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Abstract

To find the anisotropic correlation length of the hard-hexagon model, the shift

operator is introduced into the usual transfer matrix method; the shift operator has

the effect of moving the particle configuration of a row to the right. The anisotropic

correlation length is calculated from the largest and next-largest eigenvalues of the

transfer matrix and those of the shift operator. This method is applied to the

calculation of the interfacial tension of the hard-hexagon model in two ways. (A)

An inhomogeneous system is defined on a square lattice with (1 + v)M columns

as follows: the lhs of the (M + 1)th column is the hard-hexagon model; in the rhs

of the (M + 1)th column the particle configuration of the (M + i + 1)th column

is given by shifting that of the (M + i)th column by a lattice spacing downward,

where i = 1, 2, · · · ,Mv. It is found that a triplet of the largest eigenvalues of

the transfer matrix are asymptotically degenerate as M → ∞. The anisotropic

interfacial tension is calculated from the finite size correction terms in this limit.

(B) A system with a mismatched vertical seam is considered. The seam is tilted

by the shift operator. Reflecting the existence of the seam, extra factors appear in

the largest eigenvalues of the transfer matrix. The anisotropic interfacial tension is

obtained from the extra factors. By the use of the anisotropic interfacial tension,

the equilibrium crystal shape of the hard-hexagon model is derived via Wulff’s

construction.
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ABSTRACT

The shift operator method is applicable to a wide class of solvable models other

than the hard-hexagon model. The anisotropic interfacial tension of the eight-

vertex model is calculated by the method (A), and the equilibrium crystal shape is

derived by the use of Wulff’s construction. According to Baxter, the eight-vertex

model is parametrized by three variables z, x, and q; z represents anisotropy of the

interactions; x corresponds to the temperature; the eight-vertex model reduces to

either the Ising model or the six-vertex model if we put q = 0 or x4, respectively.

The anisotropic interfacial tension and the equilibrium crystal shape are shown to

be independent of q, which is an extension of the fact that the equilibrium crystal

shapes of the square lattice Ising model and the six-vertex model are essentially the

same. It is pointed out that the equilibrium crystal shape of the eight-vertex model

is represented as a symmetric biquadratic relation, and that the elliptic solution of

the anisotropic interfacial tension can be regarded as a natural parametrization of

this relation.
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Chapter 1. Exactly Solvable Models:

Historical Background

In principle, averaged properties (like magnetization, pressure, etc.) of a me-

chanical system can be calculated from a microscopic Hamiltonian within the frame-

work of the statistical mechanics. Practically, however, these kinds of calculations

are very complicated. Generally, even the (zero-field) free energy is not susceptible

to exact analysis! We call a model exactly solvable model if its free energy can be

calculated without any approximations. In this paper our attentions are restricted

to the two dimensional exactly solvable models.

The pioneering work in the two-dimensional exactly solvable models was done

by Onsager (1944). He calculated the free energy of the square lattice (nearest-

neighbor) Ising model by diagonalizing the transfer matrix. After Onsager, many

authors re-derived the free energy of this model by alternative techniques. Kaste-

leyn (1963) showed that the partition function of the square lattice Ising model can

be expressed as a dimer problem on a decorated lattice, and wrote the partition

function as a Pfaffian (Kasteleyn, 1961). This Pfaffian method is also useful for cal-

culating other physical quantities than the partition function: the magnetization,

the anisotropic correlation length, etc. (McCoy and Wu, 1973). It is known that

all the planar Ising models without bond crossings can be solved by the Pfaffian

method; for example, the triangular and honeycomb lattice Ising models (Stephen-
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1. EXACTLY SOLVABLE MODELS

son, 1964), the free-fermion model (Fan and Wu, 1970), etc. were solved by this

method.

The next example following the Ising model was the ice-type model (or the six-

vertex model), which was solved by Lieb (1967a, b, c). There, he could use the same

method that Bethe (1931) had used for the one-dimensional Heisenberg chain, since

the eigenvectors of the transfer matrix of this model are those of the Hamiltonian of

the Heisenberg chain (Sutherland, 1970). Lieb’s solution became the starting point

of discovering a wide class of exactly solvable models. Baxter (1982) reproduced

Lieb’s solution as follows: investigating the star-triangle relation among the local

Boltzmann weights, he constructed a one-parameter family of commuting transfer

matrices; then, by the use of an equation for the transfer matrix, their eigenvalues

were determined. He solved the eight-vertex model by extending this alternative

method (Baxter, 1971, 1972). After that, it was shown that, from the local Boltz-

mann weights, the free energy and the one-point function (or the magnetization)

can be directly calculated by the matrix inversion method (Stroganov, 1979) and

the corner transfer matrix method (Baxter, 1976), respectively. Baxter’s method

of solving a statistical model is summarized as follows:

(i) Look for a model whose local Boltzmann weights satisfy the

star-triangle relation.

(ii) Calculate the free energy and the one-point function by

the matrix inversion method and the corner transfer matrix

method.

Using this method, Baxter (1980) solved the hard-hexagon model. Following Bax-
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1. EXACTLY SOLVABLE MODELS

ter’s program, many authors found hierarchies of infinite number of solvable models

(Andrews et al., 1984; Kuniba et al., 1986).

Recently the interface and crystal shape problem has attracted much attention

due to the roughening transition phenomena (Dobrushin, 1972; Gallavotti, 1972;

Weeks et al., 1973; Abraham and Reed, 1974, 1976). Analysis of the anisotropic

interfacial tension is very important there. For example, using Wulff’s construction,

we can find the equilibrium crystal shape from its anisotropy. Disappearance of

facets in the equilibrium crystal shape is an indication of the roughening transition.

For the Ising models on the square, honeycomb, and triangular lattices, the

equilibrium crystal shapes were derived (Rottman and Wortice, 1981; Avron et al.,

1982; Zia, 1986). Before that time, it had been pointed out that the anisotropic

correlation length and the anisotropic interfacial tension of these models are simply

connected with each other (Zia, 1978; Fradkin et al., 1978). Furthermore, the

anisotropic correlation length had been calculated by the Pfaffian method (Cheng

and Wu, 1967; McCoy and Wu, 1973). By the use of these results, the equilibrium

crystal shapes of the Ising models were found via Wulff’s construction. On the other

hand, Beijern (1977) and Jayaprakash et al. (1983) regarded the six-vertex model

as a solid-on-solid model on a body centered cubic lattice (the BCSOS model), and

discussed the roughening transition of the three dimensional crystal. There, the

feature that the six-vertex model can be solved in external field was used (Yang,

1967; Sutherland et al., 1967).

It is clearly desirable to carry out such programs for the models solved by Bax-

ter’s method. In this paper we show how this is done for the hard-hexagon model
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1. EXACTLY SOLVABLE MODELS

and the eight-vertex model. In Chapter 2 we calculate the anisotropic correlation

length and the anisotropic interfacial tension of the hard-hexagon model (Fujimoto,

1990a, b). For the hard-hexagon model, the correlation length and the interfacial

tension have been calculated along special directions by the usual transfer matrix

method (Baxter and Pearce, 1982). This method, however, is not applicable to the

analyses of the anisotropy. We propose a new method which introduces the shift

operator into the usual transfer matrix method. By this method, the anisotropic

correlation length and the anisotropic interfacial tension of the hard-hexagon model

are calculated. From the anisotropic interfacial tension, the equilibrium shape of

the hard-hexagon crystal is derived via Wulff’s construction. We note that the shift

operator method is applicable to a wide class of solvable models.

In Chapter 3 we calculated the anisotropic interfacial tension of the eight-vertex

model by the method introduced in Chapter 2. Then, the equilibrium crystal shape

of the eight-vertex model is derived. The eight-vertex model contains the square

lattice Ising model and the six-vertex model as special limits. It is known that the

equilibrium crystal shapes of these models are represented as a simple algebraic

curve (Zia and Avron, 1982; Akutsu and Akutsu, 1990). We discuss a relation

between the curve and the elliptic solutions of the interfacial tension. Chapter 4 is

devoted to a summary and discussion.
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Chapter 2. Hard-Hexagon Model: Anisotropic

Correlation Length and Interfacial Tension

1. Introduction

The hard-hexagon model was originally introduced as a simplified model of

atoms in real fluid with strongly repulsive cores (Runnels and Combs, 1966; Gaunt,

1967). In this model particles are placed on sites of a triangular lattice in such a

way that no two particles occupy the same site or adjacent ones (Baxter, 1982).

Because of this constraint, one particle excludes other particles from the hexagonal

region around it (Fig. 2.1). Hence this model is called the hard-hexagon model.

For a given value of one-particle activity z, we want to know the grand-partition

function

Z =
N/3∑
n=0

zng(n, N) (1.1)

where a lattice of N sites was assumed and g(n,N) is the number of allowed ways

of placing n particles on the lattice. Since the particles can not occupy over 1/3

of the sites, n takes values from 0 to N/3. As z increases, this model undergoes a

phase transition from a homogeneous phase to an inhomogeneous one, where every

third site is preferentially occupied. This phase transition is represented by an order

parameter, which is the difference between the sublattice densities ρA, ρB , ρC .

Baxter (1980) exactly calculated the free energy of this model and the order

– 5 –



2. HARD-HEXAGON MODEL

parameter. According to Baxter’s exact calculation, the critical activity is

zc = (11 + 5
√

5)/2 ∼ 11.09 (1.2)

and the critical exponents are

α = α′ = 1/3 (1.3)

β = 1/9 (1.4)

Later, Baxter and Pearce (1982) analyzed the correlation length and the inter-

facial tension using the transfer matrix method. They determined other critical

exponents,

ν = ν′ = 5/6, µ = 5/6 (1.5)

In this analysis, however, the anisotropy (or the directional dependence) of the

correlation length and the interfacial tension was not taken into account: special

directions of the line connecting two particles and the interface were assumed.

Naturally, the usual transfer matrix analyses of the correlation length and the

interfacial tension have a fault that calculations of the anisotropy are not possible.

Because of this difficulty, the calculations of the anisotropy have not been accom-

plished for other solvable models either. This chapter has three purposes. First, to

improve the usual transfer matrix method, we introduce the shift operator. Sec-

ondly, by the use of the improved transfer matrix method, the anisotropy of the

correlation length and the interfacial tension of the hard-hexagon model is calcu-

lated. Thirdly, from the calculated anisotropic interfacial tension, the equilibrium

crystal shape of the hard-hexagon model is derived via Wulff’s construction.
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2. HARD-HEXAGON MODEL

The outline of this chapter is as follows. To calculate the correlation length

and the interfacial tension, we need eigenvalues of the transfer matrix is needed.

In Section 2 diagonalization of the transfer matrix of the hard-hexagon model by

Baxter and Pearce is summarized. My own work starts with Section 3, where the

disordered state of the hard-hexagon model is considered. In Section 3.1 we propose

a new method, which introduces the shift operator into the usual transfer matrix

method (Fujimoto, 1990a). In Section 3.2 the anisotropic correlation length of the

hard-hexagon model is calculated by the new method.

In Section 4 the ordered state of this model is considered. The hard-hexagon

model has a feature that three phases are degenerate in the ordered state. Noting

this point, we define two types of interfaces in Section 4.1. Baxter and Pearce found

the interfacial tension for a special direction by two methods: (A) by analyzing

asymptotic degeneracy of the largest eigenvalues of the transfer matrix; (B) by

calculating extra factors in the largest eigenvalues of the transfer matrix. In Section

4.2 the method (B) is extended to the analysis of the anisotropic interfacial tension

by the shift operator method given in Section 3.1. Extension of the method (A)

is considered in Section 4.3, where an inhomogeneous system is studied (Fujimoto,

1990b). The results of Section 4.2 and 4.3 are used to derive the equilibrium shape

of the hard-hexagon crystal in Section 4.4. In Section 4.5 the correlation length in

the ordered state is discussed.
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2. HARD-HEXAGON MODEL

2. Commuting transfer matrices argument

2.1. Star-triangle relation

A heuristic method of finding a solvable model is to look for a one-parameter

family of commuting transfer matrices (the commuting family). Generalizing the

hard-hexagon model to the hard-square model, Baxter (1980, 1982) obtained the

commuting family. Then, Baxter and Pearce (1982) derived a functional equation

for eigenvalues of the commuting family. Using this equation, they determined

explicit forms of the eigenvalues of all the commuting family. In Sections 2.1 and

2.2 we summarize their arguments.

The hard-hexagon model can be regarded as a special case of the hard-square

model with diagonal interactions. In the hard-square model an occupation number

σi is located at each site i on the square lattice; σi = 0 if the site i is empty, and

σi = 1 if the site i is occupied by a particle. Owing to the hard-core condition,

a constraint σiσj = 0 is imposed on every nearest neighbor pair i,j. If the occu-

pation numbers around a face are a, b, c, and d counterclockwise starting from the

southwest (SW) corner, the Boltzmann weight of the face is

W (a, b, c, d) = mz(a+b+c+d)/4eKac+Lbdt−a+b−c+d

if ab = bc = cd = da = 0

= 0 otherwise

(2.1)

where z is the one-particle activity; K and L is the interaction energy (divided

by the temperature) in the SW-NE and SE-NW diagonal, respectively (Fig. 2.2).

For calculational convenience, two factors m and t are introduced; m is a trivial
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2. HARD-HEXAGON MODEL

normalization factor of the partition function; t cancels out of the partition function

from face to face; these factors are irrelevant to the statistical average. We denote

the nonzero elements of W ’s as follows:

ω1 = W (0000) = m (2.2a)

ω2 = W (1000) = W (0010) = mz1/4t−1 (2.2b)

ω3 = W (01000) = W (0001) = mz1/4t (2.2c)

ω4 = W (1010) = mz1/2t−2eK (2.2d)

ω5 = W (0101) = mz1/2t2eL (2.2e)

These relations (2.2) give the one-one correspondence between five ω’s and (z,K,L,

m, t). In the K → 0 and L → −∞ limit, this model reduces to the hard-hexagon

model. At this time, the square lattice is interpreted as a deformed triangular

lattice where the hard-hexagon model is originally defined.

Let σ = {σ1, σ2, · · · , σM} and σ′ = {σ′
1, σ

′
2, · · · , σ′

M} be particle configurations

of two successive rows of a square lattice wound a cylinder. The row-row transfer

matrix has elements

[V]σ,σ′ =
M∏
i=1

W
(
σi, σi+1, σ

′
i+1, σ

′
i

)
(2.3)

where σM+1 = σ1 and σ′
M+1 = σ′

1. We want to find a series of transfer matrices

(with different values of z, K, L, m, and t) which commute with V.

Define another transfer matrix V′ in the same way, with (z,K,L,m, t) replaced

by (z′,K ′, L′,m′, t′). We denote the corresponding Boltzmann weight W (or ω) by

– 9 –



2. HARD-HEXAGON MODEL

W ′(or ω′). Consider the matrix products VV′ and V′V. The elements of VV′ are

represented as

∑
σ′′

[
V

]
σ,σ′′ [V′]σ′′,σ′ =

∑
σ′′

M∏
i=1

W
(
σi, σi+1, σ

′′
i+1, σ

′′
i

)
W ′ (σ′′

i , σ′′
i+1, σ

′
i+1, σ

′
i

)
=Tr

{
R (σ1, σ2, σ

′
2, σ

′
1)R (σ2, σ3, σ

′
3, σ

′
2) · · ·

· · ·R (σM , σ1, σ
′
1, σ

′
M )

}
(2.4)

where R’s are two-by-two matrices with elements

[R(a, b, c, d)]e,f = W (a, b, f, e)W ′(e, f, c, d) (2.5)

Similarly

∑
σ′′

[V′]σ,σ′′

[
V

]
σ′′,σ′ =Tr

{
R′ (σ1, σ2, σ

′
2, σ

′
1)R

′ (σ2, σ3, σ
′
3, σ

′
2) · · ·

· · ·R′ (σM , σ1, σ
′
1, σ

′
M )

}
(2.6)

where

[R′(a, b, c, d)]e,f = W ′(a, b, f, e)W (e, f, c, d) (2.7)

If there exist two-by-two nonsingular matrices M’s such that

R(a, b, c, d) = M(d, a)R′(a, b, c, d) [M(b, c)]−1 (2.8)

for all a, b, c, d = ±1, the transfer matrices V and V′ commute with each other.

Post-multiplying (2.8) by M(b, c), and rewriting the element of (a,c) of M(b, d) as

W ′′(a, b, c, d), we obtain the star-triangle relation

∑
c

W (a, b, c, a′′)W ′(a′′, c, b′, a′)W ′′(c, b, b′′, b′)

=
∑

c

W ′′(a′′, a, c, a′)W ′(a, b, b′′, c)W (c, b′′, b′, a′) (2.9)
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2. HARD-HEXAGON MODEL

for all a, a′, a′′, b, b′, b′′ = ±1 (Fig. 2.3). It is also assumed that W ′′’s are given by

(2.1), with z,K,L,m, and t replaced by z′′,K ′′, L′′,m′′, and t′′. Here, the problem

is defined precisely:

“For given values of (z,K,L,m, t) and (z′,K ′, L′,m′, t′), look for

a third set (z′′,K ′′, L′′,m′′, t′′) which satisfies (2.9). If any, V

and V′ commute with each other.” (2.10)

Since the normalization factors m, m′, and m′′ are canceled out of the both

sides, (2.9) imposes seven conditions on the four unknowns z′′, K ′′, L′′, and t′′.

For general values of (z,K,L, t) and (z′,K ′, L′, t′) this problem does not have a

solution. Following Baxter, we return to (2.1) and restrict ourselves to the models

which satisfy

z =
(
1 − e−K

) (
1 − e−L

)
/

(
eK+L − eK − eL

)
(2.11)

We choose (z′,K ′, L′) from these models so that two sets (z,K,L) and (z′,K ′, L′)

have the same value of ∆:

∆ = z−1/2
(
1 − zeK+L

)
= z′−1/2

(
1 − z′eK′+L′

) (2.12)

Because of (2.11) and (2.12), the number of independent conditions imposed on

(z′′,K ′′, L′′, t′′) is reduced to four. At this stage, we can find a solution.

To see this, it is convenient to parametrize (2.11) and (2.12) in terms of elliptic

theta functions. Substituting (2.11) into (2.12), we get the symmetric biquadratic

relation between eK and eL

∆−2eK+L =
(
eK − 1

) (
eL − 1

) (
eK+L − eK − eL

)
(2.13)
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2. HARD-HEXAGON MODEL

This relation is naturally parametrized as follows:

eK =θ1(λ)θ1(2λ + u)θ1(2λ − u)/
[
θ1(2λ)θ2

1(u)
]

(2.14a)

eL =θ1(λ)θ1(3λ − u)θ1(λ + u)/
[
θ1(2λ)θ2

1(λ − u)
]

(2.14b)

∆2 = [θ1(λ)/θ1(2λ)]5 (2.14c)

and

z = θ3
1(2λ)θ2

1(u)θ2
1(λ − u)/

[
θ3
1(2λ)θ4

1(2λ + u)
]

(2.14d)

where λ = π/5 and the elliptic theta function defined by

θ1(u, q2) = sin u
∞∏

n=1

(
1 − q2ne2iu

) (
1 − q2ne−2iu

) (
1 − q2n

)
, −1 < q2 < 1

(2.15)

is abbreviated to θ1(u). After m and t are determined suitably, we get

ω1(u) = θ1(2λ + u)/θ1(2λ) (2.16a)

ω2(u) = ±θ1(u)/ [θ1(λ)θ(2λ)]1/2 (2.16b)

ω3(u) = θ1(λ − u)/θ1(λ) (2.16c)

ω4(u) = θ1(2λ − u)/θ1(2λ) (2.16d)

ω5(u) = θ1(λ + u)/θ1(λ) (2.16e)

The condition (2.12) requires the same value of q2 for (z′, K ′, L′). We use

(2.16) for ω′’s, with u replaced by u′. The third set ω′′’s is also given by (2.16), u

being replaced by u′−u. The fact that these three sets of Boltzmann weights satisfy

the star-triangle relation (2.9) is directly verified by the use of addition formula

θ1(u + x)θ1(u − x)θ1(v + y)θ1(v − y) − θ1(u + y)θ1(u − y)θ1(v + x)θ1(v − x)

=θ1(x + y)θ1(x − y)θ1(u + v)θ1(u − v) (2.17)
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2. HARD-HEXAGON MODEL

Thus, we get the one-parameter family of commuting transfer matrices

[V(u)]σ,σ′ =
M∏
i=1

W
(
σi, σi+1, σ

′
i+1, σ

′
i

∣∣u)
(2.18)

2.2. Functional equations and eigenvalues

To find a transfer matrix equation, we consider the matrix product V(u)V(u+

λ), which has elements

∑
σ′′

[V(u)]σ,σ′′ [V(u + λ)]σ′′,σ′ = Tr
{
R

(
σ1, σ2, σ

′
2, σ

′
1

∣∣u)
R

(
σ2, σ3, σ

′
3, σ

′
2

∣∣u)
· · ·

· · ·R
(
σM , σ1, σ

′
1, σ

′
M

∣∣u)}
(2.19)

where [
R

(
a, b, c, d

∣∣u)]
e,f

= W
(
a, b, f, e

∣∣u)
W

(
e, f, c, d

∣∣u + λ
)

(2.20)

It is found that R’s satisfy the relations

R
(
1000

∣∣u)
R

(
0110

∣∣u′) =0 (2.21a)

R
(
0001

∣∣u)
R

(
0110

∣∣u′) =0 (2.21b)

R
(
1000

∣∣u)
R

(
0000

∣∣u′) =
[
θ2
1(u

′)/θ1(λ)θ1(2λ)
]
R

(
1000

∣∣u)
(2.21c)

R
(
0001

∣∣u)
R

(
0000

∣∣u′) =
[
θ2
1(u

′)/θ1(λ)θ1(2λ)
]
R

(
0001

∣∣u)
(2.21d)

R
(
0000

∣∣u)
R

(
0110

∣∣u′) =
[
θ1(λ + u)θ1(λ − u)/θ2

1(λ)
]
R

(
0110

∣∣u′) (2.21e)

where, for later convenience, the generalized case was considered; here, we assume

that u = u′. Because of the periodic boundary conditions, it follows from these
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2. HARD-HEXAGON MODEL

relations that the non-zero elements of [V(u)V(u + λ)]σ,σ′ can be classified into two

categories: σj = σ′
j for all j, or σjσ

′
j = 0 for all j. In the case σj = σ′

j , the

matrix elements are all
[
θ1(λ + u)θ1(λ − u)/θ2

1(u)
]M . In the case σjσ

′
j = 0, careful

examination of the matrix elements shows that they give the matrix element of

[θ1(u)/θ1(λ)]M V(u − 2λ). Thus, we get the transfer matrix equation

V(u)V(u + λ) =
[
θ1(λ + u)θ1(λ − u)

θ2
1(λ)

]M

I +
[
θ1(u)
θ1(λ)

]M

V(u − 2λ) (2.22)

where I is the identity matrix.

As we showed in Section 2.1, V(u) is a one-parameter family of commuting

transfer matrices, being simultaneously diagonalized for all u. The transfer matrix

equation (2.22) gives the eigenvalue equation

T (u)T (u + λ) = 1 + T (u − 2λ) (2.23)

where we introduced the ‘dimensionless’ transfer matrix by

T(u) =
(
− ω1(u)

ω4(u)ω5(u)

)M

V(u) (2.24)

and T (u) is an eigenvalue of T(u). We also find the periodicity relation

T (u + 5λ) = T (u) (2.25)

By the use of (2.23) and (2.25), we can determine the explicit form of T (u). Such

a calculation is not reproduced here, since it will be done for more general case

in Section 4.3. Only the results needed in Sections 3.2 and 4.5 are listed in the

following.
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Hereafter, we restricted ourselves to the case −λ < u < 0. Two regimes are

defined:
RegimeI − 1 <q2 < 0, −λ < u < 0

RegimeII 0 <q2 < 1, −λ < u < 0
(2.26)

The regimeI is the disordered regime, q2 = 0 corresponds to the critical point, and

the regimeII is the triangular ordered regime, where every third site is occupied by

a particle. The original hard-hexagon model corresponds to the u → −λ limit.

First, we consider the regimeI. There, the eigenvalue T is labeled by r, which

is a non-negative integer not greater than M/2. As M → ∞, T behaves as (Baxter

and Pearce, 1982)

Tr(w) = φM (w)
r∏

i=1

φ(aiw
−1), x4 < |w| < |x|−1 (2.27)

where

φ(w) = − 1
w

f(xw, x6)f(x2w, x6)
f(xw−1, x6)f(x2w−1, x6)

(2.28)

and

x = −e−π2/5ε, w = e2πu/ε, q2 = −e−ε (2.29)

The function f(w, x) is defined by

f(w, x) = (1 − w)
∞∏

n=1

(1 − wxn)(1 − w−1xn)(1 − xn) (2.30)

The complex numbers ai’s are determined by the equations

φM (ai) = −
r∏

j=1

φ(ai/aj), i = 1, 2, · · · , r (2.31)

with |ai| = 1. For r = 0, (2.27) gives one real eigenvalue T0(w) = φM (w), which is

the largest in the regimeI. When r 6= 0, there are many eigenvalues, corresponding
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to the different solutions of (2.31). For r = 1, (2.27) and (2.31) give a band of the

M next-largest eigenvalues. In the M → ∞ limit, we shall assume a continuous

distribution of ai’s on the unit circle.

In the regimeII, the eigenvalue T is labeled by two integers p and r, which

satisfy the relation

p + 2r ≡ M (mod 3) (2.32)

When M ≡ 0 (mod 3), a triplet of the largest eigenvalues are asymptotically de-

generate as M → ∞. These eigenvalues are given by (p, r) = (0, 0) = 0; for large

M

T0;τ (w) = τψM (w), x1/2 < |w| < x−2 (2.33)

where

ψ(w) = −w1/3 f(xw−1, x3)
f(xw, x3)

(2.34)

and τ is a cube root of unity and

x = e−4π2/5ε, w = e−4πu/ε, q2 = e−ε (2.35)

For (p, r) 6= 0

Tp,r(w) = ψM (w)
p∏

i=1

ψ(aiw
−1)

r∏
j=1

ψ̄(bjw
−1), x1/2 < |w| < x−2 (2.36)

where

ψ̄(w) = ψ(x3/2w−1) = w2/3 f(x1/2w−1, x3)
f(x1/2w, x3)

(2.37)

and ai’s and bj ’s are solutions of the equations

ψM (ai) = −
p∏

k=1

ψ(ai/ak)
r∏

l=1

ψ̄(ai/bl), i = 1, 2, · · · , p (2.38a)
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ψM (bj) = −
p∏

k=1

ψ̄(bj/ak)
r∏

l=1

ψ(bj/bl), j = 1, 2, · · · , r (2.38b)

with |ai| = |bj | = 1. When M ≡ 1 (mod 3) [or M ≡ 2 (mod 3)], there exists

a band of the largest eigenvalues given by (p, r) = (1, 0) [or (0,1)]. It will be

shown that the interfacial tension can be calculated from the factors ψ(aiw
−1) [or

ψ̄(bjw
−1)] in the largest eigenvalues. The next-largest eigenvalues are given by

(2.36) and (2.38) with (p, r) = (1, 1), (2,1), and (1,2) for M ≡ 0, 1, and 2 (mod 3),

respectively.
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3. Disordered state

3.1. Anisotropic correlation length 1

Letting u → −λ in the regimeI, we consider the disordered state of the hard-

hexagon model. We start by reviewing the usual transfer matrix analysis of the

correlation length (p.18 and p.114 of Baxter, 1982), and explain its difficulty of

finding the anisotropy. Then, to avoid this difficulty, the shift operator is introduced

(Fujimoto, 1990a).

A square lattice with M columns and N rows is assumed. We impose on it

cyclic boundary conditions in both directions (toroidal boundary conditions). In

the usual transfer matrix analysis, the correlation between the site (0, 0) and the

site (l,m) is represented as

< σ00σlm >=
Tr[S0VlSmVN−l]

tr[VN ]
, N > l > 0 (3.1)

where V is the transfer matrix given by (2.18), with u = −λ, and Sk’s are matrices

defined by
[Sk]σ,σ′ = σk if σ = σ′

= 0 otherwise
(3.2)

for k = 0, 1, 2, · · · ,M−1. Applying the similarity transformation which diagonalizes

V, and letting N,M → ∞, we get

< σ00σlm >=
∑

p

S̃0(1, p)S̃m(p, 1)
[
V (p)
V (1)

]l

, l > 0 (3.3)

where S̃k is the matrix transformed from Sk by the matrix of eigenvectors of V, and

V (p) is the pth eigenvalue of V in decreasing order of absolute value. For simplicity
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we assumed that

|V (1)| > |V (2)| > · · · (3.4)

Since

< σ00 >< σlm >= S̃0(1, 1)2 = S̃0(1, 1)S̃m(1, 1) (3.5)

the correlation function between the site (0, 0) and the site (l,m) is given by

< σ00σlm > − < σ00 >< σlm >=
∑
p 6=1

S̃0(1, p)S̃m(p, 1)
[
V (p)
V (1)

]l

, l > 0 (3.6)

When m is fixed and l becomes large, the rhs of (3.6) decays exponentially. Ana-

lyzing this decay rate, which can be calculated from the ratios between the largest

and next-largest eigenvalues of V, we can find the correlation length ξ along the

vertical axis:

−1/ξ = ln
[
V (2)
V (1)

]
(3.7)

This is the usual method.

Now we find the anisotropy. The behavior of the correlation function, when

the ratio m/l is fixed and l becomes large, comes into question. We expect that it

also decays exponentially, and the correlation length along the direction designated

by the ratio m/l can be calculated from the rate of this decay. In the rhs of (3.6),

however, this decay is determined by the matrix elements S̃0(1, p)S̃m(p, 1), as well as

the ratios between the eigenvalues. A difficulty arises here: the direct calculation of

the matrix elements is very complicated. Thus, the expression (3.7) is not suitable

for finding the anisotropy of the correlation length.
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To overcome this difficulty, we introduce the shift operator T, which shifts the

particle configuration of a row to the right:

[T]σ,σ′ =
M∏
i=1

δ(σi, σ
′
i+1) (3.8)

The shift operator T connects Sm with S0 by the relation

Sm = TmS0T−m (3.9)

The relation (3.9) can be used to rewrite (3.1) as

< σ00σlm >=
Tr[S0VlTmS0T−mVN−l]

tr[VN ]
, N > l > 0 (3.10)

Note that the transfer matrix can be diagonalized simultaneously with the shift

operator due to the translational invariance of this system. We find in the N,M →

∞ limit

< σ00σlm > − < σ00 >< σlm >=
∑
p6=1

S̃0(1, p)S̃0(p, 1)
[
V (p)
V (1)

(
T (p)
T (1)

)v]l

(3.11)

for l > 0, where T (p) is the pth eigenvalue of T, and v = m/l.

Let v be fixed and l large. The rhs of (3.11) shows that the correlation func-

tion decays exponentially, and that the decay rate is determined by [V (p)/V (1)]

[T (p)/T (1)]v. From the knowledge of the eigenvalues of V and those of T, we can

find the correlation length along the direction designated by v.

A new problem arises: is the calculation of the eigenvalues of T practicable?

As we mentioned in Section 2.1, finding a series of models whose transfer matrices

commute with each other, the commuting family, has an important meaning in
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Baxter’s method of calculating the eigenvalues of the transfer matrix. The shift

operator is always a member of the commuting family, being simultaneously diag-

onalized with the others. In the case of the hard-square model, the transfer matrix

V(u) given by (2.18), with u = 0, corresponds to the shift operator. Thus, we can

use the expression (2.27) with w = 1 for the eigenvalues of T.

3.2. Anisotropic correlation length 2

Baxter and Pearce (1982) assumed the continuous distribution of the eigen-

values in (3.6), and calculated ξ along the vertical axis by the method of steepest

descent. We introduce the shift operator into their analysis to find the anisotropy

of ξ. When l is large with v fixed, the correlation function is represented as

< σ00σlm >− < σ00 >< σlm >

∼ 1
2πi

∮
|a|=1

da

a
ρ(a)[φ(ax−2)φ(a)v]l, −∞ < v < ∞ (3.12)

where we used the expression (2.27) in (3.11), with w = x2 and 1 for V (p)/V (1) and

T (p)/T (1), respectively. In the M → ∞ limit, the summation in (3.11) becomes an

integral along a unit circle due to the continuous distribution of the eigenvalues. The

function ρ(a) is to be determined from the distribution of the eigenvalues and the

matrix elements S̃0(1, P )S̃0(P, 1). Its explicit form is unknown. In this analysis it

is sufficient to assume its analyticity. The parameter x is related to the one-particle

– 21 –



2. HARD-HEXAGON MODEL

activity z by

z = −x
∞∏

n=1

[
(1 − x5n−4)(1 − x5n−1)
(1 − x5n−3)(1 − x5n−2)

]5

, −1 < x < 0 (3.13)

In the present analysis the triangular lattice is deformed into the square lattice.

The parameter v is related to θ‖, which is the argument of the site (l,m) on the

triangular lattice, by the relation

v =
1
2
−

√
3

2 tan θ‖
, 0 < θ‖ < π (3.14)

We estimate the integral in the rhs of (3.12a) by the method of steepest descent.

For example, when θ‖ = π/3 (this is the case of Baxter and Pearce ), from the

derivative of lnφ(a),

d

da
lnφ(a) = −f(x2, x6)f(x3, x6)

× 1
a

f(a−1x3/2, x6)f(−a−1x3/2, x6)f(ax3/2, x6)f(−ax3/2, x6)
f(a−1x, x6)f(a−1x2, x6)f(ax2, x6)f(ax, x6)

(3.15)

two saddle points of |φ(ax−2)| are found at a = ±x1/2. After the contour is de-

formed without crossing the singular points of the integrand, the integral can be

estimated around these two saddle points. Since the contributions from these two

saddle points are complex conjugate to each other, it follows that

< σ00σlm > − < σ00 > < σlm >∼ α exp(−l/ξ) cos(lη + δ) (3.16a)

−1/ξ = ln |φ(x1/2)| (3.16b)

η = Arg[φ(x1/2)] (3.16c)

where α and δ are to be determined from ρ and the second derivative of lnφ(a) at

a = x1/2.
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For θ‖ 6= π/3 the situation remains unchanged: two saddle points which are

complex conjugate are found, and the rhs of (3.12a) can be estimated around them.

The equation which determines the saddle points as is

d

da
[lnφ(ax−2) + v lnφ(a)] = 0, a = as (3.17)

or from (3.14) and (3.15), after some calculations,

√
3 − tan θ‖√
3 + tan θ‖

= a
f(ax, x3)f(a−1x1/2, x3)f(−a−1x1/2, x3)
f(a−1x, x3)f(ax1/2, x3)f(−ax1/2, x3) ,

a = as (3.18)

Using (3.18) with the condition

as = x1/2, θ‖ = π/3 (3.19)

we can uniquely determine the saddle point in the upper-half plane as an analytic

function of θ‖. (Hereafter we denote it by as.) For large l the correlation function

can be represented as

< σ00σlm > − < σ00 >< σlm >∼ α exp(−r/ξ) cos[(l + m)η + δ] (3.20a)

−1
ξ

=
2√
3

[
sin θ‖ ln |φ(asx

−2)| + sin
(
θ‖ −

π

3

)
ln |φ(as)|

]
(3.20b)

η = {Arg[φ(asx
−2)] + vArg[φ(as)]}/(1 + v) (3.20c)

where

r = (l2 + m2 − lm)1/2 (3.20d)

Now we investigate the case x → −1 to find the behavior of ξ near the critical

point. We derive also some simple relations satisfied by as. To do this, it is useful
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to consider the conjugate modulus identities (p. 419 of Baxter, 1982; Baxter and

Pearce, 1982)

θ1 [u, exp(−ε)] =
1
2

(
2π

ε

)1/2

exp
[
ε

8
− π2

2ε
+

2u(π − u)
ε

]
× f

[
exp

(
−4πu

ε

)
,

exp
(
−4π2

ε

)]
(3.21)

θ1 [u,− exp(−ε)] = − 1
2

(π

ε

)1/2

exp
[
ε

8
− π2

8ε
− u(2u + π)

ε

]
× f

[
exp

(
2πu

ε

)
,

− exp
(
−π2

ε

)]
(3.22)

These identities can be used in (3.18) to expand it into a power series of exp(−5ε/6)

for large ε (or near the critical point), where the variable ε is related to x by (2.29).

Keeping the dominant terms in the ε → ∞ limit, and assuming the region of

0 < Arg[a] < π, we obtain

√
3 − tan θ‖√
3 + tan θ‖

= exp
(π

3
i
) A2

0 − exp(−5ε/3) exp(−πi/3)
A2

0 − exp(−5ε/3) exp(πi/3)
(3.23)

where A0 is the asymptotic form of A near the limit ε → ∞ defined by

A = exp
[(

5ε

3π
ln as

)
i

]
(3.24)

From (3.23) and (3.19), it follows that

A0 = exp
[(

θ‖ −
π

2

)
i
]
exp

(
−5

6
ε

)
(3.25)

Higher order terms of A can be determined first of all by expressing it as

A = A0

{
1 + ∆(1) exp

(
−5

6
ε

)
+ ∆(2) exp

(
−10

6
ε

)
+ O

[
exp

(
−15

6
ε

)]}
(3.26)
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and then by equating the coefficients of powers of exp(−5ε/6) in the expanded

form of (3.18), which is obtained by the use of (3.22) and (3.26). The coefficients

∆(1),∆(2), · · · are determined as

∆(1) = −4 sin θ‖ sin
(
θ‖ +

π

3

)
sin

(
θ‖ −

π

3

)
(3.27a)

∆(2) =
1
2

(
∆(1)

)2

− 8i∆(1) cos θ‖ cos
(
θ‖ +

π

3

)
cos

(
θ‖ −

π

3

)
(3.27b)

...

In terms of these coefficients, as can be represented as

ln |as| =
3π

5

(
θ‖ −

π

2

) 1
ε

+
3π

5
Im

[
∆(2)

] 1
ε

exp
(
−10

6
ε

)
+ O

[
1
ε

exp
(
−20

6
ε

)]
(3.28a)

Arg[as] =
π

2
− 3π

5
∆(1) 1

ε
exp

(
−5

6
ε

)
+ O

[
1
ε

exp
(
−15

6
ε

)]
(3.28b)

The results (3.27a) and (3.27b) can be used in (3.28a) and (3.28b) to find the

relations, within the validity of this expansion,

as

(
π − θ‖

)
=

[
a−1

s

(
θ‖

)]∗
, as

(
θ‖ +

π

3

)
=

[
as

(
θ‖

)
x−1

]∗
(3.29)

Here we return to (3.18) to find some properties which support (3.29). It is triv-

ial that if a pair
(
a0, θ‖

)
satisfies (3.18), then other pairs

(
a∗
0, θ‖

)
and

(
a−1
0 , π − θ‖

)
also satisfy (3.18). After some calculations, it is found that the pair

(
a0x

−1, θ‖+

π/3
)

also satisfies (3.18). From these results,we expect that relations (3.29) hold

exactly for all range of parameters, though we cannot prove it rigorously. Relations

(3.29) can be used in (3.20b) to obtain the relations

ξ
(
−θ‖

)
= ξ

(
θ‖

)
, ξ

(
θ‖ + π/3

)
= ξ

(
θ‖

)
(3.30)
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Expanding (3.20b) and (3.20c) in the same way, we use (3.27a) and (3.27b) to

get

< σ00σlm > − < σ00 > < σlm >∼ α exp
(
−r

ξ

)
cos

{
2π

3
(l + m)

+ r

[
−4

√
3 cos θ‖ cos

(
θ‖ +

π

3

)
cos

(
θ‖ −

π

3

)
exp

(
−10

6
ε

)
+ O

[
exp

(
−20

6
ε

)]]
+ δ

}
(3.31a)

ξ =
1

2
√

3
exp

(
5
6
ε

){
1 −

[
1 − 8 sin2 θ‖ sin2

(
θ‖ +

π

3

)
sin2

(
θ‖ −

π

3

)]
× exp

(
−10

6
ε

)
+ O

[
exp

(
−20

6
ε

)]}
(3.31b)

Equation (3.31a) indicates that the angular dependence of the correlation function is

cos [2π(l + m)/3] near the critical point. This reflects the ground-state configuration

of this system. Equation (3.31b) shows that the anisotropy of ξ disappears as the

system approaches the critical point. Further, we find that the critical exponent ν

does not depend on the direction θ‖:

ν = 5/6 for all θ‖ (3.32)

– 26 –



2. HARD-HEXAGON MODEL

4. Ordered state

4.1. Anisotropic interfacial tension 1

The hard-hexagon model for z > zc is given by the u → −λ limit in the regime

II. We assume a square lattice of M columns and N rows with toroidal boundary

conditions. Baxter and Pearce (1982) calculated the interfacial tension for special

directions by two methods. (A)When M ≡ 0 (mod 3), the triplet of the largest

eigenvalues of the transfer matrix are asymptotically degenerate as M → ∞ (see

Section 2.2); they calculated the interfacial tension from the finite size correction

terms at this time. (B)When M ≡ 1 or 2 (mod 3), extra factors ψ(aiw
−1) and

ψ̄(bjw
−1) appear in the largest eigenvalues of the transfer matrix; Baxter and Pearce

pointed out that this fact reflects the existence of a mismatched vertical seam, and

that these factors give the interfacial tension. In Sections 4.1 and 4.2, the method

(B) is extended to the analysis of the anisotropic interfacial tension (Fujimoto,

1990a). In Section 4.3, we consider an extension of the method (A) (Fujimoto,

1990b).

The method (B) is explained in detail. When M ≡ 1 or 2 (mod 3) and N ≡ 0

(mod 3), there is a mismatched vertical seam (or an interface), since every third

site is preferentially occupied by a particle for z > zc. We expect that, in the

M,N → ∞ limit, an excess free energy above the bulk free energy proportional to

N exists, and that this excess free energy gives the interfacial tension of the vertical

direction. Using the notations in Section 3.1, we can represent the interfacial tension
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as

−βσ = lim
N,M→∞

1
N

ln
[

1
κNM

TrVN

]
= lim

N,M→∞

1
N

ln

[∑
p

(
V (p)/κM

)N

]
(4.1)

where β is the inverse temperature and κ is the partition function per site

κ = lim
N,M→∞

[
TrVN

]1/NM

= lim
N,M→∞

[∑
p

V (p)N

]1/NM

= lim
M→∞

[V (1)]1/M

(4.2)

In the second line of (4.1), V (p)/κM is the coefficient multiplied by the exponential

divergence of V (p) as M → ∞. From the fact that the summation is dominated

by the largest eigenvalues in the N → ∞ limit, βσ can be calculated from these

coefficients in the largest eigenvalues. They are factors ψ(aiw
−1) and ψ̄(bjw

−1),

which appear in (2.36) for (p, r) = (1, 0) or (0,1).

We introduce the shift operator to calculate the anisotropy of the interfacial

tension. Inserting the shift operator can be regarded as tilting the interface by

moving its endpoint and starting point along the horizontal direction (Fig. 2.4).

Similarly to (4.1), the anisotropic interfacial tension is given by

−βσ = lim
N,M→∞

1
r

ln
[

1
κNM

Tr (VTv)N

]
= lim

N,M→∞

1
r

ln

{
1

κNM

∑
p

[V (p)T (p)v]N
}

(4.3)

where

r = N
(
1 + v2 − v

)1/2
(4.4)
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and v is the parameter designating the direction of the interface. Instead of the

above constraints new constraints, M ≡ 1 or 2 (mod 3), N(1 + v) ≡ 0 (mod 3),

are imposed.

In contrast to the analysis by Baxter and Pearce, where the interfacial tension

of M ≡ 1 ( mod 3) and that of M ≡ 2 ( mod 3) take the same value, it will be found

that the interfacial tension for M ≡ 1 (mod 3) and M ≡ 2 (mod 3) are different

in a general direction. To understand the physical meaning of this difference, we

investigate what kinds of interfaces are considered in the cases of M ≡ 1 (mod 3)

and M ≡ 2 (mod 3).

As we mentioned in the beginning of this section, for z > zc three phases in

which every third site is preferentially occupied are degenerate. If ρA > ρB = ρC ,

this phase is called the A-phase. The B-phase and the C-phase are defined in

the same way. For a given direction six kinds of interfaces exist, corresponding to

choosing any two phases for both sides of the interface from these three phases.

The situation where the lhs of the interface is A-phase and the rhs is B-phase is

denoted by A/B. From the translational invariance of this system, it is found that

three kinds of interfaces A/B, B/C, and C/A have the same interfacial tension,

and that the interfacial tension of A/C, B/A, and C/B are also the same. With

regard to the interfacial tension, we classify six kinds of interfaces into two types:

the interfaces A/B, B/C, and C/A are of type 1, and the others are of type 2.

Pick a typical configuration of M ≡ 1 (mod 3). Restricting ourselves to the

region near the interface, we divide the lattice into three sublattices. (Due to the

toroidal boundary condition and the constraints for M and N , we can not do this
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all over the lattice.) If the lhs of the interface is regarded as A-phase, the rhs is

B-phase. This fact shows that the interface of M ≡ 1 (mod 3) is type 1. In the

case M ≡ 2 (mod 3), fixing the lhs of the interface to be A-phase, we find that the

rhs is C-phase, and that the interface of M ≡ 2 (mod 3) is type 2 (Fig. 2.4). The

difference between the interfacial tension of M ≡ 1 (mod 3) and M ≡ 2 (mod 3)

reflects the difference between the two types of interfaces.

In the following the problem is defined more precisely. The interfacial tension

between the A-phase and the B-phase, denoted by σ(A → B), is considered. We

regard σ(A → B) as a function of θ⊥, which is the angle between the normal vector

of the interface drawn from the A-phase toward the B-phase and the horizontal axis

in the triangular lattice; the horizontal axis corresponds to the direction connecting

the nearest neighbor lattice sites. The method is as follows. For −π/2 < θ⊥ < π/2,

where the lhs of the interface is the A-phase and the rhs is the B-phase, with the

type 1 interface, σ(A → B) can be calculated by using (4.3) with the constraints

M ≡ 1 (mod 3), N(1+v)M ≡ 0 (mod 3). For −π < θ⊥ < −π/2 or π/2 < θ⊥ < π,

where the lhs is the B-phase and the rhs is the A-phase, with the type 2 interface,

σ(A → B) can be calculated by using (4.3) with the constraints M ≡ 2 (mod 3),

N(1 + v) ≡ 0 (mod 3).

The equilibrium crystal shape derived from σ(A → B) is the shape of the

droplet of the A-phase inside the sea of the B-phase. Other kinds of interfacial

tension can be simply related to σ(A → B). For example, the interfacial tension
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between the A-phase and the C-phase, σ(A → C), can be related to σ(A → B) by

σ
(
A → C

∣∣θ⊥)
= σ

(
A → B

∣∣π + θ⊥
)

(4.5)

4.2. Anisotropic interfacial tension 2

The explicit forms of the eigenvalues of V and T are given by (2.36) with

w = x−1 and 1, respectively. For −π/2 < θ⊥ < π/2, the eigenvalues of (p, r) = (1, 0)

are the largest. Substituting their explicit forms into (4.3), we get

−βσ = lim
N→∞

1

N (1 + v2 − v)1/2
ln

{
1

6πi

∮
|a|=1

da

a
ρ(a) [ψ(ax)ψ(a)v]N

}
,

−∞ < v < ∞ (4.6a)

where σ(A → B) is abbreviated to σ and

v =
√

3
2

tan θ⊥ +
1
2
, −π

2
< θ⊥ <

π

2
(4.6b)

The functions ψ(ax) and ψ(a) in (4.6a) correspond to V (p)/κM and T (p) in (4.3),

respectively. The summation in (4.3) becomes an integral along unit circles on three

sheets of the Riemann surface due to the continuous distribution of the eigenvalues

denoted by ρ(a). The parameter x is related to the one-particle activity z by

z =
1
x

∞∏
n=1

[(
1 − x5n−3

) (
1 − x5n−2

)
(1 − x5n−4) (1 − x5n−1)

]5

, 0 < x < 1 (4.7)
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The integral in (4.6a) can be estimated by the method of steepest descent. It

is convenient to rewrite (4.6a) as

−βσ = lim
N→∞

1

N (1 + v2 − v)1/2

× ln

(
1

6πi

∮
|a|=1

da

a
ρ(a)

{[
ψ(ax)ψ(a)1/2

] [
ψ(ax)ψ(a)2

]v′}N ′)
(4.8a)

where the new parameters v′ and N ′ are related to the old ones by

v′ = −v − 1/2
v − 2

=
tan θ⊥√

3 − tan θ⊥
, N = (1 + v′)N ′ (4.8b)

and to use the derivative of ln
[
ψ(ax)ψ(a)1/2

]
,

d

da
ln

[
ψ(ax)ψ(a)1/2

]
= −1

2
f2(x, x3)

1
a

f(−a, x3)f(a−1x3/2, x3)f(−a−1x3/2, x3)
f(a, x3)f(ax, x3)f(a−1x, x3)

(4.9)

For a given direction v three saddle points are found on the negative parts of

the real axes, and the integral in (4.8a) can be estimated around them. The saddle

point whose argument is π, denoted by as, is determined by

√
3 − tan θ⊥√
3 + tan θ⊥

= −a
f(−ax, x3)f(a−1x1/2, x3)f(−a−1x1/2, x3)
f(−a−1x, x3)f(ax1/2, x3)f(−ax1/2, x3)

, a = as (4.10)

and the condition

as = −1, θ⊥ = 0 (4.11)

The interfacial tension is represented as

−βσ =
2√
3

[
cos θ⊥ ln |ψ(asx)| + cos

(
θ⊥ − π

3

)
ln |ψ(as)|

]
,

− π/2 < θ⊥ < π/2 (4.12)
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Near the critical point, which is the x → 1 limit, (4.12) can be solved in the

form of the power series. Using the conjugate modulus identities (3.21), we find

i ln |as| = − i
6π

5ε
θ⊥ + ∆(1) 6π

5ε
exp

(
−5

6
ε

)
+

[
∆(2) − 1

2

(
∆(1)

)2
]

6π

5ε
exp

(
−10

6
ε

)
+ O

[
1
ε

exp
(
−15

6
ε

)]
(4.13a)

Arg[as] =π (4.13b)

where the variable ε is related to x by (2.35) and

∆(1) = − 4i sin θ⊥ sin
(
θ⊥ +

π

3

)
sin

(
θ⊥ − π

3

)
(4.14a)

∆(2) =
1
2

[∆(1)]2 − 8∆(1) cos θ⊥ cos
(
θ⊥ +

π

3

)
cos

(
θ⊥ − π

3

)
(4.14b)

These results show the relations within the validity of this expansion,

as (−θ⊥) = a−1
s (θ⊥) , as

(
θ⊥ +

2π

3

)
= as (θ⊥) x (4.15)

It is trivial to show that if a pair (a0, θ⊥) satisfies (4.10), then the pair (a−1
0 ,−θ⊥)

satisfies (4.10). Further, after some calculations, it is found that the pair
(
a0x, θ⊥

+2π/3
)

also satisfies (4.10). From these we expect that the relations (4.15) hold

exactly. After the rhs of (4.12) is expanded into power series of exp (−5ε/6), (4.14a)

and (4.14b) can be used to get

βσ =2
√

3 exp
(
−5

6
ε

)
+ 4

√
3 cos θ⊥ cos

(
θ⊥ +

π

3

)
cos

(
θ⊥ − π

3

)
exp

(
−10

6
ε

)
+ 2

√
3

[
1 + 8 sin2 θ⊥ sin2

(
θ⊥ +

π

3

)
sin2

(
θ⊥ − π

3

)]
exp

(
−15

6
ε

)
+ O

[
exp

(
−20

6
ε

)]
, −π

2
< θ⊥ <

π

2
(4.16)
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Replacing the function ψ(a) in (4.6a) by ψ̄(a), we get the representation of the

interfacial tension for −π < θ⊥ < −π/2, π/2 < θ⊥ < π,

−βσ = lim
N→∞

1

N (1 + v2 − v)1/2
ln

{
1

6πi

∮
|b|=1

db

b

[
ψ̄(bx)ψ̄v(b)

]N

}
,

−∞ < v < ∞ (4.17a)

where the function ψ̄(b) is defined by (2.37) and

v =
√

3
2

tan θ⊥ +
1
2
, −π < θ⊥ < −π

2
,

π

2
< θ⊥ < π (4.17b)

The integral in (4.17a) can be estimated by the method of steepest descent. The

saddle point whose argument is π, denoted by bs , is determined by the equation

√
3 − tan θ⊥√
3 + tan θ⊥

=
f

(
−b−1x1/2, x3

)
f

(
bx, x3

)
f

(
−bx, x3

)
f

(
−bx1/2, x3

)
f (b−1x, x3) f (−b−1x, x3)

, b = bs (4.18)

and the condition

bs = −1, θ⊥ = ±π (4.19)

The interfacial tension is given by

−βσ = − 2√
3

[
cos θ⊥ ln |ψ̄(bsx)| + cos

(
θ⊥ − π

3

)
ln |ψ̄(bs)|

]
,

− π < θ⊥ < −π/2, π/2 < θ⊥ < π (4.20)

Here we do not have to solve (4.18) and (4.19) actually. It is sufficient to

find the relations between bs and as, determined by (4.10) and (4.11). When b is

transformed into a by

a =bx3/2, π/2 < θ⊥ < π (4.22a)

a =bx−3/2, −π < θ⊥ < −π/2 (4.22b)
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Eq. (4.18) coincides with (4.10). If (4.11) is solved with the condition (4.10) in the

extended region −π < θ⊥ < π, because of the relations (4.15), the condition (4.19)

is satisfied through (4.21a) and (4.21b). Thus, we find

as =bsx
3/2, π/2 < θ⊥ < π (4.22a)

as =bsx
−3/2, −π < θ⊥ < −π/2 (4.22b)

These relation can be used in (4.20) to get

−βσ =
2√
3

[
cos θ⊥ ln |ψ(asx)| + cos

(
θ⊥ − π

3

)
ln |ψ(as)|

]
,

− π < θ⊥ < −π/2, π/2 < θ⊥ < π (4.23)

The use of (4.15) in (4.12) and (4.23) shows the symmetry relations

σ (−θ⊥) = σ (θ⊥), σ (θ⊥ + 2π/3) = σ (θ⊥) (4.24)

From the expansion (4.16) we can see that the anisotropy of the interfacial tension

disappears as the system approaches the critical point. The expansion (4.16) can

be extended into the region −π < θ⊥ < π. Thus, we find that the critical exponent

µ does not depend on θ⊥:

µ = 5/6 for all θ⊥ (4.25)

The rotation of the interface between the A-phase and the B-phase around a

site through π/3 is considered. Although, from the invariance of this system for

this rotation, the rotated interface must have the same interfacial tension as the

former one, it is not evident whether σ satisfies these conditions. If the center is
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on the C-lattice, this rotation only causes the change of θ⊥ through −2π/3. The

above condition is assured by the second relation of (4.24). If the center is on the

A-lattice, the relation

σ
(
A → B

∣∣θ⊥)
= σ

(
A → C

∣∣θ⊥ + π/3
)

(4.26)

must be satisfied. The second relation (4.24) assures it through (4.5). Similarly, in

the case that the center is on the B-lattice, the above condition is satisfied.

4.3. Anisotropic interfacial tension 3

We consider an expansion of the method (A). In the first place, an inhomoge-

neous system is introduced (Fujimoto, 1990b). Next, the eigenvalues of the transfer

matrix are calculated by the commuting transfer matrices method given in Section

2. It is shown that a triplet of the largest eigenvalues are asymptotically degenerate

as the width of the system becomes large. The anisotropic interfacial tension of the

hard-hexagon model is calculated from the finite size correction terms in this limit.

Until now in this chapter, the parameter u is common to all the faces. This

condition is relaxed: u can vary from column to column (Baxter, 1972, 1982). The

value of u between the ith column and the (i + 1)th column is denoted by ui.

Consider a lattice of (1 + v)M (0 < v < ∞) columns and N rows with toroidal

boundary conditions, and set u1 = u2 = · · · = uM = −λ, uM+1 = uM+2 · · · =

u(1+v)M = λ. The region u = λ has the effect of shifting the particle configuration
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of a column downward: if the particle configuration of the (M + 1)th column is

shifted downward by Mv lattice spacings, it is identical with that of the first column.

When M and N become large under the conditions that (1 − v)M ≡ 0 (mod 3)

with v being fixed to be constant and N ≡ 1 or 2 (mod 3), there is a mismatched

horizontal seam in the hard-hexagon region where u = −λ (Fig. 2.5). This seam is

tilted due to the region u = λ. The tilt angle is determined by v.

Restricting ourselves to near the interface (or the seam), we divide the lattice

into three sublattices A, B, and C so that, on both sides of the interface, either

the A-lattice or the B-lattice is preferentially occupied by particles. It is found

that the positions of the A-phase and the B-phase are interchanged according as

N ≡ 1 (mod 3) or N ≡ 2 (mod 3). In Sections 4.1 and 4.2, it was shown that the

interfacial tension of these two types of interfaces are different. Taking account of

this fact, we introduce a parameter θ⊥ by

−1
v

=
√

3
2

tan θ⊥ +
1
2
,


−π

2
< θ⊥ < −π

6
for N ≡ 1 (mod 3)

π

2
< θ⊥ <

5π

6
for N ≡ 2 (mod 3)

(4.27)

and calculate the interfacial tension as a function of θ⊥. Considering the case

u1 = u2 = · · · = uM = −λ, uM+1 = uM+2 = · · · = u(1+v)M = 0, we find the

interfacial tension for −π/6 < θ⊥ < π/2, 5π/6 < θ⊥ < 3π/2. Since the calculational

methods are almost the same, only the calculation for u1 = u2 = · · · = uM = −λ,

uM+1 = uM+2 = · · · = u(1+v)M = λ is explained, and that for u1 = u2 = · · · =

uM = −λ, uM+1 = uM+2 = · · · = u(1+v)M = 0 is omitted in the following.

We consider a generalized problem where the values of ui are given by a parame-
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ter u0: u1 = u2 = · · · = uM = u0, uM+1 = uM+2 = · · · = u(1+v)M = u0 +2λ. Here-

after, the new parameter u0 is abbreviated to u. A one-parameter family of transfer

matrices is introduced. If σ = {σ1, σ2, · · · , σ(1+v)M} and σ′ = {σ′
1, σ

′
2, · · · , σ′

(1+v)M}

are the configurations of two successive rows, the row-row transfer matrix is defined

by

[VIH(u)]σ,σ′ =
M∏
i=1

W
(
σi, σi+1, σ

′
i+1, σ

′
i

∣∣u) (1+v)M∏
j=M+1

W
(
σj , σj+1, σ

′
j+1, σ

′
j

∣∣u + 2λ
)

(4.28)

where σ(1+v)M+1 = σ1, σ′
(1+v)M+1 = σ′

1. We also define the ‘dimensionless’ transfer

matrix by

TIH(u) =
(
− ω1(u)

ω4(u)ω5(u)

)M (
− ω1(u + 2λ)

ω4(u + 2λ)ω5(u + 2λ)

)Mv

VIH(u) (4.29)

The argument in Section 2.1 also assures that the family of TIH(u) (or VIH(u))

commute with each other, being simultaneously diagonalized. (The essential point

is that W ′′’s depend on the difference between u and u′ in the star-triangle relation

(2.9).) The eigenvalues of TIH(u) (or VIH(u)) are denoted by TIH(u) (or VIH(u)).

It follows from the same derivation of (2.33) that each eigenvalue TIH(u) satisfies

the equation

TIH(u)TIH(u + λ) = 1 + TIH(u − 2λ) (4.30)

where the relations (2.21) were fully used. We also find that

TIH(u + 5λ) = TIH(u) (4.31)

For calculational convenience, we transform the parametrization (2.16) into the

conjugate modulus form by the use of (2.35) and (3.21):

ω1(w) =f(x2w, x5)/f(x2, x5) (4.32a)
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ω2(w) = − x1/2f(w, x5)/
[
f(x, x5)f(x2, x5)

]1/2
(4.32b)

ω3(w) =f(xw−1, x5)/f(x, x5) (4.32c)

ω4(w) =f(x2w−1, x5)/f(x2, x5) (4.32d)

ω5(w) =w−1f(xw, x5)/f(x, x5) (4.32e)

The transfer matrix VIH (or TIH) is re-defined as a function of w and x by (4.28)

(or (4.29)), with the alternative parametrization (4.32):

[VIH(w)]σ,σ′ =
M∏
i=1

W
(
σi, σi+1, σ

′
i+1, σ

′
i

∣∣w) (1+v)M∏
j=M+1

W
(
σj , σj+1, σ

′
j+1, σ

′
j

∣∣x2w
)

(4.33)

or

TIH(w) =
(
− ω1(w)

ω4(w)ω5(w)

)M (
− ω1(x2w)

ω4(x2w)ω5(x2w)

)Mv

VIH(w) (4.34)

The functional equations (4.30) and (4.31) become

TIH(w)TIH(xw) =1 + TIH(x3w) (4.35)

TIH(x5w) =TIH(w) (4.36)

Unless otherwise mentioned, x and v are regarded as constants; w is regarded as a

complex variable. Assuming some analytic properties of TIH(w), and using (4.35)

and (4.36), we can determine its asymptotic form as M → ∞ (Baxter and Pearce,

1982).

We want to calculate the largest eigenvalues at the point w = x−1. Hereafter,

we confine ourselves to the eigenvalues which are the largest in the regime 1 ≤
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|w| ≤ x−1. First, the leading term of TIH(w) as M → ∞ is considered. We always

keep only the dominant term in the rhs of (4.35) In the x → +0 limit, there is

complete triangular order in the regimes 1 ≤ |w| ≤ x−1, x5/2 ≤ |w| ≤ x3/2. This

fact suggests that, in the M → ∞ and the x → 0 limit, the eigenvalues we consider

behave as

VIH(w) ∼ wM/3

(
1

xw

)Mv/3

,

1 ≤ |w| ≤ x−1 (4.37a)

It is also found that these eigenvalues are the largest in the regime x5/2 ≤ |w| ≤ x3/2,

and that, in the M → ∞ and the x → ∞ limit, they behave as

VIH(w) ∼
( x

w

)M/3
(
− 1

w2

)Mv/3

,

x5/2 ≤ |w| ≤ x3/2 (4.37b)

In (4.37a) and (4.37b), the factors wM/3, (−1/w2)Mv/3 correspond to the complete

triangular order where the faces ω3, ω4 are dominant, and the factors (1/xw)Mv/3,

(x/w)M/3 are related to the complete triangular order dominated by the faces ω2,

ω5. We expect from (4.35) (4.37a), and (4.37b) that there exists a positive real

number δ such that, for 0 < x < δ and as M → ∞,

|TIH(w)| = O(x−εM ) >> 1, x5/2 ≤ |w| ≤ x3/2, 1 ≤ |w| ≤ x−1

|TIH(w)| = O(xεM ) << 1, x7/2 ≤ |w| ≤ x3, x ≤ |w| ≤ x1/2

(4.38)

with ε > 0.

It is assumed that, except for exponential divergence as M → ∞, VIH(w) has

no infinity for 0 < |w| < ∞. We also assume that the leading term of VIH(w) as

M → ∞ is analytic in the annuli a < |w| < b containing the points w = 1, x−1 and

a′ < |w| < b′ containing the points w = x5/2, x3/2. In the limit M → ∞, and for

0 < x < δ, it follows from (4.35)and (4.38) that the zeros of VIH(w) exist in the

– 40 –



2. HARD-HEXAGON MODEL

six annuli x−1/2 < |w| < x−1, x5/2 < |w| < x2, 1 < |w| < x−1/2, x2 < |w| < x3/2,

x−3/2 < |w| < x−2, x < |w| < x1/2, and that the zeros w = ax−1, ax2 (x1/2 < |a| <

1) and w = bx−1/2, bx3/2 (x1/2 < |b| < 1) appear in pairs. It is found that , for

0 < x < δ and M large, TIH(w) can be written in the form

TIH(w) = L(w)wm

p∏
i=1

(
1 − xw

ai

) r∏
j=1

(
1 − x1/2w

bj

)
(1 − xw)M (1 − w−1)Mv

, 1 ≤ |w| ≤ x−3/2

TIH(w) = L̄(w)wm̄

p∏
i=1

(
1 − x2ai

w

) r∏
j=1

(
1 − x3/2bj

w

)
(

1 − x2

w

)(1+v)M
, x5/2 ≤ |w| ≤ x

(4.39)

where L(w) is analytic and nonzero for 1 < |w| < x−3/2 and L̄(w) is analytic and

non-zero for x5/2 < |w| < x.

For the moment, we regard the ai and bj as known. Consider Eq. (4.35) in

the annuli x3/2 < |w| < x, x−1 < |w| < x−3/2, where the second terms in the rhs of

(4.35) are dominant. Taking logarithms of both sides of (4.35), using (4.39), Laurent

expanding, and equating coefficients, we can determine the explicit forms of L(w)

and L̄(w). It follows that p and r must satisfy the condition that p+2r ≡ (1−v)M

(mod 3). We find that for (p, r) = 0 = (0, 0)

TIH;0,τ (w) = τψ(w)Mψ(1/xw)Mv, 1 ≤ |w| ≤ x−3/2

=
1
τ

ψ(x/w)Mψ(w)Mv, x5/2 ≤ |w| ≤ x
(4.40a)
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with τ3 = 1, and that for (p, r) 6= 0

TIH;p,r(w) = ψ(w)Mψ(1/xw)Mv

p∏
i=1

ψ(ai/w)
r∏

j=1

ψ̄(bj/w), 1 ≤ |w| ≤ x−3/2

= ψ(x/w)Mψ(w)Mv

p∏
i=1

ψ(w/xai)
r∏

j=1

ψ̄(w/xbj), x5/2 ≤ |w| ≤ x

(4.40b)

where the ai and bj are defined on the three sheets of the Riemann surface. The

definitions of ψ(w) and ψ̄(w) are given by (2.34) and (2.37), respectively. The

facts that |ψ(w)| > 1 for 1 < |w| < x−3/2, |ψ(w)| < 1 for x3/2 < |w| < 1,

and ψ(x3w) = ψ(w) show that the conditions (4.38) are satisfied for 0 < x < 1.

Therefore, the argument from (4.38)-(4.40) makes sense for 0 < x < 1. The leading

term of TIH(w) for x < |w| < 1, x7/2 < |w| < x5/2 can be determined by the use of

(4.40) and (4.35).

The ai and bj are solutions of the equations

ψ(ai)Mψ(1/aix)Mv = −
p∏

k=1

ψ(ai/ak)
r∏

l=1

ψ̄(ai/bl), i = 1, 2, · · · , p

ψ̄(bj)M ψ̄(1/bjx)Mv = −
p∏

k=1

ψ̄(bj/ak)
r∏

l=1

ψ(bj/bl), j = 1, 2, · · · , r
(4.41)

Equations (4.41) shows that as M → ∞, the ai and bj approach the contours

|ψ(a) ψ(1/ax)v| = 1 and |ψ̄(b)ψ̄(1/bx)v| = 1, respectively. This fact is consistent

with the requirements that x1/2 < |ai| < 1, x1/2 < |bj | < 1. We find that, when

(1 − v)M ≡ 0 (mod 3), the triplet of eigenvalues TIH;0,τ (w) are the largest in the

regimes 1 ≤ |w| ≤ x−1, x5/2 ≤ |w| ≤ x3/2.

Next, for the triplet of the largest eigenvalues TIH;0,τ (w), an integral equa-

tion determining the finite size correction terms as M → ∞ is derived. In this

– 42 –



2. HARD-HEXAGON MODEL

calculation, we keep both terms in the rhs of (4.35). We define Kτ (w), K̄τ (w) by

TIH;0,τ (w) = τψ(w)Mψ(1/xw)MvKτ (w), 1 ≤ |w| ≤ x−3/2

=
1
τ

ψ(x/w)Mψ(w)MvK̄τ (w), x5/2 ≤ |w| ≤ x
(4.42)

It follows from (4.35) that

Kτ (w)Kτ (xw)
K̄τ (x3w)

= 1 + 1/TIH;0,τ (x3w), x−1 < |w| < x−3/2

K̄τ (w)K̄τ (xw)
Kτ (x−2w)

= 1 + 1/TIH;0,τ (x−2w), x3/2 < |w| < x

(4.43)

For sufficiently large M , the second terms in the rhs of (4.43) are exponentially

smaller than 1. Taking logarithms of the both sides of (4.43), Laurent expanding,

and equating coefficients, we get the integral equation,

lnKτ (w) = − 1
2πi

∮
C1

dw′

w′ ln
[
1 + 1/TIH;0,τ (x3w′)

]
J(xw/w′)

+
1

2πi

∮
C2

dw′

w′ ln
[
1 + 1/TIH;0,τ (x−2w′)

]
J(x2w/w′) (4.44)

where C1 is a circle in x−1 < |w′| < x−3/2, C2 is a circle in x3/2 < |w′| < x, and

J(w) = wψ′(w)/ψ(w) (4.45)

For 1 ≤ |w| ≤ x−3/2, Eqs. (4.42) and (4.44) determine the asymptotic form of

TIH;0,τ (w) as M → ∞.

For large M , using (4.40a), we estimate the logarithms in the integrands of

(4.44) by
ln

[
1 + 1/TIH;0,τ (x3w′)

]
∼ τ [ψ(w′/x)ψ(1/w′)v]M

ln
[
1 + 1/TIH;0,τ (x−2w′)

]
∼ 1

τ

[
ψ(x2/w′)ψ(w′/x)v

]M
(4.46)
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and integrate (4.44) by steepest descent. It follows that

Kτ (w) = 1 + α(w)τψ(ws/x)Mψ(1/ws)Mv + ᾱ(w)
1
τ

ψ(x2/w̄s)Mψ(w̄s/x)Mv + · · ·

(4.47)

where ws and w̄s are the saddle point of |ψ(w′/x)ψ(1/w′)v| and |ψ(x2/w′)ψ(w′/x)v|,

respectively. When ws and w̄s are regarded as functions of v, they satisfy the

conditions that ws = −x−1, w̄s = −x3/2 for v = 1. The functions α(w), ᾱ(w) are

represented by J(w) and the derivatives of ψ(w), and their explicit forms are not

important here. For (1 − v)M ≡ 0 (mod 3) and 1 ≤ |w| ≤ x−1, Eqs. (4.42) and

(4.47) show that the triplet of the largest eigenvalues TIH;0,τ (w) are asymptotically

degenerate as M → ∞.

Now, setting w = x−1 in (4.42) and (4.47), we calculate the anisotropic inter-

facial tension of the hard-hexagon model. When (1 − v)M ≡ 0 (mod 3) and M ,

N become large, the partition function can be represented by the use of (4.42) and

(4.47) as

Z ∼
[(

1 + τN
0 +

1
τN
0

)
+ α(x−1)N

(
1 + τN+1

0 +
1

τN+1
0

)
ψ(ws/x)Mψ(1/ws)Mv

+ ᾱ(x−1)N
(

1 + τN−1
0 +

1
τN−1
0

)
ψ(x2/w̄s)Mψ(w̄s/x)Mv

]
κMN (4.48)

where τ0 = (−1 +
√

3i)/2 and

κ =
(
−ω4(w)ω5(w)

ω1(w)

)
ψ(w), w = x−1 (4.49)

The second and the third terms in the square brackets of (4.48), which come from

the finite size correction terms in (4.47), give the excess free energy for N ≡ 2 and
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1 (mod 3), respectively. From (4.47) and (4.48), after some calculations, we find

that

−βσ =
2√
3

[
cos θ⊥ ln |ψ(asx)| + cos

(
θ⊥ − π

3

)
ln |ψ(as)|

]
,

− π

2
< θ⊥ < −π

6
,

π

2
< θ⊥ <

5π

6
(4.50)

where β is the inverse temperature and σ is the interfacial tension defined on the

triangular lattice. The saddle point as is determined by

√
3 − tan θ⊥√
3 + tan θ⊥

= −a
f(−ax, x3)f(a−1x1/2, x3)f(−a−1x1/2, x3)
f(−a−1x, x3)f(ax1/2, x3)f(−ax1/2, x3)

, a = as (4.51a)

and the conditions
as = −x1/2, θ⊥ = −π

3

as = −x, θ⊥ =
2π

3

(4.51b)

Combining the result of the case w1 = w2 = · · · = wM = x−1, wM+1 = wM+2 =

· · · = w(1+v)M = 1 with (4.50) and (4.51), we obtain the expression of the interfacial

tension for all directions which is the same result that was given in Section 4.2.
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4.4. Equilibrium crystal shape

Suppose an A-phase whose volume (or area) is fixed to be V is embedded

inside a sea of B-phase. We consider the problem of finding the shape S of the

minimumenergy from the anisotropic interfacial tension. The answer to this prob-

lem is obtained by the use of Wulff’s theorem or Wulff’s construction. Wulff’s

theorem says that there is a special point O called the Wulff point inside S, and

that the position vector R drawn from O to each point on S satisfies the relation

σ [n(R)]
R · n(R)

= Λ for all R (4.52)

where n(R) is the normal vector of the interface at the point R; the interfacial

tension is represented as a function of the normal vector of the interface; Λ is a

constant independent of R, which plays a scale factor adjusted to yield the volume

V in the following argument. The origin of this theorem goes back to Wulff’s

paper of 1901, where the relation (4.52) was found experimentally. After that, this

theorem was proved for some special cases (von Laue, 1944; Burton et al., 1951).

Using (4.52), we try to construct S. We start with the polar plot of σ around a

fixed point O, which is denoted by Σ. Through each point on Σ designated by σ(n)n

a line which is perpendicular to n is drawn. Proper sets of these lines construct

closed figures S̄1, S̄2, · · · , S̄α, · · · (Fig. 2.6). If the volume of S̄α is V̄α, enlarging S̄α

by (V/V̄α)1/2 times, we get all the figure Sα whose volume is V and which satisfies

(3.28), where the value of Λ for Sα is

Λα =
(

V̄α

V

)1/2

(4.53)
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The remaining work is selecting S among the figures S1, S2, · · · , Sα, · · ·. To do

this, a helpful relation is derived by the use of (4.52). Denoting by Eα the total

surface energy of Sα, we get

Eα = 2ΛαV (4.54)

With the relation (4.53), Eq. (4.54) shows that the minimumenergy corresponds to

the minimum value of V̄α. From these results we can find that S̄ corresponding to

the minimumenergy S is determined as the inner envelope of the lines drawn on Σ:

for a given direction designated by a unit vector r,

ΛR(r) = min
n

σ(n)
(r · n)

(4.55a)

where R is represented as a function of r and

R(r) = |R(r)| (4.55b)

This method has long been known as Wulff’s geometric construction.

Assuming the differentiability of σ(n), and that the global minimum in the

rhs of (4.55a) can be replaced by local minimum, we can rewrite Eq. (4.55a) into

analytic form

ΛR(n) = nσ(n) + ∇nσ(n) (4.56a)

where ∇n is the surface gradient defined by

δσ(n) = δn · ∇nσ(n), ∇nσ(n) · n = 0 (4.56b)

and, noting the one-one correspondence between r and n, we represent the position

vector R as a function of the normal vector n: R(n) is the position vector of
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the interface whose normal vector is n (Avron et al., 1982; Zia and Avron, 1982;

Hoffman and Cahn, 1972; Cahn and Hoffman, 1974).

Now we draw the equilibrium shape in the X − Y plane from the result of

Sections 4.2 and 4.3. The change in the equilibrium shape upon varying one-particle

activity z is interesting, and its volume is not important. Hereafter, we choose the

chemical potential ζ related to z by

βζ = ln z (4.57)

as Λ and deal with the interfacial tension normalized by ζ.

For zc < z < ∞, where σ is an analytic function of θ⊥, we get by the use of

(4.56a)

ΛX = − 2√
3

ln |ψ(asx)| − 1√
3

ln |ψ(as)|

ΛY = − ln |ψ(as)|
(4.58)

where and as is a parameter determined as a function of θ⊥ by (4.10) and (4.11).

The results (4.58) can be reduced into more compact form,

exp
[√

3Λ
(
X +

√
3Y

)
/2

]
+ exp

[√
3Λ

(
X −

√
3Y

)
/2

]
+ exp

[
−
√

3ΛX
]

= C

C = 2x−1/3 f(−x, x3)
f(−1, x3)

+ x2/3 f2(−1, x3)
f2(−x, x3)

(4.59)

In the z → ∞ limit, which is the x → 0 limit, the behavior of a determined by

(4.10) and (4.11) is

as(θ⊥) ∼ sin (θ⊥ − π/3) / sin (θ⊥ + π/3) , −π

3
< θ⊥ <

π

3
(4.60a)

as (π/3) = −x1/2 (4.60b)
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and we find

σ (θ⊥)
ζ

=
2

3
√

3
cos θ⊥, −π

3
≤ θ⊥ ≤ π

3
(4.61)

Equation (4.61) shows that Σ has three cusps at θ⊥ = ±π/3, π (Fig. 2.6). From

Wulff’s geometric construction, it is found that the equilibrium shape is a regular

triangle consisting of three facets. In Figure 2.7, it is shown how the equilibrium

shape deforms into a regular triangle from a sphere near the critical point as z

increases.

We can calculate the radius of curvature at θ⊥ = 0, π/3, where a corner or

a facet appears in z → ∞ limit, respectively. Noting that Σ and the equilibrium

shape coincide at θ⊥ = 0, π/3, we get

ρ

R
= 1 + σ−1 d2σ

dθ2
⊥

, θ⊥ = 0,
π

3
(4.62)

where ρ is the radius of curvature (Avron et al., 1982; Zia and Avron, 1982; Zia,

1986; Akutsu and Akutsu, 1986). This calculation enable us to estimate the change

in the equilibrium shape quantitatively, and will ensure us the existence of the

roughening transition in the z → ∞ limit.

First, the radius of curvature at θ⊥ = 0 is calculated. Fixing the parameter x,

we expand as as

as = a0

(
1 + ∆(1)δθ⊥ + ∆(2)δθ2

⊥ + · · ·
)

(4.63a)

where

a0 = −1, δθ⊥ = θ⊥ − 0 (4.63b)

Expanding (4.10) into a power series of δθ⊥, we can determine the coefficients in
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(4.63a) as

∆(1) = − 2√
3

Q2(x6)f(x, x3)
Q4(x3)f(−x, x3)

, ∆(2) =
1
2

(
∆(1)

)2

, · · · (4.64)

where

Q(q) =
∞∏

n=1

(1 − qn) (4.65)

In this calculation the second derivative,

d2

da2
ln

[
ψ(ax)ψ1/2(a)

]
=

1
2a2

f2(x, x3)
f(−a, x3)f

(
a−1x3/2, x3

)
f

(
−a−1x3/2, x3

)
f(a, x3)f(ax, x3)f (a−1x, x3)

+
1

2a2
f2(x, x3)f2(−x, x3)

f2
(
a−1x3/2, x3

)
f2

(
−a−1x3/2, x3

)
f2(ax, x3)f2 (a−1x, x3)

− 1
2a2

f2(x, x3)
Q4(x3)
Q2(x6)

f(ia, x3)f(−ia, x3)f
(
iax3/2, x3

)
f

(
−iax3/2, x3

)
f2(a, x3)f(ax, x3)f (a−1x, x3)

(4.66)

is useful. The above results can be used in (4.12) to find

βσ = − 2√
3

ln
[
x1/3 f(−1, x3)

f(−x, x3)

]
+

{
1√
3

ln
[
x1/3 f(−1, x3)

f(−x, x3)

]
+

1
3
√

3
f4(x, x3)

f4(−x, x3)

}
δθ2

⊥ + O
(
δθ4

⊥
)

(4.67)

Using (4.67) in (4.62), we get

ρ

R
=

(2/3
√

3)
[
f4(x, x3)/f4(−x, x3)

]
−(2/

√
3) ln

[
x1/3f(−1, x3)/f(−x, x3)

] (4.68)

In the z → ∞ limit, ρ/R behaves as

ρ

R

(
∼ − 1

lnx

)
∼ 1

ln z
=

1
βζ

(4.69)
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and near the critical point, by the use of the conjugate modulus transformation

(3.21), we find that

ρ

R
= 1 − 9

2
exp

(
−5

6
ε

)
+ O

[
exp

(
−10

6
ε

)]
(4.70)

For θ⊥ = π/3, similarly, as can be expanded as

as = a0

(
1 + ∆(1)δθ⊥ + ∆(2)δθ2

⊥ + · · ·
)

(4.71a)

where

a0 = −x1/2, δθ⊥ = θ⊥ − π/3 (4.71b)

and

∆(1) = − 1√
3
x−1/2 f(x, x3)f

(
−x3/2, x3

)
Q3(x3)f

(
−x1/2, x3

) , ∆(2) =
1
2

(
∆(1)

)2

, · · · (4.72)

From these results we obtain

βσ = − 1√
3

ln

[
x1/3 f2

(
−x1/2, x3

)
f2

(
−x3/2, x3

)]
+

{
1

2
√

3
ln

[
x1/3 f2

(
−x1/2, x3

)
f2

(
−x3/2, x3

)]

+
1

3
√

3
1

x1/2

f4(x, x3)
f4

(
−x1/2, x3

)}
δθ2

⊥ + O
(
δθ4

⊥
)

(4.73)

and
ρ

R
=

(2/3
√

3)(1/x1/2)
[
f4(x, x3)/f4

(
−x1/2, x3

)]
−(1/

√
3) ln

[
x1/3f2

(
−x1/2, x3

)
/f2

(
−x3/2, x3

)] (4.74)

The behavior of ρ/R in z → ∞ is given by

ρ

R

(
∼ 2x−1/2

− lnx

)
∼ 2z1/2

ln z
= 2

1
βζ

exp
(

βζ

2

)
(4.75)

and near the critical point

ρ

R
∼ 1 +

9
2

exp
(
−5

6
ε

)
+ O

[
exp

(
−10

6
ε

)]
(4.76)
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4.5. Anisotropic correlation length

The argument in Sections 3.1 and 3.2 is repeated (Fujimoto, 1990a). When v

is fixed and l large, the correlation function is represented as

< σ00σlm > − < σ00 >< σlm >

∼
(

1
6πi

)2 ∮
|a|=1

da

a

∮
|b|=1

db

b
ρ(a, b) [ψ(ax)ψv(a)]l

[
ψ̄(bx)ψ̄v(b)

]l
,

∞ < v < ∞ (4.77a)

where we used the expression (2.36) with w = x−1 and 1 for V (p)/V (1) and

T (p)/T (1) in (3.11), respectively. The parameter v is related to θ‖ by

v =
1
2
−

√
3

2 tan θ‖
(4.77b)

The integral in (4.77a) is estimated by the method of steepest descent. Noting

that this calculation is the same as Sections 4.2 and 4.3 except (4.75b), we find

< σ00σlm > − < σ00 >< σlm >∼ exp
(
−r

ξ

){
α + α′ cos

[
2π

3
(l + m) + δ

]}
(4.78a)

−1
ξ

=
2√
3

[
sin θ‖ ln |ψ(asx)| + sin

(
θ‖ −

π

3

)
ln |ψ(as)|

]
+

2√
3

[
sin θ‖ ln |ψ̄(bsx)| + sin

(
θ‖ −

π

3

)
ln |ψ̄(bs)|

]
(4.78b)

where as is the saddle point of |ψ(ax)ψv(a)| whose argument is π, and bs is that of

|ψ̄(bx)ψ̄(b)| whose argument is π. Baxter and Pearce (1982) showed that a simple

relation holds between the correlation length and the interfacial tension along the

vertical axis. This relation is extended here for all directions as

1/ξ = β[σ(A → B) + σ(A → C)] (4.79)
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where σ(A → B) and σ(A → C) are the two types of interfacial tension defined in

Section 4.1 in the direction of ξ.

The behavior of ξ near the critical point is given by

ξ =
1

4
√

3
exp

(
5
6
ε

){
1 −

[
1 + 8 cos2 θ‖ cos2

(
θ‖ +

π

3

)
cos2

(
θ‖ −

π

3

)]
× exp

(
−10

6
ε

)
+ O

[
exp

(
−20

6
ε

)]}
(4.80)

We find that the critical exponent ν’ does not depend on the direction:

ν′ = 5/6 for all θ‖ (4.81)

From the relation (4.15), it follows that

ξ(θ‖ + π/3) = ξ(θ‖), ξ(−θ‖) = ξ(θ‖) (4.82)
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Chapter 3. Eight-Vertex Model: Anisotropic

Interfacial Tension and Equilibrium Crystal Shape

1. Introduction

In the eight-vertex model an arrow is placed on every edge of the square lattice

so that even number of arrows point into (and out of) each site (or vertex) (Baxter,

1982). There are eight such configurations around a vertex (Fig. 3.1). We represent

the arrow configuration by associating an arrow-spin αi with each edge i; αi=+1

if the corresponding arrow points up or to the right, and αi=−1 otherwise. When

arrow-spins around a vertex are ν, α, β, and µ counterclockwise starting from the

west bond, a Boltzmann weight W (ν, α|β, µ) is assigned on this vertex, where

W (+ + | + +) = W (−− | − −) = a = exp (−ε1/kBT )

W (+ − | − +) = W (− + | + −) = b = exp (−ε2/kBT )

W (+ − | + −) = W (− + | − +) = c = exp (−ε3/kBT )

W (+ + | − −) = W (−− | + +) = d = exp (−ε4/kBT )

(1.1a)

and

W (ν, α|β, µ) = 0, ναβµ = −1 (1.1b)

This model was introduced as a generalization of the ice-type (or six-vertex)

model. The situation of the ice-type model is as follows. For example, imagine a

square ice. There, oxygen ions form a square lattice. A hydrogen ion (or a proton)
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is located near or other end of each bond connecting the adjacent pair of oxygen

ions. Because of the charge neutrality condition around each site, four protons

surrounding it should satisfy the ice-rule: two of them are close to it, and the

others are away from it, on their respective bonds. By drawing an arrow on every

edge, we represent which end of the bond is occupied by a proton. The ice-rule

allows six local arrow configurations, which correspond to the vertices 1∼6 in the

eight-vertex model (Fig. 3.1). The ice-type model has some unusual features: the

antiferroelectric phase transition is infinite order, i.e., the free energy and all its

derivatives are finite at the critical temperature; in the ferroelectric ordered state,

the ordering is complete even at nonzero temperatures, etc. (Lieb, 1967a, b, c). It

is naturally thought that these features come from the ice-rule. To understand the

effects of the ice-rule, Sutherland (1970) introduced the vertices 7 and 8.

The eight-vertex model can be regarded as an Ising model with two- and four-

spin interactions (Wu, 1971; Kadanoff and Wegner, 1971; Baxter, 1982). To see

this, we associate an Ising spin σij with each site (i, j) of the dual lattice; the site

(i, j) of the dual lattice is connected with the site (i, j) of the original square lat-

tice by shifting in both directions by a half-lattice spacing. An upward or right

arrow corresponds to the cases where the adjacent σ-spins are parallel; otherwise,

the adjacent σ-spins are antiparallel. The condition (1.1b) ensures that this corre-

spondence is consistent. To any arrow configuration, there correspond two σ-spin

configurations, which are related to each other by the transformation defined by

σi,j → −σij for all i, j.
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The Hamiltonian of the Ising model is given by

E = −
∑
ij

(Jσi,j+1σi+1,j + J ′σijσi+1,j+1 + J ′′σijσi+1,jσi+1,j+1σi,j+1) (1.2)

where next-nearest neighbor spins are coupled by J and J ′, depending on the

direction of the diagonal; the factor J ′′ couples four spins. The four boltzmann

weights in (1.1a) is related to J , J ′, and J ′′ as follows:

exp
[

4J

kBT

]
=

ad

bc
, exp

[
4J ′

kBT

]
=

ac

bd
, exp

[
4J ′′

kBT

]
=

ab

cd
(1.3)

It is noted that when a, b, c, and d satisfy the relation

ab = cd (1.4)

this Ising model factors into two independent nearest-neighbor Ising models (Fig.

3.2).

Equilibrium crystal shapes (ECS’s) and their roughening transition phenomena

have been attracted much attention in recent years. The first exact analysis of ECS’s

was done for the square lattice nearest-neighbor Ising model (Rottman and Wortis,

1981; Avron et al., 1982). Zia and Avron (1982) found that the ECS of this model

is represented as a simple algebraic curve. For example, when the interactions are

isotropic, the ECS is given by

cosh (ΛX/kBT ) + cosh (ΛY/kBT ) = CI (1.5a)

CI =cosh (2J/kBT ) / tanh (2J/kBT ) (1.5b)

where (X,Y ) is the position vector of a point on the ECS; Λ is a scale factor; J is

the interaction constant. Zia (1986) also showed that ECS’s of the triangular and

– 56 –



3. EIGHT-VERTEX MODEL

honeycomb lattice nearest-neighbor Ising models are represented as an algebraic

curve like (1.5).

For the Ising models on the planar lattices without bond crossings, Holzer

(1990) and Akutsu and Akutsu (1990) pointed out that the interface can be repre-

sented as a free-random-walk defined on the dual lattice. This random-walk repre-

sentation is derived by the use of Feynman-Vdovichenko’s method (Vdovichenko,

1964; Feynman, 1972). The form (1.5) characterizes the random-walk. Further-

more, Akutsu and Akutsu re-examined the facet shape of the BCSOS model (or

equivalently the ECS of the six-vertex model), and found that the facet shape can

be written into the form (1.5a), with CI replaced by

CBC = k1/2(x) + k−1/2(x) (1.6a)

where k(x) is defined as

k(x) = 4x
∞∏

n=1

[
1 + x4n

1 + x4n−2

]4

(1.6b)

and x are given by (4.3). From this result, they suggested the possibility of repre-

senting the step of the BCSOS model as a free-random-walk characterized by (1.5a),

with CI replaced by (1.6). At this time, however, the correspondence between the

step and the random-walk is not so clear, since the BCSOS model can not be solved

by Feynman-Vdovichenko’s method.

In connection with these problems, it is significant to consider the eight-vertex

model, which contains the square lattice nearest-neighbor Ising model and the

six-vertex (or BCSOS) model as special limits. In Chapter 3 we calculate the
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anisotropic interfacial tension of the eight-vertex model and derive the ECS of this

model by the use of Wulff’s construction.

This chapter is organized as follows. In the calculation of the interfacial tension,

we use Baxter’s commuting transfer matrices argument (Baxter, 1972, 1982), which

is summarized in Section 2. The interfacial tension of the eight-vertex model for a

special direction has been calculated by Baxter(1973). This analysis is extended by

the shift operator method given in Section 4.3 of Chapter 2 (Fujimoto, 1990b). In

the first place of Section 3 inhomogeneous systems are introduced. Then, we define

a one-parameter family of commuting transfer matrices, and derive an equation for

eigenvalues of the transfer matrix. In Section 4, using this equation, we determine

the explicit forms of the eigenvalues. It is shown that a doublet of the largest

eigenvalues are asymptotically degenerate when the width of the system becomes

large. The anisotropic interfacial tension is calculated from the finite size correction

terms in this limit. In Section 5 the ECS of the eight-vertex model is found by the

use of Wulff’s construction. We discuss a relation between the algebraic curve (1.5a)

and the elliptic solution of the interfacial tension given in Section 4. In Appendix

the definitions of elliptic functions are listed.
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2. Commuting transfer matrices argument

Baxter (1972, 1982) solved the eight-vertex model as follows. First, a one-

parameter family of commuting transfer matrices was found. Then, an equation

for the transfer matrix was derived. Using the equation, he determined the explicit

forms of their eigenvalues. In this section we review Baxter’s commuting transfer

matrices argument.

The eight-vertex model on a square lattice of M columns and N rows with

toroidal boundary conditions is considered (M : even). Let {α1, α2, · · · , αM} and

{β1, β2, · · · , βM} be the arrow-spins on two successive rows of vertical edges; {µ1, µ2,

· · · , µM} be the arrow-spins on the horizontal edges which connect the vertices

jointing the two successive rows of the vertical edges. The row-row transfer matrix

has elements

[V]{β}
{α} =

∑
{µ}

M∏
j=1

W
(
µj , αj

∣∣βj , µj+1

)
(2.1)

where W ’s are given by (1.1) and µM+1 = µ1 (Fig. 3.3). We want to find a series

of transfer matrices with different values of a, b, c, and d which commute with V.

We define transfer matrix V′ by (2.1), with (a, b, c, d) replaced by (a′, b′, c′, d′).

The corresponding Boltzmann weight W is denoted by W ′. Consider the matrix

products VV′ and V′V. The elements of VV′ are

∑
{γ}

[
V

]{γ}
{α} [V′]{β}

{γ} =
∑

{γ},{µ},{ν}

M∏
j=1

W
(
µj , αj

∣∣γj , µj+1

)
W ′ (νj , γj

∣∣βj , νj+1

)
= Tr

{
R (α1, β1)R (α2, β2) · · ·R (αM , βM )

}
(2.2)

where R(α, β) is a four-by-four matrix with rows labeled by (µ, ν), columns labeled
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by (µ′, ν′), and elements

[R(α, β)]µ
′,ν′

µ,ν =
∑

γ

W
(
µ, α

∣∣γ, µ′)W ′ (ν, γ
∣∣β, ν′) (2.3)

Similarly, V′V is given by (2.2) and (2.3), with W ’s and W ′’s interchanged:

∑
{γ}

[
V′]{γ}

{α}

[
V

]{β}
{γ} =

∑
{γ},{µ},{ν}

M∏
j=1

W ′ (µj , αj

∣∣γj , µj+1

)
W

(
νj , γj

∣∣βj , νj+1

)
= Tr

{
R′ (α1, β1)R′ (α2, β2) · · ·R′ (αM , βM )

}
(2.4)

where

[R′(α, β)]µ
′,ν′

µ,ν =
∑

γ

W ′ (µ, α
∣∣γ, µ′)W

(
ν, γ

∣∣β, ν′) (2.5)

The transfer matrices V and V′ commute with each other if there exists a four-by-

four nonsingular matrix M such that

R(α, β) = MR′(α, β)M−1 (2.6)

for all α, β = ±1. We post-multiply (2.6) by M, and write the element of M

labeled by (µ, ν) and (µ′, ν′) as W ′′ (ν, µ
∣∣ν′, µ′). Then, (2.6) becomes the star-

triangle relation

∑
γ,µ′′,ν′′

W
(
µ, α

∣∣γ, µ′′) W ′ (ν, γ
∣∣β, ν′′) W ′′ (ν′′, µ′′∣∣ν′, µ′)

=
∑

γ,µ′′,ν′′

W ′′ (ν, µ
∣∣ν′′, µ′′) W ′ (µ′′, α

∣∣γ, µ′) W
(
ν′′, γ

∣∣β, ν′) (2.7)

for all α, β, µ, ν, µ′, ν′ = ±1 (Fig 3.4). It is assumed that W ′′ (ν, α|β, µ) is given by

(1.1), with (a, b, c, d, ) replaced by (a′′, b′′, c′′, d′′). For given values of (a, b, c, d) and

(a′, b′, c′, d′), we consider the problem of finding a third set (a′′, b′′, c′′, d′′) which

satisfies (2.7).
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Baxter showed that there exists a nontrivial solution (a′′, b′′, c′′, d′′) if ∆ = ∆′

and Γ = Γ′, where
∆ =

(
a2 + b2 − c2 − d2

)
/2(ab + cd)

Γ =(ab − cd)/(ab + cd)
(2.8)

and ∆′, Γ′ are defined by (2.8) with (a, b, c, d) replaced by (a′, b′, c′, d′). Eliminating

d between the two equations of (2.8), we obtain

2∆(1 + γ)ab = a2 + b2 − c2 − a2b2γ2/c2 (2.9a)

where

γ = (1 − Γ)/(1 + Γ) = cd/ab (2.9b)

Given ∆ and γ, (2.9a) is a symmetric biquadratic relation between a/c and b/c. It

is convenient to parametrize this relation in terms of elliptic functions. Explicitly,

we use the parametrization by four variables ρ, k, λ, and u:

a = − iρΘ(iλ)H[i(λ − u)/2]Θ[i(λ + u)/2]

b = − iρΘ(iλ)Θ[i(λ − u)/2]H[i(λ + u)/2]

c = − iρH(iλ)Θ[i(λ − u)/2]Θ[i(λ + u)/2]

d = iρH(iλ)H[i(λ − u)/2]H[i(λ + u)/2]

(2.10)

and
Γ =

(
1 + ksn2iλ

)
/

(
1 − ksn2iλ

)
∆ = − cniλ/

(
1 − ksn2iλ

) (2.11)

where ρ is a normalization factor of the partition function; λ and u appear as

arguments of the elliptic functions; k is the modulus of the elliptic functions. The

corresponding half-periods are denoted by I and I ′. The definitions of the elliptic
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functions and relations among them are listed in Appendix. Define (a′, b′, c′, d′)

and (a′′, b′′, c′′, d′′) by (2.10), with u replaced by u′ and u′ − u, respectively. Then,

it is verified that these three sets of Boltzmann weights satisfy (2.7) by the use of

addition formulae

sn(a − u)sn(a − v) − snusnv

1 − k2snusnvsn(a − u)sn(a − v)
=snasnv

snvsn(a − v) − snusn(a − u)
sn(a − u)snv − sn(a − v)snu

=
sn(a − u − v)

sna

(2.12)

Thus, we obtain the one-parameter family of commuting transfer matrices

[V(u)]{β}
{α} =

∑
{µ}

M∏
j=1

W
(
µj , αj

∣∣βj , µj+1

∣∣u)
(2.13)

Baxter derived an equation for the transfer matrix by considering 2M -dimen-

sional column vectors y(u). The vector y(u) is represented as a direct product of

two-dimensional vectors g1(u),g1(u), · · · ,gM (u):

y(u) = g1(u) ⊗ g2(u) ⊗ · · · ⊗ gM (u) (2.14)

where

gj(u) =
(

gj(+|u)
gj(−|u)

)
=

(
Θ [isj + i(u + λ)ζj/2]

(−)j+1iH [isj + i(u + λ)ζj/2]

)
(2.15)

Each ζj has a value +1 or −1 and ζj ’s satisfy the condition

ζ1 + ζ2 + · · · + ζM = 0 (2.16)

The variables sj ’s are defined for j = 1, 2, · · · ,M + 1 as

sj =
{

s, j = 1
s + λ(ζ1 + ζ2 + · · · + ζj−1), j = 2, 3, · · · ,M + 1 (2.17)
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with an arbitrary constant s. There are many 2M -dimensional vectors y(u), corre-

sponding to different choices of s and ζj ’s. The product V(u)y(u) is represented

as

∑
{β}

[
V(u)

]{β}
{α} [y(u)]{β} =

∑
{β},{γ}

M∏
j=1

W
(
µj , αj

∣∣βj , µj+1

∣∣u)
gj

(
βj

∣∣u)
= Tr

{
G

(
α1

∣∣u)
G

(
α2

∣∣u)
· · ·G

(
αM

∣∣u)} (2.18)

where Gj(α|u) is a two-by-two matrix with elements

[
Gj(α|u)

]µ′

µ
=

∑
β

W
(
µ, α

∣∣β, µ′∣∣u)
gj

(
β
∣∣u)

(2.19)

Baxter found that Gj(α|u) satisfies the relation

Gj(α|u)pj+1 = g′j(α|u)pj (2.20)

where

g′j(+|u) =ρh
[
(λ − u)/2

]
Θ [isj + iζ(u + 3λ)/2] (2.21a)

g′j(−|u) =ρh
[
(λ − u)/2

]
(−)jiH [isj + iζ(u + 3λ)/2] (2.21b)

h(u) = − iΘ(0)Θ(iu)H(iu) (2.22)

and for j = 1, 2, · · · ,M + 1

pj =
(

Θ [isj ]
(−)j+1iH [isj ]

)
(2.23)

Two-by-two matrices P1,P2, · · · ,PM+1 are defined as follows: the first column of

Pj is the vector pj ; the second column is determined suitably so that detPj = 1.
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Then, Pj and Pj+1 transform Gj(α|u) into a two-by-two matrix whose lower-left

element is zero:

Gj(α|u) = PjHj(α|u)P−1
j+1 (2.24)

where

Hj(α|u) =
(

g′j(α|u) g′′′j (α|u)
0 g′′j (α|u)

)
(2.25)

g′′j (+|u) =ρh
[
(λ + u)/2

]
Θ [isj + iζ(u − λ)/2] (2.26a)

g′′j (−|u) =ρh
[
(λ + u)/2

]
(−)jiH [isj + iζ(u − λ)/2] (2.26b)

and the explicit form of g′′′j (α|u) is not important here. Note that PM+1 = P1

because of the condition (2.16). Substituting (2.24) into (2.18), we get

∑
{β}

[
V(u)

]{β}
{α} [y(u)]{β} = Tr

{
H

(
α1

∣∣u)
H

(
α2

∣∣u)
· · ·H

(
αM

∣∣u)}
(2.27)

since P1,P2, · · · ,PM+1 cancels out of the trace. After some calculations, it follows

that

V(u)y(u) = φ(λ − u)y (u + 2λ′) + φ(λ + u)y (u − 2λ′) (2.28)

where λ′ = λ + 2iI ′ and

φ(u) = [ρh(u/2)]M (2.29)

Using the complete set of vectors y(u), Baxter constructed a non-singular

matrix Q(u), which has some useful properties. Each columns of Q(u) is represented

as a linear combination of vectors y(u). Eq. (2.28) yields the equation for the

transfer matrix

V(u)Q(u) = φ(λ − u)Q (u + 2λ′) + φ(λ + u)Q (u − 2λ′) (2.30)
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The matrix Q(u) commutes with Q(u′) and V(u′′) for all values of u, u′, and u′′.

Therefore, (2.30) gives the eigenvalue equation

V (u)q(u) = φ(λ − u)q (u + 2λ′) + φ(λ + u)q (u − 2λ′) (2.31)

where V (u) and q(u) are eigenvalues of V(u) and Q(u), respectively.

Two matrices S and R are introduced. The matrix S is the diagonal matrix

which has entries +1 (−1) for arrow configurations of an even (odd) number of

down arrows, and R is the matrix which has the effect of reversing all arrows. We

shall use R to impose the antiperiodic boundary conditions on the lattice in Section

4. The matrices S, R, Q(u), and V(u′) commute with each other for all values of

u and u′. The eigenvalue of S (or R) corresponding to V (u) and q(u) is denoted

by s (or r). Both s and r take values of +1 or −1. The matrix Q(u) satisfies the

relations

Q(u)S =Q(u + 4iI) (2.32a)

Q(u)SR =qM/4 exp(−Mπu/4I)Q(u + 2I ′) (2.32b)

From these relations, we found the periodicity relations

q(u + 4iI) =sq(u) (2.33a)

q(u + 2I ′) =srq−M/4 exp(Mπu/4I)q(u) (2.33b)

The eigenvalue q(u) is represented as a linear combination of the elements of

Q(u), which are entire functions of u. Detailed investigation shows that q(u) must

be of the form

q(u) = exp(τu)
m∏

j=1

h

(
u − vj

2

)
(2.34)
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where m = M/2, τ is a constant, and vj (j = 1, 2, · · · , m) are zeros of q(u) deter-

mined by the condition that the rhs of (2.31) vanishes:

{
h[(λ − vk)/2]
h[(λ + vk)/2]

}M

= − exp(−4τλ′)
m∏

j=1

h[(vk − vj − 2λ′)/2]
h[(vk − vj + 2λ′)/2]

(2.35)

for k = 1, 2, · · · , m. The periodicity relations (2.33) require that vj ’s and τ satisfy

the sum-rules

v1 + v2 + · · · + vm

=
1
2
(s − 1 + 2m)I ′ + i(rs − 1 + 2m)I + 2p′I ′ + 4piI (2.36a)

τ =π(s − 1 + 2m + 4p′)/8I (2.36b)

where p and p′ are integers. We can determine the explicit form of V (u) first by

solving (2.35), and then by using (2.34) in (2.31) with the solution v1, v2, · · · , vm.

There are many eigenvalues, corresponding to the different solutions of (2.35).
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3. Shift operator method

In this section we explain how to calculate the anisotropic interfacial tension

of the eight-vertex model. At the first place, we introduce inhomogeneous sys-

tems (Fujimoto, 1990b). Then, the commuting transfer matrices argument given in

Section 2 is applied to the inhomogeneous systems.

A square lattice with (1+η)M (0 < η < ∞) columns and N rows are assumed.

We impose on it periodic boundary conditions along the horizontal direction and

antiperiodic boundary conditions along the vertical direction. In the preceding

section the system is homogeneous: the four parameters ρ, k, λ, and u are common

to all the vertices. This condition is relaxed. We assume that ρ and u can vary

from column to column. The values of ρ and u on the jth column are denoted

by ρj and uj , respectively. We consider two inhomogeneous systems: u1 = u2 =

· · · = uM = u0, uM+1 = uM+2 = · · · = u(1+η)M = ∓λ, ρ1 = ρ2 = · · · = ρM = ρ0,

ρM+1 = ρM+2 = · · · = ρ(1+η)M = i/Θ(0)Θ(iλ)H(iλ). The system with the upper

(or lower) sign is called (A) (or (B)).

Because of various symmetry properties, we restrict ourselves to the regime

0 < k < 1, 0 < λ < I ′, |u0| < λ, ρ0 > 0 (3.1)

without loss of generality (Baxter, 1982; Fan and Wu, 1970). Then, the eight-

vertex region where uj = u0 for 1 < j < M is in an antiferroelectric ordered

state dominated by the vertices 5 and 6. When M and N become large under

the condition that (1 + η)M and N are even with η fixed to be constant, there

is an interface across the eight-vertex region. In the region uj = −λ (or λ) for
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M + 1 < j < (1 + η)M , the arrow configuration around the site (i, j) is identical

with that of the site (i + 1, j + 1) (or (i + 1, j − 1)). Therefore, the region uj = −λ

(or λ) for M + 1 < j < (1 + η)M has the effect of shifting the right end point of

the interface downward (or upward) by Mη lattice spacings (Fig. 3.5). We denote

by θ⊥ the angle between the horizontal axis and the normal vector of the interface

drawn from the lower phase toward the upper phase. The parameter η is related

to θ⊥ by

(A) η = 1/ tan θ⊥, 0 < θ⊥ < π/2 (3.2a)

(B) η = −1/ tan θ⊥, π/2 < θ⊥ < π (3.2b)

We calculate the interfacial tension as a function of θ⊥.

The commuting transfer matrices argument given in Section 2 is applied to the

inhomogeneous systems (Baxter, 1972, 1982). First, the systems (A) and (B) are

generalized. We set uj ’s to be u1 = u2 = · · · = uM = v, uM+1 = uM+2 = · · · =

u(1+η)M = v − u0 ∓ λ, where v is a complex variable. The upper (or lower) sign

corresponds to the generalized system (A) (or (B)). (In the following we use this

convention.) The row-row transfer matrix is defined as

[VIH(v)]α,β =
∑

µ

M∏
j=1

W
(
µj , αj

∣∣βj , µj+1

∣∣v)
×

(1+η)M∏
k=M+1

W
(
µk, αk

∣∣βk, µk+1

∣∣v − u0 ∓ λ
)

(3.3)

where µ(1+η)M+1 = µ1 and W ’s are given by (1.1) and (2.10). It is noted that

in the star-triangle relation (2.7) the third pair (a′′, b′′, c′′, d′′) is parametrized by
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difference u′ − u. Substitute VIH(v), VIH(v′) into (2.2) and (2.4) as V, V′. It

follows, from the star-triangle relation, that VIH(v) and VIH(v′) commute with

each other for all values of v and v′. The one-parameter family of VIH(v) is

simultaneously diagonalized for all v. The eigenvalues of VIH(v) are denoted by

VIH(v).

Secondly, an equation for VIH(v) is derived. We define a complete set of

2(1+η)M -dimensional vectors yIH(v). Each vector yIH(v) is the form

yIH(v) =g1(v) ⊗ g2(v) ⊗ · · · ⊗ gM (v)

⊗ gM+1(v − u0 ∓ λ) ⊗ · · · ⊗ g(1+η)M (v − u0 ∓ λ) (3.4)

where gj(v)’s are given by (2.15)∼(2.17) with M replaced by (1 + η)M . The

argument from (2.18) to (2.27) is repeated for VIH(v) and yIH(v). It is found that

VIH(v)yIH(v) = φ1(v)yIH (v + 2λ′) + φ2(v)yIH (v − 2λ′) (3.5)

where

φ1(v) = {ρ1h[(λ − v)/2]}M {ρM+1h[(λ − v + u0 ± λ)/2]}Mη (3.6a)

φ2(v) = {ρ1h[(λ + v)/2]}M {ρM+1h[(λ + v − u0 ∓ λ)/2]}Mη (3.6b)

Using the vectors yIH(v), we construct a non-singular matrix QIH(v), which sat-

isfies the matrix equation

VIH(v)QIH(v) = φ1(v)QIH (v + 2λ′) + φ2(v)QIH (v − 2λ′) (3.6)

Since QIH(v) commutes with QIH(v′) and VIH(v′′) for all values of v, v′, and v′′,

we obtain

VIH(v)qIH(v) = φ1(v)qIH (v + 2λ′) + φ2(v)qIH (v − 2λ′) (3.7)
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where qIH(v) is the eigenvalue of QIH(v) corresponding to VIH(v). The function

qIH(v) is the form given by (2.34), with m replaced by mIH = (1+η)M . The zeros

of qIH , vj (j = 1, 2, · · · ,mIH), are determined by the equations

{
h[(λ − vk)/2]
h[(λ + vk)/2]

}M {
h[(λ − vk + u0 ± λ)/2]
h[(λ + vk − u0 ∓ λ)/2]

}Mη

= − exp(−4τλ′)
mIH∏
j=1

h[(vk − vj − 2λ)/2]
h[(vk − vj + 2λ)/2]

(3.8)

for k = 1, 2, · · · , mIH . The zeros vj ’s and the constant τ satisfy the sum-rules

v1 + v2 + · · · + vmIH − M

2
η(u0 ± λ)

=
1
2
(s − 1 + 2mIH)I ′ + i(rs − 1 + 2mIH)I + 2p′I ′ + 4piI (3.9a)

τ =π(s − 1 + 2mIH + 4p′)/8I (3.9b)

where p and p′ are integers. The eigenvalues VIH(v) can be calculated by the use

of Eqs. (3.7)∼(3.9). Then, letting v = u0, we can get necessary informations to

analyze the original inhomogeneous systems (A) and (B).
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4. Anisotropic interfacial tension

Following the program given in Section 3, we calculate the anisotropic interfa-

cial tension of the eight-vertex model. Since the calculational methods are almost

the same for any values of u0, it is sufficient to consider the case u0 = 0. In the case

u0 = 0, the generalized system (A) contains both original systems (A) and (B) as

special limits: the system (A) corresponds to the v → 0 limit; if we re-defined ρj ’s

as ρ1 = ρ2 = · · · = ρM = i/Θ(0)Θ(iλ)H(iλ), ρM+1 = ρM+2 = · · · = ρ(1+η)M = ρ0,

the generalized system (A) reduces to the system (B) as v → λ. For the system

(B) given by the v → λ limit, (3.2b) should be replaced by

(B) η = − tan θ⊥, π/2 < θ⊥ < π (3.2b′)

We investigate the commuting transfer matrices argument for the generalized

system (A). Eqs. (3.7)∼(3.9) are used with u0 = 0 and the upper sign. For

convenience, (3.7) is rewritten as

VIH(v)qIH(v) =φ2(v)qIH (v − 2λ′) [1 + P (v)] (4.1a)

=φ1(v)qIH (v + 2λ′) [1 + 1/P (v)] (4.1b)

P (v) =φ1(v)qIH(v + 2λ′)/φ2(v)qIH(v − 2λ′) (4.1c)

Analysis is restricted to the regime

0 < k < 1, 0 < λ < I ′, 0 < Re(v) < λ, ρ0 > 0 (4.2)

After VIH(v) is calculated, we take two limits v → 0 and λ. In the regime (4.2) two

antiferroelectric ordered state dominated by the vertices 5 and 6 are degenerate. It
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is expected that a doublet of the largest eigenvalues of VIH(v) are asymptotically

degenerate as M → ∞. In the low-temperature limit analysis, these eigenvalues

are found. Then, we return to non-zero temperature and determine the leading

behavior of the doublet of the largest eigenvalues as M → ∞. Next, their finite

size correction terms in this limit are calculated by the use of an integral equation.

The anisotropic interfacial tension is obtained from the finite size correction terms

(Baxter, 1973, 1982).

In the parametrization (2.10) the low-temperature limit corresponds to the

k → 0, I ′, λ, v → ∞ limit, with the ratios λ/I ′ and v/I ′ being order of unity. It is

supposed that 0 <Re(vj) < λ for all j. Then, the low-temperature limit analysis of

(3.8) and (3.9) shows that

τ = 0, s = (−1)mIH

mIH∏
j=1

zj = rxMη/2 (4.3)

where

zj = exp(−πvj/2I), x = exp(−πλ/2I) (4.4)

Because of the sum-rules (3.9), τ and
∏mIH

j=1 zj take discrete values. The eigenvalue

s takes a value of +1 or −1. We expect that τ , s, and
∏mIH

j=1 keep their low-

temperature limit values (4.3) throughout the regime (4.2) without discontinuous

changes. In the low-temperature limit it is also found, from (3.8) and (3.9), that

vj ∼ 2I

mIH
i[2j − mIH − (r + 1)/2] +

η

1 + η
λ (4.5)

and that

P (v) ∼r(−1)mIH zmIH x−Mη/2,
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− min
{

0, 2 − 2 + 3η

1 + η

λ

I ′

}
< Re

( v

I ′

)
< min

{
λ

I ′
, 2 − 2 + η

1 + η

λ

I ′

}
(4.6a)

∼qmIH x−2mIH , 2 − 2 + η

1 + η

λ

I ′
< Re

( v

I ′

)
<

λ

I ′
(4.6b)

∼q−mIH x2mIH , 0 < Re
( v

I ′

)
<

2 + 3η

1 + η

λ

I ′
− 2 (4.6c)

where

z = exp(−πv/2I) (4.7)

The region of applicability of the three equations (4.6) are shown in Fig. 3.6. We

get two eigenvalues, corresponding to r = ±1. Using (4.5) and (4.6) in (4.1a), we

find that the two eigenvalues behave in the low-temperature limit as

VIH;r(v) ∼ rρM
1 ρMη

M+1q
mIH/2x−2mIH ∼ r

(1+η)M∏
j=1

cj (4.8)

Note that in the low-temperature limit

cj À aj , bj , dj for all j (4.9)

where aj , bj , cj , and dj are given by (2.10), with ρ and u replaced by ρj and uj .

From (4.8) and (4.9), the two eigenvalues VIH;r(v) are identified with the doublet

of the largest eigenvalues.

Here, we leave the low-temperature limit. In the regime (4.2) the asymptotic

behavior of the doublet of the largest eigenvalues VIH;r(v) as M → ∞ is calculated.

We start with assuming that

(i) for large M a contour C defined by |P (v)| = 1 is found in the region

0 < Re(v) < λ; vj ’s lie on the contour C
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(ii) there exists a real positive number δ such that P (v) is exponentially larger

than 1 as M → ∞ if v is between the contour C and the line Re(v)= −δ;

P (v) is exponentially smaller than 1 if v is between the contour C and the

line Re(v)= λ + δ,

(iii) VIH;r(v) is analytic and non-zero (ANZ) for 0 ≤ Re(v) ≤ λ.

From (4.6) and (4.8), the assumptions (i)∼(iii) seem to be correct for sufficient low-

temperature. It will be shown that these assumptions are satisfied throughout the

regime (4.2).

Two functions X+(v) and X−(v) are defined by

ln X+(v) =
1

4iI

∫ λ+β+2iI

λ+β−2iI

ln[1 + P (v′)]
exp[π(v − v′)/2I] − 1

dv′, Re(v) > λ + β (4.10a)

lnX−(v) =
−1
4iI

∫ λ+β′+2iI

λ+β′−2iI

ln[1 + P (v′)]
exp[π(v − v′)/2I] − 1

dv′, Re(v) < λ + β′(4.10b)

with 0 < β < β′ < δ. Then, 1 + P (v) is factorized as

X+(v)X−(v) = 1 + P (v) (4.11)

Using (4.11), we define X+(v) for Re(v) ≤ λ + β and X−(v) for Re(v) ≥ λ + β′.

From the assumption (ii), X+(v) is ANZ if v is in the rhs of the contour C, and

X−(v) is ANZ for Re(v) < λ + δ. Substituting (4.11) into (4.1a), we find that

VIH;r(v) = φ2(v)qIH(v − 2λ′)X+(v)X−(v)/qIH(v) (4.12)

The functions φ2(v) and qIH(v) is rewritten as

φ2(v) =ρM
1 ρMη

M+1γ
2mIH z−mIH x−mIH exp

[
−mIHπ

2I

η

1 + η
λ

]
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× A(λ + v)Aη(v)A(2I ′ − λ − v)Aη(2I ′ − λ) (4.13)

qIH(v) =γmIH exp[π(mIHv − v1 − v2 − · · · − vmIH
)/4I]

× F (v)G(v − 2I ′) (4.14a)

=(−γ)mIH exp[π(v1 + v2 + · · · + vmIH
− mIHv)/4I]

× F (v + 2I ′)G(v) (4.14b)

where

γ =q1/4Θ(0)
∞∏

n=1

(1 − q2n)2 (4.15)

A(v) =
∞∏

n=0

[1 − qn exp(−πv/2I)]M (4.16)

F (v) =
mIH∏
j=1

∞∏
n=0

{1 − qn exp[−π(v − vj)/2I]} (4.17)

G(v) =
mIH∏
j=1

∞∏
n=0

{1 − qn exp[π(v − vj)/2I]} (4.18)

Substitute (4.13) and (4.14) into (4.12). We use (4.14a) for qIH(v) and (4.14b) for

qIH(v − 2λ′). It follows that

VIH;r(v) = rρM
1 ρMη

M+1γ
2mIH x−2mIH L+(v)L−(v) (4.19)

where

L+(v) =A(λ + v)Aη(v)F (v + 2I ′ − 2λ)X+(v)/F (v) (4.20)

L−(v) =A(2I ′ − λ − v)Aη(2I ′ − v)G(v − 2λ)X−(v)/G(v − 2I ′) (4.20b)

From the assumption (i) and (iii), it is found that L+(v) is ANZ for Re(v) > 0, and

that L−(v) is ANZ for Re(v) < δ′; δ′ = min{(2I ′ − λ), 2λ, λ + δ}.
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We also define Y+(v) and Y−(v) by

ln Y+(v) =
1

4iI

∫ −β+2iI

−β−2iI

ln[1 + 1/P (v′)]
exp[π(v − v′)/2I] − 1

dv′, Re > −β (4.21a)

lnY−(v) =
−1
4iI

∫ −β′+2iI

−β′−2iI

ln[1 + 1/P (v′)]
exp[π(v − v′)/2I] − 1

dv′, Re < −β′ (4.21b)

Then, 1 + 1/P (v) is factorized as

Y+(v)Y−(v) = 1 + 1/P (v) (4.22)

Eq. (4.1b) is rewritten as

VIH;r(v) = φ1(v)qIH(v + 2λ′)Y+(v)Y−(v)/qIH(v) (4.23)

Using the expressions (4.14) and

φ1(v) =ρM
1 ρMη

M+1γ
2mIH zmIH x−mIH exp

[
mIHπ

2I

η

1 + η
λ

]
× A(λ − v)Aη(2λ − v)A(2I ′ − λ + v)Aη(2I ′ − 2λ + v) (4.24)

we obtain

VIH;r(v) = rρM
1 ρMη

M+1γ
2mIH x−2mIH M+(v)M−(v) (4.25)

where

M+(v) =A(2I ′ − λ + v)Aη(2I ′ − 2λ + v)F (v + 2λ)Y+(v)/F (v + 2I ′)(4.26a)

M−(v) =A(λ − v)Aη(2λ − v)G(v + 2λ − 2I ′)Y−(v)/G(v) (4.26b)

The function M+(v) is ANZ for Re(v) > λ − δ′; M−(v) is ANZ for Re(v) < λ.
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Compare (4.19) with (4.25). It is found that

M+(v)/L+(v) = L−(v)/M−(v) (4.27)

The lhs of (4.27) is ANZ for Re(v) > 0, and the rhs of (4.27) is ANZ for Re(v) < λ.

Thus, both sides of (4.27) are entire. Moreover, they are bounded in the Re(v) →

±∞ limit. From Liouville’s theorem, it follows that they are constant. The fact

that the rhs of (4.27)→1 as Re(v) → ∞ shows that this constant is 1. Finally, we

obtain

M+(v) = L+(v), M−(v) = L−(v) (4.28)

The first equation gives the recursion relation of S+(v):

S+(v) = S+(v + 2I ′ − 2λ)X+(v)/Y+(v) (4.29)

where

S+(v) = F (v + 2λ)F (v)/A(v + λ)Aη(v) (4.30)

Eq. (4.29) is solved as

S+(v) =
∞∏

n=0

X+[v + 2n(I ′ − λ)]/Y+[v + 2n(I ′ − λ)] (4.31)

Regarding (4.30) as a recursion relation for F (v), we get

F (v) =
∞∏

n=0

A[v + (4n + 1)λ]Aη(v + 4nλ)S+(v + 4nλ)
A[v + (4n + 3)λ]Aη[v + (4n + 2)λ]S+[v + (4n + 2)λ]

(4.32)

Similarly, it follows, from the second equation in (4.28), that

S−(v) =G(v)G(v − 2λ)/A(λ − v)Aη(2λ − v)

=
∞∏

n=0

Y−[v − 2n(I ′ − λ)]/X−[v − 2n(I ′ − λ)] (4.33)

G(v) =
∞∏

n=0

A[(4n + 1)λ − v]Aη[(4n + 2)λ − v]S−(v − 4nλ)
A[(4n + 3)λ − v]Aη[(4n + 4)λ − v]S−[v − (4n + 2)λ]

(4.34)
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Substitute (4.13), (4.14), and (4.24) into (4.1c). Eq. (4.14a) is used for qIH(v+

2λ′), and (4.14b) for qIH(v − 2λ′). Then, by the use of (4.32) and (4.34), P (v) can

be expressed in terms of A(v) and S±(v). After some calculations, we obtain

P (v) =rpM (v)pMη(v − λ)

×
∞∏

n=0

S+[v + (4n + 2)λ]S+(v + 2I ′ + 4nλ)
S+[v + (4n + 4)λ]S+[v + 2I ′ + (4n − 2)λ]

×
∞∏

n=0

S−[v − 2I ′ − (4n − 2)λ]S−[v − (4n + 4)λ]
S−(v − 2I ′ − 4nλ)S−[v − (4n + 2)λ]

(4.35)

where

p(v) = (−z)1/2f(xz−1, x4)/f(xz, x4) (4.36)

and z is related to v by (4.7); f(w, x) is given by (2.30) of Chapter 2. Eq. (4.31)

shows that, when M becomes large and v is in the rhs of the contour C, S+(v)

behaves as

S+(v) ∼ 1 + e−εM (4.37)

with ε > 0. From (4.33) it is found that, if v is in the lhs of C, S−(v) behaves for

large M as

S−(v) ∼ 1 + e−εM (4.38)

with ε > 0. We define three regions a, b, and c as follows: for a given point v, choose

a point vC on C such that Im(v)=Im(vC); v is in the region a if |Re(v)−Re(vC)| <

min{2λ, 2I ′ − 2λ}; in the region b if 2I ′ − 2λ <Re(v)−Re(vC) < 2λ; in the region

c if 2λ <Re(v)−Re(vC) < 2I ′ − 2λ (Fig. 3.7). For v ∈ the region a and M large,

S+(v)’s and S−(v)’s in the rhs of (4.35) can be replaced by unity. It follows that
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as M → ∞

P (v) ∼ rpM (v)pMη(v − λ), v ∈ the region a (4.39a)

For v ∈ the regions b and c, using the periodicity relation

qIH(v + 2I ′) = srq−(1+η)M/4 exp {[(1 + η)Mv − Mηλ]π/4I} qIH(v) (4.40)

we can determine the leading behavior of P (v) in the M → ∞ limit as

P (v) ∼1, v ∈ the region b (4.39b)

∼pM (v)pM (v − 2I ′)pMη(v − λ)pMη(v − λ − 2I ′),

v ∈ the region c (4.39c)

Replace L−(v) by M−(v) in (4.19). Then, substituting (4.20a), (4.26b) into

(4.19), using (4.32) and (4.34), and neglecting exponentially small corrections as

M → ∞, we find that for 0 ≤ Re(v) ≤ λ

VIH;r(v) ∼ rV0(v) (4.41)

where

V0(v) =(γρ1/x)M
∞∏

n=0

A[v + (4n + 3)λ]A[v + 2I ′ + (4n − 1)λ]
A[v + (4n + 5)λ]A[v + 2I ′ + (4n + 1)λ]

×
∞∏

n=0

A[(4n + 3)λ − v]A[(4n − 1)λ − v + 2I ′]
A[(4n + 5)λ − v]A[(4n + 1)λ − v + 2I ′]

× (γρM+1/x)Mη
∞∏

n=0

Aη[v + (4n + 2)λ]Aη[v + 2I ′ + (4n − 2)λ]
Aη[v + (4n + 4)λ]Aη[v + 2I ′ + 4nλ]

×
∞∏

n=0

Aη[(4n + 4)λ − v]Aη[4nλ − v + 2I ′]
Aη[(4n + 6)λ − v]Aη[(4n + 2)λ − v + 2I ′]

(4.42)
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The leading behavior as M → ∞ (4.39) and (4.41) show that the three as-

sumptions (i)∼(iii) are always satisfied without the restriction to the sufficient low-

temperature. Therefore, the argument from (4.10) to (4.42) makes sense throughout

the regime (4.2). It is verified that (4.39) and (4.41) reproduce (4.6) and (4.8) in

the low-temperature limit.

In (4.41) the leading terms of VIH;r(v) as M → ∞ are equal in magnitude and

opposite in sign. The calculation of the finite size correction terms shows that they

are asymptotically degenerate as M → ∞. Returning to the derivation of (4.41),

and keeping all the contributions from S±(v), X±(v), and Y±(v), we get the integral

equation

ln[rVIH;r(v)/V0(v)] =
1

8iI

∫ λ+2iI

λ−2iI

dv′ ln[1 + P (v′)]D(v − v′)

− 1
8iI

∫ +2iI

−2iI

dv′ ln[1 + 1/P (v′)]D(v − v′)

=
1

4iI

∫ λ+2iI

λ−2iI

dv′ ln[1 + P (v′)]D(v − v′),

0 < Re(v) < λ (4.43)

where

D(v) = 1 + 2
∞∑

n=0

(−1)n

{
x2nz−1

1 − x2nz−1
+

x2n+2z

1 − x2n+2z

}
(4.44)

In the deformation into the third line of (4.43), we assumed the relation

P (v + 2λ) = 1/P (v) (4.45)

which holds in the leading order (4.39). The integral equation (4.43) can be used

to calculate the finite size correction terms as M → ∞.
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For 0 < λ/I ′ < 1/2, the asymptotic degeneracy is easily found. From (4.39a),

it follows that as M → ∞

ln[1 + P (v′)] ∼ rpM (v′)pMη(v′ − λ) (4.46)

For large M , we can put (4.46) into (4.43) and integrate by steepest descent. Con-

sequently, we obtain

rVIH;r(v)/V0(v) ∼ 1 + α(v)rpM (vs)pMη(vs − λ) + · · · (4.47)

where vs is the saddle point of |p(v)pη(v − λ)|, determined by

η = −f(zs, x
4)f(x2zs, x

4)f(−xzs, x
4)f(−x3zs, x

4)
f(−zs, x4)f(−x2zs, x4)f(xzs, x4)f(x3zs, x4)

, zs = exp
(
−πvs

2I

)
(4.48a)

with the condition

vs = λ + 2iI, η = 0 (4.48b)

The function α(v) is to be determined by D(v) and the derivative of p(v). Eq.

(4.47) shows that the doublet of the largest eigenvalues VIH;r(v) are asymptotically

degenerate as M → ∞.

For 1/2 < λ/I ′ < 1, it happens that the saddle point vs determined by (4.48)

is in the region c, where the expansion (4.46) does not hold. If we replace (4.39a) by

(4.39c) in (4.46), it is found that VIH;+(v)/VIH;−(v) = 1 within the leading order as

M → ∞. To investigate the asymptotic degeneracy, the higher order contributions

neglected in the derivation of (4.39c) must be considered.

The function P (v) for r = +1 (or −1) is denoted by P+(v) (or P−(v)). Instead

of (4.43), it is useful to consider the equation

ln[−VIH;+(v)/VIH;−(v)] ∼ 1
4iI

∫ λ+2iI

λ−2iI

dv′[P+(v′) − P (v′)]D(v − v′) (4.49)
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The asymptotic form (4.39a) shows that

P+(v) − P−(v) ∼ 2pM (v)pMη(v − λ) (4.50)

for v ∈ the region a. Assuming that the saddle point vs determined by (4.48) is in

the region c, we show that Eq. (4.50) hold in the region c.

Eq. (4.39c) is re-derived with all the contributions from S±(v) as

ln[P (v)/pM (v)pM (v − 2I ′)pMη(v − λ)pMη(v − λ − 2I ′)]

= ln [1 + P (v − 2I ′ + 2λ)] + ln[1 + P (v)]

+
1

4iI

∫ λ+2iI

λ−2iI

dv′ ln[1 + P (v′)][D(v − v′ − 2I ′) + D(v′ − v)] (4.51)

for v ∈ the region c, Re(v)< λ. Keeping only the dominant terms as M → ∞, we

obtain

ln[P+(v)/P−(v)] ∼ [P+(v + 2λ − 2I ′) − P−(v + 2λ − 2I ′)]

+
1

4iI

∫ λ+2iI

λ−2iI

dv′[P+(v′) − P−(v′)][D(v − v′ − 2I ′) + D(v′ − v)] (4.52)

A line segment connecting the points vs and v∗
s is denoted by l; v∗s is a point

on the contour C such that Im(vs)=Im(v∗s). In the rhs of (4.52), suppose that the

contribution from the integral is always negligibly smaller than that from the square

bracket in a region containing l. It follows, from (4.39a) and (4.39c), that Eq. (4.50)

is correct in this region. Moreover, substituting (4.50) into the integrand of (4.52),

and evaluating the integral by steepest descent around vs, we find that this integral

is dominated by the square bracket for v on l. We expect that the asymptotic form

of P+(v) − P−(v) as M → ∞ is given by (4.50) in a region containing l though it
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can not be proved rigorously. Therefore, the result (4.47) is unchanged even if the

saddle point vs is in the region c.

Now, setting v = 0 and λ, and choosing the values of ρj ’s suitably, we consider

the systems (A) and (B). When M and N becomes large under the condition that

(1+η)M and N are even with η fixed to be constant, the partition functions of the

systems (A) and (B) are estimated as

Z =Tr
[
VN

IH(v)Rn
]

∼
{
[1 + (−1)n] + [1 − (−1)n]Nα(v)pM (vs)pMη(vs − λ)

}
V N

0 (v),

v = 0, λ (4.53)

where R is inserted to impose two different boundary conditions along the vertical

direction: the case n ≡ 0 (mod 2) corresponds to periodic boundary conditions,

and n ≡ 1 (mod 2) antiperiodic boundary conditions. The second term in the

brace of (4.53) gives an excess free energy above the bulk free energy when the

antiperiodic boundary conditions are imposed. From the excess free energy, the

anisotropic interfacial tension is calculated. After some calculations, we get

−σ/kBT = cos θ⊥ ln p(vs − λ) + sin θ⊥ ln p(vs), −π < θ⊥ < π (4.54)

where σ is the interfacial tension and vs is determined as a function of θ⊥ by (4.48),

with η replaced by 1/ tan θ⊥. The saddle point vs satisfies the relations

vs(θ⊥ + π/2) = vs(θ⊥) − λ, vs(−θ⊥) = −vs(θ⊥) − 2λ (4.55)

These relations assure the symmetry relations of σ

σ(θ⊥ + π/2) = σ(θ⊥), σ(−θ⊥) = σ(θ⊥) (4.56)
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5.Equilibrium crystal shape

We derive the ECS of the eight-vertex model from the anisotropic interfacial

tension (4.54). Using Wulff’s construction (4.56a) of Chapter 2, we find that

ΛX

kBT
= − ln

∣∣∣∣∣(−x−1zs)1/2 f(x2zs, x
4)

f(zs, x4)

∣∣∣∣∣ (5.1a)

ΛY

kBT
= − ln

∣∣∣∣∣(−zs)1/2 f(xz−1
s , x4)

f(xzs, x4)

∣∣∣∣∣ (5.1b)

where (X,Y ) is the position vector of a point on the ECS and Λ is a scale factor.

As temperature is lowered, the ECS deformed into a square from a sphere near the

critical temperature (Fig. 3.8). It is helpful to calculate the radius of curvature.

We can calculate the radii of curvature at θ⊥ = 0 and π/4. A facet (or corner)

appears at θ⊥ = 0 (or π/4) in the low-temperature limit. At θ⊥ = 0, we obtain

ρ

R
=

f4(x, x4)
f4(−x, x4)

/
ln

[
x−1/2 f(−x2, x4)

f(−1, x4)

]
(5.2)

where ρ is the radius of curvature and R = (X2 + Y 2)1/2. In the low-temperature

limit, where x → 0, it is found that

ρ/R ∼ −2/ ln x (5.3)

Near the critical temperature, where I becomes large and λ is order of unity, ρ/R

behaves as

ρ/R ∼ 1 − (16/3) exp(−2πI/λ) (5.4)

Similarly, the radius of curvature at θ = π/4 is calculated as

ρ

R
=x−1/2 f2(x, x4)f2(−x, x4)

f2(−1, x4)f2(−x2, x4)
f(x1/2, x4)f(x3/2, x4)

f(−x1/2, x4)f(−x3/2, x4)/
ln

[
x−1/4 f(−x3/2, x4)

f(−x1/2, x4)

]
(5.5)
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It follows that in the low-temperature limit

ρ/R ∼ 1/x1/2 lnx (5.6)

and that near the critical temperature

ρ/R ∼ 1 + (16/3) exp(−2πI/λ) (5.7)

The ECS (5.1) can be written into the simple closed form

cosh [Λ(X + Y )/kBT ] + cosh [Λ(X − Y )/kBT ] = k1/2(x) + k−1/2(x) (5.8)

where k(x) is defined by (1.6b). As we mentioned in Section 1, the eight-vertex

model contains the six-vertex model and the square lattice nearest-neighbor Ising

model as special limits. It follows, from (2.10), that the six-vertex model cor-

responds to the q → 0 limit of the eight-vertex model. The expressions of the

anisotropic interfacial tension (4.54) and the ECS (5.1), however, are independent

of q. Rotating the coordinate axes through π/4, we find that (5.8) and (1.5a),

with CI replaced by CBC , are the same within the scale factor Λ. Similarly, (1.4)

and (2.10) show that, when q = x4, the eight-vertex model factors into the two

independent nearest-neighbor Ising models. At this time, (1.3) gives the relation

sinh(2J/kBT ) = sinh(2J ′/kBT ) = k−1/2(x) (5.9)

Using this relation, we can reproduce the ECS (1.5) from (5.8).

Until now from the beginning of the Section 4, we consider the special case

u0 = 0. The calculation in Section 4 can be easily extended for the general case

– 85 –



3. EIGHT-VERTEX MODEL

|u0| < λ. There, the ECS (5.1) is generalized as

ΛX

kBT
= − ln

∣∣∣∣∣(−a−1x−1z′)1/2 f(x2a−1z′, x4)
f(a−1z′, x4)

∣∣∣∣∣ (5.10a)

ΛY

kBT
= − ln

∣∣∣∣∣(−z′)1/2 f(xz′−1, x4)
f(xz′, x4)

∣∣∣∣∣ (5.10b)

where

a = exp(−πu0/2I) (5.11)

As the variable z′ moves in the interval −x3 < z′ < −x−1, (X,Y ) in (5.10) draw a

closed curve. The ECS (5.10) is also rewritten into the compact form

cosh [Λ(X + Y )/kBT ] + B cosh [Λ(X − Y )/kBT ] = 2D (5.12)

Instead of showing the explicit forms of C and D, we point out that (5.10) can

be regarded as a natural parametrization of (5.12). To see this, we rewrite (5.12)

as

α2β2 + 1 + Bαβ(α + β) = 2Dαβ (5.13)

where

α = exp(−ΛX/kBT ), β = exp(−ΛY/kBT ) (5.14)

Eq. (5.13) is a symmetric biquadratic relation between α and β. It is known that

this relation is naturally parametrized in terms of Jacobian elliptic functions as

α =k1/2sn(ζ + η), β = k1/2snζ

B = − 1/ksn2η, D = −cnηdnη/ksn2η

(5.15)

where the elliptic functions are given by (A.4) (Baxter, 1982). Replace the norm of

the elliptic function by x2, and set

z′ = x exp(−iπζ/I), η = i(u0 + λ)/2 (5.16)
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3. EIGHT-VERTEX MODEL

Then, the expression (5.10) is reproduced. It is shown that the elliptic functions in

(5.10) reflects the ECS (5.12).
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Appendix

The theta functions with the norm q and the argument u are given by

H(u) =2q1/4 sin
πu

2I

∞∏
n=1

(
1 − 2q2n cos

πu

I
+ q4n

)
(1 − q2n) (A.1a)

H1(u) =2q1/4 cos
πu

2I

∞∏
n=1

(
1 + 2q2n cos

πu

I
+ q4n

)
(1 − q2n) (A.1b)

Θ(u) =
∞∏

n=1

(
1 − 2q2n−1 cos

πu

I
+ q4n−2

)
(1 − q2n) (A.1c)

Θ1(u) =
∞∏

n=1

(
1 + 2q2n−1 cos

πu

I
+ q4n−2

)
(1 − q2n) (A.1d)

The half-periods are

I =
π

2

∞∏
n=1

(
1 + q2n−1

1 − q2n−1

1 − q2n

1 + q2n

)2

(A.2a)

I ′ = − π−1I ln q (A.2b)

The modulus k and the conjugate modulus k′ are

k =4q1/2
∞∏

n=1

(
1 + q2n

1 + q2n−1

)4

(A.3a)

k′ =
∞∏

n=1

(
1 − q2n−1

1 + q2n−1

)4

(A.3b)

The Jacobian elliptic functions are

snu =k−1/2H(u)/Θ(u) (A.4a)

cnu =(k′/k)1/2H1(u)/Θ(u) (A.4b)

dnu =k′1/2Θ1(u)/Θ(u) (A.4c)
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Chapter 4. Summary and Discussion

In Chapter 2, to calculate the anisotropic correlation length of the hard-

hexagon model, we proposed a new method. In this method, the shift operator and

the transfer matrix were used simultaneously. The anisotropic correlation length

was calculated from the ratios between the largest and next-largest eigenvalues of

the transfer matrix and those of the shift operator. For z > zc, a similar method was

applied to the calculation of the anisotropic interfacial tension of the hard-hexagon

model. There, systems with a mismatched vertical seam were considered, and the

shift operator was used to tilt the seam. In the ordered state of the hard-hexagon

model three phases degenerate. Noting this point, we calculated the interfacial

tension between the A-phase and the B-phase from the extra factors appearing in

the eigenvalues of the transfer matrix and the shift operator.

The anisotropic interfacial tension was also found by another method, where an

inhomogeneous system was considered. The inhomogeneous system was defined on

a square lattice of (1+v)M columns and N rows with toroidal boundary conditions.

The lhs of the (M + 1)th column was the hard-hexagon model and the rhs of the

(M + 1)th column had the effect of shifting the particle configuration of a column

downward: if the particle configuration of the (M + 1)th column was shifted by

Mv lattice spacings downward, it was identical with that of the first column. It

was shown that a triplet of the largest eigenvalues of the row-row transfer matrix
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4. SUMMARY AND DISCUSSION

are asymptotically degenerate as M → ∞ under the condition that (1 − v)M ≡ 0

(mod 3), with v being fixed to be constant. The anisotropic interfacial tension was

calculated from the finite size correction terms in this limit.

From the anisotropic interfacial tension, the equilibrium shape of a droplet of

A-phase embedded inside the B-phase was derived by the use of Wulff’s construc-

tion. It was found that the equilibrium crystal shape is a simple algebraic curve.

Considering the radius of curvature at some special points on the equilibrium shape,

we showed the roughening transition in the z → ∞ limit.

In Chapter 3 the shift operator method of calculating the anisotropic interfacial

tension was applied to the eight-vertex model. We considered an inhomogeneous

eight-vertex model. It was found that a doublet of the largest eigenvalues of the

transfer matrix are asymptotically degenerate as the width of the system becomes

large. The finite size correction terms in this limit gave the anisotropic interfacial

tension. The equilibrium crystal shape of the eight-vertex model was obtained from

the calculated anisotropic interfacial tension via Wulff’s construction. The eight-

vertex model contains the six-vertex model and the square lattice Ising model as the

q → 0 and x4 limits, respectively. The equilibrium crystal shapes of these two mod-

els had been derived, and shown that they are essentially the same. In the frame-

work of the eight-vertex model, this fact was extended to the q-independence of the

equilibrium crystal shape. We regarded the equilibrium crystal shape of the eight-

vertex model as a symmetric biquadratic relation between α = exp(−ΛX/kBT )

and β = exp(−ΛY/kBT ). It was shown that the elliptic solution of the anisotropic

interfacial tension is a natural parametrization of this relation.
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4. SUMMARY AND DISCUSSION

Here, we make an addition about the equilibrium crystal shape of the hard-

hexagon model (4.59) of Chapter 2. It is known that the symmetric biquadratic

relations between α and β

A1α
2β2 + A2αβ(α + β) + A3(α2 + β2) + A4αβ + A5(α + β) + A6 = 0 (1)

are naturally parametrized in terms of elliptic theta functions, the general form

being

α = φ(u + η), β = φ(u) (2a)

where

φ(u) = ξH(u + a)H(u − a)/H(u + b)H(u − b) (2b)

and H(u) is the elliptic theta function defined by (A.1a) in Appendix of Chapter

3; ξ, a, and b are constants (p. 471 of Baxter, 1982). Eq. (4.59) of Chapter 2 can

be rewritten as

α2β2 − Cαβ + (α + β) = 0 (3a)

where

α = exp
[
−
√

3Λ
(
X +

√
3Y

)
/2

]
, β = exp

[
−
√

3Λ
(
X −

√
3Y

)
/2

]
(3b)

Eq. (3a) is a special case of (1) with A1 = A5 = 1, A4 = −C, A2 = A3 = A6 = 0.

Set ξ = x1/3, a = −η = −2iI ′/3, and b = 0 in (2). The norm q and the argument

u of the theta functions are related to x and as by

q2 = x3, exp(−iπu/I) = asx
−1 (4)
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4. SUMMARY AND DISCUSSION

Then, the expression (4.58) of Chapter 2 is reproduced. The elliptic solutions of

the anisotropic interfacial tension of the hard-hexagon model is also regarded as a

natural parametrization of the symmetric biquadratic relation (3a).

Besides the hard-hexagon model and the eight-vertex model, there are some

models whose interfacial tension had been calculated for special direction (Pearce

and Baxter, 1984; Suzuki, 1989). It is known that the interfacial tension of these

models are represented in terms of elliptic functions. These elliptic solutions are

also expected to be related to simple equilibrium crystal shapes. We hope that

these facts will be clarified in further investigation.
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Figure Captions

Fig. 2.1. A typical configuration of the hard-hexagon model. Occupied sites are denoted

by solid circles and unoccupied sites are denoted by open circles.

Fig. 2.2. (a) A typical configuration of the hard-square model. (b) Boltzmann weight

around a face.

Fig. 2.3. Graphical representation of the star-triangle relation of the hard-square model.

Fig. 2.4. Mismatched vertical seams in the z → ∞ limit. (a) M ≡ 1 (mod 3), and (b)

M ≡ 2 (mod 3). The starting points of the seams are denoted by S, and the

end points are denoted by E. Three shift operators are inserted above the tenth

row of each lattice. They tilt the seams by moving the points S and E along

the horizontal direction.

Fig. 2.5. Typical configurations of the inhomogeneous systems in the z → ∞ limit. (a)

N ≡ 2 (mod 3). (b) N ≡ 1 (mod 3). The lhs of the tenth column is the

hard-hexagon model, and the rhs of the tenth column works as the downward

shift operator.

Fig. 2.6. The polar plot of σ/ζ denoted by Σ in the z → ∞ limit. All the figures

S̄1, S̄2, S̄3, · · · satisfy the condition (4.52). The equilibrium shape is determined

as the similar figure of the innermost figure S̄1.

Fig. 2.7. (a) The polar plot of the interfacial tension, and (b) the equilibrium crystal

shape of the hard-hexagon model. We choose the chemical potential ζ as the
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FIGURE CAPTIONS

scale factor Λ. From the outermost figure, z = 1.0 × 106, 1.0 × 104, 1.0 × 103,

2.5 × 102, 1.0 × 102, 50, 30, 20, and 15, successively.

Fig. 3.1. The eight possible arrow configurations around a vertex, and the corresponding

Boltzmann weights.

Fig. 3.2. The Ising model with two- and four-spin interactions. The solid lines are the

square lattice where the eight-vertex model is defined. When J ′′ = 0, the dual

lattice is divided into two sublattices; the sites of one sublattice is represented

by open circles and the sites of the other sublattice by closed circle. The

nearest-neighbor pairs on each sublattice are connected by interactions J and

J ′, which are shown by dash dotted lines and broken lines, respectively.

Fig. 3.3. The transfer matrix of the eight-vertex model.

Fig. 3.4. Graphical representation of the star-triangle relation of the eight-vertex model.

Fig. 3.5. Typical configuration of the inhomogeneous system (A) in the low-temperature

limit. The eight-vertex region is represented by solid lines, and the region

uj = −λ broken line. In the eight-vertex region two antiferroelectric ordered

phases dominated by the vertices 5 and 6 coexist. Across the eight-vertex

region, there is an interface. The interface consists of the vertices 1 and 3,

which are shown by open circles. Because of the region uj = −λ, the interface

is tilted.

Fig. 3.6. The regions of the applicability of the three formulae (3.5).

Fig. 3.7. The three region a, b, and c in (4.40). (a) For a given point v, choose a point vC

on the contour C so that Im(v)=Im (vC). (b) Then, using Re(v/I ′)-Re(vC/I ′),

we define three regions a, b, and c.
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FIGURE CAPTIONS

Fig. 3.8. The equilibrium crystal shape of the eight-vertex model. We choose kBT lnC

as the scale factor Λ; C is defined by (1.6a). From the outermost figure,

x = 1.0 × 10−6, 1.0 × 10−4, 0.001, 0.004, 0.01, 0.02, 0.04, 0.07, and 0.12,

successively.

– 100 –
































	MFujimoto
	FIG2-1
	FIG2-2
	FIG2-3
	FIG2-4
	FIG2-5
	FIG2-6
	FIG2-7a
	FIG2-7b
	FIG3-1
	FIG3-2
	FIG3-3
	FIG3-4
	FIG3-5
	FIG3-6
	FIG3-7

