放射線従業員の血液像（第1報）白血球について

漆山, 欣志

日本医学放射線学会雑誌. 19(6) P.1159-P.1173

1959-09-25

publisher

http://hdl.handle.net/11094/15074

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
放射線従業員の血液像（第1報）
白血球について

東北大学医学部放射線医学教室（主任 古賀良彦教授）

塩山 欣志

（昭和34年6月16日受付）

目次
第1章 緒言
第2章 検査材料及び検査方法
第3章 検査成績
第4章 検査結果に考察
第5章 結論
第6章 文献

第1章 緒言
従来X線及び放射性物質の利用並びに研究は広く行われて来たが、近年人工放射性同位元素、原子力の利用等が簡単に出来る様になり、放射線、放射能の応用は絶えども医学のみならず、各分野で広く用いられるようになったが、それに伴う放射線障害、特に放射線障害の発生は増えて且つ人の関心を惹くに至り、それに対する予防及び治療の研究は医学各方面に就いて近年顕著に盛んとなった。

血液像が慢性放射線障害の検出として変える際、その一般的並びに局所的変化の出現よりも早期に、且つ著明に現われる事が多く来ており、又検査手技は簡易容易と確実なる為に現在職業放射線障害の診断として確実に応用されている状態であるが、放射線従業員の障害する血液像に関する数多的人の業績は日々少なくともであり、実体が確実に把握されておらず、且被曝線量との関係を究明しているものは少ない。

国際放射線学会では放射線被曝の最大許容量を0.3μ/M・Hと定めておるが、これと同様数多く、現在の最大許容量の問題は各方面に於いて研究されている現状である。

昭和28年以降、東北大学放射線従業員及び宮城県下のレントゲン技師の健康管理の一手段として定期的に末梢血液像検査を施行して来たが、その血液像と随時的に見べき時間の経過と共に如何なる変化が起っているかを観察して、職業的放射線障害血液像の実体の究明と、障害血液像と被曝線量との関係について追求し、且最大許容量問題解明の努力にでもならんと欲するものである。

第2章 検査材料及び検査方法

検査材料：東北大医学部、理化学、工学部、農学部、金属材料研究所、放射線用研究室、科学測定研究所、農学研究所、非水溶性研究所の放射線関係職員、及び宮城県下レントゲン技師。

検査方法：医学部放射線科従業員には常時フィルムパッチ或は東芝製ポケット線量計を胸部に携帯しつつ被曝線量を測定した。但しフィルムパッチは日本保健用品協会、フィルムパッチサービス部の測定による。

医学部放射線科従業員は3カ月毎に、他学部及び研究所従業員は4カ月毎、宮城県下レントゲン技師は年1～2回末梢血液を採血測定した。

採血は常時午後2時から3時の間に耳血を用い、白血球用メランジーユールで1.0まで正確に吸引し、藤の如くTürk氏液で稀釈メランジーユールに200回以上振置し、3～4滴を目利Bürker-Türk氏計算板を用いて算出した。

塩酸標本はメタノールで固定、ギムザ染色を行い百分率を求め、分類白血球は絶対数を求め、東大、佐藤の老按したエルモノグラムを用い毎
回の検査結果を比較検討した。第II章 検査成績

第1節 医学部放射線科総務員

1．総日要数

その検査成績を検査時期別に分類して見ると第1表の如くである。

即ち、大部分のものは5000以上を占めているが、8000台のものと5000台のものを比較した場合、8000台のものは検査回数を重ねて常に5000台のものより、その百分率が益に多く7000台も少なくとも昭11、2の検査までは5000台のものと同様なるかにその百分率が少く、5000台、6000台を多くもののが占めていた。

以上の様な状態を保ちながらも、検査回数を重ねた結果を見ると、昭11、2の検査までは次7000台、8000台のものが減少し5000台のものが著明に増加しており、検査回数を増す毎に全体的に白血球減少に傾くのが知られる。しかしながら昭11、5の検査以後は5000台のものは減少し、7000台、8000台のものが増加し、5000台から8000台のものが次第に時々等と百分率の分布をなす様にあり、一時減少傾向を示したもののが回復傾向を示す。
している。一方向4000台のものを見ると、その値に動揺が見られ且つ、昭31.12の検査で6例（13.2％）、昭32.3の検査で4例（12.1％）と比較的多い数が見られていることは、造血機能の調和と平衡に乱れが生じ、白血球数に減少傾向を見せつつ、日差の動揺が激しくなっているものが増加しているものと考えられる。3000台の減少者に2〜3存在しているが特別増加傾向は認められない。即ち放射線従業者が一旦白血球減少症を来た場合にも従業を続けていると容易に回復は見られない。

次に第1表の分布曲線を示すと第1図の如くで、即ち検査1ではPeakが6000台にあり、検査2では検査3ではPeakが5000台、検査4では5000台にあって、何れも5000台と6000台は共に接近した値をもち、検査回数を増やす毎に、そのPeakは上昇し、7000台以上のものは次第に減少し、曲線は急激な山を形成している。検査5以後はPeakが5000台にあっても、その値は減少を示し7000台、8000台が次第に増加を示し、6000台、7000台にPeakを持つ線になり、5000台から8000台が平均されつつある傾向を示し、曲線は次第にならたかとなりPeakが右方即ち増加の方に移行している。即ち前述した如く白血球減少傾向を示していたものが、後半の検査では増加傾向を示し、白血球数に於いて改善が見られている。

2. エルモノグラムより見た分類白血球

エルモノグラムは東北大、佐藤、林の考察に於るもので、初学者でも血液像を一観して解る様にしたもので、各種白血球を絶対数を以って表わし、第2図で示す如く線の太線が正常血球を示しており、此の正常線から外れれば、それは異常又は病的な血液像であるとしている。従って私達はニルモノグラムは簡便にして一目で血液像が観るという利点を用い、放射線従業員の血液像が総合的に見て如何に変動して行くかを判定する為に起用した。即ち、そのニルモノグラムは第3図～第13図に示される如く、白血球正常、中性球減少、単球減少を示しているが、第3図（検査1）を見ると淋巴球は淋球増加を示しながらも大部分は正常値2000台附近に密集しており、単球は
200以下に集っている。第4図（検査2）になる
と淋巴球は検査1の場合より増加傾向を示しそう
ばらつきが大となっている。単球は400以下を大
部分が占めており、単球減少を示しているが分
布状態はばらつきが著者より大気圏になってしま
い。好中球には検査1と比較して明るい変動は見
られていない。第5図（検査3）以降になると。
検査回数を重ねるに従って明らかに淋巴球増加が目
立って来ており、13図（検査11）に於いて最も著
明である。単球も同様、検査回数を重ねに従っ
て400以下の値を示してはいるが、増加の傾向を
示し正常値400に接近しつつあるのを示している。好
中球は検査回数を重ねても著明な変化はなく、只分
布状態は多少ばらついている如くも思われる。好酸
球はエルモグラフ上では大部分減少を示している
が、分布状態は広範囲であり、検査回数を重ね
ても特別認められない変化はない。
前項に於て検査後半より白血球数は回復傾向を
示していると述べたが、統数に於て正常値に回復
しつつあっても、血液像に於て検査回数を増やす
に従い淋巴球の増加が著明になっている。

3．被曝線量

(a) フイルムパッチ

フィルムパッチによる測定は、昭31.9月では
パッチフィルムが試作品中で入手困難であったの
ので、血液検査を行う前の週に測定した。昭31.
10月からはパッチフィルムが市販される様になった
ので連続的に行測定し、測定は日本保安用品安全協
会フィルムパッチサービス個に依頼した。測定
結果が80ml以下の場合は“30mr 以下”として
記載されて来たので検査成績には適用して“10
mr/w 以下”として記載した。

従って昭31.12以降の平均値は10mr/w 以下を
10mr/w と見なし場合と零と見なしした場合を
算出した。此の場合両者の平均値はこの範囲内に
存在している。

第2表及び第14図で見られる如く、昭31.4の
平均被曝が57.7mr/w で、10mr/w 以上被曝した
例数も既端に多く、それの平均被曝も98.1mr/w
で全検査中最大を示し、過半数以上のものが全数
的に被曝量が割合多くなかった事が想像される。又最大
被曝量も289mr/w で検査全期間中最大を示し

<table>
<thead>
<tr>
<th>検査年月</th>
<th>検査例数</th>
<th>最大値 (mr/w)</th>
<th>最小値 (mr/w)</th>
<th>平均値 (mr/w)</th>
<th>10mr/w 以上の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. 5</td>
<td>11</td>
<td>65</td>
<td>1.5</td>
<td>25.7</td>
<td>6</td>
</tr>
<tr>
<td>3. 7</td>
<td>21</td>
<td>220</td>
<td>2.0</td>
<td>23.9</td>
<td>13</td>
</tr>
<tr>
<td>31. 2</td>
<td>24</td>
<td>90</td>
<td>2.0</td>
<td>23.6</td>
<td>17</td>
</tr>
<tr>
<td>6. 4</td>
<td>23</td>
<td>288</td>
<td>1.3</td>
<td>57.7</td>
<td>13</td>
</tr>
<tr>
<td>6. 9</td>
<td>22</td>
<td>47</td>
<td>3.0</td>
<td>10.8</td>
<td>9</td>
</tr>
</tbody>
</table>

31. 12	29	75	10以下	14.3	3
32. 1	28	80	20.4	12.3	8
3. 2	28	140	20.5	13.0	7
6. 3	14	93	25.4	20.4	7
6. 4	22	125	29.5	23.6	9
6. 5	23	63	15.6	9.2	6
6. 6	28	37	12.2	3.3	3
6. 8	25	20	11.5	2.7	3
6. 9	27	97	17.0	8.5	4
6. 11	19	67	13.7	5.8	4

第2 図 フイルムパッチによる測定値
（b）ポケット線量計（東芝製）

ポケット線量計は比較的多量線量を覆うことの
われた者にフイルムバッサと共に携帯させました。
その結果は第3表に示される如くで、昭和31.12
までは平均値が100mr/w以上を示しているが、
昭和32.1以降は100mr/w以下を示し、被爆量が
減少している。最大被爆量は昭和31.12までは200
mr/w以上を示す事は居々であったが、昭和32.1
以降は200mr/w以上を示す事は稀となり、100
mr/w以下を示す事になる。

以上の結果よりフイルムバッサ、ポケット線量
計何れによっても被爆量は年々減少を示している
又、フイルムバッサとポケット線量計との測定値を比較した場合、フイルムバッサはポケット
線量計より低値を示す事が多く一致する場合が少
なかった。

第2節医学部放射線科以外の学部並びに各研
究所従業員

1. 対照

放射線を取扱う予定のある者は、被曝後の各個
人の血液像の変化を判定する意味で、対照として
出来るだけ被爆前に血液像検査を受けるよう要望
していたが、それが63名となったので、全般的に
見た場合の従業員の血液像の変動を比較計算為に
これを対照例とした。

即ち第4表及び第15図に見られる如く、6000台
が17例（28.4％）で最も多く、5000台、7000台が
13例（21.8％）で同値を示し、次いで多く、8000
台以上は次第に減少している。しかし4000台は非
常に小さい数を示しているが存在しないわけではない。

エルモノグラムは第16図の如くで淋球球増加、
睾丸減少の傾向にあると知られている。

2. 従業員の無名血球数

検査成績は第4表の如くである。

即ち対照例の百分率と比較した場合、著差がな
い場合もあるが大部分は7000台以上ものの、百分
率は検査全割合中対照例より少ない数を示し、
4000台は対照例より著しく大きな数を示してい
た。又、5000台、6000台は幾分増加を示してお
り
第4表

<table>
<thead>
<tr>
<th>年月</th>
<th>4000以下</th>
<th>4100〜3000</th>
<th>5100〜6000</th>
<th>6100〜7000</th>
<th>7100〜8000</th>
<th>8100〜9000</th>
<th>9100〜10000</th>
<th>10100以上</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>29. 11</td>
<td>0</td>
<td>4 (7.7%)</td>
<td>14</td>
<td>17 (32.6%)</td>
<td>9 (17.3%)</td>
<td>3 (5.8%)</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. 7</td>
<td>0</td>
<td>12 (26.7%)</td>
<td>15</td>
<td>15 (29.9%)</td>
<td>9 (18.9%)</td>
<td>1 (1.7%)</td>
<td>1 (1.7%)</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>31. 6</td>
<td>2 (1.7%)</td>
<td>10</td>
<td>35</td>
<td>42 (8.3%)</td>
<td>10 (11.7%)</td>
<td>2 (3.3%)</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. 11</td>
<td>1 (0.8%)</td>
<td>4 (3.8%)</td>
<td>39</td>
<td>28 (23.0%)</td>
<td>14 (11.8%)</td>
<td>2 (1.6%)</td>
<td>(7.4%)</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>32. 5</td>
<td>2 (1.7%)</td>
<td>15 (13.0%)</td>
<td>29</td>
<td>23 (20.0%)</td>
<td>11 (9.6%)</td>
<td>3 (2.6%)</td>
<td>1 (0.9%)</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>32. 10</td>
<td>1 (0.9%)</td>
<td>7 (5.8%)</td>
<td>33</td>
<td>41 (27.5%)</td>
<td>15 (12.5%)</td>
<td>13 (10.8%)</td>
<td>8 (6.7%)</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

未使用者 | 0 | 2 (3.3%) | 13 | 17 | 3 | 7 | 5 | 3 | 66 |

全体として対照例に比し白血球減少に傾いている傾向が見られる。

次の白血球数の減少程度を見ると、検査全期間中の白血球数の百分率を求め、対照例と比較すると第17図に見られる知くで、6000台以下が従業員に多く、特に4000台以下がその差が著しく従業員に白血球減少者が対照例に比し多く存在している。
各検査相互間の変動については、第4表、及び第8図に見られる如くで、特に各検査ともPeakは5000台位は6000台に存在しており、5000台と6000台の値は常に接近している。又Peakは常に27%以上30%前後を示していた。

7000台、8000台は5000台、6000台よりはるかに小さな値を多く示しているが、これの変動は5000台、6000台のもの、増加、或は減少により左右されている様に思われる。

総括的に見ると各検査毎に幾何かの変動はあるが、検査回数を重ねても著明な変化はなく5000台から8000台を動かしている様に見られる。しかしながら一方4000台のもの、変動が著しく目立っている。これは恐らく造血機能に幾何かの影響を及ぼす調節が不完全であるものが存在している、4000台以上の変動が動いているものと、全く障害を起し白血球減少を来たしたものの、脈の低値がその個人の正常値であるものとの変動の結果であると考え、4000以下のものです増加減少が見られず一定した感がある。
3. エルモノグラムより見た分類白血球
第19図～第24図に見られる加くである。即ち総て淋球球増加、好中球減少、単球減少を示しているが、対照例と被曝例のものを比較すると、総て著しい差異は認められないと述べて言うならば被曝後の検査成績は対照例より好中球数に傾いている。

各検査相互間を比較するに検査回数を置くても著明な変動は見られない。

4. 被曝線量（取扱物質及び条件）
取扱物質を放射性同位元素群、X線群、加速器群の三群に大別し各検査毎の例数を調べた結果第5表の如くで、放射性同位元素取扱者が過半数を占めていた。
放射性同位元素群には放射性物質取扱者も含めた。
加速器群はシンクロトロン、ケバトロン、ファン・デ・グラフ等の取扱者で電子線取扱者も含めた。
取扱物質及び条件は第6表の如くで、即ち放射性同位元素は18種類数を数mc以下の量を用いている者が大部分で、しかも一つの実験を行うのにそれらを順にかけて使用するか、又はその量をそのまま連続的に扱う者をいた。
又年間連続して用いているものは少なく、殆ど不連続的で例えば1か月間連続して使用すれば次の月は実験を中止しているという如くで、実験を中止している月も可成りある。300mc、500mc。という如き高単位のものを扱っているものは年に数回使用する位で被曝する回数は極か少ない。X線群には放射性同位元素を共に扱っている者も含めてあるが、X線は40KVP 80mA 以下の低電圧を取扱っている者が大部分で、高電圧使用者は極く少数である。

被曝時間は1日1～2時間程度で、週2～3回扱う者が多く週日扱っている者は非常に少ない。
加速器群では施設を運転し始めると連続的に取扱うが、中断している時期も多い。但し電子線を連日扱っている者が少数存在している。

第II節 宮城県下レントゲン技術

<table>
<thead>
<tr>
<th>年月</th>
<th>R I 群</th>
<th>X線群</th>
<th>加速器群</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>11</td>
<td></td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td></td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td></td>
<td>61</td>
<td>42</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td></td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td></td>
<td>56</td>
<td>43</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td></td>
<td>62</td>
<td>40</td>
</tr>
</tbody>
</table>
第7表 官能疾下学術会 白血球数

<table>
<thead>
<tr>
<th></th>
<th>4000以下</th>
<th>4100〜5000</th>
<th>5100〜6000</th>
<th>6100〜7000</th>
<th>7100〜8000</th>
<th>8100〜9000</th>
<th>9100〜10000</th>
<th>10100以上</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.11</td>
<td>2 (5.2%)</td>
<td>8 (18.0%)</td>
<td>5 (12.2%)</td>
<td>7 (18.4%)</td>
<td>7 (18.4%)</td>
<td>1 (2.7%)</td>
<td>1 (2.7%)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>31.7</td>
<td>1 (4.8%)</td>
<td>3 (14.3%)</td>
<td>0</td>
<td>5 (23.8%)</td>
<td>2 (9.5%)</td>
<td>4 (19.0%)</td>
<td>2 (9.6%)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>31.12</td>
<td>2 (5.1%)</td>
<td>8 (20.4%)</td>
<td>12 (30.8%)</td>
<td>4 (10.2%)</td>
<td>5 (12.9%)</td>
<td>5 (12.9%)</td>
<td>3 (7.7%)</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

第25図 検査3（昭31.11）

第26図 検査1（昭30.11）

第27図 検査2（昭31.7）

第28図 検査2（昭31.11）

1. 総白血球数

検査成績は第7表の如くである。即ち昭30.11の検査では5000から3000までは各々懸々同様の差数を示しているが、4000台のものは20.0%で非常に高率を示していた。昭31.7の検査では4000台が14.3%と減少し、5000台のものは存在せず6000台が23.8%と多くなっている。昭31.12の検査では4000台のものが存在しなくなり、5000台と6000台が高率を示しているが7000台以上は平均化された値を示しており白血球数に関しては著明な改善が認められた。3000台のものは割々同様を示し、回復が認められる傾向である。

その分布曲線をみると第25図の如く、即ち検査1（昭30.11）はPeakに4000台にあり他はなだらかな曲線を示しているが、検査2（昭31.7）では6000台にPeakがあり急囲のほげい曲線を示し、検査3（昭31.12）では6000台にPeakがあり、それに接近して5000台が存在し、これらは百分率が著しく大で急峻な山を形成しているが、他はそれより低値で略々平等なだらかな曲線を示している。4000台は著るしい減少を示しており、3000台には変化が認められず略々一様である。
昭和24年9月25日

2. エルノノグラムより見た分類白血球
その検査成績は28例～28例に示される如くで、
既もすべて淋球も増加に、単球減少を示している
が、好中球は正常点4000を中心として左右に略々
等価に分布している。

各細胞間の比較すると、検査回数を重ねる
に従って淋球も増加の傾向が示されている。

第4章 総括並びに考察
本学放射線従業員及び宮城県下レントゲン技師
の血液流管として昭和29年より定期的に血液流管
検査を施行して来たが、この血液所見を経時的に
調査した結果、前章既述の如き成績を得たが、
ことに之を総括するに、

1) 医学部放射線科従業員の總白血球数は大部
分の者は5000台、6000台を占めており低値を示し
ている。4000台のものは、動揺は激しく不安定な総
白血球数を示しているが、検査回数を重ねると次第
に改善されている。又一旦、3000台まで減少した
ものは回復困難である。

2) 总白血球数は改善されつつあるにも拘
ず、エルノノグラムより見た分類白血球像は検査
回数を重ねると次第に淋球も増加し、単球減少（エル
ノノグラムの正常点4000より小ではあるが）の
傾向が認められた。

3) 「レ」線被曝量はフルムラソツ、ポケット
線線計測で測定した場合で各検査時、平均
線被曝量及び最大線被曝量は年々減少している。又検
査全体の過半、300mrj/wを越すものが殆どなか
った。

4) 医学部放射線科以外の学部、及び研究所在従
業員で放射線被曝以前に検査したものを対照例と
した場合、6000台が最多多く、次いで5000台、
7000台と8000台以上は次第に減少しており、4000台
のものも僅か存在している。

5) 医学部放射線科以外の学部及び研究所の放
射線従業員の總白血球数は5000台6000台が正常
を示し、検査回数を重ねても著変な異常は見られ
ないが、対照例と比較した場合4000台のもの、割
合に著しく多く白血球減少の方に傾いている。

6) エルノノグラムより見た分類白血球像は対
照例も被曝後のものも淋球も増加、軽度の単球減
少を示すが、検査回数相互には変化は見られな
い。対照例と比較した場合は好中球減少が著しく、
認められた。

7) 取扱物質は放射性同位素（19種）
X線、シンクロトロン、ケバトロン、プラニ・
デ・グラフ、電子線等で放射性同位素元素数mc
以下を使用しているものが大部分で、X線は40
Kv以下の中電圧を取扱っているものが殆ど
であり、原子核に巻きついて被曝を覆っているもの
は非常に少ない。

8) 宮城県下レントゲン技師の総白血球数には
著明な改善が認められたが、3000台まで減少した
ものは固定されている者があり、回復困難であ
る。

エルノノグラムより見た分類白血球像に検査回
数を重ねるように従い淋球も増加が認められた。さて
Heineck以来正常人のレ線による血液像
の影響に関する先人の業績は数挙に数えずが、
近年放射性同位素元素の利用が進んになり、放射
線、放射能の障害同様を採取扱う従業員の職業
的放射線障害の問題が大きくなり取上げられその障害
の示様としての血液所見に関する報告は極めて多
い。

レントゲン取扱者の血液障害所見に関する先人
諸家の業績を踏み通すに、レ線従業員の血液変化
は総白血球の減少に止まりと言える事は多くの先行
者、一致した意見であるが、分類白血球像に関しては、
好中球の增加、淋球の減少を主張する研究者、
逆に好中球の減少、淋球の増加を主張する研究者,
故にそれを団々と全く異った意見を述べている
研究者等あり更に更々ある調査成績を発表している。

即ち, Fortis, Pfahler, C 場所的淋球増多
を認め、N. Gagie, G. Schwarz, D.L. Sieben-}
rock, Tuffier, Amundsen, は好中球の減少、淋
球の増加及び各種血球増多を来すと報告している
が、Mottram は好中球の減少、淋球の場所
的増多及び各種血球増多を報じ、Aubertin, Charles
は場所的好中球減少を来たすが、淋球は不

—71—
変であると主張している。

我が国では大谷、上野は白血球の著明な減少は好中球の著明な減少、淋巴球の軽度減少に由来すると報告ており、高井は線維性系の血液変化は総白血球の減少に伴って好中球の減少が著明なる一相を示すが、淋巴球は著しく増加するかは減耗に減少しないという事実があてはまる。と報告している。

単球及び好酸球に就いては、N. Gagiè, G. Schwan、L. Siebenrockは好酸球減少、単球は不変と主張し、Pfahlerは好酸球増加、Aubertin、Charlesは好酸球増加、単球不変と報告している。

最近の報告では、鳥居等はレントゲン吸収波の血液像に比較的観察される好酸球增多、比較的著明淋巴球減少、比較的単球増多が認められると報告している。

日比野等はレントゲン検査者360名について血液及び造影器所見を3カ月間観察した所によれば、好中球の相対的増多、淋巴球の相対的減少、好酸球の増多を認めた。香田、前原ら線維系の萎縮及び細胞増加を認め、佐藤及は3カ月間に連続観察したレントゲン検査者の中検査成績によれば白血球に関しては白血球の増減、好酸球増加、単球増加を認め、前原及は好中球減少と検出糖尿球減少、単球増加を認め、佐藤及は好中球と検出糖尿球減少、細胞増加と検出糖尿球増加を認められるが、取扱期間の短縮は関係が認められる。

以上の如き分類白血球像の意義の不同が、障害血液像は単一ではないという事と検査方法の相異及び多くの先人は比較的分類白血球像で検査成績を報告しているとの相違を考慮する。即ち一回の検査により結果を出している報告者、数年間の連続的検査成績を報告している研究者等であり、又比較的な分類白血球像では例えば、単球は好酸球の如く数の少ないものを除き好中球数を反映するが、好中球数は好酸球数が増加し、淋巴球数は減少する。この成績を基に、単球及び好酸球を成人に於いて検査を行なうが、好中球数の減少を認め、好酸球は著明に増加する事を観察し、昭和32年3月1日に500名に於て検査を行い、好中球数の減少を認め、好酸球は著明に増加する事を観察し、昭和32年3月1日に500名に於て検査を行
ている。而し 100mr/w 前後の曝曝で白血球減少を示した例もあり、200mr/w 以上の曝曝に拘らず、殆んど投血所見に変動を示さないものもあつて、後藤は X 線に対する感受性は個人的に非常に差があると発表している如く、各個人の感受性の如何によって差異が出るくると考える。従て淋巴球増多を示す被曝線量においても各個人差異があり、従て被曝線量の多寡に照らし淋巴球の増多を起す必要な被曝線量を設定することは現段階においては未だ可能ではないと考える。

医学部放射線科従業員の検査成績では検査回数を重ねるにつれて即験年数が進むにつれて白血球減少者が増加するという事はなく、検査開始当初頃は被曝線量が比較的多く白血球数も全体的に減少に傾いていたが、被曝線量の減少と共に回復している事が検査開始以来 4 年間の間に生じているので白血球減少は被曝年数によるよりも被曝量の多寡に関係するので、後藤の取扱年数が進むに従い必ずしも白血球減少が比例して減少することは困難を認められないという報告と一致している。

中尾、賢は放射線学会の放射線障害委員会の案に従って放射線同位元検査研究従事者の血液像を検討した場合、白血球数については、182列中、要注意 71 列（39.0%）、要観察 27 列（14.8%）計 98 列（53.8%）で白血球の減少者の少からざるすこと及びその質的変化は比較的淋巴球の百分率増多があることをあげているが、而もこの注要者、要観察者ハ放射線障害に見るとものとは必ずしも認われないと報告している。

中尾、賢は放射線同位元の主を兼ねる 51 列と、それ以外の放射線源に曝する 15 列とに分けて集計、要観察と比較した場合、白血球数は分散度が広く、低値を示すものが多いた魯、同位元及他の放射源に曝すグループでは高低の両端に分けるものが多くてより、淋巴球百分率も同位元を扱うグループで稍々高率に傾くようであると報告している。

私は調査した過半数以上の人々即ち医学部以外の学部及び研究所の放射性同位元を扱っている従業員の検査結果、総白血球数は 7 図の散布曲線で示されている如く対照値より低値を示すものが多く、特に 5000 以下の低値を示す率が多かった。エリチノグラムで分類白血球像を検討した場合、対照例に於ても白血球は正常点より左偏にあるものの（例）多く、好中球は正常点の 4000 を中心として左右に分布し、更に好酸球及び単球はむしろ左側に（減少）多かったが、従業員の場合は淋巴球、好酸球、単球は対照例と略々同く、好中球はその散在が少しく僅々減少の方向を示していた。従て対照例と比較した場合の総白血球数の減少は、この好中球減少に由来しているものと考える。

又、各検査相互間には医学部放射線科従業員の場合は被曝量の減少と共に総白血球数に回復傾向が見られているにも拘らず分類血液像に変化が見られており、他方医学部以外の学部及び研究所の従業員には随時に見て総白血球数及び分類血液像に変化が見られていない。この事は被曝量が医学部の場合、総白血球数に対しては回復傾向を見せても分類血液像には変化させずに充分な被曝線量（個人的には異なる量であろう）を未だに受けており、他学部及び研究所の場合の被曝線量は分類血液像にすら変化を生じさせる程度でありまする事は意味しているとは思われるが、同時に医学部では放射線同位元検査研究も共に用いてはいるが 80Kv 以上の X 線を日常観察しており、他の学部及び研究所ではX線のときは 40Kv 以下を用いているもので大部分で、又β線のみを扱っているものも多数存在しているので取扱う放射線の線質はエネルギーの相違という事も考えると全く同一ではない放射線に対する使用使用を考慮して Pfaehler も述べている如く、γ線或は高電圧X線に従事するのは今後とも充分なる防護対策を進めるべきであると考えられる。

その意味で医学部放射線科従業員の被曝量の減少は総白血球数の改善、及び宮城県下アドベンデント放射線科の放射線数の改善はそれぞれの関心の顕著で防護設備の完備による期待と想像される。

第V章 結論

東北大学医学部放射線科従業員 22～35例（延人
文 献
1) 高井：日放医誌，2 巻 3 号，1933 年。
2) 石山：日癌誌，1934 年。
3) 井原：日癌誌，1935 年。
4) 小林：日放医誌，1936 年。
5) 森谷：日癌誌，1937 年。
6) 塩崎：日癌誌，1938 年。
7) 高野：日放医誌，1939 年。
8) 宮本：日癌誌，1940 年。
9) 藤田：日癌誌，1941 年。
10) 伊藤：日癌誌，1942 年。
11) 國井：日放医誌，1943 年。
12) 木村：日放医誌，1944 年。
13) 菊池：日放医誌，1945 年。
14) 藤田：日癌誌，1946 年。
15) 中村：日癌誌，1947 年。
16) 伊藤：日放医誌，1948 年。
Blood pictures of Radiological Workers (Report I)
(On the Leucocyte Counts)

By

Yoshiyuki Urushiyama

From the Department of Radiology, Faculty of Medicine, Tohoku University.
(Director: Prof. Y. Koga)

This clinic has been undertaking periodical examination of the peripheral blood of the radiological workers at Tohoku University and x-ray experts in Miyagi Prefecture since 1954, as a method of the health control against hazards due to radioactivity. Basing ourselves on the results of these blood examination, the essential findings in the blood pictures in occupational radiological injuries and the correlation between the hematological findings and the amount of received irradiation were studied.

The results in summary were as follows:
1. In the workers of the non-medical Departments and Research Institutes of this University who mostly handle radioactive isotopes of not more than a few mc per day or manipulate only low-voltage x-ray generators, no marked change in their blood picture could be observed, due to the low exposure they currently undergo.

2. The total leucocyte counts of the staff members of this clinic and x-ray experts in Miyagi Prefecture showed low level and this decrease in total leucocyte count was due to a decrease in neutrophil-cell counts.

3. With the reduction of the quantity of irradiation they are subjected to, their leucocyte counts steadily show a tendency to improvement. So that the decrease in the leucocyte count is dependent rather on the quantity of irradiation the subject receives, than on the length of time the subject has been engaged to radiological work.

4. From the observed improvement of the total leucocyte count in our recent examination and the gradual reduction of the quantity of received irradiation, we have obtained a proof of the heightened attention paid to the hazard of scattered rays.

5. The subjects in whom the total leucocyte count has fallen below 4000 give impression of having a fixed and unfluctuating leucocyte level, and are hard to lead to recovery.

6. The classified leucocyte pictures obtained by ELMoN-ogram showed a decrease of the neutrophil cells, and increase of the lymphocytes and a decrease of the monocytes from the standard line, but the counts of lymphocytes and monocytes showed a tendency of slight increase gradually in each examination of the staff members of this clinic and the x-ray experts in the Prefecture.

7. The total leucocyte counts showed tendency to improvement but the classified leucocyte picture changed as above, therefore the protective measures for workers subject to the hazard of irradiation of high-voltage x-ray and γ-ray, such as the staff members of this clinic, must be fortified still more and the quantity of irradiation they receive minimized as far as possible.

— 75 —