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Dose Distributions of Fast Neutrons from Thick Target *Be (d,n) 1°B Reaction
By

Tetsuo Inada, Takeshi Hiraoka, Takashi Habu and Hideo Matsuzawa
Physics Division, National Institute of Radiological Sciences
(Director: Dr. Tadashi Hashizume)

Tkhe possibility of the use of fast neutron, from thick target °Be (d,n) 1%B reaction with an electrostatic
accelerater was examined as a conventional and stable source for irradiation.

The dosimetric quantities concerning with the therapeutic purpose were investigated and the fol-
lowing data were presented:

(1) Calculated and experimentally obtained results of depth dose distributions, which are in fair

agreement.
(2) The dose rates due to fast neutrons at the surface of the target holder and at TSD of 20 em are

400 rads/min. and 20 rads/min., respectively.

(3) A circular field of irradiation for therapy was obtained by the collimation at TSD of 20 cm and
the corresponding dose distribution was given for the case in air and water phantom.

(4) The percent depth dose distribution along the central ray in water for the present neutrons

collimated appears to be almost equal to that for 150 kV X- -rays with 3 mm aluminium filter.
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Fig. 1. Sectional view of thick target assembly.
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Fig. 2. Angular distribution of neutron fluence
produced by unit current of 2.8 MeV deuteron
beam incidence on thick beryllium disk (closed
circles), and of neutron fluence to dose conver-
sion factors (open circles).
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Fig. 3. Comparison of neutron spectrum shape
between thick target *Be(d,n)'B reaction and
#5 fission.
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Fig. 4. 1, the reciprocal of the effective cross
sections of reaction, **S(n,p)*P, versus emis-
sion angle.
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Fig. 5. Depth dose in 30 cm thick tissue calcu-
lated for the normally incident neutrons from
thick target *Be(d,n)"B reaction. Histogram
for 2 MeV normally incident neutrons,
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Fig, 6. Depth dose in 30 cm thick tissue calcu-
lated for the isotropically incident neutrons
from thick target “Be(d,n)"B reaction at 2.8
MeV. Histogram for 2 MeV isotropically in-
cident neutrons.
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Fig. 7. Depth dose without y-ray dose. Solid
line and dotted line calculated on the data
due to Irving et al. and due to Snyder and
Neufeld, respectively, for normally incident
neutrons from thick target *Be(d,n)!*B reaction
at 2.8 MeV. Broken line on the data due to
Irving et al. for isotropically incident neut-
rons, in comparison with the experimental
results for isotropic approximation.
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Fig. 9. Dose rate distribution along the central
ray. Dose rate is expressed in rads per minute
for the incidence of 200 uA deuteron beam of
2.8 MeV on a thick target of beryllium.
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tors and water phantom.
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Fig. 12. Lateral dose distribution at 2 cm depth
in water for collimated neutrons, with (solid
curve) and without lucite collimator (broken
curve). Distribution of ¢.ray dose is also
shown below.
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Fsg. 13. Lateral dose distribution at 2 cm depth
in water(solid curve)and at the same position
in air (broken curve) with lucite collimator.
Distribution of v-ray dose are also shown
below.
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Fig. 14 Percent depth dose curve in 30 cm wa-
ter phantom for collimated neutron with lu-
cite collimator (solid curve) and comparative
representation of the depth dose for 150 kV
X.ray (broken curve).
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