呼吸停止下Gd-DTPA持続静注による腎動脈の高分解能MR angiography

Author(s): 天沼, 誠; 渡部, 恒也; 平敷, 淳子

Citation: 日本医学放射線学会雑誌. 54(4) P.292-P.294

Issue Date: 1994-03-25

Text Version: publisher

URL: http://hdl.handle.net/11094/15038

DOI:

rights

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
High Resolutinal MR Angiography
of Renal Arteries with Gd-DTPA
Infusion and Breath-holding

Makoto Amanuma, Tsuneya Watabe,
and Atsuko Heshiki

To obtain high resolutinal renal MR angiogram we combined 3D fast scanning technique with Gd-DTPA infusion and surface coil imaging in seven individuals. 1×2×4 mm spatial resolution provided excellent renal arterial images although thinner slices suffered from decreased signal to noise ratio and ghost artifacts. Twenty seconds interval between injection and data sampling was considered suitable to obtain sufficient signal of the renal arteries. Its easiness, no x-ray irradiation, and capability of repeating study make this technique promising for screening renal arterial diseases.

Research Code No.: 508.9

Key words: MR angiography, 3D imaging, Gd-DTPA, Renal artery, Surface coil

Received Sep. 20, 1993; revision accepted Nov. 24, 1993
Department of Radiology, Saitama Medical School

NIPPON ACTA RADIOLOGICA 1994; 54: 292-294
開始までの時間を20秒に固定して1分割の厚みを4, 3, 2mmに可変してのおのおの3回ずつ撮像した。得られたMRA像において、(1)至適撮像タイミング、(2)至適スライス厚、(3)腎動脈本幹の撮出能、(4)腎結内分枝の撮出能、(5)動脈の撮出能、(6)至適表面コイルについて検討した。

結果

造影剤注入後20秒後の像で腎動脈は全例で撮出可能であったが、10秒後では2例で造影剤の到達していないために撮出されず、また30秒後では若年の1例で腎動脈が同定できず、代わりに動脈系の撮出が認められた（Fig.1）。スライス厚に関しては腎動脈本幹のみの撮出能はいずれの画像でもほぼ同程度であったが、大動脈を含むMRA像全体に関しては4mmで再構成像が明らかに3mm、2mmと比較して優れていた（Fig.2）。また、後者は血流信号の位置誤認による、いわゆるghost artifactが著明となる傾向が認められた。腎の分枝形態については、実質および腎盂の造影効果のため一般に不明瞭であっ

Fig. 1 16 year-old male. Normal right kidney: Data sampling started (A) 20 seconds and (B) 30 seconds after Gd-DTPA injection. Image B demonstrates inferior vena cava. Post left nephrectomy for Wilms' tumor.

Fig. 2 25 year-old female. Partition thickness: (A) 4 mm and (B) 2 mm. Although both images demonstrate renal arteries, image B fails to visualize aorta due to decreased signal to noise ratio and spatial misregistration of the flow signal.
考察

腎動脈は腎血管性高血圧症をはじめ、その形態上はその評価が臨床的にも重要となる血管である。
MRAにおける評価が少ないうちは、その形態異常を判定するための十分な空間分解能を有する撮影のない限られた時間内に得ることが困難なためと考えられる。今回は用いた方法では、表面コイルの併用により面内の空間分解能を約1×2mmまで向上させることができ、また、1回の呼吸停止で撮像が完了するため従来の2次元法でみられたスライス間の血管の位置のずれは問題とならない。
空間分解能の面からはより薄いスライス厚を使用するのが望ましいが、SN比の低下による画質の劣下を考えると4mmの厚みは必要と考えられ、この条件は大動脈から腎臓全体撮像領域に含めるという観点からも有利である。

腎臓内部の血管分枝の描出にはコンタクトのタイミングが重要となるが、22秒のデータ収集時間内には、腎皮質の信号上昇がある程度進行すると考えられるため、その選択的な描出には限界があると思われる。また、撮像開始後は造影剤注入後20秒程度が適当と考えられたが、今回の検討では対象が正常若年者を多く含んでいたため、実腎の臨床応用に際してはもう少しこの時間は延長する必要があると予想される。なお、注入30秒後には1例で腎静脈、下大静脈のMRAが得られたが、撮像開始時間を変えて撮像を繰り返すことで動脈、静脈両者のMRAを得る可能性も示唆された。

大動脈の描出能は腎動脈に比較すると不良であ