH LD
(R DT Y F T 72 < BRTOHMRIZH L TLE LTRREZRiET 5 Z &N TE T,
7 SRIZOWTCHIER L7238 Y . C &1L 0.06% &K<, Pem fiid, 0.18% LA FTH Y, 4
TOHHUTKT LT TEE L VIR TEAD N T2 WREIC T2 2 LN TE 7= (FRE
DIRBENE T ClE, JEBIEAKERENEL 2D/ 7 32—/ RO FCAW OB IEHRHC T EMN
BT SR, oo SAW, GMAW, SMAW %53 F8IE L T &nT), £72, Al &
1% M-A D ER A N3 5 72912 0.015%LL FciiE S 7z, HIZ, P, S ®ITHIOE]
HAEZ®ED LEENOBNKS 2 he—LraIh/,

| | | | | | |
Carbon 0006 Phosphorus Sulfur
0.005
< £ 0.004 <
a % 0.003 @
(1] © i
£ € 0.002 £
0.001
Z Z v v v A A A—" A—_A—_ “  ~ L L L L L
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I I I I | | | |
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mass %
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Fig. 6-11 Production histograms of chemical compositions of 24 heats for MARS TLP deck plates

6 — 3HI RABNEERFICIE BB OB £ 17 b &8 5 Byt Tk

BEOHE AR BEA TWHEROO L ONEMERTH Y . 1980 FELIRIERED
H #2202 ® U 72, Fig. 6-12 [3EMEICRB T 2IRBEEDOEEZ R LT b D TH DM
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89 1980 AEH B BRIE 7T A e FBIIAHE S RO b o T & L, AEMEE 100%30 <
IZETEEL TWARFRDND, HEa X MO BRIOTZOIZ, O HEME & [F]
IRFl, M Ak, EMIZ L > Tl ESE SR OBEEED ATHe & 72 5 RIE T A
NI E R L TSR TH D, BT, MK TIT AT SAW, = L A, flig—
LA AR, ROVWDY L RABEHENRZHEND K212 Tinore ¥,

100 '\\;\\ ] ‘
S Gravity Welding A
80 = = S— T 7
L7
~ SMAW (vertical down) ! CO2 semi-auto
P s (or Mag) B

60 -
SMAW o
/ | .~ Handy

40 / I automatic
L 1

\Weinht ratin of weldina material (04)

—i T .. Robot
2 ) ’;-'(—7 TR m—— — Birid i : 3
0 I e e B R welding
=" Oneside SAW I Electro-gas
ol B (FCB. FAB) : |SAW . l l , electro-slag
1960 1970 1980 1990 2000

Fig. 6-12 Historical transition of welding methods in Japanese shipbuilding industries®?

ZORDITHEMERTITRABBENZ N SN TN DD, £OHTHEHIT HAZ #IC
XL CRWEIEREER S0 OPMRIEAH# CTH 5, £ DORFM LMY, LPG v &
Y IAER SN DB TH D, 7 r N OFALIREITHET-2CRETHY . LPG
7T LY BIRWIRE TREFSN D (B 213-46°C), 8 D v v L B —3RBRIREE 1T
WEIZIE U T, ZORFHEE LV b EIRWVIRECHESND Z 122 b, Iz, i
JZ 25mm LUF OO AITRREHEE LV & SCRWRE & 2572012, #ilxiX, -51C
TOV Y VE—HRERBRERAWEET D2 ENMEL 2D, 20O L) KR TRAZE
P HAZ SO Z IRFES D 72 D1TIE, M & U T ORI RGN E L 10 D, T72
b, BHIFEBLOFESETHEL@Y | WEABOEINIA > THAZ BOA—AT
F A MRIIT IS L, SROMEE LT HAZ BN ST 2 0H 5H T, %
NEUET DMRDBNE LR DL TH D,

RABGEERED HAZ $IPE LB FI2 oW T, 5 ETHREEIT 72, T DR R,
RABEEOLAIZIE M-AFRRRIT S £ 0 A3, SRR R b LA —2 7
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. . . HAZ during weld thermal cycles
S UNE 2% T e ] Y

800r

TiN + AN + (B]

Temperature
o
O
O
J

TiN + BN resulted
from reducing A{

H

@)

Qo
T

M

O

@)
T

114



DX HTA—ATFA MRERADSBENIZ T =T 4 FAHTH L Ty, ZOHEHT
Ru VA RA— AT A MRFUSlRIT L Y, BRI R oL X — & TR B 0
774 MERENHIT AT THLEZLALND, ZOZ EIXET, KNP L DX —
7 274 MERERTZEERD,

L, Ru i 2% & HAZ OaAMEE TR v v AL 4 25603
HY ., HAZ BN O ZEICHE S5 ERHDH, £ Thu v & FRRFICHF O
TAIREELEBEEZ L bu— AT HIERNREL RS M, 22T, oA OEE
BEUGELIRINDZ D CGHAZ IZR T 28R 2 H KIRITIEH T2 51k E LT AR r 2N
ZTT NI BERERE L, WICEHERZ M TR 25205 Shiz %, Fig,
6-14 |3 HAZ fHik\Z64~ 2R v CPIMOA, FIZE Al— N L L 72K o2 R, 2850
IR LI D THL, Thbb, e Z2INT 5 L5 53 Cilld L7 RIC X
5T, CGHAZ k1% 7 = 7 4 MOMEME S TRk & 725, LasL, HAZ 4+
JEFRITMBGEE MK . Ao BNARa I — 3/ RE& L THH LT (LPG Hi& OIKiE R
ICBWTIR) RHOSENBESND LR D, HFOTLVIZRTL, ERELR
DD E, ZOMPEMEI L, /> CGHAZ OAMFEMRA L 2 FICRET 5 Z LN TE B,

Weld Metal |. - Conventional Steel ‘
/14 F — Austenite grain growth,

A N // _ —Coarse bainitic or '

et S e 1 martensitic structure.

Weld Metal | , : | Boron ~ addition

" Ry F = Promotion of ferrite formation,
. . ~Promotion of martensite formation.
Lttt 3(C, B)§ ¥4

Weld Metol|. / Developed Steel (Low A2-B-N)

R Co =Maximized ferrite formation.
Cleu e =Prevention of bainite or
e martensite formatlon.

B:Bainite , F: Ferrite

Fig. 6-14 Microstructural reformation in CGHAZ by new chemistry
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B SETHAZSNE TOR 0 OFEZBEMBZ L, £/~ TBNIZ7 =74 ME
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ElB, TAI= T LD E FRIRFZ, FICEFELOCHDDLZ EIZE-TYH, [k
DMEPFOEND EBEZBID,

ZD XD ARG . RABNEHE HAZ $YER o701z, IRAI—F N—B#i& 5
o3k DM et Lic, FEBRIC, Ar e X—XZ LT, #ifFoT7rI=v L&,
FEL O LS ETHMITR LT, RABNFAB 824 % L. CGHAZ iz
BICTU vy VE—RINT R F—ZHE L ThTIZ, EORRERLIZOD, Fig. 6-15
‘b, TIZT, U E—R BRI VIR L SARTEM Lz, ¥y /L E—REROFEEH
INERLF =B TR EANIIBE TER0nD, RN R L ¥ —% iz LT
B2k (Fig.6-15 (2) . EHRENDHD LAY LI -2, E72, TAI =7 L8N
b DERWEFHIC S 2 E AT, W R F—DORIEIZRE D ORE LTfE L 72> T\ D
ZEBDBND,

A B

A

vE-si vE-3l

« )1 v
']eh}ﬂ&!nr /% n1to)

B0 60 40
8 €0 dow® © N {ppm)
{1} Average Absorbed Energy (2)Minimum Absorbed Energy

Fig. 6-15 Influence of soluble aluminum and nitrogen on Charpy absorbed energy at the most
detrimental position in the HAZ of FAB weldment.

Base chemistry: 0.06C-0.15Si-1.45Mn-0.010Nb-0.011Ti-0.0010B,

Thickness: 8mm, and welding method: FAB with 4.3 kJ/mm heat input.
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RTENC, 72T F=_AFA == F A4 b=~ AT oA MNEASHEOS
HFICEROERBIIHEICENDL R, LVED T =74 F—"—F 1 MEAGHEMKIZ/
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FERFICE LTI, EHOERICE > CRHMEM AR EZEL S5 2 L5 iHo> T 5,
Thbb, 7274 b= =54 hEROHB~BITSELZLICL-o T, AILEXRE
THU Yy VE—EBBRENYIIKTT 22 L2MHALEI E LD TH S,
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Fig. 6-16 Influence of soluble nitrogen and microstructures on the toughness of the fusion line
Here, “F” is ferrite, “P” is pearlite, “B” is bainite, “M” is martensite, Q.P. is quasi-pearlite, and
B/N is the weight ratio of boron to nitrogen.
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NEGALTVDbOO, Ae AXERN, 7420 ABITEEO LV, EHRITK
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DOWIMENEI2 D,
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(2) Developed steel (38mm-Nb)
Fig. 6-17 Comparison of CCT diagrams between a conventional and the newly developed steel
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ZDfEFR. BB W THEC DO L8 Y | BHIZEH TIL HAZ OEY A 7 V2BV T 7
= T4 NERBRPHBAHWREIERED L ZATHELTEY, HAZ DF—ZATF A Frb
DT = T4 MERERET D Z &ENEMT O,

VL EO sy aHEsHc S & ARIER LPG D & 7 - ~Ou A 2 mife & LT,
PRIE 10mm & 16mm Ol (A AR KL33) 28k L, £ Ok L Ok
FEBOVERE & FFAL L 7=, BU&E L 728 DL PR sy % Table 6-4 (2R, £ ORXEHEEHINE

WMEO=ATERe  ERINL, ArrEFE LT WEREZBEEICHRINT S L
REZ, BRLEFBELLTWTI A= AR KM TR TH D, HEEHIE 250 ~
VHRIFIZ Ko T U 72 A e BRI K> TRRA I 7 & Lictk, BARMEIL 7 A

BT TMCP i L CTidiE L7z,

Table 6-4 Chemical composition of developed steel (mass %)

C Si Mn P S Nb Ti B Sol.Al N Ceq | Pcm

0.06 | 0.13 | 1.41 | 0.009 | 0.002 | 0.012 | 0.011 | 0.0010 | 0.009 | 0.0057 | 0.30 | 0.14

Note: Ceq=C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5
Pcm= C + Si/30 + Ni/60 + (Mn + Cu + Cr)/20 + Mo/15 + /10 + 5B

LPG it Tl B —ITHEMERRER N JEE L7 &9 PRSI E S e P uidZe B 7wy,
RF LS VR B T 50 D L A3 447

CHER SN TWA Z L REETH 200- ,_.___ s 8
Do T, PHlEERTIE. &M lod o
BIGCHEHAIN TV HREN S I
ek, T ADBIUE 0mm M2 200k
WTIH S T L b a U R E

(SEG-ARC: g AB S kymm) ., L | o tomm- 5K
BUZ 16mm 1z CHE 7~ — Z 100 SEG ARC
DT — Yk FAB 1 (FAB : VAR | © __.__‘;'::ug‘.“;:k':;
AEL 8.6 kIImm) Z i L CissE L FAB
PR A L I LT L O—5 T3 5
CHAE L. Zods. HE 10mm Distance from Fusion Line (mm)
SEG-ARC #kFIZFEIE S (L HA) . Fig. 6-18 Charpy absorbed energy in the HAZ

of high heat input welding
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Fig. 6-19 Center-notched wide plate tensile test result at the fusion line of
16mm-thick FAB weldment

H 2, RJE 16mm # D FAB a5k fusion line 512 0.1mm & O LI K 2 3% 1) 7=
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- { (50 }dT (62
o [Til,o10 =(0.003215 , +0.391\ Trs+ 2744t + X (6-3)
1 1
Kc =5.60exp{ k| —— - —— 6-4
: Xp{ O(J"Y%[Ti]am T }} (&-4)
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VEr |33 v L =N = 11— (kgf-m) |
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) IE 200 |
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- - - o
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27,

Table 6-5 (2, LA EORHIRER 2. ZOREUE L IIZEN L TRT,
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Table 6-5 Summary of evaluation test results

Properties of base metal (L) Toughness at fusion line
Thick.
(mm) | YP TS | VEsic | Kcasse Welding | VE.si Kcaec
(MPa) | (MPa) | (Joule) | (MPay m) method | (Joule) | (MPay m)
10 | 418 | 468 | 172 L | SEG-ARC | 121
Test 5.9 kJ/mm
Result | 16 | 416 | 466 | 286 264 T FAB 162 364
8.6 kJ/mm
: 10 440 | =34 L >34
Aimed >325 | =124
Value | 16 560 | =4 T =27 =117
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