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                           ABSTRACT

    This dissertation discusses the fundamental aspects of

optimal inventory problerns, taking notice of the uncertainty

on the demand distribution F.

    When F is known, the author derives an existence and
uniqueness theorem and the related properties for the optimal

inventory equation under considerably mild assumptions by

using the technique of contraction mappings. Since the
theorern developed guarante6s a unique solution and the optimal

inventory policy, the author determines some particular types

of optirnal policies for two examples of practica! inventory

problems and derives their properties by using the usual

approach of successive approximations.
    When'F is unknown, i.e., most of informations about it are

insuffÅ}cient for a definite probability distributionr a

Bayesian approach or a minimax procedure is sometimes used.

The author sets up a Bayesian statistical inventory equation

under a general class of prior distributions and derives some

important properties of the Bayes solution. Though the Bayes

solution and the inv.entory policies are themselves quite

difficult to derive even Å}n the case of linear costs, he

approximates them by those which are asymptotically optirnal if

the sample size approaches infinity.• As an example, a
                                          'Bayesian nonparametric problem is discussed. The author also

consÅ}ders a minimax inventory problern as a two-person zero-sum

game and shows the necessary and sufficient conditions for the

existence of saddle points and a saddle value.
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                          CHAPTER 1

                         INTRODUCT!ON

    In this dissertation we shall discuss the fundamental

aspects of the structure of optinal inventory problems, which

are the classical and typical problems of operations research.

Dynamic inventory problems of the types mentioned here have

received considerable attention during the past twenty years.

Important contributions to the mathematical inventory theory

may be found in the literatures listed at the end of this

dissertation. Since the comprehensive discussions of the

inventory problems are given by many authors, we limit•our

introductory remarks to a mathernatical description of the

structure of the model that we shall consider and a statement

of previous results that we shall use.

    An inventory problem is a sequential decision problem

where decisions must be made at repeated intervals whether or

not to raise the inventory level. The demands t in successive
                               .periods are independently distributed random variables with a

common distribution F. Three kinds of costs are Å}ncurred

during each period. Here, c(z) represents the cost of
ordering amount z of the good, h(.) the holding cost for

Å}nventories on hand and p(.) the penalty cost associated with

the failure to meet demand. Holding and penalty costs are

charged at the end of each period. The constant ct represents

the dÅ}scounting factor. Costs experienced N periods after the
current period are discounted by ctN.
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    Inventory problems can be broadly divided into two cases

accordÅ}ng to whether the demand distribution F is known or not

known to us.

    When F is known, two distinct approaches have been

employed in analysis of this inventory model. One approach,

which considers inventory problems as functional equations, is

to derive an existence and uniqueness theorem for the solution

of the functional equation and also to find the conditions

suff.icient to ensure that the optimal ordering policy exists

in a simple forrn. A second approach, which considers
inventory problems as multistage decision processes of dynamic

programming, is to derive some quantitative properties of its

solution and optimal inventory policy by using the technique

of the successive approxirnation. A major drawback of this

approach is to put rather strong conditions in order to
                                                'guarantee the convergence of the solutions.

    In Chapter 2 we shall derive an existence and uniqueness

theorem for optirnal inventory problems with bounded and

unbounded cost functions by the first approach in terms of the

functional equation. Until now previous discussions of this

fundamentaÅ} theorem were based on the successive approxima--

tions approach and they required relatively strong assumptions

that would guarantee the uniform convergence of the continuous

functions. See, e.g., Iglehart [9] and Boylan [3]. Recently,

Lippman [l6] and Van Nunen and Wessels [33] presented
sufficient conditions for contraction mappings in semi-Markov

decision processes with unbounded rewards. But their
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conditions could not be applied to the inventory problems

directly, because both the state space and the action space in

inventory problems were not countable. According to Nakagami

[24]r we, therefore, prove this theorem under considerably

mild assumptions by using the technique of Lippman's contrac-

    In Chapter 3 we shall derive the particular types of

optirnal policies for the practical inventory problerns. Since

the theory developed in Chapter 2 ensures the existence of a

unique contÅ}nuous solution and the optimal inventory policy in

our practical inventory problems, we shall deteacmine the

particular type of the optimal policy and discuss Lits

quantitative properties by using the second approach of

successive approximatlons.

    First, let us consider the problem where the ordering cost

function is linear with multiple set-up rather than one with a

single set-up. This type of cost is neither convex nor
concave, but has a practical meaning when the ordered quantity
                               .in each period is delivered by a transportation vehicle which

has a certain limited capacity. !n general, an optimal

inventory policy is sensitive to the form of the ordering

cost, so that until now some types of inventory policies have

examined and studied by several authors. Scarf [31] proved

that an (s,S) policy is optiTnal for a linear cost with a

single set-up, and this case was investigated in detail by

Iglehart [9], Veinott [35] et al. Porteus [28] proved that a

generalized (s,S) policy is optimal for a concavely increasing
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cost. In Na]<agami [20], the purpose for this problem is to

derive the particular type of the optimal po!Å}cy in the model

when the ordering cost function has multiple set-up.

    Next we consider the perishable inventory problem. one of

the important aspects of it is that the perishable goods h' ave

a fixed lifetime and become useless in satisfying demands

after a fixed length of periods. Several authors (Fries [7]r

Nahmias and Pierskalla [l7],[l9] and Nahmias [l8]) investigat-

ed the model in which the goods perish exactly m periods after

receipt on order. And they derived optimal ordering policies

and some qualitative properties of policies by solving a

dynarnÅ}c program with a state variable of dimension m-l.

Another remarkable aspect of the perishability is that one`can

preserve the perishable goods in a special warehouse, which

keeps them in the almost same quality and extends their life

time for a pretty long periods. For examp].e, perishable

foodstuffs like fresh fish and meat deteriorate in a week,when

refrigerated. But they will keep for half an year when
                                  .
frozen, which for the practÅ}cal purpose is non-perishable.

The objective for the second problem is to analyze this

realistic model in order to derive an optimal preserving

policy as well as an ordering one with their properties
according to Nakagami [22].

    When the demand distribution F is unknown to us, that is,

most of the informations about it are insufficient for a

defÅ}nite probability distribution, a Bayesian approach or a

minimax procedure is sometimes used. A Bayesian approach is

                           -4-



very attractive because it allows the explicit mcorporation

of prior and new informations into the structure of the model.

And its solution and inventory policy have quite realistic

features of one's intuition and experience. But a major
defect of Bayesian methods is the restriction of the class of

prior distributions needed. A minimax procedure is ver•y
interesting frorn the mathernatical point of view, and it gives

the critieal upper bound of the soiution over a prescribed

class of distribution even if the prior information is quite

poor. However the minimax inventory policy has pessimistic

features as compared with that of a Bayesian approach. A

minimax procedure is naturally extended to a game. theoretic

procedure.

    On the Bayesian inventory probleinr Scarf [30] and Iglehart

[IO] have analyzed an inventory model with linear costs where

they assume a demand di'stribution from the exponential family

and derive the optimal inventory policy. They also show the

convergence to the true optimal policy if the sample sÅ}ze
                               .
approaches infinity. We shall consider the general treatments

of the Bayesian inventory problems. In Chapter 4, according

to Nakagami [25],[26], we shall set up a statistical inventory

equation under a general class of prior distributions and

discuss some important properties of its Bayes solution.

Though the Bayes solution and the inventory policies are

themselves quite difficult to derive even in the case of

linear costs, we approximate thern by those which are
asymptotically optimal if the sarnple size approaches infinity.

                            -5-



As an exainple, a Bayesian nonparametric problem is discussed.

    On the minimax inventory problemt one can refer the works

done by Ben-Tal and Hochman [l], Jagannathan [l2], [l3],

Kasugai and Kasegai [l5], Nakagami [21], Odanaka [27] and

Scarf [32]. A minimax policy is one that minirnizes the

maxÅ}mum expected costs, where the maximum is taken over a

prescribed class of distributions. For exarnpler Scarf [32]

assumed that only the rnean and the variance of the distribu-

tion were known. In Chapter 5, according to Nakagami and

Yasuda [23], we extend this minimax inventory problem to a
                                                   'two-person zero-sum garne, in which one player (rnanager)

decides his ordering level and other player (nature) chooses

her dernand distribution in the prescribed class of distribu-

tions. By a garne theoretic approach, we first show the

necessary and sufficient conditions for the existence of

saddle poj-nts and a saddle vaiue. As an exarnple, we
reconsider the minimax problems gÅ}ven by the above litera-

tures. Since the classes of the demand distributions in these
                                  .
problems are easily checked to satisfy our conditions, the

minimax policy is consistent with the player 1's s#rategy of

the game. Wer therefore, determine a set of all saddle poÅ}nts

and a saddle value respectively in the explict form by solving

the dual maximin problem, which enables us to derive the

player 2's maximin strategy as well as the player 1's minimax

one.

-6-



           CHAPTER 2

     AN EXISTENCE THEOREM

IN THE OPTIMAL INVENTORY PROBLEM

    In this chapter we shall derive an existence and
uniqueness theoxem for optimal inventory probleihs with bounded

and unbounded cost functions, when the demand distribution is

completely known to us.
  '    UntU now discussions of this fundamental theorem were

based on the successive approximations approach and they
required relatively strong assurnptions and tedious arguments

that would guarantee the uniform convergence of the continuous

functions. See, e.g., Iglehart [9] and Boylan [3].

    Recently, Lippman [l6] and Van Nunen and VJessels [33]

                               - - -tpresented sufficient conditions for contraction mappings m

semi-Markov decision processes with unbounded rewards. But

their conditions could not be applied to the inventory
problems directly, because both a state space and an action

space of inventory problems were not countable.

    According to Nakagami [24], we, therefore, prove this

theorem under a considerably mild assumption and a simple

axgument by using the technique of Lippman's contraction

mapplngs.
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  A Contraction Theorem

     we let f(x,F) denote the optimal expected costs for the

initial level x when the demand distribution is known to be F.

Then f(x,F) satisfies the following optirnal inventory equation

which is given by
                        '
                                        co(2-l) f(XrF) = 9?--.f. [C(Y-Å~) + L(y) + ct fo f(y-tfF)F(dt)]t

where L(y) = H(y) + P(y) and H(y) == focoh((y-t)+)F(dt)r

                             '      p(y) =Icop((y-t)-)F(dt). .
             o

    An inventory problem is a sequential decision problem

where decisions must be inade at repeated intervals whether or

not to raise the inventory level. The demands t in successive

periods are independently distributed random variables with a

common distribution F. [rhree kinds of costs a-re incurred

during each period. Here, c(z) represents the cost of
ordering amount z of the good, h(.) the holding cost for

inventories on hand and p(.) the penalty cost associated with
                                  ,the failure to meet demand. Holding and penalty costs are

charged at the end of each period. The constant or represents

the discounting factor. Costs experienced N periods after the
current period are discounted by ctN.

    We always put the following assumptions.

Assumption 2-1.
    (a) O<ct<l. (b) F is a distribution on R+-- [O, co ).

    (c) crh,p : R++ R+ are nondecreasing and c(O) = h(O) =

        p(O) = O, and c(x+y) S c(x) + c(y) for any x, y >- O.

                            -8-



                  oo oo    (d) O<C(O) = fo c(t)F(dt)< oo, O<P(O) == fo p(t)F(dt)< co.

    (e) P(x) >- c(--x) for any x < O.

                 .. +    Let us define H :                     R-+R

                        co(2-2) fi(x) = H(x) + ct fo H(x-t)i;(dt),

where P(t) = E iOO .lcti-IFi"(t) and Fi' is the i-fold convolu-

tion of F. Then, frorn the renewal theory, it is well known

that fi(x) of (2-2) is a unique solution of the following

renewal equation.

                        co        ii(x) = H(x) + ct fo fi(x--t)F(dt).

     In order to use a technique of a contraction mapping we.

define a complete metric space of functions on R == (- co, co ).

                                          +    To .begin with, let us define vo, v ;RÅÄR

(2-3) Vo(X) = (!-B)il(x) + C(x-)r V(x) = . Bfi(Å~) + Kr ,

where B and K are positive numbers which satisfy

        B < (l- ct ), K2 {P(O)+ ctC(O)}/(l- cx ).
                               .
    For each function w :R+Rr set

(2-4) llwll = sup lw(x)1/v(x) .
             xeR
    Let us define E to be the set of ali nonnegative functions

w foy which llwll < co . The metric p is given by p(wl,w2) =

llwl-w2H• Also !et us define a ban B in E

(2-s) B={u= w+vo ; llwil gl, weE }.

    We let define the operator T on E by

(2-6) (Tu)(x) == inf [c(y-x) + L(y) + ctfcou(y--t)F(dt)] .

                 y)x O
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For every x, let yÅ}(x;u) satisfy

(2--7) (Tu)(Å~) = c(y*(x;u)-x) + L(y*(x;u))

                 + orfooo U(Y*(x;u)-t)F(dt),

which depends on ue B. Strictly speaking, no such y*(x;u)

may exist. To avoid troublesome e-arguments, however, we will

assume all infimums are achieved.

    According to Nakagami [24]t we will exanine the condition

in which T is a contraction with respect to the metric p by

the followÅ}ng lemmas.

    Lemma 2-1. If ue B, then Tue B.

    Proof. For x< O we have from (2-6)

        (Tu)(x) <. c(-x) + P(O) + ctfoco u(--t)F(dt)•

By (2-5) it holds that u E vo + v, we obtain

        (Tu)(x) E c(-x) + P(O) + ctC(O) + orK <= vo(x) + v(x).

Frorn (c) and (e) we also obtain

        (Tu)(x) >- jnf [c(y-x) + P(Y)]
                 y>=x

            l min 895).[c(y-x) + c(Ay)] l c(-x) l vo(x)•

                   inf [c(y-Å~) + P(y)]
                   y)-o

    For x -> O, we have from (2-6)

        (Tu)(x) <. H(x) + P(O) +ctfocou(x-t)F(dt).

By (2-3), (2-5) and (2-2) we obtain

                                             co        ([Du)(Å~) <. H(x) + P(O) + orK + or(1-B) fo fi(x-t)F(dt)

                          - IO -



                   co co               + C`Bfo il(X-t)F(dt) + ctf. C(tdX)F(dt)

               .< HN (Å~) + P(O) + orC(O) + orK 5 Vo (X) + V(X) .

We also obtain
        (Tu )' (x) >. {) E.Åí [ H(y) + ct focou (y-t )F(dt) ]

                                co               >. H(x) + ct (1- B ) fo ii (Å~ -'t)F(dt)

               >. (1-- otB)ii(Å~) >-.- vo(X)•

    Hence, O5 Tu - vo .<, v, so Tu e B. C]

    For any xe R, let us define

(2-8) X*(x) = {z ;z 4 x, c(z-x)+vo(z) <. vo(x)+v(x)},

       x*(x) = sup{z ; zeX*(x)}.

                          +•    It holds that x' > x since xe X*(x) if x > O and
OeX*<x) if x<O and that x" is contained Å}n a finite interval

when the unbounded costs case of lim {c(x)+h(x)} = co                                                    and x*
                               xÅÄ oo                              'may be infinite otherwise.

    Lemma 2-2. For any given ue B and every xe R,
                              .
       y*(x;u)e X*(x) and vo(y*) and v(y*) are finite.

    Proof. If x'(x) = co, then lim {c(Å~)+h(x)} < co is satis
                              x- co
fied. The result is obvious. If x*(x) < co ,then by Lemma 2-l

and (2-8>, we have for any y with y> x*(x)

        (Tu)(x) s vo(x) + v(x) < c(Y-x) + Vo(Y)

               ;l! C(Y-X) +L(Y) + ctfcou(y-t)i.;'(dt).
                                o
    Thus, we have the desired result. []
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    Lemma 2-3. p(Tul,Tu2) <. \p(ultu2) fOr anY UIr U2E B

where y = ct a-3)-i< i.

    proof. For any ul, u2, yl = Y'(x;Ul) and Y2 = Y'<X;U2)

satisfy (2-5) respectively. We observe from Lemrna 2-2

        (TUI)(Å~) - (TU2)(X) <= ctfoco [Ul(Y2-t) - U2(Y2--t)]F(dt).

Then, we obtain from (2-5)

        iTUI - TU21(X) <= II.]a=l,2 orJoool"1-U2i(Yi-t)F(dt)

            ;;i ct Il ui-u2 II {l.}a= lf , 2fooo v ( yi -t )F ( dt )

            E ct Il ui-u2 II max[v(yi ) ,v (y2 ) ] •

    If y* = max(ylty2) < Ot

        Pu!-[pu2 l (x) =< ct KII ul-u2 il •

    If y" z O, we have from (2-8)

        a-B)il(y*) s ( cH.[-.?).-Kc(y*-f.xl l; I,i olOr Å~ ` O'

        H(y*) <- {H(x) + K}/(l-B).
                                 .
Then,

       v(y") s {BH(x) + K}/(1- B).

    Hence, we have

        jl Tul - TU2P E Y 1) Ul - U2 il • U

    Since we have constructed the contraction mapping by Lernma

2-3, we can state the existence and uniqueness theorem. Proof

is found in Elsgol'c [5].
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    Theorem 2-l. Under Assumption 2-1, there exists a unique

fixed point fe B to (2-1) : Tf = f. This point can be found

by the method of successive approximations,

        f = iim fN where fN = TfN-i, N=i,2,...,

with the point fO chosen arbitrarily in the set B. Note that,

if we choose fO = vo (voeB), then the sequence fN, N=l,2,...L

is nonnegative and converges nondecreasingly to f.

    If we choose fO =O (OeE,OeB), then we have from the

argurnent of Lemma 2--l,

    fN(x)=('NO)(x) li."(<ifl)"2"itlilt].cti'(oCO.H(:t)Fi*(dt) for x i. O,

    Now we let N be the srnallest nurnber such that ct !i!/(l- or ) <.

B, then we have
        vo(x) <. fN(x) E vo(x) + v(x),

that is, f2! is contained in B.

    Corollary 2-l. The unÅ}que fixed point fe B to Tf = f may
                               .also be found by putting fO = o and the sequence fN,

N=l,2,..., is nonnegative and converges nondecreasingly to f.

2.2 Further Results for the Existence Theorern

    Two special cases of Theorem 2-l are considered, and the

existence of the optirnal inventory policy y*(x) is shown,

which actually minimizes (2-l). First, we put the following

assumption.

                         -- l3 -•



    Assumption 2-2.

    (f) lim {c(x)+h(x)} = oo .
        X"F co
    (g) c,hrp : R++ R+ are lower-semicontinuous(T"Sc).

    Note that most of the cost functions practically consider-

ed in inventory problems are left-continuous, so (g) is
satisfied by (c). Assumption 2-2 is of practical use.

    Let us define

(2-9) g(x) = inf [c(y--x) + L(y)].
               y>.x
    If Assumption 2-2 is satisfied, then the brackets of (2-9)

are LSC in y for any fixed x, and the minimum of (2-9) is

achieved by y'(x).

    Lemesa-2-4. Under Assumption 2r2, g is LSC on R.

    Proof. For each net {xn} converging to a poÅ}nt x e R, let

y'(xn) minÅ}rnize (2-9) for xn such that y'(xn) l xn. Then any

accumulation point y" of {y'(xn)} satisfies y" >-- x. And '

        lim inf g(xn) = lim Å}nf [c(y'(xn)-xn) + L(y'(xn))]

                      2 [c(y"-x) +'L(y")] ) g(x).
Then, g is LSC on R. a

      Theorem 2-2. Under Assumptions 2-l and 2-2, a unique

fixed point f e B is LSC on R, and y*(x) exists.

     proof. Let the sequence {fN} be defined by fO = vo in

Theorem 2-l. By Lemrna 2-4, fN, N=l,2,..., are Lsc, and sup fN

is Lsc in general. Then, sup fN = lirn fN -- f is Lsc. D

       Second, we put the following assumption, which is a

stronger condition than Assumption 2-2.

                          - l4 -



   Assumption 2--3.

    (f) lim {c(x)+h(x)} == oo.
       x+co
    (g') c : R+ ÅÄ R+ is LSC.

    (g") L : RÅÄR+ is uniformly continuous.

   Lemma 2-5. Under Assurnption (g"), L and g are equi-

    proof. For any e> Of let6> O be such that lx2-xll < 6

implies IL(x2)-L(x!)[<e. And let y] minirnize (2-9) for xi.

Then
     g(xl) = c(yi'xl) + L(yi) 5 c(xl+y>ntx2-xl) + L(xl+yi-x2)t

     g(x2) = c(y>-Å~2) + L(yi) E c(x2+yl-xl-Å~2) + L(x2+yi-Å~1)•

    Therefore, we have lg(xl) - g(x2)l < e• a

    The above Lemma is refered to th.e theorern 3 in Boylan [3].

     Theorem 2-3. Under Assumptions 2-l and 2-3, a unique

fixed point f e B is continuous on R, and y*(x) exists.

     proof. Let the sequence {fN} be defined by fO = o in

corollary 2-1. By Lemma 2-5 and.induction on Nt IL(x2)-L(xl)l

< e implies that

(2-IO) lfN(x2)-fN(xl)l s (l+ ct + ... + ct N-1)e ,

then L and fN , N=l,2,..., are equicontinuous family of

functions .

    Next, from Lernma 2-l, we Åíind that for N = lt2r...

(2-ii) fN(Å~) = (TNo)(x) <= vo(x) + v(x).

    Then, for any positive number b, fN(x) remains bounded for

all N whenever ixl <- b. CPhus, together with (2-10) the limit

function f(Å~) is continuous in any finite interval. D
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             CHAPil]ER 3

          OP[VIMAL POLICIES

FOR THE PRACTICAL INVENTORY PROBLEMS

    In this chapter we shall derive .the particular types of

optimal policies for the practical inventory problems.

    'Ne use the same notations given in the chapter 2 and

assume that Assuinption 2-l and 2-3 are satisfied, then from

Theorern 2-3 the optimal inventory eguation has a unique fixed

point which is continuous and the optimal inventory policy

exists. We, therefore, determine the particular type of the

optirnal policy and diseuss its quantitative properties in our

practical inventory problems by usÅ}ng the technique of

successxve approxxmations.
                                                         '
    Firstr let us consider the problem where the ordering cost
                                  .function is linear with muitiple set-up rather than one with a

single set-up. This type of cost is neither convex nor
concaver but has a practical meaning when the ordered quantity

in each period is delivered by a transportation vehicle which

has a certain limited capacity. In general, an optimal
inventory policy is sensitive to the f6rm of the ordering

cost, so that until now some types of inventory policies have

examined and studied by several authors. Scarf [31] proved

that an (srS) policy is optimal for a linear cost with a

                            -- 16 -



single set-up, and this case was investigated Å}n detail by

Iglehart [9], Veinott [35] et al. Porteus [28] proved that a

generalized (s,s) policy is optimal for a concavely increasing

cost. In Nakagami [20], the purpose of this problem is to

derive the particular type of the optimal policy in the model

when the ordering cost function has rnultiple set-up.

    Next we consider the perishable inventory problem. One of

the important aspects of it is that the perishable goods have

a fixed lifetime and become useless in satisfying demands

after a fixed length of perÅ}ods. Several authors (Fries [7],

Nahmias and Pierskalla [l7],[l9] and Nahmias [l8]) investigat-

ed the model in which the goods perish exactly rn periods after

receipt on order. And they derived optimal ordering policies

and some qualitative properties of policies by solving a
dynamic program with a state variable of dimension in-1.

    Another remarkable aspect of the perishabUity is that one

can preserve the perishable goods in a special warehouse,

which keeps them in the almost same guality and extends their

life time for a pretty long periods. For example, perishable

foodstuffs like fresh fish and meat deteriorate in a week when

refrigerated. But they will keep for half an year when
frozen, which for the practical purpose is non-perishable.

The objective of this problem is to analyze this realistic

model in order to derive an optirnai preserving policy as well

as an ordering one with their properties according to Nakagami

[22].
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3.l An Optimal Batch (srS) Policy

    Let c(z) denote the ordering cost function with multiple

set-ups as follows:

(3-l) c(z) =K{ft}+ cz for z >-.. O,

where c -> O, K, M>O and {z} is the minimum integer not

smaller than z. When we interpret M as the capacity of a

transportation vehicle, K as the cost of its use and c as the

unit cost of the treated good, then c(z) is more reasonable,

for if vehicles of the transportation are trucks the ordering

cost Å}s a function only of the number of trucks required to

satisfy the order and not of the fracticn of truck space used

(if exess space cannot be used).

    We use the same notations given in Chapter 2 except the

ordering cost (3-l) and assurne that Assumption 2-1 and 2-3 are

satÅ}sfied, then from Theorem 2-3 the optimal inventory
                                  t.equation which is given by

                                      oo(3-2) f(Å~) = inf [c(y-x) +L(y) + ctfo f(y-t)F(dt)]
               YlX
                           '
has a unique fixed point f(x) which is continuous and the

optimal inventory policy y*(x) exists. Now, we shall
determine the particular type of the optima! policy and

discuss its property in our practical inventory problem by

using the technique of successive approximations.
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    we let fN(x) be the optimal expected costs as a function

of the level x of inventory before ordering if the inventory

problem is engaged in for a total of N periods. We have

(3-3) fN(x) = gn-,Åí[c(y-x) + L(y) + ct foOOfN-1(y-t)F(dt)]

for N = 1,2,... and fO(x) = O, and

(3'4) f(Å~) = lim fN(x).
              N+co

Let us define

        GN(x) = L(Å~) + cx + ctfocofN-1(Å~-t)F(dt) •(3-5)

Then

        fN(x) = inf [ GN(y) + K { YilX }] - cx•(3-6)
               Ylx

    we let yN(x) denote the optimai inventory poucy, Å}.e.,

the optimal level of inventory after ordering in the first of

N periods when the level of inventory before ordering is x.

    Now we shall give a definition of a batch (s,S) policy and

sorne sufficient conditions under which this policy Å}s optirnal

in the N fÅ}nite horizon problem (3-6).

    Definition 3-1. A batch (s,S) policy is an inventory

policy y(x) defined by parameters s, S with s< S and M(>O),

such that

        y(x)= x for x> s,
        y(x) = min ( S, x+M{SiiiX }) for x< s.
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    A batch (s,S) policy has a following economic interpre-
                            s-station. In case 2, where {                                } ri> 2r M is srnaller than S-s,                             M-
i.e., the manager has srnallsized trucks for the transportation

use as compared with a satisfying level region (s,S]. Then he

orders a rninimum amount of the good with full-loaded trucks so

as to raise the inventory level up to the region (s,S] if the

initiai level is less than s (batch policy). In case l, where
 S-s{ M }= lr the manager has large-sized trucks. Then he cannot

order the good wÅ}th full-loaded trucks so as to raise the

inventory level into the region (s,S]. So that he raise the

inventory leve! not to exceed S with trucks which are not

always full-loaded if the initial level is less than s (batch'

poUcy + (s,S) policy). If M goes to infinity this policy is

identical to the weil-known (s,S) policy.

    Lemma 3--1. Let )Jl > O, if the continuous function G:RÅÄR

satisfy the condition:

(3-7) AMG(x) = rnax [G(x) - G(x+m)] is non-increasing,
                 O<m<M                  --                  --                                                         '
then the following properties hold.

(i) If a function H :R+R is convex, then it satisfies (3-7).

(ii) If G(x) satisfies (3-7), then so is G(x+h) for all h.

("i) !f G satisfies (3-7), then --G is unimordal.

    That is, there exists a number S (which may be Å}co) such

that G(Å~) is non-increasing on (- co,S) and non-decreasing on

(S, a) ).
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    Proof. Properties (D and (ii) is trivialr then we will

give the proof of (iii). From (3-7) there exists a number S

(which may be Å}co) which satisfies AMG(S) = O. First, let us

consider the interval [S, co). It holds that G(x) S G(y) for

any x and y, Ssx<y< x+M, that is, G is non-decreasing o.n

[Stco). Second, we will show that G is non-increasing on

(- co,S). Assume that there exÅ}sts an interval (a,b) on which

G is strictly increasing. Since AMG(a) = max (G(a) - G(a+m))
                                          O<m<M
> Ot then

        AMG(a) = max (G(a) - G(b+m))
                 O <- m<- tv!- ( b-a )

               < max (G(b) - G(.b+.m)) = AMG(b) -
                 O<m<M

This contradicts the condition (3-7). O

    Theorem 3-l. If GN(x) is continuous and satisfies the

condition(3-7), then yN(x) is of the batch (s,s) type.

                                       '    Proof• By Lemma 3-lr there exist the smallest numbers sN

and sN with sN < sN (which rnay be Å}co), such that

(3-s) GN(s) <GN(x) for all x,
              =
(3-9) AMGN(x) EK for au xl sN.

    Let us consider the optirnal inventory equation (3-6) for

the N finite horizon problem. From notational convenience, we

abbreviate the superscript N.
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    case 1, {SMS}= l :

    we have, for any x and y with s S x < yr

        G(y) + K{YSiX} >-- G(y) +Kl G(x) by (3-9).

Thus it follows that

(3-IO) y(x) == x on [s, co).

    We have, for any x andy with S-M <- x< s, Å~ < y,

        G(Y) + K{Yiil,X} .> G(y) +K >-- G(S) + K by (3-8).

Hence we get

(3-ll) y(x) = S = min (S, x+M{S iXX}) on ['S-M,s).

For any x and y with S-2tvl Sx < S-M, x < y S x+bvl, we have

        G(y) +K ) G(x+M) +K (equalÅ}ty holds iff y=

Thus it is easily shown by induction that for any x

S'(d+1>M <Å~< S-dMr d= lr2t•••r

(3-l2) l :' ndrq)y).[ G(y) +.K {YMX }] .> G(x+dM) + dK .

    Therefore we have, for any x with S-(d+l)b4 S x<

d= l,2,...,

        min [G(y) + K{YMX}]
        Ylx

        = rnin [G(y) + K{Y-ii-dM} + dK] by (3-l2)
          y)x+dM

x+M).

 with

S-dMr
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=(g[ii,i,`IXK lli!VI.I.&'drKgs :l[i--l:),.

Hence, if s-M <-- Å~+drx.' < s then {S iilX} = d+1, so that y(x) = S E

x + evl{S ilX}, and if s <. x+dM < s then {SMX} = d, so that y(Å~) =

M{S'Å~} < s. Then
   M
        y(Å~) = min (S, x + tvl{Sty-IX}) on (- co ,s).

    case 2, {SMS }). 2 :

    Similarly to Case l, it is clearly shown that y(Å~) = Å~ on
[s, co), y(x) = x + .M{S- MX}<S on (- co,s), and y(x) = min (S, x
    s-x+ M{       }) on (-co,s). This completes the proof of the     M
theorem. []

    We notice that if L is convex and the ordering cost is

given by (3-1), then Assumption 2-3 is autornatically satisfied

and fN(x) and GN(x) are continuous for all N. Butr

unfortunately, the condition (3-7) is not closed under sums

and integrals, then it cannot be carried out the inductive
arguments that GN(x) satisfies (3-7) for general types of

distributions.

    Hence we need a rather strong condition for the demand

distribution F such that F has a density F' and satisfies the

following definition.

    Definition 3-2. A density F' is caUed M-indifferent, if

it satisfies

         2ico=oF'(t+iM) = const. (= 1/M) for o s t < rvi.
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    If we dÅ}vide the demanded quantities by M, the M-indiffer-

ent densities give no information about which quantities left

are likely to occur, that is, such densities are indifferent

(ignorant) of the remaining guantities. For exampler let, for

s -> O, v -> Or

        k(stv,t) =v if s< t< s+M

                =O otherwise,

then an M-Å}ndifferent density F'(t) is given by,

        F ' ( t ) = fooo k ( s , v , t ) v ( d s ) ,

where v(.) is a non-null measure defined on [O, co) and fv(ds)
                                                          '= 1/M.

    Theorem 3-2. If L is convex and F' is M-indifferent, then

a batch (s,S) policy is optirnal in (3-3) and (3-2).

    Proof. Heret we will show by induction that GN(.) is

convex for all N. For N = 1, Gl(Å~) = L(x) + cx is convex.

Assume that GN(.) is convex. Then by Theorem 3-1 there exist

two ieveis sN, sN with sN < sN such that

(3-i3) fN(x) = GN(min(sN,Å~+drvi)) + dK - cx

                       on [sN-dM,sN-(d-1)M ), d=lr2t•••,

              = GN(x) on [sNt co ).

Hence we have

(3pl4) fN(x) - fN(x-dDvi) = -dK if x< min(sN,sN+b4) = gN,

and fN(x) - fN(x-dM) is nondeceasing in Å~.
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              . N+!                      (x) defined by (3-5).    Now we examine G

       GN+l(x) = L(x) + cx + or fooofN(Å~-t)F'(t)dt•

    By the notational convenience, let us abbreviate the

supperscript N for simplicity. We have from continuity and

piecewise convexity of f(x)

(3'15) [IT. focof(x-t)F'(t)dt = foco f'(x-t)F'(t)dt.

For x < s we have

                 co      (3-l5) = 2i=o f[o,M)f'(x-t-it"1)F'(t+iM)dt

         co     = 2i=o f[o,M)f'(X-t)F'(t+iM)dt ( by (3-14) )

     = (l/rvl)f [o,M)f'(x-t)dt ( by the rvl-indifference of F' )

     = (1/M) f(.,g)G'(t)dt - c = const. ( = -C ) by (3-13).

For x > sN, let a = {X iilg }. Then we have

      (3--l5) -- foX-S f'(x-t)F'(t)dt + f.co-.- f'(x-t)F'(t)dt

      - f6-SN f,(x-t-aM)Fi(t)dt + fXo-SN fi(x-t-arvl)F,(t)dt

           N     = f6--S [ft(x-t) - f,(x-t-aM)] F,(t)dt

      + fooof'(x-t-aM)F'(t)dt ( by (3-14) ).

                                            '
The second terrn is -C, it is therefore sufficient to show that

the integrand of the first term is non-negative and non-

deceasing in x.
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    For xl < x2, let al == {(xl-SN>/M}, a2 = {(Å~2-g)/bC}

respectÅ}vely, then al <. a2.

       O 5 f'(Xl--t) - f'(xi-t-dlM) ( by (3-l4) )

        = f'(Xl-t) -- f'(Xl-t-a2M) ( Å~1't-al <. g )

        S- f'(X2-t) - f'(X2-t-a2M) ( by (3-l4) ).

Thus the proof of Theorern 3-2 is cornpleted. D

    Remark. unfortunateiyt GN(x), N=l,2,...r do not satisfy

the condition (3-7) for general demand distributions, and

hence any batch (s,S) policy may not be optimal. However, in

many practical cases, the demand distribution is.not determin-

ed precisely, and an M-indiffernt density gives a good
approximation to the true demand distribution by exploiting a

leasVsquare method.
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3.2 The Perishable Inventory Problem

    Let a state variable x be the amount of perÅ}shable goods

stored in the preservable warehouse. After obsexving x, two

decisions are made as follows: The amount z-Å~ is ordered at

unit orderÅ}ng cost c in order to raise the inventory level up

to z. The amount y is stored in the preservable warehouse at

unit cost hl, the amount z-y is placed in the ordinary
warehouse. The decision variable yt z represent the starting

amount of preserving inventory and the starting amount of the

total inventory, respectively (O S x -< zt O s y <- z). The

inventory is first depleted from the ordinary warehouse, and

depleted from the preserving one at unit ernergency issuing

cost k2. The unsatisfied demand is lost for sales at unit

penalty cost p. When the demand is over at the period, the

amount remaining in the ordinary is disposed, and the amount

remaining in the preserving is brought to the next period at

unit holdÅ}ng cost h2.

    Let a random variable T with a distribution F represent a

demand in the period. Then an amount H rernaining in the

preserving and an amount K issued frorn the preserving are

given by

(3-l6) H= (z-(z-y)VT)+, K= (TAz-(z-y))+•

This can be seen most easily by considering the three
possibilities O S T S z-t, z-y <- T S z and z S T separa'cgdly,
where x+ == max(O,x), xVy = max(x,y) and xAy = min(xry)•

                                 '
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    The following cost structure in the period is sumrnarized:

    c(z-x)+ = ordering cost; hly = preserving cost;

    h2H = holding cost; k2K = issuing cost;
          +            = penalty cost.    p(T-z)

Now, H+K = y, the preserving cost is included to the holding

and issuing costs by putting h = hl+h2t k = hl+k2 respective-

ly. Before giving our formulation, we exainine randorrt

variables H and K without proof.

    Lemma 3-2. The randorn vartable H and K have distribution

funCtions H y,z(.) and Ky,z(.)t O<.y5z, respectively given by

            (s) = P[HSs] = l - F(z-s) (O<-s<t)(3-l7) H         y,z - -                         =l (ySs),
                   '

        K (s) : P[Kffls] = F(z-y+s)                                     (oss< y)         y,z - -                         = 1 (y<hs).

Moreoverr if the density F' of F is continuous and any given
function g : R++R+ is continuously difÅíerentiable, then

( 3 - l 8 ) H ( y , z ) == foOO g ( s ) H y, , ( d s ) , K ( y , z ) = Joco g ( s ) K y , . ( d s )

have partial derivatives.

    we let f(x) (or fN(x)) denote the optÅ}rual expected costs

for the intial level x of the preserving inventory ( if the

problem is engaged in for a total of N periods ). We have
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(3-lg) fN(x) =rnin [BN(y,z) - cx],
               Z2Å~,Z)Y)O

        BN(y,z) = cz + fooo p(t--z)+F(dt) + foOO ks Ky,.(ds)(3--20)

                  co N-l                "f                              (s))H                                      (ds),                    (hs + ct f                  o                                   y,z

for N=1,2,... and fO(x) = O.

    we let yN(x) and zN(x) (or y"(x) and z*(x)) denote the

optimal preserving and ordering policies (in the period N)

when the initial level of the preserving inventory before

ordering is x.
    It is noted that the non-perishable problem i(x) (iN(Å~))

is obtained by putting z -- y in (3-l9) and (3-20).

(3-21) fN(Å~) = rnin[c(z-x) + foco{p(t-z)+
                z>.x

                                 -N-l       , + k(tAz) + h(z-t)+ + ctf ((z-t)+)}F(dt)],

for N=1,2,... and fO(x) = O, and

(3-22) f(x) = lim iN(x)
              N -eF co

is satisfied under Assumptions 2-l and 2-3, i.e., c>O and
 ftF(dt)<oo for the linear cost case. It follows that f(x) is

continuous and the optimal policy z*(x) exists.

    Let

        L(Å~,y,z) = c(z-x) + focop(t-z)+F(dt)

                   co oo                + fo kS Ky,,(dS) + fo hS Hy,,(dS)

for the perÅ}shabie problem, and
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      t(x,z) = c(z-Å~) + Jco{p(t-z)+

             + k(tAz) + h(z-t)+} F(dt)

fog the non-perishable problem.

    Then it follows that from Lemma 2-2

        L(XryG(x)rZ*.(x)) E ii(Xr2*.(X)) •

    Hence, we have a contraction theorern for the perishable

pyoblem (3-l9) and (3-20). It holds that

(3-23) f(x) = lim fN(x)

              N--)F. . .
satisfies under the assumption c>O and ftF(dt)< co, and

that f(x) is continuous and the optirnal preserving and
ordering policies y"(Å~) and z"(x) exist.

    Since the purpose of this section is to derive some
properties for yN(x) and zN(x), N=1,2r..., we put the
                                 'following assumption.

    Assumption 3-1.

(a) J F'<t)dt < co .

(b) F'(t) is continuous for all t>O. (It is necessary for

     Lemma 3-2.)

(b') F'(t) > O for all t)O. (It is not necessary but only for

     the uniqueness of the optimal policies.)

(c) orc> h+k, p>c+k. (It would be optimal to order and
     preserve the goods at least.)
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    Theorera 3-3. Under Assumption 3-lr there exÅ}sts a
se que nce zN N, n =1,2,...t such th at

       F-i(pl;c) . zi , 22 < ... < 2 = F-i(pg&:ikk.h)•

If zNn = 2 for some n, then 2n = 2n+1 = ... . 2.

(i) Results on fN(x).

  It is convex on R+, and strictly convex on [2N, co).

  It is non-increasing and non-negative.
                dfN(.)
(ii) Results on                  dx '
  It is continuous and non-decreasing.
  dfNdx(X) = c on [o,2N] and lim dfNdiX) = o.

                         x+ co
(iio Results on yN(x) and zN(x).

  zN(x) = 2NVx, yN(x) = YN(2NVx),

               '                               'where YN<x) is a unique solution of

  k + (h-k+ ctfN'l(y))F(x-y) = o for all x .>-- Y = F-1(ct.5h+k)r

and 371(x) = o, YN(zNN) = 2N-Y, N=2r3,••••

  o E dNdYx(X) <-. I and yN(x) is bounded for all xlo•

    Proof. The proof is gÅ}ven in Nakagami [22].

    Theorem 3-4.
a) fN+i(.) l fN(.), dfN dii(x) .--. dg:(x)

                             tN=lt2r...r for all x>O.

(ii) yN+l(x) ) yN(x) ,N=l,2,..., for all x2Y•
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    Proof. The proof Å}s given in Nakagarni [22].

                                                          N    Remark. We interpret the optimal ordering policy z                                                            (x)
and the optimai preserving poJicy yN(x) as fouows:

case l. if x<2N, it is optÅ}mal to order the amount zNN-x so

as to raise the total inventory up to 2N. it is optimal to

                     NN N. .preserve the arnount z -y in the preserving and to place the

amount Y in the ordinary when N=2,3,...: Or to preserve none
of the amount and to place all the amount 21 in the ordinary

when N=1. Note that the penalty cost p depends only on the
total inventory N zN, but is independent of the amount Y in the

ordÅ}nary.

case 2. if x 2 2N, it is optirnal to order none of the arnount

so as to keep the total inventory to Å~. It is optirnal to
preserve the amount YN(Å~) in the preserving and to place the

arnount x-YN(x) in the ordinaxy when N=2,3r...: or to preserve

none of the amount and to place all the amount x in the
ordinary when only N=l. Note that the amount YN(x) in the

preserving is bounded. This indicates that the system is

forced to go quickly to the steady state of Case l when the

Å}ntia! level is sufficiently large.
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               CHAPTER 4

A BAYESIAN STATIS[[r!CAL IIWENTORY PROBLEM

    In this chapter we now turn our attention to the inventory

problems with uncertainty on the demand distribution.
                                          '    When the demand distribution is unknown to us, that is,
                              f
most of the informations about it are insufficient for a

definite probability distributionf a Bayesian approach or a

minimax procedure is sometz'rnes used. A Bayesian apprqach is

very attractive because Å}t allows the explicit incorporation

of prior and new informatÅ}ons into the structure of the rnodel.

 But a major defect of Bayesian rnethods is the restriction of

the class of prior distributions needed. A minimax procedure

will be mentioned at the succeeding chapter.

    On the Bayesian inventory problem, Scarf [30] and Iglehart

[IO] have already analyzed this model with linear costs, where

they assume the demand distribution from the exponential

family. According to Nakagami [25],[26], we shall set up a

statistical inventory eguation under a general class of prior

distributions and discuss sorne important properties of its

Bayes solution. The nonparametric application of the Bayes

solution will be mentioned at the end of this chapter.
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4.1 A Bayesian Approach

    Let us introduce the terminology of a Bayesian statistics

to describe our problem by the following notations given by
Rieder [29] and Ferguson [6 ]. (R+,B) is the sarnple space

where R+ = [O, oo) and B is the u-algebra of Bore! subsets of

R+. P is a probability measure on (R+rB>, F is a

corresponding distribution and E denotes the expectation with
respect to P. st is some collection of P on (R+,B), and

A is some suitable u-algebra of subsets of st , for example

the Borel sets with respect to the topology of weak
convergence. (9tA> is the parameter space. P is a
probability measure on (S),A) and E denotes the expectation

with respect to P.
                                                   +    We assume that Put , defined by P(os,.) :st + R, is the

probability measure such that

(4--l) p( tu ,B) -- J p( cD ,t) X(dt) for B e B,
                   B
where A is a u-finite measure on B andp: stXR++R+ is a

non-negative rneasurable function. And we let F be the
                                                  w
corresponding distribution which is called the demand distri-

                                                         'bution.

    At the beginning of the n-th period, the history of the
previous demandsr hn = (tltt2r••ettn-1) On Hn = X2:.l R+, iS

to be used to rnake inferences about the true value of P.

    We let Po on (R,A) be a prior distribution. Then the

sequence {Pn} of distributions Pn : Hn+ st is defined

recursively.
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(4-2) P l= P o '

                         f P( to rt.) P.(hnrd co)

         Pn+1(hnOtnrA)= A for AeA,
                         fst P( to rtn) Pn(hn'd co)

if the denondnator is positive and finite, and Pn+i(hnOtn,A)

= Pn(hn,A) otherwiset where hnOtn is to be interpreted as (tl

rt2r•••tn-lttn)• We Shall call Pn a posterior distribution

for the history hn. En denotes the expectation with respect

to P.     n
    The sequence {Qn} of distributions Qn : Hn"R+ is defined

by

 (4-3) Ql(B) = fs2 Pl(d co )P( co ,B) for Be B,

         Qn(hnrB) = fst Pn(hnrd cD )P( cD ,B) for B S B.

           '
We call Qn the marginal distribution for the history hn• En

denotes the expectation with respect to Qn(hn,•)•

    The following proposition holds by Fubini's theorem.

    Proposition 4-1. If u : stX Hn+1+R+ is a non-negative

                                               'function, then

        f( PnP)(hnrd( to ,tn))U( tu ,hnO tn)

          = JQn(hnrdtn) f Pn+1(hnOtn,d co )U( tu thnO tn) '
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4.2 The Statistical Inventory Problem

    We now return to our d.tscussion of the inventory problem.

We let fn(x,hn) denote the optimal expected costs for the

initial level x and the history hn when the demand distribu-

tion is not known. Then fn(x,hn) satisfies the statistical

inventory eguation which is given by

                                   co(4-4> f.(Xth.) = l"-.Åí [C(Y'-X) + fo{l(Y-tn)

                + afn+l(YdtnrhnO tn)} Qn(hnrdtn)] '

    In order to analyze (4-4) we first define fnN(xthn) to be

the optimal expected costs if the statistical inventory

problem is engaged in for a total of N periods.

(4-5) fN(x,h.) = inf [c(y'Å~) + foco{l(y-t.)
                   y->x
                    -.                                         '
                      N-l                      n+!(Y-tn'hnO tn) } Qn(hnrdtn)] r                 + ctf

        fN(x,h )=o for N< o.
         nn =
    We also define f(x,Fal> and f(x,Qn) to satisfy (2-l) when

the demand distributions are known to be Fco and Qn(hn,•)

respectively.

(4-6) f(x,F.) = inf [c(y-Å~) + foOO{ l(y--t)

                 Ylx

                + ctf(Y-t,F cD )} F( co rdt)]•
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                                co(4-7) f(XrQ.) = S"N,Åí[C(Y'-X) + fo {l(Y-tn)

               + ct f(Y'tnrQn)}Qn(hn'dtn)]'

    Let fN(x,Fco ) and fN(Å~,Qn) denote the optimal expected

costs if the inventory probiems are engaged in for a total of

N periods. Then

(4-s) fN(Å~,F.) = s.-,Åí[.(y-.) + foeO{1(y-t)

               + ctfN-1(y-t,Fco )}F(tordt)],

        fN(x,Ftu) =o for N -< o•

(4-9) fN(xtQ.) = inf[c(y-x) +foOO{1(y-tn)
                  Yz.

                    N-l                       (Y-tn,Qn>}Qn(hn,dtn)]r                + orf

        fN(x,Qn) = o for N ,<. o.

    We can dexive the following theorem which states the

existence and uniqueness of the Bayes solution f                                                (x,h ) of the                                              nn
statistical inventory equation (4-4). The proof follows
directly from Theorem 2-l.

    Theorem 4-1. If Assumption 2-1 is true for all Fe9,

then

        kitr{l, fX(X'hn,) = fn(X'hn)' ikY' M.fN(xrF. ) = f(xrF. )

       and lirn fN(xrQ ) = f(xrQ )•
                     nn            N->- co
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   The following lemmas give the lower and upper bounds for
the Bayes solution fll(x,hn) of (4'-5)•

   Lernma 4-1. EnfN(x,Fto ) E fX(Å~,hn) for all N and n,

                Enf(X,Fco ') .< fn(X,hn> for all n.

   Proof. If the lst result is proved by induction on N for

ali n, the 2nd result holds from Theorem 4-l. The lst is true

for N=O for all n. Assurne it is true for N-l and all n. The•

mside of the brackets of (4-5) is rewritten as followsr

       c(y'x) + fQn(hn,dtn){l(y-tn) + orfX;l(yptn'hnOtn>}

       l C(Y-X) + fQn(hnfdtn){1(Y'tn) + ctE.+lfN-1(Y-t.rFco )i}

       (by the inductive assumption)
                                               '           v
      = C(Y-X) + fl(Y'tn)Q.(hntdtn)

                                               '
        + ctf( PnF )(hn,d(to ftn))fN-l(y-tn,Fco )

       (by Proposition 4-l). Hence, we obtaÅ}n

       fN(xrh.) = i'nf fPn(hnrd tu)[c(y'x)
                  Ylx

                + fF( cordt.){1(y"t.) + orfN'1(Y'-tn,F,, )}]

                l fPn(hn'dco ) i9.Åí [C(Y-X)

                ' fF( turdt){ 1(y-t) + ctfN-l(y't,F. )}]

                = fPn(hntdcD )fN(x,F.) • O
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Note that the left hand sides of the equations in Lemrna 4-l

are interpreted as the optimal expected costs when the true

value of Fco is revealed with Pn(hn,.) after the history hn ==

(tltt2r•••,tn-l) iS eXPerienced.

    Lerma 4-2. EnfN(Y-tn,Qn) .>. Enfll+l(Y-tn,hnO tn) '

    Proof. It is proved by induction on N for all n. It is

true for N=O and all n. Assurne it is true for N-1 and all n.

We have by (4-9)

        EnÅíN(y-tnrQn) = En inf [c(y'-y+tn)
                          yt)Y't                            -n
                                    N-1                                       (y'-tn+!rQn)}] '              + En+l{l(Y'-'tn+!) + ct f

                               '                                   N*Using the optimalÅ}ty properties of y                                   n (Y-tn), abr• by y', for

the above equation, we obtain

      '                                 '                                           N-l       = En[C(Y*'Y+tn) + En+l{l(Y'htn+1) + orf (Y*-tn+1'Qn)}]

       l En[C(Y"-Y+tn) + En+l{l(Y*-tn+1)

                  N-1              + orfn+2(Y*-tn+l'hnO tnO tn+l)}]

       (by the inductive a$sumption)

       l E n l r} :t y -t n[ C ( Y ' - Y + t n ) + E n + 1{ l ( Y ' - t n + 1 )

                  N-1              + orfn+1(Y'-tn+1' hnOtnOtn+1)}]

       = EnfX+l(Y'tnthnOtn) ' D
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    Lemma 4--3. fN(x,h )< fN(xfQ ) for an N and n,
                      n=n                 n
                fn(Xrhn) 5 f(XrQn) for all n.

    Proof. rt is proved by induction on N for a!1 n. It is

true for N=O and all n. Assume it is true for N-l and all n.

We have by (4-9)

       fN(xrQn) = inf[c(y'x) + En{l(y'tn) + orfN-l(y'-tnrQn)]]
                 ylx

                                            N-l               l; "2-tÅí[C(Y-X) + En{ l(Y-tn) + OCfn+i(Y-tn'hn)}]

                (by Lernma 4-2)

               = fN(x,h ) . a
                  nn

Note that the right hand sides of the equations in Lemma 4-3

are interpreted as the optimal expected costs when no
additional informations are available at-ter the history hn =

(tlrt2,••.,tn-1) iS eXPerienced.

    We have the following theorem which attains the lower and

upper bounds for the Bayes solution of (4-4).

    Theorem 4-2.

        Enf(X'FcD ) <= fn(X,hn) S. f(Å~,Qn) for- all n.
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4.3 A linear Cost Case

    To conclude this chapter we restrict our attention to the

case of linear costs : c(x)=cx, h(x)=hx and p(x)=px, and it is

assumed that p>c -> Oi c+h > O. So thatr the Bayes solution

fn(X,hn) is uniformly continuous and bounded for x in any
finite interval and the Bayesian inventory policy ynO(x) exists

which actually mÅ}nimizes (3-4). Though the sequence {yR(x)}

is itself quite difficult to be obtained analytically even in

this caset it is known that the stationary and optimal
inventory policy yn*(x) for the equation (4-7) of f(x,Qn) has

the simple forrn such that

(4-10) YA(X) = MaX (Xrtn(q)) r

where tn(q) is the q-th quantile of Qn and q ={p-c(1-ct)}/
(p+h) i•e•t tn(q) E Qfi1(q) = {t ; Q.(t)=qr te[o, co )} if it is

not empty, and tn(q) = the minimurn t which satisfies Qn(t) > q
if QKI(q) = Åës. section s-1 can be referred to about this

fact• Moreover f(x,Q ) has been calculated by Scarf [30]•
                     n
    We therefore assume that foootF(dt)<OO for all FE st from

the remark df Assumption 2-1 in case of linear costs, and that

the rnarginal distribution Qn converges weakly to the true

dernand distrÅ}bution Fo by the defÅ}nitÅ}on of the sample space

(9,A). Then the following pxoposition holds from the
Helly-Bray's theorem of the weak convergence of distribution

functions.
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    Proposition 4-2.

        IiM Enf(XtFtu ) '= liM f(Xthn) = liM f(XtQn) " f(XrFo)'
        nÅÄco                         n+oo                                      n+oo
                                                       '
    It foilows from the usual arguments of the inventory

problem given by Scarf [30] that fn(x,hn) is a convex function

with resD.ect tQ xt and also that Å}ts derivative with respect

to x is no less than -c. since the arg. minimurn Y Of

(4-11) CY + En {l(Y-'tn) + ctfn+1(Y-tnrhnOtn)}

           '
is not greater than that of (4-11) when fn+.l is replaced by

-cx, it yields the following results.

    Theorern 4-3. In case of linear costs,

        y R ( x ) <-- y fi ( x ) n = i , 2 , . . . .

Moreover Å}f the q-th quantile to(q) of Fo is unique, then

        lirn yO.(x) = lim yA(x) = rnax (Å~,to(q)) •
        n+ co n+ co

    Remark. Though the Bayes solution fn(x,hn) and its
inventory policY yR(x) for (4-4) are themselves quite

difficult to derive, they can be approximated by f(Å~,Qn) and

y:(x) for (4-7) respectively, which are asyrnptotically optirnal

from Proposition 4-2 and Theorem 4-3.
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4.4 A Nonparametric Bayes Example

                '

    The following definition and theorem of the Dirichlet

process are found in Ferguson [6]r and their applications for

the practical ruode!s are mentioned in Joe [l4].

    Definition. Let ct(.) be a finite measure on (R+,B). We

say P is a Dirichlet Process with parameter ct and write P

E p<ct), if for every Einite rneasurable partition (Blr•••tBk)
of R+, the distribution of (P(Bl),...,P(Bk)) is a Dirichlet

distribution with parameter (ct(Bl),..., O(Bk)). In particular,
   'F(t) = P((-oo,t]) has a beta distribution with parameter
(ct(t),ct(R+)- ct(t)), where ct(t) = ct ((- co,t]). ' '

    Theorem. If FE P(ct), then the posterior distribution
                           ' P.+l for the history h.+l = (tlr•••,tn) is P(ct +.2in=l6(ti)),

where 6(ti) is the measure giving mass one to ti.
                           '
    We can apply Theorern to our problem.

    The margipal distribution Qn+l is given by

                                              A(4-l2) Qn+l(t) == E.+IF<t) -- (l'Pn)Ql(t) + PnFn<t)'

where "Fn is the sample distribution and pn= n/(ct(R+)+n))•

    If we choose that the initial guess of F i•e•r Ql(t)
= c(t)/ct(R+) is strictly increasing, the q-th quantile tn(q) of

the marginal distribution Qn is unique, and we can easily

obtain tn<q) from the graph of Qn•
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                                                  A    It is known that the sample distribution F                                                     converges                                                   n
weakly to the true dernand distribution Fo• And if to(q) of Fo

is unique, the results of this chapter hold.

    The asymptotic property of tn(q> is derived by the sirnple

rnodification of a theorem in Wretman [36].

    Theorem 4-4. If Fo has a densÅ}ty fo(>O) at the neigh-

borhood of to(q)r then M(tn(q)-to(q)) converges in law to z

as n increases infinitelyt where Z has normal distribution
with mean o and variance qa-q' )/f2 o(to(g))•
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             CHAPTER 5

SADDLE POINTS IN INVENTORY PRQBLEMS

    In thÅ}s chapter we shall mention the facts about the

existence of saddle points for inventory problems with
uncertainty on the demand distribution. When most of the

informations about it are insufficient for a definite
probability distribution, a minimax procedure is used as well

as a Bayesian approach which has been explained in Chapter'4.

    On the minimax inventory problem, one can refer- the works

done by Ben-Tal and Hochman [1], Jagannathan [12], [l3],

Kasugai and Kasegai [l5], Nakagami [21], Odanaka [27] and

Scarf [32]. A minimax policy is one that minimizes the

maximum expected costs, where the maxirnum is taken over a

prescribed class of distributions. For exarnplet Scarf [32]

assumed that only the mean and the variance of the distribu-

tion were known.

    According to Nakagami and Yasuda [23], we consider this

minimax inventory problem as a two-person zero-sum game, in

which one player (manager) decides his ordering level and

other player (nature) chooses her demand distribution in the

prescribed class of distributions. By a game theoretic
approach, we shall derive the necessary and sufficient condi-

tions for the existence of saddle points and a sadd!e value.
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5.l Conditions for Saddle Points

    Let us define the one-perÅ}od expected cost function L as

an inventory level y dfter ordering and a demand distribution

F by the following:

(5-l) L(Y,F) = CY + f[o,. ){h(Y-t)+ + P(t-Y)+}F(dt)

where Å~+ = max(xtO). Here, ct h and p are the unit ordering

cost, the unit holding cost and the unit penalty cost,

respectively. And it is assumed that p >c Z O, c + h > O and

that the demand t is a non-negative random variable with the

distributionF(F(O-)=O). .
    When F is known precisely, the value of yO which miniraizes

(5--l) is easily solved. Let F-1(z) ={y;F(y)=z, yE [o, co )},

O -< z s 1, and q = (p-c)/(p+h). Then

(s-2) yO e F-1(q) if F-1(q) 7( szs, and

         yO = the minimum y which satisfies F(y)> q

              if il(q) . Åë.

    In any specific problem, most of the informations of the

dernand distribution F are insuffÅ}cient for a definite
probability distribution. So it is natural to asssume that F

is unknown but belongs to some class F of distributionst

which is given by a prior information prescribed.

    The minimax problem

(5-3) inf sup L(y,F)
        y20 Fe F
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was considered for several class of distributions ([l],[12],

[13],[15], [21],[27],[32]). In these literatures, a minimax

value of L and a minimax policy of y in (5--3) were derived.

It is naturally extended to consider a saddle point of this

problem.

(5-4) inf sup L(y,F) = sup inf L(y,F) (= I,(y",F:k) = L").
        y20 FsF FeF y)O
As we shall shown, all the classesF given by the above

lÅ}teratures are known to satisfy the conditions for the

existence of saddle points. Hence, instead of deriving a

minirnax solution of (5-3), in which treatments F* does not

come out, what we do in this chapter is to derive a saddle

value L* and a set of saddle points (y*,F*) of (5-4) in the

explicit forrn by solving the maximin problem. This is reduced

by using (5-2) to the maximization problem

      '
(5-5) sup L(yO,F) .
        FsF

    The general treatments of a duality theorem are given in

Zsii [ll].

    For the class F of distributionsr we assurne that

(a) g",PF J [o,. )tF(dt) < co •

This assumption (a) only makes L(y,F) finite for any fixed y

to avoid a trivial case. The function L(ytF) is defined on

IOroo)XF with finite non-negatÅ}ve valuest which is the same

assumption given in Section 4.4 for the case of iinear costs•
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For any fixed F e F, Å}t is seen that L(y,F) is convex Å}n y

and lim L(y,F) = oo . Then we may restrict the domain of y
    Iy i ->-co

is cornpact and convex. Furthermorer wTe assume that

(b) F is convexr

i•e•, if Flr F2 eFr then bFl + (1'b)F2 EF for any reai
number b (O i' b -< 1). The following lernmas are easUy derived

from the general minimax theorem in Ekaland and Terman [4].

    Lemma 5-1. If the assumptions (a) and (b) are satisfied,

then

(5-6) min sup L(y,F) = sup min L(y,F) (= L* )r
        yF Fy
and there exists a saddle value L*. Moreover if we
additionally assume that

(c) F is compact with respect to the L6vy metric,

then the function L(y,F) possesses at least one saddle poÅ}nt

(y*,F*) on [O, oo)X F and

(5-7) min max L(y,F) = rnax min L(y,F) = L(y*,F") = L".

         yF Fy
    Lernma 5-2. If the assumptions (a), (b) and (c) are
satisfied, then (y*,F*) e [O, oo)XF is a saddle point of

L(y,F) if and only if '
(i) L'(y*,F*;y-y*)

        =([Yyl'yl')[Ccl:l((:'+:')il[Y,iil]IO, iO.i a.:Y,l>. ill
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where L' is a Gateaux-differential. That isr

          yt = O and F*(O) -> (p-c)/(p+h) = qt        i y* >o and F*(y*)1> q, F"(y'-) s q•

(ii) L(y",F*) ) L(y',F) for any FeF.

    From Lemma 5-2, we can see that F* has more than q of
probability on the interval [O,y*] and has less than q = 1-q

of probability on the interval (y*,co ).

    Now, we consÅ}der the next class Fu of distributions in a

class F which satisfies assurnptions (a), (b) and (c)

(5ti8> Fl., == {F e F lfF(dt)=1, f tF(dt)= u}.

The equation (5-1) is reduced to as follows by the condition

(i) of Lemrna 5-2.

        L* = (p+h) [y* {F*(y")-(p-c)/(p+h)}

           - f[O,yk] tFk(dt)] + pp

      • == pv - (p+h)J [o,y.}tF*(dt),

where f[o,y.}F"(dt) represents the integral from O to y*

until just q of probability with respect to the distributon

F*. since a saddle value L' is given by (5-5), the following

theorem holds.
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     Theorem 5-1.

        L* = pv - (p+h) E}l}nF f[o,yo} tF(dt),(5-9)

                           l.t
where

         yO =o if F(O) -> q,

          yO g F-1(q) if F(o) < q and F-l(q) 7E fzS,

         yO = the minimum y which satisfies F(y)> q

                               -l              if F(O) < q and F                                 (q) = Åë•

    Now we can divide the theorem into the two cases.

    Corollary 5-1. If there is a distribution F with F(O) Z q

in the class F t then              1.L

(5-IO) L* = pU , y* = O.

    Corollary 5-2. If all the distributions F in the class

Fp are satisfied with F(O) <g, then there exists a unique yF

(YF > O) SUCh that f[o,yO}tF(dt) = qYF . And

(s-n)  v=pv -  (p'C) iill}nFv YF '

    Hencer this case reduces to the problern which determines

the minimum value of yF by other conditions of the class Fv .
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5.2 Exarnples for Saddle Points

    The examples mentioned in this section can be easÅ}ly

checked to satisfy assumptions (a), (b) and (c). Some of the

exarnples were treated,as a minimax problem (5-3) by the
literatures, in which cases V and y* have been derived on the

guarantee of the existence of saddle pointst but F* does not

come out. We, therefore, derive an L" and a set of (y*tF*)

from Corollary 5-1, or Corollary 5-2 and other conditions of

the class Fu •

    Example 5-l. The class F(v) of distribution of which

only the mean v is assumed.to be known.

         F( v) " {fF(dt)=l, ftF(dt)-p} (p > O) .

    The following results are immediately seen from Corollary

5--1.

(s-12)  [il(I)oi qLi IGIii), (t >= O)'

where q = (l-q) and G(t) is an arbitary distribution with

G(O-) =O such that ftG(dt) = u/Ei .

    Example 5-2. (Jagannathan [l2],[l3], Odanaka [27], scarf

[32]). [Dhe class F(u,O) of distributions of which only the
rnean u and the variance o2 are assumed to be known.

        F(v,u) = {IF(dt)=lr ftF(dt)= v, ft2F(dt)= u2+ o2 }

                                      (V,J > O).
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    It is noted that the distribution G which has a minimum

variance in (5-l2) is one that degenerates at a point t =
p/El, and F* in (s-l2) satisfies u2/( u2+ o2) <= q. [phe

analysis of this exarnple is divided into the following two

cases according to CoroUary 5-1 and 5-2. ,

    case l: p2/( p2+ u2) s q.

(5-13)  [ ;l(I)or qLI iGBtv), (t l O)r

where G(t) is an arbitary distribution with G(O-) = O such
that ftG(dt) = u/Ei, ft2G(dt) - (p2+ o2)/q.

    case 2: v2/( v2+ o2) > q.

    From the definition of yF in Corollary 5-2, the foilowing

Schwartz inequalities hold.
                                 '                '
      ( f[o,yO}tF(dt))2 ;l; (f[o,yO}F(dt))(f[o,yO}t2F(dt))(

      ( f{yo, .. )tF(dt))2 =` (f {yo,co )F(dt))( f{yo,. )t2F(dt))•

    After some sirnple calculations,

        u- u/q/q E yF E u+ cr ,/Eqi7G'/q .

Then,

        rnin yF = u - o vlE.i7El'/q (> o),
           F( lu ro                  )        Fe
and

(s-i4) L* = cp + uv/' i('5'ETi-?-5:'E-'S'-h)(p c) .

                            - 52 -



    Since the equalities hold in the Schwartz inequalities, F*

is restricted to the following two point distribution.

(s-is) F" has mass q at \=y- u/iq;7;/q

        and rnass q aL y=u+ a/Eq7il-/q .

Then y* must be contained in the interval[y,y) because of

L(y,F*) = L" for any ye [y,Y), and each ye[y,Y) is a
candidate for y" if L(y,F") -> L(y,F) for some F in F(p,U)

by the condition (ii) in Lemma 5-2.

    Now, let us consider the two-point distribution F which is

shifted to the left (or right) from F*, such that F has mass r
at p - g /:'i7Tr and rnass f at u + gv/';/71i- where r < q (oac r > q).

The simple calculations concerning L(yrF") ) L(YrF) fOr Y =
v + ox s [y,Y) yield that when r tends to q from the left (or

right)i

(5-l6) x 5 (or .>) {l.T('!S;' )lr=q '

By Lemrna 5-l, there exists at least one saddle point.
Therefore, frorn (5-l6),

                         (p-c) - (c+h)
(5-l7) Y"= P+ U2 (p-c>(c+h) '

    Exarnple 5-3. (Ben-Tal and Hochman [!]) The class

 F(v,6) of distributions of which only the mean u and the

mean absolutedeviation 6 are assumed to be known.
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        F(v,6) ={fF(dt)=l, ftF(dt)=p, flt--pl F(dt)=6}

                                 (1 > 6/2v and p,6 > O).

The analysis of this example is divided into the following two

cases according to Corollary 5-1 and 5-2.

    case 1: 1- 6/2p s q.

    In this case F* is in (5-l2). Then

(s-i8)  [ ,Fl(I),i q.i iG,li), (t l O)'

where G(t) is an arbitary distribution with G(O-) = O such
that ftG(dt) = u/q, flt-pl G(dt) = u + (6 -u)/q.

    Case 2: 1- 6/2v > q.

    From the definition of yF in Corollary 5-2, the following

inequality holds.

         f[o,yo}(v -t)F(dt)= q(v -yF)

        5 f [o, u ]( V -t)F(dt) = .6 /2,

        YF l v- 6/2q (> o).

The equality holds if and only if

         f [O,yO}( V dt)F*(dt) = 'f[o,p ] (V -t)F"(dt) '
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    Thereforet

( s  -  l  g  ) ( i i ( l ) u= , q G l i i ) = +. Epii G 2 i t l p' + h ) 6 / 2 ,

where Gl(t) is an arbitary distribution on [O,y] such that

 t [o,v]tGl(dt) = U - 6/2q and G2(t) ia an arbitrary distri-

bution on (v,co) such that f(v,.. )tG2(dt) = V + 6/2q•

    Exarnple 5-4. The class F(v,rv!) of distributions of which

on!y the mean v and the domain [O,M] are assuined to be known.

Kasugai and Kasegai [l5] and Nakagami [21] assumed the domain

only, but they treated more' practical dynamic inventory

problems and derived the explicit forms of the minimax

policies. Let us consider

        F( vrM) = {f[o,M]F(dt>=l, ftF(dt)= u} (M > v > o).

The analysis of this example is divided into the following two

cases according to CoroUary 5-1 and 5-2.

    case l : v/M K q.

    In this case F* is in (5-12). Then

(s-2o)  ( li(=t)oi q l.qs.(ptv) ,(t l O),

where G(t) is an arbitary distribution on [OrM] such that

 f[o,M]tG(dt) = v/q.
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    Case 2 : P/M > q.

    Frorn the definition of yF in CoroUary 5-2, the following
                                            'inequalitÅ}es hold.

         f[o,yO}tF(dt) = qyFr f{yo,M]tF(dt) .< qNM.

        yF => (v-qM)/q (> o).

    The equality holds if and only if F* has inass Ei at a point

M. Thereforet

(s-21)  { ;:(:)s qGii).".q,,,ilMA (co,,,,-) (,t ))1 -.

where ![)(t) is the indicator function and G(t) is an
arbitary distribution on [O,M] such that f[o,M]tG(dt) =

( p-qM)/q.

5,3 The Multi-Period Model

    In this section, the demands in successive periods are

assumed to form a sequence of random variables whose
distribution are contained in Fu and can change from period

to period. The multi-periods model was treated as a rninirnax

problem in Jagannathan [13], Kasugai and Kasegai [15],

Nakagami [21] and Odanaka [27].
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    As usual, we define that fN(x,Fy) is the discounted

saddle valued costs over N periods as a function of the level

x of inventory before ordering and a prescribed class Fv of

distributions. Then the following theorern obviously holds by

induction in app!ying Lemrna 5-1.

    Theorem s-2. fN(x, Fp ) satisfies the fonowing equation

(5-22)  fN(Å~' Fla) == ll1211i:$,Fl,[C(Y-X) " f [O, co ){ h(Y-t)+

                                N-1                         +                                   (Y-tr Fv )}F(dt)],                 +p(t--y) + ctÅí

whereO =< ct <l and fO(x,Fy)= -cx. .
    VVe have assumed fO(Å~,Fv) = -cx followd by Veinett [34],

because a myopic policy for the muiti-periods inventory
prob!em is optimal when the demand distribution is known.
    Now, we calculate fN(Å~, Fu) in this myopic case. Let us

define

(5--23) l(y,F) = (1- ct)cy + f[o,.){h(y-t)' +p(t-y)"}F(dt)

similarly as (5-l). Then, (5'22) is reformed for N = 1 as

        fi(X' Fu ) = l5i-l.llijtg,Fv[ j:(YtF)] - Cx " oecia •

    rf Fv is one of four examples in Section 5-4, a saddle

value Z' and Y* of a set of saddle points (Y',F*) of (5-23)

are unique and explicitly derived. Clearly,

        fl(x, Fla)= ii' + ctcla - cx for x ;; Y".
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So it holds by Å}nduction that for all N ) 1.

(s-24) fN(x, F ) = (l+ or +...+ ctN-1)(i:*+ ctcy) for Å~ <- yN*.

Hencer the following theorern is established.

    1]heorem 5-3. For each class Fv in Section 5-2, if the

levei x of inventory before ordering at period N is less than

Y*, a set of sadd!e points for the N-periods problem (5-22) is

(Y*,FS). That is, the inventory policy Y* is stationary and
myopic, and the discounted saddle valued costs fN(x,Fv ) over

N periods is given by (5-24).

    Remark. If the level x of inventory before order•ing is
larger than >Nrft, the inventory policy Y" is not feasib!e in the

equation (5-22). Namely, a set of saddle point and a saddle

value are not the same as (Y*,ps*) and (5-24), and the

inductive argument can not be used to construct the similar

one of Theorem 5-3. '    In case of N = l, scarf [32] calculates fl(x, Fv) for all

value of Å~ when Fv = F(p,u ), where fl(x, Fu) is not

linear for x> y".
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