

Title	Anisotropic Interfacial Tension and Equilibrium Crystal Sha-pes of Exactly Solvable Models
Author(s)	藤本,雅文
Citation	大阪大学, 1991, 博士論文
Version Type	VoR
URL	https://doi.org/10.11501/2964353
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Erratum: Anisotropic Interfacial Tension and Equilibrium Equilibrium Crystal Shapes of Exactly Solvable Models

by Masafumi Fujimoto

The following corrections should be made in the above paper.

Chapter 2. In (4.58) and (4.59), β 's were missing:

$$\beta \Lambda X = -\frac{2}{\sqrt{3}} \ln |\psi(a_s x)| - \frac{1}{\sqrt{3}} \ln |\psi(a_s)|$$

$$\beta \Lambda Y = -\ln |\psi(a_s)|$$
(4.58)

$$\exp\left[\sqrt{3}\beta\Lambda\left(X + \sqrt{3}Y\right)/2\right] + \exp\left[\sqrt{3}\beta\Lambda\left(X - \sqrt{3}Y\right)/2\right] + \exp\left[-\sqrt{3}\beta\Lambda X\right] = C$$

$$C = 2x^{-1/3}\frac{f(-x, x^3)}{f(-1, x^3)} + x^{2/3}\frac{f^2(-1, x^3)}{f^2(-x, x^3)}$$
(4.59)

Chapter 3. In the lhs of (5.13), $\alpha\beta(\alpha+\beta)$ should be replaced by $(\alpha^2+\beta^2)$:

$$\alpha^2 \beta^2 + 1 + B(\alpha^2 + \beta^2) = 2D\alpha\beta \tag{5.13}$$

Chapter 4. In (3b), k_BT 's were missing:

$$\alpha = \exp\left[-\sqrt{3}\Lambda(X+\sqrt{3}Y)/2k_BT\right], \qquad \beta = \exp\left[-\sqrt{3}\Lambda(X-\sqrt{3}Y)/2k_BT\right]$$
 (3b)