

Title	偏波直交性を用いた高速直交周波数多重ディジタル変 調方式に関する研究
Author(s)	須増, 淳
Citation	
Version Type	VoR
URL	https://hdl.handle.net/11094/1498
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

博士論文

偏波直交性を用いた高速直交周波数多重

ディジタル変調方式に関する研究

須増 淳

1998年2月8日

奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻

偏波直交性を用いた高速直交周波数多重

ディジタル変調方式に関する研究*

須増 淳

内容梗概

本論文は,筆者が奈良先端科学技術大学院大学情報科学研究科に在学中に行った,偏 波直交性を用いた高速直交周波数多重ディジタル変調方式に関する研究成果をまとめた もので,以下の5章から構成されている.

第1章は序論であり、マルチメディア移動通信を実現するために必要な高速ディジタル伝送技術の現状を述べ、本論文の位置付けと目的を明確にする.

第2章では、移動通信におけるマルチパスフェージング伝搬路の統計的性質につい て説明する.そして、マルチパスフェージングが移動通信システムに与える影響を明ら かにする、次に、マルチパスフェージング伝搬路において高速ディジタル伝送を実現す るための技術のひとつである直交周波数多重 (OFDM: Orthogonal Frequency Division Multiplexing) 方式について述べる.OFDM 方式における送受信機の構成と送受信信号 について説明し、次に、OFDM 信号の周波数スペクトルについて説明し、OFDM 方式 が周波数選択性フェージングに対して耐性があり、高速ディジタル伝送に適しているこ とを明らかにする.そして、従来 OFDM 方式における隣接サブチャネル間干渉電力と誤 り率をもとめ、その問題点を明らかにする.また、OFDM シンボルのガード区間を用い て周波数オフセットを補償する方式について説明し、その伝送特性を示す.

第3章では、従来のOFDM方式の周波数利用効率を保ったままで隣接サブチャネル干渉 電力を減少させるために、隣接するサブチャネルを直交する2つの偏波を用いて別々に伝 送する直交偏波周波数多重 (OPFDM: Orthogonal Polarization and Frequency Division Multiplexing) 方式を提案する.次に、提案 OPFDM 方式におけるシステム構成につい て説明を行い、変調方式のスペクトルを説明する.また、提案方式における隣接サブチャ

*奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻 博士論文, NAIST-IS-DT9761008, 1998年2月8日.

i

ネル間干渉電力と誤り率特性を理論解析と計算機シミュレーションによって解析し,伝送特性を評価し,提案方式の有効性を明らかにする.

第4章では、OPFDM 変調信号のシンボル波形の特徴を用いて周波数オフセットを 推定して補償する半シンボル遅延相関を使用した周波数オフセット補償 (HSD-OPFDM: Orthogonal Polarization and Frequency Division Multiplexing using Half Symbol Delay Frequency Offset Compensation Scheme) 方式を提案する.提案周波数オフセット補償 方式の原理について説明を行い、周波数オフセット補償器の構成を示す.次に、提案方 式による周波数オフセット補償効果を計算機シミュレーションにより解わし、提案方式 が従来の周波数同期方式の伝送特性と比較して有効であることを明らかにする.

第5章は、結論であり、本論文で得られた成果を総括するとともに、今後の課題について述べる。

キーワード

ii

OFDM, 移動通信, チャネル間干渉, ランダム FM 雑音, 周波数オフセット, 直交偏波, 周 波数同期

Wideband Digital Radio Transmission based on Orthogonal Frequency Division Multiplexing with Polarization Orthogonality^{*}

Atushi Sumasu

Abstract

This thesis deals with the wideband digital mobile radio system based on orthogonal frequency division multiplexing with polarization orthogonality. This research was conducted during the author's Ph.D. course at the Department of Information Systems, Graduate School of Information Science, Nara Institute of Science and Technology, Japan. This thesis consists of 5 chapters as follows.

Chapter 1 is the general introduction of wideband digital mobile radio systems, where its applications and the research objectives are described.

Chapter 2 gives the mathematical representation of multipath fading, and its impact to wideband digital radio communication systems. It also introduces the principle of OFDM (Orthogonal Frequency Division Multiplexing) system, which is one of the countermeasures against performance degradation due to multipath fading. This chapter then investigates the performance of OFDM in a fast fading environment and shows the performance degradation due to fast fading. Furthermore, this chapter introduces the frequency offset compensation scheme for OFDM.

Chapter 3 proposes a new OFDM system with polarization multiplexing, namely, orthogonal polarization and frequency division multiplexing (OPFDM) system, which mitigates the performance degradation due to frequency offset and fast time variation of the channel. The proposed system transmits even and odd sub-channels over different polarizations. This chapter illustrates the principle of the OPFDM system. It

iii

^{*}Doctor's Thesis, Department of Information Systems, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-DT9761008, February 8, 1998.

investigates the ICI power and the BER performance and shows that the OPFDM system is effective to improve the performance.

Chapter 4 proposes a new frequency offset compensation scheme for OPFDM, namely, half symbol delay frequency offset compensation scheme (HSD-OPFDM). The proposed scheme can effectively compensate for the frequency offset by observing the auto-correlation for a lag of half symbol. This chapter illustrates the principle of the proposed frequency offset compensation scheme and shows computer simulations result. It shows that the HSD-OPFDM can efficiently compensate for the frequency offset and improve the BER performance.

Chapter 5 summarizes all results obtained in this thesis and states the further study.

Keywords:

OFDM, mobile communication, inter-channel interference, random FM noise, frequency offset, orthogonal polarization, frequency synchronization

目次

目 次

1	序論		1
	1.1.	フェージング対策技術	1
	1.2.	OFDM の歴史	3
	1.3.	OFDM の問題点	4
	1.4.	直交偏波を用いた OFDM	5
	1.5.	OFDM における周波数同期	5
	1.6.	本論文の構成	6
2	直交	周波数多重 (OFDM) 方式	9
	2.1.	序言	9
	2.2.	マルチパス伝搬路	10
		2.2.1 陸上移動伝搬特性	10
		2.2.2 マルチパスフェージングチャネル	12
	2.3.	直交周波数多重 (OFDM) 方式	18
		2.3.1 システム構成	18
		2.3.2 OFDM 信号	20
		2.3.3 OFDM 方式の問題点	26
	2.4.	従来の周波数同期方式	30
		2.4.1 ガード区間を用いた周波数同期方式の原理	30
		2.4.2 ガード区間を用いた周波数同期方式の伝送特性	32
	2.5.	結言	39
3	偏波	直交性を用いた直交周波数多重 (OPFDM) 方式	41
	3.1.	序言	41
	3.2.	偏波直交性を用いた直交周波数多重 (OPFDM) 方式の原理	42

v

		3.2.1	システ	ム構成	成.						•••	• •	• •			•		•	•	44
		3.2.2	OPFI	OMの	ハー	ドウニ	ェア規	1模			•••		•••	• •		•	••		•	47
	3.3.	ランダ	ム FM	による	る隣接	をサブ	チャ	ネル	干渉		• •		•••			•	••	•	•	4 8
	3.4.	解析結	果		•••		• • •				••		•••					•		53
	3.5.	結言	•••		• .•					•••	•••		•••			•		•	•	58
4	半シ	ンボルシ	星延相關	関を使	用し	た周済	波数同	司期 ((HSI	0-0	PF.	DM)	式						59
	4.1.	序言,			•••		•••	•••			• •	• •	•••	•••		•		•	•	59
	4.2.	半シン	ボル遅	延相関	目を使	更用し	た周	波数	同期	方式	の原	理	•••			•		•	•	60
	4.3.	提案方	式のビ	ット訣	具り率	特性		•••			•••	• •				•		•	•	63
	4.4.	結言	• • • •					•••		••	•••	• •	•••	• •	• •	•		•	•	71
5	結論																			73
U	까니 디메																			
譈	辞																			75
-		h																		
奓	考又	煎																		77
研	「 究業:	績																		85

図目次

2.1	陸上移動伝搬特性	11
2.2	マルチパスフェージング伝搬路	12
2.3	$\phi_C(\Delta f)$ と $\phi_c(au)$ の関係	15
2.4	遅延波の影響	16
2.5	散乱間数	17
2.6	遅延-ドップラー平面における分類	18
2.7	OFDM 方式の送信機構成	19
2.8	OFDM 方式の受信機構成	20
2.9	OFDM 方式の周波数スペクトルの概形	21
2.10	周波数選択性フェージングによるスペクトル変動のモデル	22
2.11	OFDM 信号の波形	24
2.12	ガード区間	25
2.13	ドップラー周波数と隣接干渉電力の関係	28
2.14	ドップラー周波数と誤り率の関係	29
2.15	従来の周波数オフセット補償器	33
2.16	E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s=0.1$)	35
2.17	E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s=0.4$)	36
2.18	正規化周波数オフセットに対するビット誤り率特性	37
2.19	観測シンボル数に対するビット誤り率特性	38
21	谷本古式と提案古式の田油粉スペクトル配置	49
ม. ม		40
ე.∠ ეე		40
3.3	合価仮にわりる変調信ち仮形・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
3.4		48
3.5	APD に対する ICI	52

vii

3.6	E_b/N_0 に対する BER 特性	55
3.7	正規化ドップラー周波数に対する BER 特性	56
3.8	XPD に対する BER 特性	57
4.1	1/2 シンボル遅延周波数オフセット補償器	61
4.2	E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s=0.1$)	66
4.3	E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s=0.4$)	67
4.4	正規化周波数オフセットに対するビット誤り率特性	68
4.5	XPD に対するビット誤り率特性	69
4.6	観測シンボル数に対するビット誤り率特性	70

表目次

表目次

2.1	隣接サブチャネル間干渉電力の計算に用いた諸定数	28
2.2	誤り率の計算に用いた諸定数........................	29
2.3	周波数オフセット補償方式の分類	30
2.4	計算機シミュレーションの諸元 (E_b/N_0 に対するビット誤り率)	35
2.5	計算機シミュレーションの諸元 (E_b/N_0 に対するビット誤り率)	36
2.6	計算機シミュレーションの諸元 (正規化周波数オフセットに対するビット	
	誤り率)	37
2.7	計算機シミュレーションの諸元 (観測シンボル数に対するビット誤り率) .	38
3.1	隣接サブチャネル間十渉電力の計算に用いた諸定数	52
3.2	解析の諸元 (<i>E_b/N</i> 0に対する BER)	55
3.3	解析の諸元 (正規化ドップラー周波数に対する BER)	56
3.4	解析の諸元 (XPD に対する BER)	57
4.1	計算機シミュレーションの諸元 (E_b/N_0 に対するビット誤り率)	66
4.2	計算機シミュレーションの諸元 (E_b/N_0 に対するビット誤り率)	67
4.3	計算機シミュレーションの諸元 (正規化周波数オフセットに対するビット	
	誤り率)	68
4.4	計算機シミュレーションの諸元 (XPD に対するビット誤り率)	69
4.5	計算機シミュレーションの諸元(観測シンボル数に対するビット誤り率).	70

 $\mathbf{i}\mathbf{x}$

x

第1章 序論

移動無線通信のサービスは、アナログ式自動車および携帯電話システムからディジタ ル式携帯電話へと発展し、近年においては、音声伝送のみならずテキスト、データ、映 像等の多種多様な情報をディジタル化し、一元的に伝送するマルチメディア伝送に対す る需要が高まっている。また、放送分野においては、サービスの多様化・高品質化およ び周波数利用の高効率化に対する要求の高まりから、放送のディジタル化が進められて おり、さらに、音声・映像情報だけでなく各種データ信号についてもすべてディジタル データとして統合的に伝送するサービスを実現するための検討も行なわれている.この ようなマルチメディア伝送の実現には信頼性が高くかつ高速のディジタル伝送が必要不 可欠である.ところが、移動無線伝送では、送信信号が多数の異なった経路を通って伝 搬し受信されるマルチパスフェージング伝搬路が形成されている.マルチパスフェージ ング伝搬路では、受信信号レベルが頻繁に熱雑音レベル以下に落ち込み、著しく伝送特 性が劣化するため、マルチメディア伝送の実現が困難である.特に高速ディジタル伝送 を行う場合には、多重伝搬経路による伝搬遅延の違いが無視できなくなり、伝送帯域内 の周波数特性がひずむ周波数選択性フェージングが生じる、その結果、符号間干渉 (ISI: Inter-Symbol Interference)が生じて、伝送特性が著しく劣化する.従って、移動通信環 境において高速かつ高品質なディジタル伝送を行うためには、周波数選択性フェージン グ対策が不可欠である.

1.1. フェージング対策技術

フェージングによる伝送特性の劣化を改善する方法として,ダイバーシチ [1][2] や誤り 制御技術 [3][4][5] などが挙げられる.

ダイバーシチとは、異なったフェージングを受ける複数の伝搬路を通じて同一の情報を

第1章 序論

伝送し,受信側で合成することによりフェージングの受信電界強度レベル変動による特 性劣化を改善する方法である.受信信号の受けるフェージング変動は,アンテナの位置, 受信時刻,周波数等によって異なっている.ダイバーシチ受信方式は,異なったフェー ジングを受ける通信路をどのように選択するかによって,空間ダイバーシチ,時間ダイ バーシチ,周波数ダイバーシチ等に分類できる.

誤り制御技術としては、伝送する情報に誤り訂正のための冗長ビットを付加すること によって受信側において誤り訂正復号を行なう方式と、誤りが生じた時に受信側から送 信側に再送要求を行なう方式がある.復号遅延の要求が厳しい音声や動画像等の伝送に は誤り訂正符号が適しており、ある程度の復号遅延は許されるが高い信頼性を要求され るデータ通信等には再送技術が適している.

また,周波数選択性フェージング対策としては,適応等化器 [6][7][8] やアダプティブア レー [6][9],周波数拡散技術 [10][11] やマルチキャリア変調方式 [12][13][14] といった技術 が検討されている.

適応等化器は、フィルタにより符号間干渉を補償するもので、マルチパスフェージン グにおける補償技術として有効である.しかし、遅延時間が増大すると、等化器のハー ドウェア規模が急激に増大するため、実現させることが事実上不可能となる.

周波数拡散方式 (SS: Spectrum Spread) は,狭帯域変調信号を疑似雑音系列 (PS: Pserudo Noise)を用いて 2 次変調を行ない,帯域を拡大して伝送する方式である.受 信側では,拡散に用いた疑似雑音系列と同一の系列を用いて相関処理を行なうことにより,マルチパスフェージングを受けた受信信号を遅延時間毎に分離することができる.符 号分割多重接続 (CDMA: Code Division Multiple Access) にも使われる技術で,数 Mbps の伝送も可能である.しかし,マルチメディア通信に要求される数 10Mbpsを超えるデー タを伝送しようとした場合,拡散後の帯域幅が数 100M~数 GHz となり,周波数資源の 有効利用を考慮すると実現は困難である.

マルチキャリア変調方式は、周波数選択性フェージングが生じない程度に伝送速度を 抑えた複数の変調信号を周波数多重し並列に伝送することにより高速伝送を行う方式で あり、比較的簡単なハードウェアで効果的な対策となることから様々な検討行われてい る [15][16].特に、マルチキャリア変調方式において各サブチャネルの搬送波周波数を直 交関係にある最小間隔にする直交周波数多重 (OFDM: Orthogonal Frequency Division Multiplexing) 方式は直交マルチキャリア変調方式とも呼ばれ、変復調に高速フーリエ変 換 (FFT: fast Fourier transformation)[17] を用いることができるためハードウェア規模

 $\mathbf{2}$

を小さくすることができる.また,直交する最小間隔の周波数を用いることから周波数 利用効率が高いといった特徴がある.また,OFDM 方式においては,ガード区間を設け ることにより最大遅延時間差がガード区間より小さい遅延波による ISI を完全に取り除 くことができる.

1.2. OFDM の歴史

OFDM 方式の歴史は、その基礎となるマルチキャリア変調方式がはじめて提案された 頃までさかのぼると、実に 40 年以上にわたっている、その間に、様々な検討がなされ、 多くの文献が残されている。

1957年に、短波帯におけるデータ伝送方式として Doeltz 等によって提案され、Kineplex という名前がつけられている [18]. 1966年には、各サブチャネルフィルタとしてロール オフフィルタを用いた方式が Chang によって提案され [19], 1967年には、Saltzberg が 帯域制限通信路における伝送歪みの影響について検討している [20]. 1970年、Chang が マルチキャリアにおけるサブキャリアのスペクトルをオーバラップさせて周波数軸上に 配置する方式を Orthogonal Frequency Division Multiplexing という名前でアメリカで 特許をとっている [21].

1971年には、Weinstein と Ebert によって、変復調時に離散フーリエ変換 (DFT: Discrete Fourier Transform) を用いて各キャリアの信号を一括処理する方式が提案された [22]. この方式は、DFTに伝送シンボルを入力し、変換後の周波数多重された信号を送信 するもので、現在の OFDM の基礎となる方式といえる.さらに、1981年には、Hirosaki が Weinstein 等の方式を拡張し、QAM 信号を用いて伝送を行なう方式を提案している [23]. マイクロ波伝送におけるフェージング対策として、1983年に Yoshida 等 [24] が、 1988年に Ohtsuka 等 [25] がマルチキャリアを用いている.また、Kalet は、送信機電力 とチャネル特性に制限がある状況でマルチキャリア変調を用いて伝送を行なう場合の最 大伝送速度について発表している [26].

現在,移動通信分野において,光ファイバとシームレスな接続が可能な超高速・高品質 な MMAC(Multimedia Moblie Access Communication) システムが 2002 年頃のサービ ス開始を目標に実用化検討が進められている. この MMAC システムにおいて,OFDM 方式は,NTT と Lucent Technologies 社により IEEE802 委員会に提案され,5GHz 帯 イーサーネット無線 LAN の標準規格に採用されることとなった [27].

また、放送分野においては、ハイビジョンなどのテレビ(映像および音声)・音声・デー

タを単独に,あるいは自在に組み合わせたサービスができる ISDB(Integrated Services Digital Broadcasting) に OFDM の適用が進められている [28][29]. ISDB は, OFDM を用いることによって,周波数利用効率の高い単一周波数ネットワーク (SFI: Single Frequency Network)を構築できる,電波の反射や雑音などの妨害に強い,移動受信も可能等の利点をもつシステムになっている [30][31]. 欧州においても,DAB(Digit I Audio Broadcasting)[32][33] で用いられ,1995 年 9 月から英国とスウェーデンで実用 次送が始まった [34].また,地上波を用いた次世代テレビ放送である欧州の DVB-T(Digit al Video Broadcasting-Terrestrial)[35][36][37][38] 用の標準方式として OFDM が採用されている [39][40].

1.3. OFDM の問題点

OFDM 方式において,総合伝送速度一定の条件でサブチャネル数を大きくすることに より各サブチャネルの伝送速度が低下するため伝搬路の周波数選択性に対する 耐性を増 すことができる.しかし,サブチャネル数の増加につれて,各サブチャネル伝 送速度が 低下し,かつ,隣接サブチャネル間隔が狭くなるため,送受信機間の局発周波 &のずれ によって生ずる周波数オフセットやフェージングによる伝搬路特性のわずかな 寺間変動 により隣接チャネル間干渉 (ICI: Inter-Channel Interference)が生じ,伝送特性が劣化す る [41][42][43].サブチャネル数やドップラー周波数が大きくなると,伝搬路時間変動や 周波数オフセットによる ICI は増大する.逆に,サブチャネル数を小さくすると,伝搬 路の時間変動や周波数オフセットに対して影響を受けにくくなるが,周波数選択性に対 する耐性は減少する.従って,伝搬路の周波数選択性フェージングと時間変動および周 波数オフセットに応じて最適なチャネル数が存在する [44].

移動通信において,数 Mbpsを超えるより広帯域な伝送を実現するために,現在使用 されている UHF 帯より高い数 GHz 以上,あるいはミリ波のような数 10GHz の 割波数帯 の使用が検討されている.しかし,高い周波数を使用すると受信機の移動速度が 50km/h 程度であっても、ドップラー周波数は 10²~10³Hz という大きな値になる.また、送受信 機局部発振器間の精度を高く保つことが困難になる.このような条件下では、時間変動 や周波数オフセット量による伝送特性の劣化が大きくなり、周波数選択性と同時に問題 となる.そのため、たとえ最適なサブチャネル数を選んだとしても良好な伝送時性を得 ることはできない.このような状況においては、周波数選択性の影響と周波数オフセッ トや伝搬路の時間変動による ICI に強い耐性を持つ伝送方式が求められる.

1.4. 直交偏波を用いた **OFDM**

ICIは、サブチャネル間の周波数間隔を大きくすることにより低減することができる. しかし、サブチャネル間の周波数間隔を大きくすると周波数利用効率が低下する.周波 数利用効率を低下させることなくサブチャネル間の周波数間隔を大きくするためには同 一周波数の電波でありながら受信側において分離できる特性を持つ方式を用いる必要が ある.

そこで、本論文では、OFDM 方式の周波数選択性フェージングに対する耐性を保ち つつランダム FM 雑音や周波数オフセットに対する影響を受けにくくするために、周波 数の直交性と偏波の直交性を組み合わせた直交偏波周波数多重 (OPFDM: Orthogonal Polarization and Frequency Division Multiplexing) 方式を提案する.本方式では、従来 の OFDM 方式において隣接するサブチャネルを垂直偏波と水平偏波に交互に配置する ことにより、周波数利用効率を低下させることなくそれぞれの偏波におけるサブチャネ ルの周波数間隔を従来方式の2倍にすることができる.本論文では、伝送特性の解析を 行い、数値計算により提案方式が従来方式より ICI を減少させることができる有効な方 式であることを明らかにする.

1.5. OFDM における周波数同期

従来の OFDM 方式では,周波数オフセットを補償する方式が数多く提案されている. 周波数オフセット補償方式は DFT 後に周波数オフセットを推定し補償を行う方式と DFT 前に周波数オフセットを推定し補償を行う方式の二種類に大別される.さらに,それぞ れの方式において,あらかじめパイロットシンボルを送信し,受信側においてそのパイ ロットシンボルを観測して推定を行う方法と,パイロットシンボル等の既知信号を送信 せずに,OFDM 信号の特徴を利用して周波数オフセットを推定する方式に分類される. 周波数オフセットを補償せずに DFT 処理を行い,その後に周波数オフセット推定を行う 場合,既に隣接サブチャネルからの干渉を受けた信号を観測することになるので,DFT 前に周波数オフセット推定を行う方式が望ましい.この条件を満たす方式として,ガー ド区間を用いた周波数オフセット補償方式 [45][46] が挙げられる.この方式は,OFDM シンボルの先頭に付加されるガード区間がシンボル最後尾の波形と同じであることを利 用するもので,同一波形部分の相関をとり周波数変移を推定することによって周波数同 期を行う方式である.ガード区間を用いているため,周波数同期のために冗長なシンボ

 $\mathbf{5}$

第1章 序論

ルを送信する必要もなく,比較的簡単に周波数オフセットを補償することができる.し かし,周波数推定に用いるガード区間は OFDM シンボル全体の数十分の一から数百分の ーと非常に短いため,正確な推定のためには数シンボルにわたって観測を行う必要があ る.そのため,高速追随性が充分であるとはいえない.

そこで、OPFDM 信号のシンボル波形の特徴を用いて周波数オフセットを推定して補 償する半シンボル遅延相関を使用した周波数オフセット補償 (HSD-OPFDM: Orthogonal Polarization and Frequency Division Multiplexing using Half Symbol Delay Frequency Offset Compensation Scheme) 方式を提案する. この方式は、OPFDM 変調信号のシン ボル波形の前半部と後半部の波形が対称となっている特徴を利用し、この情報を OFDM での周波数オフセット推定に適用する方式であり、OPFDM 変調信号のシンボルの前半 と後半の波形の位相変動を比較することにより、特別なトレーニング系列を付加するこ となく、周波数オフセットを推定して補償する. この方式を用いると、シンボル長の全 範囲での補償が可能となるので、少数のシンボルで補償を行う場合においても、従来の ガード区間を用いた補償方式と比べ高精度に補償を行うことができる. さらに、提案方 式が多数のシンボルを必要としないため、周波数オフセットに対する追随性の高速化が 可能になる. 提案周波数オフセット補償方式の原理について説明を行い、周波数オフセッ ト補償器の構成を示す. 次に、提案方式が従来の周波数同期方式の伝送特性と比較して有効 であることを明らかにする.

1.6. 本論文の構成

本論文は、以下の章で構成される.

本章に続けて,第2章では,移動通信におけるマルチパスフェージング伝搬路の統計 的性質について説明する.そして,マルチパスフェージングが移動通信システムに与え る影響を明らかにする.次に,マルチパスフェージング伝搬路において高速ディジタル伝 送を実現するための技術のひとつである直交周波数多重 (OFDM: Orthogonal Frequency Division Multiplexing) 方式について述べる.OFDM 方式における送受信機の構成と送受 信信号について説明し,次に,OFDM 信号の周波数スペクトルについて説明し,OFDM 方式が周波数選択性フェージングに対して耐性があり,高速ディジタル伝送に適してい ることを明らかにする.従来OFDM 方式における隣接サブチャネル間干渉電力と誤り率 をもとめ,その問題点を明らかにする.また,これまでに提案されている周波数オフセッ

7

トを補償する方式を紹介し、それらの方式を分類する.それらの方式のうちで、ガード 区間を用いた周波数オフセット補償方式を従来の周波数同期方式と位置付け、その原理 を説明する.さらに計算機シミュレーションによって伝送特性を求めることにより、従 来の周波数同期方式の限界を明らかにする.

第3章では、従来のOFDM方式の周波数利用効率を保ったままで隣接サブチャネル干渉 電力を減少させるために、隣接するサブチャネルを直交する2つの偏波を用いて別々に伝 送する直交偏波周波数多重 (OPFDM: Orthogonal Polarization and Frequency Division Multiplexing) 方式を提案する.次に、提案 OPFDM 方式におけるシステム構成につい て説明を行い、変調方式のスペクトルを説明する.また、提案方式における隣接サブチャ ネル間干渉電力と誤り率特性を理論解析と計算機シミュレーションによって解析し、伝 送特性を評価し、提案方式の有効性を明らかにする.

第4章では、OPFDM信号のシンボル波形の特徴を用いて周波数オフセットを推定して補 償する半シンボル遅延相関を使用した周波数オフセット補償 (HSD-OPFDM: Orthogonal Polarization and Frequency Division Multiplexing using Half Symbol Delay Frequency Offset Compensation Scheme) 方式を提案する.提案周波数オフセット補償方式の原理 について説明を行い、周波数オフセット補償器の構成を示す.次に、提案方式による周 波数オフセット補償効果を計算機シミュレーションにより解析し、提案方式が従来の周 波数同期方式の伝送特性と比較して有効であることを明らかにする.

第5章は、結論であり、本論文で得られた成果を総括するとともに、今後の課題について述べる.

第2章

直交周波数多重 (OFDM) 方式

2.1. 序言

移動通信では,送信された電波が,移動アンテナ周辺の地形や地物により反射,回折, 散乱等を受けるため多重波伝搬路 (マルチパス)が生じている.このような状況において は,受信点では多数の波が干渉し,振幅変動,位相変動が発生する [1][47].マルチパス フェージング存在下でディジタル伝送を行なう場合,シンボル長が遅延広がりに対して 充分大きい場合は,マルチパス伝搬による遅延の影響を受けることはない.しかし,高 速ディジタル伝送を行なう場合,シンボル長が短くなるため多重伝搬経路による伝搬遅 延の違いが無視できなくなり,伝送帯域内の周波数特性がひずむ周波数選択性フェージ ングが生じる.その結果,符号間干渉 (ISI: Inter-Symbol Interference) が生じて,伝送 特性が著しく劣化する.

そこで、本章では、陸上移動通信の伝搬特性について概説を行う.まず、2.2.1節において陸上移動伝搬を特徴づける3つの要素である距離変動、短区間中央値変動、瞬時値 変動について述べる.2.2.2節ではフェージングマルチパスチャネルが伝送信号に与える 影響および広帯域伝送時に特に問題となる周波数選択性フェージングについて説明する.

このような伝搬特性下で信頼性が高くかつ高速なディジタル伝送を行うためには周波 数選択性フェージングの対策技術が必要不可欠である.周波数選択性フェージング対策と して,適応等化器 [6][8] や周波数拡散 [10][11] といった技術が検討されている.適応等化 器を用いた場合,伝送速度が大きくなるとハードウェア規模が急激に増大するため,こ れを高速ディジタル伝送に適用するのは現実的ではない.また,周波数拡散を用いた場 合においても,拡散後の周波数帯域を考慮すると,数十 Mbps を超える伝送には適して いない.

このような環境において、現実的なハードウェア規模で実現でき、効率よく周波数を

第2章 直交周波数多重 (OFDM) 方式

利用して高速ディジタル伝送を実現できる技術として、マルチキャリア変調方式が挙げ られる.マルチキャリア変調方式は、周波数選択性フェージングが生じない程度に伝送 速度を抑えた複数の変調信号を周波数多重し並列に伝送することにより高速伝送を行 う方式であり、比較的簡単なハードウェアで実現可能である.特に、マルチキャリア変 調方式において各サブチャネル周波数を直交関係にする直交周波数分割多重 (OFDM: Orthogonal Frequency Division Multiplexing)方式は、直交マルチキャリア変調方式と も呼ばれており、移動通信や地上波ディジタル放送などマルチパス伝搬環境における有効 性が示されている [44][48]. OFDM 方式は変復調に高速フーリエ変換 (FFT: Fast Fourier Transformation)を用いることができるため、ハードウェア規模を小さくでき、また、周 波数利用効率が高いといった特徴がある.また、OFDM 方式においては、ガード区間を 設けることにより、ガード区間長より遅延時間の小さい遅延波により生じる ISI の影響 を完全に取り除くことができる.さらに、総合伝送速度一定の条件でサブチャネル数を 大きくすることにより各サブチャネル当たりの伝送速度が低下するため、周波数選択性 フェージングに対する耐性を増すことができる.

そこで,2.3節では,直交周波数多重 (OFDM) 方式について説明する.2.3.1節で OFDM 方式における送受信機の構成と動作を説明する.2.3.2節では OFDM 信号が高速伝送に 適し,OFDM 信号が周波数選択性フェージングに強いことを示す.2.3.3節では,OFDM 方式の問題点を示す.

2.2. マルチパス伝搬路

2.2.1 陸上移動伝搬特性

陸上移動伝搬特性は図 2.1に示すように距離の変化に伴う変動 (距離変動),数十メート ル程度の区間にわたる緩慢な変動 (短区間中央値変動),および数十メートル程度の区間 での急激な変動 (瞬時値変動)の三つの変動が重畳された形で表される [1].距離変動は, 送受信間距離 d の変化に伴い電界強度が $d^{-\alpha}$ に比例して変動するものである.自由空間 では $\alpha = 1$,一般の市街地伝搬路での α の値は $1.5 \sim 2$ であることが知られている.一 方,短区間中央値変動はシャドウイングとも呼ばれ,デシベル表示電界強度 x の確率密 度関数が次式で表される対数正規分布に従うことが知られている [1].

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-x_m)^2}{2\sigma^2}\right\}$$
 (2.1)

図 2.1 陸上移動伝搬特性

図 2.2 マルチパスフェージング伝搬路

ただし x dB は短区間中央値レベル, x_m dB は長区間平均値, σ_s は標準偏差である.市 街地における σ_s の値は 5~8dB である.

移動通信環境において,特に問題となるのが多重波伝搬路を経由して到来する多数の 波の干渉により発生する瞬時値変動である.陸上移動伝搬路は,図2.2に示すように,移 動局周辺の地形や地物により反射,回折,散乱等を受けるため多重伝搬路となる.この 場合,移動局周辺にはさまざまな方向から到来する多数の波が互いに干渉し合い,ラン ダムな定在波性の電磁界分布が形成される.このような定在波性の電磁界分布の中を移 動局が走行すると,受信波の包絡線 r と位相θ はランダムに変動することになる.2.2.2 節ではマルチパスフェージングについて詳しく述べる.

2.2.2 マルチパスフェージングチャネル

送信信号 s(t) を次式のように表す.

$$s(t) = \Re \left[u(t)e^{j2\pi f_c t} \right]$$
(2.2)

ここで $\Re[\cdot]$ は $[\cdot]$ の実部を表す.またu(t)は等価低域表現による送信信号である.送信信号は異なった伝搬遅延と減衰量を持つ複数の伝搬路を経由して受信される.このとき受信信号x(t)は次式の畳み込みで表すことができる[49].

$$x(t) = \sum_{n} \alpha_n(t) s[t - \tau_n]$$
(2.3)

ここで $\alpha_n(t)$, $\tau_n(t)$ はそれぞれ n 番目の伝搬路の伝搬減衰量および伝搬遅延である.式 (2.2) を式 (2.3) に代入すると

$$x(t) = \Re\left(\left\{\sum_{n} \alpha_n(t)e^{-j2\pi f_c \tau_n(t)}u[t - \tau_n(t)]\right\}e^{j2\pi f_c t}\right)$$
(2.4)

となる.受信信号 x(t) の等価低域受信信号 r(t) は式 (2.5) で表される.

$$r(t) = \sum_{n} \alpha_n(t) e^{-j2\pi f_c \tau_n(t)} u[t - \tau_n(t)]$$

=
$$\int_0^\infty c(\tau; t) u(t - \tau) d\tau \qquad (2.5)$$

ここで c(r;t) は伝搬路の等価低域インパルス応答であり、次式で表される.

$$c(\tau;t) = \sum_{n} \alpha_n(t) e^{-j2\pi f_c \tau_n(t)} \delta[\tau - \tau_n(t)]$$
(2.6)

さて,周波数 f_c の単一周波数正弦波の伝送を考える.u(t) = 1であるから,マルチパス伝搬路においては受信信号は式 (2.5) より

$$r(t) = \sum_{n} \alpha_{n}(t) e^{-j2\pi f_{c}\tau_{n}(t)}$$
$$= \sum_{n} \alpha_{n}(t) e^{-j\theta_{n}(t)}$$
(2.7)

となる. ここで $\theta_n(t) = 2\pi f_c \tau_n(t)$ である. 式 (2.7) の τ_n はランダム過程であるので, 受 信信号 r(t) もランダム過程となる. 式 (2.7) より, r(t) は, 多数のランダム過程の和であ る. 従って, 中央極限定理により r(t) は複素ガウスランダム過程でモデル化できる. さ らに受信信号の振幅 rの確率密度関数 p(r) は式 (2.8) で表されるレイリー分布に従う. 受 信信号包絡線および位相の確率密度関数 p(r) および $p(\theta)$ は次式のように表される.

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad ; (r \ge 0)$$
(2.8)

$$p(\theta) = \frac{1}{2\pi}$$
; $(0 \le \theta < 2\pi)$ (2.9)

ここでσ²は信号の平均電力である.式(2.8)はレイリー分布,式(2.9)は区間[0;2π)に おいて一様分布であり,フェージング受信波の包絡線と位相の変動は,レイリー分布と 一様分布則に従う.但し,包絡線がレイリー分布則に従って変動するのは狭い周波数帯 域の場合であり,広帯域伝送においては多重伝搬路の各伝搬遅延時間の広がりが無視で きなくなり,伝送帯域内の周波数により変動が異なり伝送波形に歪みが生じる.このよ うなフェージングは周波数選択性フェージングと呼ばれており,広帯域伝送を行う場合 大きな問題となる.

また,送受信アンテナ間に見通しがあるような場合には,散乱波に加えて安定な直接 波が存在する.このような伝搬路では,受信波の包絡線の確率密度関数は仲上-ライス分 布になることが知られている [50].

次に、マルチパスフェージング伝搬路の性質を詳しく検討するために、 $c(\tau;t)$ の相関 関数とパワースペクトル密度関数を導出する. $c(\tau;t)$ が広義の定常 (WSS: Wide Sense Stationary) であるとすると $c(\tau;t)$ の自己相関関数は

$$\phi_c(\tau_1, \tau_2; \Delta t) = \frac{1}{2} E\left[c^*(\tau_1; t)c(\tau_2; t + \Delta t)\right]$$
(2.10)

で定義される.2つの異なる遅れをもつパスが互いに無相関(US: Uncorrelative Scattering) であるとすると,式(2.10)は次式のように書くことができる.

$$\frac{1}{2}E\left[c^{*}(\tau_{1};t)c(\tau_{2};t+\Delta t)\right] = \phi_{c}(\tau_{1};\Delta t)\delta(\tau_{1}-\tau_{2})$$
(2.11)

式 (2.11) において、 $\Delta t = 0$ のとき、自己相関関数 $\phi_c(\tau; 0) \equiv \phi_c(\tau)$ は遅延時間 τ で到 着する受信波の平均受信電力であり、遅延プロファイル (delay profile) と呼ばれる. 図 2.3(a) に遅延プロファイルの一例を示す. $\phi_c(\tau)$ が 0 でない τ の範囲をチャネルのマル チパス広がり T_m と言い、 T_m がシンボル間隔と比較して無視できない大きさになると 次のシンボルに影響を与える. 図 2.4に、遅延波が受信時に与える影響を摸式的に示す. 送信機から送信された矩形パルス波形が様々な遅延時間の伝搬路を通じて伝搬する. 受 信信号はこれらの複数の伝搬路を伝搬して到来した信号の和であることから、受信信号 波形は送信信号波形から大きく歪むことになる.

次にマルチパスフェージング伝搬路の周波数選択性について検討する. $c(\tau;t)$ を τ フーリエ変換すると

$$C(f;t) = \int_{-\infty}^{\infty} c(\tau;t) e^{-j2\pi f\tau} d\tau$$
(2.12)

となる. $c(\tau;t)$ が平均0の複素ガウスランダム過程とするとC(f;t)もまた同じ統計的性質を持つ. $c(\tau;t)$ が広義の定常であるとすると,C(f;t)も広義の定常であり,C(f;t)の

図 2.3 $\phi_C(\Delta f) \ge \phi_c(\tau)$ の関係

自己相関関数は次式のようになる.

$$\phi_C(f_1, f_2; \Delta t) = \frac{1}{2} E\left[C^*(f_1; t)C(f_2; t + \Delta t)\right]$$
(2.13)

式 (2.12) を式 (2.13) に代入すると次式が得られる.

$$\phi_{C}(f_{1}, f_{2}; \Delta t) = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\left[c^{*}(\tau_{1}; t)c(\tau_{2}; t + \Delta t)\right] e^{j2\pi(f_{1}\tau_{1} - f_{2}\tau_{2})} d\tau_{1} d\tau_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi_{c}(\tau_{1}; \Delta t)\delta(\tau_{1} - \tau_{2})e^{j2\pi(f_{1}\tau_{1} - f_{2}\tau_{2})} d\tau_{1} d\tau_{2}$$

$$= \int_{-\infty}^{\infty} \phi_{c}(\tau_{1}; \Delta t)\delta(\tau_{1} - \tau_{2})e^{j2\pi(f_{1} - f_{2})\tau_{1}} d\tau_{1}$$

$$= \int_{-\infty}^{\infty} \phi_{c}(\tau_{1}; \Delta t)\delta(\tau_{1} - \tau_{2})e^{j2\pi\Delta f\tau_{1}} d\tau \equiv \phi_{C}(\Delta f; \Delta t) \qquad (2.14)$$

ここで $\Delta f = f_2 - f_1$ である.式 (2.14) において $\Delta t = 0$ とすると ϕ_C は

$$\phi_C(\Delta f) = \int_{-\infty}^{\infty} \phi_c(\tau) e^{-j2\pi\Delta f\tau} d\tau \qquad (2.15)$$

となる. 図 2.3(b) に周波数相関の一例を示す. 図において $(\Delta f)_c$ はコヒーレンスバンド 幅と呼ばれ,周波数選択性が一様であるとみなせる帯域幅を示している. $(\Delta f)_c$ が送信 信号のバンド幅に比べて小さければ,そのチャネルは周波数選択性フェージングチャネ

第2章 直交周波数多重 (OFDM) 方式

図 2.4 遅延波の影響

ルであると言い,波形に歪みが生じ正確な伝送が行えなくなる.一方, $(\Delta f)_c$ が送信信 号のバンド幅に比べて大きければ,そのチャネルは一様フェージングチャネルであると 言う.

次に,時間変動特性について検討する. $\phi_C(\Delta f; \Delta t)$ の Δt に関するフーリエ変換を次式で定義する.

$$S_C(\Delta f; \Psi) = \int_{-\infty}^{\infty} \phi_C(\Delta f; \Delta t) e^{-j2\pi\Psi\Delta t} d\Delta t$$
 (2.16)

ここで、 $S_C(\Delta f; \Psi)$ はドップラー周波数 Ψ のドップラー周波数変動を受けた受信信号の 電力である.式 (2.16) において $\Delta f = 0$ とすると、次式の関係が成り立つ.

$$S_C(\Psi) = \int_{-\infty}^{\infty} \phi_C(\Delta t) e^{-j2\pi\Psi\Delta t} d\Delta t \qquad (2.17)$$

また, $S_C(\Delta f; \Psi)$ を Δf でフーリエ変換すると,次式が成り立つ.

$$S(\tau; \Psi) = \int_{-\infty}^{\infty} S_C(\Delta f; \Psi) e^{-j2\pi\Psi\Delta f} d\Delta f$$
(2.18)

 $S(\tau; \Psi)$ は,遅延時間 τ ,ドップラー周波数 Ψ を受けた受信信号の受信信号電力に対応 しており,散乱間数 (Scattering Function) と呼ばれる [49][51]. 図 2.5に散乱関数と遅延 プロファイル,ドップラー電力密度との関係を示す.図 2.6に遅延-ドップラー平面におけ

る分類を示す. 見通し (LOS: Line of Sight) のように遅延やドップラーがほぼ一定の場合, 遅延は一定だがドップラーが広がっている場合, 遅延もドップラーも広がってる場合 の3つのタイプに分類される. また図 2.6は図 2.5を上から見た図ともいえる. フェージ ングによって受信波の位相がランダムに変動していることは, ランダム雑音によって周 波数変調を受けていることと等価であり, 一般にランダム FM 雑音と呼ばれる. フェー ジング受信波の時間相関 $R(\tau)$ は次式により求められる [1][52].

$$R(\tau) = bJ_0(2\pi f_D \tau) \sim b(1 - (\pi f_D \tau)^2) \quad (\tau \ll 1/f_D)$$
(2.19)

ここで、b は平均受信信号電力、 f_D は最大ドップラー周波数、 $J_0(x)$ は、0 次の第1 種 ベッセル関数である.

図 2.5 散乱間数

図 2.6 遅延-ドップラー平面における分類

2.3. 直交周波数多重 (OFDM) 方式

2.2節でマルチパス伝搬路について説明した.このようなマルチパス伝送路で伝送を行うためには信号の周波数帯域を周波数選択性フェージングが生じない程度に抑える必要がある.OFDM 方式はデータを複数のサブチャネルを用いて伝送するために1サブチャネル当りの伝送速度を低くすることができ,移動通信に適した方式である.本節では,OFDM 方式について説明する.まず,2.3.1節で OFDM 方式における送受信機の構成と動作を説明する.2.3.2節では OFDM 信号が高速伝送に適し,OFDM 信号が周波数選択性フェージングに強いことを示す.2.3.3節では,OFDM 方式の問題点を示す.

2.3.1 システム構成

図2.7に従来のOFDM システムの送信機構成を示す.入力端子から入力された2進デー タ系列は,ディジタル変調器により PSK(Phase Shift Keying) または QAM(Quadrature Amplitude Modulation) の等価低域シンボル系列に変換される.変換されたシンボル系 列は直並列変換器 (S/P) により複数のシンボル系列からなる並列系列に変換されて,逆 離散フーリエ変換器 (IDFT: Inverse Discrete Fourier Transformer) に入力される. IDFT では複数の複搬送波 (Sub-Carrier) を対応する並列データシンボルで変調し,加算された

図 2.7 OFDM 方式の送信機構成

信号が出力される.送信信号は次式で与えられる [44].

$$s(t) = \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N} c_{ki} \exp\left[j\frac{2\pi k(t-iT_s)}{t_s}\right] f_c(t-iT_s)$$
(2.20)

ここで、 c_{ki} は区間 $[iT_s - \Delta, iT_s + t_s]$ における、k番目の出力、 $f_c(t)$ はそれぞれのシンボルのパルス波形で、次式で表される.

$$f_c(t) = \begin{cases} 1 & (-\Delta \le t \le t_s) \\ 0 & (t < -\Delta, t > t_s) \end{cases}$$
(2.21)

但し、 Δ はガード区間、 t_s は観測区間、 $T_s = \Delta + t_s$ は、シンボル周期である.

送信信号 s(t) はシンボル長 T_s の PSK 信号または QAM 信号 N 個の和であり,各サ ブチャネルの周波数は正確に $1/t_s$ [Hz] 異なっている.以上の処理は全て,ディジタル信 号処理により行われる.

送信信号はマルチパスフェージンングと加法性白色ガウス雑音 (AWGN: Additive White Gaussian Noise) により歪みを受け,受信される.

図 2.8に OFDM システムの受信機構成を示す.受信機では,送信機と逆の操作を行い, 送信データ系列を推定する.受信機に入力された受信信号は,まず離散フーリエ変換器 (DFT: Discrete Fourier Transformer)に入力され,各サブチャネルに対応した等価低域 受信シンボルが出力される.受信シンボルは,並直列変換(P/S)により直列系列に変換 され,ディジタル復調器に入力される.ディジタル復調器では,送信変調シンボルに応 じて,PSK または QAM シンボルの復調が行われ,送信データ系列が推定される.受信 信号は次式で与えられる.

$$r(t) = g(t)s(t) + z(t)$$
 (2.22)

図 2.8 OFDM 方式の受信機構成

ここで, g(t) はフェージングによる複素包絡線変動, z(t) は,加法性白色ガウス雑音成 分である.受信機では,r(t)をDFTし,各サブチャネル成分を取り出す. m番目のサブ チャネル成分は次式で求められる.

$$r_{mi} = \frac{1}{t_s} \sum_{k=1}^{N} c_{ki} \int_0^{t_s} g(t) \exp\left[-j \frac{2\pi (m-k)t}{t_s}\right] dt + z_{mi}$$
(2.23)

ここで,

$$c_{mi} imes rac{1}{t_s} \int_0^{t_s} g(t) dt$$

は希望信号成分,

$$\frac{1}{t_s}\sum_{\substack{k=1\\k\neq m}}^N c_{ki}\int_0^{t_s} g(t)\exp\left[-j\frac{2\pi(m-k)t}{t_s}\right]dt$$

は隣接サブチャネル間干渉 (ICI: Inter-Channel Interference) 成分, *z_{mi}は*, DFT 後の雑 音成分である.

2.3.2 OFDM 信号

OFDM 信号のスペクトルについて述べる.式 (2.20) で与えられる等価低域信号 s(t)の k番目のチャネルの信号 $s_k(t)$ は次式で表される.

$$s_k(t) = \sum_{i=-\infty}^{\infty} c_{ki} \exp\left[j\frac{2\pi k(t-iT_s)}{t_s}\right] f_c(t-iT_s)$$
(2.24)

式 (2.24) より、 s_k は、キャリア周波数 f_k 、シンボル時間 T_s の矩形パルス M-ary PSK 信号と等しい。送信シンボル c_{ki} が統計的に独立であれば、電力密度スペクトル $S_k(f)$ は次

図 2.9 OFDM 方式の周波数スペクトルの概形

式で与えられる.

$$S_k(f) = \frac{T_s}{t_s} \operatorname{sinc}^2 \left[\pi (f - \frac{k}{t_s}) T_s \right]$$
(2.25)

ただし, sinc(x) は次式で定義される関数である.

$$\operatorname{sinc}(x) = \frac{\sin x}{x} \tag{2.26}$$

各サブチャネルは直交しているので, OFDM 信号の電力密度スペクトル *S*(*f*) は,各サブチャネルの電力密度スペクトルの和で与えられる.即ち,

$$S(f) = \sum_{k=0}^{N-1} S_k(f)$$
(2.27)

である.式(2.27)で与えられる周波数スペクトルの概形を図2.9に示す.図2.9および式 (2.20)より,送信信号は、1/t_s間隔で配置されたN個の変調信号の和であることがわか る.また,各サブチャネル変調信号のスペクトルのメインローブは互いにオーバーラップ しているが,各サブチャネルの周波数の直交性が保たれていれば、各サブチャネルにのせ られた情報は異なるサブチャネルの情報と混じり合うことなく伝送される.図2.9から わかるように、隣接チャネル間のサブチャネル周波数間隔を小さくすることができ、周 波数利用効率を低化させることなく高速伝送を行うことができる.

OFDM 信号の周波数選択性フェージングによるスペクトル変動をモデル化したものを 図 2.10に示す. 単一キャリアを用いた場合 (a) ではシンボル間隔が小さく, ガード区間Δ を設けても遅延時間がガード区間よりも大きくなり, シンボル間干渉 (ISI: Inter-Symbol

(a)単一キャリアの場合

(b)マルチキャリアの場合

図 2.10 周波数選択性フェージングによるスペクトル変動のモデル

Interference)の影響を受ける.そのため,信号波形に歪みが生じ,特性の劣化が生じる. 一方,マルチキャリア変調信号(b)においては多数のキャリアを用いるため,シンボル間 隔を大きく取れ,ガード区間により遅延波の影響を抑えることができる.さらに周波数 選択性フェージングに対しても各周波数におけるキャリア振幅に変動が生じるのみであ り,信号波形に歪みは生じない.サブチャネル数が大きくなるほど,周波数選択性フェー ジングに対する耐性は強化される.このように,OFDM方式は周波数選択性フェージン グに強いという利点がある.

OFDM 信号の伝送シンボルは図 2.11のようになり、伝送シンボルは有効シンボル区間 t_s にガード区間 Δ を付加して構成される.ガード区間は有効シンボル区間の信号波形を

巡回的に繰り返したものとなっている.受信側においては,ガード区間にある信号は復 調には用いず,有効シンボル区間の信号のみ復調を行う.伝送路にマルチパスが存在する 場合,ひとつ前のシンボルとの間に干渉が生じる.図2.12に示すように,シンボル間の 干渉がガード区間内に収まるようにすれば,この部分は復調には用いられないので,マ ルチパスの影響を軽減することができる.

図 2.11 OFDM 信号の波形

 $\mathbf{24}$

⁽a)ガード区間なし

(b)ガード区間あり

図 2.12 ガード区間

2.3.3 OFDM 方式の問題点

図2.9からわかるように、OFDM 方式では各サブチャネルのスペクトルがオーバーラッ プしているため、送受信機間の局発周波数のずれによって生ずる周波数オフセットやフェー ジングによる伝搬路のわずかな時間変動であるランダム FM 雑音といった周波数軸上の ゆらぎにより、隣接チャネル間干渉電力が増大し、伝送特性が大きく劣化するという欠 点がある.本節では、OFDM 方式における隣接チャネル間干渉電力を求め、干渉電力が 伝送特性に与える影響を示す.

OFDM 方式の受信信号において,希望信号成分,干渉成分,および雑音項の電力は次 式で与えられる.

$$b_0 = \frac{1}{t_s^2} \int_0^{t_s} \int_0^{t_s} R(\xi - \eta) d\xi d\eta$$
 (2.28)

$$\sigma_{I}^{2} = \frac{1}{t_{s}^{2}} \int_{0}^{t_{s}} \int_{0}^{t_{s}} R(\xi - \eta) \\ \times \exp\left[-j\frac{2\pi(m-k)(\xi - \eta)}{t_{s}}\right] d\xi d\eta$$
(2.29)

$$\sigma_z^2 = \frac{1}{2} E\left[z^*(t)z(t)\right]$$
(2.30)

ここで, $R(\tau)$ は g(t)の自己相関関数である.移動体アンテナとして,水平面内無指向性アンテナを使用すると仮定すれば, $R(\tau)$ は次式で表すことができる [1][52].

$$R(\tau) = bJ_0(2\pi f_D \tau) \sim b(1 - (\pi f_D \tau)^2) \quad (\tau \ll 1/f_D)$$
(2.31)

ここで、 f_D は最大ドップラー周波数、 $J_0(x)$ は、0次の第1種ベッセル関数である. (2.31) の自己相関関数を (2.29) に代入することにより、干渉量は

$$\sigma_I^2 = \sum_{\substack{k=1\\k \neq m}}^N \frac{(f_D t_s)^2}{2(k-m)^2}$$
(2.32)

で与えられる.ここで、総合伝送速度をTBRとすると $T_s = N/TBR$ より、有効シンボル区間は、

$$t_s = T_s - \Delta = \frac{N}{TBR} - \Delta \tag{2.33}$$

となるので,式(2.32)は,

$$\sigma_I^2 = \sum_{\substack{k=1\\k \neq m}}^N \frac{\left\{ f_D(\frac{N}{TBR} - \Delta) \right\}^2}{2(k-m)^2}$$
(2.34)

となる.最大ドップラー周波数 f_D は,電波伝搬速度 c,送受信機間の相対速度 v,送信 周波数 f_s ,を用いて

$$f_D = \frac{v \cdot f_s}{c}$$

とあらわすことができる.送受信機間の相対速度 vが 50km/h で送信周波数 f_s が 900MHz とすると,最大ドップラー周波数 f_D は約 40Hz 程度であるが,送信周波数を,現在使用 されている周波数帯より高い数 GHz,あるいは、ミリ波のような数 10GHz 以上とする と、ドップラー周波数は 10²~10³Hz という値になる.

式 (2.34)を用いて隣接チャネル間干渉電力を求めたものを図 2.13に示す.また,干渉 電力を求める際に用いた諸定数を表 2.1に示す.図 2.13からわかるように,ドップラー周 波数の大きさが 10 倍になると干渉電力は 20dB 増大することがわかる.また,2.3.2節で サブチャネル数が大きいほど周波数選択性フェージングに対する耐性が強化されること を述べたが,図 2.13 より,サブチャネル数 Nが増加すると干渉量も増大することがわ かる.

次に,隣接干渉電力が符号誤り率に与える影響を調べる.レイリーフェージング中に おける理想 PSK 方式の平均誤り率は次式で表される [53].

$$P_{e} = \frac{1}{2} \left[1 - \frac{1}{\sqrt{1 + \frac{1}{\gamma_{0}}}} \right]$$
(2.35)

ここで₇₀は標本時点における平均 SN 比で,次式で表される.

$$\gamma_0 = \frac{\sigma_S^2}{\sigma_N^2 + \sigma_I^2} \tag{2.36}$$

ここで、 $\sigma_S^2 = 1$ とすると、 σ_N^2 は1ビット当りの信号対雑音電力比 E_b/N_0 を用いて、

$$\sigma_N^2 = \frac{1}{E_b/N_0}$$

と表すことができる.式(2.34)を式(2.36)に代入し,式(2.35)を用いて誤り率をもとめたものを図2.14に示す.誤り率をもとめる際に用いた諸定数を表2.2に示す.図2.14より,ドップラー周波数が20Hz付近では干渉電力の影響が小さいため,誤り率は干渉電力がない場合(ICI free)とほとんど差がないが,ドップラー周波数が増大するにつれ誤り率はどんどん悪化し,キャリア数が多いほどその傾向が強いことがわかる.

以上のように, OFDM 方式においては, ドップラー周波数とキャリア数が増加すると 隣接干渉電力が増大し, その結果, 誤り率を悪化することを明らかにした.

図 2.13 ドップラー周波数と隣接干渉電力の関係

総合伝送速度	TBR	$8.192 \mathrm{Mbps}$
ガード区間とシンボル長の比	Δ/T_s	$rac{1}{33}pprox 3.03 imes 10^{-2}$
サブチャネル数	N	$256,\!512,\!1024$

表 2.1 隣接サブチャネル間干渉電力の計算に用いた諸定数

2.3. 直交周波数多重 (OFDM) 方式

図 2.14 ドップラー周波数と誤り率の関係

衣 2.2 嵌 / 千·/ 前并に消; / C福之奴				
総合伝送速度	TBR	$8.192 \mathrm{Mbps}$		
ガード区間とシンボル長の比	Δ/T_s	$rac{1}{33}pprox 3.03 imes 10^{-2}$		
1ビット当りの信号対雑音電力比	E_b/N_0	30dB		
サブチャネル数	N	$256,\!512,\!1024$		
		QPSK		

表 2.2 誤り率の計算に用いた諸定数

2.4. 従来の周波数同期方式

OFDM における周波数オフセット補償方式としては,DFT 後のサブチャネル信号を 観測する方式と DFT 前に信号を観測する方式がある.さらに,それぞれの方式におい て,パイロットシンボルを用いて補償を行なう方式とパイロット等の既知シンボルを使 わずに補償を行なう方式に分類される.表 2.3に補償方式の分類と主な文献を示す.

DFT 後に周波数オフセットの推定を行なう場合,既に隣接チャネルの影響を受けてい る状態で推定を行なうため望ましくない.また,パイロット信号を伝送することにより 周波数オフセットを推定しこれを補償する方式では,OFDM 信号よりパイロット信号を 抽出することは非常に困難である.従って,OFDM 方式における周波数同期方式は,特 別なトレーニング系列を付加することなく,DFT 前に周波数オフセットを推定する方式 [45][46] が望ましい.この方式は,OFDM 信号のガード区間の波形がシンボル最後部の 波形と同一であることを利用し,同一波形部分の間の位相変動を観測することにより,周 波数オフセットを推定し,補償を行うものである.本論文では,ガード区間を用いて周 波数オフセット推定を行なうこの方式を従来の周波数同期方式と位置づけ,2.4.1節にそ の原理を示し,2.4.2節にその特性と問題点を示す.

	DFT 後推定	DFT 前推定
パイロット有り	[54] Classen et al.	[55] Nogami et al.
	[56] Hara et al.	
	[57] Sato et al.	
パイロット無し	[58] Moose	[45] 毛利 他
		[46] Okada et al.
	·	[59] Keller et al.

表 2.3 周波数オフセット補償方式の分類

2.4.1 ガード区間を用いた周波数同期方式の原理

OFDM 信号は,各サブチャネルの情報波形を重ね合わせた波形であるため,中央極限 定理 [60] により,その信号波形はガウス雑音状の波形となり,その統計的性質は正規分 布に従う.信号 *s*(*t*) を平均 0,分散 1 の正規分布に従うと仮定すると,以下の式が成り

立つ.

$$\frac{1}{2}E[s(t)s^{*}(t)] = 1$$
(2.37)

$$\frac{1}{2}E[s(t)s^*(t+t_s)] = 0$$
(2.38)

OFDM 信号のガード区間部分は、送信機での IDFT 出力の時間波形の最後尾を、そのシンボルの先頭に付加したものであるから、OFDM 信号の1シンボルの最前部と最後部は同じ時間波形となっている.これより、OFDM 信号 s(t) は、ガード区間 Δ 内の時間 t において

$$s(t) = s(t+t_s) \tag{2.39}$$

が成り立つ.よって, OFDM 信号 s(t) の自己相関関数は次式で求められる.

$$\frac{1}{2}E[s(t)s^*(t+t_s)] = \begin{cases} 1 & (0 \le t < \Delta) \\ 0 & (otherwise) \end{cases}$$
(2.40)

周波数オフセット foff を受けた受信信号は、次式で与えられる.

$$r(t) = s(t)e^{j2\pi f_{off}t} + z(t)$$
(2.41)

ガード区間と波形の最後尾の比較を行なうため、 $0 \le t < \Delta$ のときのr(t)の自己相関関数を求める.

$$R(t;t_s) = \frac{1}{2}E[r(t)r^*(t+t_s)] \\ = \frac{1}{2}E[s(t)s^*(t+t_s)]e^{-j2\pi f_{off}t_s}$$
(2.42)

式 (2.40) を式 (2.42) に代入すると、次式が得られる.

$$R(t;t_s) = e^{-j2\pi f_{off}t_s}$$
(2.43)

これより,周波数オフセット f_{off} は,

$$f_{off} = \frac{-\arg(R(t;t_s))}{2\pi t_s}$$
(2.44)

で求めることができる.

式 (2.42) は期待値であり、有限の観測時間で正確に推定することはできない. そこで、 OFDM の N_s シンボル区間で推定を行う. まず、r(t) の瞬時自己相関関数を次式で定義 する.

$$\hat{R}(t) = r(t)r^{*}(t+t_{s})$$
(2.45)

 $\mathbf{31}$

それらを加算平均すると、以下の式が得られる.

$$R_{av} = \frac{1}{N_s \Delta} \sum_{i=1}^{N_s} \int_0^\Delta \hat{R}(t + iT_s) dt$$
 (2.46)

ただし, N_s は OFDM 信号の観測シンボル数を表す.式 (2.46) に式 (2.41) を代入すると

$$R_{av} = e^{-j2\pi f_{off}t_s} + \frac{1}{N_s\Delta} \sum_{i=1}^{N_s} \int_0^{\Delta} \left[\{s(t)z^*(t+t_s)e^{-j2\pi f_{off}t} + z(t)s^*(t+t_s)e^{-j2\pi f_{off}(t+t_s)}\} + z(t)z^*(t+t_s) \right] dt \qquad (2.47)$$

第1項は式 (2.42)の推定値,第2項は推定誤差項である.式 (2.44)の $R(t;\Delta)$ を,推定 値 R_{av} で置き換えることにより,実際の受信信号から周波数オフセットを推定すること が可能となる.周波数オフセットの推定値 \tilde{f}_{off} は,以下の式で求められる.

$$\tilde{f}_{off} = -\frac{\arg(R_{av})}{2\pi t_s} \tag{2.48}$$

次に,推定した \tilde{f}_{off} を用いて受信信号の受けた周波数オフセットを補償する.補償後の 信号は、次式で表される.

$$\tilde{r}(t) = r(t)e^{-j2\pi\tilde{f}_{off}t}$$
(2.49)

図 2.15に、従来の周波数オフセット補償器のブロックダイアグラムを示す。受信信号 は、 t_s 遅延した信号と乗算され、式 (2.46)の演算により、自己相関推定が行われる。推 定自己相関関数の偏角により、周波数オフセット推定が行われる。その後、受信信号に 周波数オフセット推定値 \tilde{f}_{off} の正弦波を掛けることにより、周波数オフセット補償が行 われる。

2.4.2 ガード区間を用いた周波数同期方式の伝送特性

本節では、ガード区間を用いて行なう従来の周波数同期方式に関して計算機シミュレー ションを用いて AWGN(Additive White Gaussian Noise) 環境におけるビット誤り率を 解析する.各サブチャネル変調方式として QPSK を仮定する. QPSK の復調においては 中央のサブチャネルを基準搬送波として用いる.

図 2.16に有効シンボル区間で正規化された周波数オフセット $f_{off}t_s$ が 0.1 の場合の E_b/N_0 に対するビット誤り率特性を示す.表 2.4に計算機シミュレーションモデルの諸元

図 2.15 従来の周波数オフセット補償器

を示す. 図 2.16において OFDM w/o Compensation は周波数オフセット補償を行なわ ない OFDM 方式, OFDM with Conventional Compensation はガード区間を用いて周 波数オフセット補償を行なった OFDM 方式の誤り率特性であり, w/o Frequency Offset (Theory) は周波数オフセットがない場合の誤り率の理論値を表す. 図 2.16より, OFDM 方 式で周波数オフセット補償を行なわない場合, 誤り率特性は大きく劣化している. OFDM のガード区間を用いた周波数オフセット補償を行うことにより, ある程度伝送特性が改 善しているが, 理論値と比較すると改善効果が十分でないことがわかる.

図2.17に正規化周波数オフセット *foffts* が0.4の場合の *Eb/No*に対するビット誤り率 特性を示す.表2.5に計算機シミュレーションモデルの諸元を示す.図2.16より,OFDM 方式で周波数オフセット補償を行なわない場合,誤り率は0.2以上と極度に劣化してい る.OFDMのガード区間を用いた周波数オフセット補償を行うことにより,補償を行な わない場合よりかなり伝送特性が改善しているが,理論値と比較すると大きく劣化して いることがわかる.

次に、図2.18に有効シンボル区間で正規化された周波数オフセット fofftsに対するビット誤り率特性を示す.表2.6に計算機シミュレーションモデルの諸元を示す.図2.18より, OFDM では fofftsが大きくなると急激に伝送特性が劣化する.OFDM に周波数オフセット補償を適用することによりある程度の改善効果は認められる.しかし、foffts が0.5 以上で急激に伝送特性が劣化する.これは、周波数軸上で各サブチャネルが1/ts 間隔で配置されているために、周波数が0.5/ts 以上シフトすると隣接するサブチャネルの周波数シフトとの区別がつかなくなるからである.しかも、周波数オフセットが非常に小さい場合は、補償方式を用いることにより、かえって誤り率を大きくしてしまうことがわかる.図2.19に OFDM 方式に周波数オフセット補償を適用した場合の、観測するシンボル

第2章 直交周波数多重 (OFDM) 方式

数 N_sに対するビット誤り率特性を示す.表 2.7に計算機シミュレーションモデルの諸元 を示す.図 2.19から、3~5シンボルで周波数オフセットがない場合の理論値まで改善可 能であり、充分な周波数オフセット補償のためには、少なくとも 3~5シンボルの観測が 必要であることがわかる.

図 2.16 E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s = 0.1$)

表 2.4 計算機シミュレーションの諸元 (E_b/N₀に対するビット誤り率)

N	128
N_s	1
Δ/T_s	0.01
$f_{off}t_s$	0.1
	QPSK
	中央サブチャネルを基準搬送波
	完全
	AWGN
	$rac{N}{N_s}$ Δ/T_s $f_{off}t_s$

図 2.17 E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s = 0.4$)

サブチャネル数	N	128
観測シンボル数	N_s	1
ガード区間長	Δ/T_s	0.01
正規化周波数オフセット	$f_{off}t_s$	0.4
サブチャネル変調方式	-	QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN

表 2.5 計算機シミュレーションの諸元 (E_b/N₀に対するビット誤り率)

図 2.18 正規化周波数オフセットに対するビット誤り率特性

表 2.6 計算機シミュレーションの諸元 (正規化周波数オフセットに対するビット誤り率)

サブチャネル数	N	128
観測シンボル数	N_s	1
ガード区間長	Δ/T_s	0.01
1ビット当りの信号対雑音電力比	E_b/N_0	10.0 [dB]
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN

図 2.19 観測シンボル数に対するビット誤り率特性

表 2.7 計算機シミュレーションの諸元 (観測シンボル数に対するビット誤り率)

 サブチャネル数	N	128
ガード区間長	Δ/T_s	0.01
1ビット当りの信号対雑音電力比	E_b/N_0	10.0 [dB]
正規化周波数オフセット	$f_{off}t_s$	0.1, 0.4
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル 同期		完全
通信路		AWGN

39

2.5. 結言

本章では、陸上移動伝搬特性について述べた.またフェージングマルチパスチャネルが 伝送信号に与える影響および移動通信環境下において特に問題となる周波数選択性フェー ジングについて説明した.フェージング対策技術のひとつである OFDM 方式の送受信 機構成およびその動作について説明し、OFDM 方式が高速伝送に適し、周波数選択性 フェージングに耐性があることを示した.また、従来の OFDM 方式の問題点について述 べた.さらに、OFDM の周波数オフセット対策として、OFDM のガード区間の周期定 常性を用いて周波数オフセットの推定および補償を行う方式について説明し、その伝送 特性と問題点について述べた.

第3章

偏波直交性を用いた直交周波数多 重 (**OPFD**M) 方式

3.1. 序言

第2.3節で解説した通り、OFDMでは、サブチャネル数を大して各サブチャネル当た りの伝送速度を下げることにより、周波数選択性フェージングに対する耐性を増すこと ができる.しかし、OFDM サブチャネル数の増加につれて、各サブチャネル伝送速度が 低下し、かつ、隣接サブチャネル間隔が狭くなるため、ランダム FM 雑音や周波数オフ セットによる隣接チャネル間干渉 (ICI: Inter-Channel Interference) が大きくなり、伝送 特性が劣化する.伝搬路の周波数選択性フェージングとランダム FM 雑音および周波数 オフセットに応じて最適なサブチャネル数が存在することが報告されている [44] が、周 波数選択性が強く、かつランダム FM 雑音および周波数オフセットが大きくなる高い周 波数帯での伝送に対しては最適なチャネル数を選択するだけでは不十分であり、追加の 対策が不可欠である.

周波数オフセットおよびランダム FM 雑音により生じる ICI は,サブチャネル間の 周波数間隔を大きくすることにより低減することができる.しかし,サブチャネル間の 周波数間隔を大きくすると周波数利用効率が低下する.そこで,本章では,これらの問 題点を解決するため OFDM の周波数利用効率を保ったままで,ランダム FM 雑音や 周波数オフセットに対する影響を受けにくくする,偏波直交性を用いた直交周波数多重 (OPFDM: Orthogonal Polarization and Frequency Division Multiplexing) 方式を提案 する [61][62][63][64].まず,3.2節で,提案 OPFDM 方式の原理を説明し,システムの構 成やハードウェア規模について述べる.3.3節で,提案方式における隣接サブチャネル間

干渉 (ICI) 電力を理論解析によって求め,提案方式が従来 OFDM より ICI を低減する ことができることを示す. 3.4節で,伝送特性を数値解析及び計算機シミュレーションに よって明らかにする.

3.2. 偏波直交性を用いた直交周波数多重 (OPFDM) 方式の原理

OFDM 送信信号 *s*(*t*) は以下の式で表される.

$$s(t) = \Re \left[e^{j2\pi f_0 t} \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N} c_{ki} e^{j2\pi \frac{k}{t_s}(t-iT_s)} f_c(t-iT_s) \right]$$
(3.1)

ここで, $\Re[x]$ は x の実部, f_0 は基本周波数, c_{ki} は i 番目の区間における k 番目のサブ チャネルの変調シンボルである. また, $f_c(t)$ はそれぞれのシンボルのパルス波形で,次 式で表される.

$$f_c(t) = \begin{cases} 1 & (-\Delta \le t \le t_s) \\ 0 & (t < -\Delta, t > t_s) \end{cases}$$
(3.2)

但し、 Δ はガード区間、 t_s は観測区間、 $T_s = \Delta + t_s$ は、シンボル周期である.式 (3.1) より、OFDM 信号は、周波数間隔 1/ t_s 毎に配置された N 個のパルス長 T_s の矩形波パ ルス QAM (Quadrature Amplitude Modulation) 信号の和となっていることがわかる. 図 3.1 (a) に、OFDM 信号の周波数スペクトルを示す.OFDM 信号の各サブチャネル信 号のスペクトルのメインローブ幅は 2/ T_s であり、図 3.1 (a) で示されるように、隣接す るサブチャネルのメインローブが互いに重なり合って配置されている.このため、周波 数オフセットやフェージングによるランダム FM 雑音により隣接サブチャネル干渉 (ICI: Inter-Channel Interference) が生じ、伝送特性が劣化する.

周波数オフセットやランダム FM 雑音により生じる ICI を減少させるためには、この メインローブのオーバラップを避ければよい.しかし、メインローブのオーバラップを避 けるためにサブチャネル間隔を広くすると周波数利用効率が低下する.そこで、本論文で は、偏波直交性を用いた直交周波数多重 (OPFDM: Orthogonal Polarization Frequency Division Multiplexing)を提案する.提案方式では、従来方式の偶数番目のサブチャネル を垂直偏波で、奇数番目のサブチャネルを水平偏波で伝送する.垂直、水平それぞれの

図 3.1 従来方式と提案方式の周波数スペクトル配置

送信信号, $s_V(t)$, $s_H(t)$ は以下の式で与えられる.

$$\begin{cases} s_{V}(t) = \Re \left[e^{j2\pi f_{0}t} \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N/2} c_{(2k)i} e^{j2\pi \frac{2k}{t_{s}}(t-iT_{s})} f_{c}(t-iT_{s}) \right] \\ = \Re \left[u_{V}(t) e^{j2\pi f_{0}t} \right] \\ s_{H}(t) = \Re \left[e^{j2\pi f_{0}t} \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N/2} c_{(2k-1)i} e^{j2\pi \frac{2k-1}{t_{s}}(t-iT_{s})} f_{c}(t-iT_{s}) \right] \\ = \Re \left[u_{H}(t) e^{j2\pi f_{0}t} \right] \end{cases}$$
(3.3)

但し,

第3章 偏波直交性を用いた直交周波数多重 (OPFDM) 方式

$$\begin{cases} u_V(t) = \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N/2} c_{(2k)i} e^{j2\pi \frac{2k}{i_s}(t-iT_s)} f_c(t-iT_s) \\ u_H(t) = \sum_{i=-\infty}^{\infty} \sum_{k=1}^{N/2} c_{(2k-1)i} e^{j2\pi \frac{2k-1}{i_s}(t-iT_s)} f_c(t-iT_s) \end{cases}$$
(3.4)

は、送信信号の等価低域表現である. $c_{(2k)i}$, および $c_{(2k-1)i}$ は垂直偏波および水平偏 波の k 番目のサブチャネルに対応する変調シンボルである. なお、従来 OFDM と提案 OPFDM の変調シンボルの形式は同一であり、OPFDM を用いることにより変調シンボ ルが制約を受けることはない. 図 3.1 (b) に提案方式における変調信号の周波数スペクト ル配置を示す. 提案方式では、それぞれの偏波における各サブチャネルの周波数間隔は OFDM の 2 倍となっており、隣接するサブチャネル間でメインローブの重なりは生じな い. このため、周波数オフセットおよびランダム FM 雑音による ICI を減少させること ができる.

3.2.1 システム構成

さて,式(3.3)を変形すると各偏波の変調信号において,以下の式が成り立つ.

$$\begin{cases} u_{V}(t) = \sum_{k=1}^{N/2} c_{(2k)i} e^{j\frac{2\pi k}{t_{s}/2}t} \\ = u_{V}\left(t + \frac{t_{s}}{2}\right) \qquad ; \left(iT_{s} \le t < iT_{s} + \frac{t_{s}}{2}\right) \\ u_{H}(t) = e^{-j\frac{2\pi}{t_{s}}t} \sum_{k=1}^{N/2} c_{(2k-1)i} e^{j\frac{2\pi k}{t_{s}/2}t} \\ = -u_{H}\left(t + \frac{t_{s}}{2}\right) \qquad ; \left(iT_{s} \le t < iT_{s} + \frac{t_{s}}{2}\right) \end{cases}$$
(3.5)

ここで,

$$\sum_{k=1}^{N/2} c_{ki} e^{j\frac{2\pi k}{t_s/2}t}$$
(3.6)

は, 観測窓サイズ N/2の逆離散フーリエ変換器 (IDFT: Inverse Discrete Fourier Transformer) を表す. このことから, 提案 N チャネル OPFDM 方式は 2 つの観測窓サイズ N/2の IDFT により, 送受信機を構成することが可能となる.

図 3.2に,提案する OPFDM 方式の送受信機のブロックダイアグラムを示す.図 3.2(a) の送信機では,入力端子から入力された 2 進送信データ系列が S/P (Serial-to-Parallel) 変換器により 2 つのデータに分割され,垂直偏波送信機,水平偏波送信機にそれぞれ入力 される.各偏波の送信機では,入力された 2 進系列がディジタル変調器により M-QAM (M-ary Quadrature Amplitude Modulation) 等価低域シンボル系列に変換される.この シンボル系列は,観測窓サイズ N/2 の IDFT に入力され N/2 個の異なる周波数の搬送波 の和からなる,シンボル長 $t_s/2$ の OFDM 信号が生成される.この変調信号は,式(3.5) に従いシンボル波形が生成される.まず,波形生成器に入力され,垂直偏波送信機では, $0 \le t < t_s/2$ の波形が $t_s/2 \le t < t_s$ にコピーされ,シンボル長 t_s の信号となる.水平 偏波送信機では, $0 \le t < t_s/2$ の波形を正負反転させた波形が $t_s/2 \le t < t_s$ にコピーさ れる.この様子を図 3.3(a) および (b) にそれぞれ示す.これらの信号には,さらにそれ ぞれガード区間 (Guard Interval) が挿入され,RF (Radio Frequency) 帯信号に周波数 変換後,送信される.

図 3.2(b) の受信機では,垂直,水平各偏波の受信信号は周波数変換され,ガード区間を 除かれたのち,等価低域信号 $r_V(t)$,および $r_H(t)$ が得られる. $r_V(t)$ から周波数 $2m/t_s$ の成分, $r_H(t)$ から周波数 $(2m-1)/t_s$ の成分を離散フーリエ変換器 (DFT: Discrete Fourier Transformer)を用いて抽出することにより,各偏波の受信信号における等価低 域信号が得られる.DFT 出力信号は次式で与えられる.

$$\begin{cases} r_{(2m)i} = \frac{1}{t_s} \int_0^{t_s} r_V(t - iT_s) e^{j2\pi \frac{2m}{t_s}t} dt \\ = \frac{1}{t_s} \int_0^{t_s/2} \left\{ r_V(t - iT_s) + r_V(t + \frac{t_s}{2} - iT_s) \right\} e^{j\frac{2\pi m}{(t_s/2)}t} dt \qquad (a) \\ r_{(2m-1)i} = \frac{1}{t_s} \int_0^{t_s} r_H(t - iT_s) e^{j2\pi \frac{2m-1}{t_s}t} dt \\ = \frac{1}{t_s} \int_0^{t_s/2} \left\{ r_H(t - iT_s) - r_H(t + \frac{t_s}{2} - iT_s) \right\} e^{-j\frac{2\pi}{t_s}t} e^{j\frac{2\pi m}{(t_s/2)}t} dt \qquad (b) \end{cases}$$

$$(3.7)$$

式 (3.7)(a) は、 $\{r_V(t) + r_V(t + t_s/2)\}$ の区間 $t_s/2$ での DFT, (b) は、 $\{r_H(t) - r_H(t + t_s/2)\}e^{-j2\pi t/t_s}$ の $t_s/2$ の DFT となっている.

図 3.2 送受信機の構成

(a)Vertical Polarization

(b)Horizontal Polarization

図 3.3 各偏波における変調信号波形

3.2.2 OPFDM のハードウェア規模

ここでは送受信機のハードウェア規模をベースバンド処理部におけるハードウェア規 模に注目して検討する. ベースバンド部のハードウェア規模を1シンボル当たりに必要 な $A \times B + C$ の複素積和演算回数で評価する. OFDM では, N 個のサブチャネルを用 いたマルチチャネル変調信号を生成するために, 観測窓サイズ N の DFT 演算が送受信 機にそれぞれ必要となる. ここで, DFT 演算に FFT アルゴリズムを用いたとすれば, 1 シンボル当たりに必要な積和演算は $N \log_2 N$ 回である. 一方, OPFDM 送信機では, そ れぞれの偏波において観測窓サイズ N/2 の DFT が必要となる. 従って, 1シンボル当 たりの積和演算回数は次式で表される.

$$2 \times \left(\frac{N}{2}\right) \log_2\left(\frac{N}{2}\right) = N \log_2 N - N \tag{3.8}$$

式 (3.8) より, OPFDM 送信機の演算量は, OFDM より N 回少なくなる. 一方, OPFDM 受信機では, DFT 演算の前に, 畳み込み演算が必要となる. この部分での演算は各偏波

図 3.4 伝搬モデル

毎に1シンボル当たり N/2 回の演算が必要となる.従って,演算量は,

$$(N\log_2 N - N) + 2 \times N/2 = N\log_2 N$$
(3.9)

となり, OFDM 受信機と同一となる. RF 部については, 垂直, 水平偏波それぞれに1 組づつ必要となるため, 2倍のハードウェア規模となるが, ベースバンド部処理について は, ほぼ同等のハードウェア規模で実現できる.

3.3. ランダム FM による隣接サブチャネル干渉

提案方式の伝送特性を計算機シミュレーションのみによって調べると多大な時間を費 やさなくてはならず,また,普遍的な解析を行うことも難しいため,理論解析を用い,普 遍性のある結果を得ることが肝要である.そこで本章では,高速レイリーフェージング環 境下における提案 OPFDM の隣接サブチャネル間干渉 (ICI: Inter-Channel Interference) 低減効果について理論解析を行う.

図 3.4に、伝搬路のモデルを示す. 伝搬路では、マルチパスフェージングによるひずみ と交差偏波信号による干渉を受ける. 図 3.4 の $g_{ij}(t)$ はそれぞれの経路における複素ガウ スランダム過程、 α 、 β は主偏波成分に対する交差偏波成分比と定義する. 従って、 α 、 β は、交差偏波成分に対する主偏波成分の比を表す交差偏波識別度 (XPD: Cross Polarized

Discrimination) [65] の逆数である. 垂直,水平それぞれの偏波系における受信信号 $r_V(t)$, $r_V(t)$ は,以下の式で表される [2][66].

$$\begin{cases} r_V(t) = g_{11}(t)s_V(t) + \alpha g_{21}(t)s_H(t) + z_V(t) \\ r_H(t) = \beta g_{12}(t)s_V(t) + g_{22}(t)s_H(t) + z_H(t) \end{cases}$$
(3.10)

但し, $z_V(t)$, $z_H(t)$ はそれぞれ垂直,水平偏波系における加法性白色ガウス雑音 (AWGN: Additive White Gaussian Noise) 成分である. 垂直偏波の受信信号における i 番目の区間の m 番目のサブチャネル成分は次式で求められる.

$$r_{(2m)i} = \sum_{k=1}^{N/2} \frac{c_{(2k)i}}{t_s} \int_0^{t_s} g_{11}(t) e^{-j\frac{2\pi(2m-2k)t}{t_s}} dt + \alpha \sum_{k=1}^{N/2} \frac{c_{(2k-1)i}}{t_s} \int_0^{t_s} g_{21}(t) e^{-j\frac{2\pi(2m-2k+1)t}{t_s}} dt + z_{(2m)i} = \frac{c_{(2m)i}}{t_s} \int_0^{t_s} g_{11}(t) dt + \sum_{\substack{k=1\\k \neq m}}^{N/2} \frac{c_{(2k)i}}{t_s} \int_0^{t_s} g_{11}(t) e^{-j\frac{2\pi(2m-2k)t}{t_s}} dt + \alpha \sum_{\substack{k=1\\k \neq m}}^{N/2} \frac{c_{(2k-1)i}}{t_s} \int_0^{t_s} g_{21}(t) e^{-j\frac{2\pi(2m-2k+1)t}{t_s}} dt + z_{(2m)i}$$
(3.11)

ここで,第1項は希望信号成分,第2項は垂直偏波における隣接サブチャネル間干渉成分,第3項は水平偏波における隣接サブチャネル干渉成分,第4項は雑音成分である.希望信号電力 σ_{sv}^2 , ICI 電力 σ_{Iv}^2 ,および雑音電力 σ_{s}^2 は,それぞれ以下の式で与えられる.

$$\sigma_{s_V}^2 = \left(\frac{c_{(2m)i}}{t_s}\right)^2 \int_0^{t_s} \int_0^{t_s} R_{11}(\xi - \eta) d\xi d\eta$$
(3.12)

$$\sigma_{I_{V}}^{2} = \sum_{\substack{k=1\\k\neq m}}^{N/2} \left(\frac{c_{(2k)i}}{t_{s}}\right)^{2} \int_{0}^{t_{s}} \int_{0}^{t_{s}} R_{11}(\xi - \eta) e^{-j\frac{2\pi(2m - 2k)(\xi - \eta)}{t_{s}}} d\xi d\eta + \alpha^{2} \sum_{k=1}^{N/2} \left(\frac{c_{(2k-1)i}}{t_{s}}\right)^{2} \int_{0}^{t_{s}} \int_{0}^{t_{s}} R_{21}(\xi - \eta) e^{-j\frac{2\pi(2m - 2k+1)(\xi - \eta)}{t_{s}}} d\xi d\eta + \sigma_{z}^{2} = \frac{1}{2} E\left[z_{V}^{*}(t)z_{V}(t)\right]$$

$$(3.13)$$

ここで, $R_{ij}(\tau)$ は $g_{ij}(t)$ の自己相関関数であり、次式で表される.

$$R_{ij}(\tau) = \frac{1}{2} E[g_{ij}(t+\tau)g_{ij}^*(t)].$$
(3.15)

受信機において,水平面内無指向性アンテナを用いて信号を受信すると仮定すると,式 (3.15) は次式で書き直すことができる [2].

$$R_{ij}(\tau) = b_{ij} J_0(2\pi f_D \tau)$$
(3.16)

但し, $J_0(\cdot)$ は 0 次のベッセル関数, b は平均受信信号電力, f_D は最大ドップラー周波数 である. さらに $\tau \ll 1/f_D$ が成り立つとき,式 (3.16) は次式で近似することができる.

$$R_{ij}(\tau) \sim b_{ij} \{ 1 - (\pi f_D \tau)^2 \}.$$
(3.17)

式 (3.17)を式 (3.12)と式 (3.13) に代入することにより次式が得られる.

$$\sigma_{s_V}^2 = 1 - \frac{(\pi f_D t_s)^2}{6} \tag{3.18}$$

$$\sigma_{I_V}^2 = \sum_{\substack{k=1\\k\neq m}}^{N/2} \frac{(f_D t_s)^2}{2(2k-2m)^2} + \alpha^2 \sum_{k=1}^{N/2} \frac{(f_D t_s)^2}{2(2k-1-2m)^2}$$
(3.19)

水平偏波における希望信号電力 $\sigma_{s_H}^2$, ICI 電力 $\sigma_{I_H}^2$ も同様に次式で求めらる.

$$\sigma_{s_H}^2 = \sigma_{s_V}^2 = 1 - \frac{(\pi f_D t_s)^2}{6}$$
(3.20)

$$\sigma_{I_H}^2 = \sum_{\substack{k=1\\k\neq m}}^{N/2} \frac{(f_D t_s)^2}{2(2k-2m)^2} + \beta^2 \sum_{k=1}^{N/2} \frac{(f_D t_s)^2}{2(2k-2m+1)^2}$$
(3.21)

 $\alpha = \beta$ とすると, $\sigma_{I_V}^2 = \sigma_{I_H}^2$ である.

また、従来の OFDM 方式における希望信号電力 σ_c^2 , ICI 電力 $\sigma_{I_c}^2$ は、次式で表され ることが分かっている [44].

$$\sigma_{s_c}^2 = \sigma_{s_V}^2 = 1 - \frac{(\pi f_D t_s)^2}{6}$$
(3.22)

$$\sigma_{I_c}^2 = \sum_{\substack{k=1\\k\neq m}}^N \frac{(f_D t_s)^2}{2(k-m)^2}$$
(3.23)

式 (3.19) と式 (3.21), および式 (3.23) から, 提案 OPFDM 方式と従来 OFDM 方式に おける ICI 電力はサブチャネル数 N,最大ドップラー周波数 f_D ,および有効シンボル 長 t_s に依存することがわかる.また,サブチャネル数が充分大きく,最大ドップラー周 波数が一定の条件では,有効シンボル長が支配的な要因となる.すなわち,隣接サブチャ ネル間隔は,従来の OFDM では $1/t_s$,提案 OPFDM では $2/t_s$ なので, ICI 電力はサブ チャネル間隔が大きい場合は小さくなり,チャネル間隔が小さい場合は大きくなる.

ここで、ドップラー周波数は送信周波数と送受信機間の相対速度の積に比例するため、 厳密にいえば各サブチャネルが受けるドップラー周波数は異なる.しかし、2~5GHzと いった高い送信周波数で10MHzの帯域を用いて伝送を行なう場合、最も低い送信周波数 のサブチャネルと最も高いサブチャネルが受けるドップラー周波数の差は0.2~0.5%であ る.このため、送信周波数の差によって ICI 電力はほとんど変わらない.従って、本論 文においては、各サブチャネルにかかるドップラー周波数は全て同じであるものとして 解析を行なっている.

図 3.5に、サブチャネル数が 256 と 1024 の場合の XPD と ICI の関係を示す.表 3.1 に計算に用いた諸定数を示す.XPD=0dB の状態は、垂直および水平それぞれの偏波面 が完全に重なった状態であり、その場合の OPFDM における ICI は従来の OFDM のそ れと同じになる.図 3.5より、XPD の値が大きくなるにつれ、従来方式に比して ICI が 減少していることが分かる.XPD が 10dB 以上ではその改善効果は飽和している.これ までの実測データにより、都市環境における XPD は約 6dB である [1][67].このように 劣化した環境下である XPD=6dB においても、OPFDM における ICI は OFDM と比較 して、約 3.6dB 減少していることがわかる.また、サブチャネル数が 256 と 1024 のどち らの場合においても、その改善効果は同様であるので、提案 OPFDM 方式ではサブチャ ネル数によらず ICI 軽減効果を得ることができる.この解析結果は、直線偏波や円偏波 に限らず適用できる。円偏波を用いた場合、直線偏波よりも都市環境における XPD の 値は改善される可能性があり、その場合は ICI はさらに減少し、提案 OPFDM 方式の伝 送特性はより改善される.しかし、移動端末のアンテナが大きくなる可能性がある.

表 3.1	隣接サブチ・	ャネル間干渕	☞電力の計算に丿	韦いた諸定数

正規化ドップラー周波数	$f_D T_s$	0.10
ガード区間とシンボル長の比	Δ/T_s	$rac{1}{33}pprox 3.03 imes 10^{-2}$
サブチャネル数	N	$256,\!1024$

3.4. 解析結果

本節では,提案方式におけるビット誤り率 (BER: Bit Error Rate) 特性を理論解析に よって求める.各サブチャネル変調方式として QPSK を仮定する.基準位相としては垂 直,水平各偏波の中央のサブチャネル信号を用いるものとする.基準となる中央のサブ チャネル信号は,判定される信号と同様に加法性雑音の影響を受けているため,BER は DQPSK (Differentially encoded QPSK) 遅延検波時の BER と一致し,次式で近似する ことができる [49].

$$P_e \approx \frac{1}{2(1+\bar{\gamma_b})} \tag{3.24}$$

ここで, _⑦は標本時点における1ビット当りの平均 SNR (Signal-to-Noise power Ratio) で, 次式で表される.

$$\bar{\gamma_b} = \frac{\sigma_s^2}{2(\sigma_z^2 + \sigma_I^2)} \tag{3.25}$$

図 3.6 に、レイリーフェージング下における従来の OFDM 方式と提案 OPFDM 方式 の BER 特性を理論解析と計算機シミュレーションによって求めたものを示す.表 3.2に 解析に用いた諸定数を示す.図 3.6 より、従来の OFDM に比べ、OPFDM は BER を 改善できることがわかる.計算機シミュレーションの結果より、 $E_b/N_0=25$ dB の場合、 OFDM の BER が約 1.7 × 10⁻² であるのに対し、OPFDM の BER は約 8.1 × 10⁻³ と 10^{-2} 以下に抑えられていることがわかる.しかし、放送やデータ伝送を行なおうとした 場合、 10^{-6} 以下の誤り率が要求される.誤り訂正技術等を用いることによってその程度 の誤り率を達成するためには、誤り訂正がない状態で 10^{-3} 程度の誤り率が必要となるた め、ダイバーシチ技術等を用いて提案 OPFDM の伝送特性をさらに改善する必要がある.

図 3.7に, $E_b/N_0=25$ dBの場合について,正規化ドップラー周波数とBERとの関係を示す.表 3.3に解析に用いた諸定数を示す.図 3.7より,ドップラー周波数が大きくなる につれて誤り率の改善も大きくなることがわかる.また,誤り率を一定にすると,正規化ドップラー周波数が 0.05 以上では OPFDM は OFDM よりも 1.5 倍の正規化ドップラー 周波数に耐えられることがわかる.このように,OPFDM は OFDM よりもドップラー 周波数が大きい場合,即ち高速移動時に効力を発揮する方式であることが確認できた.

図 3.8に、熱雑音がほとんどない E_b/N_0 =40dBと熱雑音がある程度ある E_b/N_0 =25dB の 2 つの場合について、XPD と BER との関係を示す.表 3.4に解析に用いた諸定数を示す.図 3.8より、 E_b/N_0 =40dB および 25dB のいずれの場合も XPD の値が大きくなるにつれ、BER が改善されることが分かる.

また,理論解析と計算機シミュレーションによる結果より,従来OFDMと提案OPFDMのBER特性はほぼ一致しており,正規化最大ドップラー周波数 f_DT_s が 0.15程度以下では,本論文の理論解析による伝送特性評価が妥当であることがわかる.

図 3.6 E_b/N_0 に対する BER 特性

表 3.2 解析の諸元 (*E_b*/*N*₀に対する BER)

サブチャネル数	N	1024
正規化ドップラー周波数	$f_D T_s$	0.10
交差偏波識別度	XPD	6.0 [dB]
ガード区間長	Δ/T_s	$rac{1}{33}pprox 3.03 imes 10^{-2}$
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全

図 3.7 正規化ドップラー周波数に対する BER 特性

表 3.3 解析の諸元 (正規化ドップラー周波数に対する BER)

 サブチャネル数	N	1024
1ビット当りの信号対雑音電力比	E_b/N_0	25 [dB]
	XPD	6.0 [dB]
ガード区間長	Δ/T_s	$\frac{1}{33}\approx 3.03\times 10^{-2}$
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全

図 3.8 XPD に対する BER 特性

表 3.4 解析の諸元 (XPD に対する BER)

 サブチャネル数	N	1024
1ビット当りの信号対雑音電力比	E_b/N_0	$25, 40 \; [dB]$
正規化ドップラー周波数	$f_D T_s$	0.10
ガード区間長	Δ/T_s	$rac{1}{33}pprox 3.03 imes 10^{-2}$
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全

3.5. 結言

本論文では、従来の OFDM におけるサブチャネルを直交する二つの偏波を用いて伝 送する偏波直交性を用いた直交周波数多重 (OPFDM) 方式を提案した.まず、システム の原理と構成を明らかにした.また、提案システムが従来の OFDM と同等のハードウェ ア規模で実現できることを明らかにした.次に、ランダム FM による隣接サブチャネル 干渉電力を理論解析により求め、OPFDM は OFDM より隣接サブチャネル干渉を低減 できることを示した.更に、理論解析とシミュレーションにより誤り率を求めた.以上 の結果から、OPFDM が OFDM より高速移動時のランダム FM 雑音に対して有効であ ることが明らかとなった.

第4章

半シンボル遅延相関を使用した周 波数同期 (HSD-OPFDM) 方式

4.1. 序言

OFDM ではサブチャネル数の増加につれて,隣接サブチャネル間隔が狭くなるため, 送受信機間の局発周波数のずれおよび移動時のドップラー周波数偏移等の周波数オフセッ トにより隣接サブチャネル間干渉 (ICI: Inter-Channel Interference)が生じ,伝送特性が 急激に劣化する.一方,周波数オフセットに対する耐性を高めるためにサブチャネル数 を小さくすることも考えられる.しかし,サブチャネル数を小さくすると周波数オフセッ トに対して影響を受けにくくなるが,マルチパス等で発生する周波数選択性に対する耐 性は減少するため望ましくない.従って,OFDM 方式においては周波数オフセットを補 償する何らかの対策が必要となる.

OFDMの周波数オフセット対策として、これまで OFDM のガード区間の周期定常性 を用いて周波数オフセットの推定および補償を行う方式が提案されており、2.4節におい て説明した.この方式は、OFDM 信号のガード区間の波形がシンボル最後部の波形と同 ーであることを利用し、同一波形部分の間の位相変動を観測することにより、周波数オ フセットを推定し、補償を行うものである.しかし、周波数オフセット推定に用いるこ とができるガード区間長は1シンボル長の数分の1から数十分の1と小さく、高精度な 周波数オフセット補償を行う場合は、数シンボルから数十シンボルにわたる積分を行う 必要があるため、周波数オフセットに対する高速追随性が充分ではない.また、周波数 オフセットを高速に追随するために少数のシンボルで補償を行うと、補償精度が充分で なくなり、補償を行わない場合より伝送特性を劣化させる可能性もある.
一方,第3章では,周波数と偏波の直交性を組み合わせた OPFDM を提案し,そのシ ステム構成や伝送特性について述べた. OPFDM は,OFDM と同じ周波数利用効率を保 持でき,さらに,隣接サブチャネルを異なった偏波を用いて伝送することによりサブチャ ネル主ローブの重なりがないため周波数オフセットにより生じる ICI を低減することが できるという,優れた特徴を有する.

本章では、OPFDMの波形の特徴を用いて周波数オフセットを推定して補償する半シン ボル遅延相関を使用した周波数同期 (HSD-OPFDM: Orthogonal Polarization and Frequency Division Multiplexing using Half Symbol Delay Frequency Offset Compensation Scheme) 方式を提案する [68][69][70][71][72].次に、4.2節において、提案 HSD-OPFDM 方式の原理を説明する.4.3節で、提案 HSD-OPFDM 方式の伝送特性を計算機シミュレー ションによってもとめ、本方式が有効に動作し、従来の周波数同期方式に比べ伝送特性 が改善されることを明らかにする.

4.2. 半シンボル遅延相関を使用した周波数同期方式の原理

周波数オフセット推定方式の原理を示す.ここでは、簡単のため、偏波間の干渉はないものとする.周波数オフセット *foff* を受けた受信信号は、次式で与えられる.

$$\begin{cases} r_V(t) = s_V(t)e^{j2\pi f_{off}t} + z_V(t) \\ r_H(t) = s_H(t)e^{j2\pi f_{off}t} + z_H(t) \end{cases}$$
(4.1)

波形の前半部と後半部の比較を行うため、 $0 \le t < t_s/2$ のときの $r_V(t)$ 、 $r_H(t)$ の自己相関関数を求める.

$$R_{V}(t; \frac{t_{s}}{2}) = \frac{1}{2} E\left[r_{V}(t)r_{V}^{*}(t+\frac{t_{s}}{2})\right]$$

$$= \frac{1}{2} E\left[s_{V}(t)s_{V}^{*}(t+\frac{t_{s}}{2})\right] e^{-j2\pi f_{off}\frac{t_{s}}{2}}$$
(4.2)

$$R_{H}(t; \frac{t_{s}}{2}) = \frac{1}{2} E\left[r_{H}(t)r_{H}^{*}(t+\frac{t_{s}}{2})\right]$$

$$= \frac{1}{2} E\left[s_{H}(t)s_{H}^{*}(t+\frac{t_{s}}{2})\right] e^{-j2\pi f_{off}\frac{t_{s}}{2}}$$
(4.3)

垂直偏波,水平偏波の送信変調信号の自己相関関数は次式で求められる.

$$\frac{1}{2}E\left[s_V(t)s_V^*(t+\frac{t_s}{2})\right] = \begin{cases} 1 & (0 \le t < t_s/2) \\ 0 & (otherwise) \end{cases}$$
(4.4)

図 4.1 1/2 シンボル遅延周波数オフセット補償器

$$\frac{1}{2}E\left[-s_{H}(t)s_{H}^{*}(t+\frac{t_{s}}{2})\right] = \begin{cases} 1 & (0 \le t < t_{s}/2) \\ 0 & (otherwise) \end{cases}$$
(4.5)

式 (4.4), (4.5)を,式 (4.2), (4.3) に代入すると,それぞれ次式が得られる.

$$R_V(t; \frac{t_s}{2}) = e^{-j\pi f_{off}t_s} \tag{4.6}$$

$$R_H(t; \frac{t_s}{2}) = -e^{-j\pi f_{off}t_s} \tag{4.7}$$

これより, 垂直, 水平偏波における周波数オフセット foffy, foffyは, それぞれ

$$f_{off_V} = \frac{-\arg(R_V(t; \frac{t_s}{2}))}{\pi t_s}$$
(4.8)

$$f_{off_H} = \frac{-\arg(R_H(t; \frac{t_s}{2}))}{\pi t_s}$$
(4.9)

で求めることができる.

さて,式(4.2),(4.3)は期待値であり,有限の観測時間で正確に推定することはできない. そこで,OPFDMの N_s シンボル区間で推定を行う.まず, $r_V(t)$ と $r_H(t)$ の瞬時自

己相関関数を次式で定義する.

$$\hat{R}_V(t) = r_V(t)r_V^*(t + \frac{t_s}{2})$$
(4.10)

$$\hat{R}_H(t) = -r_H(t)r_H^*(t + \frac{t_s}{2}) \tag{4.11}$$

それらを加算平均すると、以下の式が得られる.

$$R_{avV} = \frac{2}{N_s t_s} \sum_{i=1}^{N_s} \int_0^{t_s/2} \hat{R}_V(t+iT_s) dt$$
(4.12)

$$R_{avH} = \frac{2}{N_s t_s} \sum_{i=1}^{N_s} \int_0^{t_s/2} \hat{R}_H(t+iT_s) dt$$
(4.13)

ただし, N_sは OPFDM 信号の観測シンボル数を表す.式 (4.12), (4.13) に式 (4.1) を代 入すると

$$\begin{aligned} R_{avV} &= e^{-j\pi f_{off}t_s} \\ &+ \frac{2}{N_s t_s} \sum_{i=1}^{N_s} \int_0^{t_s/2} \left[\{ s_V(t) z_V^*(t + \frac{t_s}{2}) e^{-j2\pi f_{off}t} \\ &+ z_V(t) s_V^*(t + \frac{t_s}{2}) e^{-j2\pi f_{off}(t + t_s/2)} \} + z_V(t) z_V^*(t + \frac{t_s}{2}) \right] dt \end{aligned} (4.14) \\ R_{avH} &= -e^{-j\pi f_{off}t_s} \end{aligned}$$

$$-\frac{2}{N_s t_s} \sum_{i=1}^{N_s} \int_0^{t_s/2} \left[\left\{ s_H(t) z_H^*(t + \frac{t_s}{2}) e^{-j2\pi f_{off}t} + z_H(t) s_H^*(t + \frac{t_s}{2}) e^{-j2\pi f_{off}(t + t_s/2)} \right\} - z_H(t) z_H^*(t + \frac{t_s}{2}) \right] dt \qquad (4.15)$$

第1項は式 (4.2), (4.3)の推定値,第2項は推定誤差項である.式 (4.8), (4.9)の R_V , $R_H \varepsilon$,推定値 R_{avV} , R_{avH} で置き換えることにより,実際の受信信号から周波数オフ セットを推定することが可能となる.垂直,水平偏波における推定値 \tilde{f}_{off_V} , \tilde{f}_{off_H} は,そ れぞれ以下の式で求められる.

$$\tilde{f}_{off_V} = -\frac{\arg(R_{avV})}{\pi t_c} \tag{4.16}$$

$$\tilde{f}_{off_H} = -\frac{\arg(R_{avH})}{\pi t_s} \tag{4.17}$$

さらに,垂直,水平それぞれの偏波における周波数オフセットは同じであるので,平均 化することにより雑音による誤差をさらに減らすことができる.この場合,周波数オフ

セットの推定値 f_{off} は次式で表される.

$$\tilde{f}_{off} = -\frac{\arg(R_{avV} + R_{avH})}{\pi t_s} \tag{4.18}$$

次に,推定した f_{off} を用いて垂直偏波,水平偏波それぞれの受信信号の受けた周波数オフセットを補償する.

図4.1に、周波数オフセット補償器のブロックダイアグラムを示す。受信信号は、 $t_s/2$ 遅延した信号と乗算され、式 (4.12)、(4.13)の演算により、自己相関推定が行われる。推 定自己相関関数の偏角により、周波数オフセット推定が行われる。その後、受信信号に 周波数オフセット推定値 \tilde{f}_{off} の正弦波を掛けることにより、周波数オフセット補償が行 われる。乗算後の信号は、次式で表される。

$$\tilde{r}_V(t) = r_V(t)e^{-j2\pi \hat{f}_{off}t}$$
 (4.19)

$$\tilde{r}_H(t) = r_H(t) e^{-j2\pi f_{off}t}$$
 (4.20)

4.3. 提案方式のビット誤り率特性

本節では,提案方式の有効性を明らかにするため AWGN(Additive White Gaussian Noise) 環境における提案方式のビット誤り率特性を計算機シミュレーションによって求める. OPFDM では垂直偏波と水平偏波を用いて伝送を行うが,実際の通信路では,それぞれの偏波は互いに干渉する.計算機シミュレーションでは,交差偏波成分に対する主偏波成分の比を表す交差偏波識別度 (XPD: Cross Polarized Discrimination)を考慮している. 一般に,都市内では XPD が 6dB 程度といわれており [1][67],本論文でも XPD として 6dB を仮定する.また,QPSK の復調においては中央のサブチャネルを基準搬送波として用いる.

図4.2に正規化周波数オフセット $f_{off}t_s$ が 0.1 の場合の E_b/N_0 に対するビット誤り率特性を示す.表4.1に計算機シミュレーションモデルの諸元を示す.図4.2において OFDM with Conventional Compensation は OFDM のガード区間を用いた周波数オフセット補償方式 [46], HSD-OPFDM は本論文で提案する補償方式を用いた場合のビット誤り率特性である.ここで基準搬送波として用いるサブチャネルは、判定される信号と同様に加法性雑音の影響を受けているため、周波数オフセットがない場合のビット誤り率は DQPSK (Differentially encoded QPSK) のビット誤り率と一致する.図4.2より、OFDM で補償を行わない場合、伝送特性が大きく劣化している.しかし、OFDM のガード区間を用い

た周波数オフセット補償を行うことにより、ある程度伝送特性が改善している. 同様に、 OPFDM を用いることにより改善しているが、ビット誤り率が 10⁻³ において DQPSK 理論値から約 1dB 劣化しており充分ではない. OPFDM に提案補償方式を組合せること により大きく伝送特性が改善されることがわかる.

図4.3に正規化周波数オフセット $f_{off}t_s$ が 0.4 の場合の E_b/N_0 に対するビット誤り率 特性を示す.表4.2に計算機シミュレーションモデルの諸元を示す.図4.3より,周波数 オフセット補償を行なわない OFDM 方式の場合,誤り率は 0.2 以上と極度に劣化してい る.OPFDM 方式を用いることにより伝送特性はある程度改善されるが,誤り率は 10^{-2} のオーダーにとどまっており充分ではない.OFDM 方式でガード区間を用いた周波数オ フセット補償を行う場合は,OPFDM の場合より改善されるが,理論値と比較すると大 きく劣化していることがわかる.本章で提案した HSD-OPFDM 方式の場合,ほぼ理論 値と一致しており,大きく伝送特性が改善されることがわかる.

次に、図4.4に有効シンボル区間で正規化された周波数オフセット fofftsに対するビット誤り率特性を示す.表4.3に計算機シミュレーションモデルの諸元を示す.図4.4より、OFDM では fofftsが大きくなると急激に伝送特性が劣化する.OFDM に補償方式を適用することによりある程度の改善効果は認められる.しかし、OFDM 補償方式では原理的に foffts が 0.5 以上の場合は正しく補償を行うことができないため、0.5 以上で急激に伝送特性が劣化する.しかも、周波数オフセットが非常に小さい場合は、補償方式を用いることにより、かえって誤り率を大きくしてしまうことがわかる.OPFDM を用いることにより OFDM に比べて伝送特性の劣化が緩やかとなる.さらに、OPFDM に提案方式を用いることにより、fofftsが1程度までオフセットがない DQPSK の理論値からの劣化をなくすことができ、周波数オフセットが小さい場合も高精度な補償できるので、効果的に伝送特性の改善が可能であることがわかる.

図 4.5に XPD に対するビット誤り率特性を示す.表4.4に計算機シミュレーションモデルの諸元を示す.都市内で想定される XPD=6dB では,提案方式を用いた場合は DQPSK 理論値まで改善可能であり,提案方式が有効に動作することがわかる.

図 4.6に観測するシンボル数 N_sに対するビット誤り率特性を示す.表 4.5に計算機シ ミュレーションモデルの諸元を示す.図 4.6から,OFDM 補償方式では、3~5シンボル で周波数オフセットがない DQPSKの理論値まで改善可能であり、充分な周波数オフセッ ト補償のためには、少なくとも 3~5シンボルの観測が必要である.一方、HSD-OPFDM では、1 シンボルで理論値まで改善されており、充分な周波数オフセット補償が可能で

ある.このことから,提案方式は数シンボル時間内で変動する周波数オフセットに追随 して周波数オフセット補償を行うことが可能であることがわかる.

図 4.2 E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s = 0.1$)

		And the second sec
サブチャネル数	N	128
観測シンボル数	N_s	1
ガード区間長	Δ/T_s	0.01
正規化周波数オフセット	$f_{off}t_s$	0.1
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN
交差偏波識別度	XPD	6.0 [dB]

表 4.1 計算機シミュレーションの諸元 (E_b/N₀に対するビット誤り率)

図 4.3 E_b/N_0 に対するビット誤り率特性 ($f_{off}t_s = 0.4$)

N	128
N_s	1
Δ/T_s	0.01
$f_{off}t_s$	0.4
	QPSK
	中央サブチャネルを基準搬送波
	完全
	AWGN
XPD	6.0 [dB]
	$\frac{N}{\Delta/T_s}$ $f_{off}t_s$ XPD

表 4.2 計算機シミュレーションの諸元 (E_b/N₀に対するビット誤り率)

図 4.4 正規化周波数オフセットに対するビット誤り率特性

サブチャネル数	N	128
観測シンボル数	N_s	1
ガード区間長	Δ/T_s	0.01
1ビット当りの信号対雑音電力比	E_b/N_0	10.0 [dB]
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN
交差偏波識別度	XPD	6.0 [dB]

表 4.3 計算機シミュレーションの諸元 (正規化周波数オフセットに対するビット誤り率)

図 4.5 XPD に対するビット誤り率特性

表 4.4 計算機シミュレーションの諸元 (XPD に対するビット誤り率)

 サブチャネル数	\overline{N}	128
ガード区間長	Δ/T_s	0.01
1ビット当りの信号対雑音電力比	E_b/N_0	10.0 [dB]
正規化周波数オフセット	$f_{off}t_s$	0.1
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN

図 4.6 観測シンボル数に対するビット誤り率特性

サブチャネル数	N	128
ガード区間長	Δ/T_s	0.01
1ビット当りの信号対雑音電力比	E_b/N_0	10.0 [dB]
正規化周波数オフセット	$f_{off}t_s$	0.1, 0.4
サブチャネル変調方式		QPSK
		中央サブチャネルを基準搬送波
シンボル同期		完全
通信路		AWGN
交差偏波識別度	XPD	6.0 [dB]

表 4.5 計算機シミュレーションの諸元 (観測シンボル数に対するビット誤り率)

4.4. 結言

本論文では,偏波直交性を用いた直交周波数多重 (OPFDM) 方式における周波数オフ セットを OPFDM 信号の特徴を利用することにより,特別なトレーニング系列を付加す ることなく,高精度に推定して補償を行う 1/2 シンボル遅延周波数オフセット補償方式 (HSD-OPFDM)を提案し,計算機シミュレーションにより有効性を明らかにした.その 結果,AWGN 環境下では,提案方式が fofftsが1までの大きな周波数オフセットに対し ても有効に動作し,また,小さな周波数オフセットに対しても推定誤差による誤り率増 大を起こさず,従来から用いられている方式に比べ,周波数オフセットの影響を大幅に 改善でき,周波数オフセットの影響をほぼ完全に取り除くことができることを明らかに した.

本論文は, 直交周波数多重 (OFDM) 方式における伝搬特性の改善に関して, 筆者が奈 良先端科学技術大学院大学情報科学研究科博士前期課程および博士後期課程 (情報システ ム学専攻) 在学中に行った研究の成果をまとめたものである.以下,本研究で得られた結 果を総括して述べる.

- 1. 直交周波数多重 (OFDM: Orthogonal Frequency Division Multiplexting) において 隣接サブチャネル干渉 (ICI: Inter-Channel Interference) による伝送特性劣化を解 決するため, 従来の OFDM 方式において隣り合うサブキャリアを垂直偏波と水平 偏波に分離して伝送する直交偏波周波数多重 (OPFDM: Orthogonal Polarization and Frequency Division Multiplexing) 方式を提案した. 理論解析によって, 従来 の OFDM 方式より周波数利用効率を低下させることなく隣接チャネル間干渉電力 を低減できることを明らかにした. その結果, 符号誤り率が従来方式より改善さ れることを理論解析と計算機シミュレーションによって示した. 以上の結果から, OPFDM が OFDM より高速移動時のランダム FM 雑音に対して有効であることが 明らかとなった.
- 2. OPFDM 信号の特徴を利用することにより、特別なトレーニング系列を付加する ことなく、高精度に推定して補償を行う半シンボル遅延相関を使用した周波数同 期 (HSD-OPFDM: Orthogonal Polarization and Frequency Division Multiplexing using Half Symbol Delay Frequency Offset Compensation Scheme) 方式を提案し た. この方式は、OPFDM 変調信号のシンボル波形の前半部と後半部の波形が対称 となっている特徴を利用し、この情報を OFDM での周波数オフセット推定に適用 する方式であり、OPFDM 変調信号のシンボルの前半と後半の波形の位相変動を比 較することにより、特別なトレーニング系列を付加することなく、周波数オフセッ

トを推定して補償する.この方式を用いると、シンボル長の全範囲での補償が可能 となるので、少数のシンボルで補償を行う場合においても、従来のガード区間を用 いた補償方式と比べ高精度に補償を行うことができる.さらに、提案方式が多数の シンボルを必要としないため、周波数オフセットに対する追随性の高速化が可能に なった.計算機シミュレーションによって得られた結果により、符号誤り率が従来 方式より改善されることを明らかにした.AWGN環境下では、提案方式が foffts が1までの大きな周波数オフセットに対しても有効に動作し、また、小さな周波数 オフセットに対しても推定誤差による誤り率増大を起こさず、従来から用いられて いる方式に比べ、周波数オフセットの影響を大幅に改善でき、周波数オフセットの 影響をほぼ完全に取り除くことができることを明らかにした.

以上のことから,本論文において提案した方式は,従来の OFDM 方式に比べ,伝送特 性を改善できる有効な方式であることを明らかにした.

謝 辞

本研究を行なう機会を私に与えて下さり,懇篤なる御指導,御鞭撻を賜った奈良先端 科学技術大学院大学情報科学研究科教授 尾家 祐二 博士,同大学情報科学センター教授 小山 正樹 博士,同大学情報科学研究科教授千原 國宏 博士に深甚なる謝意を表します.

本研究を遂行するにあたり、折りにふれ懇切丁寧なる御助言と御厚意溢れるご支援を 賜った奈良先端科学技術大学院大学副学長山本平一博士に衷心より御礼申し上げます。

大阪大学在学中より通信工学全般および本研究に関して有益な御指導,御教示を賜った大阪大学大学院工学研究科通信工学専攻教授小牧省三博士に謹んで深謝の意を表します.

本論文をまとめるにあたり、熱心な御指導、御激励を頂いた大阪大学大学院工学研究 科通信工学専攻助手 岡田 実 博士に厚く御礼申し上げます.

本研究の途上,熱心な御討論と有益な御助言を頂いた奈良先端科学技術大学院大学情報科学研究科情報ネットワーク講座の皆様,ならびに,大阪大学工学部通信工学科小牧研究室の皆様に心より感謝申し上げます.

最後に,私が大学において研究するにあたり,並々ならぬ支援を頂き,また,温かく 見守って下さった私の家族,そして私の婚約者である藤井 元子さんとその御家族に深く 感謝の意を表します.

参考文献

- [1] 奥村善久,進士昌明: "移動通信の基礎",電子情報通信学会, 1986.
- [2] William C.Jakes: "Microwave Mobile Communication", IEEE PRESS, 1993.
- [3] 桑原守二 (監修): "ディジタル移動通信", 科学新聞社, 1994.
- [4] 山本平一, 加藤修三: "TDMA 通信", 電子情報通信学会, 1994.
- [5] 齋藤忠夫, 立川敬二(編): "移動通信ハンドブック", オーム社, 1995.
- [6] 堀越淳(編): "ディジタル移動通信のための波形等化技術", トリケップス, 1996.
- [7] 中嶋牧人, 三瓶政一:"判定帰還形適応等化器による陸上移動通信の周波数選択 性フェージング補償特性", 信学論 (B-II), Vol. J72-B-II, No. 10, pp. 515–523, Oct. 1989.
- [8] S. Sampei: "Computation Reduction of Decision Feedback Equalizer using Interpolation for Land Mobile Communications", IEEE GLOBECOM'91, pp. 521-525, 1991.
- [9] 大鐘武雄: "陸上移動通信における CMA アダプティブアレーの選択性フェージ ング補償特性", 信学論 (B-II), Vol. J73-B-II, No. 10, pp. 489-497, Oct. 1990.
- [10] 山内雪路: "スペクトラム拡散通信 次世代高性能通信に向けて", 東京電機大学 出版局, 1994.
- [11] Robert A. Scholtz: "The Spread Spectrum Concept", *IEEE Trans. Commun.*, Vol. COM-25, No. 8, pp. 748-755, Aug. 1977.
- [12] J.A.C. Bingham: "Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come", *IEEE Commun. Mag.*, Vol. 28, No. 5, pp. 5–14, May 1990.
- B. Hirosaki, S. Hasegawa, and A. Sbato: "Advanced Groupband Data Modem Using Orthogonally Multiplexed QAM Technique", *IEEE Trans. Commun.*, Vol. COM-34, No. 6, pp. 587-592, Jun. 1986.

- [14] A. Vahlin and N. Holte: "Optimal Finite Duration Pulses for OFDM", IEEE Trans. Commun., Vol. 44, No. 1, pp. 10-14, Jan. 1996.
- [15] B. L. Floch, R. Halbert-Lassalle, and D. Castelain: "Digital Sound Broadcasting to Mobile Receivers", *IEEE Trans. Consum. Electron.*, Vol. 35, No. 3, pp. 493-503, Aug. 1989.
- [16] V. Mignone and A. Morello: "CD3-OFDM: A Novel Demodulation Scheme for Fixed and Mobile Receivers", *IEEE Trans. Commun.*, Vol. 44, No. 9, pp. 1144-1151, Sept. 1996.
- [17] 辻井重男 (監修): "ディジタル信号処理の基礎", 電子情報通信学会, 1993.
- [18] M.L. Doeltz, E.T. Heald, and D.L. Martin: "Binary Data Transmission Techniques for Linear Systems", Proc. of *IRE*, Vol. 45, No. 5, pp. 656-661, May 1957.
- [19] R.W. Chang: "Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission", Bell System Technical Journal, Vol. 45, No. 10, pp. 1775–1796, Dec. 1966.
- [20] B.R. Saltzberg: "Performance of an Efficient Paralles Data Transmission system", *IEEE Trans. Commun.*, Vol. COM-15, No. 6, pp. 805-811, Dec. 1967.
- [21] J.P. Linnartz: "Special Issue on "Multi-Carrier Modulation", http:// diva.eecs.berkeley.edu/ linnartz/issue.html, 1996.
- [22] S.B. Weinstein and P.M. Ebert: "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform", *IEEE Trans. Commun. Tech.*, Vol. COM-19, No. 5, pp. 628-634, Oct. 1971.
- [23] B. Hirosaki: "An Orthogonally Multiplexed QAM System Using the Discrete Fourier Transform", *IEEE Trans. Commun.*, Vol. COM-29, No. 7, pp. 982– 989, Jul. 1981.
- [24] T. Yoshida, S. Komaki, and K. Morita: "System Design and New Techniques for an Over-Water 100 km span Digital Radio", Proc. of *ICC'83*, Vol. 2, pp. 664-670, 1983.
- [25] H. Ohtsuka, Y. Saito, and S. Komaki: "Super Multi-Carrier Trellis Coded

256 QAM Digital Microwave Radio", Proc. of *IEEE GLOBECOM'88*, Vol. 1, pp. 244–249, 1988.

- [26] I. Kalet: "The Multitone Channel", *IEEE Trans. Commun.*, Vol. COM-37, No. 2, pp. 119-124, Feb. 1989.
- [27] "MMAC -Multimedia Mobile Access Communication System-", http:// www.arib.or.jp/mmac/index.htm.
- [28] S. Nakahara, S. Moriyama, T. Kuroda, M. Sasaki, S. Yamazaki, and O. Yamada: "Efficient Use of Frequencies in Terrestrial ISDB System", *IEEE Trans. Broadcast.*, Vol. 42, No. 3, pp. 173–178, 1996.
- [29] 鷹野二郎,柴田豊,斎藤正典:"地上デジタル放送の SFN カバレッジ改善法に関する一検討",映像情報メディア学会技術報告, Vol. 22, No. 59, pp. 44-48, Oct. 1998.
- [30] "地上デジタル放送 —ハイビジョンから移動体マルチメディアまで—", http:///www.strl.nhk.or.jp/open98 /1-4/ter-11.html.
- [31] "地上 ISDB ~ハイビジョンから移動体向け放送まで~", http://www.strl. nhk.or.jp/open97/ex/z107/index-j.html.
- [32] 奥畑康秀, 竹ヶ原俊幸, 赤石精一, 奥田敏, 兼岩克, 佐久間一紀, 中村敏明, 藤田望, 三浦洋: "地上波ディジタル放送用狭帯域 OFDM 信号に関する検討", 1998
 年映像情報メディア学会年次大会, pp. 24–25, July 1998.
- [33] "DAB -Digiaal Audio Broadcasting-", http://www.teracom.se/30fou/ 30dabu.htm.
- [34] "OFDM orthogonal frequency division multiplexing", http://www4. nikkeibp.co.jp/CGS/wordindex/OFDM.htm.
- [35] K. Lee, D. Han, and K. Kim: "Performance of the Viterbi Decorder for DVB-T in Rayleigh Fading", *IEEE Trans. Consum. Electron.*, Vol. 44, No. 3, pp. 994–1000, Aug. 1998.
- [36] R. Makowitz, A. Turner, J. Gledhill, and M. Mayr: "A Single-chip DVB-T Receiver", *IEEE Trans. Consum. Electron.*, Vol. 44, No. 3, pp. 990–993, Aug. 1998.

- [37] 山本昭夫, 野上博志, 大久保隆志: "OFDM 用等化器のシミュレーション検討", 映像情報メディア学会誌, Vol. 52, No. 11, pp. 1643–1649, Nov. 1998.
- [38] "DVB-T", http://www.ebu.ch/dvb/dvb_standards/dvb_dvbt.htm.
- [39] 吉田昇: "総論 地上ディジタル放送の導入政策と将来展望—", 映像情報メディ ア学会誌, Vol. 52, No. 11, pp. 1539–1545, Nov. 1998.
- [40] M. Speth: "OFDM Receivers for Broadband-Transmission", http://www. ert.rwth-aachen.de/Projekte/Theo/OFDM/www_ofdm.html.
- [41] T. Pollet, M.V. Bladel, and M. Moeneclaey: "BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise", *IEEE Trans. Commun.*, Vol. 43, pp. 191–193, Feb./Mar./Apr. 1995.
- [42] H. Nikookar and R. Prasad: "On The Sensitivity of Multicarrier Transmission Over Multipath Channels to Phase Noise and Frequency Offset", Proc. of *PIMRC'96*, Vol. 1, pp. 68–72, Oct. 1996.
- [43] 橋爪厚盛,岡田実,小牧省三:"直交マルチキャリア変調のガード区間を用いた高速フェージング補償方式",信学技報,CS97-20/RCS97-8, Vol. 97, No. 72, pp. 9–14, May 1997.
- [44] M. Okada, S. Hara, and N. Morinaga: "Bit Error Rate Performance of Orthogonal Multicarrier Modulation Radio Transmission Systems", *IEICE Trans. Commun.*, Vol. E76-B, No. 2, pp. pp.113-119, Feb. 1993.
- [45] 毛利益忠,岡田実,原晋介,小牧省三,森永規彦: "マルチキャリア変調信号のシンボル同期・周波数オフセット同時推定方式",信学技報,RCS95-70, Vol. 95, pp. 9–16, Sept. 1995.
- [46] M. Okada, S. Hara, S. Komaki, and N. Morinaga: "Optimum Synchronization of Orthogonal Multi-Carrier Modulated Signals", Proc. of *PIMRC'96*, Vol. 3, pp. 863-867, Oct. 1996.
- [47] 斎藤洋一:"ディジタル無線通信の変復調",電子情報通信学会,1996.
- [48] W.S. Youn and B.K. Bhargava: "Orthogonal multi-carrier CDMA system using a concatenated orthogonal/PN spreading scheme", Wireless Personal Communications, Vol. 32, No. 25, pp. 2318-2321, Dec. 1996.

- [49] John G. Proakis: "Digital Communications, Third Edition", McGraw-Hill, 1995.
- [50] 進士晶明 (編著): "無線通信の電波伝搬", 電子情報通信学会, 1992.
- [51] H. Meyr, M. Moeneclaey, and S.A. Fechtel: "Digital Communication Receivers", Wiley-Interscience, 1998.
- [52] W. C.-Y.Lee: "Mobile Communications Engineering", McGraw-Hill, 1982.
- [53] S・スタイン, J・J・ジョーンズ: "現代の通信回線理論 –データ通信への応用 –", 森北出版, 1970.
- [54] F. Classen and H. Meyr: "Frequency Synchronization Algorithms for OFDM Systems suitable for Communication over Frequency Selective Fading Channel ", Proc. of VTC'94, Vol. 3, pp. 1655–1659, Jun. 1994.
- [55] H. Nogami and T. Nagashima: "A Frequency and Timing Period Acquisition Technique for OFDM Systems", *IEICE Trans. Commun.*, Vol. E79-B, No. 8, pp. 1135-1146, Aug. 1996.
- [56] S. Hara, M. Mouri, M. Okada, and N. Morinaga: "Transmission Performance Analysis of Multi-Carrier Modulation in Frequency Selective Fast Rayleigh Fading Channel", Wireless Personal Communications (Kluwer Academic Publishers), Vol. 2, pp. 335–356, 1996.
- [57] T. Sato, S. Watanabe, and T. Abe: "Equalization Scheme of Orthogonal Coding Multi-Carrier CDMA Scheme under Multi-path Fading Environment ", Proc. of VTC'97, Vol. 3, pp. 1887–1891, May 1997.
- [58] P. H. Moose: "A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction", *IEEE Trans. Commun.*, Vol. 42, No. 10, pp. 2908–2914, Oct. 1994.
- [59] T. Keller and L. Hanzo: "Orthogonal Frequency Division Multiplex Synchronisation Techniques for Wireless Local Area Networks", Proc. of *PIMRC'96*, Vol. 3, pp. 963–967, Oct. 1996.
- [60] H. Taub and D.L. Schilling: "Principles of Communication Systems, Second Edition", McGraw-Hill, 1986.

- [61] 須増淳,岡田実,小牧省三,山本平一:"マルチキャリア変調方式の周波数オフ セット対策",信学技報, RCS96-83, Vol. 96, No. 213, pp. 119–124, Aug. 1996.
- [62] 須増淳,岡田実,小牧省三,山本平一:"周波数インタリーブによる偏波多重マル チキャリア変調方式のランダム FM 雑音対策",平成8年電気関係学会関西支部 連合大会, No. S43, Nov. 1996.
- [63] A. Sumasu, M. Okada, S. Komaki, and H. Yamamoto: "Orthogonal Polarization and Frequency Division Multiplexing (OPFDM) in a Fast and Frequency-Selective Fading Channel", Proc. of MoMuC '97, pp. 205-208, Sept.-Oct. 1997.
- [64] 須増淳,岡田実,小牧省三,山本平一:"直交偏波マルチキャリヤ変調方式 ランダム FM 雑音 に耐性をもつマルチキャリア変調方式 —",信学論 (B-I), Vol. J81-B-I, No. 11, pp. 691–699, Nov. 1998.
- [65] 電子通信学会編:"電子通信用語辞典", コロナ社, 1984.
- [66] William C.-Y.Lee and Yu S. Yeh: "Polarization Diversity System for Mobile Radio", IEEE Trans. Consum., Vol. COM-20, No. 5, pp. 912–923, Oct. 1972.
- [67] 坂上修二, 明山哲: "移動通信用基地局偏波ダイバーシチ特性 -移動局側の偏波 傾き角との関係--", 信学論, Vol. J70-B, No. 3, pp. 385-395, Mar. 1987.
- [68] 須増淳, 一場健太郎, 岡田実, 小牧省三, 山本平一:"直交偏波マルチキャリア変 調における周波数オフセット補 償方式", モバイルマルチメディア通信ワーク ショップ, Vol. MoMuC-J, No. 97-3, pp. 13-20, Mar. 1998.
- [69] 一場健太郎, 岡田実, 小牧省三:"直交偏波を用いた直交マルチキャリア変調に おける周波数オフセット推定", 1998 年電子情報通信学会総合大会講演論文集, Vol. 2, No. B-5-12, p. 376, Mar. 1998.
- [70] 須増淳,岡田実,小牧省三,山本平一:"直交偏波を用いた直交マルチキャリア変 調に関する検討",1998・映像情報メディア学会年次大会講演予稿集, No. 2-8,
 p. 28, July 1998.
- [71] A. Sumasu, M. Okada, S. Komaki, and H. Yamamoto: "Half Symbol Delay Frequency Offset Compensation Scheme for Orthogonal Polarization and Frequency Division Multiplexing", Proc. of WPMC '98, pp. 253-257, Nov. 1998.

[72] 須増淳, 岡田実, 小牧省三, 山本平一: "直交偏波マルチキャリア変調における 1/2 シンボル遅延周波数オフセット補償方式", 映像情報メディア学会誌, Vol. 52, No. 11, pp. 1676–1681, Nov. 1998.

研究業績

論文

- 須増 淳,岡田 実,小牧 省三,山本 平一,"直交偏波マルチキャリヤ変調方式 ランダム FM 雑音に耐性をもつマルチキャリア変調方式 —",電子情報通信学会論文誌 B-I, Vol. J81-B-I, No. 11, pp. 691-699, (1998 年 11 月).
- 須増 淳,岡田 実,小牧 省三,山本 平一,"直交偏波マルチキャリア変調における 1/2 シンボル遅延周波数オフセット補償方式",映像情報メディア学会誌,Vol. 52, No. 11, pp. 1676-1681, (1998 年 11 月).

国際会議

- Atsushi Sumasu, Minoru Okada, Shozo Komaki and Heiichi Yamamoto: "Orthogonal Polarization and Frequency Division Multiplexing (OPFDM) in a Fast and Frequency-Selective Fading Channel", The 4th International Workshop on Mobile Multimedia Communications (MoMuC'97), pp. 205-208, (1997年9/10月).
- 4. Atsushi Sumasu, Minoru Okada, Shozo Komaki and Heiichi Yamamoto: "Half Symbol Delay Frequency Offset Compensation Scheme for Orthogonal Polarization and Frequency Division Multiplexing — HSD-OPFDM—", The First International Symposium on Wireless Personal Multimedia Communications (*WPMC'98*), pp. 253-257, (1998年11月).

研究会発表

5. 須増 淳,岡田 実,小牧 省三,山本 平一,"マルチキャリア変調方式の周波数オフ セット対策",電子情報通信学会技術研究報告, RCS96-83, Vol. 96, No. 213, pp. 119-124, (1996 年 8 月).

研究業績

6. 須増 淳, 一場 健太郎, 岡田 実, 小牧 省三, 山本 平一, "直交偏波マルチキャリ ア変調における周波数オフセット補償方式", モバイルマルチメディア通信ワーク ショップ, MoMuC-J 97-3, pp.13-20, (1997年3月).

全国大会等

- 7. 須増 淳,岡田 実,小牧 省三,山本 平一,"周波数インタリーブによる偏波多重マルチキャリア変調方式のランダム FM 雑音対策",電気関係学会関西支部連合大会,S 43, (1996 年 11 月).
- 8. 須増 淳,岡田 実,小牧 省三,山本 平一,"直交偏波を用いた直交マルチキャリア変 調に関する検討",1998 年映像情報メディア学会年次大会講演予稿集,2-8, p. 28, (1998 年 7 月).
- 9. 須増 淳,原田 博司,岡田 実,小牧 省三,"チャープ変換を用いた無線信号多重光 ファイバ伝送システム",1995 年電子情報通信学会総合大会講演論文集,通信 1, B-551, p. 551, (1995 年 3 月).

