|

) <

The University of Osaka
Institutional Knowledge Archive

Tale STUDIES ON ELECTRON SCATTERING BY MERCURY ATOMS
AND ELECTRON SPIN POLARIZATION DETECTOR

Author(s) | L&, ZRE

Citation |KFRKZ, 1978, EHEHwX

Version Type|VoR

URL https://hdl. handle.net/11094/1501

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



STUDIES on ELECTRON SCATTERING BY MERCURY ATOMS

AND

ELECTRON SPIN POLARIZATION DETECTOR

1977

Yasunori YAMAZAKI



Fundamental laws of Nature do not govern the world as it appears in
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Preface and Acknowledgements

Since N.F.Motf's prediction that unpolarized electrons may undergo
considerable spin polarization during scattering with a heavy atom, many
experimental and theoretical investigations have been performed in the area
of atomic physics. Currently, experiments concerning spin polarization
have attracted much attention from various fields of physics, particularly
surface physics.

One of the most important considerations in spin polarization experi-
ment is the spin polarization detector, which-is markedly inefficient and
structurally complex.

In the present study, a polarization detector which utilizes electron-
atom scattering was systematically investigated and the optimum operation
conditions has clearly been determined. For this purpose, electron-mercury
scattering was studied in both an experimental and a theoretical view point.
The elastic scattering cross section calculated herein has turned out to
provide useful information for understanding the generation of Auger
electons in solids. Furthermore, the study of the inelastic process leads

to intimate insight to plasma physics.

The present paper is comprised of two sections; Part I, which includes
Chapter 1-5, concerns the study of the electron-mercury scattering process.
Part I, which includes Chapter 6-8, concerns the study of the electron-spin
polarization detector which utilizes electron-mercury scattering.

Introducing Part I, Chapter 1 describes general concepts and the histo-
1y of electron-mercury scattering.

Chapter 2 deals with the theoretical treatment of elastic scattering,
based on the partial wave expansion method. The calculations of both the
differential cross section and the Sherman function are also included in
this chapter for incident electron energies between 300 and 2000 eV.

Chapter 3 discusses the theoretical treatment of inelastic scattering,
based on distorted wave Born approximation. The calculation for both the
differential cross section and the spin polarization for 6'P excitation are
performed for incident electron energies between 50 and 500 €V,

Chapter 4 is treating the apparatus constructed for observation of the
loss-spectra of electron-mercury scattering, together with measured results
of incident energies between 300 and 1000 eV and scattering angles between A
50° and 110°.



Chapter 5 compares experimental (including the data in Chapter 4) and
theoretical (Chapter 3) results for 6'P excitation.

As an introduction to Part 1, Chapter 6 generally describes the e-
lectron spin polarization detector.

Chapter 7 describes how the optimum conditions for the spin polari-
zation detector were determined using the results of Chapters Z and 4, and
compares it to Mott detector.

Chapter 8 treats the construction of the apparatus for double scatter-
ing experiments which allows to perform experiment under the optimum con-
ditions suggested in Chapter 7. Also described in this chapter, is the
Pierce type electron gun with a single crystal LaBs cathode which was used
in the experiment with considerable success and is of most practical use
for high power electron beam source.

Research for the present thesis was carried out under the direction of
Professor H.Hashimoto of the Department of Applied Physics, Osaka University.

The author wishes to thank Professor H.Hashimoto for the encouragement
and stimulus during the course of the research. Several critical suggestions
from Professors A. Mitsuishi and I. Shoji of Department of Applied Physics
have been most helpful. Suggestions by Professor T.E.Everhart of Univ. of
California at Berkeley provided more impetus for an investigation of Pierce
type electron gun with single crystal LaBs cathode.

The author would like to express his gratitude to Professor R.Uchiyama
of Faculty of Science for my initiation in the field of quantum theory of
scattering.

To Associate Professor R.Shimizu, I am very thankful for critical sug-
gestions and systematic discussion of both experiments and theory throughout
the present work. The author would also like to express thanks to Dr. K.
Ueda for his help with some aspects of the construction of the experimental
apparatus and to Mr. Endoh for his advice on computer calculation procedures.
I am thankful to my colleagues Mr.M.Shikata for his assistance in the
development and successful operation of the Pierce electron gun, Messrs. S.
Ichimura and T. Ckutani for many stimulating discussions, Miss K.Nishiyama
for her typing skill, and all other members of the Hashimoto Laboratory who
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PART 1 ELECTRON-MERCURY SCATTERING

CHAPTER 1 INTRODUCTION

1-1  General Concept of Electron-Mercury Scattering

In low and intermediate energy electron scattering by heavy atoms, e-
lectrons are strongly diffracted by an atomic potential because the e-
lectron wave length is the same order of magnitude with an atomic radius
(see Appendix 1 for detailed discussion). The scattering intensity ex-
hibits apparatent oscillatory features (diffraction pattern) as a function
of both the scattering angle and incident electron energy (see Sec.2-5).
From a theoretical viewpoint, this means that only a few partial waves
contribute to the scattering process, as Arnot (1931) first pointed out.
In contrast to atomic potential, spin-orbit interaction is usually very
weak, even in electron-heavy atom scattering. However, spin-orbit inter-
action becomes dominant at a deep minimum of the oscillatory features, at
which the effective atomic potential becomes extremely weak. Since spin-
orbit interaction is non-uniform over azimuthal angles where the z-axis
follows the direction of the incident electrons, it would be expected that
some effects concerning electron spin polarization take place at the deep
minimum of diffraction patterns.

An ensemble of electrons is referred to as polarized if the electrons
are unequally populated with respect to the two spin states. The polari-
zation P of the electron ensemble is defined by P=(N4-Ny)/(N4+ Ny) =2<{(%)-
N+ (-%)Ny 3/ (N4#Ny ), twice the expectation value of spin, where Nt and N+
equal the number of electrons with parallel or anti-parallel spin directions

respectively in regards to a fixed direction.

1-2 Historical Review of Electron-Mercury Scattering

Since the historic experiment of Franck and Hertz (1914), mercury
atoms were often used as a scatterer in early stages of scattering experi-
ments because of their moderate vapour pressure and high atomic number
(Z=80), which produces high scattering intensity. Quite a few experiments
were performed in systems of various types (see Table 1-1). In the next
decade, however, few investigations were carried out because the complicat-
ed atomic electron configuration makes theoretical application quite dif-
ficult., Success of measurement of electron spin polarization (ESP)} by



electron-mercury double scattering (Deichsel 1961) revived experiments con-
cerning electron heavy atom scattering (Kessler 1970 and 1976, and Eckstein
1970, another review papers are summarized at the top of the reference
section).

It is widely known that the macroscopic magnetic field cannot orderly
align the spin direction of free electrons (see Appendix 2). The detectability
and producibility of polarized electrons for free states of electrons was first
predicted by Mott (1929, 1932) in application of the relativistic electron
theory (Dirac 1928} to double scattering, using Coulomb potential. This
treatment predicted the finite ESP for high energy electrons 2100 keV
scattered at a large angle by a gold atom. This condition corresponds to
the condition that the spin-orbit interaction is larger or comparable to
the electro-static potential.

In regards to the ESP experiment, since Langstroth's early experiment
(1932), the first measurement using electron-gold foil double scattering
was performed by Shull et al. (1943), where the measured spin polarization
amounts to 12% (polarization) at an electron energy of 340 keV. This is
in close agreement to Mott's theoretical prediction (10%).

Later, Bartrett and Welton (1941) and Massey and Mohr (1941) proposed
that the screening effect on Coulomb potential by atomic electrons played
an important role at electron impact energy of lower than 10 keV, and that
a large spin polarization could be expected for gold, even at this energy
region. Large polarization occurs because of diffraction effect which is
referred to in Sec.1-1 and Appendix 1. Deichsel (1961) first detected spin
polarization at these low impact energies for mercury double scattering at
incident electron energy from 1 to 2 keV, and the maximum polarization was
found to be approx. 40% for 1500 eV at a scattering angle of 90°.

Thereafter, numerous experiments were performed and theoretical cal-
culations made for ESP with various scatterers under various scattering
conditions (see Tables 1-1, 1-2 and 6-1 for detailed references). In
general, close agreement has been obtained for theory and experiment, par-
ticularly in elastic scattering of electron-atom system.

Currently, ESP experiments have extended to surface physics in order
to investigate the surface states of solids in detail.

On the other hand, a detailed study of the electron impact spectra for
mercury has been made by Skerbele et al.(1969), and Skerbele and Lassettre
(1972) for a small scattering angle at hundreds eV electron energies, in
order to investigate the usefulness of Born approximation (i.e. the utility
of the concept as ''generalized oscillator strength').



1-3  Bibliographies of the Research of Electron-Mercury Scattering

The bibliographies concerning electron—mercury scattering is summa-
rized in Table 1-1 and Table 1-2Z for experiment and theory respectively.
ESP experiments concerning electron-atom scattering for atoms other than
mercury are also included.

As can be seen in Table 1-1, there is sufficient experimental data
for elastic scattering of both the cross section and ESP at various ener-
gies and scattering angles. However, few experiments have been performed
concerning inelastic scattering, particularly loss spectra at large scatter-
ing angles in an intermediate energy region. Experiments for ESP measure-
ments of inelastically scattered electrons are equally scarce.

In regard to theoretical aspects, the case is similar. That is, for
elastic scattering, many calculations on both the cross section and ESP
have been made, with results comparable to experimental data. In inelastic
scattering, however, only calculations for 6'P and 6°P excitation at low

impact energies have been made.



Table 1-1. Bibliographies on experiments of electron-mercury scattering and related experiments .

Hg Franck and Hertz(1914)

Hg Forward 10-17 eV Loss spectra retarding mesh Davis and Goucher(1917)

Hg Forward 4,8-10.4 eV Loss spectra, retarding mesh Eldridge(1922)

Hg Forward threshold-40 eV g, inel, loss spectra Whitney (1929)

Hg Forward 4-41 eV g, inel, loss spectra Foard(1930)

Hg 5-60° g, el, inel. Arnot (1930)

Hg 15-125° 8.6-800 eV g, el. Arnot(1931)

Ar Bullard and Massey (1931)

Pearson and Arnquist(1931)

90° 1,2,10 keV P Langstroth(1932)

He,Ar,Hg 20-160° 23-196 eV ¢, el, inel. Mohr and Nicoll(1932)

Hg 50-120° 80-700 ev dg, el, inel. Tate and Palmer(1932)

Hg Total 8-200 eV g, €1, inel. Arnot (1935)

Au 90° 340keV P, el. Shull et al.(1943)

Au 194 keV Mott Detector Greenberg et al.(1960)

Hg 60-110° 1-2 keVv g, P, el, Deichsel(1961)

Au 30-155° 150-1900 eV P, el. Reichert(1963)

Hg 30-150° 900 ev P, el. Deichsel(1964)

Hg 30-150° 900-1500 eV P, el. Deichsel and Reichert (1965)

Hg 30-150° 300-700 ev P, el. Steidl et al.(1965)

Hg 25-150° 200-4000 ev g, el. Kessler (1965)

He,Ne,Ar, Forward 20 eV ¢, resonance scattering Kuyatt et al.(1965)

Kr,Xe,Hg

Hg(solid) 30-150° 300 eV ¢, P, el. "~ Loth(1966)

-~ to be continued -



Hg
Hg
Hg

He,Ne,Ar,
Ky,Xe

Hg

He,Ne ,Ar,
Kr,Xe

Hg

Hg
Hg
Hg
Hg
Hg
Hg
Hg

Sb,
Hg
Hg

Hg
Hg

Hg
Hg

30-150°
30-150°
30-150°
20-155°

45-135°
30-150°

Forward
2.5, 20°
80-140°
95°

20-130°
20-155°

Forward

20-150°
20-130°

Forward

20-150°

30-150°

3.5, 7, 23, 45 eV
180-1700 eV
100-2000 eV
5-1000 eV

46-204 keV
40-150 eV

180-900 ev

50-300 eV
300-500 eV
6.75 eV
6.75 eV
25,180 ev
20-300 ev
300-500 eV

50-1000 eV
25,30,50,180 eV
500 eV

30-300 ev
90-600 eV

4-5 eV

P

el.

, P,el.
, el.

-

U ToQ

o, el,
P,el.

P,el. influence of plural
scattering

0, loss spectra
g, el., absolute
P, el.
P,ESP-detector
d, P, 6P

o, el., 6'P

6'P generalized
oscillator strength

P
P, 6'P

inel., absolute generalized
oscillator strength

g, P, 6'P, 6p'’P

6'P, 6p'°P generalized
oscillator strength

g, resonance scattering

inel,

Deichsel et al. (1966)
Jost and Kessler (1966)
Eitel(1967)

Mehr(1967)

Kessler (1968)
Schakert(1968)

Eitel et al.(1968)

Skerbele et al.(1969)
Bromberg(1969)

Wilmers et al.(1969)
Gehenn et al.(1969)
Eitel and Kessler(1970)
Gronemeier (1970)

‘Skerbele and Lassettre(1970)

Kessler et al.(1971)
Eitel(1971)
Skerbele and Lassettre(1972)

Hanne et al.(1972)

Duweke et al.(1973)
Bass (1974)

- to be continued -



Hg
Hg
Hg
Hg

Xe
Hg

forward
30-150°

20-155°
50-110°

4-10 eV
4,4-6.1 eV

150-1200 ev
300-1000 ev

life time 6°P
exchange excitation of 6°P
o, P,resonance scattering

g, electron impact excitation
3

Of 6 PO,Z

P, el.

d, loss spectra

King and Adams(1974)
Hamme and Kessler(1976)
Duweke et al.(1976)
Krause et al.(1977)

Kessler et al.(1977)
Yamazaki et al.(1977)



Table 1-2 . Bibliographies on the theory of electron-mercury scattering and the related theoretical calculations.

S

application of Dirac theory to Darwin(1928)
scattering
Hg Total 6.7-40 eV o, inel Penny (1932)
Au 90° 0.1-159 keV P,el. screened Coulomb : Massey and Mohr(1941)
Hg 100,230 keV o,el. Hartree Bartlett and Welton (1941)
Hg 30-180° 1.95-121 keV g, P Mohr (1954)
Au 30-150° 150MeV Yennie et al.(1954)
Au,Cd,Hg 15-165° 20-650 keV g,P,el. Coulomb pot. Sherman (1956)
Au,Al 0-180° 75,121 kev g,P,el. screened Coulomb Sherman and Nelson(1959)
Hg 0-180° 1-2 keV g,P,el. rel. Hartree pot. Buntyan (1963)
¢,P,el. Coulomb pot. Gluckstern and Lin(1964a)
g,P,el. Coulomb pot. Gluckstern and Lin(1964b)
Hg,Au,Cu 10-170° 50-400 keV ¢,P,el. screened Coulomb Lin(1964)
Au,Hg 0.2-290 keV o,p,el. ~ Holzwarth and Meister(1964a,b)
' quadratic correction of the Bithring (1965)
potential
power series expansion Bihring (1965)
Hg 30-150° 100-2000 eV rel.Hartree ¢,P el, Bunyan (1965)
Hg,Au,Bi 10-500 ev o,P,el. calculation of Schonfeldey (1966)
Hartree pot.
rel.effect Spruch(1966)
rel.effect Rotenberg(1966)
rel.effect Browne and Bauer(1966)
Hg,Au,Bi 30-150° 10-500 eV g,P,el, Schonfelder (1967)

-to be continued-



Z=1-54
Hg 0-180°
Hg Total

Hg 30-150°
Hg 45-180°
Hg

Hg
Hg

Hg,Ar 0-180°
Hg

H,He,C,Ne,
Ar,Kr,Rb,
Xe,Cs,Au,
Hg,Pb,B1

Hg

Hg 0-180°

Li,Na,Mg,
P,K,Ca,Ga,
Br,Sr,Mo,
Rh,Cd,Ba,
W,0s

10-100 kev
7-180 eV
6.7-200 eV

20eV-150 keV
46-204 kev
100-2000 eV

3.5-500 ev

3.5-8 eV

25-800 ev

100-1500 eV
3.5-100 eV

25-180 eV

25-1500 ev
100-1500 eV

rela. effect

g, el,

rel.effect ¢,P
o,0scillator strength

o, rel.effect
o, el.

P, el.complex scattering
amplitude

tests of atomic pot.

o, P,el. influence of rel.
and exchange

o,P,el. influence of atomic
polarization

o,el. influence of inelastic
channel

rel.Hartree-Fock- Slater

o,P,el. influence of
distortion

6,P, 6'P DWB approx.

rel. Hartree-Fock-
Slater pot.

Dawson(1967)
Cox(1967)

Meister(1968)

McConnel and Moiseiwitsch
(1968)

Yates and Strand(1968)
Bithring(1968)
Bithring (1968)

Yates and Fink(1969)
Walker(1969)

Weiss(1969)
Mohr (1969)

Fink and Yates(1970-a)

Fink and Yates(1970-b)
Walker(1970)

Madison and Shelton(1973)

Gregory(1974)
(1970)

-to be continued-



Hg

Hg
Hg
Hg
Hg

30-150°

Forward
Forward
0-180°
0-180°

300-2000 eV

4-12eV
300-2000 ev
50-500 eV

o,P.el. optimum condition
of ESP detector

Toxr P> 6?P

0,6'P, Born-Okhur
d,P non-rel.Hartree
o,P,6'P DWB

Yamazaki et al.(1976)

Hanne (1976)

Moiseiwitsch(1976)

Yamazaki et al.(1977)
Yamazaki et al.(1977)



CHAPTER 2 THEORY OF ELECTRON-MERCURY ELASTIC SCATTERING
----- MODIFICATION AND EXTENTION OF CURRENT THEORY

2-1 Introduction

This chapter views elastic scattering theoretically employing partial
wave expansion, for which detailed calculation procedures applicable to
computer use have been developed by many authors (see Table 1-1).
Calculation has been made for energy regions not studied previously using
an accurate and fast calculation procedure developed for high speed digital
computer (Yamazaki et al. 1976 and 1977). The theories are generally
formulated for use in Chapter 3.

2-1-1 Necessity of Relativistic Treatment

In theoretical treatment of electron heavy atom scattering, particular
points should be noted. First, the system should be treated relativistical-
ly even in the non—relativistié energy regions of incident electrons.

This may be interpreted qualitatively as follows; The atomic potential
attracts electrons and because of a high Z number, is very strong. The
electrons passing through near a nucleus may be accelerated to near light
velocity, which in turn necessitates relativistic correction of the elect-

ron mass as a distance function between the electron and nucleus.

Table 2-1. Comparison of phase shift calculated relativistically
and non-relativistically for Hg and Ar (Meister and Weiss 1968).

Hg45eV Ar40eV

relativistic nonrelativistic relativistic nonrelativistic
! i o4y ] Oyt ] -y 9 O_i
0 —1.304 —0.361 0.386 0.402
1 —1.364 —0.981 —0.568 —0.192 1.214  1.230 1.206  1.231
2 —0.746 —1.010 —0.719 —0.641 1.247 1.247 1.240  1.240
3 0.730 —1.104 0.798 0.810 0.172 0.163 0.171 0.163
4 0.255 0.080 0.296 0.296 0.041 0.042 0.041 0.041

The differences between relativisticiand non-relativistic treatments have
been calculated for mercury by Meister and Weiss (1968). The phase shifts
and ESP of these results are shown in Table 2-1 and in Fig.2-1. In Table

- 10 -



2-1, we see that the 0-th order relativistic phase shift differs consider-
ably from that of the non-relativistic. This difference lessens for large
! because of a small mass correction. Apparent differencies of ESP are
recognized in very low energies as well,

The above consideration may also lead to a theoretical explanation of
the seemingly contradictory phenomena that the behaviour of apparently re-
lativistic electron (electron energy of up to 100 keV) can be explained by
Schrodinger's non-relativistic equation by modifying the electron rest
mass by incident electron energy. This treatment is commonly used in high

voltage electron microscopy and has explained various phenomena with con-
siderable success(M.von Laue 1948, Fujiwara 1961 and Hashimoto et al.
1964). This is because the electron mass is not greatly affected by the
atomic field in high energy regions. That is, the Hamiltonian.f{r and

el
H for relativistic and non-relativistic cases respectively, are written

non
H  =V14pave -1
H =P/2+1+V(0) (2-2)
where the system of units is natural unit (see Sec.2-2). From the un-
certainity principle,
dp -dr~1 . (2-3)
in simplification V) =-~Z et v the minimm energy H’rz;‘ and H:':Z:: is

estimated as

Hm'Ln — /1_Z2 el (2_4)

rel
min _ g2 4 2-5
Hnon 1—-Z2¢4 /2 ( )
These values amount to e.g.]l?é?=2.304 keV andliZi:=2.299 keV for aluminum,
and]??2?=30.99 keVv andiIZl:=30.05 keV for silver. Theg™'" may be regard-
0

ed as the maximum modified kinetic energy 4F of an electron, due to the
atomic field. If one takes into account that the electron microscope uses
only forward scattering, i.e., uses mainly electrons scattered distant from
the nucleus, it is seen that the above value for 4E is overestimated. Thus,
it may be concluded that the electron mass modified by the incident electron

energy is nearly constant during scattering.
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1. Hg 180 eV

3. Hg 45eV

2. Hg 180eV
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Fig. 2-1. The comparison of the relativistic and non-relativistic calculation of the differential cross
section ¢ and spin polarization P ( relativistic and ----- non-relativistic calculation with Mayer's
potential, .... relativistic and—-——non-relativistic calculation with Froese potential) (Meister and Weiss

1968) .



It should be noted, however, that because of large mass corrections and
effect of spin, large angle scattering for heavy atoms need to be treated
with the proper relativistic method in even hundreds keV energy regions(e.
g. for mercurylift?=96.ll keV andlIZi:=87.07 keV).
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| | S : :
O 30 60 90 120 150 1RO 0 30 60 20 120 150 180

{a) Angle of scattering (degrees) (b)  Angle of scattering (degrees)

Fig. 2-2. Angular distributions (a) of electrons and (b) of positrons of
various energies scattered by mercury nuclei. The scattered intensity is
given as the ratio 7 to that given by the formula

Z264e 1

- (1=-v2/¢?)
4t sin¢(@.2)

Curves I-IX respectively correspond to particles of energies 23, 44, 74,
119, 160, 237, 340, 654, 1712 keV. Curve O is that given by the approx-

Y
imation formula (2-27) for an energy of 1712 keV  (Mott and Massey 1965).

Fig. 2-2 shows the cross section for electrons and positrons normaliz-
ed by the ordinary Rutherford scattering cross section. It shows that at
high incident energy and large scattering angle the effect of spin becomes
important (The effect of spin is discussed in Appendix 3 using Born ap-
proximation). For positron, Born-like behaviour appears clearly than for
electron, this may be due to the repulsive force between the positron and
nucleus (see also Appendix 1).



2-1-2  Origin of ESP

The occurrence of ESP(electron spin polarization) is a direct con-
sequence of the Interaction of the magnetic moment of electrons and the
magnetic field induced by the atomic field. Charged particles travelling
in a static-electric field ''feel'' the magnetic field which is written

H=~v x E, (2-6)

where v the velocity of the charged particles and E the electric field of
the atom. The interaction energy € is expressed as

s:-ﬂ - H
_ 1 dv
=—¢ -s. (va)- T pr
_1dv
—’rdr L.s’ (2*7)

where ¢ is the magnetic moment of electron, e the charge of electron, L
the orbital angular momentum and S the spin angular momentum. This term
is called spin-orbit interaction which changes its sign in accordance
with the direction of the spin or orbital angular momentum, causing ESP
of initially unpolarized scattered electrons or initially polarized e-
lectrons to be scattered asymmetrically. On the other hand, we can

obtain
_ pz T 2 1 dV

as the non-relativistic approximation of Dirac equation(Foldy et al.1950).
The 1st and 2nd terms are that of the ordinary Schrédinger Hamiltonian,
and the 3rd term the so-called Darwin term, which originates from the
Zitterbewegung. The 4th term is the spin-orbit term in question, which
agrees with that of equation (2-7) with the exception of factor 2, which
is called Thomas factor(Thomas 1927). Since the electron spin effects
Hamiltonian through primarily the spin-orbit term (see equation (2-8)),
the above model may provide valuable insight regarding the origin of ESP,
In order for a large spin polarization to occur, the atomic potential V(r)
needs to be relatively small in comparison to the spin-orbit interaction.
Such a condition might be to occur 1) at the minimum points of diffraction
pattern of the cross section (This condition requires that incident e-
lectron energy should be low ehough (e.g. lower than several keV for mercu-
ry) in order for diffraction phenomena to occur during scattering. see
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Sec.1-1 and Appendix 1 , 2 at large scattering angle in order to make
the factordV/dr in equation (2-8) large because impact parameter becomes
small at large scattering angle and 3) for atoms of large Z-number because
L/r-di78?‘becomes comparable to or larger than V at the minimum distance
between electron and nucleus (see equation (2-9)).

In these energy regions, only the partial waves of lower order con-
tribute to scattering. Therefore, the partial wave expansion method may
incur reasonable success for calculation of cross section and spin polar-

ization.

2-1-3  Choice of the Atomic Potential

In theoretical treatment of electron-atom scattering, important con-
sideration is the choice of the atomic potential. Due to the complexity
of electron configuration, particularly for heavy atoms, several models
based on various grades of approximation have been developed (as summariz-

ed in Table 2-2).

Tgble 2-2. Various calculation method of atomic potential.

without exchange

with exchange

statistical model

analytical expression of
T-F
(Tietz 1962, Byatt 1957)

analytical expression of
T-F-D
(R.A.Bonham et al.,1963)

Atomic energy level by
T-F and T-F-D

{(R.Latter, 1955)
Consideration on exchange
effect

(P.A.M.Dirac 1930)

self-consistent
model

R-H

(J.L.Schonfelder 1966)
analytical expression of

N-R-H

(T.Tietz 1962, Byatt 1957)

R-H

(S.Cohen 1960, D.F.Mayers
1960)

R-H-F-S
(D.Liberman et al. 1965)

approximate treatment
of exchange effect
(V.W.Maslen 1956,
J.C.Slater 1951)



Since the schematic Hamiltonian is represented by equations (2-1)
and (2-2), the distance between the (1s) atomic electrons and the nucleus
is estimated as;

,rman rﬁ_—l/deh-l (2-9)

rel

s 10
respectively, based on the uncertainity principle. This means that an
incorporation of relativity in the calculation of atomic potentials
results in greater screening and reduces both the phase shift and scatter-
ing cross section.
‘ The ratio of the binding energy calculated relativistically to that non-
relativistically is shown in Table 2-3-a {Boyd et al. 1963). The ratio
for inner electrons such as (1s) or (6s) is greater than 1, which means
that the attractive force becomes stronger in the relativistic case. On
the other hand, the ratio for outer electrons such as (4f) and (5d) is
smaller than 1, which means greater screening of the nuclear field in the

relativistic case.

Table 2-3-a. Ratio of relativistic to non-relativistic
eigenvalues for several electron shells. (Boyd et al. 1563)

1s 4f 5d 6s

Fe 1.008 P N .
::W 1.09 0.81 0.842 1.16
7Pt 1.10 0.86 0.88 1.27
soHg 1.11 0.87 0.84 1.20
92U 1.15 0.91 0.95 1.34

On the other hand, the relativistic treatment of incident electrons
increases the phase shift of the lower order according to a similar con-
sideration, i.e. the attractive force in a relativistic treatment is great-
er than that in non-relativistic treatment.

The incorporation of exchange interaction between atomic electrons
lowers the energy of the electron level, increases the screening, and re-
duces the phase shift (see Sec.2-3). However, the exchange interaction
between incident and atomic electrons acts as an attractive force, thus

increases the phase shift.



Table 2-3-b. Comparison of phase shift for mercury (Walker 1969)

(H, no exchange, Hartree potential; H-F, no exchange, Hartree-Fock poten-
tial; Exchange, Hartree-Fock potential with exchange. All phases are
modulo w.) .

Ener l Spin up . Spin down

(ev)gy H d H-F Exchange H H-F Exchange

35 0 0-86 0-15 1-35 -
1 0-30 0-01 1-00 0-50 012 1.32
2 0-53 0-06 0-03 -0-75 0-06 0-04
3 0-01 0-00 0-01 0-01 0-00 0-01

45 0 -1-09 -1-44 -1.01
1 —0-58 -0-94 —0-48 ~0-28 —0-65 -0-20
2 -0-67 -1-18 -0-51 -0-59 -~1-09 —0-44
3 0-92 0-51 1-07 0-93 0-52 1-07
4 0-30 0-18 0-26 0-30 0-18 0-26
3 012 0-07 0-09 ' 012 007 0-09
6 0-05 0-03 0-04 0-05 0-03 0-04
7 6-02 0-01 0-01 0-02 0-01 0-01

300 0 -0-24 —0-46 ~0-26
1 060 0-37 0-58 : 0-90 0-67 0-88
2 1-26 1-00 1-23 1-34 1.07 1-30
3 1-56 i-23 1-49 —-1.356 1-26 1-51
4 —1-21 -1-52 -1-36 -1-21 -1-52 -1-35
5 0-99 0-79 0-84 1-00 0-79 0-83
6 0-60 0-45 0-48 0-60 0-45 0-47
7 0-39 0-28 0-30 0-39 028 0-29
8 0-26 0-19 019 0-26 0-19 0-19
9 0-18 012 0-12 0-18 012 0-12

Moreover, the electric field of the incident electron may distort the
atomic potential, which in turn causes a long range attractive force

for the incident electron. The calculated phase shifts for the

various approximations are shown in Table 2-3-b which confirm the quali-
tative interpretation given above. That is, for lower order phase shifts
(I <3),the Hartree potential without exchange and Hartree-Fock potential
with exchange comply well because of opposite effects in the two exchange
interactions. For a higher order of phase shift ([ > 7), Hartree-Fock
potential without exchange and Hartree-Fock potential with exéhange agree

satisfactory. This occurs because the largest principal quantum number of
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mercury is 6, and partial wave from /=6 have little exchange interaction
with atomic electrons. The difference between the Hartree potential with-
out exchange and the Hartree-Fock potential with exchange for a higher
order of partial waves is not negligible but is small and affects only at
forward scattering. Therefore, the former model with relativistic treat-
ment, despite its simplicity, is considered to give accurate results.
Atomic distortion is not thought to notably affect the electron-mercury
scattering at intermediate energies (Walker 1970),* thus is not consider-
ed in the present study.

Among various available expressions of atomic potentials, an analyti-
cal expression is most convenient for the present calculations. We have
therefore used the non-relativistic Hartree potential, analytically ex-
pressed by Byatt(1956). The present calculation agree well with those
obtained using Mayer's relativistic potential(1957, see Sec.2-4)#*%

* A recent report on e¢-Xe elastic scattering (Kessler 1970) implies that

exchange scattering has relevance until 700 eV, and atomic distortion should

be taken into account using the polarized orbital methods at 150 eV.

**%* The effects of and the relation between relativistic and non-relativis-

tic equation, and relativistic and non-relativistic atomic potential

are discussed by several authors (Spruch 1966, Rotenberg 1966, Browne
1966 and Meister and Weiss 1968). It was concluded as a vital point
that one should perform relativistic and non-relativistic calculation
using relativistic and non-relativistic potentials,respectively (Walker
1971). However, as is shown in Sec.2-5, the combination of relativistic
treatment and non-relativistic potential gives good results in the ener-
gy region under consideration here.



2-2  Born Approximation
2-2-1 Integral Expression of Dirac Equation

The Dirac equation in common expression is written as

Wg=— (ap+B+V) ¢ (2-11)
where
0 o
a=—
( g 0 ) (2-12)
p= (1 °
(0 1 ) ’ (2-13)

¢ the Pauli matrix?<1V the total energy, P the momentum, V the atomic
potential energy and ¢ the four component spinor. The system of units is
so-called natural unit, in which c=m=f=1,where ¢ is the light velocity, m
the electron rest mass and i the Planck's constant devided by 27 .

The unit of various quantity is tabulated in Table 2-4.

Table 2-4. Unit of various quantities in natural unit.

unit value
energy me? 8.1 xIO.Mjoul,
length Pinc 40x10"°m
charge he ™ 1.8 x10cout.
time P 1.2 x10" sec.
TN wTGe) TG



The formal solution of the wave equation H¢ =V1;.¢jis written either
J

explicitly as

</’t;)=¢j+ VJTIITETs V@j ’ (2-14)
or implicitly as
‘p(?:wj + —W_]T;—:H:_e V‘/’(? (2-15)
K=H-V | (2-16)
K is not necessarily kinetic energy and Qj satisfies K@j =Wj@j .

The sign + or - represents the asymptotic conditions which correspond to
outgoing or incoming scattered states, respectively. Equation (2-15) is
called the Lippmann-Schwinger equation (Lippmann and Schwinger 1950 and
Gell-Mann and Goldberger 1953).

The equation (2-15) can be rewritten as follows; The operator
1/ W=K+4{¢e) is defined as

W—-K+ie)-1/ W—K+4¢e) =1, (2-17-a)

1/ W—-K+ie) « W=K+1g) =1, (2-17-b)
and

W—K+i1e=W 4 (ap+B) +4¢

W+1t1e op (2-18)
o gep W—1+tie !
. ) W-1+%¢ —o.
1/ W-Kxtie) =1/ ((W+ie)2—p Z—-1)( ° . )
~0.p Wi1+1e

= (W-ap~P) / Wtie)2—p3~1) | (2-19)
which can be easily proven by direct substitution. Equation (2-15) results
in

(&= W—ap-f3 ®

. =0. - Vgl .
¢ Qj+(Wi’L€)2—-pz—l ¢ (2-20)

Using the relation,
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[fe™ % T dk der = s[5 (e-r) de = @, (2-21)

the second term of the right hand side of equation (2-20) can be transform-
ed as

W —ap=B) /(W xie)=p=1) V (r) ¢ )
= W-ap-B) S ((Wxie)i-p=1) [ & (r=r ) dr'V(e) ¢;% 0

= W-ap— ik(l'—l‘vv( l) (-_f-) (l") dkdr'
(zn)aff(w+ze)z_p:_1 r ‘pa

= W-ap—B otk r=r') iy g 8 o1y ak dr
(271’) ff(W“‘ZE) 2K 2~} (r )¢J (r')dkdr', (2-22)

where K= | k |,

Using the residue theorem, the integrations of the variable k can be performed

and gives
! eik (r=-er') ) eiilwz_,l“.__rl
Cr) s (Wi e)—K2—1 dk =~ an e | . (2-23)
Equation (2-20) results in
@ . eiiKI F—-r | @
5 0 =0 = o [Wmap=p S VD () dr
+ 2K (r=(psr')/7)
I .
~0 - o fv-ae-p f—— v ¢ o dr
+iK7r
:@j_zl_ﬁe (W—akf B\fe+1kfr V(ie! )¢ (r')de' (2-24)

where K=[W 2— 1, kf=K"V7‘ and 7= |r| -The final expression of equation (2-24)
is obtained assuming the usual scattering condition |F|[>>|F'| (see Fig.2-3).
r-r Equation (2-24) is the integral form

of the relativistic Dirac equation
(2-11) . From equation (2-24), the
scattering amplitude for the usual

Uad

. _(renls
v

Fig. 2-3. Relation of P and M, outgoing wave boundary condition is

written

ik W
10 == 57 @=ak=BfeT T v aye e ar, (2-25)

Note that equation (2-25) represents the exact scattering amplitude for

Dirac electrons.
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2-2-2  Born Approximation

In order to obtain an approximation of the scattering amplitude, the
¢§aappearing in the right hand side of equation (2-25) is replaced by @j

This approximation is called the first Born approximation

S

Born

@ =- _41_”_ M/__akf_ﬁ)fe"’l:kf-rlv ) Q] (r) dr', (2-26)

For Coulomb potential —Z e2/7 equation (2-26) produces the ordinary Ruther-
ford formula with correction factors (see Appendix 3).

Z2pt
WordD o, = Tt @rp (A-02sin @ /) (1=v0) (22

The first factor of equation (2-27) is that of the classical Rutherford
formula, the second is that originating from the spin of electrons (see
Appendix 3} and the third is the mass correction term.

It is of note that the scattering amplitude of first Born approximation
gives zero spin polarization as is also shown in Appendix 3. Thus, a
calculation on spin polarization of high energy electrons is often per-
formed using second Born approximation (Walker 1971).

2-3. Partial Wave Expansion

For a central field of force we may separate equation (2-11) by polar

coordinates. Substitution of ¢ =(‘ ifX—x,u)gives (Rose 1957)
9 Xeu

=X, [V fedgdr- 1) cg07]

(2-28)
=0 s
XkMJkW—V—l)g+df/dr—(x—1)fVW]
where f and g are radial wave function and
X = /.1 ) . - _
K, u %r; C( ’/Z,J,m"u m)Ylm (/)I/Z,ﬂ"'m’ 2 29)
with
H=m= 1+ (2-30-a)
= 1K= (2-30-b)



{ K £ >0 (2-30-¢c)

—k—1 £< o0 (2-30-d)

C(l,%,j3m,u~mis the Clebsch-Gordan coefficient, the detailed form of
which is shown in Table 2-5, where Ylmis the spherical harmonics and
(1’%'”_% the spin function. As the asymptotic forms of these four compo-
nents are related with one another, it suffices to treat only the lower
part of equation (2-28) (Mott and Massey 1965). Hereafter this two compo-
nent spinor is referred to as ¢ unless otherwise noted.

Table 2-5. Clebsch-Gordan coefficients C(ji1,1/2,jsm-mz, mp) .

j: m2=1/2 m2=_1/2
j1+1/2 [(Gome1/2)/ (25,7012 | 1w/ /(25,41 122
$1-1/2 | -[Grm /272D 12 | 1Gaemely2) /(25001 122

Thus, the general solution of equation (2-28) in the polar coordinate
system is expressed as
‘!):/fi alf gh_ X

ye Ku
/¥ —1h 1 16) Y
= lgl%;a/llu gl C(lyl/Z’l 72, M 1/21/‘2) l,,(,t—l/2+
S5 a C . %, =Y utlh, 1% Y +
21 % P Ql ,% Vo 5 u+-Ya , —10) 1, uthh
3 xg C o, L4 —t, ) ¥
= _l_l,#g~l_1 s 72 25—, l,ﬂ"‘ll/z 2_31)
S 3a g C (U %, l+% ut¥h,~%)yY
=0 x4 —l-1,u4 -l-1 Iyt
From equation (Z-28), the radial equation with respect to ¢ can be easily
derived as
dz gg (2 o\ 49, n(x+1) }
— gk L (f %) __ " =0, 2-32
T+~ ) et~ g, =0, (2-32)

whereq =W-V+1,b=W-V~1and a¢'=da_/d r, For r-e,equation (2-32)

reduces to
dzg dg
£ 2 K i (+1)
ar T r dr +(K2—_—_7-2 )g,ﬁo , (2-33)



where K2=W2—1 . Since this differential equation is that of spherical Bes-
sel function, the solution may be represented as follows;

9, le E7r) - cos (5,2 -n, &7 -sin(ﬁx)

g

~ &) -lsin(Kr-—n/z.HaK) (2-34)

where j ! and n  are spherical Bessel and spherical Neumamnn function re-

{
spectively and 6/: is called the phase shift.
Corresponding to the two initial spin states with respect to z-axis, the

scattering states are written

¢} ~ e@k‘r_}_ff‘(a' ,¢l) e?:K?‘/r

- (2-35)
GO0 e )
and ]
¢~ g, @'Y N
Tkr , ZKT
e " +h@ ) e , (2-36)

where f and ¢ are called direct and spin-flip scattering amplitude, re-
spectively. From the comparison between equation (2-31) and equation
(2-35), a K, u is fully determined as

e LG R S VOLICY PRV o {1472 Dy l*ﬂ V<ﬁ,¢)ﬂ-mu@
1y 20y 4t 21)
=4z (+u+? L+ D %e (0-i-1 1/2(0 )N

(2-37-b)

—‘l-—l,/,t l s M~

for spin-up initial state, and from equations (2-31) and (2-36)
a - ; .
Lusan Q+urw * len e O 772Dy ¥ ACE ¢) (2-38-a)

= - % % 1@ ym/el),
Gy, (T4 Gmpt” LD " e )“m/ ©,¢) (2-38-D)

for spin-down initial state, taking into account the Rayleigh's formula,
. €. ,
=l§0 @l+D 4 Jl &P Pl cos7)

o Ao '
=172 (Zi j; ®nyy @ , P v, ©.,® (2-39)



where P= (7,0, K=(K, 0 ,¢pand Kr=Krcosry.
Using equations (2-31) and (2-37) and setting@=¢=o(incident along the
z-axis), we can express the scattering amplitude as

n) ¥
f =1 f— 2K lzczl+1> A+ 211 —D+L 20Dy (01,61
y (2-40-a)
—ich! At 4 .
90)=g4e™ P =g eP'= éz?ﬂ@“” U+1)% % (e 210-1-1_¢ 2801y (g gy,
For further derivation let us start at the initial conditions (2-40-b)
v A eil(z
o-(, oz ) | (2-41)
which have the initial polarization,
P=<o>=< (4 B+B 4, @ a-a™p |4, -1BI?) >, (2-42)

under the normalization condition |4 1% +181% =1. Here, the polarization
of an electron beam is defined by statistical averaging as equation (2-4Z).
Then, using the Sherman function S defined by

. e
S=4d (e -5 9/ Ui +1g1"), (2-43)
and the scattering cross-section for unpolarized electrons

7, @)=lrllgi® (2-44)

we obtain the scattering cross section with initial polarization P as,

0(0,p) =< :AfTJng¢ !2+ng,r+Bf¢ %>

=a, (0> Q+8SnpP) , (2-45)
where

n= (-sing,cosp, 0) , (2-46)

n S 1is a polarization vector of scattered electrons with an initially un-
polarized electron beam. As the polarization P of scattered electrons



is derived from equation (2-42), substituting Af, +Bg, for A and Ag, +Bf,
for B, one obtains

Pg:{Pz .U.cosqS-s.sin¢+Px-<1—T/g)cos¢<chos¢>+Pysinqs)}

/S (1+S-n-p) (2-47-3)

pY = %Pz -U-sinq5+S-cos¢+T-Py- (1=T/c¢) cos¢ -

(Px-sin¢>—Py-cosqS)}/ (1+S8Sn-p) (2-47-b)

P§= %Pz T-U <Px-cosq$—Py-sin¢>) } / (1+8-nP) , (2-47-¢)

where U=2Re(fgﬁh andT= (| f |2—| g]z)/g. Equation (2-47) can be rewritten
in simple form as,

[Pn+s] -n+T -nx[pPxn]+v-[nxp]
1+ sSn.p

Po= (2-48)

From equation (2-48) we see that the polarization of incident electrons
are affected as follows; the vector Snis added to the components[P . n]- n
perpendicular to the scattering plane, i.e., perpendicular to the wave
number vectors of both the incident and scattered states. The component
parallel to the scattering plane is reduced by the factor 7 ( [T |< 1)
The polarization vector is rotated out of its original plane defined by n
and P because of an additional component determined byU (Kessler 1976).
Thus this leads to the polarization of the scattered electrons for the
initially unpolarized electrons as

P,=5 (-sing ,cos¢p,0) , (2-49)

Equations (2-45) and (2-49) suggest that Sherman function S has two roles,
i.e. giving scattering asymmetry for initially polarized electrons and
polarization of scattered electrons for initially unpolarized ones (for
the qualitative explanation see Appendix 4). Equation (2-49) also shows
that the direction of the ESP of the scattered electrons is perpendicular
to the scattering plane.
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2-4. Adopted Numerical Calculation Procedure

Hence the scattering amplitudes are expressed as a function of the
phase shifts 6l and B—l—J (see equation (2-40)), it is necessary to deter-
mine phase shift by clarifying the relationship with the radial wave fun-
ction, Various calculation procedures have been developed for the esti-
mation of phase shifts. Present calculation adopts one of the most ad-
vantageous procedure which were developed for accurate and fast computer
calculation combining various calculation procedures (Yamazaki et al.
1976,1977) . Some of them except for that shown below are summarized and
compared with each other in Appendix 5.

Introducing the change of variables (Bunyan and Schonfelder, 1965),

FK:Ax(r) sianbﬁ(r)/?‘ (2-50-3a)

Gp =4, (1) cosgbx @) r (2-50-b)
we get,

dqu/dr:x/’rsin 2¢>K+ W—V —cos 2(,15,ij (2-51-a)

d(lnAx)/dr =—#& /y cos 2¢x—sin 2¢'/c. (2-51-b)

From equations (2-34) and (2-51-a) and their derivatives we obtain the ex-
pression for the phase shift

Kejp,, & =j, &) { v tan@ + Q+l+n) o7

tan 6/6: (2-52)

Kn,,, &) =n, 69 {ome) tang + (1+1+£) srh.
The expression on the right is evaluated at7r=a where @ satisfies V(@) ~¢

Equation (2-52) allows us to evaluate 0 x using only the first order
nonlinear differential equation (2-51-a), which simplifies the computer
calculation procedure considerably.

As the numerical integration of differential equation (2-51-a) can-
not be made fromr =0because of the divergence of the potential energy
V(r),we expand V (»)and ¢K (#)in a power series in order to derive ini-
tial conditions at small 7 (Bunyan and Schonfelder 1965) as,

V (r) ==1/7 (Z0+er+Z2r2+Z3r3) (2-53)

G (r) =p +P r+d, 2t (2-54-a)



In (4, (r))=B +B In (r) +B r+B re+ ... (2-54-b)

Substituting equations (2-53) and (2-54-a) into equation (2-51-a) we ob-
tain the following equations;

sin (2 qSO) =~2 /k (2-55-a)
b, = W+2 cos (2¢))/ (1-26cos (2¢)) (2-55-b)

¢2=(2¢lsin(2¢0) (1—I€¢1)+Z2)/(2—2Ktcos(2(]50)) (2-55-c)

¢,=(2¢,sin (2¢ ) -(1-2c¢ ) +2¢cos (26 ) - (2-55-d)

(1—2/3/c¢1+23)) / (3—-2Kcos (2¢>0))

¢,=[((28,-(2¢ Dv/3)-K(a¢ ¢ +2¢2- (26 ) ¢ /4))~
sin (2¢0) + (1—K¢1)4¢1¢'2cos (2¢O)]/2(2—xcos(2¢0))

(2-55-¢)

2-56
Bl:—xcos (2¢0) (2-50)

In order to keep the wave function finite atr=¢ i.e., to maintain

the positive B; in equation (2-56), we choose
o£2¢0£7z/2 <0 (2-57-a)

n<2¢ <3/2:7 k>0 (2-57-b)

Integrations were carried out from7=0.1 by the fourth order Lunge-Kutta
process which has sufficient accuracy for the present calculations. In

the region 0.1<r<15, to avoid the use of excessively small intervals in 7
when performing the integration, a change of variablesT =0.1e " is intro-

duced. The equation (2-51-a) is then rewritten as
. ¢
d¢,€/dt:lC81n (2¢,) +0.1e  (W-V-cos (2¢,c)). (2-58)

Thereafter the ordinary equation (2-51-a) was employed for integration up
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tor=300. We stopped the integration at 7 =518 (=21°\) to reduce computing
time. To make this process more appropriate, the charge distribution was
reconstructed in the region 30057 5518 as a quadratic form, the coef-
ficients of which are determined so as to make the total charge equal to
Z ¢,where Z is the atomic number of mercury, and the charge density and
its derivative continuous at =300 to avoid anormalous &§-function type
charge distribution (Bihring 1965).

A charge reconstruction of this type may have some influence on for-
ward scattering but may have little influence on backward scattering,
since in the latter, electron is scattered by the not reconstructed poten-
tial because of small impact parameter.

According to the consideration given in Sec.2-1-3, a non-relativistic
Hartree potential analytically expressed by Byatt (1957) is adopted, which
is written as

3 -b 7 )
V{r)=—Ze/ /r -Zaie % (2-59)
=1

3 2

wherea ,=0.19, 0.56, 0.25,b ,=9.133x10"", 2.768x10 °, 1.123x 107", re-
spectively. All phase shift was evaluated from /=0 to |§, {<107°,

Te evaluate scattering cross section and Sherman fungtion, it may
be advantageous to use the functions £ (§)and H(#)instead of the scatter-
ing amplitudes f(8)and 9(0) which are defined in equation (2-40)
(Blihring 1968).

248 — | 2i0 -

4 1 H (0) =3 (e —e 1) Ll (2-60-a)
=1
4B (0) =3 (250 Le20-1 _4y s (2-60-b)
=1
where
L(j:) cosh = n [P (cos®) + P (cosﬁ)] (2-61)
n n n-1 .

The cross section and Sherman function are then expressed as

I = K2 (seczo/z-w]icosecm/z-|H}2) (2-62)

S 0 =i (BH -HE™ / (|H|2cotf/2+|E|*tanf,/2)  (2-63)



These transformations have some advantages. At 180° the Legendre function
is expressed asfyl(—1)==0-1?72thus the numerical summation of a large
number of phase shifts, which is usually the case in high energy scatter-
ing, would incur error at angles near the backward scattering. However,
I%+'which appears in E(f) behaves like cos®(f/2) so would be more accurate
The same arguments hold for the forward scattering.

Each angular distribution of cross section and Sherman function was
calculated at 1° intervals from 0° to 180° for various angular resolutions
All input data such as matching radius and intervals of integrations were
made sufficiently large and small, respectively, in order to make the re-
sults insensitive to those parameters.

The order of phase shifts estimated ranges from 18 to 53 for the incident
energy of 300 to 2000 eV.

All the necessary additional functions such as Bessel, Neumann and
Legendre functions were calculated using recurrence relations as,

Iy 1P=71

m— 1O+ @mt+1) jm@)/x (2-64-a)

n,. 1(%9=— n__ 1(:1:)+ @m+1) nm(x)/x | (2-64-b)

with initial conditions

jgx)zsin(xﬁ/x , jl(x)=sin(x)/x2—005(@/x (2-65-a)
n @)= ~cos® hl(x)z—cos(xb/xz—sin(x)/x (2-65-b)
and
i = [eni -z L o= oLt @
- Q=xx) Pn__ICZ)]/n (2-66-3)
P ®= [en+Dz P @-n P @] /(n+1) (2-66-b)
with initial conditions,
LT@=o Li®=z+1 (2-67-a)
P@=1 P o=z ’ (2-67-b)



respectively, throughout the present calculations.
The flow chart and the list of program for the present calculation is

shown in Appendix 6.
2-5 Results and Discussion

In Fig.2-4, calculated results of the cross section are compared to
the data of Bromberg's absolute measurements for primary energies of 300,

1.5
1'0_
R \
52 B \
~~ [~ \\
D
= | A\
b05— —— experiment '
i (Bromberg,1968)
- ---- present calculation -
0.. : ) \ i ] ] 1 i L 1 | L
0 10 20 30 40 50 60

ANGLE (deg.)

Fig. 2-4. Comparison of the cross section between the present
calculation and the absolute measurements of Bromberg (1969).

400 and 500 eV(1969). Here, the theoretical calculations describe experi-
mental curves quite well qualitatively, but in quantitative arguments the
theoretical values are about 1.5 times larger for each incident electron
energy. Fig.2-5 shows the calculated angular distribution of the cross
section and Sherman function for various incident energies. Fig.2-5 shows
comparisons to calculated results by Holzwarth and Meister (1964b), where
Mayer's relativistic Hartree potential(1956) was used. Although several
approximation procedures have been introduced in the present calculation,
such as the scattering of relativistic electrons using a non-relativistic
atomic potential, it should be noted that these calculations give satis-
factory agreement with the more accurate but complicated calculation.

In Fig.2-6, results are also given as a function of incident electron
energy for the purpose of convenience. Results are summarized in Fig.2-7
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for both cases of the angular resolution of 40<1 and 40=7.

This makes direct comparison with the measured spin polarization of a
large acceptance angle possible(Bunyan and Schonfelder 1965). Fig.2-7
shows that the contours of constant polarization inclines to the left,
i.e., the extremum points of ESP shift to lower angles as the energy in-
creases. This corresponds to the fact that a diffraction angle becomes

smaller as wave length shorter.
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2-6. Application of Partial Wave Expansion to Monte-Carlo Simulation---
Applicability of Conventional Screened Rutherford Cross Section for

keV Electrons and its Failure in Low Energy Region

Krefting and Reimer (1974) have pointed out that the Rutherford cross-
section (see Appendix 3) is inaccurate in describing the elastic scatter-
ing of kilovolt electrons with atoms in solids for heavy elements, and is
still rather poor approximation for elements as light as aluminum, They
have compared the unscreened Rutherford cross-section which diverges at a
scattering angle of #= 0°, to the scattering cross-section obtained by a
partial wave expansion method. However, the former method does not pro-
vide one with the total cross section, which is an important parameter in
Monte-Carlo simulations. The screened Rutherford cross-section formula
has been widely used in Monte-Carlo calculations (Heinrich et al. 1976},
and it does provide us with the total elastic cross-section. Furthermore,
Shimizu et al.(1976) have obtained close agreement between experimental
and Monte-Carlo calculations based on the screened Rutherford cross-section.
Hence, it is of interest to compare the partial wave expansion predictions
with those obtained using screened Rutherford scattering.

From the theoretical viewpoint, although the differential cross-
section for elastic scattering for electrons of energies below 1.5 keV
(e.g. Fink and Yates 1970) and greater than a few tens of keV have been
investigated (e.g. Sherman and Nelson 1959 and Biihring 1968b), the cross-
section for intermediate energies has not yet, to our knowledge, been
published. Hence it is of practical as well as theoretical use to deter-
mine the elastic scattering cross-section by partial wave expansion methods
for electrons of energies-between 1 and 20 keV, which are energies widely
used for Monte-Carlo calculation as applied to electron microprobe and
scanning electron microscopy. The differential cross-section was cal-
culated using analytically expressed Hartree-Fock potential (T.G.Strand
and Bonham 1964) .

The results were compared with those published by Fink and Ingram
and were found to be in satisfactory agreement with them in the region
from 100 to 1500 eV.

Figures (2-8-a) and (2-8-b) show a comparison of differential cross-
section for elastic scattering between the screened Rutherford and partial
wave expansion calculations for aluminum at various electron energies of
interest for the present study. The screening parameter BN adopted in the
present calculation was the one derived by Nigam et al. ( Nigam et al.
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scattering angle { and electron energy E for aluminum.

1959) using Thomas-Fermi potential and second Born approximation. This
result shows that both the differential cross-sections are in close ag-
reement between 10 and 20 keV and that the screened Rutherford can still
be extended with fairly good accuracy down to 5 keV.

Below 5 keV, however, the descrepancy between the two becomes re-
markable. Sc far as the excitation of high energy is concerned, such as
K-ionization, for which electrons with energies higher than about 32 times
of K-ionization energy plays important role in practical problem (in Alu-
minum 3x1.5 keV=4.5 keV), these electrons of low energies below 5 keV are
no more significant source of signals, i.e. K-Xrays and/or KLL Auger e-
lectrons. However, if signals of low excitation energies are treated in
the argument, we have to take into account the contribution of low energy
electrons.

Thus in this case it is strongly recommended to use the differential
cross section obtained from partial wave expantion calculation,

Another comparison for the total cross-section is shown in Fig.2-9.
The screening parameter does not cause any marked changes in the differen-
tial cross-section for scattering angles larger than several degrees in
the kV region. Hence, taking an appropriate value for the screening para-



meter, i.e. 0.48 By for aluminum,
we can use the screened Rutherford
scattering for energies ranging
from 5 to 20 keV with considerable
success in Monte-Carlo calculation.
In Fig.2-10, total cross sections
calculated by three methods are
compared, i.e., partial wave expan-
sion and first Born approximation
using Hartree-Fock potential, and
screened Rutherford scattering with
Nigam's screening parameter BN'

Although the partial wave ex-
pansion method is one of the most
accurate theoretical approach to
elastic scattering at present,
it provides a differential cross-
section with limited accuracy for
scattering angles of less than 10
degrees because of ambiguity in the
theoretical aotmic potential
(Bromberg 1969).
carries over to the total cross-

This ambiguity

section which one must use in

Monte-Carlo calculation.
Thus, the present result suggests

that the screened Rutherford scatter-
ing describes the elastic scattering
of kV electrons with considerable ac-
curacy for a light element such as
aluminum, particularly using an ap-
propriate value of the screened

parameter, e.g., 0.48 By for aluminum,

Furthermore, since far better agree-
ment between those two cross sections

is theoretically expected for lighter

Al
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nique using screened Rutherford scattering is a very useful approach for
better understanding of electron penetration in organic and biological
samples. However, this argument does not hold any more for such a low
energy excitations as LVV Auger electron production in alminum. As a

typical problem of practical importance, the application of the differen-
tial cross section obtained from partial wave expansion calculation to

Monte-Carlo simulation of Al Auger electron production will be brief-

Lw

1y mentioned below.
Contribution of the secondary electrons to the energy distribution

is seen in Fig.2-11. As is expected, the secondary electrons only con-

tribute to the lower part of the energy distribution. The distribution
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Fig. 2-11. Energy distribution of the backscattered and secondary e-
lectrons for 10-keV electrons impinging on aluminum at normal and oblique

incidences. (Hatched area: signals generated by secondary electrons.)

of L-shell ionizations (corresponding to LVV- Auger electrons) produced by
the secondary and backscattered electrons on the Al-specimen surface is
shown in Fig.2-12 together with that of K-shell ionizations (correspond-
ing to KLL-Auger electrons). It is worth nothing that almost half of the
LVW-Auger electrons and about 30% of the KLL-Auger electrons are produced
by the secondary and backscattered electrons. Another point to be noted
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Fig. 2-12. Spatial distributions of K and L ionizations generated by 10

keV electrons in the surface layer of aluminum. The longitudinal axes in-
dicateK - and L -ionization ratio of the sectional contributions per 600 Z,
of backscattered and secondary electron to the contribution of an incident
electron. (Solid area, signals generated by secondary electrons.)

a) L ionizations in the surface layer of 1 R by the contribution of one
primary electron: 1.02x10°° /R. L ionizations by the total contributions
of backscattered and secondary electrons: 8.9x10" /R. (b) K ionizations
in the surface layer of 1 A by the contribution of one primary electron:
6.5x10"° /A, K jonizations by the total contributions of backscattered
and secondary electrons: 2.7x10~ /A.

is that the contribution of secondary electrons to L ionization is remark-
able at the vicinity of the incident primary beam impact as is seen in
Fig.2-12-b. This is quite understandable because the secondary electrons
are generated almost normal to the direction of primary electrons of high
energies, and, hence, they move parallel with the surface at the vicinity
of the incident point leading to a high generation rate of L ionization in

the surface layer in question.



CHAPTER 3 THEORY OF ELECTRON-MERCURY INELASTIC SCATTERING
~-=—- APPLICATION OF DWB THEORY

3-1 Introduction

In electron-mercury scattering, similarities in the diffraction
patterns of elastic and inelastic cases had been previously recognized by
Mohr and Nicoll (1932), and Tate and Palmer (1932) for intermediate energi-
es. Inelastic scattering experiments with an energy analyser of high ener-
gy resolution also showed a diffraction patterm similar to elastic scatter-
ing at inelastic channels of 6!P excitation (Gronemeier 1970), and 6'P and
6p'*P excitation channels (Hanne et al. 1972, Yamazaki et al. 1977c). These
are the transitions of high scattering intensities in electron-mercury loss
spectra. Polarization measurements of inelastic electrons have recently
been made at 6'P and 6p'’P excitation channels, which also resulted in
patterns simiiar to the elastic cases (Eitel and Kessler 1970, 1971,Hanne
and Kessler 1972).

Penny {1932) and Yavorskii(1947) treated the total cross sections for
excitation of 6'P and 6°P states in mercury using Born-Oppenheimer approxi-
mation. McConnell and Moiseiwitsch (1968) refined the above treatments us-
ing Born-Ochkur approximation. In regards to oscillator strength, the above
treatment gave f£{'P;»!5,)=1,17 and f(®P,+'S,)=0.037 which were in close
agreement to the experimental values 1.18 and 0.037 (Lulio 1965). According
to development in ESP measurements of inelastic channels, theoretical cal-
culations of differential cross section and ESP at the 6!P channel would be
highly expected. One theoretical calculation has been made and resulted in
success in a certain aspect using distorted wave Born approximation (DWB ap-
proximation) (Madison and Shelton 1973). However, this calculation is con-
fined to rather lower impact energies (50-180 eV) and failed to give correct
Ccross sections.

In this chapter, the 6'P excitation cross section of electron-mercury
scattering is discussed. For this purpose, the DWB approximation is formu-
lated in detail at 6'P excitation for the mercury atom and calculations are
made for incident electron energies of 50 to 500 eV. This may provide
detailed information on the scattering process, particularly on spin polar-
ization in unresearched areas.

The reason for adopting the DWB approximation are as follows; First,
Born approximation is known to give inadequate information on the differen-
tial scattering cross section at large scattering angles and in every case



predicts zero polarization (see Sec.2-2-2), thus in spite of its simplicity
and clearness, Born approximation turns out to be useless. Second, the
coupling between 6'P excitation and elastic channels is generally weak (the
intensity ratio between 6'P excitation and elastic scattering is about 1072
in both the energy and angular regions in question). This weak coupling
implies that the scattering of electrons from the inelastic channels to the
elastic channel is negligible. Thus, it may not be necessary to adopt an
approximation as precise as the close-coupling approximation. Third, the
similarity of diffraction patterns at elastic and 6'P excitation scattering
suggests that the elastic scattering plays a dominant role in the 6'P ex-
citation scattering.

This leads one to expect that the present DWB approximation would pro-
vide reasonable accuracy for the interpretation of 6'P excitation scattering
process. Furthermore, as there exist little theoretical results using DWB
approximation except for the two works for heavy atoms (Sawada et al. 1971,
Madison and Shelton 1973), it is interesting to apply the relativistic DWB
approximation to the calculation of cross section and spin polarization of

electron-mercury scattering.

3-2 DWB Approximation

As is shown in Sec.2-2-1, the formal solution for the wave equation Hg
o

:Wa¢a is written implicitly as

@ 1 @
V=% T kiie "Ya (3-1)
K=H-V, (3-2)

The transition rate per unit time is given by (Gell-Mann and Goldberger
1953)

Wi = 2mIT G2 SO W) (3-3)

where
4
T..= AV . -
34 <@]| '¢i> (3-4)

In the case of t’::Vi+Vé , equation (3-4) is written



Ti=<0; 1+, 1> . , (3-5)

Introducing the eigenfunctions of.Kq-Vlas

Py R (3-6)

o «@ W—K+1e 1

we can transform the equation (3-5) as follows,

e 1 & 8
Tz'j“<X;(; aaey enrrall SR S RSP e

1

o
1 W=K + 1¢ (V1+V2)I¢?:>

b W Oy
—<X(j“f1+"2‘¢i> <X‘j|
5 @ 3 @
=<X(j‘V1+V2'¢g>‘<X<y"V1’¢¢ 0, >
) {_‘) (S
:<X§,~)I v, I¢(Jri)> +<}§;. \v.1e,> (5.7

The ingoing distorted waves are related to outgoing waves by time reversal,
which has the form (Satschler 1964)

o —,—m (3-8)

(X(_) &, ”)m!,m =™ ‘m(Xt'j -k, r))

{The appearance of the ingoing wave in scattering problem is qualitatively
explained by Breit and Bethe (1954), and Wu and Ohmura (1962).)

Considering the inelastic scattering of an electron-atom system, we can set
1

incident and atomic electrons {(see Sec. 3-3). In this case, the second term

as the atomic potential and v, as the interaction potential between the

of equation (3-7) vanishes because of the orthogonality of ground and excit-
ed states of atomic electrons. Then, equation (3-8) is written

P @
T,ij—<X(le21<ﬁi>. (3-9)

Note must be made of the fact that equation (3-9) is an exact solution of
the problem.

In equation (3-9), if the atomic potential v, is substantially larger
than the interaction potential Vo then we may substitute )(ej for ¢ﬁ?

and get

_ - oY) 3-10
Tij.—<X;. IVZIX(?:>. ( )



Equation (3-10) is called distorted wave Born (DWB) approximation, since
Born approximation is obtained if X(;) and XfH are replaced by plane waves.
That is, DWB approximation introduces the effect of distortion of plane
wave by the core potential on inelastic scattering.

To clarify the physical aspects of the DWB approximation, we will view
scattering of electrons with hydrogen atoms non-relativistically. The Wave

equation for the system is written
2 2
{18+ (P +p,) +E+e/r+e /T, —e/T, Lg=o0, (3-11)

where the incident electron is distinguished by the suffix 1, the atomic
electron by the suffix 2. The energy £ is the sum of the energy F,of the
atomic electron in its ground state and of the kinetic energy of the in-
cident electron. We may expand the function <,b(r1, r,)in the form

_ \ . 3-12
@ ry=Crfrg (0)-F (1) (3-12)

where the functions ¢ () are the eigenfunction for the hydrogen atom,
n
satisfying

Gap?+ En+ e2/r) ¢'n () =0 . (3-13)

The integral sign denotes integration over the functions of the continuous
spectrum. Substituting equation (3-12) in equation (3-11) using equation
(3-13) and multiplying gb:(rz) on both sides of this equation and integrating
over the coordinate space of the atomic electron, we obtain

Vlz
(g=+E-E,) F, () =f(62/7'12 —e /)¢ (LT ¢:(r2> ar_ . (5-14)

Writing

*
_ . 3-15
Vam ) f¢n(r2) /T g ®)ar (3-15)
we have
(P2/24E-E) FO)=2V F 1,
n n Vi

nm m (3-16)

If V,nm(nZO ym>1,n¥M) is neglected in equation (3-16), then we obtain
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— —_— = 7 (3_17_3)
(172/2+E_E0 VOO) F o=o0

( 172/2+E—Ei-—1{£?;) F.=V. F, (3-17-b)
Equation (3-17-a) is merely the ordinary equation for elastic scattering
with atomic potential Voo which can be solved by the same method develop-
ed in Sec.2-3. As F, is known, the equation (3-17-b) becomes a simple
inhomogenious differential equation which can be easily solved (Mott and
Massey 1965) as '

1 -1 _72K. . ,
£, r.,0,¢ ~- o e’ ZTJ/‘Vio (7",6',¢')-F0(r',0',<b’) f@-(r',n—@)dr

(3-18)
where fi satisfies

(F2/2 +E““Ei _“V,iini(r) =0 , (3-19)

and cos (@)= cos £ cos 0'+sin @ sin 0 cos (p - ') .

As eguation (3-18) equals equation {3-10), the essential points concerning
DWB approximation are concluded as follows:
1) neglect of the scattering from inelastic states to the elastic state and
2) neglect of the interaction between the arbitral set of inelastic states,
The ""Born'' of DWB stems <from the approximation mentioned above,

From another view points, DWB approximation is one of the first order
perturbhation where X+ Vis chosen as the unperturbed Hamiltonian. On the
other hand, Born approximation is the first order perturbation theory where

K is chosen as the unperturbed Hamiltonian.

3-3. Application of DWB Approximation to Electron-Impact Excitation of
6P State of Mercury Atom

In this section, an attempt is made to rewrite the theoretical ex-
pression of DWB approximation in a more concrete form for practical use.

The electron configuration in the mercury atom is expressed as (1s)?
(28)%..... (5d)!%(6s)%. In as far as the 6'P excitation is concerned, the

atomic electrons interacting directly with incident electrons are confined



to electrons in the 6s shell. Therefore, it is assumed that atomic e-
lectrons other than (6s)? do not interact directly with the incident e-
lectrons. Then, the total Hamiltonian H is written as

. o2
H:Ho(rH_Hl (rl’ r2)+l:2;’2 Ir—l‘ll s (3-20)

where P andr, (f =1,2) correspond to incident and 6s electrons respectively
and '

H@=K+V, _,® (3-21)

2

e
= 174 —_— -
Hl r,.r,) Kr1+ Kf,«2+ z_z(r1)+Vz_2 (r2)+“.1_ rT (3-22)

where K is kinetic energy and Vz_2 the atomic potential energy Compoéed of
a mercury nucleus and core electrons. We will rearrange the above Hamilto-
nian as follows,

(44
H=K +V (M+H (F,r) (3-23)
o 2
u ==V M+V_,0¢ +3 —e- (3-24)
(44 4 z=2 =12 }r—-r[] .
where
v¥m ey 2 e >
D=V, 0+ < all:l,z II‘—l‘lll e, (3-25)
and
Hl(rl ,I‘2 ) ga:zEcv ga ’ ‘ (3-26)

where a takes values ¢ and jaccording to the atomic states before and after
scattering, respectively. The potential V, in equation (3-10) corresponds

to thew of equation (3-24). Then, the distorted wave function X, is written
as

0
X n,p)=X 0-£,@.0), (3-27)
0
and Xa satisfies
a. 0 )
(Kpt V) X,= (W=E,) X, - (3-28)



The u, and uj differ outwardly from each other but have like effects on
equation (3-10) because €;and &, belong to different eigenvalues of the
same Hamiltonian. Namely, from equation (3-10)

¥ 05 2
Tz‘j_<Xj( )EJ' ! —Vza ) +V; -5 -{;.2:'1,2 I re—rlllXiOGHfi >

;. e? . _
—ex’hce 1y ——je 5> x°%> (3-29)
J =S (r-—rll i i .
For further calculation, we take Ez- and ‘Sj as (65)215 ground state and (6s)

(6p)'P excited state respectively. We may write the wave function £.
’ 1
in the form

fi:(ﬁo(l,Z)-Co(l,Z) \ (3-30)

with

b (1,2)=Y, (0, )E (7)Y, (0,0 (1)), (33D

where Ylm(0 , ¥is a spherical harmonic, ROO(T) the radial wave function for
the 6s electrons, and ¢ 0(1,2) the singlet spin function associated with spin
quantumn number § = MS: 0. Concerning §j , we 1gnore spin-orbit coupling for
simplicity and introduce pure Russel-Saunders P-state wave functions given

by

S
_ 3 - N 1,2) e , -32
£ _MEM C(J,1,8; M, M) ¢1ML( ) CSMSCI 2) s (3-32)
LS
where the C(J,1 ,S;ML,MS)are Clebsch-Gordan coefficients shown in Table 3-1,
S 1
¢S, (1,2)=2y (0. R ()Y (0,8,)R, )
1ML ey 00 1° " 10 "1 1ML 2’72 1172
. . ‘R (7 } (3-33)
tY . (02,¢2) 310(7‘2) YlML(01 ¢1) 1170

(+:8=0,-:8=1)
are the spacial wave functions with radial functions Rl 0 and k 11 for the 6s
and 6P electrons respectively andCS . 1s the spin function for the two e-

lectrons associated with spin quantum numbers S and M S®



Table 3-1. Clebsch-Gordan coefficients «, 1,.S;A1—A18Jms),

s M1 Mg=0 Mg=-1

BN (6DI6RYeY J”ﬁ [ e & [(J-M) (Iaw1)]
(2J+1) (2J+2) L(20+1) (J+1) (23+1) (23+2)

;5 (3 (J—M+1)J % M (J-M) (J+M+1)I Y%
| 27(J+1) [JI+1)]1 % 2J(J+1)

1[G (J—M+1)J % (g0 ) [ (J+M)J%
| 2J(20+1) [ J(2J+1) 23(2J+1)

The inner parenthesis of equation {3-29) can be easily calculated since
the operators in equation (3-29) do not contain spin operator and the matrix
elements corresponding to different spin quantum numbers vanish (This means
that one of the selection rules corresponding to the conservation of multi-

plicity holds in DWB approximation.). It is found that

A[L e
Vi (r,0,0)=< 5,’;[ Zl'-]—rv_‘r—l‘—) l§j>
%
_ (8m) *
T3 62(¢10,¢00><¢11| B Crper) I¢00>Y1’ML(0,¢) (3-34)
= *
vlo.Yl,ML(a’qS)
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Fn(rl,r)— 1 1 . :
2 (_?l) N
r \r r & . (3-35)

In equation (3-34) the following formulae are used

R A S S
Ir—rll”(l"lln:o-] r-lI "’(COST)’?PT
T n=o | an(cosr),r> 7

where 7 is an angle formed by the two vectors r and p L

am *

P (cos = - XY @ .Y ;

n 7) 2Nn+1 p y M i ¢R nﬂn(ﬁa¢2) (3-37)
and

H
Y ;; Yom¥n m d!?—(3 >/2(2n2+1)’/2
"M T M GRS G 1 Clmystomysm, m)
* c<n2, Lm 50,0). (3-38)

As can be seen from equations (3-34) and (3-35), the form factor Vg
the radial part of the effective potential which causes 6'S-6'P excitation
behaves like 7~ ° at large 7 , corresponding to the induction of the electric
dipole moment. In general, the form factors appearing in various excitation
processes behave like 7~ " in correspondence to the various multipole moment
induced. This also implies that among the various transitions, those cor-
responding to a momentum transfer of one unit may be relatively strong since
the form factor corresponding to these transitions decreases most slowly.

The wave functions X ®and X 6 can be easily written using the equation
(2-17) for the two initial spin states in Sec.2-2-1 as

T
) = i .
XSianf 5 3 8BE Qi e s o oot |

TT
l .
~5 5T Up) h Ururs) 6 e G, ey )

Yiurn @D Y, 5y (0, ¢)

Y w00y, F o 0,¢") (3-39-a)
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'Ly @B Y ,;HJ/ @, (3-39-b)
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and using v, =[c2t1y/an] #

T
=1 . .
X9 =an)/ 3 2 {1,000 v (i eg ety 0,80
=0 (2l+1) ’
o
e '3’ % ou i8 5
—_— (4D 2.1 2.(..9 e 1 + e?’ -l-1)Y ©@ o
lgl @ l+1)1/2 l 911 l,1
(3-40-2)
T
, Nt Y is i
X —m)? l£1 ——, - ()RR e Lt 9_; e ~1-1) Y, 0" ¢
J @l ’
) :
Py ___—.e 2 . . . ”LBL . 7,6 ¥
120(2”1)% 4 g;c e 4+ () 951" —l- 1} Lo @ ¢
(3-40-b)

where the notation G, and %7, are used for the state elastically scattered

by the potential of the excited-state atom in the directionk = (K;,0,9),0;
and d, for the state elastically scattered by the potential of the ground-
state atom in the direction of k' =(X;;,0,0) and the coordinates of the incident
or scattered electrons are represented by M= (r, 0',¢". The suffix 0 of X
is omitted for simplicity (see equation (3-29)). The sign in front of 7
changes dependi_ng upon the boundary conditions of incoming waves.

Using the ¢ Zu and bz defined by
AL
T .
a; =LEE L a6, e (l-p41p) -G Y
M +1 l ~[-1 (3-41-a)
)
1 4e’ 9 -7 -1
blu =TT (matt) Ao Uptn) 6, e My G_j_1°® i1y
(3-41-b)
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l+1

we can rewrite equations (3-39) and (3-40) as follows;

- X g g
Xh=(2 5 aj Y, . O, " @)
AR =" N7 Lt At Yo (5-43-2)
1
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. (3-43-b)
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Then T-matrix of equation (3-29) for various spin states are expressed as
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Ty = T | V X('fﬁ
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(3-45-d)

Here the equation (3-38) and Table 3-1 are used.

It is easily shown that

T; ei¢:—Tu e"%¢i T
7y =1 =7
R I
Ty o21® Tl T

w € = hy e =1,
-1 1 _ -1
Ty = Ty =T

(3-46-2)
(3-46-b)
(3-46-¢)

(3-46-d)

(3-46-e)

(3-46-1)



Comparison of the equations (3-41) and (3-42) with the equation (2-40)
shows that the coefficientsaLZ(luil) represent the direct scattering (spin-
flip) during the elastic processes occuring before and after the inelastic
single process. Hence, the processes occuring during inelastic scattering
are explained schematically from equation (3-45), e.g. I‘ﬁﬁ“ﬁ represents
the process that initially, an incident electron undergoes a direct (spin-
flip) elastic process followed by another single inelastic process and
finally undergoes a spin-flip(direct) elastic process once more.

The relationship between T-matrix and scattering amplitude is given
by (Schiff 1955)

1
fo= 57T (3-47)

Differential cross section and spin polarization are derived from the same
procedures shown in Sec. 2-3. For the initial electron beams of qSi:(g)e vK2

having polarization p:(pw‘py'pz Jthe cross section is represented as,

do . ; . . .
inel 1 J J J J
— et L~ <3 | |ATy +BTy |2+ | BT +AR |2 | >
d@ 4w K, =1 ,-1% mee

1 s
T 4m? K

Tec g @d*ordy. p si
; j=%',0,—1{l‘:\71,2]Tl[2 2 Ime (T +Ty)- pxsm¢+pycos¢)}

(3-48)

where K, and K 5 are wave numbers of incident and scattered electrons.

The comparison to equation (2-45) in Sec.2-3 shows a similar relation between
the elastic and inelastic scattering cross section. Then the Sherman fun-
ction Sjue7 in inelastic scattering, the quantity relating to left-right
asymmetry, may also be defined as

S, =-2 Im Tj*Tj Tj 2
inel j£—1,0,1 7 2)/15‘1,23':21‘,0,—1l ! (3-49)

One the other hand, the ESP of inelastically scattered electrons are
expressed as

— 68 —



P, =<o>

K, Gk ok, Gk Ko Tk K Gk
= Z(A Tw +B Ty ,B Ty +4 Ty Do ATT¢+BT¢,

— l(—51n @, cos ¢, 0) “ +ATTl (3-50)
B -1 * ~1%_ 1 !
Pooi= 2Im (T TZ—T +T T, )/2 )Z'lTj( , (3-51)
where ¢ denotes the Pauli matrix and < > denotes averages over all in-

cident spin directions. The actual calculation shows that the Siwel equals
thel’nel .

As can be easily seen from equations (3-49) and (3-51), the effects of ESP
becomes inexistent if all T is a real or pure imaginary number i.e. the
phase shifts 7, and 6x related to elastic scattering play an essential

roles on the polarization effect of inelastic scattering.

3-4, Choice of Atomic Wave Function

The atomic potential used is the non-relativistic Hartree potential a-
nalytically expressed by Byatt (1956) (See Sec.2-2-3). The radial wave
function of the ground state (6s)? and the excited state (6s)(6p) of the
mercury atom used are those calculated by McConnell and Moiseiwitsch (1968)
using the Coulomb approximation, since the results obtained using these wave
functions were in excellent agreement with experiments as has been referred
to in Sec.3-1. McConnell and Moiseiwitsch (1968) fitted these wave functions
to a sum of exponentials

B o =4, exp €a,7 ) +B  exp (—bo?“)
Ry =7Alexp -a'r) +Bgexp (=5 1)
B = 7(4 exp Gwﬁr)—+Blexp b,7) ), (3-52-a)
with
—4 ; -2 —4 B
Ag=0907x107 ", 8= 0612%10 ", Fy==0.425x10 ",b,=0144 x10

— -2 } - -
Ay =0786%x10 6,a6:0.884x10 ;, Bo=-0.131x10 3,b0':0.196x1o

— -2 - -1
A;=0103x10 6,a1=0.410><10 , B1= 0.303x10 6,b1:0.164 x10 >
(3-52-b)



and evaluated the total 6'P and 6°P excitation cross section. The results
calculated for these wave functions are shown in Fig.3-1, together with the

(

6s )‘Cgulomb

(6s

Fig.3-1. Radial wave functions for mercury, (65)Coulomb;
Coulomb approximation for (6s) electron in (6s)* state,
(65)'Coulomb; Coulomb approximation for (6s) electron in

(6s) (6p) state, (6p)couiomps Coulomb approximation for (6p)
electron in (6s) (6p) state, (GS)Hartree; Hartree approximation
for (6s) electron in {6s)? and (6s)(6p) electron states and
(6p)Hartree; Hartree approximation for (6p) electron in (6s)
(6p) state., (McConnell and Moiseiwitsch (1968) and Mishra
(1952)),

results of self-consistent wave functions using Hartree field for the 6s
orbital of the normal state (6s)? of neutral Hg (Mishra 1952). Note that
the axis of abscissa is written in log-scale i.e. the departure between
functions near 7 ~0 is emphasized too much.

It was assumed in the Coulomb approximation that the active electrons



(6s and 6p electrons in the present case) behave like the electrons moving
in a Coulomb field C/7 having the same binding energy as the actual one, C
being the excess charge on the nucleus when the active electrons are remov-
ed. Although the wave functions obtained in this way are not the eigenfun-
ctions of the Coulomb field, it is expected that they have satisfactory
profiles and magnitudes except those near 7 ~0(Bates and Damgaard 1949).
This approximation is justified because the probability of the electrons in
question, which exist in the imner part of the atom where the potential
departs from C/, is slight. This can be demonstrated for the oscillator
strength by comparing .

Y.
f k. r. r3dr (3-53-a)
0 v f ’
and
“ R. R ar
f g vy Tar (3-53-b)
Tb o

where Ty is the boundary value of # at which the atomic potential behaves
like C/7 ,R; and Rf initial and final radial wave functions respectively.
Table 3-2 gives the relevant data for two cases of s-p transistions cal-

culated using self-consistent wave functions  (Bates and Damgaard 1949).

Table 3-2.
System Transition rb(in unit of ao) fgb f;o
. b
Na I 3s-4p 1.5 0.004 0.386
0O I 3s-3p 2.0 0.05 4.02

Calculated results by McConnell and Moiseiwitsch agree well with the ex-
periments. This confirms the usefulness of the Coulomb approximation, even
though the 6s wave function used behaves like 1s or 2s electrons.

The oscillator strength for the !'P;»>!S, transitions are given by the formulae

f =28202/2 (3-54-a)

where
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and A is the wave length of the radiation. Formula (—54 results in the
values

fcoulomb =1.17 (3-55-q)

fM.ishm = 4.76 (3-55-b)
—_ ._.5 —_

fMadison = 8.8 8=55-0)

corresponding to the wave functions of Coulomb approximation (McComnell and
Moiseiwitsch 1965), of self-consistent approximation by Mishra(1952) and of
self-consistent approximation by Madison and Shelton (1973). Madison and
Shelton calculated the wave function as the eigenfunction of relativistic
atomic ground-state potential. fC oul omb is in close agreement with the
experimental value 1,18 of Lulio (1965). This implies that the Coulomb ap-
proximated wave functions can closely represent the states of the real
atomic electrons, particularly their spacial distribution.

3-5. Adopted Numerical Calculation Procedures

The calculation procedures of gxand Ggin equation (3-42) are like those
in Sec. 2-3, but here both the phases qSE and amplitudes A, will be estimat-
ed by the fourth order Lunge-Kutta process. 'Bp', the normalization factor
in equation (2-54-b) is determined by the first row of the equation (2-34).

The potential V (r) is expressed using the charge distribution p as

e OO .
Vi = —:7 o () 'r'Zdr'-i—f or) rtdr' (3~56)
0 r ‘

The first and second term are called inner and outer shielding, respective-
ly (Slater 1960). From equation (—56) and pi(f)(r):elei(f)' 2 we can
construct the potential field of an excited state atom, which is necessary
for evaluation of G, in equation (3-39). The Vpj changes very slowly and

is greater than the atomic potential Vg and Vv, at 72340 and 72390 respective-
ly. This is because Vg behaves like r~2 asymptotically at large 7, as has
been pointed out in Sec.3-3. As the form factor is the long range potential,

-T2 -



the number of partial waves necessary for the evaluation of T-matrix becomes
quite large in comparison to those of elastic scattering. However, the
number of partial waves distorted by the atomic potential is like those
necessary in elastic scattering calculations. Contributions from the dis-
torted partial waves are estimated as follows: 1) Equations (2-5l1-a) and
(2-51-b) are solved numerically by the fourth order Lunge-Kutta process

(see Sec.2-4), and the integrations necessary to evaluate T-matrix are per-
formed by trapezoidal rulefrom?=0.1 to 7=7,where V(7‘0)~0. 2) The phase
shifts are estimated at =7, and the T-matrix is again integrated numerical-
ly to r=7r;using the first row of equation (2-34), the expression of 9,

at large 7 and we took 77=13700 in most cases. Contributions to the T-
matrix from the higher order partial waves originate from only the asympto-

tic region of the form factor, then analytical expression of these is pos-

. sible using the formula (Watson 1966).

m

I+1 - [(l+m+ D —-m+1)

fJ (@x) -J (bx)-x'ldx
0o # g

A Ly
= /1+,u+12 b I' (o) F @,B,v+1;b27a2) , B3-57-a)
a’ I'v+v -I"-H
where J, is the Bessel function of u-th order, Re(A)<1 , Re (A+u+¥)>—1,

a>b>0,a= A+u+v+1) /2,8= A-pu+v+1) /2 and F @, B, 7; x) the hyper-
geometric function defined by

'y = Tae+w T @+ 2"

F 1 2) =

Spherical harmonics are evaluated at each scattering angle using the

recurrence relation as

m
-Q (3-58)

{(2l+1) (21+3) r/z 'Qm_[ Cl+3)U+m U -m %
Cl-DU+mt+1) U -m+1) —

[

b
where Q?(ﬁ):Y?(ﬁ, P e ? me with initial conditions

0 1
QOZ (1/4nr>/2

(3-59-a)
1
Q(l): (34" cosf (3-59-b)
-1 % .
Q1 = (@3/8%)° sin (3-59-¢)
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Q(z)-:. (5/4m7 (3cos?® —1) /2 (3-59-d)
-1 7
Q2 = (15/87) “sinf-cos 0 (3-59-¢)
Q7% %
2 =(15/32m)  sin2l . (3-59-f)

which are derived from

"= ;
27 [

l
The flow chart and the list of program for the present calculation is shown
in Appendix 6.

(—sinﬁ)m(d/dcosﬁ)l_*_m(cos20— 1)l . (3-60)

3-6. Results and Discussion

The DWB calculations are performed for two form factors F, and F,,
where Fi; is obtained using the Coulomb approximated wave functions and Fyis
obtained from that used by Madison and Shelton (1973) with a slight modi-
fication (see Fig.3-2) which is performed to fit Fj, to analytical form for
convenience in computer calculation. Actual calculation shows that the
modification of this kind incurs little difference on calculated cross
section and spin polarization. The calculated results are shown in Figs.

3-3 to 3-7 for electron impact

3T energies between 50 and 500 eV.
5 Each figure gives 1) a DWB cal-
% i culation using i, 2) a DWB cal-
TN culation using Fj;, 3) an elastic
§ 'h/’l scattering calculation of energy
5 e T E eV using atomic ground-state
0 @ g 0 w7t potential, 4) an elastic scatter-
facs (i unit of hime) ing calculation of energy E-6.7
Fig.3-2. Form factor for mercury,—; eV using atomic excited-state
calculated using Coulomb approximated potential and 5) experimental data
wave functions, ---- used by Madison when available. The experimental
and Shelton (1973) (calculated using data are that of Hanne et al.(1972),
Hartree wave function) with a little Gronemeier (1970) and Yamazaki et
modification. al. (1977-c).



The elastic data of Gronemeier is normalized to the present theoretical
results at #=80° (E=100 eV) and at #=90° (E=300 eV). The number of

partial waves estimated numerically ranged from 15 at an incident electron
energy of 50 €V, to 43 at an incident electron energy of 500 eV. The total
number of partial waves ranged from 125(141) to 522(994) for Fg (Bkl)case in
the same energy regions.
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do/dn (ad)
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0 30 60 90 120 150 180

Scattering Angle (degree)

Fig.3-3. Spin polarization and differential cross section for
: DWB cal-
culation for 6s6p'P excitation using4Fb, ----: DWB calculation

mercury at incident electron energy of 50 eV. ¢

for 6s6p’P excitation using Fy—-—-——: elastic scattering
by ground-state atomic potential, .....: elastic scattering
by excited-state atomic potential, A: experimental results

of spin polarization for 6P excitation (Hanne et al. 1972).
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Fig.3-4. Same as Fig.3-3 except here the energy is 100 eV.

(@ : experimental results for the elastic scattering cross

section normalized to theoretical results at 0=80° and

o : experimental results for the 6'P excitation cross section

(Gronemeier 1970)).
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Fig.3-5. Same as Fig.3-3 except here the energy is 180 eV.
The curve of spin polarization for elastic scattering by
excited-state atomic potential is almost similar to that by
ground-state atomic potential and is neglected for simplicity.
( A:experimental results of polarization for 6'P excitation
(Hanne et al. 1972))
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Fig.3-6. Same as Fig.3-3 except here the energy is 300 eV,

( ®: experimental results for the elastic scattering cross
section normalized to theoretical results at #=90°, o : ex-
perimental results for the 6'P excitation cross section
(Gronemeier 1970) and x: experimental results for the 6'P
excitation cross section (Yamazaki et al. 1977c) The curve of
spin polarization for elastic scattering by excited state atomic

potential is neglected for simplicity.)
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Fig.3-7. Same as Fig.3-3 except here the energy is 500 eV.
(The curves of spin polarization and cross section for elastic

scattering by excited-state atomic potential are neglected for
simplicity).



Figures 3-3 to 3-7 show that the DWB calculation using Fy; gives a
differential cross section several times larger than that using F.
As is seen in Fig.3-2, these differences originate from the remarkable
difference between the form factors. The atomic wave fumctions used to
calculate Fy, were determined by Madison and Shelton as the bound state
eigenfunction of the Hartree field, in order to assure the orthogonality
between the atomic and free-state wave functions, which reduces computing
time drastically if exchange scattering is taken into account. The atomic
wave functions obtained in this way spread over a broad radial region
causing overestimations of the differential and total cross sections.
On the other hand, the atomic wave functions used to calculate Fp are
determined as the solution of the Coulomb field, having the same binding
energy as the actual one (see Sec.3-4), which provide differential and
total cross sections in close agreement with experiments. The extremum
points of the cross section calculated using Fo shift to higher scattering
angles at forward scattering in comparison to that using Fj; throughout the
present calculations. In the case of F, the order of partial waves which
contribute primarily to the T-matrix shifts lower as compared to Fy;, which
can be seen in Fig.3-2. This situation means that the "effective impact
energy' in the case of F, is smaller than that in the case of Fy; for for-
ward scattering where higher order partial waves play important roles,
which results in shifts of the extremum points.

A comparison to experiments is
discussed in Chapter 5.

In regard to the total cross
section, the results obtained using 1000
Fc agree well withMcConnell and L
Moiseiwitsch, while the results using

Fyrare about 10 times greater than AN
those usingl'b(see Fig.3-8). 100~ \\\
N
e

3
T

Fig. 3-8. Total cross sections for
6'P excitation of mercury by elec- i
tron impact calculated using DWB
approximation ( 3 Froy------ ;

1 L i 1
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CHAPTER 4, MEASUREMENT OF LOSS SPECTRA

4-1 Introduction

Table 1-1 shows that a few experimental data exist concerning the loss
spectra of mercury at intermediate impact energies and at large scattering
angles. This situation is very surprising considering that the electron-
mercury system was one of the most popular and accessible, due to its large
scattering cross section and suitable vapour pressure at room temperature
with little influence on the gun heater in the early stages of scattering
experiments. A primary reasons for this may be deficiencies of the theoreti-
cal investigations. Theoretical treatments of inelastic scattering for heavy
elements have been very difficult because of the complexities of the atomic
structure and scattering process at intermediate energies. The recently
developed high speed digital computer, however, makes it possible to treat
accurate and complex theories, as is given in Chapter 3. Furthermore, in
recent experiments on electron-mercury scattering at impact energies of

several hundreds of eV at forward scattering, it was found that the relative
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intensities between various excitation chamnels changed rapidly as a
function of scattering angles (0° to 7°) (Skerbele and Lassettre 1972),
causing interest on the behaviour of the loss spectra at large scattering
angles. Fig.4-1 shows that transitions to P-state are strong in contrast
to the other transitions as is surmised in Sec.3-3.

Also, from a practical viewpoint, knowledge concerning the differen-
tial cross section of inelastic scattering at large angles for mercury is
of basic importance for experimental arrangement of the ESP detector using
mercury vapour as a target. Optimum conditions of the ESP detector such as
impact energy, scattering angle and angular resolution, can be determined
by theoretical calculation of elastic differential scattering cross section
and spin polarization. However, the optimum condition of energy resolution
for the ESP detector can be estimated only by the cross section of inelastic
scattering.

This chapter aimed at obtaining the impact spectra for mercury at
intermediate energies and large scattering angles, which leads to better
understanding of the optimum conditions for the ESP detector in practical

use as well.

4-2  Apparatus — Design and Performance
4-2-1 Vacuum System

The apparatus used consists of
a primary beam source, a gas cell as
a collision chamber and 127° cylindri-
cal type energy analyser system.
The loss spectra were measured by
scanning the deflecting voltage
of the analyser. An outer view of
the apparatus is shown in Fig.4-2 by
removing the top cover of the vacuum
chamber and the mercury reservoir.

Fig.4-3 shows cross sectional draw-

ings of the system. The vacuum

chamber is a 20 cm high cylinder and

0 ol I QABIEGSr, FUARUATEd Y 4 Fig.4-2. Top view of the main chamber re-

600 2/s oil diffusion pump with moving the top covers of the chamber and
energy analyser.
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) Main chamber

@ Collision chamber

(3 Faraday cup

@ Energy analysing system

Electron
gun =

on l

Fig.4-3. Cross section of the apparatus

a liquid nitrogen cooled baffle. The actual pumping speed is reduced to
about 100 %2/s by the baffle and the connection tube to the chamber, which
provides a residual gas pressure of 10°’ Torr. Gas pressure increases to
10”° Torr during operation due to mercury vapour. The vacuum system is
sealed with Viton O-rings.

The collision chamber at the center of the vacuum chamber, shown in
Fig.4-4, consists of two tight concentric cylinders. The outer cyclinder
C; 1s static and the inner C. rotatable. The inner cylinder is 40 mm high
and 18 mm of imner diameter. The collision chamber is pumped. through four
apertures Az, Az, Ay, and A'y so that the incident and scattered electrons
may pass. The collision chamber provides a scattering angle from 50° to



130° by utilization of the two
apertures, A, and A',. The majority

parts in the chamber were made of A2
stainless steel to avoid amalgamat-: A,
ing with mercury vapour and an ex- A,

€2

cessive magnetic field. However, c
1

A3

some parts are made of gold plated
copper to avoid charging-up effects.

Tungsten ribbon ©.025 x0.75 mm?)
was used as a cathode filament of
the electron gun, which provides an
electron beam current of 2-20 pA at
the accelerating energies of 300-2000
eV with a beam diameter of less than
3 mmg at a relative distance of 300
mm from the electron gun.

As can be seen in Fig.4-3, the
gun is mechanically adjustable from

outside the vacuum by means of three Fig.4-4. Cross section of the

screws, The beam can be additionally collision chamber.
adjusted by an electrostatic defector.
The electron beam current is stabilized to about 0.1% for all beam current
and accelerating energy ranges by controlling the filament current auto-
matically (see Sec.4-2-5). The gun assembly is differentially pumped from
the main chamber through 3 mmg round slits by a 40 &/s ion pump to approx.
5x1077 Torr to avoid instability caused by mercury vapour and to get long-

er life time of the filament.

Mercury Vapour

Electron Gan

Ag

Fig.4-5. Scattering geometry (A; and A; ; round slit, Ay, As, As
and A7; rectangular slit).
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The scattering geometry is shown in Fig.4-5. Apertures A;, A and A,
are round and have diameter of 3,2 and 3 mm fespectively, while Ay, As, Ae
and A; are rectangular, Ay is 0.7 x5 mm® and the slit widths of As, As and
A7 vary from 0.1 to 3 mm with 5 mm height and set usually at 0.1 mm.

The rectangular slits were adopted to obtain a high scattering intensity
even in high angular resolution experiments. The distance between A, and
As was usually set at 50 mm, so the angular resolution 460 is =1°,

The scattering angle 6 is defined as the angle formed by the line
through the centers of the collimating apertures (A, and A,) for the in-
cident beam, and the line through the centers of the acceptance apertures
at the collision chamber and in front of the decelerating asymmetric lens.,
It was estimated that the reproducibility of the scattering angle was #0,5°

and the shift from the true scatter-
ing angle was less than #2°, taking
into account the residual magnetic

field as well. The mercury vapour

{Torr}
16’ is produced in a mercury bath which
is automatically controlled to main-
Hg -Vapour-Pressure tain a constant temperature of about
60°C resulting in vapour pressure =
1 - - . .
10"% Torr (see Fig.4-6), and is led
to the collision chamber by a pyrex
tube whose temperature is higher than
16"k the mercury bath's to prevent con-
densation. All the heaters used are
wound so as to be inductionless.
10°}
4-2-2. Magnetic Field
n 1 I . . .
0 50 100 150 (°C) Charged particles in a magnetic
field B make a circular motion of
radius 7 '
Fig.4-6. Relation of Hg vapour
pressure to temperature
E
(Weast 1972) . r — 2m (4_1)
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where m is the mass of the charged particles, E the kinetic energy and ¢
the charge of the particles. Then, the shift 4% of the charged particles

is expressed as

. x? qBx 2
4z = 27 2 ,/ZmE (4-2)

where * is the path length of the electron beam (see Fig.4-7). To make
the angular shift smaller than the angular resolution 46, the terrestrial
magnetic field B; should be reduced

to
B < 21/2mE’-A(9 (4_3)
t = qx ‘
r
3 \\\\\“‘ Lax Using equation (4-3), the maximum

- x —f

residual magnetic field allowed in

the present experiments is shown in

Fig.4-8 for two path lengths.
Fig.4-7. Relation between path The magnetic field is corrected by
length x and shifted distance 4% a Helmholz coil of 150 cm diameter
of electron in magnetic field. and 40 cm height.

100
{mG,

1 1
o 100 1000 10000 (V)

Fig.4-8. The maximum residual magnetic field allowable
in the present experiments.
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4-2-3 Energy Analyzer

The energy analyser
is composed of a de-
celerating asymmetric
three-slit lens, cylind-
rical 127° sector-type
analyser and electron
multiplier, as is shown
in Figs.4-9 and 4-10.
All gaps of the case of
the energy analyser are
sealed except for the
slits, in order to pre-
vent the secondary or
backscattered electrons
from straying into the

electron multiplier.

A
0o o
i
/f“‘~\;;\
!5 \ o
3 +—Ag
|
_.s_..As
| S S S S—— ) I
0 5cm

Fig.4-9. Cross section of the energy analyser
composed of three-slit asymmetric lens, 127°
sector type analyser and electron multiplier.

Fig.4-10. Outer view of the energy analyser removing the top

and front covers (a), and sector-type 127° analyser removing the

side covers (b).
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Fig.4-11. Geometry of the asymmetric three-
aperture lens studied by Read (1970)
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Fig.4-12. The focusing condition of the asymmetric three-aperture lens
having A/D=0.5 and 1. The sets of numbers given in the figures show the
distances between objective plane and lens, and between imaging plane and
lens in unit of aperture diameter (Read, 1970).



An asymmetric three-slit lens is used to assure high energy resolution at
rather high incident energies. The deflector plates are located behind
this lens system for correction of the electron path.

The construction of the three-slit lens system was determined using
the results calculated for the asymmetric three-aperture lens system by
Read (1970,1971). The lens system studied by Read is shown in Fig.4-11,
and the relationship between.Vé,/Viand,V3/Iq is shown in Fig.4-12, where Vi,

V, and V3 are the lens potential of the entrance, mediate and exit
electrodes, measured with respect to the potential at which the electrons
have zero kinetic energy. It can be seen that two focusing conditions
generally exist and that the ratio of acceleration (deceleration) has an
upper (lower) limit corresponding to the construction of the lens system.
As there are no theoretical or experimental investigations for an asym-
metric three-slit lens system, the focusing conditions were examined ex-
perimentally (see Fig.4-13) . The deflecting voltage is swept sinusoidally
from positive to negative values in order to sweep the image across the

aperture in front of the Faraday cup (F.C.), and then the current to the

i
L_ﬂ-*ﬁ I

i ]

Fig.4-13. Schematic diagram of the electric circuit for
the investigation of the focusing condition of the asym-
metric three-slit lens.



Faraday cup goes from zero, to its maximum, and back to zero again.
The shape of the curve of current measured with a Faraday cup against
deflector voltage is displayed on an oscilloscope screen. The focusing
condition is determined from the curve obtained in this way as conditions
that provide the most high and narrow peak. The results are shown in
Fig.4-14 where the dotted line shows that the theoretical results for the
asymmetric three-aperture lens hav-
ing a similar construction to the
slit lens used in the present experi-
ments. (Read 1970).

The outer and inner radius of
the sector analyser are 30 and 20
mn, respectively, and the height is
50 mnm. As the width of slit As, As
and A; is set at about 0.1 mm, this
_ analyser provides an energy reso-
= %5 x\\ lution of E/AE ~ 7 /247 ~100 vhere E

\‘. - o is electron energy entering the

[ - slit of the sector analyser, 4F

0 5s — energy resolution, 7 central radius
' of the slit of the analyser, and 4 7
width of the slit of the analyser, and

the value is confirmed experimentally
by the FWHM of the elastic scattering

"Fig.4-14. Focusing condition of the peak (see Fig.4-22).

three-slit lens for V =300 eV (o)
and 500 eV(x). (Dashed line shows
theoretical results for an asym-

The sector is coated with soot
produced by burning liquid benzene,
to minimize the generation of second-
metric three-aperture lens having

) ary electrons.
similar construction as the three-

slit lens (Read 1970).

4-2-4 Detector

The energy analysed scattered electrons are detected by a channeltron
electron multiplier (Murata Co., Ceratron Type EMW-1081E, see Fig.4-10)
with an acceptance cone. The multiplier pulses are inductively coupled
from the analysing system at a high voltage potential into a pre-amplifier



at earth potential. The pulses the pass through a pulse height analyser

and are counted by a multi-channel scaler (M.C.S.).
The pulse height distributions (P.H.D.} are shown in Fig.4-15 as a fun-
ction of the multiplier voltage. The multiplier is operated at 4500 eV to

Relation between PHD.
1.0r and Applied Voltage
- of CERATRON
~
F 05}

0735 40 45 50
Applied Voltage(kV)

Intensity
( arb. unit)

e
0 %6 }QQ\'\Q
Pulse Height
(arb_ unit )

Fig.4-15. Relation between P.H.D.
and applied voltage of Ceratron, and
a pulse height resolutionw/Dof Cera-
tron as a function of applied voltage,
where W is FWHM of P.H.D. and D

the mean value of pulse height.

300 c/s

1000 c/s

3000 c/s

10000 c/s ‘ pm e :
| |
-wulmjf-~ XF -——»-;

Pulse Height (arb.unit)

Fig.4-16. Relation between R.H.D.

and count rate of Ceratron.
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ensure a pulse height resolution maximum, which is defined as the ratio
between the mean value of pulse height and the FWHM of P.H.D. (see Fig.4-15)
As is seen in Fig.4-16, the P.H.D. of the multiplier depends slightly
on the count ratio if it is less than 10 * c/s. During the present experi-
ments this condition was always satisfied.
The multiplier efficiency is not uniform over the entrance plane.
For example, if an electron enters along the channel axis, it may penetrate
quite a distance into the multiplier before releasing secondary electrons
resulting in a lessened gain. Thus, it was always set off-axis from electron
path to attain a higher pulse height. The dark current of the multiplier
is less than 0.1 pulse per minute.

4-2-5 Measurement System

A schematic diagram of the electric circuit used in the analysing
system is shown in Fig.4-17.

'ty " M.C.S.
g _LH~ SCANNER
’ i 3 2
]

Fig.4-17. Electric circuit of the analyser system for measurements of
loss spectra.



The loss spectra were obtained by scanning the potential of the
sector and-the lens, to obtain the best fit for the focusing condition.
These potentials varied synchronously with the channel advance signal of
the multi-channel-scaler (MCS) as is shown in Fig.4-17 {(Ino-Tech TI-5200).

The whole electric circuit has a stability of about 0.01%. The
primary electron beam current is stabilized by monitoring the current to
the Faraday cup (see Fig.4-18). The monitored current using this circuit

<—— auto
~—— manual
-——auto

CURRENT

Photo Coupler

BEAM

Fig.4-18 Schematic diagram of the ¢F
beam current stabilized circuit. (-

TIME
is shown in Fig.4-19, together with

the current obtained using a heater Fig.4-19 Stability of electron beam

current stabilized circuit. As is current (auto; beam-current-stabiliz-
shown in Fig.4-20, the MCS scanner ed mode, manual; gun-heater-current
is composed of a 1 MHz oscillator, stabilized mode) .

counters, photo-couplers and 10-bit
D-A converters (1024 steps). It

-3
serves the dwell time of 10 to 8 ( I [j ::] Channet
0s¢cC Counter
Advance

sec for each channel, and the scan-

ning may be started or stopped at {tho 1 {th

Coupler;

every 64 steps. The sector poten-

tial is swept linearly with regard [ D.A£_J l D.A.dgw

to the MSC scanner output, however l |
the lens pOtential should be Swept Lens Controller  Sector Controller
non-linearly as can be seen in

Fig.4-14. To simulate the curve, Fig.4-20. Schematic diagram of MCS

n-linear amplifier was con-
a no 1 © scanner.
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structed (see Fig.4-21). As the
sweeping voltage of the sector poten-
tial is small compared to the sector

potential itself, one would expect
the circuit shown in Fig.4-21 to

provide good results.

AA——
v
e ¥
Vs Vo
] 3 o ’
<4

Fig.4-21. Schematic diagram of lens
voltage controller.

4-3, Results and Discussion
4-3-1 Calibration

An example of the measured results of the loss spectra is shown in
Fig.4-22 (E=300 eV, 0#=60°). Many peaks corresponding to various excitation
processes can be observed, i.e. the excitations for (6s)(6p)3P (4.9 eV),
(6s) (6p)*P (6.7 eV), (6s)(7s)'S (7.9 eV),(5d)°(6s)*(6p)'P (9.8 eV) and (5d)°
(6s)?(6p)°P (11.0 eV) states.

The background is estimated as the average number of electrons count-
ed at each channel of the M.C.S. corresponding to loss energies between 2
and 4 eV, for the lowest excited state of mercury atom exists at 4.9 eV
above the ground state.

The relative transmission efficiency a of the analysing system was
determined by measuring the scattering intensity of elastic electrons by
varying the incident energies from E to E—4E . The standard transmission
efficiency g was determined for each incident energy at the scattering
angle where the differential cross section of an elastic scattering remains
almost constant for both the variation of the incident energy and scatter-
ing angle (e.g. 300 eV 100°, 400 eV 90° etc. see Figs.2-5 to 2-7. The

relative transmission efficiency @ was measured for each incident energy
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Fig.4-22. Example of the measured results of the loss
spectra ( E=300 eV and #=60°)

and scattering angle, the profiles of which were comparedto &g to assure
a correct position for the analyser. Using the transmission efficiencies
thus obtained, the ratio of the elastic and inelastic scattering cross

section was determined correctly for each incident energy and scattering

angle.

4-3-2 Loss Spectra

Fig.4-24 show the electron impact spectra for mercury corresponding
to the incident electron energies from 300 eV to 1000 eV, scattering angles
from 50° to 110° and loss energies from 0 eV to 15 €V. Elastic peaks are
abbreviated for simplicity. Each spectrum shown in Fig.4-23 is obtained
from the measured results (an example is shown in Fig.4-22) through the
following procedures; 1) Transmission efficiency & was measured and compar-
ed with@g.2) The ratio between the background and the peak counts of 6'P
excitation was established to be less than 10 % (usually the ratio was less
than 5%), otherwise the data was omitted. 3) The background was subtracted
from each channel intensity and then the intensity of each channel was
corrected by the transmission efficiency «. 4) The loss spectra were nor-
malized by the elastic scattering intensity. Finally, the data thus obtain-
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Fig.4-23. Energy loss spectra for mercury (The spectra are normalized by
the elastic scattering intensity having the same impact energy and scatter-
ing angle).



ed which correspond to the same conditions as to impact energy and scatter-
ing angle were summed up and averaged to reduce the statistical deviation.

Concerning the ratio between 6'P excitation and elastic scattering, it
was estimated that error was less than 20 % including statistical error
and the error induced by both the background and variation of transmission
efficiencies. During measurement, the actual energy resolution was varied
from 0.7 €V to 1.8 eV( FWHM) by controlling the electron energy entering
the sector analyser in accordance with impact energy increases from 300 eV
to 1000 eV. As has already been pointed out in Sec.2-4, the profiles of
the theoretically calculated cross section of the elastic scattering agree
well with experimental results, except that the extremum points of the cal-
culated cross sections shift slightly to scattering angles smaller than
the experimental(Walker 1969). Therefore, in Fig.4-23, the calculated re-
sults of the elastic scattering cross section, shown in Fig.Z-5 are used
instead of the experimental ones to avoid inaccuracies stemming from dif-
ficulties of measuring absolute transmission sfficiency for various scatter-
ing angles. Concerning the absclute values of the cross section, the
comparison between the experimental data and the calculated results shows
that the latter is about 1.5 times larger than the former at scattering
angles larger than 30° (see Sec.Z-4). Thus the absolute values of the in-
elastic scattering cross section obtained from Fig.4-23 provides only the
coarse evaluation which are probably a few times larger than the true
values.

Two inelastic peaks corresponding to 6'P((5d)!°(6s)(6p)) and 6p'3P
((5d)°(6s)2(6p)) excitations (6.7 eV and 11.0 eV energy losses respective-
ly), appeared clearly in every spectrum, as is shown in Fig.4-23. These
were also veported in a forward scattering experiment by Skerbele and
Lassettre (1972). Fig.4-23 also shows that each elastic scattering in-
tensity varies 2 or 3 orders of magnitude as a function of scattering angle,
while the ratio between inelastic and elastic intensities remains in the
same order of magnitude (a few percent) for dominant inelastic scatterings.
Hence these oscillatory features, which are remarkable for elastic scatter-
ing in these energy regions, also appear in each dominant inelastic scatter-
ing, although they become smoother than that for elastic scattering.

Fig.4-24 shows the ratio of intensity between 6'P excitation and
elastic scattering. That for 300 eV electrons agrees well with the results
reported by Gronemeier (1970) (see Fig.3-6). '

At other inelastic channels, in the impact energies between 300 eV
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and 500 eV, 7'S(7.9 eV) and 6p''P(9.8 eV) excitations were observed at
shoulders of 6'P and 6p'’P peaks. The intensity of the strictly forbidden
71S excitation was larger than that of the 6°P (4.9 eV) excitation (allow-
ed due to spin-orbit coupling), however at forward scattering the latter
was much larger than the former. The intensity ratio of 6°P and 6'P was
equal to or less than ~10°2 at the incident energy of 300 eV, and at high-
er impact energies 6°P excitation was no longer observed because of a low-
er scattering intensity. The 7'P excitation, the intensity of which was
larger than that of 7!S excitation at forward scattering, was rarely ob-
served in the present experiment. For the ionization channels, particular-
ly loss energy of more than about 13 eV, it seems that the variation of

the intensity ratio in regard to scattering angles was not as clear as that

of the excitation scattering to discrete levels,



CHAPTER 5, 6!P EXCITATION =---- COMPARISON OF THEORY AND
EXPERIMENT

5-1 Introduction

In this chapter the theoretical and experimental results will be com-
pared. It was found that the DWB approximation provides results in close
agreement with experiments. Moreover, in regard to spin polarization, the
DWB approximation predict a new phenomena at an electron impact energy
greater than 300 eV.

As has already been discussed in Sec.4-3-2, the differential cross
section of 6!P excitation shows oscillatory features. This may be explain-
ed qualitatively by the following processes; the incident electron under-
goes the inelastic process at a small angle followed by large angle elastic
process, or vice versa, since the inelastic scattering cross section is very
large at only forward scattering. Since this model breaks down the in-
elastic scattering into two elementary processes including the elastic pro-
cess, the oscillatory features appearing in the inelastic scattering may be
attributed to the elastic process. Futhermore, if one takes into account
that the inelastics scattering at forward scattering is confined almost to
optically allowed transitions, this model may also explain the dominance of
the 6'P excitation. Concrete theoretical treatment of this model is embodi-

ed by DWB approximation in Sec.3-2.

5-2 Comparison of Theory and Experiment

Figs.3-4, 3-6 and 3-7 show that the cross sections calculated using F}: pro-
vide values that agree well with the experimental data for each incident ener-
gy. However, concerning the profiles, the cross sections using Fy give
results superior to those using 1?C. These results suggest that the actual
form factor has a profile similar to Fjy, and a value similar to F.

This means that 1) the actual atomic field effectively acting on a 6s or

6p electron may be weak compared to the field of the Coulomb approximation,
which may result in spreading of the atomic electrons over wide radial region
and may originate from exchange effect and mutual shielding (see Fig.3-1),

2) the actual radial wave functions R and RlO (see equations (3-31) and
(3-33)) may be much more isolated from each other than those used in Fy -
This results in the reduction of the value of (Big,Ry,> appearing in the
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form factor having the form (see equations (3-34) and (3-35))

= R R R F |R _
Vo1 3 (10’ 00)( 11| 1| 00> ’ (5-1)

with
o0

r
1
E IF IR =—/ R _R_ridr +7r |B
(lll 1| 00> ra, 11 00 1 . ~/;.11R00d7'1 + (5-2)

Concerning the spin polarization, as is seen in Figs.5-1 and 5-2 the

calculations using F ., provide results in closer agreement to the experimen-

06

T

50 eV

100 eV A

—--'_v/"—v;\ }‘; Y N
- 300 S NoE 120‘&7’/ 180"

ol

Fig.5-1. Spin polarization for mercury at incident electron energies of 50,
100 and 180 eV (——:DWBcalculation for 6'P excitation using FC (see Sec.

3-6), ---: DWB calculation for 6'P excitation using FM,————-—: elastic
scattering by ground-state atomlc potential,

excited-state atomic potential ande :experimental results for 6'P excitation
(Hanne et al. 1972).
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tal results than that using F , as would be expected from the profiles of
the cross section (Note that spin polarization depends not on values of cross
section but on profiles of cross section. See e.g. equations (2-42),(3-51)
or (7-3)). However, it should be mentioned that the experimental results of
spih polarizatién for 6P excitation are best expressed by the calculation

10

- 300 eV it
e gk

Fig.5-2. Same as Fig.5-1 except here the energies are 300 and 500 eV
(Note that sharp peaks of the spin polarization appearing in the elastic
scattering at the scattering angle of about 75° (300 eV) and 70° (500 eV),
disappear in 6'P excitation scattering.).

for elastic scattering in the present calculation. This is not the case for
the calculation by Madison and Shelton (1973). They obtained results in
close agreement to experimental results for incident energies between 50 and
180 eV(see Fig.5-3). It is thought that this is primarily a result of the
difference in form factor-used (as is seen from Fig.3-2, the profiles of FAI
are simplified for convenience in the present calculation).
Although the spin polarization for incident energy of 100 eV had not

been measured until presently, the profiles given in Fig. 5-1 are thought to

be reasonable and conceivable considering that the experimental results of
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spin polarization for 6'P excitation were most like that of elastic scatter-
ing. However, for incident energy of 300 eV and 500 eV, it is notable that
the sharp peaks of the spin polarization appearing in the elastic cases at
the scattering angle of about 75° and 70°, respectively, disappear in cal-
culations of 6'P excitations using both Fy and F,, (see Fig.5-2). For 6'P
excitation scattering and incident electron energy over 180 eV, because no

experimental data on spin polarization have been reported until currently
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Fig. 5-3. Spin polarization for 6'P excitation scattering at incident
energies of 50 and 180 eV calculated by Madison and Shelton (1973) using
DWB approximation for Mayer's potential (solid line, 1957), Coulthard's
potential (dashed line, 1967) and experimental data by Eitel and Kessler
(1970).

it 1s uncertain as to whether the drastic departure of spin polarization
between the elastic and 6'P excitation scattering means new phenomena or a
breakdown of the DWB approximation. However, generally speaking, the DWB
approximation provides better results at higher incident energies where a
large number of partial waves contribute to forward scattering, most of
which have nearly zero polarization, thus the reduction of the spin polar-
ization is thought to be reasonable.

Further measurements of spin polarization in these energy regions
would be highly desirable.
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PART 1II., ESP-DETECTOR USING MERCURY VAPOUR

CHAPTER 6, INTRODUCTION

Currently, ESP experiments are being carried out by several groups in
various regions of physics. These ESP experiments except for that listed
in Tables 1-1 and 1-2 are summarized in Table 6-1 classifying into 5 groups,
i.e. 1) the group entitled "Field Emission' treating ESP experiments or
theories of field emitted electron beam usually from ferromagnetic materials,
2) the group "Photo Emission (solid)' treating those of photo electrons
from ferromagnetic materials or of photo electrons from solid excited by
circularly polarized light, 3) the group "LEED" treating those of diffract-
ed electron beam in low energy electron diffraction, 4) the group 'Photo
Emission (vapour)' treating those of photo electrons from polarized atomic
beam or photo electrons excited by circularly polarized light from unpolar-
ized atomic beam and 5) the group '"Others'. In these'experiments, spin
polarization is usually detected using scattering of polarized electron beam
with heavy atoms (Au-foil or Hg-vapour), the efficiency of which is equal
to or less than 10°° (The principle of the detector is given in Chapter 7.).
It should be noted that the value is quite small compared with that of light.
A simple question arises as to whether or not a usual magnetometer can
detect a direction of electron spin. Incapability of detecting electron
spin with macroscopic magnetometer
is qualitatively described in Appen- .

dix 2 according to Mott's considera- <::> 5SD
tion together with incapability of \\\\ .
polarizing electrons with macro- ML e -10°ev A%‘,/ﬂﬁtigl (@)
scopic magnetic field. ol ’///

Since the first measurement of
spin polarization using double <;;> SsD
scattering by gold thin film at 340 /i channeltron
keV (Shull et al. 1943), the detec- ]
tion of electron spin in high energy Il e- -300 v 4__@3,/lﬁtlg¥§£(b)
electrons is usually performed using h l

scattering with gold thin film,
which is called Mott detector (see
Fig.6-1). On the other hand, the
first ESP measurement for low energy

\g channeltron

Fig.6-1. Schematic diagram of ESP de-
tector using (a) Au-foil (Mott detect-

electrons was performed using or) and (b) Hg-vapour

- 104 -~



mercury vapour (Deichsel 1961). The ESP detector of this type is widely
used for various ESP experiments such as e -rare gas elastic scattering
and e~ -Ne resonance scattering. Mott detector was first used by
Jost and Kessler (1965, 1966) for low energy experiments. Schematic dia-
grams of these two types of ESP detector are shown in Fig.6-1. Because of
a high efficiency and ease of treatment in a high vacuum, the Mott detect-
or has been widely used not only in atomic physics but also in surface phy-

10. ~11

sics, where ultra-high-vacuum (10 10 Torr) is necessary. However,

it should be noted that a Mott detector which uses high energy electrons
{(~100keV) is not suitable for the experiments of low and mediate energy

regions in which major ESP experiments concentrate. Hence the present
study attempts to develop an ESP detector suitable for low and mediate
energy regions utilizing the electron-mercury scattering, which can also
be used as a source of polarized electrons for e.g. surface physics study
{see Sec.8-3).

Optimum conditions of ESP detector using mercury vapour are discuss-
ed and determined systematically in Chapter 7 using the results in
Chapter 2, 3, 4 and 5. 1In Chapter 8, ESP detector and apparatus for
double scattering experiments constructed according to the line shown in
Chapter 7 is described. Also described in this chapter is high beam
current Pierce type electron gun using single LaBg crystal as a cathode

for double scattering experiments.

Another possibilities of detecting electron spin are proposed by
several authors (Tolhoek 1956, Feder 1975):

1) Measurement of the spin angular momentum carried by electrons
with longitudinal polarization in a mechanical way. This may be realized
by measuring a torque of a suspended disk where polarized electrons are
falling (A kind of Einstein-de-Haas effect]. '

2) Measurement of the polarization of emitted light from an atom
which is excited by polarized electrons.

3) Measurement of intensity asymmetry of diffracted beams in LEED
(low energy electron diffraction) experiments. The principle is like that
of a Mott detector and a detector using mercury vapour as scatterer.

The methods of 2) and 3) may be more practical than that of 1).

- 105 -



Table 6-1

Field Emission

Exp.
Theor.

Exp
Exp.
Exp.
Exp
Theor.

Exp.
Exp.
Exp.
Exp.
Theor.

Gd (polycrystal)
Gd

Ni(single)
EuS-coated W
W(single)
Ni(single)

Effect due to external
field

Ni(single)

EuS coated W
Fe,Ni,Co,rare-earth metal
Ni(100)

W(001) with adatom

Photo Emission (Solid)

Exp.

Theor.
Theor.
Theor.

Exp.
Theor.
Exp.
Exp.
Theor.
Summary
Theor.

Exp.
Exp.

Ni(single,poly)
Alkali metal
Ni(single)
Ni,Co

Ni,Co

Alkali metal
(circularly po.light)

Co

Ferromagnetic metal
Ni,Co,Fe

Ferro magnetic metal
Eu0(100)

Ferromagnetic metal
EuO(La doped)

Eu0

GaAs

Ferrite
(Fe30u, LipsFes s04)

La-doped EuO
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Hofmann et al.
Miller et al.
Gleich et al.
Miller et al.
Regenfus and Siitsch
Miller

Eckstein and Miller

Eib and Alvarado
Kiskev et al.
Chrobok et al.
Landolt and Campagna
Feder

Banninger et al.
Heinzmann et al.
Smith and Traum
Anderson
Wohlfarth

Heinzmann et al.

Busch et ail.
Murao

Adler et al.
Adler et al.
Eastmann
Campagna et al.
Murao

Meier et al.
Sattler and Siegmann
Pierce et al.
Alvarado et al.

Meier et al.

1967
1967
1971
1972
1974
1975
1975

1976
1976
1977
1977
1977

1970
1971
1971
1971
1971
1972

1972
1972
1973a
1973b
1973
1973
1974
1975
1975
1975
1975b

1975



Theor.
Theor.

Theor.

LEE

Theor.
Theor.
Theor.
Theor.
Theor.
Exp.

Theor.
Theor.
Theor.
Theor.

Photo

Ce by circularly po. light

Photo Emission
(circularly po light)

Ni(single)

E(001)

Fe(001)
W(110), W(001)
W(001)

W(001)

W(001)

W(001)

Ni(111)

Emission (vapour)

Theor.
Exp.
Exp.
Exp.
Exp.
Exp.
Theor.

Others

Theor.
Theor.

Exp.

Theor.

Exp.

Theor.

Ce

Po. Alkali Atom
Ce Po.light

Th

Ce

exchange scattering
Ne(resonance scattering)
K, exchange scattering
electron-magnon scattering
K, exchange scattering

excitation process of po.
atom
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Koyama and Merz
Koyama

Wohlfarth

Jennings
Jennings
Jennings
Feder

Feder

0O'Neill et al.
Jennings
Feder

Feder et al.
Feder

Fano
Heinzmann et al.
W. Hughes et al.

Drachenfels et al.

Heinzmann et al.
Granneman et al.
Feder

Byrne and Farago

Franzen and Gupta
Farago and Siegmann
DeWames and Vredevoe

Campbell et al,
Kleinpoppen

1975
1975

1975

1870
1971
1972
1973
1974
1975
1975
1976
1976
1877

1969
1970
1972
1974
1975
1976
1977

1965
1965
1966
1967
1971
1971



Theor.
Theor.

Theor.
Theor.

Exp.

Theor.

Ne(resonance scattering)
Ne(resonance scattering)

excitation process of
po. atom

Ne(resonance scattering)

surface of ferromag-
netic metal

Hg(resonance scattering)
Hg(exchange scattering)
Hg (exchange scattering)
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Heindorff et al.
Suzuki and Tanaka
Blum and Kleinpoppen

Suzuki et al.

Penn

Diiweke et al.
Hanne and Kessler
Hanne

1973
1973
1974

1975
1975

1976
1976
1976



CHAPTER 7. OPTIMUM CONDITIONS OF THE ESP DETECTOR

7-1. Introduction

The ESP detector constructed by Deichsel (1961) is shown in Fig.7-1.
It consists of a mercury reservoir, two sector type energy analysers and
two electron multipliers. This was used to investigate the spin polar-
ization of the electrons elastically scattered by the mercury atom.
The energy resolution was set at less than 4.9 eV, the lowest excitation
energy of mercury corresponding to 6°P excitation. The scattering angle
and angular resolution were set at 90° and 6° respectively. However, the

SEV OST (780°)

Hektrisches Transversalfeld —
Llektrostatische Linse—pms

Blenae
A
Streustute X 20757 .

i T
J ]
Aty Pump/eifung\
90°fest
Blende

/

/.

Llektrostatische Linse—=
Elektrisches Iransversalfeld—

Verbindungskanal

T
Zwischen den Streusturen 0% 30 0mm

SEV WEST (0°) Isalation

Fig.7-1. Electron spin polarization (ESP) detector (left side chamber)
and polarizer (right side chamber) used by Deichsel (1961).

theoretical basis for these values was not shown with the exception of the
energy resolution for the ESP detector.

Gronemeier (1970) measured the 6'P excitation scattering, which is
usually the most dominant inelastic process in electron-mercury scatter-
ing for electron impact energies between 20 and 300 eV and Yamazaki et al.
(1977¢c) measured the loss spectra of mercury atom for electron impact
energies between 300 and 1000 eV (see Secs. 3-6 and 4-3-2). The results
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show that these inelastic electrons have little influence on the deter-
mination of the spin polarization when used in hundreds eV energy regions.

In this chapter, optimum conditions of the ESP detector using e-
lectron-mercury scattering are systematically studied and a high efficient
ESP detector of simple construction is proposed.

7-2. Determination of E, 6 and 46

From equation (2-45), we can see that transverse spin polarization of
electrons (i.e. spin polarization perpendicular to the scattering plane
which is described by primary beam and direction of observation) can be
analyzed by the scattering asymmetry. Substituting #=0 and 7, and P=
(0, P,0)in equation (2-45), we obtain

GL: 0’0 (14SP) (7-1)

Ip= 0, (1-SP), (7-2)

respectively (see Fig.7-2-a). Equations (7-1) and (7-2) lead to

Np/N, = (1=PS) / (14PS) | (7-3)

where N @ :Ni'n 'NHg Tr) 4@, N’inis the number of incident electrons
per unit area, N Hyg the number of mercury atom in collision volume, and d@
the acceptance solid angle of electron detector. Thus, we can determine
the polarization of incident electrons by measuring the ratio of left-
right asymmetry N B /N L

Fig.7-2-b shows the differential cross section for a totally polariz-
ed incident electron beam of 300 eV. It seems that the grater the absolute
value of the Sherman function, the greater the detectability of spin polar-
ization becomes. However, from a practical point of view it should be
noted that in these energy and angular regions, the differential cross
section becomes extremely small, so the efficiency of the detector is re-
duced. Moreover, the Sherman function S in these regions is in general
rapidly varying for both the scattering angle and the impact energy (see
Figs.7-3 to 7-6). This makes it difficult to estimate the Sherman function
both theoretically and experimentally. The theoretical value of Sherman
function differs cohsiderably from the experimental one in these regions.
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Fig.7-2. (a) Schematic diagram of left-right scattering asymmetry of a
beam polarized perpendicular to scattering plane.

(b) Cross section for a totally polarized electron beam scatter-
ed by mercury atom at E = 300 eV.

Furthermore, experimentally determined Sherman function in these regions
depends strongly on the accuracy of the scattering angle and the angular
resolution of the system.

To determine the best condition of the ESP detector systematically
from these various parameters, first, the statistical error of the measured

polarization is estimated from equation (7-3) as
1 1
4P = @N*.4p, P {@resn~t 1) & (7-4)

Calculating the right hand side of equation (7-4) and taking into account
both the differential cross section and ESP we can estimate the suitable
regions for the energy, scattering angle and angular resolution necessary
for the detector. Examples of the results are shown in Figs.7-3 to 7-6,
together with the cross section and spin polarization. The results are

summarized in Fig.7-7 for cases of the two different angular resolutioms.
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These results show that the optimum conditions do not concentrate around
extremum points of Sherman function, but exist around 1) 300 eV, 90°,

2) 400 ev, 70°, 3) 600 eV, 120° and 4) 1000 eV, 90°. In these energy

and angular regions, particularly at 300 eV, both the cross section and
Sherman function are slowly changing functions with respect to scatter-

ing angle, so it is concluded that high angular resolution and high ac-
curacy of angular setting are not necessary for the ESP detector to achieve
high ESP resolution.

Other important points are 1) the Sherman function necessary for deter-
mination of polarization has nearly the same value for several theoretical
calculations and experiments in these energy and angular regions, so the
accurate Sherman function can be easily obtained both theoretically and
experimentally, 2) S/N ratio may increase because of high scattering in-
tensity.

It was concluded that an electron energy of 300 eV and a scattering
angle of about 95° is the best condition for the optimum operation of the
ESP detector in the hundreds eV energy regions.

As can be seen in equation (7-3), the left-right asymmetry remains
constant over the region of scattering angle where Sherman function S re-
mains constant. From equation (7-3), for the angular resolution of 46, the
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observed spin polarization P()bs is expressed as

_ a0y  s"
Pobs/P= 1454 (¢

where St =

2¢'S"!
oS

) (7-5)

03,860 , o'=05,00 and S = 0257002

From equation (7-5), the error caused by the variation of the Sherman
function in the angular range of 90° to 105° for incident energy of 300 eV

is estimated to be less than about 1%.

The number of doubly scattered electrons Ng may be roughly estimated

as

2 -—
N, @) :NMNHgfa @ o @-0)do

where w and @ are the final and intermediate

Equation (7-6) shows that ratio of
double scattering to single scattering
is proportional to mercury vapour den-
sity, so in general sufficiently low
density of mercury vapour is required
for precise measurement of spin
polarization (W. Eitel et al. 1968).
Fig.7-8 shows ¢ (@) o @—0) as a func-
tion of 6 for e« = 95° and 75°. It
shows that for e = 95° | the probability
of the double scattering is dominant
only near @ ~0° or 95°. A polarization
Pof incident electron is transformed
according to
Equation (2-48)

to Py after scattering
the equation (2-48).
shows that at forward scattering,
initial polarization pis conserved
during scattering, becauseS~ U ~ 0
and 7 ~. 1 at forward scattering

as is seen from Figs.7-9 and 2-9.
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Fig.7-9. Contours of constant U (a) and T (b) for mercury as function of
scattering angle and electron energy. U describes the rotation
of the polarization out of its initial plane. T describes the
reduction of the polarization component due to scattering (Kessler
1976).

(Note that S24U?4+T?*= 1). This affects little on the determination of

spin polarization. It is not the case at & =75° where an effective Sherman
function originating from double scattering is modified by the Sherman fun-
ction at & =65° and 85°. It is concluded that the region of large cross
section is desirable to make the affect of double scattering relatively less.

7-3. Determination of 4E

In this section, the energy resolution necessary for an ESP detector
is investigated. From equation (7-3), the observed spin polarization Po

bs

is expressed as
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P S = _ -
obs N (NR NL+nR nL)/ WN+m)

(7-7

= P-S-{1-5. /SHn/N|

inel

where 7 p @0 is the number of inelastically scattered electrons to the
igh i .

right (left) side, S%nel

electrons

the Sherman function of inelastically scattered

= 7-8-a
N N +N, ( )

n = n. _—+n
kL (7-8-b)

From equaticn (7-7), ifp i.e, inelastically scattered electrons

inel™®
are not polarized, the error induced by these electrons is estimated to be
n/N ,the ratio of inelastic electrons to elastic ones.

As was experimentally investigated in Chapter 4, the ration,N for a
hundreds eV electron remains within a few percent (see Fig.4-24). 1t in-
creases when elastic cross section decrease. This implies that the error
induced by inelastic electrons can be reduced if we adopt a condition where
the elastic cross section is large.

Moreover, as was experimentally investigated by Hanne et al, (1972),
inelastically scattered electrons corresponding to 6'F and 6p'’P excitations
are polarized to some extent and show the similar profiles of spin polariz-
ation to elastically scattered electrons (see Fig,7-10). These facts suggest
that the error originating from inelastic scattering can be less than % /N
(see equation 7-7).

It is concluded that the energy resolution of ~ 13 eV (6.7 eVx 2) or
more may not cause significant error (less than 2% see Fig.4-24) in the
ESP detector, particularly at region near the maximum points of cross
section.

7-4. Conclusion

The optimum condition proposed in this chapter is of practical im-
portance for reducing unnecessary labor in both the construction of the
ESP detector and precise measurement of spin polarization. From the dis-
cussions developed in Secs. 7-2 and 7-3, it is concluded that
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E~ 300 eV
7-9
AdE~ 13 eV (7-9)

O~ 95°
406~ 15°
may give the best condition for the ESP detector. Advantages of the con-
dition are summarized as follows;

1) In this region , the Sherman function can be determined accurately.

2) The high accuracy of angular setting is not necessary, which re-
sults in simple construction of the ESP detector.

3) A large acceptance angle is allowable which results in high ef-
ficiency of the ESP detector.

4) The scattering cross section is large which results in better S/N
ratio.

5) The ratio of inelastic to elastic scattering cross section is
small which results in high efficiency and simple construction of the ESP
detector.

6) The affect of multiple scattering is small which allows high density
mercury vapour so results in high efficiency of the ESP detector.

For this condition and the mercury density of 10!5/cm® (corresponding to
the vapour pressure of 3 X 10_2 Torr), the efficiency @, ff of the ESP
analyser amount to approx. 10”° where

Xeff =s %, . 1,1, (7-10)

Sef' is an effective Sherman function andl,/lo the intensity ratio of
scattered to incident electrons. Equation (7-10) is derived from equation
(7-4) taking into account the usual experimental condition of S« P« 1.

A common Mott detector provides an efficiency of approx. 10°° (see e.g.
Kessler 1976) which is about one order larger than the value now obtained.
However, the ESP detector using mercury has various advantages, primarily
1) electrons need not be accerelated to energies as high as 100 keV, which
results in simple construction and easy operation of ESP detector, 2) this
detector can also be used as a polarized electron source (see Chapter 8).
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CHAPTER 8., DOUBLE SCATTERING EXPERIMENT

8-1 Introduction

The optimum conditions of the ESP detector have been systematically
determined in Chapter 7. In this chapter, the apparatus for double scatter-
ing experiments will be described (see Fig.8-1).

The first and second scattering is for production and detection of
polarization, respectively. The arrangement of the ESP detector, the

second scattering, is determined according

Ly J to the line shown in Chapter 7. As a
standard polarized electron beam source,
—t 5 electron-mercury elastic scattering is
_1T‘ used, because the spin polarization in
55} I %%ﬁ the electron mercury elastic scattering

authors (see Tables 1-1 and 1-2). Since

\\\\ /E///tjg' 7 has been investigated in detail by several

* Hg-vapour the intensity of an electron beam after

double scattering is extremely weak, a

Fig.8-1.  Schematic diagram of the Pierce-type electron gun of high intensity
double scattering experiment for was constructed using a single crystal LaBs
mercury vapour. cathode.

8-2. Apparatus -- Design and Performance

(R S04

The apparatus consists of an electron beam source, a first vacuum
chamber as an electron spin polarizer and a second vacuum chamber as an ESP
detector. An outer view of the apparatus shown in Fig.8-2 removing the
top cover of the vacuum chamber. Fig. 8-3 shows cross sectional drawings
of the system. The scattering angle at the first chamber is set at ~100°
where highly polarized electrons are provided at E ~ 850 eV (see Fig.2-5).
Fig.8-4 shows the block diagram of the vacuum system.

The first vacuum chamber is a 20 cm high cylinder of 12.4 cm inner
diameter pumped by a 120 &/s oil diffusion pump evacuating the system to
residual gas pressure of 10_5 Torr, but the pressure increases to 5><1O_5

Torr during operation due to mercury vapour. The gun part is differential-
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ly pumped by a 600 &/s oil diffusion pump which provides a residual gas

pressure of ~5x10"° Torr. In the center of the second chamber, a collision

chamber is set which is also used as the mercury reservoir and the Faraday

cup from monitoring the primary electron beam current. The density of the

mercury vapour is controlled by the inductionless heater wound around the

Fig.8-2. Top view of the apparatus for the double scattering removing the

top cover of both 1st and 2nd chambers.

Fig.8-3. Schematic diagram of the apparatus constructed for the double

scattering.
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GUN

1st CHAMBER 2nd CHAMBER

Fig.8-4. Schematic diagram of the vacuum system.

collision chamber which is pumped through two apertures (inner diameter of
4mm) which allow the incident and scattered electrons to pass.

The construction of the second chamber is like that used in Chapter 4
except the energy analyser and the collision chamber which is also used as
a Faraday cup. Two energy analysers are set in the left and right sides
of the collision chamber (in the scattering plane) at symmetric position
with respect to incident beam axis at a scattering angle of approx.95°.

The cross sectional drawings of the energy analyser are shown in
Fig. 8-5. The energy analysis is performed by a twofold retarding mesh
(gold plated tungsten of 100 mesh) instead of a sector type analyser, the
construction of which is confirmed by the investigation in Chapter 7.

(It was shown that even energy resolution of approx.13 eV was still practi-
cally feasible). The outer view of the analyser is shown in Fig.8-6.

retarding grid
Ceratron

v Y_T_ N
el

Fig.8-5. Schematic diagram of the
energy analyser to the ESP detector.

Fig.8-6. View of the electron multi-

plier and the case of energy analyser.
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The electron multiplier used is a kind of channeltron (Murata Co., Ceratron

Type EMS-6081B) with an acceptance cone and a holding stage.
8-2-2. Pierce-Type Electron Gun Using LaBe Single Crystal as a Cathode

As the intensity of an electron beam after double scattering is ex-
tremely weak, an electron gun of high beam intensity is necessary for double
scattering experiment. For this purpose, a Pierce-Type electron gun of high
beam intensity was constructed (Pierce 1954). The Pierce-Type electron gun
is designed for use in space-charge limited regions and provides a parallel
electron beam. The main part of this gun consists of a cathode with flat

Oscillator
TkHz

\nod:
!
U Electrolytic

h Tark

Electrolyte Line

(Axis of Symmetry
of Fieid }

Fig.8-7. Schematic diagram of cathode  Fig.8-8. Schematic diagram of the
and anode electrodes of Pierce type e- electrolytic tank.
lectron gun (Pierce 1954),

surface, a cathode electrode and an anode electrode as is schematically shown
in Fig.8-7. The actual shapes of these electrode are determined using an
electolytic tank (see Fig:.8-8). It was concluded that the shape of the
cathode electrode should have the same shape as the usual Pierce gun with an
angle of 67.5° between the electrode and the beam axis.

The cathode are heated by electron-bombardment. To prevent the bombard-
ing electrons from straying into the electron beam from the cathode, a shield-
ing electrode is set between the cathode electrode and the heater for e-
lectron bombardment. Parts of both the cathode and shielding electrodes
near the cathode consist of Ta to obtain stable performance during operation
at high temperatures. Fig.8-9 is a cross sectional drawing of the Pierce
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gun constructed. An asymmetric three cylindrical lens with deflector is
set in front of the anode electrode.

LaBs single crystal is used as a cathode because of its high emission
current and stable performance over a long period of time (long service
life) which originates from the low values of both the work function and the
(J.M. Lafferty 1951). Moreover, the LaBs single crystal

has flat surface plane of stochiometric uniformity (T. Tanaka et al. 1975)

vapour pressure

which enables one to obtain a beam of higher current intensity with good
parallelism and spatial uniformity.

The cathode consists of a LaBg single crystal rod with a diameter of
2mm and length of 7mm held in a Ta cylinder. The Ta cylinder is connected
to a Z2mm diameter W-rod with three spot welded Ta wires in order to limit
power consumption. Furthermore, this prevents the gun assembly from deter-
The dis-
tance between the anode and the cathode was 5.5 mm and the perveance was
2.42x10”7 A/V*/%. Two Ta ribbons (0.025x0.75 mn) were held around the

LaBs cathode. The two Ta ribbons had heating currents of opposite direction

iorating the vacuum by heating the area surrounding the cathode.

in order to reduce the current-induced magnetic field around the emitter.
Fig.8-10 is an outer view of the cathode and bombarding system with both
the cathode and the shielding electrode removed.

— _/
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Fig.8-10.

View of the single crystal
LaBe cathode and its holding system

removing anode, cathode and shielding
electrodes.

Fig.8-11. Relationship betwezn beam
current and accelerating voltage (x:

beam current)
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To evaluate the performance, LaBs was heated up to ~1600°C with acceler-
ating voltage range of 200-1300 eV. With these operating conditions, the
gun was being operated in the space charge limited region, with approx. 12ZW
of power consumed. During operation, evaporated LaBg is continually de-
posited on the Ta-ribbons which reduces the work function of the ribbons,
which in turn reduces the heating power to approx. 6 W. The beam diameter
was observed with a fluorescent screen situated 10 cm along the beam path
from the anode. The spot size of the beam was found to be 3-4 mm in dia-
meter for the above accelerating voltages. The beam current was measured
by a Faraday cup having an inner diameter of 4 mm at a vacuum pressure of
3x 10—G Torr. vFig. 8-11 shows the relationship between the beam current and
the accelerating voltage. The rapid variation of the beam current in cur-
rent stability measurements was rarely observed and the beam current drift
was less than 0.1 %. As in seen in Fig.8-11 the actual perveance was found
to be 3.8x 107" A/vY/2,

8-2-3. System of Measurement

A schematic diagram of the electric circuit used for the double
scattering experiment is seen in Fig.8-12. The memory section of M.C.A.
was devided into two parts to treat the signals of the two origins.

A pulse is at first amplified and then arrives at A.:.C.1input in the M,C.A.
through the mixer. At the same time, the memory region is selected based

. AMP D
R MIXER ADC mMEMORY

routing signal

L f i AMP

Fig.8-12.  Schematic diagram of the electric circuit for double
scattering experiment
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on which multipliers the pulse originates. This is a successful method
when counting ratio of both the multipliers are low because switching time
or dead time of M.C.A. has little effect on measurements. Moreover, we can
correct the external and internal background by direct observation of P.H.D.

The system used was Ortec ''Spectroscopy Amplifier 472A (x2), Ortec
"Dual Sum and Invert Amplifier, 433A", and Ino-Tech IT-5200 Multi-Channel-
Analyser.

8-3. Proposal for an Application of Electron-Mercury Scattering to a
Polarized Beam Source

As is shown in Sec.2-3 and Appendix 3, polarizing and analysing powers
are expressed by the same function S (Sherman function) in the case of
elastic scattering. In a certain type of scattering experiment, an inten-
sity measurement using an initially polarized electron beam is superior to
a polarization measurement using initially unpolarized electron beam. *

This is precisely the case in studies of surface physics, where primary
electron beam should be sufficiently weak so as not to damage a sample
surface.

Kessler (1976) summarized various polarized sources and estimated its
beam qualities, which is shown in Table 8-1. 'P2[', appearing at the top of
the 5th colum in Table 8-1, may serve as a kind of parameter for an estimation
of beam quality (see Sec.7-4, where the similar quantity X, rs is used for
the estimation of efficiency of the ESP detector.). The 6-th column Beam
quality 9 is determined by

Pz

2 2 E
To %o Yo

g = ’ (8-1)

* Recently, an experiment of similar conception is reported to be in
progress (Unertl et al. 1977) where photo electrons from GaAs surface
are used as a polarized electron source for LEED study.
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where 7o is the radius of a beam-cross-section minimum, @, the correspond-
ing semi-aperture of the beam and E the energy of electrons leaving the
source. We can see that ¢ takes into account the polarization, intensity
and collimation of the beam. From Table 8-1, the beam source using '"scatter-

Method P I P2y Beam
(Ampere) quality ¢
d.ec. pulsed(~ 1us) Eq. (7.19)
(Ampere)  (el./pulse)
Scattering from 02 35108 10-° Medium
unpolarized targets
Exchange scattering 0.5 10¢ 210~ 14 Low to
from polarized atoms 0.2 107 7-106-12 medium
Photoionization of 0.76 8:10® 10-8 Medium
polarized atoms
Fano effect 0.65 1.510°° 6-10-1° Medium
0.9 3-10° 2-10- 11
Collisional ionization
in optically pumped 0.3  5-10-7 5-10-8 Medium
He discharge to high
Field emission 0.89 10-¢ 8-10-7 High

from ferromagnets

Table 8-1. Comparison of various sources of polarized electrons
(Kessler 1976).

ing from unpolarized targets' is ranked ‘medium”. Thus, the ESP detector
using mercury vapour may work well as a polarized beam source, if an electron

gun is mounted together with the electron multiplier.

It is worth noting that this system provides precise information on
the scattering process by comparing the polarizing and analysing power, i.e.,
these two values are not equal to each other e.g. in exchange scattering

as is shown in Appendix 4.
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SUMMARY

The present work consists of two parts, Part I which consists of
Chapter 1-5 and Part I , Chapter 6-8. The main subject of Part I is
"Electron-Mercury Scattering' and that of Part I , "ESP detector using
Mercury Vapour'. The results obtained in the present study are summariz-
ed chapter by chapter as follows.

Part I  Electron-Mercury Scattering

Chapter 1; Introduction

1) The characteristics of electron-heavy atom scattering are briefly des-
cribed.

2) A historical view of electron-mercury scattering is given together with
bibliographies. It becomes apparent that the studies have been strong-
ly biased toward elastic scattering for both experimental and theoreti-
cal studies.

Chapter 2; Theory of Electron-Mercury Elastic Scattering --- Modification
and Extention of Current Theory

1) Particular attention needed for the theoretical treatment of electron-
heavy atom scattering is described.

2) e -Hg elastic scattering is treated relativistically using a non-
relativistic Hartree potential. The scattering amplitude is written
down for an arbitral incident direction of electron beam.

3) The efficient and accurate computer program is developed for electron-
atom elastic scattering. Theoretical calculation is made for both the
differential cross section and spin polarization of the incident e-
lectron energy between 300 and 2000 eV. In these energy regions, the
calculated results agree well with both experimental results and other
‘theoretical results calculated by more accurate but complex theories,
which include exchange effect between incident and atomic electrons, and
distortion of atom by electric field of incident electrons.

4) The cross section calculated in this way provides important information
concerning study on the behaviour of Auger electrons in solids using
Monte-Carlo calculation. Because the screened Rutherford scattering
formula which is usually used in the Monte-Carlo calculation breaks down

for low energy electron scattering.
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Chapter 3; Theory of Electron-Mercury Inelastic Scattering
--- Application of DWB Theory

1) DWB approximation is applied to electron-impact excitation of 6'P state
of mercury.

2) The computer program is developed for electron-atom inelastic scatter-
ing using the DWB approximation. The DWB calculation is performed for
atomic wave functions constructed using Coulomb approximation and
Hartree approximation in the incident electron energy of 50 to 500 eV.

3) It is shown that at an impact energy greater than 300 eV, the spin
polarization of inelastic electrons differs considerably from that of
elastic electrons at scattering angles less than 90° for both the
atomic wave functions.

Chapter 4; Measurement of Loss Spectra

1) Construction of an apparatus for the measurement of loss spectra is
described.

2) The loss spectra of electron-mercury scattering are obtained in the
energy region between 300 and 1000 eV at a scattering angle of 50 to
110°,

3) Allowed transitions such as 6P and 6p'’P excitation are dominant in
these energies and scattering angles, and show similar diffraction
pattern to elastic scattering. However, the transition rate to 7'S
state {strictly forbidden transition) 1s higher than that to 6°P state,

and 6°P state is higher than that to 7'P state (allowed transition).

Chapter 5; 6'P Excitation --- Comparison of Theory and Experiment

1) The results in Chapters 3 and 4 are compared.

2) The DWB calculation using Coulomb approximated atomic wave function
provides values of cross section in close agreement with experiment,
however, the DWB approximation using Hartree atomic wave function pro-
vides profiles of angular dependence of cross section and spin polar-
ization in close agreement with experiment.

3) From this result, it is conjectured that the actual 6s and 6p wave
functions of mercury may have similar profiles to that of Hartree wave
functions. However, (6s) wave function for (6s)® state and that for
(65)(6P) state may be much more isolated from each other in the actual
case than in Hartree case.
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Part I. ESP-Detector Using Mercury Vapour
Chapter 6; Introduction

1) Studies on ESP experiments and ESP detectors used for these experi-

ments are briefly reviewed.

Chapter 7; Optimum Conditions of the ESP Detector.

1) Optimum conditions of ESP detector are systematically investigated
utilizing the results in Chapters 2,3 and 4.

2) The conclusions obtained are E=300 eV, #=95°, 4 E =13 eV and 40 =10°.

3) The spin-polarization detector using mercury is compared to the con-
ventional Mott detector to draw out the conclusion that the former

type is more appropriate for wider application.

Chapter 8; Double Scattering Experiment

1) An apparatus for double scattering experiments is described, using the
conclusion derived in Chapter 7.

2) The Pierce-type electron gun using LaBs single crystal cathode is
designed and constructed for double scattering experiment.

3) It is proposed that an ESP detector of this type may be also used as
a polarized electron source which provides a powerful method particular-

ly in the region of surface physics.
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APPENDIX 1. QUALITATIVE EXPLANATION OF THE DIFFRACTION EFFECT
IN ©-ATOM SCATTERING

One of the most important reason for the occurrence of the diffraction
effect is that a wave length of low and intermediate energy electrons is
comparable to the radius of an atom as has already been mentioned in Sec.1-1.
Although the atomic radius of various elements is comparable with each other,
the diffraction effect becomes clear and complex for heavier elements.
Furthermore, the maximum impact energy for the diffraction effect to occur
shifts to higher energies for heavier elements. For example they are 6 eV
for H and 15 eV for He (Mott and Massey 1965), however, higher than 10 keV
for Hg. The following consideration provides a qualitative explanation
for these phenomena. The diffraction pattern appears 1f only several partial
waves with considerable values of phase shifts contribute to scattering.

For this, atomic potential should be narrow and deep enough, and attractive.

x_,i

his is because for attractive case, atomic pctential can pull in con-

tn

iderable cycles of wave if the deepness of the potential is sufficient,
which results in large phase shift. This is not the case for narrow and re-
pulsive potential because the cycles that can be swept out of the potential
region are very small, which results in small phase shift. If the potential
is long range, a number of partial waves contribute to scattering, so dif-
fraction phenomena can not be observed for both attractive and repulsive
potentials.

The radial wave equation is written as

2

P

=9
-
=

%,_%. ..,.E.J]_ (Kz.,,if(/’r)m M) L—G’ (A“
r dr P2 ’

1.1
L7 1

& l
f—

e
o

for non-relativistic case (cf. equation 2-32). Tt is seen that an effective

potential consists of an attractive atomic potential and repulsive centri-

fugal potential. PuttingU®=-2 Z‘azexpg_qyao) for simplicity, we obtain
r
condition for atomic number,
z>1 d+1) /aO-e2~l (d+v, (A1-2)

which is the condition that the atomic potential dominates the centrifugal
potential in a certain radial regions. In equation (Al-2), the screening
parameter ¢, is assumed to be the order of Bohr radius. It is seen from
equation (Al-2) that the number of partial waves which undergo an atomic

potential dominantly becomes larger as the Z -number increases. This means
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that the diffraction pattern becomes complex for heavier element. Further-
more, a main part of an [ -th partial wave exists around the principal region

of the effective potential if
Kao' <1, (A1-3)

where K is a wave number of incident electron. From equation (Al-2) and
(A1-3), the maximum impact energy where the diffraction effect occures clear-
ly is estimated as i.e. 13 eV for H and 1000 eV for Hg. Large discrepancy
for mercury will be reduced if the depth of the atomic potential is taken

into consideration.

APPENDIX 2. INCAPABILITY OF POLARIZING AND ANALYZING ELECTRON
SPIN BY MACROSCOPIC METHOD

Let us consider at first producing polarized electrons by macroscopic
field (a kind of Stern-Gerlach experiment).

Suppose that a beam of electrons travels along the z-axis with velocity
v, in an unhomogeneous magnetic field H. It is assumed that 1¥zis every-
where zero, and that in the xz-plane Hy is also zero i.e. an actual shape
of magnet has a same cross section with respect to xy-plane along z-axis
and is symmetric with respect.to xz-plane (see Fig.A-1). The force on the
electron tending to split the beam is

0H

¢ ax’” i (A2-1)

On the other hand, because of the finite breadth of the electron beam, e-
lectrons travelling at a distance 4¥ from the xz-plane will be subject to a
force

ev H (AZ-Z)
in the x-direction. Considering that

div(H) =0 , (A2-3)

equation (A2-2) can be rewritten as
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¢v, 6Hx/6x “dy ' (AZ-4)

This force causes a spreading of the beam, so should be smaller than (A2-1),

i.e.,

ev, aHx/Gx-Ay <e 6Hx/6w. (A2-5)
However, the uncertainity principle states, that

v, -dy~1 | (A2-6)
Inequality (AZ-5) therefore leads to the inequality

(A2-7)
va v, { )
That is to say, the slit must be so narrow (of the order of the de Broglie
wave length) that we have not got a beam at all, but a cylindrical wave emerg-
ing from it (Mott 1929).
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Fig.  A-1. Schematic diagram Fig.  A-2. Scattering asymmetry for
of the magnet. totally polarized incident

electron beam.
The situation is similar for detecting electron spin. Suppose the e-
lectron was at distance £ from the magnetometer, then the order of magnitude

of the magnetic field due to the spin is
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e/R2 . (A2-8)

There may be a magnetic field due to the motion of the electron, the

order of which is
ev/R? (AZ-9)
where v 1is the velocity of the electron. From the uncertainity principle
4dR dv~ 1, (AZ-10)

where 4R and 4v are the uncertainities in our knowledge of R and v.
Now in order that equation (A2-8), the effect of the spin, shall be ob-
servable, it must be greater than the uncertainity in equation (A2-9).

That is to say,

e/E¥>edv /R? (A2-11)
Hence from equation (A2-10)

AR>R (A2-12)

Measurement will therefore be impossible (Mott 1929).

APPENDIX 3. RELATIVISTIC RUTHERFORD SCATTERING FORMULA

For Coulomb potential ~Ze?/r, the integral in equation (2-26) can be
performed and results in

f =Ze?{H (kf)+W}/ (kz.—kf)Z-u &)

Born

=Ze2/ (4k2.sin20/2){H(kf)—i—W}u(ki) , (A3-1)

where @J.('r'):eikiru(k,b-)and W+H(kf)=W—-akf —f . The operator W+H(kf)
gives 0 when operated to negative energy states and gives finite value
when operated to positive energy states, which assures the final states

being in positive energy states. Thus

+
do/d@=1f, 1*= 1Zez/ (4K sin20/2) | 2 2wulk;) {H(kf)+ whu (k)

(A3-2)

The linearly independent solution of free states can be written as
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1
0 .

u1<ki):f—' W+1)/2W Kiz/(W+1) (A3-3)
(K?;er?,K?;y)/(W—Fl) )

and
0

1
k. :[ W+1) /2W A3-4
u2< i ) (K,L-x—iK@-y)/(WJrl) ( )

which is proved by direct substitution. For the state expressed by equa-
tion (AS—S),'equation (A3-2) gives

Z2 ¢4

do/d@= i imors"

1 2 ;

S 1w D + (k,, ko)l
Z2¢4

= UK sinifyg (VK sint 002

= Ty (ot sin 0D -1) | (43-5)
where v =K W Equation (A3-5) is just equal to equation (2-27). The cal-
culation for the state expressed by equation (A3-4) also results in the
same equation as (A3-5), this means that Sherman function always equals
to zero in Born approximation. So for the analysis of phenomena concern-
ing spin polarization, the Born approximation is an ineffective approxim-
ation.

To investigate the origin of the second factor of equation (A3-5), we

shall treat a spin 0 particle by Klein-Gordon equation, i.e.

| (7=Vp—(pat D} ¢=0 (A3-6)

-

A similar procedure adopted in Sec.2-2-1 gives the integral equation of
(A3-6) as follows; The Lippmann-Schwinger equation of (A3-6) is written
as

1
W2-pz-1+1¢

=0+ @WV-vVa)g. (A3-7)

Using equation (2-21),
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—ikfr'
fe EWV(F) =V @D2) ¢ @) dr', (A3-8)

1 egtKr
47 7

$=0-

the notation used here is same as that used in Sec.2-2-1.
Introducing first Born approximation, i.e.¢—@, 2WV+V2— owy

equation (A3-8) results in

eiKT
¢=0 -~ po «Ze22W/ (k%.—kf)2 . (A3-9)
Thus
fKG= ~Ze?W/ (2K%-sinz 0 /2) , (A3-10)
and
GBL) = 2 e w2
de X 4K+ sint (0,2
- Z: ¢! (1-v?) | (A3-11)

4v* sint (0,2

The comparison with equation (A3-5) or (2-27) shows that the factor (1-wv:2-
sinz@ 2 ) is dropped out in the case of spin 0 Klein-Gordon particle.

It may be concluded that this factor reflects the effect of electron spin
(Nishijima, 1973).

APPENDIX 4, QUALITATIVE EXPLANATIONS OF THE TWO ROLES OF SHERMAN
FUNCTION

Let scattering efficiencies be @& and B for spin-up electrons scattered
to left and right side respectively, then & and 8 are also the scattering
efficiencies for spin-down electrons scattered to right and left side re-
spectively (see Fig.A-2). Then for an initially unpolarized electron beam,
the spin polarization P; after scattering to left side may be expressed as

_ Naf—NB . a—B _
L Na+NB =~ a+f ' (Ad-1)
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On the other hand, the left-right asymmetry for a totally polarized in-

cident.electron beam (spin-up state) may be expressed as

Np/N, = B/a:(l—PLL/O+PL), (A4-2)
From equation (3-7), it is seen that P; plays also a role of Sherman fun-

ction.

On the other hand, for example in the case of exchange scattering, P
and S are not equal to each other. Putting direct and exchange scattering
amplitude as f(@#)and g(g) , we have the cross section for an unpolarized
electrons scattered by totally polarized atoms as follows (Kessler 1976);

Process Cross Section
e, + A4y e, + At L f @)
ey + Ay ey + 4, [g@F (A4-3)
ey + 4y ey + At | £ —g @)
and
ey +4 ey + 4, Lf@p
ey +4y ey + A} lg@p (Ad-4)
L tAp ey +4) [ f@-g @)

for spin-up and spin-down atomic state respectively. Then the spin polar-
ization P of initially unpolarized electrons scattered by totally polarized

spin-up atoms 1s expressed as

Lf{8) —g (O)12+1g(8)12-1S (02 (Ad-5)
LSO —g (O 121 (O 1g (O] .
On the other hand, the scattering intensity of totally polarized spin-up and
spin-down electrons scattered by totally polarized spin up atoms are [f(0) —
g |* and 1@+ |g@ {2, respectively. So the value corresponding to

the value P in equation (A3-5) may be expressed as

P =

|f O —g® - | £0) p— 1 g(O)]? (A4-6)
Lf O)-g0) i+ 1 fO) B+ | g( O |2 -

It is worth noting that this is not a left-right asymmetry but a "spin-up- -
down' asymmetry (Kessler, 1976).
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APPENDIX 5. VARIOUS CALCULATION PROCEDURES FOR THE ESTIMATION
OF PHASE SHIFT

1) A direct-integration of equation (2-28) by Runge-Kutta process was
performed by Bunyan (1962). This method was usually used in the calculation
of atomic wave function. (e.g. Mayer 1957)

2) Putting gK==a%(}K/W‘and substituting in equation (2-32) one gets

d’c

jrdrt (K2 =1 @vn) ori-u m]e = o, (A5-1)

d+a 3 a®
a 4 a?

1 a"
2 o -
Equation (A5-1) shows that the difference from the non-relativistic equation

where —U ;= 2WV4V2y
is only the potential that should be adopted. This method is quite suitable
if there has already existed a computer program for non-relativistic equation
(Madison and Shelton 1973) or if one wants to compare the results between
relativistic and non-relativistic calculations. (Meister and Weiss 1968).

3) Another method is the power expansion method developed by Blihring
(1965). He divided the radial region into three and put

vl = £ o " (A5-2-2)

M © M m

Vim=2 v W (r-v (A5-2-b)

n N
E E -1
vim= v’ 7 (A5-2-¢)
and { n

I

fo 2 0 T

N s pl A7 (A5-3-a)
g M ey M

M
oy g 2 ado-of

y (=7 {n=0 (A5-3-b)
g M Tt

] n‘:\:'() bn (r /y)
o S ar"

, ar - _3.
P cetpS{mo (A5-3-c)
G Z b "
n=0 M b

corresponding to the three regions. Substituting in equation (2-28), one
obtains series of coefficients. This method provides one a method to escape

from truncation errors.
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4) Fourth method is the one developed by Lin et al. (1963) and used
by Bunyan and Schonfelder (1965), and in the present calculation (see Sec.
2-4). As is shown, equation (2-51), is a non-linear equation, so it is very
difficult to treat it in an analytical manner. However, this method separates
the wave function into two parts i.e. amplitude and phase parts, in order to
obtain a slowly changing variables. Furthermore, these equations are first
order differential equations and for the evaluation of phase shift, it suf-
fices to treat only the former. (see equation (2-51-a)).

It is expected that the fourth method provides a sufficient accuracy
and simple calculation procedures for the calculation using high speed
digital computer.
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APPENDIX 6. COMPUTER PROGRAM LIST

a) Elastic scattering case

Read
Coeff. of Atomic Potential
Integration Width

!

Calculation & Store

Legendre Function
Atomic Potential

Read
Incident Energy
kY

Calculation & Store
Bessel Function

Calculation & Store

Calculation
Cross Section
&

Sherman Function

- 140 -



Iv1

C
C

[4
[4

F LECTRON  SCATTERING FRoM MERCURY
Dlu[ng{gﬂsgrg(lg.lcglyFLJ!lO.lUDD'9¢9).YANDL!!OO:!).5());5“16())
FORC7TZNL UUWWTIOOUUT,Z‘ZZTTHODD) 2NN yH1 yHZ JHT ERADT JNRN (KK

MON ,BES,FJ (3001 ,FNEU(300) sRK KR
:2:0(5,100)5A1.PA:.ﬁA;.TBA,rnz va;.nnb|us H
FORMAT (4FD,45F10,%

e u35¢:.6 100)5A1 1% pls.pu\,vuz,vag,aonus.u
B0 1160 "Nei 300
TANDL (N, 112040
YANDL(NqZ)IOeO
FJiN) 80,0
FNEU(N) =00

1100 CONTINUE

00 18 NX=l,10
NX13504108NX

FNXsNX]
FNXaFNXa0,01745329257
XsCOS(FNX)
POx1,0

PrEX

FL10=0,C
FL20%0,0
FL11xXe1,0
FL213X=1.0
FLIUMX,118FL10
FLI(Rx, 2)%FL1
FLJ{NX,1}2FL20
FLJINX,2)aFL21
DD 10 NY33,300
::;(NX NY) B (12o0%FNY23,0} #XaFL1 1= (FHY=1,0)aFL10= (104X} aP0) / (FNYa2

FEJ(NX,NV)#((Z.OnFNV—LOI AXAFL21w (FNYal,0) 4FL202(1,0«X) #P0) / {FNY=2

lag;l(Z.OnFNV-).OlaKnP!-(FNV-2-OlQFO)/(FNY_],O)
FL10=FL11
FL11sFLIINXNY)
FL20=FL 2L
FL21%FLJ(NKNY)
pozP1
P,
10 CONTINUE
DO 20 NY=3,10
NY1=NY-1
FNYaNY]
FNY23FNYe2,
DO 30 NX=z1ls7
NX13NX

PINK) = (FLIANKLsNY) sFLIINXLNY) ) /FNY2
30 CONTINUE
WRITE (542003 NY 1, (PINX) NX%],7)
200 FORMAT[HO,12,7E15,7}
20 CONTINUE
12Y0 OE LFGENDRE MO KEISAN OWARIXX4%%

PB1=PR1#3,553022E-2
PB22PP2#3,553022E-2
PB3zPRI#3,553022E~2

PAlzPAI#,5837749)

PA23PA24,5837749]1

PA3=PAIR, 58377491

Z0zPA1+PA24PAY

215PALAPBLLPAZAPBZ +PAIAPEY
222PA1#PBLaPBl4+PAZ#PB24PR2,PAIAPB3RPEY
23=PAIRPBL#83,0.PA2aPB2053,0,PA3:PBINFS3 0
21=-21

2= ZZ‘C.S

23z~73

RAFIUK:RADIUS/[O LITTIN]
RADIUSIRADIUS /3 galsSE-d1

RAD=, 1

RAf1=s,

RADIL=200,
ERADI=RADREXP (RADI)
FFRKADT /HR2  #ERAD Do, 1
NNz [T (FFNY

NNZNL /28241
HLZRADT/FLOAT N1}

7o DO 40 NalsRN
8678 FFeFLOAT tNw 1) #HL
76 RR (N) sRADREXP (FF)
77 ZZ(NI-DAlaExP(-Dslnnﬁ(N))oFAz-EXP(-PannR(N)).PA;-Exp(-peg.Ra(u,
0078 40 CONTINUE
’19 His2, .Nl
2080 NN1&NN
,%%L“ - 5% &1 n-NNthouo
0082 ‘R (N} 5,0
8683 22(N1 =0
8s 43 CONTINUE
a5 FFNNa (RADIU=ERADT) /H# 20001
NNN-lNT(VFNN)
HNN=NNI/ 24
o1 o TAADTUSERADY 1 FLOAT (N1
6089 HeH2e2,
0090 DO 42 NelyNNN
3061 FF;FLOAV(N-l)nNz.ERADX SO
2092 22Z (M) nPALSEXP (= vaxarr)oﬁAz.Exv(-Psz-FF)oDA;nExP(-PBaQFFv
8593 42 CONTINUE
96 NNN]2NNNe 1
'—gggg- - DO &3 RENNR, 15000
0098 222Ny 5,0
0097 43 CONTINUE
0098 FFNNNa (RADTUS=RADIV) /H/ 2,441
0899 NNNN= INT (FFNNN)
0100 H3= (RADIUSeRADTU) /FLOAT (NNNNo1)
161 WRITE {4,9400)H,HY ;H2 H3 ) NN NN, NNRN
0102 9400 FORMAT(//1HO54€15,7,31151"
810 HARTTE {659450) (RR(N) ;N31,1201,200)
o10s HRITE (4494501 (22 (N) ,NE1,1201,200
0105 WRITE (649450) (ZZZ (N} ,Na1,12015200)
0108 9450 FORMAT (7E15,8)
Bi07 RADIU1«PB1#RADIV
o108 RAD1UZ=PB24RADIY
6109 RADIU3xPB3&RADIU
0110 DOEPALEXP (=RADTU1) oPAZREXP (~RADIU2) «PAIREXP (=RADIUI)
PIET D15PA1aPBI#EXP {~RADIUL) +PA24PB24EXP {=RADIU2) +PA3#PBIREXP (<RADIUI)
6112 RAL [UUSRADTUSRADTU
0113 D12RADIUURDL
0114 Dz-PA1-?51.981-ExP(-RADlu1).PAz.sz.sz-Exv(-RADluz».pnanpnznvaanr
1XP (=RADIU3)
Q115 D2sRADIUURRADIUURD2
Nies SGMaDZa, S«Bind, +DORs,
o1y FMUUz~D2+D1#5,=D0%a,
8118 FHUUn.. FMUU
0itg FAUUxD2#,520182,40003,
0120 RITE (649500) RADIUSRADIUS , SGM4FMUU, FNUY
o121 9500 FORMAT(,7H RADTU=,E10,3,8H RADIUSE ,E10,3,54 $GM=,E10,3,6K FMLUs,EL
10,356H FNUU=,E16,3)
o122 READ (5,9C001 NEN
Q123 900G FORMAT(110)
0124 NERNz21
0125 9200 READ(s,exooyNENERG
0126 9100 FORMAT (110
o127 WRITE {5900} NENERG
ci2m 900 FORMAT(///1HO51BH wanasanes ENERGY2,110419H EV DESU wannennenn)
¢120 ENERGYaFLOAT (NEMERG) /511000404 1,0
5130 FKEENERGY#ENERGY=1,0
0131 FKzFrnn0,5
o132 RK=RAD [USHFK
€133 CALL BESSEL
2134 WRITE{69300) KR
0133 300 FCRMAT(1HO,30H KEISANSARETA BESSEL NO JISU =,l4,5H DESU)
0136 WRITE (6,350)RK
0137 350 FORMAT{1H0,18H HASU » RADIUS 3,E15,795H DESU)
0138 WRITE (54360) (FJIN) N2k 4T}
€135 380 FOPMAT (////1H04TELS 61
&laC WRITE (64370} (FNEUIN) yNelyT)
G1el 37 FORMAT (1HO4TE15,6//)
0162 L=t



— oVl —

ey Iy
266 17 FLal
o5

¥ Kiulal

PHALAS: MIFKI-
_—

tﬂﬁﬂ, , 0=PHATOSHPHATOSTRET.S
1FiK) 1s2e3

WRITE 186,400}
1] ane mnuuuo 10H ORASHITYD}

0 9
SPRIScacPuALOC
: n ntnav.u.mnnc)/;1.u-z.onsuuwnm

TLAPHATOSETT,0=FKKaPHATL) 622
PHA &u.o-nx-muoc
PHAT2aPRAT 21 7PHA
PHALY .oavmu.muos-u 02, 08FKKePHALL) 423
PRAI33s .e.mm.wmmu!oc-u e OaFkRRPHALL /3001
PHALY! 0-2 OQFKKQPNAIO
i 2 7PHATy
PrALJ=ARSIN (PHAT05)
163 mm‘!":zm;m PHALD
1 ol
165 % arepatros, 23R 200 (P 1. RADe IPHAL 2oRADAPHAT ) )
Ol6s CALL DIRAC (PHAIL, PR L yENERGY AL PA2 PA3 PB1 PB2,P83,RADIUSFHALL
T - lWWWo:W rluuru RADIUY)
ANPHLuTAN (|
ﬁ: : ;ANDL!,-(!NEI!GVohMﬂANPﬁLo(1.00FL.FKK)/RADIUS
169 LisLel
170 L2ake2
su\ S ANDLJRFRAFJ (L21<F 4Lt LIATANDLL
157 TANDLL-TK.VNED(].:)-FNEU(Ll)nANoLx

[13}] 1FiX)9,411

uuouu.n-num.umu bLL

0173 E1691052)L 4K ,PHATyPHATL ;TANDL tL1,41)

017 1081 Fomunm +3H L=,18, !i.iﬂ Ky 19,3X,6H PHATEE15,6410X, TH PHATLS EL
5.a,wx.w TANDL= ,E1546)

o
-
2]
¥
o

~O1FF  [US2 FORKA 23N, IH K=, I5,3X,6H PHAT=,E15,6,10X,7H PHATLS,EL
. ls.e.lox.w TANDLR+E1546)
o17s lr:l;éla.u.u
a4 3 WR {69600
g{ng z.(l:u Fonnnukn.uk OKASHIIYO PART2)
]
%iug 1 imbuu.z;-o 0
0183 LaLe
O1ns S0 10 19
LD1g8 15 K=l
0187 11 WRITE (6,500
3113 s0d rw;nnuo.m OKASHITYD PART3)
0189
“BISU " 712 VARDLTLYs2)sTANDLU/TARDLL
oto1 WRITE (64105111 5K PHAT 4PHATL s TANDL (L142)
0192 DEL1sATAN(TANDL(L1+s1)}
0193 DEL2¥ATAN (TANDL (L1521}
0194 DEL 1aA8S (DEL1)
9198 DEL22ABS (DEL2)
B9e TF(DEL},GT7,0,001160 10 1s
0197 1F(DEL2,67,0,001)60 TC 14
0198 GC 10 18
0199 16 Lslel
0200 1F (L., 67,3001G0 TO 18
0201 G0 70 19
0202 18 CONTINUE
9203 WRITE (6,750)L
0204 750 Fcnmnmo.lox.zw KEISANSARETA PHASE SHIFT=,l4,5H DESU)
0208 E{64720)
0206 120 ronnu(,qm
. )
0207 WRITE (647001
c208 700 FORMAT(3H a43X,6H THETA46X,10H CROSS SEC,6X,10H NORM € S46Xs10H
1 SHER  FUN,LOXe2H Fy7x, 100 MDD ASYM,3H &)
9209 DO 70 Nmls)d
0210 5¢(N}1e08,0 *
0211 SH1G(N) 0,0
o212 70 CONTINUE -
9213 Lalel
0214 WRITE(7,701) C(TANOL [Ny 1) 4151,21,N8],L)
0218 701 FORMAT (¢El8,8)

021s Nui

00 50 NX»1p)0_
- am T NI 9506 10RNK
0219, FNX1=NX]
220 FNXBFNX1,2,0
1 rnx-mn,us;z 2E02
6222 rnxl-rnxnl.nuzozz.z
e ERe0,0
0224 20,0
0229 HRw0,0
0226 Hle0,0
Q221 o0 M: Mislebd
M2aM,
A e _A-YA'QL;,LLuﬂANDLL"mm.
0230 az:ﬁnounz,zuvrbunz.z).
231 NR\IHANDLO‘\.U[A\-YANOL(MZ,I)/A:\QFLJ(NX,'Q\
0232 HIl1=(],0/A1=1,0/A2) &FLJINX,M2}
0233 ER1 (TANDL (M1, 1) /ALe TANDL (M242) /A2) #FLT (NX,H2)
0234 E11m{2,0u140/A1=1407A2)#FLT (NX M2}
0233 EReER+ER]
L EISELLET]
0237 HsHReHRL
0z HIARTSHTT -
0239 60 CONTINUE
024 EReER®D, S
0241 EleElag,5
Qa2 HR=HR#D, 5
0243 HIz=HIn0,5
BZas EESERRERGEIRET
0248 HHEHR#HR oM #H]
0248 SHIGHIAEE/COS LFNX) /€03 (EIX) oHH/STNIFNX) /STHIFN)
0247 SHIGM2xE EeHH= ( EE=HH} #COS (FNX
Q248 SHIGMARSHTGM /FK /FK
0249 SHIGHASSHIGMAR ], ¢9107E-21
0280 SHIRORsSHIGMA /2, 80008E-17
0251 SHERM22,0#SIN(FNX1) @ (ERRHILETRHR) / SHIGM2
0252 F-TAN(FquE:.uu,nmm
0253 l-(ER-Ha.Exml)-h.onAN(FNn)
03¢ Fa(FeF 1) /SHIGH]
0255 NeMOD (My31e1
da2se SHIGIN) 2SHIGMA
0287 5 (NJ xSHFRM
o258 ASYMOD2S (1) #SHIG(1) +5(2)#5HIGI2) +S(3) #SHIG(3)
9259 ASYASHIG (1) +SHIG(2) «SHIG(D)
0260 ASYRODaA5YMOD/ASY
0281 WRITE(4,R00) NX],SHIGMA,SHINOR,SHERM,F ,ASYMCD
8262 800 FORMAT(IH ,2H #,111,5E15,5,2H #)
0263 WRITE (54210}
0264 A10 FORMAY[1H 42H #,86X,2H #)
0265 80 CONTINUE
0286 lﬂlele.vzm
0 WRITE (6,950}
0268 950 FORMAT(iNosa0h TADASHI HOD ASYHN 1GYO SHITA ¢ YOMUKOTO)
026 WRITE (68,9601 ER,E1 KR H]
o270 960 FORMAT (1HO,4E18,5////)
g;'l NENNZNENNG |
72 1F {HENN, 61 NEN)GO TO
0273 60 10 g ! 9999
0274 9999 <omnug
o2 STGP
G278 END
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SUBRQUTINE DIRACIPHALWFKK oL ¢ENERGY ,PA1+sPA2sPAY, PR ,PB2,PRY,RADIUS,
1PHATL H s SGM o FMUU ,FNUL,RADT ,RADTU,RADIUL)
COMMON ;DRC /27 {10000} ,RR 100007 5ZZZ (15000 NN ,H1 ;H2 ;H3 ,ERADT ,NNN NN

bo !NO N'l.“"\ 2

NlaNey

NYsNe2

RKISFKKRSINIY]) oZZ (K) +RR (N} # (ENERGY=COS(Y]) )
RK1zHLARK]
RKZBFEK#SINIY14RK110ZZ (N1} sRRINL) # (ENERGY-COS(Y]0RK]))
RK2zH]#RK2
RKISFKKASTN(Y1oRK2) 622 INL) 4RR (N1} # (ENERGY=COS (Y1+RK2))
RK 3aH1#RK3
RK42FKK#SINIYLo2,8RK3) o22 (N2) *RR (N2) # (ENERGY-COS(Y]1¢2,#RK3) |
RK4sHI#RK4

Y1uaY1e(RK1e2,#{RK26RK}) oRKa) 3,

0017 3100 CONTINUE
0018 NNN1ENNN2
8019 RiSERADT
9020 R2xR]eH2
0021 R33R2eH2
0022 DO 3200 Nx1,NNN1,2
23 N1sNel
002+ N2eNe2
0025 RKll(FKKlSlN(VlloZZZ(N))/RloENERGV-(Oﬁ(VlD
Q02¢ RK 13H#RK
0027 RKZ!(FKK!S]N(V].RKUOZZZ(NH 3} /R2+ENERGY=COS{Y1eRK1}
9928 RKZ2aHa
0029 RK!'(FKKDSIN(VI‘RKZ)oZZZ(Nll 3 /R2+ENERGY=>COS(Y14RK2)
0030 RK3aHaRK3
0031 RKew (FKKRSIN(Y1240RKD) 4222 (R2)) /RILENERGY-COS (Y102, 8RK )
32 RK«sHARK &
033 Y1sY1e(RK1#2,% [RK20RK3) +RK&} /3,
0034 R1sR1eH
0033 RZzR2eH
0036 . R3aR3eH
0037 3200 CONTINUE
0038 NHNNLENNNN. |
6039 R2sR1+H38,5
0040 R3zR1+H3
00st DO 3300 Nx},NNNML
0042 RRA1=R}_FADIUS
0043 RRA22R2.RADIUS
0044 RRA3ZR3I.RADIUS
0048 RRA|=RRAL/RACTUU
COus RRA2ZRRA2/RAD UG
3047 RPAISRRAI/RADIUL
0048 Z13RRA1#RRAL® {SGMeRFAL# LFMUULRRAI#FNUUY Y
0049 Z23RRA2ARRA2% (5GMeRRAZA (FMULLRRA28FNUL) )
G030 Z3SRRAIARRA 3% { SGMRIA IR { FMUUGRRAIRFNUU)
0051 RK1(FKKaSIN{Y1)+21}) /R1«ENERGY=CO5 (Y1)
0052 RK1mH3IRRK]L
cos53 RK23 (FKKASIN(Y14RK11422} /R24ENERGYACCS Y 10RK D
0084 RK23H1#PK2
<085 RK33 (FKKASIN(Y14RK2) +22) /R2ENFRGYACOSIYLeRK
1213 RK3EHIARK I
9057 RK&3 (FKK#SIN{Y142,4RK3) +23) /RIENERGY=CO5{Y 1024 #RK3)
€0%8 RKeaHIARKE
059 Y12Y1e(RK1+2,8 (RK2eRKI) +RKa) /3,
e Ri=R3
Sosl R2aR24H)
082 R3ZR3eH3 :
Q063 3300 CONTINUF N
0084 PHAILzYY/2,
6065 RETURN
(213 END

2100

2200

SUBROUTTNE BESSE|
canDN/ﬁss/FJtaoo).F«EU(:OO)-ﬁK.uR
FJo:

FJle (STN (RK} /RK~COS{RK) ) /RK
FNEUG=-COS (RK) /R

FNEULa- (COS (RK} /RK+SIN(RK) ) /RK
FJi1)2FJ0

FJi2)sfJi

FNEU{{jsFREUS — -

FNEU(2) sFNEUY

KRa INT (RK} +50

KReMINO LKR 300}

KR28KR-1

00 2100 KR133,KR2

FkRiskRY

FJIKR] ) moFJ00 (2,0#FKR1=3,0) aFJ1/RK
FNEU (KR1) 5-FNEUS. {2,08FKR 123, 0) *FNEUL /RK
FJouF 41

FJIIFJlKRXI

ru:u OeF

CONY

00 zzoo KR1aKR,300
FJ(KR1)150,0

FNEU (KR1) 20,0
CONTINUE

RETURK ™

END



b) Inelastic scattering case

Anclytical Calcu'i_c?;ﬁ & Storel

Read i
Coeff. of Atomic Potential i T WV lGi>
& Wave Function ; ——

Integration Width

3

Calculation & Store
Atomic Potential

Read
Incident Energy
|

Calculation & Store
Bessel Function

| Calculation
Cross Section

Calcutation & Store
<9L] Voal G’L'>

Sherman Function |
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INELASTIC SCAYTERING CROSS SECTION.FOR MERCURY 00065 50 600 TelNEN

00001 DIMENSION GRAPH (121) 00066 READ(3,5100) ENERG
00002 DIMENSION ABTAN (2,2) 00067 5100 FORMAT {F10,3}
00003 DIMENSION FUNC(2,2,2) ; 00068 DO 50 M=l,2
00004 comou/scm./smm.(300,2,2).(:0501.(300,2,2),SCSQ(BUU.d.Z) 00069 DO 50 Jul,2
00005 COMMON/RRADAL/RADIUS (6) yRADIAL {10000} 00070 DO 50 K=1,NSEX
00006 COMMON/FKF/FK(2) 00071 ANP1(M,J,X)=0.
00007 COMMON/HHABA/HABA (4) 00072 50 CONTINUE
00008 COMMON/KKATISU/KATSU(4) . : 00073 Do 61 J=1,2
00009 COMMON/WAVPOT/POTE(2,3) \WAVEFU(3,2,2} 00074 po 61 K=1,h4
00010 COMMON/ VVPOT/VPOT{ 10000, 2) , VPOTEX ( 10000) 00075 Do 61 Mml,2
00011 COMMON/AASSLG /ASSLEG (2000, 3) 00076 AMPL(J K,M}=0.
00012 COMMON/BES/FJ(300,2),FNEU(300,2) ,RK (2) ,KR(2) 00077 puuh,x,n{so.
00013 COMMON/ 2ZB/ZBE(4,2) 00078 61 CONTINUE
00014 COMMON/PPHAIL/PHAT (2,4 ,2) ,AMPL(2,4,2) 00079 Do 60 M=1,3
00015 COMMON/ PPHATO/PHATO(2,2) ,AMPO(2,2) 00080 DO 60 J=1,NPN
00016 COMMON /MATRIX/FMATRX (2000,2,2,2) 00081 ASSLEG(J,M)=0.
00017 COMMON/L1L/L(2,2)/EENERG/ENERGY (2} 00082 60 CONTINUE
00018 COMMON/PPHATA/AMP1 (2,2,10000) 000873 Do 8o J ,2
00019 COMMON /TANDEL /TANDL (300,2,2) 00084 Do 810 J=1,2
00020 COMMON /AAAAMP/ AAMP(2000,2,3,2) ,BBMP(300,2,3,2), ABMP (300,2,3,2) 00085 AMPO(J,JJ)=0.
1,BAMP(300,2,3,2) 00086 810 CONTINUE
00021 COMMON/S1G/SIGMA(Y4),SHERM(4,2) 00087 FFF=0,
00022 COMMON/FFSC/FSC(2,3,2) 00088 ENERGY } 1 %:ENERG
00023 DIMENSION HI (360 00089 ENERGY(2)=ENERG-6.703
00024 DIMENSION SIGMAA(360,6 00090 WRITE(6,800) ENERG
00023 DIMENSION SHERMM(360,4 00091 800 FORMAT(IHY,//////////20X.21H **%*% NYUSHA ENERGY=,F10.1,6H *###x)
00026 DIMENSION FRE{?()),FIM(2 ,GREéZ] GIM{2 00092 BO 5150 J=1,NPP
¢ ABTAN I.J? 1,L OR -L~1,, J,ELASTIC OR INELASTIC 00093 DO 5150 JJ=1,2
C  WAVEFU (I,J,K) I,STATE,,J,ATAMA OR KATA NOKEISU 00094 DO 5150 JJI=1,2
¢ vpPOT(I,J) J,ELASTIC OR INELASTIC 00095 TANDL{J ,JJ,J1J .
€ RK=RADIUS*{WAVE NUMBER) ,KR=PHYSE NUMBER 00096 SINDL{J,JJ,J30)=0.
€ VOTENTIAL NO TENKATKEISU 00097 COSDL(J,JJ,JJ)=1.
¢ PHAT(I,J,K) I,L OR -L-1,,5,KEISU,,K,,ELASTIC OR INELASTIC 00098 5€5Q(J,JJ,J33)=1,
C  FMATRX(I,J,K,M) I,L,,J,L OR -L-1 OF ELASTIC,,K,PLUS OR MINUS SIGNS OF 00099 5150 CONTINUE
€ INELASTIC,,M,. ABSOLUTE MAGNITUDE OF L OF INELASTIC 00100 DO 5200 Jg=1,2
€ PHAIL(I,J,K),AMP1{I,J,K) KIOKU SARETA INELATIC NO WAVE FUNCTION 1, 00101 ENERGY (J)=ENERGY (J)/512008, 41,
€ =-1,,J,NWE OR OLD ONE 00102 FK{J}=(ENERGY{J) *ENERGY (J)-1. )#%.5
c TANDLD(I,J,K; JAL OR —L-1,,K,ELASTIC OR INELASTIC 00103 RK{J)=FK{J)*RABIUS(5)
¢ AAMP(I,J,X,L) J,(L,L+1) OR (L,L-2) ,,K MAGNETIC UUANTUM NUMBER,,L,R 00104 5200 CONTINUE
C. MAGINARY PART : 00105 CALL BESSEL{NPP)
c 00106 WRITE(6,900)RK
c 00107 900 FORMAT(///13H HASU¥RADIUS=REL5.5)
00027 00108 950 FORMAT(30H KEISANSARETA BESSEL NO JISUA, 2115)
00028 00109 VRITE§5,950 KR !
00029 NSEK=10000 00110 WRITE 6,1000)((FJ(II,JJ),II:l'S),JJ:I,Z)
00030 READ(S5,100)RADIUS 00111 WRITE(6,1000)( (FNEU(IT,JJ),11=1,5),0J=1,2)
00031 100 FORMAT(6F10.2) 00112 1000 FORMAT{/SE15.5)
00032 READ(5,200 }HABA(2) 00113 DO 5250 LL=1,NPN
00033 200 FORMAT(F10.5) 00114 DO 5250 M=1,2
00034 READ{5,700) {(POTE(T,J),T=1,2),J=1,3) 00115 DO 5250 J=1,2
883365 300 FORMAT({3E15,5) gg“;* DO 5250 W=1,2
READ( 5,400 WAVEFU(T,J,K),J=1,2),Kk=1,2},1I= FMATRX(LL,M,J,K)=0.
00037 400 Fonn.if(um;g; (12251071, 2) =002) 11, 5) 00118 5355 CONTINUE )
00038 READ(5,701)1P,DEL 00119 READ(5,703)KLUNG,KTAE , KANKAK
00039 701 FORMAT(I110,E10.1) 00120 703 FORMAT(3T1)
00040 READ(5,500) NEN o121 IF (KLUNG . EQ. 1)G0 To 704
00041 500 r‘oRmTéuo) 00122 LL=-1
00042 WRITE(6,102) ggizg 5300 CONTINUE
00043 102 FORMAT(//////////381 #%*¥% YOMIKOML DATA NOHAJIMARI ##%%#) 0012 CALL DIRACZ(LL,FFF)
gggﬁ‘; WRITE(6,702) TP, DEL 00152 HRITE(g,lZ()D)LLvL
702 FORMAT(1HO,13H PHASE =,110,1 3 r - WRITE(6,1210
ggg:g VRITE (61015 RADLUS LIMIT=,T 9H PHASE SHIFT LIMIT=,EL0.1) ggifg 6300 wm‘rg(e,éjooz
1 = 2 bt 3 FORMAT(22X,2 9
000:8 o sg;‘:é‘f&fgg;gz“g:bg? =ror0.2) 00129 1H 2,115(.2:' \ 0+13%.2H 1,11K,2H 2,11x,24 3,19%,28 0,11X.2H 1,11x,2
00049 - 5 25 1210 FORMAT(//16 2H #
Sooue 201 Sgﬂf‘;%fgéi;” SEKIBUN HABA(2)=,F10.5) sorn b .)()// Xi9(2H #),TK 20 Lo TX,9(2H *),9K,9(2H *),5%,5H ~L-1,bx,
ggg;; 301 Fo«mrémo,\};u YOMIKIMARETA POTENTIAL NO KEISU=) 00131 ?g(;]lig 157(1)62 .
00033 WRITE(6, 300 'POTE 00132 wmrsfsqiloo TO 6000
00024 . WRITE(6,401) 00133 6100 CONTn )((PIIAI(JJ,KK'[I),KK=1'h)'JJ=1'2)
00035 01 FORMAT(1HO,36H YOMIKOKARETA 6S 6P NO WAVE FUNCTION) 00134 WRITE(6,1160
00038 WRITE(6,400 )WAVEFU 00135 ' M(AMPL(JJ KK, 1), KK=1,4) , J7=1 23
00057 CALL POTENT{NSEK 00136 600 GO 0 6200 ' ,
00058 !’E?Efﬁ’?ig{?(“’”u,n.x=mo.~ssx,mm.m,z) 00137 0 5:2'#??1110)((?"
. N (6, _
00059 610 FORMAT(1H ,10“935%2)1 100,NSEK,1000) 00138 GO TO 6100 AL(JT KK, IT) ,KK=1,4) , 33=1,2)
00060 CALL DIRACL 00139 6200 CONTINUE
ALk mie Tise oy
ooosg 650 FORMAT(/////2TH POTENTTAL*R=7(R) NO TENKAL} 00142 H?g gg::AT(iHO,JSH ELASTIC  PHAT=,4E13.4,8X,4E43.4)
"RITE(6,7OO)((ZBE(I'J)‘I=1.Q)'J=1’2) AT(1H ,15HINELASTIC PHAI:,usla.lo,ax,hm;,u)

00064 700 FORMAT(4ELS. 5)



971

00143
00144
00145

00146
00147

00148
00149
00150
00151
00152
00153
00154
00155
V0156
00157
00158
00159
00160
00161
00162
00163
0016k
00165
00166
00167
00168
00169

00170

00171
00172
00173

001T7H
00175

00176
00177
00178
00179
00180
00181
00182
001873
00184
00185
00186
00187
00188
00189
00190
00191
00192

00193

00194
00195
00196

00197
00198

00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
an2173

1160 FORMAT(10X,6H AMPL=,4E13.4,8X,4EL3.4)
6,8000 ) . R ‘
8000 Hnﬁggan%(///;x,zx,9(2u %), UX,6H PHATO,5X,10(21 %), HOX, LE(2H #) 0N,
15H AMPO.5X.1§(2H *)
WRITE(6,8100 N !
8100 FuRMA§(ihx.8u ELASTIC,20X,10H INELASTIC,30X,8H ELAST1C,20X, 101t INE
ILASTIC)
WRITE(6,8200)
8200 FORMAT(2(BX,2H L,12X,
ARITE(6,8300)
8300 FORMAT(S5H R=,1) .
VRITE(G.lzzo)((PHAIO(z.J;.éjl.~),
1220 FORMAT(4E15.5,10X,4E15. N i
1200 FORMAT(IH&,/////;5(ZA_ V5% LL=110,20X,h16,5%,15(21__))
CALL LUNGE(LL,NPN,NSEK

SH =L-1,3X}, 10X, 2(8X,2H L,12X, 58 ~L-1,3%})

,2), ((AMPO(K,J},K=1,2),0=1,2)

KKK=1

TF(LL)5450,5320,5310
5450 CONTINUE

JJJ=2

KKK=2

o TO 5310
5320 CONTTNUE

J3J=2

J=1

=2

TANU:FK(J)~FJ(LL2,J)—FJ(LL1,J)*((ENERG\(J).I.)*TAN(PMAIO(K,J))+
1(1.+FLDAT(L(1,J\.L(K,J)))/uAulns(S))
TANL=FK{.1)*FNEU(LL2,J)-FNEU(LLL,J)*{
Ta(1.+FLOAT(L{L,J)+L(K,J)}}/RADIVS(5)

g?ﬁgt kt%;k;j ﬁmhégﬁz%AMPD(K,J))“COS(PHAIO(K,J))/HAD]US(ﬂ
STNDL(LL ,K,; TNPL{LLY K0}/ {FI(LL2,J)#FNEC(LLL  J)=FI (LLE, 3)
E#FNEU(LL2,0) )}/ FKR{J
COSDLtLLl.KtJ -TANR'HXP(AMPO(K,J))'CUS(PHAIO(K,J))/RADIUS(S)
COSDL{LLL K J)=rosnL(LLl.K,J)/(FJ(LL?,J)»FNEU{L1l,J)-FJ(LLl,J)
lﬂFNEU?LLZ,Ji)/FK(J)
SINDL(LILK,J)=-STNDL(LILK, 1)
COSDL{LL1,K.J)*-COSDLILLLK.T)
SCSQ(LLY,K,J)=(SINDL(LLL,K,J)**2 +COSDL(LLI,K,J)**2 }*#.5
1F(sCsQ(LL),K,3), EQ..0)SCSQ(LLE K, J)=1.
COSPL{LL1,K,J)=COSDL{LL],K,J}/SCSQ(LLL,K,.1)
SINDL({LL1,K,J)}=SINDL(LL1,K,J)/ SCSQ(LL! K,J)
GO TO 5310
5310 CONTINUE
DO 5500 J=J4J,2
TF(J.EQ.2)GO TO ShlO
GO TO 5420
5410 CONTINUE
LLl=LL2
LL2=LL2+1
5420 CONTINUE
DO 5400 K=KKK,2
TANU=FK(J)*FJ{LL2,J)=FJ(LL],J)}*{ (ENERGY (J)+1. }*TAN{PHATO(K,J) )+
1{1.4FLOAT(L{1,J)+L(K,J)) /RADIUS(5)
TANL=FK (J)*FNEU{LL2 ,J}-FNEU{LL] , J)*{ {ENERGY (J)+1.) *TAN(PHATO(X,J))
1+(1.+FLOAT(L(1,J)}+L(K,3)})/RADIUS(S5})
TANDL(LL1,K,J }=TANU/TANL

ENERGY(J)+1. ) *TAN(PHATO(K, 7))

(
)

SINDL LLl,K,J;:TANU’EXP(AMPO(K,J))’COS(PHAIO(K,J))/RAD!US(5)
SINDL(LLL,K,J)=STNDL(LLL,K,J)/(FJ{LL2,J)#FNEU(LL],J)-FJ(LLL,J)
1*FNEU LLz,Ji)/FK(J)

CDSDL?LL[,K,J;:TANL'EXP(AMPO(K,J))'COS(PHAID(K,J))/RADIUS(S)
COSDL(LLY,K,J)=COSDL(LLL,K,J)/{FJ(LL2,J}*FNEU(LLY,J)-FJ{LL],J)
L*FNEU(LL2,J) ) /FK{J)
STNDL(LLI,K,J)=-SINDL{LL1 K,J)
COSDL(LLL,K,JS -COSDL(LLI,K.JS
SCSQ(LLL,K,J)=(SINDL{LL1,K,J}**2 +COSDL(LL],K,J}**2 )** 5
TF(SCSQ(LL1,K,J).EQ..0)SCSQ(LLL,K,d)=1.
SINDL{LL},K,J)=SINDL(LL],K,J)}/ SCSQ{LL1,K,J}
COSDL(LLL,K,f)=COSDL(LL] K,J}/ SCSQ(LL),K,J)
5400 CONTINUE
5500 CONTINUE
DO 5600 J=1,2
LLl=LL+1
LL2=1142
IF(J.FQ.2)G0 TO 5610
GO TO 5620
5610 CONTINUE
LL1=L12

oo21h
ISEILY
voZ16
0027
[IRENTY
00219

00230
00231
00232
002133
00234
00235
00276
00237
00238
00239
oL2Ho
oo24t
[
002473
00244
00245
00246
oorhT
Q024
00244
00250
00251
00252

00253
00254

00255

Q0250
00257
00258
00259
OO260
00261
00262
00263
00264
00265
00266
ooz6T
DU2OE
00269
00270

00271
o027
00274
00275
00270
60277
VO2TH
ouzTY
Q02RO
OO2RT
002K
GO2HY
[EGERY
UOZRY
IR
002KT
OO2HK
00289
00200
[EII |

1LLR2=LLR41
5620 CONTINUE
DO 5600 K=1,2
ARTAN(K ,J ) =ABS (TANDL(LLI,K )
5600 CONTINUE
AMTAN=1. N 7o0:
IF(LL.LT.0)}GO TO 2 . o o
AM#AN:AMAXI(ABTAN(l,l),AHTAN(|,l),AH1AN(‘.X).AH1AN(.,»))
WR1TE(6,5376)
wanE(S,}j;S)
5376 FORMAT(100 ) )
2375 FORMAT(15X,BH (L,Le1),6X, 11H (=k=1,Lel},4%,00 (1,
1t,=1~2), 9X,80 (L,L~1},5X,11H1 (=L=1,L=-1},7%,78 {I

2

Yoan, bz {(=1-
LRN, 1O (1)

~L})
GR1T5(6,517U)(((FMATRX(LL.I,K,M,N),K:l..
5370 FORMAT(1H ,HH FMATRX=,4E15.5,5X,4E15.5)
LLll=LL+! .

LL22=LL+2
HRITE(6.53B1)(SINDL(LLIl,K,l),
WRITE(6,5382) (COSDL{LLY1,K, 1),
WRITE(6,5380) (TANSL(LL11,K,1), ,2), (TANDL(LL22 2
WRITE(6,5386)( scsQ(LL11,K,1),K=1,2),( SCSQ(LL22,K,) K=},2)

59H0 FORMAT(1HO,8H TANDL= ,10H (ELASTIC),2E15,5,12H (INELASTIC ,ﬁals.ﬂ

5381 FORMAT(1HO,8H STNDL= ,10H ELASTIC),3E15.5,1?H (INELAsTIc),:EIS.S)

5382 FPRMAT{1HO,8H COSDL= ,10H (ELASTIC},Z2EI5.5,120 (INELASTIC),2E15.5)

5386 FORMAT(1HO,8H sCSQ= ,10H (ELASTIC),2E15.5,12H (INELASTIC),2EL5.5)
GO TO 7003
HRITE(b.7“““)(SINDL(LL¢2,K,Z; ;

WRITE(6,7005) (COSPL{LL+2,K,2
HR!TE(b.TOUb)(TANDL%LLoE,K.Qg )]
WRITE(6,7007)( SCSQ(LL+2,K,2),k=1,2

7005 FORMAT(110,BH ¢OSDL= ,12H (INELASTIC),2E15.5)

7006 FORMAT{1HO,8H TANDL= ,12H (INELASTIC),2E15.5}

7007 FORMAT(IHO,8H SCSQ= ,12H (TNELASTIC),2EL5,5)

7003 CONTINUE
LLi1=LLel
Do 53 J=1,2

FF(J.EQ.2)LLL

Do 5383 K=1,2

7002 CONTINUE
’
7004 FORMAT(1HO,8H STNDL= ,12H (INELASTIC),2E15.5}
TF(LL.1T.0)GO TO 7001
FUNC(K,.1, 1 )=EXP(AMPO(K ,J) ) *COS( PHATO(K,J) }/RADTUS(5)/SCSQ(LLLL K, J

=1,2), (SINDL(LLX
,2), (cosSDL(L

K

S

’
B
’

=L1+2

I
FUNC(K,J,2)=RJ{LL1L,J}*COSDL(LLLL,K,J)-FNEU(LLY1,J)#SINDL(LLLL K,
1)

5383 CONTTNVE
WRITE(0,5385)
5385 FORMAT(1HO,32H WAVE FUNCTION NO TSUNAGARI GUAT)
WRITE(6,5384 ) ({((FUNC(K,J,J00),50=1,2) ,k=1,2),J=1,2)
5384 FORMAT(//8E15.5)
7001 CONTINUE
IF(LL.GE.IP)GO TO 7000
LL=LL4]
TF(AMTAN.GE.DEL )GO TO 5300
GO Te 7100
TOOO CONTINUFE
Lh=lrsl
WRITE({6,7200}
T200 FORMAT(/////351 ##¥#% CAUTION *¥#%* PHAISE 1S OVER)
7100 CONTINUE
WRITE(6,7300)
7900 FORMAT(Z5(2H *),19H PHAISE SHIFT OWART,253(2H *))
DO 5000 J=1,L1

N
1F(J.EQ.1
DO 5000 3
RIENTS
FF{N.EQ. 1)

00 ;x:}?:};-Kv"-\’=’MATR‘(J.K.M.N)/srsQ(J,K,1)/ SCSQ(J!,M,2)
WRITE(6, 5371 YRADIUS{5)
5371 FORMAT(IM1,///10X, W K=,F1u.1,10X,25H DE NORMALIZE SARETA ATAL)
WRITE(6,5775)
uulrk(h,;l,%{
WRITE{6,5872) (0 FMATRX(.F, K K=l 2 =1 3 =1 D -
5479 FORMAT( 111 ,Hu(rﬁii( ATRXCE K M, NIK=1,2) =1, 2) N2, 2)  J=1,LL)
S53TY FORMAT(IH I8 4E1S
TF(RATE.EQ. L}GO TO
IK=Li

5X,4E15.5)
5
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00292
00293
00294
00295
00296
00297
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00749
00350
00351
00352
00353
00354
00355
00356
007357
00358
00359
00360
00761
0062
00363
00364
00365
00366
00367

00368

00369

CALL TAE(LL,NPN,NPP)
GO TG 707

704 CONTINUE

REAB(SIZ??gLL.LK
05 FORMAT _

7o READ{5,5360) ({ ( (FMATRX(J,K,M N),K=1,2),M=1,2)N=1,2),J=1,1K)
READ( 55760} { (FMATRX(J, 1,1 ,N} N=1,2},JaLKsi, 1L
READ(5,5360}{ { (TANDL J,x,n§,x:l,zg,usl,zg,J=1,Lxg
READ(5,5360 cOSDL(J,K,M) ,K=1,2) ,M=1,2),J=1,1K
READ{5,5360) ( ( (SINDL(J,K,M),K=1,2),M=},2),d=1,LK)
DO 708 JwlK+l,LL
DO 708 %=1,2
DO 707 M=1,2
DO TO8 Nal,2
FMATRX(J,K M, N)=FMATRX(J, 1,1N)

708 CONTINUE
FMATRX (LK4+1,1,1,2)=~FMATRX{LK+1,
FMATRX(LK+1,2,1,2)=~FMATRX(LK+1,
FMATRX(LK4+2,1,1,2)=vFMATRX(LK+2,
FMATRX(LL+2,2,1,2)=-FMATRX{LK+2,
GO TO 706

707 CONTINUE
I1li=1
1222=0
WRITE(7,5362 )ENERG

5362 FORMAT(F10,1)
WRITE(7,5363)1111,1222

5367 FORMAT(211)

WRITE(7,5361)LL,LK

5361 FORMAT(2110) ]
WRITE(7,5360) ( { { (FMATRX(J,K M, N} ,K=1,2) ,M=1,2) N=1,2),J=1,LK)
WRITE(7,5360 (}FMATRX(J,K,M,N),N=113).J=LK41 LL)
wnITE}7.5360 (({TANDL{J,K M) ,K=1,2) ,M=1,2),J=1,LK)
WRITE(7,5360)({(cOSDL(J,K,M),
WRITE(7,5360}({ (SINDL(J,K M),k

706 CONTINUE
HRITE(E-5371;BADIUS(6)
WRITE(6,5375
WRITE(6,5372 )3, (( (FMATRX{J K ,M,N) ,K+1,2) ,M=1,2)
WRITE(6,5374 )7, (FMATRX(J,l,JyS,N=1,z geikeilre}

5374 FORMAT(1H ,3(I4,2E15.5,6X))

WRITE(6,5364)

5364 FORMAT{7tH TANDL=)
VRITE(G.SJEg;(J,((TANDL(J,K,M),K=l,2),M=1,2),Jsl,LK+2)
WRITE(6,53

HRITE§6.5365§(J,((CUSDL(J.K,M),K=1,2),M=l,2),Jsl.LK¢2)

1
2
1
2

’
B
B
’

J2),M=1,2),
22),M=1,2),

N=1,2),7=1,1X)

WRITE{6,5367

WRITE(6,5365) (J, ((SINDL(J,K,M) ,K=1,2),M=1,2),J=1,LK+2)}
5366 FORMAT(7H COSBL=
5367 FORMAT (7TH SINDL=
5365 FORMAT(2(15,4E15.5})
5360 FORMAT(4E15.9)

CALL NAO(LL,LK,NPN,NPP)

WRITE(6,8900}
8900 FORMAT({1H1)

DO 9200 K=KANKAK,360,KANKAK

AK=FLOAT(K)}*.5

CALL SPHERI(K,LL,NPN)

CALL REI{LL,LK,NPN,NPP)

DO 9201 J=1,4

STGMAA(K,J)=SIGMA(J)}
9201 CONTINUE

SHERMM(K, 1)=SHERM(4 ,2)

SHERMM{K , 4 ) =SHERM(4 1)

FRE(1)=.0

FRE§2 =.0
FIM(1
F1M(2
GRE{1)=.0
GRE(2}=.0
GIM(13}=0.
n]u}:%:.o
Do 4100 JJ=1,2
DO BOOO 1=, 1K
AL=FLOAT(.J -1)
FRE(JJ)=FRE(JJ)+ (2, %AL4+1, )} %% (=5 #2, *(AL*SINDL(J,1,J0)#COSDL(J,1,J
lJ)w(ALol.)'SINDL(J,Z,JJ)’COSDL(J 2,0J) }#ASSLEG(J, 1)
Fin{as)= TM(JJ)*(Q-‘AL*I.)"('.55"2,’(AL'STNDL§J,1,JJ)**2
14(AL+1, )#STNDL(J,2,3J)%%2) ##ASSLEG(J, 1)

RE(JJ)&Q.'((ALol.)*AL/(Z.*AL+1.))ﬁ*‘5*(SINDL(J,1,JJ)“COSD

JYNDL(J,E,JJ)*COSDL(J,Z,JJ)'ASSLEG(J,E)

[FREY]

00371
uo3Te
003773
noyTh
00375
w376
077
00378
00179
00380
00381
00382
003873

0038
00385
PRLECT
00387
007388
00389
DOIB0
00391
0392
001397
OUIGh
60395
D036
00397
HHIYH
0399
00400
00401
oulkoz
[SeTe%)
Q0hoh
0040
004006
voh07
DOh08
0040y
00410
00411
00412
0oh1y
cobgh
LR Y
oolie
0ok tL7
ool
019
00420
0okl

004730
00474)
ol
SR
QDO
00435
00436
o047
00y 4R
[IED
0040
[P
a2
GOlley
DoAY

. LR FER
GlM(JJ):GTM(JJ)+2.“((AL4|-)”AL/(Z.'ALol.))“'-5'(5‘N”L(Jrl'JJ) s
LINDL(J,2,JJ) #¥2) ¥ASSLEG(J,2)

4000 CONTINUE p 3 *2
3 by= **24FIM JJ)~’2'GRE(JJ)**Z»hKM}{J}’ 2
ZLEEQQ ?:ji:l F?fkgzg(JJ)’GIé(JJZ_p[M(JJ).GRE(JJ)g STGMAA(K, JJ+4 )
STGMAA(K , JJ+! | =STGMAA K,JJ«Q;”J.I 1592654 /FR (J7)

STGMAA(K, JJ+4 ) =STGMAA(K , JU+4 #5. J249E-05
00 CONTYNUE .

u rSﬁ,TE g,WDO)AKI((§FSC(1I,JJ,KK),II=1,2),KK=J‘Z)vJJ=‘,ﬂ

9100 FnRMATélH ,F10,1,3(2€10,2,2X,2E10,2))

9200 CONTINUE
WRITE(6,45450)

4450 FORMAT(IE&) )

WRITE(6, 4400
4400 FORMA;(%X,5H KAKU, 3K, 18(2H *) 6H SIGMA,L7(2R *},5X,8(2H #),7H SHER
IMA,7(2H » Z
Al A=, 7266463E-03%FLOAT (KANKAK }
S16TO1=0,
S1GTOZ=0 .
SI1GTO3=0.
SIGTOU=0,
D0 47300 K=KANKAK 360 ,KANKAK
AK:FLOAT(KZ*.S
AKL=AK*®1 ,745329252E-02
AK1=SIN{AK1)
KIK=MOD{K, 10}
IF{KIX.EQ.1)GO TO 4401
GO To hLo2

4401 CONTINUE
WRITE(6,4403)

44073 FORMAT{1HO,5{2H ~})

4402 CONTINUE
HRITE(G,&200)AK,(SIGMAA(K,JZ J=1,6), (SHERMM(K,J),J=1,4)

h200 FORMAT(F6,1,6E12 4 5%, 4E12.4}
51cTol=SIGTol.SIGMAA(K,lg*sz
SIGTO?=STGTO24+S1GMAA(K,2 ) *AK1
SIGTOS=SIGTO3+STGMAA(K, 3) *AK1

h300 CONTINUE
SIGTO1=81GTOl#A1A%6,283185307

TO2=SIGTO2*A1 A%6,283185307

TO3=SIGTO3*a1a*6.283185307

STGTO4=SIGTOL+$IGTO24+SIGTO3

4404 FORMAT(1HO,20H TOTAL CROSS SECTION,4E20,3}
WRITH(6,4404)SIGTOL, SIGTO2, SIGTO3, SIGTOY
DATA BLANK,576:,HI1,KYO,ZERO/1H ,1H, 1H* 1HO,1HI/
WRITE(6,4k50)
Do 4410 K=10,180,2

TGMAA{KD 4 }/STGMAA( 360,4 }%20.

=INT(SHERMM(KE,H}#25,4101.)
NHTI=TINT(HI2)
TF(NHIL,GT.120)NHT 1=120
NSHE1=1NT({SHERMM(K1,2}#25,4101,)
NSHE!=1NT{SHFRMM(K1,2)%25.4101.)
PO1Y s, i2)
GRAPH({J)=BLANK

A5 CONTENEE

GRAPH( ) }=ZERO

GRAPR{B) =X YC

GRAPH(101V2ZERD

WRITE(O, 412K, GRAPH K

GRAPH(NSTGY Y =ST6

RAPHINHT 1 }=H1 1
GRAPH(NH12)=Kv0
WRITE(6, 4519 GRa P
GRAPHIONSHE | Y=s10
GRAPIINSHEZ Y=t )
WRITF{6 04 1N Gnapy

WY FORMAT(1He, 60X, 122141)

WL ForMaT( 1y JIR2x 12140, 1)

IO CONTINIE

GOUCONTI NG
STop
EXD
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0Q0kL5
00446
oob47
00448
00k49
00450
00451
00452
00453
00k 54
00455
00456
00457
00458
00459
00460
00461
00462
00463
oohbh
00465
00466
00467
00468
00469
00470

004TL

00473
00k Th
00475
00476
00kL77

00478
00479
004BO
00481
00482
00483
00484
00485
00486
oo487
00488

0nkg 7
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00517
00514
00515
00516
00517
00518

300

300

200
210

2000

2200
2300
2100

SUBROUTINE SPHERI(K,LL,NPN)

OMMON/ AASSLG/ASSTFG(2000,3)

DIMENSION F(3,2)

FR=FTOAT(K)*,01745329252+.5

CPK=rOS(FK)

SFK=SIN(FK)

ASSLEG(1,1) =0.2820947918

ASSLEG{2,1) =0,4886025119%CFK

ASSLEG(?.Z) x0.3h5h9k1‘¢95¢5ﬂ(

ASSLBG(3,1)  =0,3153915653% (3, *CFR#CFK~1.)

F(1,1)=aSSLEG(3,1)

ASSLEG(J.2}  =0.77254B40L*SFK*CFK

F(2.1}=ASSLRG(3.2)

ASSTER(3,3)  =0.386274202%SFK*SFK

F(3.1)=ASSTER(3,3)

sSSLEG(4,1)  =0.37)1763326%CFK#(5. #CFK¥CFK-3. )

F(1,2)=as81EG(4,1)

ASSLEG(4,2)  =,323180184 1 #SFK*( 5. *CFK*CFK-1.)

F(2,2)=ASSLEG{H ., 2) )

ASSLEG(H,3)  =1.021985476#CFK*SFK *SFK

®(3,2}=a881E6(4,3)

DO 200 1=5,LL+2

FT=FLOAT(1)-2.

Do 300 J=1,3

FJ=-(FLOAT({J)-1.)

ASSLEG(T.J) =({2.%FT+1 )#(2, #F123.)/(FI4FJel. )/ (FTxFJal. ) ) ¥, 54CF
1KOF(J,2) = ((2.%F143. )% (FT4FI )V #(FI-FJ)/ (2 #FT=1.)/(FI+FJal. )/ (FI-FJs
21, 1) ##0,5%%(J,1)

CONTINUF

no 200 J=1,3

F{J,1)=F(J,2)

F(J,2)=ASSLEG(T.J)

CONTINUFR

RETURN

FND

SUBROUTTNE POTENT (NSFK }
COMMON/WaVPOT/PNTR(2,3) ,WAVEFIT(3,2,2)
COMMON/ RRADAL/RADTUS(6) ,RADTAT (10000} /HHARA/HABA(4)
COMMON/KKATSU/KATSU(4)
coMMON/ VVPOT/VPOT(10000,2),VPOTEI (10000)
HABA{1)=HARA(2)/RADTUS(2)
KATSU(1}=INT{Aa1.0G{10,*RADIUS(2)}/RABA(1))
HABA{1}=ALOG{10,#RADIUS{2)})/FLOAT(KAISU(L1)})
KAISU(2)=INT{ (RADIUS{3)-RADIUS(2))/HABA(2))
HABA (2)=(RADIUS{3)-RADTUS{2)}/FLOAT(KAISU{2))
HABA(3)=2.#HABA(2)
KATISU(3Y=INT(RADIUS (4 )}-RADIUS(3))/HABA(3))
HABA(3)=(RADIUS(4)~-RADIUS(3)})/FLOAT(XAISU(3))
=2

5*HABA( 3
KATISU( NT((RADIUS(5)-RADIUS(4)}/HABA(Y))
HABQ&%);(RADIUS&i}-RAnxus(b))/FLOAT(KAlsu(h\)

Do 1,KAISU(
RADIAL(I)=0,1%EXP(HABA(1)*FLOAT(1))
CONTINUE

J=14KATSU(1)
JI=KATSU(1)sKALSU(2)

DO 200 K=2,4

DO 300 1=J,JJ
RADIAL(I}=RADIUS (K)+HABA(K)*FLOAT(I~Ja1)
CONTINUR

J=1Jsl

KK=Ke1

IF{KK.GF.5)60 TO 210
JI=JJ+K ATSU(KK)

CONTTNUE

CONTINUF,

JI=JJal

TF(JJ.GE.NSFK)GO TO 2000
G0 TO 2100

CONTINUF.

WRITF(6,2300)
WRITE(6,2200)
WRTTE(6,2300)

FORMAT(29H SFKTBUN KATSU DTMENSION OVER)
FORMAT(1H ,50(2H**))
CONTINDE

00519
00520
60521

0052

00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00523
00534
00535
00536
00537
00538
00539
00540
00541
00542

005413
00544

00545
00546
00547

Q0548
00549
00550
00551
00552

00553

00554
00555
00556

00557
00558
00559

00560

00561
00562
00563
00564
00565

00566
00567
00568
00569
00570
00571
00572

00573
00574
00575
00576
00577
00578
00579
00580
O0SH1
00582
00589
00584

100

1000
1100

1200

600

700

800

900
500

5000

400 1=JJ NSFK
giDIAL(I)sR;nIUS(5)~HABA(“)“FLHAT(]-JJ)
CONTINUF.

RADIAT. NO KETSAN OWARL
JJ-JJZé 00 YHABA
WRITE(6,10f
Fonnnr(iua.lbu SEKTBUN HABA=,UFR15.5)
WRITF(6,1100)}KALSU
FonMA;(iu 15K SFKTBUN KA1SUs,8115) ,
VRITE(6.1200)(RAnTAL(I\,1=100,Nssx,1000
FORMAT(1H0, 3H R=,7x,12ﬁ10.2\
DO 500 NN=1,NSFK
n:RAnIAL(NN;
VPOT}NN,l):O.
VPOT{NN,2)=0.
VPOTRI{NN}=0.
no 600 1=1,3
VPOT(NN,1)=VPOT(NN,li-POTE(l,I)*EYP(-POTE(Z.I)*R)
CONTINUF.
vpoT(Nn.13=vv01(NN,1)/w
no 700 1=1,2 .
no 700 J=1,2 .
Al-HAVEFU(l,l,I%'WAVEFU%{,;,%%

2=WAVEFU(1,2,I)+WAVFFU B ) )
3PZ¥(NN,2§=VP6T(NN,2)¢A1/;2/A2*|2./A2/B'(l.-EXP('A2*R\\ EXP(~A2#R)

GAKUROSAN

1)

CONTINUE

VPOT(NN,2)=2, *VPOT(NN,2}

12Y0 KITEIZYOTAT KARANO POTENTIAL

Al=HAVEFU$2.1_1}&!2

§2=WAVFFU(2,2,1)»2. _
vvor(NN.2)=GPoT(nN,2\-Al/nz/Azn(2h./Azﬂna.a(x.-ﬂxp(—Az*R))/R-Exv(
IAZnR)i(18./A2/A2‘6./A2’R¢le\)

po 800 1=1,2

Do BOO J=1,2

Alanvspn(3_1,11~VAVEFU§3,1.J\

A2=WAVEFU(3,2,1)}+WAVFFU(3,2.J
vpor(NN.2g=§p&T(NN,2)-Al/lz/Azi(zb./A2~~3,~(1.-Exp(-A2-w1)/R-Exp(-
1A2*R)*(18./A2/A2+6./A2*R+R*R))

CONTINUF:

AL=WAVFFI(2,1,1)#WAVEFU(2,1,2)

A2=WAVEFU(2,2,1)#WAVEFU(2,2,2)

VPOT({NN 2)=VPOT(NN,2)-2,%a1/a2/42%(6./A2/A2% (1, -EXP(~A2%R) }/R-EXP(
1-22%R)#{4./424R))

AL=WAVEFU(2,1,2)#WAVFFU(Z2,1,2)

A2=WAVEFU(2,2,2)#2
VPOT{NN,2)=VPOT(NN,2)-A1/A2/A2%(2,/A%%(1.~EXP(-A2#R))/R~EXP(-A2¥R)

1

zPOT(NN,Z)szOT(NN.l)-VPOT(NN.Z)

POT OF INELA OWART MATAMATA GOKUROSAN

DO 900 I=1,2

DO 900 J=1,2

AlsHAVEFU(l,1.1)*VAVEFU§3,1,J)

A2=WAVEFU(1,2,1}*WAVEFU(3,2,J)

VPOTF}(N )=VPOTEX(NN%‘B-*AI/AZ/AZ*(B./AZ’*S.*(I.-EXP(-AZ&R))/R/R_(

18./A2/A2/Re4. /A2  #R)*EXP({-A2#R))
CONTINUF

VPOTET (NN) =VPOTEI (NN)*1.,5437488
CONTTNUF

WRITE(6,5000) ((1,RADTAL(T),VPOTET(1}},T=1,NSEK,10)
FORMAT( (4(17,2F13.4))

RETURN

END

SUBROUTINE BESSEL(NPP)

COMMON/BES/FJ(300,2) ,FNEU(300,2) ,RK(2) ,KR(2)
Do 100 J=1,2

R=RK(J )

N(R)/(R)-cOS(R))/R
0S(R)/R

2 (COS(R)/R+SIN(R) ) /R
FI(1,5)=F10
,J)=Fad
(1,3
FNEU(2,0
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00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630
00631
00632
00633
00634
00635
00636

00637
00638
00639
006Lo
06l
ao6h2
0n6h 3
00644
0oeh s
00646
00647
GoHHE
0L6hY
00650
00651

201

S

300
100

300
150
100

160

200

KR(J)=INT(R)+50

KR?J =MINO(KR{J),NPP)

KR2sKR(J)}-1

DO 200 KR1=z3,KR2

FKR1=KR1
FJ(KR!.J):—FJD+(2.*FKRL-S-)*FJliR r
FNEU(KRl.J)=-FNEUO+(2.’FKR1-1‘) FNEU
FJO=FJ1

FJIlsFJ(KR1,J)

FNEUD=FNEU1

FNEU1=FNEU(KR2,J)

CONTINUE

DO 300 KR1=KR(J),NPP

FJ{KRL,J)=1.

FNEU(KRL,J}=1.

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE BESELL(LL,I,NPP)
COMMON/BES/FJ(300.2),FNEU(300,2),RK(2),KR(2)
po 100 J=1,2

R=RK{J)

FJO=SIN(R)/R

FJ1=(SIN(R)/{R)~COS(R))/R

FNEUO=-COS{R)}/R

FPNEUL=={COS(R)/ReSTN(R})/R

FI(1,J JO

FJ(2,J)=FJl

FNEU(l,J;=FNEUO

FNEU{2,J)=FNEUL

KR(J;=LL43

KR{J)=MINO{KR({J} ,NPP}

KR2=KR({J)}-1

DO 200 KR1=3,KR2 A

FKR1=KR1 .
FJ(KRJ,J)=~FJ0+(2.»FKR1-3.)»r;l/n
FNEU(KR1,J)==FNEUO+ (2. *FKR1-3. ) *FNEUL/R
FJO=FI1

FJ1=FI(KRL,J)

FNEUO=FNEUL

FNEUL=FNEU(KRL,J)

CONTINUE

1F( I.GE.3)GO TO 150

DO 300 KR1=KR(J),NPP

FNEU(KRL,J
FJ(KR1,J)=
CONTINUE
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE DIRAC1
COMMON/WAVPOT/POTE(2,3) ,WAVEFU(3,2,2)
COMMON/ 228/ ZBE(4,2)

DO 100 T=1,4

CONTINUGE

0o 200 )3

Do 200 ,2
ZBE(1,J)=ZBE(1,J)+PUTE(1,1)

ZBE(2,J}=2BE(2,J)-POTE(1,1)*POTE(Z,1)

2 é&.dg BE}?,J;+POTE 1,1)*POTE Z,I\*POTEéZ,X)/E
ZBE(4,0)=ZBE(4,J)-POTE(L,T “POTE?Z.Ij**J./ .

CONTINUE
ZBE(Z,2):1./“.“HAVEW1¥(2,l,1)"WAVEFU(2,1,l)nwAVEFU(Q.Z,l)*l(-b,)QUA

[

noH3h
HO65%

00650
GOLST
DOHHE
DUB59

00bLEY
00bH1
00662
006673
0066
00H65
DObOG
00667
DOLOKR
006649
00670
GobT L
00672
Q0677
a0b6Th
00675
00HT6
006TT
00678
00679
00680
D068
onhR2
OO6HT

00684
00685
00686
00687
00688
00689
00690
00691

00692
00693
00694
00695
00696

00657
00698
00699
00700
00701
00702
00709
00704
00705
00706
00707
00708
00709

00710
00711
voTia

60717
6O71
00715
00716

ERTREY

yied
( yi2)

)

TWAVEFU(2,1
S*WAVEFU(2,1,2 #WAVEFU(2 .2
uﬁ(u,2)=zﬂﬁ(h,2 —WAVEFU(2,1.:2
Do 300 1=1,2
Ho 300 J=1,2 . EFU( 3,1 5 ) ¥ {WAVEFU (3,2, 1 }4WA
ZBE(? = 2 6. *WAVEFU( 3,1, T J¥WAVEFU( 3,1, (3 !
155357522'3?555i3 t)—EY*WAVE&U{I:\,[)’HAVEFU(\.l.J)*(HAVE&L(!.-.I)Q
EWAVEFU(l,Q,J)a»*(-E.) o
ZBE(L,2)=2BE( ,2)+wAVErU(1,J.y)~WAVEFU(1.1.J)/A.
300 CONTINUE
RETURN
END

. AVEFT(2,2 VEFU (29252
*YAVEFU(2, 1,2} # (WAVEFL » L auavER]
L 1)*WAVEFU(2, R qg*wnv F“Ew ’g;ny(--.)+LHh

2,1,1)/0.

*WAVEF!

SUBROUTINE DIRAC2(LL,FFF)

COMMON/ PPHAT /PHAT{2 4,2} ,AMPL(2,4,2)
COMMON/%Z1/ ZBE(4,2)

COMMON/ PPHATO/ PHATO(2,2) ,AMPO(2,2}
FOMMON/LIL/L}Z,2)/EENERG/ENERGY(2)
:OMMON/HHABA/HABA{%)

L 1,2;

1F(LL
100 L{1,2)

1.{2,!

150 Lel,
GO TO 200
200 CONTINUE
o 300 1=1,2
Do 400 0=1,2
PHAT(I,l,J)==ZBE(1,J)}/FLOAT(L(1,J))
500 CONTINUE
Do 300 J=1,2
PHAI{I,1,J)=ARSIN(PHAT(I,1,J))
TF(PHAI{1,1,J)) 501,502,502

501 PHAT{I,1,J}=3.141592654~PHAI(I,1,J)
502 CONTINUE
PHI=PHAL(I,1,J)
FLL=FLOAT(L(X,J))
PHAI(I,2,J =(ENERGYEJ)+ZBE(2,J)-COS(PH1))/(1.-2.*FLL“COS(PH1))
PHAT (1 ,3,.J)=2 #PHAL(I,2,J) #SIN(PH1)*(1,-FLL*PHAI(1,2,J))+ZBE(3,J)
PHAI%I,J,J =PHAT(I,3,J)/2./(1.-FLL*COS(PH1))
PHAI(I,%,5}=2 %PHAT(I,3,J)*SIN{PH})*(1,~2 #FLL*PHAI(X,2,J)k2,¥PHA
11(I,2,J2*PHAI(I,2,J *cos§PH1)» 1,-2,/3,*FLL*PHAI(I,2,J)+2ZBE(4,J)
PHAI(I,4,0)=PHALI(T,4,3)/(3.~2.#FLL*COS{PH1))
AMPL(I,1,J)=AMPL(T,1,J)~ AMPO(1,J)
AMPL?I,Z,J =(FLL~FLL—ZBE(1.J)«stf!,J)y*o.5

ANPL(T,3,J)=SIN(PH1)#(2 #FLL¥PHAL(1,2,J)-1.)
AMPL(I,%,J}=PHAT(T,2,J)*COS(PHL)FLL*PHAT (I,2,J)-1.)+FLL*PHAI (I ,3
1,J)}#SIN({PHL)
300 CONTINUE
DO 500 I=l,2
po 500 J=1,2
PHAI{I,1,J)=PHATI(T,1,J)/2:
PHATO(T,J)=0.
500 CONTINUE
Do 600 1=1,2
DO 600 J=1,2
DO 650 K=1,k
FK=FLOAT(K)
PHATO(T,J)=PHATO(T,J)+(.1*EXP{HABA{1)))**(FK~1, }*PHAT(I,K,J)
650 CONTINUE
AMPO(T,3)=AMPL(T ,1,3)+AMPL({1,2,3)*ALOG{ . I¥EXP{HABA(1))) +AMPL
|)'1.*EXP(HABA(l)S*AMPL(I,k,Js*:OI'EXP(g.'HABAél)) m (£.3,3
600 CONTINUE
RETURN
END

SUBROUTTNE LUNGE(LL,NPN NSEK )

DIMENSTON DELTA(Y),DELAMP{4)
COMMON/HHABA/HANA(% ) /KKATSU/KATSU(4 )
COMMON/RRADAL/RAIHUS(G),RADIAL(lOOOO)/EENERG/ENERGY(?)



- 0st1

00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731

00732
00733

00734
00735

00736
00727

00738
00739

00740
00741

00742
00743
00744
00745
00746
00747
00748

00749

00750

00751
00752

00753
00754
00755
00756
00757
00758
00759
00760
00761
00762

DO7RY
007H2

06THY
0o

007HS
007HE

COMMON/MATRIX/ FMATRX {2000, 2 ,2,2)/VVPOT/VPOT(10000,2) , VPOTEI ( 10000)
MMON, pmux/ml}z,z,mooo) .

ggmon;).u,/ L(2,2)/PPHAIO/PHATO(2,2)} ,AMPO(2,2)

LL1=LL4l

KKK=1

KAI=l

KAIS=KAISU(1)

HAB=HABA(1)

100 CONTINUE

DO 200 IsKAI,KAIS
DO 300 J=l,2

Do 300 Ksl1,2

FL-FLOAT(L(K,;))

PHAIO(X ,J
;::;A(l)-ﬁL;SIN(2..PHA)oRADIAL(I)'(-VPOT(I,J)QENERGY(J)-COS(Z.'PHA
1))
TA(1)=HAB¥DELTA(1) B

ggtTA}Z}:FL'SIN(Z.'PHAQDELTA(I)g{hADIAL(I)QRADIAleolg)/Z.'(( VPO
lT(I.J)—VPOT(Iol,J))/§.+ENERGY(J -COS{2,*PHA+DELTA(1})
DELTA(2)=HAB*DELTA(2
DELTA{J%:FL‘SIN(Q.‘PHA+DELTA(2))+(RADIAL(I)¢RADIAL‘I¢1))/2.*((-VPO
11(1,J)=VPOT(T4+1,7))/2. +ENFRRY (T)~COS({ 2, #PHA+DELTA(2)))

DELTA{ 3)=HAP*DELTA(3)
DElmAéb;:FL’SIN(Z.'(PHA&DELTA(J)))ORADIAL(IQI)'(—VPOT(Xol,J)oENERG
1Y(J)-COS(2.’(PHA+D?}TA(3))))

neTA (B }=HAB*DRI TA (S
hHAIn:K'J)=VNA10(K_J)¢(HEITA(1);Z.O(DFLTA(Z\ODPLTA(3))&DEIIA(“)\/6

DELAMP(1)=-F1#00S (2, #PHa ) ~RADTAL(T ) #SIN( 2, %P3}
DELAMP}Z\_—PYﬁCOS(2.*PHA#DELTA(1\)—(RADIAL(I)«RADIALllol\)/2~-SIN(
1 2.#PHA+DELTA(1))
DELAMP(3)=-FL¥COS (2. *PHA+DELTA(2))-(RADIAL(I)+RADIAL(I+1))/2.#SIN(
1{2.%PHA+DELTA(2)}))
éELAMp(h)=-FL~cos(2.»(pHAoDELTA(B)))-RADIAL(1+1)~SIN(2.'(pHA»DEL7A
13

AM;%(K,J)=AMPC(K,J)»HAB'(DELAMP(l)+2.’(DELAMP(2)¢DELAHP(3))¢DELAHP
1(4))76.

300 CONTINLE

IF(LL.LT.0)GO TO 270

DO 250 J=1,2

DO 250 K=1,2
IF(AMPO(K,1).LF.-170.)GO TO 251

FMATRX{LL1,K,J,2)=sFMATRX(LL1,K,J,2)+EXP{AMPO(K,1))*C0S(PHAIO(K,
11))‘VPOTEI(IS'AMpl(J,i,I)'HAg;RADIAL(I)'!Z
IF(AMPO(J,2).LE,-170.)GO TO 251
FM}TRK({LI,},J,l)=FMATRX(L11,K,J,1)¢EXP(AMPO(K,1))*COS(PHAIO(K,I))
1* YPOTEI(I1)}*EXP(AMPO(J,2)*COS{PHATO(J,2))}*HAB*RADIAL(I)

251 CONTINUE
250 CONTINUE
270 CONTINUE

AMP1(1,2,1)=AMF{1,1,T)

AMP1(2,2,T)=aMP1({2,1,I)
AMPI(1,1,1)}=EXP(AMPO(1,2 %-coss PHAIO?I,Z{;/RADIAL 1;
AMP1(2,1,1)=EXP(AMPO(2,2))%C0S PHATO(2,2))/RADIAL(T

200 CONTINLE

WR1TE(6,1100)

1100 FORMAT(5H R=15)

WRITE(6,1000) ((PHATO(T,J),1=1,2),J=1,2) ,( (AMPO(1,J),1=1,2),J=1,2)

1000 FORMAT(4E15.5,10X,4E15.5)
210 CONTINLE

KKKZ=KKK
KKK=KKK4+1
KAT=KAT+KATSU(KKKZ )
KATS=KATS +KATSU(KKK)
HAR=HARA (KKK )
DO 500 1=KAT,KATS

ES

po 4oo ,2
DO 400 K=1,2
FL=FLOAT(L(X,J))
PHA=PHATO(K,J}

DELTA(1)=~FI#STN(2, #PHA)/RADI AL (1 ENERGY (.T}-v. -
DELTA;) Tamoray (1)e (.T}=VPOT(1,J)-COS(2. %PHA)
DELTA(2)=FL#SIN(2.®PHASDFLTA

(1))/(RADIA111)0RADIAL(I 1))%2
HJI)=(YPOT(T,J)4VPOT(T 41 J))/2.-Cos(2.wpu, * HENERGY
DEl1A£2:=DFi1A(2)“HAF ’ ¢ ADELTA(L))
DELTA{ 3 FL¥STN(2.#PHA+DELTA(2))/ RADIAL (1
2 RA
l(J)-(VPDT(I,J)oVPOT(|¢l-J»/2.-005}2-’PHAiD;{TA?L?g
DELTA ?;SHAﬂihilTA(W)
DELTA(W ) =FL*STN(2. % ( PHa,1. -
lJ)-Fos(z-.(PH"éELT:(J,;;FI1A(’)))/RADIAI(IQl)oENERhY(J)-VPUT(I@L
DELTA h):uﬁL1A(h)~HAH
IfHAIU K,J)=PNAIO(K,J)«(DELTA(l)02~’(DELTA(2)OUELTA(3))ODELTA(“))/
.
DELAME(1) F|~r0<(2.-PuA)/RAn1A1(l
nrlAMP(Z).-E!'cos(ﬂ.-Pqunrl1A(l)

(1+41))*2, sENERGY

)=SIN(2, *PHA)
)/(RAnlAl(I)¢RAn1AL(x.1))-2.-SlN(

00787
00788
00789

00790
00791
00792
00793
00794

00795

00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807

00809
00810
00811
0082
00813
00814
00815
00816

00817
00818
00819
00820
00821
00822

00823
0o8RY
00825
00826
00827
oo¥28
00829
0CE30
00831
00832
00837
0083
RIS
00 36
0CR37
DORIY
00839
00840
[SLUS
oorha
0GRy
OORYY
Q084S
BORYE
aosh7
00BLE
00BN Y
(LT
OUNS]
SEEESY
OuRgYy
DHKGY

C

400

350
370

<1

50

1200

3000

F{

300

150

hoo

A ) -
lgé;::;}gieréi‘%%s(z.'PHAODELTA(Z)/(RADIAL(I)*RADIAL(Ifl))'Z. SIN(

2
lgé::::zggbzgiuggs(z.-(pHAonsLTA(J)))/RAD}AL(I.l)-SIN(Z.u(pHA.DELTA

lka%gix,J)=AMPO(K,J)oHAB*(DELAMP(l)02.‘(DELAMP(2)+DELAMP(3))0DELAMP
1(4))/6.

CONTINUE
IF(LL.LT.0)GO TO 270
Do 350 J=1,2

0 K=1,2
ggAggx(LL;ﬁ,J,z)=FMATRX(§L1,K,J,2)¢E?§(AMP0(K,1))ﬁcos(PHAlo(x.

#VPOTET (I)#AMPL1(J,2,1)¥HAB*RADIAL:

léngRx(LLISKzJ,l)=FMATRX(LL1,K,J,l)oEXP(AMPO(K,l))*COS(PHAIO(K,I))
1%VPOTEI (1 }*EXP(AMPO(J,2) ) #COS{ PHATO(J,2) ) *HAR
CONTINUE
CONTINUE
AHFIél,Z.I =AMP1(1,1,1

AMP1(2,2,1)=aMP1(2,1,1

AMPL 1:1,1 =EXP{AMPO(1,2))*C0S PHATO 1.2; /RADIALEI;
amMP1(2,1,1)=EXP(AMPO({2,2})*COS PHATO(2,2))/RADIAL(Z
CONTINUE

KKK1=KKK+1

A=RADIgS(§KK;) s

'E(6,1200)A,KAT K

TSR (1o BerEsea 30(20 ), 14 SEX] BUN sasvae)
WRITE(6,1000)( (PHAIO(K,J),K=1,2),J=1,2), ((AMPO(K,J},K=1,2),J=1,
IF(KKK .NE.4)GO TO 210

DO 3000 M=1,2

FMATRX{1,2,M,2
FMATRX(2,M,1,2
DO 3000 N=1,2
FMATRX(1,1,M,N)=0.
CONTINUE

RETURN

END

SUBROUTINE REL(LL,LK,NPN,NPP)

DIMENSI ON C1{?},c2(2),c3(2)

COMMON/SIG/STGMA(4 ), SHERM(4,2)
COMMON/BES/FJ}JOO,zi,PNEU()oo,z),Rx(z),xR(z)

COMMON/AASSLG/ASSLEG (2000, 3)
CDMMON/FFSC/FSC(2.3,2)/AAAAMP/AAMP(2OOO,2,3,2),BBMP(BOO.Z,B,E),
YABMP(300,2,3,2),BAMP(300,2,3,2)
T.K,K) T,UP-UP ORUP~DOWN,,J ,MAFNETIC QUANTUM NUMBWR, ,KREAL OR TMAG
DO SO K=1,4

STGMA(N
DO 50 M=1,2
SHERM(N,M)=0,
CONTINUE

Do 60 K
Do 60

DO 100 M=1,3
Ml=M-2

DO 200 LLi=0,LL
LLL
FLL=FLOAT(LLL)
LF(M1)300,400, 500
CONTINUE

LEG(LIL],2)

SSLEG(LLL1,3)

(FLL/(2.%FLL+3.)/2. Yoa.5

L EQ.0}GO TO 350

.{/E?.'FLL-I)/2.)**5

s IFLL2. )/ FLL /(2. 4FL1-1. ) /2, ) 2%, 5
rbLu(rln-l.)/(Fxn.l.)/(z.wFLL¢J.)/2.)«u.s

CONTINUE

c1(1)=0.

c2(1)=0,

cz(2)=0,

G0 TO 600

CONTINDE

Al ASSLEG(ILLL, )




16T

00855
00856
00BST
QOBSR
0OK%Y
00860
QoRel
OOR6Z
S0 ]
O0RLY
DOB6S
ML)
NORGT
oopes
00869
OUNT0
00871
00872
00873
ooNTh
OORTS
VOBTE
00877
0URTB
00879
QORRO
DOBRY
o8z
QOHEY
OOHRE
QORRS
vuBle
QOERT

VORRR

vUBAY
0UBY0
OOBYL
QOBY2
00HGY

QoYU
00893
0OOR96
OOBYT
OORYYE
00899
00960
SOEI
nuYLT
00907
00904
00905
00506
0LI0T
00908
LUanY
00910
0neatl
60912

o
[
ool
LS
CoaT
V0o LR
Qe
aaazn

[REL]

BG1wASSLEG{LLL1,2) )
A (2 rpen s
c2 l)--(rLLO(rLLQZ.)/(2-’FLL¢).)/(FLL. .
1F LLL.L:.?zgo.Ithl Jyeas

riu/(2. 1. .
g; ;;:é(:tlol-)'(FLL—I.)/FLL/(Z-'FLL'I-))"-5
G0 TO 600
430 CONTINUE
Cci(1)=0,
c2{2)#0.
GO TO 600
350 CONTINUE
ci1{1)=0.
c2{2)=0,
GO TO 600
500 CONTINUE .
ALEG--ASSLEG&LLLi,;
ALEG1=ASSLEG{LLLL,
Ci(2)m{FLL/(2.#FLL+3.)/2.)2%.5
c2 1;- (FLL+2.)/{2-*FLL#3.)}24.5
c2(1)aC2(1)/2.%%.5
TF(11L,1E.0)GO TO 550
c1(1)={(FLLs1.)/ (2. FLL=1.}) %55
ci{1)=ct(1)/2. 5.5 ,
£2(2)={ (FLL=V.)/ (2. *FLL=1. )20 %%.5
€00 CONTINUF
ci(2)=0r(2)® rLL.l.)/(z,apLL,l.;;u;,5
ﬁ #({PLL+. ) /(2. #FLLeL. ) )#%.5
c2(2)=ce(2)* FLL/(E.'FLLol.{%".?
cl 1§=c|(1 #(FLL/ (2. *FLL+1.))**.5
(F(LLL.GT.LK+2)GO TO 610
0 Tal,2
gg”zl.M.?);PSC(J,M.X)otAAMP(LLLl,Q,H,I)'Cl(l)-AﬁMr(L%Ll,l,n'l)c
lfl(Z)oB"HP(LLLl.!.M,!)'C2(l)-BBMP(LLLl.z.“,i)'C~(»)) AL¥G "
FSC(2,M [)=rsc(z.w,x).(BAMP(LLLA.E.H.l)fcx(l;-ﬂfHP(LtLl.I;M.i
IC1(2)~A§MP(LLL|.I.M,I)-cz(l)-Asup(LLLl,z,n,1 #C2(2) ) *ALEG:
700 CONTINVE
«0 To 620
©10 CONTINUE
po 710 1=1,2
FSC{1,M,1 _rsc(l,n,r).(AAMP(LLLl,z,M.I)*cl(1)-AAHP(LLL1.1.n,1)!

1C1(2) ) *ALEG
710 CONTINUE
620 CONTINUE
200 CONTINUE
PO BOO I=1,2
FsCEl.M,I{:-FFC 1,M,]=*3.Q6Q101615

Fsc{2,M,1)=-F5C(2,M,1 *3,464301615
HUO CONTINUE

$O 900 Le=1,2

Do 900 .

Y
SIGMA(M)=STGMA(M) +FSC (L, M, N)#FSC{L,M,N)
900 CONTINUE
STGMA(M)=STGMA{M) #5. 3294105
100 CONTINVE
FSC(2,2,1)=-F30(2,2,1)
FRe(2 ==FSC(2,2,2)
e 1000 M=1,3
Do 1000 K=1,2 .
SHERM(% ,2)=SHERM( ' ,2 ) 42, *FLOAT( (=J#*K)#FSC(1,M,K )} #FSC(2,M, 3~K)
SMFRM(\.I)=SMPHM(5,l)¢2.%FLOAT((-l)‘(MvK))0F5<;A,M,K)GFSC(Z,b-N,
13-K}
LOOE CUNTINUF
PO Y10 121,73
STGMACH YaSTGMA (B ) enTGMA(Y)
G910 CONTINUE
SHERM( %, 2 ) axHERM(4,2)/STGMA (Y ) %5, 3200E-05
SHERM{'C, LY asHERME , U /STAMA(N ) *5, a20ak 08
HETERS
END

SUBRCUTENE NAD(TE 1K, NPA, NPP)
mwnxmx<m> $ )
COMMON/ MATRT X/ FMATRY (2000,
COMMON/ ARRAMP/ AAME{ 20C0
PoBaMp{ o, )

COMMON/TANDE L /TANTD (00,2 ,2)

2%
SRBMP{ 00,2, 2) JABME{ 00,2, 3, 2)

00926

ouy27
QYLK
00Y29
0oy
00931
00932
00937
QoY
00933
009360
00997
00938
009

009

00949
00950
00951
00952
LYY
00954
00955
U956
00957
0u95H
00959
00960
00961
00962
LS IEL P
[EUTEY
00965

00966
00967
00968
00969
00970
00971
00972
00973
00974
00975
00976
00977
00978
00979
00980
00981
00982
00983
00984
00985
00986
00987

06988
40389

00990
0039}

00992

00993
00994
00995
00996
00997
00998
00999
81000

2,2) sql 300, 2
300,2,2) ,COSDL( 00,2 3CSQ , o cos
o (SO:M:§/S§D§/3132L(-L-1 OF BLASTIC OR TNELASTIC,,K,SIN O
¢ sou (1,9, Wy
LK=LK

+

po 1000 Nal,NPP

po 1000 NN=l,2

po 1000 NNN=1,3

DO 1000 NNNN=1,2

BBMP N,NN,NNN,NNNN;-U.

ABMP({N NN, NNN ,NNKN)=O.

ﬂAMplN,Nn.NNN.NNNN\-n.
1000 CONTINUVE

DO 1100 N=1.NPN

DO 1100 NNzl ,2

DO 1100 NNN=1,3

DO 1100 NNNN=1,2

AAMP{N NN, NNN  NKNK) =0
1300 CONTINUE

po 100 1=1,2

EXS#-1.

JJ=2 ;
IF{1.EQ.2)G0 TO 250
Ja=1

EXsal.
250 CONTINUE
DO 200 J=JJ,LL
Ji=Jel
AJ=FLOAT{.J-1}
IF(1.£Q,1)G0 TO 350
JlzJ-1
350 CONTINUE
AJ1=FLOAT(J1-1
AL=FLOAT(2#J=1)%(FLOAT(2¥J1-1))##.5
IF(J,GT.LX+3)GO TO 310
Do 300 K=1,2
DO 300 M=1%,2
SDL%K‘M.I; s1NDL§JJ.H.l *COSDI§J.K,2 +SINDL(J,K,2)*COSDL(J1,M,1
SDL(K,M,2)=C0SDL({J1,M,1)#COSDL(J ,K,2)~SINDL{J1,M,2 }#SINDL(J,K ,2
300 CONTINUE
G0 TO 320
O CONTINVE
Do 130 K=1,2

DO 330 M=1,2
SDL(K,M,1)=.0
SDL{K,M,2)=1.
330 CONTINUE
320 CONTINUE
MM=1
MMM=3
1F(J.EQ.1)GO TO 600
GO TG 700
600 CONTIKUE
MM=2
=2
760 CONTINUE
DO 400 M=MM, MMM
AM=FLOAT(M-2)
DO 400 K=1,2
EEXS=EXS*FLOAT((-1)**K)
SF1=SBL{1,1,K)*FMATRX (J1,1,
SF2=SDL(1,2,K)*"FMATRX(J1,2,
SF3=SDL{2,1 ,K)*FMATRX (J1,1,
SF4=5DL(2,2,K)*FMATRX(J1,2,
AAMP (J,1,M,K)=EEXS/AL¥ ((AJ+AM}*
1% (AJINSF3+ (AJ1+1.)1%SF4) )
TE(J.GT.LK+3)GO TO 401
BBMP (J, T ,M,K) 2 EEXS/ALY ({AJ¢AM)* (AJ- AM+1 . J*AJI# (AJ1+1.)) %% 5% {SF1-§
1F2-SF3+5F4)
BBMP(J,I,M,K}=-BBMP(J,1,M,K)
ABMP{J,1,M,K)=EEXS/ALY (AJ1#* (AJ1+1.})%% S*(- (AJ-AM+1,)*(SF1-SF2)
T1-{AJ+AMY*(S5F3-SF4))
BAMP (J,1,M,K)=EEKS/ALY ((AJ*AM)* (AJ-AM¢ 1) )M S*{-AJ1*(SF1-SF3)
1- (AJ1+1.)*(SF F4)
BAMP(J, 1 ,M,K)=-BAMP(J, I ,M,K)
401 CONTINUE
400 CONTINUE
200 CONTINUE
100 CONTINUE
WRITE(6, 35001
3500 FORMAT(/////29H AAMP NO ZERO DE ARUBEKI ATAI)
WRITE{6,3000) { (AAMP (1,2, ,M,N} ,M*1,3)N=1,2)

Suwmws
rele it

JINSF1+ (AJ141.)%SF2) + (AJ-AM+1,)




- ¢S1

01001 WRITE (6, 3100) ( (BBMP (1,1,M,N) ,M=1,3} ,N=1,2)
01002 WRITE(6, noou(nmu,z,u.n), -1,3) )01, 2)
01003 mu'rEEo g;gg}%%lx:;gi:mn-}.;g.:-}g
01004 WRITE (6 BAMP(1,1,M,N) M=1,3) ,N=1, USION?? VPTE : :
01005 WRITE(6, 3200 ( (BAMP (1,2,M,N) M=1,3) ;N=1,2) 01082 4200 FORMAT (10X, 32H CAUSIONT? VPTEL DIMENSION OVER)
01006 WRITE(6,3300) ( (ABMP(1,2,M,N},M>1,3) ,N=1,2) 01088 CONTINUE
01007 WRITE (6, 3300) ((ABMP (2,2, M) M1, 3),8-1,2) 4100 ONTINUE
01008 3000 FORMAT(1HO,6H AAMPe,6E15.5) o108s 400 15 80 1e1,899
01009 3100 FORMAT(1H ,6R BEMP=)GE1S.5) 01087 VPTEI (1)=0
01010 3200 FORMAT(1H ,6H BAMP=,6E15.5) 01088 CONTINUE
o011 3300 FORMAT(IH ,6H ABMP=,6E15.5) 01089 50 10 2000 I=1,NPP
01012 20 2000 H=i,3 01090 DO 2000 J=1,2
01013 DO 2000 Ne1,2 01091 DO 2000 K=1,2
01014 AAMP(1,2,M,N)=0. 2 DO 2000 Ms1.2
01015 BAMP(1,1,M,N)«0 01003 PMTRX(T,J,LM)=0
01016 BBMP(1, z,M.N)-o 01094 CONTINUE .
01017 BAMP (1,2,M,K) =0 01095 2000 10 100 1-NN1,NN2
01018 BBMP(1,2,M,N}=0. 01096 FFI=FLOAT(I)
01019 ABMP(1,2,M,N)=0. 91097 R=RADI+HAB*FFI
01020 BBMP(2,2,M,N)=0 .
01021 ABMF (2,2 ,M,N}=0. 01098 RK(1)-R JEX(1)
o1o22 2000 CONTINUE gi?gg gg&’;:sr:i“ﬂ 1,NPP
01023 3600 FORMAT(12E11.3) 01101 DO 300 J=1,2 )
p1024 WRITE(6,3601) 01102 DO 300 X=1,2
01023 3601 FORMAT (6H AAMP=) 01103 AL=WAVEFU(1,1,J) *WAVEFU(3, 1 x)
01026 WRITE(6,3600) ((( (AAMP(L,1,M,J),J=1,2) ,M=1,3),1=1,2),L=1,LK+2) 01108 AZ*WAVEFU (1,
01027 WRITE(6, 3605) ( ZJ)‘WAVI‘EFU(S . . n .
HEEH 3605 01105 VPTEI (1)=VPTEI (1)+3. AI/AZ/AZ (8./A2%%3.%(1, -EXP(-A2*R)}/R/R- (8.
1 FORMAT (1Ho ) 1/A2/AZ/R+4. [AZ+R)*EXP(-A2*R
oigig WRITE(6,3600) ( (AAMP(L,T,1,2),1=1,2},L=LK+3,LL) 01106 300 CONFINUE ) (-Az*R))
0 WRITE(6,3602) 01107 "7 VPTEI(1)=VPTEI(
- 1)*1.5437488
01031 3602 FORMAT(6H ABMP=) . 01108 DO 200 K=1,2
01032 WRITE(6, 3600)((((ABMP(L 1,M,J),J21,2) ,M=1,3),1=1,2),L=1,LK+2) ’
01109 JJ=1
01033 WRITE(6,3603) 01110 TF(K.EQ.2)1J
01034 3603 FORMAT(6H BAMP= 01111 DO‘Z(’]DQ:Y‘.)IJ ;i
0103§ WRITE (6, 3600)([((BAMP(L I,M,3),J=1;2) ,M=1,3),1=1,2) ,L=1,LK+2) o111z e '
01036 WRITE(6,3604)
01037 3604 r«omn(eu BBMP=) gi}ﬁ iﬁ%ﬁi?g'f)x’ii“‘iémxu 1,1,K)+FJ(J,1)*VPTEI (I)*FJ (J1,2)*R*R
01038 = 1=1,2),L=1,LK+2 v -
01038 WRITE (S, ,3600) ((((BBMP(L,1,M,J},J=1,2) ,M=1,3),1=1,2), ) 01115 FMTRX(J.1,2,K)=EMTRX (J,1,2,K) +FJ(J, 1) *VPTET (1) *FNEU (J1,2) *R*R
P RET 01116 FMTRX(J,2,1,K)=FMTRX (J,2,1,K)+FNEU(J, 1) *VPTEL (1) *FJ{J1,2) *R*R
01117 FMTRX(J,2,2,K) =FMTRX (J,2,2,K) +FNEU(J, 1) *VPTEI (1) *FNEU(J1,2) *R*R
A
100 CONTINUE
01120 DO 3000 J=1,LL
01121 DO 3000 I=1,2
01041 SUBROUTINE TAE(LL,NPN,NPP) 01122 DO 3000 K=1, z
Ulg:Z DIMENSION VPTEI(20000) 3‘{%3 DO 3000 M=1,
01043 DIMENSION FMTRX(300,2,2,2),FMTRX1(300,2,2,2 1124 FMTRX1(J,T, K ,M)=FMTRX1(J,
01043 COMMON/HHABASHABA(4} ~ 20 01125 *3000 CONTINUE ) 1K, M) FMTRK(F, LK, M) *HAD
01045 COMMON/WAVPOT/POTE (2,3) ,WAVEFU(3,2,2) 01126 HAB=HAB*AA
g}g:g Egm""f“ﬁ’}’“”‘) .2) . FNEU(300,2) \RK(2) ,XR( 3{}%; RADI=RADI+RAD*AA*#* (J1-1)
ON/SCDL/SINDL{300,2,2), CﬂSDL(300 2,2), scsquoo 2,2) WRITE(6,3100)R,RADI
01048 COMMON/MATRI X/ FMATRX (2000, 2,2, 2) 01129 3100 FORMAT(1H ,3H R= ,EIS. -
gloss e aAbA L THATRA (20 1130 FORMAT(IH ,E15.5, 9H DE OWARI,3H R=,E15.5,12H DE HAJIMARU)
01050 COMMON/ FKF/FK (2) 01131 TF{JI.NE.5)GO TO 400
01051 N99=20000 01132 WRITE(6,3300)
omgz LK=LL 01133 3300 FORMAT(1HO,8H FMTRX1=)
010 .
g1053 gg (;% }-%:EJPP g”;g 3200 ;‘géx;?aéfgﬂ)((((FMTRXI(J 1,K,M),1=1,2) ,M=1,2,J=1,LL+2)
01055 DO 60 K=1,2 01136 DO 1000 N=1,2
01056 DO 60 M=1,2 01137 JJ=1
01057 EMTRX1 (1,7, K,M)=0. 01138 IF(N.EQ.2) JJ=
mgga 60 CONTINUE 01139 Do 1000 J=JJ LL
01059 N=4 01140
01060 HAB=1./FK(1)/41.958 01141 [t rQ 2)J1=J-1
g}ggi ggrwa‘u‘mm(n)co T0 70 gmg no 1000 1=1,2
0 TO 80 DO 1000 K=1.2
0106 3 0
010 i 70 CONTINUE 1144 FMATRX (J, T, K, N} =FMATK A (d,T,K,N)+COSDL(J, 1, 1)*COSDL(J1,K,2)*
mo:s o ‘;g;;r\ﬁ/azg 22 %fgz;;ﬂf’ 1,1,N)+SINDL(J, 1, l)"SINDL(Jl K, 2)*FMTRX1(J,2,2,%)
H CA . ! * 5
3}32" HAa-'mnAmf n ). UTION TAE INCORRECT,20(ZH *) " ,),éMT;XH]i;N?I\(&l LKL BIYFMTRYL (J, 1,2 N) -SINDL(J 1 ,1)%COSDL(J1,
7 80 CONTINUE 01145 1000 ~ CONTINUE .
01068 AA = (HAB/HABA(4 ) nl146 FMATRX -
#1070 RADE (RADLLIS (0) RADIUS (511 (AAF+R-1.14 (AA-1.) 01147 PIATRK(117301)500
hess RAD- (RADIUS (6) RADIUS ARANS1. )% (A1, 01148 FMATRY (2171700000 ¥
ool HAB=RAD/ FLOAT (NN) e F“””“m‘ 2T=.0
NN1=1 Vb
1073 NN2=NN 01151 no 5400 J=
01074 WRITE(6,110)\N M -i 2
i 110 ¥ AE SE : 5
0078 Ifl!5!14AT(//18u TAE SEKTBUN KAISU,110//) 01154 (} b1, })‘::I\V FU(3,1,.)
c1077 RADI=RADIUS (5) 01155 VP=VP+6, '7\' )5 AVERI(3,2,1)
21078 IF (NN GE. 0960 To 4000 01156 S400  CONTINUE
01079 G0 TO 4100 01157 VP=VP*] 54374388

01080 1900 CONTINUE
01081 WRITE(6,4200)



- €61

01158
01189
01160
all6l
01162
01163
01164
01165
01166
01167

01186

5200

5100

5300

5500

5600

- FMATRX(LK+2,1,1,2)=-FMATRX (LK+2,1

1200

CONTINUE
LLeLl+l

AA=1.

BB=1,

DO 5100 J=1,LL-2

FJ1=FLOAT(J)

AA=AA®FJ1/(FJ1-.5)

BB=BB*FJ1/(FJ1-1.5)

CONTINUE

AA=AA/ (FJ1+.5)/ (FJ141.5)8(FJ1+1.)/(FJ1+2.5)
BB=BB/(FJ1-.5)/(FJ1+.5)

AAl=AA

BB1=BB

LAL=LL*10

DO 5300 J=1,LAL+200

FJ1=FLOAT(J)

AASAAR (FJ1-.5)/FJ1# (FJ1+FLOAT{LL-1))/ (FJ1+FLOAT(LL-1)+1.5)
TN (FK(2)/FK(1)*2

BB=BB*{FJ1-1.5)/FJ1* (FJ1+FLOAT(LL-1)-1.)/(FJ1¢FLOAT(LL-1)-.5

1% (FK(2)/FK(1)A%2

AAL=AAL+AA

BB1=BB1+BB

CONTINUE

AAL=AA1*VP* (FK(2)/FK(1))**LL/FK(1)

BBl=-BBIAVP®(FK(2}/FK(1))**(LL-2)/FK(1}

DO 5500 I=1,2

00 §500 J=1,2

FMATRX(LL, I,J,1)=AAL

FMATRX(LL,I,J,2)~BBl

CONTINUE

IF(LL.GE.NPN-5)G0 TO 5600

AB1=AMAX1 (AAl,BB1)

IF(AB1.GT.10E-4)G0 TO 5200

ot
X(LK+1,1,1,2)=-FMATRX{LK+} .1.1.

FMAIRX[LK‘I:Z:I:Z)!»FMA¥§§(t§¢{:i,%,

1,

FMATRX (LK+2,2,1,2)=-FMATRX (LK+2.2.1,

CONTINUE

RETURN

END
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