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ABSTRACT

This dissertation discusses the fundamental aspects of
optimal inventory problems, taking notice of the uncertainty
on the demand distribution F.

When F 1is known, the author derives an existence and
uniqueness theorem and the related properties for the optimal
inventory equation under considerably mild assumptions by
using the technique of contraction mappings. Since the
theorem developed guaranteés a unique solution and the optimal
inventory policy, the author determines some particular types
of optimal policies for two examples of practical inventory
problems and derives their properties by wusing the usual
approach of successive approximations.

WhenAF is unknown, i.e., most of informations about it are
insufficient for a definite probability distribution, a
Bayesian approach or a minimax procedure 1is sometimes used.
The author sets up a Bayesian statistical inventory equation
under a general class of prior distributions and derives some
important properties of the Bayes solution. Though the Bayes
solution and the inyentory policies are themselves quite
difficult to derive even in the case of linear costs, he
approximates them by those which are asymptotically optimal if
the sample size approaches infinity. As an example, a
Bayesian nonparametric problem is discussed. The author also
considers a minimax inventory problem as a two-person zero-sum
game and shows the necessary and sufficient conditions for the

existence of saddle points and a saddle value.
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CHAPTER 1

INTRODUCTION

In this dissertation we shall discuss the fundamental
aspects of the structure of optimal inventory problems, which
are the classical and typical problems of operations research.
Dynamic inventory problems of the types mentioned here have
received considerable attention during the past twenty years.
Important contributions to the mathematical inventory theory
may be found in the literatures listed at the end of this
dissertation. Since the comprehensive discussions of the
inventory problems are given by many authors, we limit - our
introductory remarks to a mathematical description of the
structure of the model that we shall consider and a statement
of previous results that we shall use.

An inventory problem is a sequential decision problem
where decisions must be made at repeated intervals whether or
not to raise the inventory level. The demands t in successive
periods are independently distributed random variables with a
common distribution F. Three kinds of costs are incurred
during each period. Here, c(z) represents the cost of
ordering amount z of the good, h(.) the holding cost for
inventories on hand and p(.) the penalty cost associated with
the failure to meet demand. Holding and penalty costs are
charged at the end of each period. The constant o represents
the discounting factor. Costs experienced N periods after the

current period are discounted by aN.



Inventory problems can be broadly divided into two cases
according to whether the demand distribution F is known or not
known to us.

When F is known, two distinct approaches have been
employed in analysis of this inventory model. One approach,
which considers inventory problems as functional equations, is
to derive an existence and uniqueness theorem for the solution
of the functional equation and also to find the conditions
sufficient to ensure that the optimal ordering policy exists
in a simple form. A second approach, which considers
inventory problems as multistage decision processes of dynamic
programming, is to derive some quantitative properties of ité
solution and optimal inventory policy by using the technique
of the successive approximation. A major drawback of this
approach 1is to put rather strong conditions 1in order to
guarantee the convergence of the solutions.

In Chapter 2 we shall derive an existence and uniqueness
theorem for optimal inventory problems with bounded and
unbounded cost functions by the first approach in terms of the
functional equation. Until now previous discussions of this
fundamental theorem were based on the successive approxima-
tions approach and they required relatively strong assumptions
that would guarantee the uniform convergence of the continuous
functions. See, e.g., Iglehart [9] and Boylan [3]. Recently,
Lippman [16] and Van Nunen and Wessels [33] presented
sufficient conditions for contraction mappings in semi-~Markov

decision processes with unbounded rewards. But their



conditions could not be applied to the inventory problems
directly, because both the state space and the action space in
inventory problems were not countable. According to Nakagami
[24], we, therefore, prove this theorem under considerably
mild assumptions by using the technique of Lippman's contrac-
tion mappings.

In Chapter 3 we shall derive the particular types of
optimal policies for the practical inventory problems. Since
the theory developed in Chapter 2 ensures the existence of a
unigue continuous solution and the optimal inventory policy in
our practical inventory problems, we shall determine the
particular type of the optimal policy and discuss - its
guantitative properties by using the second approach of
successive approximations.

First, let us consider the problem where the ordering éost
function is linear with multiple set-up rather than one with a
single set-up. This type of cost 1is neither convex nor
concave, but has a practical meaning when the ordered quantity
in each periQd is delivered by-a transportation vehicle which
has a certain 1limited capacity. In general, an optimal
inventory policy 1is sensitive to the form of the ordering
cost, so that until now some types of inventory policies have
examined and studied by several authors. Scarf [31] proved
that an (s,S8) policy 1is optimal for a linear cost with a
single set-up, and this case was investigated in detail by
Iglehart [9], Veinott [35] et al. Porteus [28] proved that a

generalized (s,S) policy is optimal for a concavely increasing



cost. In Nakagami [20], the purpose for this problem is to
derive the particular type of the optimal policy in the model
when the ordering cost function has multiple set-up.

Next we consider the perishable inventory problem. One of
the important aspects of it is that the perishable goods have
a fixed 1lifetime and become useless 1in satisfying demands
after a fixed length of periods. Several authors (Fries [7],
Nahmias and Pierskalla [17]1,[19] and Nahmias [18]) investigat-
ed the model in which the goods perish exactly m periods after
receipt on order. And they derived optimal ordering policies
and some qualitative properties of policies by soiving a
dynamic program with a state variable of dimension m-1.
Another remarkable aspect of the perishability is that one can
preserve the perishable goods in a special warehouse, which
keeps them in the almost same guality and extends their life
time for & pretty 1long periods. for example, perishable
foodstuffs like fresh fish and meat deteriorate in a week when
refrigerated. But they will kgep for half an year when
frozen, which for the practical purpose 1is non-perishable.
The objective for the second problem 1is to analyze this
realistic model in order to derive an optimal preserving
policy as well as an ordering one with their properties
according to Nakagami [22].

When the demand distribution F is unknown to us, that is,
most of the informations about it are insufficient for a
definite probability distribution, a Bayesian approach or a

minimax procedure is sometimes used. A Bayesian approach is
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very attractive because it allows the explicit incorporation
of prior and new informations into the structure of the model.
And its solution and inventory policy have quite realistic
features of one's intuition and experience. But a major
defect of Bayesian methods is the restriction of the class of
prior distributions needed. A minimax procedure 1s very
interesting from the mathematical point of view, and it gives
the critical upper bound of the solution over a prescribed
class of distribution even 1f the prior information is quite
poor. However the minimax inventory policy has pessimistic
features as compared with that of a Bayesian approach. A
minimax procedure is naturally extended to a game. theoretic
procedure.

On the Bayesian inventory problem, Scarf [30] and Iglehart
[10] have analyzed an inventory model with linear costs where
they assume a demand distribution from the exponential family
and derive the optimal inventory policy. They also show the
convergence to the true optimél policy 1if the sample size
approaches infinity. We shall consider the general treatments
of the Bayesian inventory problems. In Chapter 4, according
to Nakagami ({251,126}, we shall set up a statistical inventory
equation under a general class of prior distributions and
discuss some important properties of its Bayes solution.
Though the Bayes solution and the inventory policies are
themselves quite difficult to derive even 1in the case of
linear costs, we approximate them by those which are

asymptotically optimal if the sample size approaches infinity.
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As an example, a Bayesian nonparametric problem is discussed.
On the minimax inventory problem, one can refer the works
done by Ben-Tal and Hochman [1], Jagannathan [12], [13],
Kasugai and Kasegai [15], Nakagami [21], Odanaka [27] and
Scarf [321]. A minimax policy 1is one that minimizes the
maximum expected costs, where the maximum is taken over a
prescribed class of distributions. For example, Scarf [32]
assumed that only the mean and the variance of the distribu-
tion were known. In Chapter 5, according to Nakagami and
Yasuda [23], we extend this minimax inventory problem to a
two-person zero-sum game, in which one playerv (manager)
decides his ordering level and other player (nature) choosés
her demand distribution in the prescribed class of distribu-
tions. By a game theoretic approach, we first show the
necessary and sufficient conditions for the existence of
saddle points and a saddle value. As an example, we
reconsider the minimax problems given by the above litera-
tures. Since the classes of the Qemand distributions in these
problems are easily checked to satisfy our conditions, the
minimax policy 1s consistent with the player 1's strategy of
the game. We, therefore, determine a set of all saddle points
and a saddle value respectively in the explict form by solving
the dual maximin problem, which enables us to derive the
player 2's maximin strategy as well as the player 1l's minimax

one.



CHAPTER 2

AN EXISTENCE THEOREM

IN THE OPTIMAL INVENTORY PROBLEM

In this chapter we shall derive an existence and
uniqueness theorem for optimal inventory problems with bounded
and unbounded cost functions, when the demand distribution is
completely known to us.

| Until now discussions of this fundamental theorem were
based on the successive approximations approach and they
required relatively strong assumptions and tedious arguments
that would guarantee the uniform convergence of the continuous
functions. See, e.g., Iglehart [9] and Boylan [3].

Recently, Lippman [16] and Van Nunen and Wessels [33]
presented sufficient conditions for contraction mappings in
semi-Markov decision processes with unbounded rewards. But
their conditions could not be applied to the inventory
problems directly, because both a state space and an action
space of inventory problems were not countable.

According to Nakagami [24], we, therefore, prove this
theorem under a considerably mild assumption and a simple
argument by using the technique of Lippman's contraction

mappings.



A Contraction Theorem

We let f(x,F) denote the optimal expected costs for the
initial level x when the demand distribution is known to be F.
Then f(x,F) satisfies the following optimal inventory equation

which is given by

(2-1) f(x,F) = inf [c(y-x) + L(y) + a[mf(y—t,F)F(dt)],
y2x 0
where L(y) = H(y) + P(y) and H(y) = foooh((y—t)+)F(dt),

P(y) %wp((y—t)-)F(dt).

An inventory problem 1is a sequential decision problem
where decisions must be made at repeated intervals whether or
not to raise the inventory level. The demands t in successive
periods are independently distributed random variables with a
common distribution F. Three kinds of costs are incurred
during . each period. Here, c(z) represents the cost of
ordering amount 2z of the good, h(.) the holding cost for
inventories on hand and p(.) the penalty cost associated with
the failure to meet demand. Hoiding and penalty costs are
charged at the end of each period. The constant & represents
the discounting factor. Costs experienced N periods after the
current period are discounted by aN.

We always put the following assumptions.

Assumption 2-1.

(a) 0<a<l. (b) F is a distribution on rt= [0, ).
(c) c,h,p = R" » RV are nondecreasing and c(0) = h(0) =
p(0) = 0, and c(x+y) £ c(x) + c(y) for any x, y > 0.



[ee]

(@) 0<C(0) = [ c(t)F(dt) <=, 0 <P(0) =j0°°p(t)F(dt)< o

(e) P(x) > c(-x) for any x < 0.
. ~ +
Let us define H : R*R
~ co ~
(2-2)  H(x) = H(x) + o [ H(x-t)F(at),
= 0 i-1.1 1, . .
where F(t) = ) 1=1 ¢ F™*(t) and F * is the i-fold convolu-

tion of F. Then, from the renewal theory, it is well known
that H(x) of (2-2) is a unique solution of the following

renewal equation.
H(x) = H(x) + afoﬁ(x-—t)F(dt).

In order to use a technique of a contraction mapping we.

define a complete metric space of functions on R = (- », » ),
To begin with, let us define Vyr v :R—*R+
(2-3)  vy(x) = (1-8)H(x) + c(x ), vi(x) = BH(X) + K,

where B and K are positive numbers which satisfy

B < (1-a), K > {P(0)+ aC(0)}/(1-a ).

For each function w : R+ R, set

(2-4) lw| = sup |w(x)|/v(x) .
X€E€R

Let us define E to be the set of all nonnegative functions
w for which ”w” < o The metric p is given by p(wl,wz)

fw -WZH. Also let us define a ball B in E

1

na

(2-5) B={u-= w+v0 ; ”w” 1, w e E }.
We let define the operator T on E by

(2-6)  (Tu)(x) = inf [c(y-x) + L(y) +af u(y-t)F(dat)] .
y2x 0



For every x, let y*(x;u) satisfy
(2-7) (Tu) (x) = c(y*(x;u)-x) + L{y*(x;u))
+ “4? u{y*(x;u)-t)F(dt),

which depends on u g B. Strictly speaking, no such y*(x;u)
may exist. To avoid troublesome €-arguments, however, we will
assume all infimums are achieved.

According to Nakagami [24], we will examine the condition
in which T 1is a contraction with respect to the metric p by

the following lemmas.
Lemma 2-1. If u € B, then Tuge B.
Proof. For x < 0 we have from (2-6)

(Tu) (x)

A

c(-x) + P(0) +0Lf0°°u(—t)F(dt).

By (2-5) it holds that u < vO + v, we obtain

(Tu) (x) ; c(-x) + P(0) + aC(0) + qgK < VO(X) + vi(x).
From (c) and (e) we alsc obtain

(Tu) (x) 2 inf [c(y-x) + P(¥)]
= Yox

> min{ inf [c(y-x) + c(-y)] 2 v,
0>y>x B

v
Q
T
x
Vv
<
X

inf [c(y-x) + P(y)]
y20

For x > 0, we have from (2-6)

(Tu) (x)

A

H(x) + P(0) +aj0°°u(x—t)F(dt).

By (2-3), (2-5) and (2-2) we obtain

(Tw) (x) € H(x) + B(0) + aK + a(l-8) [ H(x-t)F(at)

- 10 -



+aBf BG-t)F(at) + of  c(t-x)F(at)
X

A

H(x) + P(0) + aC(0) + aK < vo(x) + v(x).

We also obtain

(Tu) (x) > inf [ H(y) + a&fu(y—t)F(dt) ]
y2x

nv

H(x) + 0(l-8) foooﬁ(x—t)F(dt)

nv

(1-aB )H(x) 2 v (x).

0

Hence, 0 < Tu - v, < v, so Tu ¢ B. O

0

For any x € R, let us define

(2-8) X*(x) =1{z ;z > x, c(z-x)+v,(z) ¢ Vo(x)+v(x)},

x*(x) = sup{z ; zeX*(x)}.

It holds that x* 2> x+ since x € X*(x) if x 0 and

v

De X*¥(x) 1if x <0 and that x* 1is contained in a finite interval

when the unbounded costs case of lim {c(x)+h(x)} = « and x*
X >

may be infinite otherwise.

Lemma 2-2. For any given u ¢ B and every x e R,

y*¥(x;u) ¢ X*(x) and vo(y*) and v(y*) are finite.

Proof. If x*(x) = o, then lim {c(x)+h(x)} < = is satis
X >0

fied. The result is obvious. If x*(x) < «® ,then by Lemma 2-1

and (2-8), we have for any y with y > x*(x)

(Tu) (x)

A

vo(x) + vi(x) < c(y-x) + vo(y)

A

c(y-x) +L(y) + a&ju(y—t)F(dt).

Thus, we have the desired result. U
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Lemma 2-3. p(Tul,TuZ) <Y p(ul,uz) for any Upr Uy, € B

where Y = o (1l- 8y t< 1.

: = * . = * .
Proof. For any Uyr U, Yy Y (x,ul) and Y, y (x,u2)

satisfy (2-5) respectively. We observe from Lemma 2-2

(Ta ) (x) = (Tuy)(x) < aﬁj [ug(y,-t) = u,(y,-t)IF(dt).

l)
Then, we obtain from (2-5)

|Tul - Tu2[(x) < max afm[ul—uzl(yi—t)F(dt)
i=1,2 0

a”u -u “ max oov(y.—t)F(dt)
12 i=1,2jO *

A

A

aluy~u, Imaxlviy, ), vy, 1.

If y* = max(yl,yz) < 0,
lTul—Tuzl(x) < aK”ul—uzﬂ.

If y* > 0, we have from (2-8)

(1- B)H(y*)

LA

{ c(-x) - c(y*-x) + K for x < 0,

H(x) + K for x

v
(@)

Bly*) € (H(x) + K}/(1-8).

Then,
v(y*) < { BH(x) + K}/(1- 8).

Hence, we have
Iray - Tu,l £ v lug - u,l. O
Since we have constructed the contraction mapping by Lemma
2-3, we can state the existence and uniqueness theorem. Proof

is found in Elsgol'c [5].
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Theorem 2-1. ©Under Assumption 2-1, there exists a unique
fixed point £ € B to (2-1) : Tf = £. This point can be found
by the method of successive approximations,

f = 1lim fN where fN = TfN_l, N=1,2,...,

with the point fo chosen arbitrarily in the set B. Note that,
if we choose fo =V, (voe B}, then the sequence fN, N=l,2,...;
is nonnegative and converges nondecreasingly to f.

If we choose fO = 0 (0egE,O0 ¢B), then we have from the

argument of Lemma 2-1,

£N(x)=(TN0) (x) 2 ( H(x) + Zl\iq;]icxifgoH(x—t)Fi*(dt) for x > 0,
c{-x) for x < 0.

Now we let N be the smallest number such that (xﬁ/(l—(x) <
B , then we have

Vo (x) < £ (x) < vy (x) + vix),
that is, fE is contained in B.

Corollary 2-1. The unique fixed point fe B to Tf = f may
also be found by putting fO = 0 and the sequence fN,

N=1,2,..., 1s nonnegative and converges nondecreasingly to f.

2.2 Further Results for the Existence Theorem

Two special cases of Theorem 2-1 are considered, and the
existence of the optimal inventory policy y*(x) 1is shown,
which actually minimizes (2-1). First, we put the following

assumption.

- 13 -



Assumption 2-2.

(f) lim {c(x)+h(x)} = =,

x> o

(g) c,h,p : R++ R+ are lower-semicontinuous (LSC).

Note that most of the cost functions practically consider-
ed in inventory problems are left-continuous, so (g) is
satisfied by (c). Assumption 2-2 is of practical use.

Let us define

(2-9) g(x) = inf [c(y-x) + L(y)].
yZX

If Assumption 2-2 is satisfied, then the brackets of (2-9)
are LSC in y for any fixed x, and the minimum of (2-9) is

achieved by y'(x).
Lemma.2-4. Under Assumption 2-2, g is LSC on R.

Proof. For each net {xn} converging to a point x £ R, let

y'(xn) minimize (2-9) for X, such that y'(x_) 2 x

n Then any

n°

accumulation point y" of {y'(xn)} satisfies y" > x. And

lim inf g(xn) lim inf [c(y'(xn)—xn) + L(y'(xn))]

v

[c(y"-x) + L(y")] 2 g(x).
Then, g is LSC on R.

Theorem 2-2. Under Assumptions 2-1 and 2-2, a unique
fixed point £ € B is LSC on R, and y*(x) exists.

Proof. Let the sequence {fN} be defined by £0 = vy in
Theorem 2-1. By Lemma 2-4, fN, N=1,2,..., are LSC, and sup fN

is LSC in general. Then, sup ¥ < 1im N = £ is LSC. U

Second, we put the following assumption, which is a

stronger condition than Assumption 2-2.

- 14 -



Assumption 2-3.

(£) lim {c(x)+h(x)} = <«=.

X+

(g") c : rY>r" is Lsc.

(g") L : R-*R+ is uniformly continuous.

Lemma 2-5. Under Assumption (g"), L and g are equi-
continuous.

Proof. For any € > 0, let § > 0 be such that |x2—xl[ < 8
implies [L(xz)—L(xl)[< €. And let y; minimize (2-9) for X -

Then
g(x;) = c(yi—xl) + L(yi)

A

LI - L
c(xl+y2 x2 xl) + L(xl+y2 XZ)’

A

. |_ ] l_ _ l_
g(x2) = c(y2 x2) + L(y2) c(x2+yl Xy x2) + L(x2+yl xl).

Therefore, we have lg(xl) - g(xz)[ <e. [
The above Lemma is refered to the theorem 3 in Boylan [3].

Theorem 2-3. Under Assumptions 2-1 and 2-3, a unique
fixed point f € B is continuous on R, and y*(x) exists.

Proof. Let the sequence {fN} be defined by f0 = 0 in

Corollary 2-1. By Lemma 2-5 and induction on N, [L(x2)—L(xl)[
< £ implies that

(2-10)  [£N(x)-£ (x )| £ (l+a+ ... +a¥ e,

then L and fN , N=1,2,..., are equicontinuous family of
functions.

Next, from Lemma 2-1, we find that for N = 1,2,...

(2-11)  £N(x) = (TN0)(x) < v,(x) + v(x).

0
.

Then, for any positive number b, fh(x) remains bounded for

all N whenever |[x| < b. Thus, together with (2-10) the limit

function f(x) is continuous in any finite interval. [J

- 15 -



CHAPTER 3

OPTIMAL POLICIES

FOR THE PRACTICAL INVENTORY PROBLEMS

In this chapter we shall derive the particular types of
optimal policies for the practical inventory problems.

We use the same notations given in the chapter 2 and
assume that Assumption 2-1 and 2-3 are satisfied, then from
Theorem 2-3 the optimal inventory equation has a unique fixed
point which 1s continuous and the optimal inventory policy
exists. We, therefore, determine the particular type of the
optimal policy and discuss its quantitative properties in our
practical 1inventory problems by wusing the technique of
successive approximations.

First, let us consider the problem where the ordering cost
function is linear with multiple sét—up rather than one with a
single set-up. This type of cost 1is neither convex nor
concave, but has a practical meaning when the ordered quantity
in each period is delivered by a transportation vehicle which
has a certain limited capacity. In general, an optimal
inventory policy 1is sensitive to the form of the ordering
cost, so that until now some types of inventory policies have
examined and studied by several authors. Scarf ([31] proved

that an (s,S) policy is optimal for a linear cost with a

- 16 -



single set-up, and this case was investigated in detail by
Iglehart [9], Veinott [35] et al. Porteus [28] proved that a
generalized (s,S) policy is optimal for a concavely increasing
cost. In Nakagami [20], the purpose of this problem is to
derive the particular type of the optimal policy in the model
when the ordering cost function has multiple set-up.

Next we consider the perishable inventory problem. One of
the important aspects of it is that the perishable goods have
a fixed lifetime and become useless 1in satisfying demands
after a fixed length of periods. Several authors (Fries [7],
Nahmias and Pierskalla [17],[19] and Nahmias [18]) investigat-
ed the model in which the goods perish exactly m periods after
receipt on order. And they derived optimal ordering policies
and some qualitative properties of policies by solving a
dynamic program with a state variable of dimension m-1.

Another remarkable aspect of the pefishability is that one
can preserve the perishable goods in a special warehouse,
which keeps them in the almost same quality and extends their
life time for a pretty long periods. For example, perishable
foodstuffs like fresh fish and meat deteriorate in a week when
refrigerated. But they will keep for half an year when
frozen, which for the practical purpose is non-perishable.
The objective of this problem is to analyze this realistic
model 1in order to derive an optimal preserving policy as well
as an ordering one with their properties according to Nakagami

[22].
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3.1 An Optimal Batch (s,S) Policy

Let c(z) denote the ordering cost function with multiple

set-ups as follows:
(3-1) c(z) = K {ﬁ}'+ cz for z > 0,

where ¢ > 0, XK, M >0 and {z} is the minimum integer not
smaller than =z. When we interpret M as the capacity of a
transportation vehicle, K as the cost of its use and c as the
unit cost of the treated good, then c(z) is more reasonable,
for if vehicles of the transportation are trucks the ordering
cost is a function only of the number of trucks required to
satisfy the order and not of the fraction of truck space used
(1f exess space cannot be used).

We use the same notations given in Chapter 2 except the
ordering cost (3-1) and assume that Assumption 2-1 and 2-3 are
satisfied, then from Theorem 2-3 the optimal inventory
equation which is given by |

(3-2)  f(x) = inf [c(y-x) +L(y) + afooof(y—t)F(dt)]
y2x

has a unique fixed point £f(x) which is continuous and the
optimal inventory policy y*(x) exists. Now, we shall
determine the particular type of the optimal policy and
discuss 1its property in our practical inventory problem by

using the technique of successive approximations.



We let fN(x) be the optimal expected costs as a function
of the level x of inventory before ordering if the inventory

problem is engaged in for a total of N periods. We have

(3-3) £N(x) = inf [c(y-x) + L(y) + a &TfN—l(y-t)F(dt)]
y2X
for N = 1,2,... and £2(x) = 0, and
. N
(3-4) f(x) = lim £ (x).
N—)-oo

Let us define

(3-5)  GN(x) = Lx) + ox + af £ T (x-t)F(at)
Then
(3-6)  £1(x) = inf [G'(y) + K {¥E} - cx.

y>X

We let yN(x) denote the optimal inventory policy, i.e.,
the optimal level of inventory after ordering in the first of

N periods when the level of inventory before ordering is x.

Now we shall give a definition of a batch (s,S) policy and
some sufficient conditions under which this policy is optimal

in the N finite horizon problem (3-6).

Definition 3-1. A batch (s,S) policy 1is an inventory

policy y(x) defined by parameters s, S with s < S and M(> 0),

such that
y(x) = b for x > s,
y(x) =min (S, x + M {Eﬁi H) for x < s.
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A batch (s,S8) policy has a following economic interpre-
tation. In case 2, where {EEF-} > 2, M is smaller than S-s,
i.e., the manager has smallsized trucks for the transportation
use as compared with a satisfying level region (s,S]. Then he
orders a minimum amount of the good with full-loaded trucks so
as to raise the inventory level up to the region (s,S] if the
initial level is less than s (batch policy). In case 1, where
{§ﬁ§} = 1, the manager has large-sized trucks. Then he cannot
order the good with full-loaded trucks so as to raise the
inventory level into the region (s,S]. So that he raise the
inventory level not to exceed S with trucks which are not
always full-lcaded if the initial level is less than s (batch
policy + (s,S) policy). If M goes to infinity this policy is

identical to the well-known (s,S) policy.

Lemma 3-1. Let M > 0, if the continuous function G:R—+ R

satisfy the condition:

(3-7) G(x) = max [G(x) - G(x+m)] 1is non-increasing,

A
" 0<m<M

then the following properties hold.

(i) If a function H :R~ R is convex, then it satisfies (3-7).
(ii) If G(x) satisfies (3-7), then so is G(x+h) for all h.
(iii) If G satisfies (3-7), then -G is unimordal.

That 1is, there exists a number S (which may be % ) such
that G(x) is non-increasing on (- «,S) and non-decreasing on

(S, ).
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Proof. Properties (i) and (ii) 1is trivial, then we will
give the proof of (iii). From (3-7) there exists a number S
(which may be * =) which satisfies AMG(S) = 0. First, let us
consider the interval [S, ). It holds that G(x) £ G(y) for

any x and y, S < x <y < x+M, that is, G is non-decreasing on

[S, ). Second, we will show that G 1is non-increasing on
(- ,8). Assume that there exists an interval (a,b) on which
G is strictly increasing. Since AMG(a) = max (G(a) - G(a+m))
0<msM
> 0, then
AMG(a) = max (G(a) - G{(b+m))
0<m< M- (b-a)
< max. (G(b) - G(b+m)) = AMG(b) .
O;miM

This contradicts the condition (3-7). 0O

Theorem 3-1. If GN(x) is continuous and satisfies the
condition(3-7), then yN(x) is of the batch (s,S) type.

Proof. By Lemma 3-1, there exist the smallest numbers N

and SN with sN < SN {which may be *«), such that

(3-8)  G(5) < G (x) for all x,

(3-9) A6V (x) < K for all x > s"

A

Let us consider the optimal inventory equation (3-6) for
the N finite horizon problem. From notational convenience, we

abbreviate the superscript N.



S-sy _ .
Case 1, {—ﬁ-} =1 :

We have, for any x and y with s < x < y,
G(y) + K{(LZ) 2 G(y) + K 2 G(x) by (3-9).

Thus it follows that
(3-10) vy(x) = x on [s, ®).

We have, for any x and y with S-M < x <5, x <y,

G(y) + K{LZ} > Gly) + K 2 G(S) + K by (3-8).
Hence we get

(3-11) y(x) = S = min (S, x+M{§§5 ) on [S-M,s).
For any x and y with §-2M < x < S-M, x < y < x+M, we have
G(y) + K > G(x+M) + K (equality holds iff y = x+M).

Thus it 1is easily shown by induction that for any x with

S-(a+1)M < x < S5-dM, d = 1,2,...,

(3-12) min [G(y) +,K{Xﬁ§}] > G(x+dM) + dK
x+dM>y>x a

Therefore we have, for any x with S-(d+1)M < x < g-dMm,

min [G(y) + K{Xﬁi}]
Y2X

- min _ [G(y) + k{XEMy 4 akl by (3-12)
yzx+dM
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= ( G(S) + (d+1)K if S-M < x+dM < s by (3-11)

G(x+dM) + dK if s £ x+dM < S by (3-10).

Hence, if S-M < x+dM < s then {Eﬁﬁ} = d+1, so that y(x) = S

A

ll

X + M{Eﬁﬁ}, and if s

A

x+dM < S then {Eﬁi} = d, so that y(x)

M{§ﬁ§} < S. Then

y(x) = min (S, x + M{Eﬁ5 ) on (-« ,s).

Case 2, {§ﬁ§ > 2

Similarly to Case 1, it is clearly shown that y({x) = x on
[s, ©), y(x) = x + M{Eﬁg} < S on (-»,s), and y(x) = min (S, x
+ M{Eﬁﬁ} ) on (-wo,s). This completes the proof of the

theorem. [

We notice that if L is convex and the ordering cost 1is
given by (3-1), then Assumption 2-3 is automatically satisfied
and fN(x) and GN(X) are continuous for all N. But,
unfortunately, the condition (3-7) 1is not closed under sums
and integrals, then it cannot be carried out the inductive
arguments that GN(x) satisfies (3-7) for general types of
distributions.

Hence we need a rather strong condition for the demand
distribution F such that F has a density F' and satisfies the

following definition.

Definition 3-2. A density F' is called M~indifferent, if

it satisfies

J ;D F'(t+iM) = const. (= 1/M) for 0 < t < M.



If we divide the demanded quantities by M, the M-indiffer-
ent densities give no information about which quantities left
are likely to occur, that is, such densities are indifferent

(ignorant) of the remaining quantities. For example, let, for

k(s,v,t) = v if s <t < stM

i

0 otherwise,
then an M-indifferent density F'(t) is given by,
e o]
F'(t) = [y k(s,v,t)v(ds) ,

where v(.) is a non-null measure defined on {0, ) and fv(ds)
= 1/M.

Theorem 3-2. If L is convex and F' is M-indifferent, then
a batch (s,S8) policy is optimal in (3-3) and (3-2).

Proof. Here, we will show by induction that GN(.) is
convex for all N. For N = 1, Gl(x) = L(x) + cx 1is convex.
Assume that GN(.) is convex. Then by Theorem 3-1 there exist

two levels sN, SN with sN < SN such that

N

(3-13) £%(x) = ¢¥(min(sY,x+dM)) + dK - cx

on [sV-aM,sN-(a-1)M ), 4&=1,2,...,

= G (x) on [s, =)
Hence we have
(3-14)  £¥(x) - £N¥(x-am) = -ak if x < min(sN,sNm) = &V,
N N . . .
and £ (x) - £ (x-dM) is nondeceasing in x.
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Now we examine GN+l(x) defined by (3-5).

Mhx) = L(x) + cx + o [P EN(x-t)F " (t)at.

By the notational convenience, let us abbreviate the
supperscript N for simplicity. We have from continuity and

piecewise convexity of f(x)
d (e ' = [ e '
(3-15) == Jo £(x-t)F'(t)dt = [y £'(x-t)F'(t)dt.

For x < s we have

(3-15) f'(x-t-iM)F'(t+iM)dt

zi=0 J’[O,M)

ZiZO [ (o, )" (x~B)F" (t+iM)dt ( by (3-14) )

= (1/M) f[O,M)f'(x—t)dt ( by the M-indifference of F' )

(1/M) f(slg)G'(t)dt - c =const. (= -C ) by (3-13).

(X=8y

For > s d =
X s, let d M

Then we have
(3-15) = fg's £'(x-t)F'(t)dt + j;fg £'(x~t)F'(t)dt

- 3T frx-t-anE i (at + 570 £ (x-e-aF (t)at

~

[o 7 [£'(x=t) - £'(x-t-dM)] F'(t)at

+[JEN(x-t-@F'(t)dt  ( by (3-14) ).

The second term is -C, it is therefore sufficient to show that
the integrand of the first term 1is non-negative and non-

deceasing in x.
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For X < X5 let d = {(Xl—g)/M}, 52 = {(x2—§)/M}

respectively, then al < d

0 < f'(x,~-t) - £'(x —t—alM) ( by (3-14) )

1 1
= £'(x;-t) - £'(x;-t-d,M)  ( xy-t-d; < s )
< £'(x,-t) - f'(xz—t-azM) ( by (3-14) ).

Thus the proof of Theorem 3-2 is completed. [J

Remark. Unfortunately, GN(X), N=1,2,..., do not satisfy
the condition (3-7) for general demand distributions, and
hence any batch (s,S) policy may not be optimal. However, in
many practical cases, the demand distribution is.not determin-
ed precisely, and an M-indiffernt density gives a good
approximation to the true demand distribution by exploiting a

least-square method.
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3.2 The Perishable Inventory Problem

Let a state variable x be the amount of perishable goods
stored in the preservable warehouse. After observing X, two
decisions are made as follows: The amount z-x 1s ordered at
unit ordering cost ¢ in order to raise the inventory level up
to z. The amount y is stored in the preservable warehouse ét
unit cost hl’ the amount z-y 1is placed in the ordinary
warehouse. The decision variable y, z represent the starting
amount of preserving inventory and the starting amount of the

total inventory, respectively (0 < x < z, 0

IIA

y < 2). The
inventory 1is first depleted from the ordinary warehouse, and
depleted from the preserving one at unit emergency issuing
cost k2. The unsatisfied demand is lost for sales at unit
penalty cost p. When the demand is over at the period, the
amount remaining in the ordinary is disposed, and the amount
remaining in the preserving is brought to the next period at
unit holding cost hz.

Let a random variable T with a distribution F represent a
demand in the period. Then an amount H remaining in the
preserving and an amount K issued from the preserving are

given by
+ +
(3-16) H = (z-(z-y)VYT) , K = (TAz-(z-y)) .

This can be seen most easily by considering the three

possibilities 0 ST < z-t, 2=y £ T < 2z and z

A

T separatedly,

where x+ = max(0,x), x\/y = max({(x,y) and x/\y

min(x,y).
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The following cost structure in the period is summarized:

c(z—x)+ = ordering cost; hly = preserving cost;
th = holding cost; k2K = issuing cost;
p(T—z)+ = penalty cost.
Now, H+K = y, the preserving cost is included to the holding
and issuing costs by putting h = hl+h2, k = hl+k2 respective-

ly. Before giving our formulation, we examine random

variables H and K without proof.

Lemma 3-2. The random variable H and K have distribution

functions Hy Z(.) and Ky z(.), 0<y<z, respectively given by

(3-17) .Hy Z(s) = P[HSs] = 1 - F(z-s) (0<s<t)
=1 (y_<___S),
Ky ,(8) = P[K<s] = F(z-y+s) (0<s<y)

= 1 (ygs).

Moreover, if the density F' of F is continuous and any given

. + . . . .
function g : R -*R+ is continuously differentiable, then

(3-18) H(y,z) = [[g(s)H (ds), K(y,z) = [ g(s)K (ds)

14

Y

have partial derivatives.

We let f(x) (or fN(x)) denote the optimal expected costs
for the intial level x of the preserving inventory ( if the

problem is engaged in for a total of N periods ). We have
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(3-19)  £Y¥(x) =min [BY(y,z) - ex],
ZyX,22y>0

N _ e ot “
(3-20) B (y,z) = cz + fo p(t-z) F(dt) + 4) ks K, ,(ds)
+ [ ms+af¥ ls)H, (as),
0 Yr2
for N=1,2,... and £0(x) = 0.
We let yN(x) and zN(x) (or y*(x) and z*(x)) denote the

optimal preserving and ordering policies (in the period N)
when the initial 1level of the preserving inventory before
ordering is x.
It is noted that the non-perishable problem f(x) (¥ (x))
is obtained by putting 2z = y in (3-19) and (3-20). L
(3-21) V(%) = min [ c(z-x) + fw {p(t-z)"
zZ>X 0

zN-1

+ k(taz) + hiz-t)" + BN T((z-t) )} F(at) 1,

for N=1,2,... and fo(x) = (0, and

(3-22) E(x) = 1lim £¥(x)

N+OO

is satisfied under Assumptions 2-1 and 2-3, i.e., c > 0 and
[tF(dt) <» for the linear cost case. It follows that f(x) is

continuous and the optimal policy z*(x) exists.

Let

L(x,y,2) = c(z-x) +-Ljp(t—z)+F(dt)

+ n)ks K,,,(38) + [ hs H, ,(3s)

Yrz
for the perishable problem, and
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L(x,z) = c(z-x) + foo{p(t—z)+
+ k(tAz) + hiz-t) "} F(at)

for the non-perishable problem.

Then it follows that from Lemma 2-2
L(XIYS(X),Zﬁ(X)) < ﬁ(x,iz(x))

Hence, we have a contraction theorem for the perishable

problem (3-19) and (3-20). It holds that
. N
(3-23) f(x) = lim f (x)
N7

satisfies under the assumption c¢ > 0 and f tF(dt) < * , and
that f£(x) 1is continuous and the optimal preserving and
ordering policies y*(x) and z*(x) exist.

Since the purpose of this section 1is to derive some

properties for yN(x) and zN(x), N=1,2,... , we put the
following agsumption.
Assumption 3-1.
(a) [ F'(t)dt <o .
(b) F'(t) is continuous for all t>0. (It is necessary for
Lemma 3-2.)
(b') F'(t) > 0 for all t>0. (It is not necessary but only for

the uniqueness of the optimal policies.)
(c) oac > h+tk, p > c+k. (It would be optimal to order and

preserve the goods at least.)
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Theorem 3-3. Under Assumption 3-1, there exists

sequence ZN, n=1,2,..., such that

-1,p-c, _ =~1 ~2 ~ -1, p-c-k
P (—5—) =27 < z" < ... < 2z =PF (E:EE:E:H).
1f 2™ = Z for some n, then z = o+l -3,

(i) Results on fN(x).
It is convex on R+, and strictly convex on [EN, w ).

It is non-increasing and non-negative.

arN (x)
dx :

It is continuous and non-decreasing.

(11) Results on

afN(x)
dx

= c on [O,EN] and lim af _(x) _ 0.

ax
X=>
... N N
{111) Results on y (x) and z (x).
2N(x) = 2Vx, YNx) = NNV,

~N . .
where y (x) is a unique solution of

1l -1

k + (h-k+ af’ T(y))F(x-y) = 0 for all x > § = F *(—

~1 N~ AN o~
and $7(x) = 0, 3V = zN-§, N=2,3,....

aVy (x) N
0 < ~a%——— < 1 and y (x) is bounded for all x>0.
Proof. The proof is given in Nakagami [22].
Theorem 3-4.
N+1 N
(1) fN+l(x) > fN(x), af (x) > af" (x)
= dx = dx
yN=1,2,..., for all x;O.
. ~N+ ~ ~
(i1) yN l(x) > yN(x) (N=1,2,..., for all x>y.
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Proof. The proof is given in Nakagami [22].

Remark. We interpret the optimal ordering policy zN(x)
and the optimal preserving policy yN(x) as follows:
Case 1. If x <%V, it is optimal to order the amount :N_x so
as to raise the total inventory up to ZN. It is optimal to
preserve the amount EN—§ in the preserving and to place the
amount y in the ordinary when N=2,3,...: Or to preserve none
of the amount and to place all the amount El in the ordinary
when N=1. Note that the penalty cost p depends only on the
total inventory EN, but is independent of the amount y in the
ordinary.
Case 2. If x 2 EN, it is optimal to order none of the amount
so as to keep the total inventory to x. It is optimal to
preserve the amount §N(x) in the preserving and to place the
amount x—§N(x) in the ordinary when N=2,3,...: Or to preserve
none of the amount and to place all the amount x 1in the
ordinary when only N=1. Note that the amount §N(x) in the
preserving 1is bounded. This indicates that the system is

forced to go quickly to the steady state of Case 1 when the

intial level is sufficiently large.



CHAPTER 4

A BAYESIAN STATISTICAL INVENTORY PROBLEM

In this chapter we now turn our attention to the inventory
problems with uncertainty on the demand distribution.

When the demand distribution is unknown to us, that 1is,
most of the informations about it are insufficient for a
definite probability distribution, a Bayesian approach or a
minimax procedure is sometimes used. A Bayesian appraqach is
very attractive because it allows the explicit incorporation
of prior and new informations into the structure of the model.

But a major defect of Bayesian methods is the restriction of
the class of prior distributions needed. A minimax procedure
will be mentioned at the succeeding chapter.

On the Bayesian inventory problem, Scarf [30] and Iglehart
[101 have already analyzed this model with linear costs, where
they assume the demand distribution from the exponential
family. According to Nakagami [25],[26], we shall set up a
statistical inventory equation under a general class of prior
distributions and discuss some important properties of its
Bayes solution. The nonparametric application of the Bayes

solution will be mentioned at the end of this chapter.



4.1 A Bayesian Approach

Let us introduce the terminology of a Bayesian statistics

to describe our problem by the following notations given by

Rieder [29] and Ferguson [6 1 (R¥, B) is the sample space
where R+ = [0, ) and B is the o0-algebra of Borel subsets of
R, P 1is a probability measure on (R+,B ), F 1s a

corresponding distribution and E denotes the expectation with
respect to P. Q@ is some collection of P on (R+, B), and
A is some suitable o-algebra of subsets of © , for example
the Borel sets with respect to the topology of weak
convergence. (2, A) 1is the parameter space. P is‘ a
probability measure on ( ¢, A) and E denotes the expectation
with respect to P.

We assume that Pw , defined by P(w,.) : Q - R+, is the
probability measure such that
(4-1) P(w,B) = [ p(w,t) rA(dt) for B € B,

B
where A 1is a o-finite measure on B and p : 0 X RT>RrR" is a
non-negative measurable function. And we let Fw be the
corresponding distribution which is called the demand distri-
bution.

At the beginning of the n-th period, the history of the
previous demands, hn = (tl’tZ""’tn-l) on Hn = Xi;i R+, is
to be used to make inferences about the true value of P.

We let PO on (R,A) be a prior distribution. Then the
seguence {Pn} of distributions P, :+ H ~a is defined

recursively.
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/ P(u),tn) Pn(hn,d(n)

Poar(B0tp Al = 2 for Ac A,

fQ P( w,tn) Pn(hn,dw)

if the denominator is positive and finite, and Pn+l(hn0tn,A)

= Pn(hn,A) otherwise, where hnOtn is to be interpreted as (tl

’t2""tn—l’tn)' We shall call Pn a posterior distribution

for the history hn’ En denotes the expectation with respect
to P _.
n
The sequence {Qn} of distributions Qn : Hn"*'R+ is defined
by
(4-3)  0,(B) = [ P (dw)P(w,B) for Be B,
o, (h ,B) = [P (h ,dw)P(uw,B) for B ¢ B .

We call Q. the marginal distribution for the history hn' E

denotes the expectation with respect to Qn(hn,.).

The following proposition holds by Fubini's theorem.

Proposition 4-1. If u : QX Hn+l—>-R+ is a non-negative

function, then
JOP P)(h ,d(w,t ))ulw,hot )

= an(hnrdtn) f Pn+l(hn0tnldw)u( w,hnotn)
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4.2 The Statistical Inventory Problem

We now return to our discussion of the inventory problem.
We let fn(x,hn) denote the optimal expected costs for the
initial level x and the history hn when the demand distribu-
tion is not known. Then fn(x’hn) satisfies the statistical

inventory equation which is given by

(4-4) £,0e/hy) = inf [e(y-x) + fooo{l(y—tn)
y2x
+ af ,(y-t shot )} Q (h ,dt )1 .

In order to analyze (4-4) we first define f:(x,hn) to be
the optimal expected costs 1f the statistical inventory

problem is engaged in for a total of N periods.

N : w
(4-5) £ (x,h ) = inf [c(y-x) + fo {1(y-t )
y2x
N-1
+ af  J(y-t ,hot ) } Qn(hn,dtn)] ,

A
o

fNx,h ) =0 for N
n n

We also define f(x,Fu)) and f(x,Qn) to satisfy (2-1) when
the demand distributions are known to be F, and Qn(hn")

respectively.

(4-6)  £(x,F,) = inf [c(y-x) + [ {1(y-t)
y>X 0

+ af(y-t,F )} F(w,dt)].
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(4-7) £(x,0,) = inf lc(y-x) + 4) {1(y-t )
y2x

+<xf(y-tn,Qn)}Qn(hn,dtn)].

Let fN(x,Fw ) and 'fN(x,Qn) denote the optimal expected
costs if the inventory problems are engaged in for a total of
N periods. Then

(4-8) fN(x,Fw) = inf [ c(y-x) + fm-{l(y—t)
y2x 0

+ atN i y-t, P Y F(w,at) ],
N _
F(x,Fy) =0 for N < 0.
(4-9) fN(x,Qn) = inf [ c(y-x) +L?'{l(y—tn)
y2x
+ of " N(y-t_,0))0 (h_,at )],
N
£ (x,Qn) =0 for N £ 0.

We can derive the following theorem which states the
existence and uniqueness of the Bayes solution fn(x,hn) of the

statistical inventory equation (4-4). The proof follows

directly from Theorem 2-1.

Theorem 4-1. If Assumption 2-1 is true for all F e Q,

then

lim £¥(x,h ) = £ _(x,h_), 1lim £fN(x,F
N> n n n N @

w ) = E(X,Fy )
. N _
and lim f (x,Qn) = f(X,Qn)-

N> o



The following lemmas give the lower and upper bounds for

the Bayes solution fg(x,hn) of (4-5).

N N
Lemma 4-1. Enf (X’Fw ) < fn(x,hn)
Enf(Xle') =< fn(x’hn>
Proof. If the 1lst result is proved
all n, the 2nd result holds from Theorem 4-1.

for N=0 for all

n. Assume it i1s true for N-1 and all n.

for all N and n,
for all n.

by induction on N for
The 1lst is true

The

inside of the brackets of (4-5) is rewritten as follows,

c(y-x) + [o (h_,at ){1(y-t ) + af) *(y-t_,h ot )}

> c(y-x) + an(hn,dtn){l(y—tn) + aF  f

(by the inductive assumption)
= c(y-x) + fl(y-tn)Qn(hn,dtn)

+ of (P F)(h ,aw,t et

(by Proposition 4-~1). Hence,

i

N .
£ (x,h ) = inf an(hn,

y2zx

(y-t_,E )}

n+l n"w

(Y_tanw )

we obtain

dw)l cly-x)

v [Fle,at {1(y-t ) + qu_l(y—tn,Fw )31

> [P (h_,dw ) inf [c(y-

YZX

+ [F(w,dat){ 1(y-t) + af™"

1l

N
fpn(hn,dw )f (XIFw )
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Note that the left hand sides of the equations in Lemma 4-1
are interpreted as the optimal expected costs when the true
value of F, is revealed with Pn(hn,.) after the history hn =

(tl,t ..t

2'°°

is experienced.
n—l) p'

Lemma 4-2. E_f'(y-t_,0 ) 2 E fo

n’ = n n+l(y_tn’hﬁ)tn) -

Proof. It is proved by induction on N for all n. It is
true for N=0 and all n. Assume it is true for N-1 and all n.

We have by (4-9)

E £ (y-t_,Q)) = E_ i?f [c(y'—y+tn)
y'2y-t,

. N-1, ,_
+E Lyt ) va T Ty -t 0,0 )]

Using the optimality properties of yg*(y—tn), abr. by y*, for

the above equation, we obtain

N-1
= * - * —
E_[c(y*-y+t ) + E . {l(y*-t__,) +of (y*=t_ .19}
* — _
> B [cly*-y+t ) + E {1(y*=t ;)
N-1
* oLfn+2(Y*_trwl’hnotnOtn+l)}]

(by the inductive assumption)

: " -
> E 1?f [cly'-y+t ) + En+l{l(y t 1)
y'2y-t,
N-1, .
+oaf Tyt g hnOtnOtn+l)}]
= B £ (y=t_,h_ot_) ]
T Fntn+1' YT tnrBpoty) -
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Lemma 4-3. fg(x,hn) < fN(x,Qn) for all N and n,

fn(x,hn) < f(x,Qn) for all n.
Proof. It is proved by induction on N for all n. It is
true for N=0 and all n. Assume it is true for N-1 and all n.

We have by (4-9)

1

fN(x,Qn) inflc(y-x) + E_{1(y-t_) + i

(y-t .0 )] ]
yZX

. N-1

inf[c(y-x) + En{l(y—tn) + afn+l(y—tn,hn)}]
yzx

1h%

(by Lemma 4-2)

_ N
= fn(x,hn) . 0

Note that the right hand sides of the equations in Lemma 4-3
are interpreted as the optimal expected <costs when no
additional informations are avallable after the history hn =
A |

(t,,t is experienced.
1

IARE n—l)

We have the following theorem which attains the lower and

upper bounds for the Bayes solution of (4-4).

Theorem 4-2.
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4.3 A linear Cost Case

To conclude this chapter we restrict our attention to the
case of linear costs : c(x)=cx, h(x)=hx and p(x)=px, and it 1is
assumed that p > ¢ > 0, c+h > 0. So that, the Bayes solution
fn(x,hn) is uniformly continuous and bounded for x in any
finite interval and the Bayesian inventory policy yg(x) exists
which actually minimizes (3-4). Though the sequence {yg(xﬂ
is itself quite difficult to be obtained analytically even in
this «case, it is known that the stationary and optimal
inventory policy y;(x) for the equation (4-7) of f(x,Qn) has

the simple form such that
(4-10) y;(x) = max (X’tn(q)) '

where t _(q) is the g-th quantile of Q and q = { p-c(l-a)}/
(p+h) i.e., t_(q) € 077(q) = {t ; o (t)=q, tel0, ®)} if it is
not empty, and tn(q) = the minimum t which satisfies Qn(t) > q
if Q;l(q) = @g. Section 5-1 can be referred to about this

fact. Moreover f(x,Qn) has been calculated by Scarf [30].

We therefore assume that f;{tF(dt)< ® for all F e @ from
the remark of Assumption 2-1 in case of linear costs, and that
the marginal distribution Qn converges weakly to the true
demand distribution Fy by the definition of the sample space
(Q,A). Then the following proposition holds from the
Helly-Bray's theorem of the weak convergence of distribution

functions.
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Proposition 4-2.

lim Enf(x,Fw ) = lim f(x,hn) = lim f(X,Qn) = f(x,FO).

n-—+o© n+o°e n-—>-o

It follows from the wusual arguments of the inventory
problem given by Scarf [30] that fn(x,hn) is a convex function

with respect to x, and also that its derivative with respect

to x is no less than -c. Since the arg. minimum y of
(4-11) cy + E {l(y—tn) + afn+l(y—tn,hnotn)}

is not greater than that of (4-11) when fn is replaced by

+1

-cx, it yields the following results.

Theorem 4-3. In case of linear costs,
yg(x) < y;(x) n=1,2,...

Moreover if the g-th quantile to(q) of FO is unique, then

lim y9(x) = lim y*(x) = max (x,ty(q)) .
n+-® n n-»o n
Remark. Though the Bayes solution fn(x’hn) and 1its
inventory policy yg(x) for (4-4) are themselves quite

difficult to derive, they can be approximated by f(x,Qn) and
y;(x) for (4-7) respectively, which are asymptotically optimal

from Proposition 4-2 and Theorem 4-3.
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4.4 A Nonparametric Bayes Example

The following definition and theorem of the Dirichlet
process are found in Ferguson [6}, and their applications for

the practical models are mentioned in Joe [141].

e e .. +
Definition. Let af(.) be a finite measure on (R , B ). We

say P is a Dirichlet Process with parameter &« and write P

e Do), 1if for every finite measurable partition (Bl""'Bk)
of RY, the distribution of (P(By),...,P(B,)) is a Dirichlet
distribution with parameter (a(Bl),...,(%Bk)). In particular,
F(t) = P((-«,t]) has a beta distribution with parameter
+

(al(t),a(R )-alt)), where a(t) =0 ((->,t]).

Theorem. If Fe D(n), then the posterior distribution

. - . n

Pn+l for the history hn+l = (tl""’tn) is D(a +zi=15(ti)),

where d(ti) is the measure giving mass one to t. .
We can apply Theorem to our problem.

The marginal distribution Qn+ is given by

1

(4-12) Q. (£) = E_, F(£) = (1-p_)0;(t) + p F_(¢),

where %n is the sample distribution and P,= n/(a(R+)+n)).

If we choose that the initial guess of F i.e., Ql(t)
=(Xt)/a(R+) is strictly increasing, the g-th quantile tn(q) of
the marginal distribution Qn is unique, and we can easily

obtain tn(q) from the graph of Qn'
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It is known that the sample distribution ﬁn converges
weakly to the true demand distribution FO. And if to(q) of Fo
is unigque, the results of this chapter hold.

The asymptotic property of tn(q) is derived by the simple

modification of a theorem in Wretman [36].

Theorem 4-4. If FO has a density fO(

borhood of to(q), then /ﬁ]tn(q)—to(q)) converges in law to Z

>0) at the neigh-

as n increases 1infinitely, where 2 has normal distribution

with mean 0 and variance q(l—d)/fg(to(q))-
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CHAPTER 5

SADDLE POINTS IN INVENTORY PROBLEMS

In this chapter we shall mention the facts about the
existence of saddle points for inventory problems with
uncertainty on the demand distribution. When most of the
informations about it are insufficient for a definite
probability distribution, a minimax procedure is used as well
as a Bayesian approach which has been explained in Chapter 4.

On the minimax inventory problem, one can refer the works
done by Ben-Tal and Hochman [1], Jagannathan [12], [13],
Kasugai and Kasegai [15], Nakagami [21], Odanaka [27] and
Scarf [32]. A minimax policy 1s one that minimizes the
maximum expected costs, where the maximum is taken over a
prescribed class of distributions. For example, Scarf [32]
assumed that only the mean and the variance of the distribu-
tion were known.

According to Nakagami and Yasuda [23], we consider this
minimax inventory problem as a two-person zero-sum game, in
which one player (manager) decides his ordering level and
other player (nature) chooses her demand distribution in the
prescribed class of distributions. By a game theoretic
approach, we shall derive the necessary and sufficient condi-

tions for the existence of saddle points and a saddle value.
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5.1 Conditions for Saddle Points

Let us define the one-period expected cost function L as
an inventory level y after ordering and a demand distribution

F by the following:

(5-1)  L{y,F) =cy + [ o ){h(y—t)+ + p(t-y) }F(At)

where x+ = max(x,0). Here, c, h and p are the unit ordering
cost, the unit holding cost and the wunit penalty cost,
respectively. And it is assumed that p >c¢ > 0, ¢ + h > 0 and
that the demand t is a non-negative random variable with the
distribution F (F(0-)=0).

When F is known precisely, the value of yo which minimizes

1

(5-1) is easily solved. ©Let F ~(z) = {y;F(y)=z, vy € [0,)},

0 <z <1, and g = (p-c)/(p+h). Then
(5-2) ( y° e F i@ if Fl(q) # 4, ana
yO = the minimum y which satisfies F(y) > (g

if F 7 (q) = &.

In any specific problem, most of the informations of the
demand distribution F are insufficient for a definite
probability distribution. So it 1is natural to asssume that F
is unknown but belongs to some class F of distributions,
which is given by a prior information prescribed.

The minimax problem

(5-3) inf sup L(y,F)
y>0 Fe F
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was considered for several class of distributions ([1]1,[12],
[131,[151], (211,271, 1(321]). In these literatures, a minimax
value of L and a minimax policy of y in (5-3) were derived.
It is naturally extended to consider a saddle point of this
problem.

(5-4) inf sup L(y,F) = sup inf L(y,F) (= L(y*,F*) = L*).
y>0 FeF Fe F y>0

As we shall shown, all the classes F given by the above
literatures are known to satisfy the conditions for the
existence of saddle points. Hence, instead of deriving a
minimax solution of (5-3), in which treatments F* does not
come out, what we do in this chapter is to derive a saadle
value L* and a set of saddle points (y*,F*) of (5-4) in the
explicit form by solving the maximin problem. This is reduced
by using (5-2) to the maximization problem

(5-5) sup L(y°,F)
Fec F

The general treatments of a duality theorem are given in
1sii  [111.

For the class F of distributions, we assume that

(a) sup { tF(dt) <

FeF [0, =)

This assumption (a) only makes L(y,F) finite for any fixed y
to avoid a trivial case. The function L(y,F) is defined on
[0, )XF with finite non-negative values, which is the same

assumption given in Section 4.4 for the case of linear costs.
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For any fixed F ¢ F, it is seen that L(y,F) is convex in y

and lim L(y,F) = « . Then we may restrict the domain of y

oy e
is compact and convex. Furthermore, we assume that

(b) F is convex,

F, ¢ F, then bF, + (1-b)F

2 1

b <1). The following lemmas are easily derived

i.e., if F 5 € F for any real

ll

number b (0

A

from the general minimax theorem in Ekaland and Terman [4].

Lemma 5-1. If the assumptions (a) and (b) are satisfied,

then
(5-6) min sup L(y,F) = sup min L(y,F) ( = L* ),
Yy F F y
and there exists a saddle wvalue L*. Moreover if we

additionally assume that
(c) F is compact with respect to the Levy metric,

then the function L(y,F) possesses at least one saddle point

(y*,F*) on [0, «) X F and

(5-7) min max L(y,F) = max min L(y,F) = L(y*,F*) = L*,
Yy F F y

Lemma 5-2. If the assumptions (a), (b) and (c) are
satisfied, then (y*,F*) ¢ [0, »)XF is a saddle point of

L(y,F) if and only if

(1) L' (y*, F*;y-y*)

=( (y-y*) [c-p+(p+h)F*(y*)] > 0 for any y > y*,

(y-y*) [c-p+(p+h)F*(y*-)] > 0 for any y < y*,
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where L' is a Gateaux-differential. That is,

I
Q

{ y* = 0 and F*(0) > (p-c)/(p+h)

y* > 0 and F*(y*) > q, F*(y*-)

A
Q

(ii) L(y*,F*) > L(y*,F) for any FeF.

From Lemma 5-2, we can See that F* has more than g of
probability on the interval [0,y*] and has less than g = 1l-q

of probability on the interval (y*,® ).

Now, we consider the next class Fu of distributions in a

class F which satisfies assumptions (a), (b) and (c)
(5-8} Fo ={F e F | [F(at)=1, [ tF(at)=ul}.

The equation (5-1) is reduced to as follows by the condition

(i)Aof Lemma 5-2.
L* = (p+h) [y* {F*(y*)-(p-c)/(p+h)}
f[o,y*] tF*(dt)] + pu
= pu - (p+h) f [o,y*}tF*(dt)'

where f[O Y*}F*(dt) represents the integral from 0 to y*
[4

until just g of probability with respect to the distributon

F*. Since a saddle value L* is given by (5-5), the following

theorem holds.
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Theorem 5-1.

(5-9) L* = pu - (p+h) min f[o,yo} tF(dt),
FeF
where
y© =0 if F(0) > q,
v ¢ Fl(g) if F(0) < q and F Y(q) # &,
yo = the minimum y which satisfies F(y) > q

if F(0) < g and F Y(q) = 4.
Now we can divide the theorem into the two cases.

Corollary 5-1. If there is a distribution F with F(0) > g

in the class Fu, then
(5-10) L* =pu, y* = 0.

Corollary 5-2. If all the distributions F in the class
Fu are satisfied with F(0) <g, then there exists a unique Yp
(yF > 0) such that f[olyo}tF(dt) = qY¥p - And

(5-11) L* = py - (p-c) min

Y
Felh F

Hence, this case reduces to the problem which determines

the minimum value of Yp by other conditions of the class Fu .
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5.2 Examples for Saddle Points

The examples mentioned in this section can be easily
checked to satisfy assumptions (a), (b) and (c). Some of the
examples were treated as a minimax problem '(5—3) by the
literatures, in which cases L* and y* have been derived on the
guarantee of the existence of saddle points, but F* does no£
come out. We, therefore, derive an L* and a set of (y*,F¥*)
from Corollary 5-1, or Corollary 5-2 and other conditions of

the class FU

Example 5-1. The class F(u ) of distribution of which

only the mean u is assumed to be known.
Flu) = {JF(at)=1, [tF(dt)=u} (u > 0)

The following results are immediately seen from Corocllary

5-1.
(5-12) F*(t) = g + gG(t) (t > 0),
y* =0, L* = py,
where g = (1-gq) and G(t) is an arbitary distribution with
G(0-) = 0 such that [tG(dt) = u/q

Example 5-2. (Jagannathan [12],[13], Odanaka [27], Scarf
[32]). The class F(u,0 ) of distributions of which only the

. 2
mean U and the variance 07 are assumed to be known.

F(u,o0) = { [F(dt)=1, [tF(dt)=u, ftzF(dt)= nl+ o2}

(uw,0 > 0).



It is noted that the distribution G which has a minimum
variance in (5-12) 1is one that degenerates at a point t =

2

u/gq, and F* in (5-12) satisfies uz/( pt 02) < qg. The

analysis of this example is divided into the following two

cases according to Corollary 5-1 and 5-2.

Case 1 : uz/( u2+ 02) < q.

(5-13) F*(t) = q + gG(t) (t > 0),

y* = 0, L*¥ =py,

where G(t) is an arbitary distribution with G(0-) = 0 such
that [tG(dat) = u/q, ftzG(dt) = (¥ o%)/a.
Case 2 : pz/( e 02) > g.

From the definition of Yp in Corollary 5-2, the following

Schwartz inequalities hold.

2 2
( f[o,yo}tF(dt)) < (f[olyo}F(dt))(f[O’yo}t F(dt)),

14

2 2
w ) EF(AE)) T < (f fy©, e yF(AE))( f{yo yETF(ae)).

( f{yo

’ [e o]

After some simple calculations,

u+ o/a’/q .

u- 0v/d/d ¢ vp

HA

Then,
min Yp = W - o/a/q (>0),
Fe Flu,o)

and

(5-14) L* =cu + o/ (c+h)(p-c)

- 52 -



Since the equalities hold in the Schwartz inequalities, F*

is restricted to the following two point distribution.
Y Y a/q
a’/q -

(5-15) F* has mass g at y = M - 0O
and mass q at y = 0 + 0V q/

Then y* must be contained in the interval[x,§) because of
L(y,F*) = L* for any y € ly,y), and each ye [y,y) is a

candidate for y* if L(y,F*) > L(y,F) for some F in F(u,o )

by the condition (ii) in Lemma 5-2.

Now, let us consider the two-point distribution F which is

shifted to the left (or right) from F*, such that F has mass r

at u - o /f/r and mass r at p + o/ r/r where r < g (or r > q).
The simple calculations concerning L(y,F*) > L(y,F) for y =
U+ 0x € [X,§) yield that when r tends to g from the left (or

right),

(5-16) x < (or 2) S-(-/*f )|

dr r=q

By Lemma 5-1, there exists at least one saddle point.

Therefore, from (5-16},

(p=¢c) = (c+h)
- * = + .
(5-17) YT = Wt 9, Jlpec) (crh)
Example 5-3. (Ben-Tal and Hochman [11]) The class

F(Cu, §) of distributions of which only the mean y and the

mean absolutedeviation § are assumed to be known.



F(u,s) = {[F(at)=1, [tF(dt)=n, [|t-u| F(at)=61}

(1 > 6/2y and u,8 > 0).

The analysis of this example is divided into the following two

cases according to Corollary 5-1 and 5-2.

: 1- 8/2u < q.

Case 1 :
In this case F* is in (5-12). Then

(5-18) F*{t) = q + qG(t) (t > 0),
= 0, L* = pu ,

y* =
= 0 such

an arbitary distribution with G(0-)

is
u+ (8 -wu)/qg.

where G(t)

that [tG(dt) = wun/gq, [|t-p| cat) =

Case 2 : 1- 6/2u > q.

From the definition of Yp in Corollary 5-2, the following
inequality holds.

f[olyo}(Li-t)F(dt)= aly -yp)

= 8/2,

s [, u1tu-t)F(at)

Yp 2 ¥ - §/2q (> 0).

The equality holds if and only if

[ (0,40} (¥ -EIF*(dt) = [to,uq (v —t)F*(at) .
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Therefore,
(5-19) F*(t) = qGy(t) + &Gz(t),

y* = u, L* = cyu + (p+h) 6/2,

where G;(t) 1is an arbitary distribution on [0, u] such that
[ o, uj EG (de) = - §/2q and G,(t) ia an arbitrary distri-

pution on (U4, @) such that j( y tG,(dt) = u + §/2q.

® )

Example 5-4. The class F( u,M) of distributions of which
only the mean u and the domain [ 0,M] are assumed to be known.
Kasugai and Kasegai [ 15] and Nakagami [21] assumed the domain
only, but they treated more' practical dynamic invenﬁory
problems and derived the explicit forms of +the minimax

policies. Let us consider
FCua = [ hF(dr)=1, JtF(aty=ul (M > u > 0).

The analysis of this example is divided into the following two

cases according to Corollary 5-1 and 5-2.

Case 1 : u /M < g.

In this case F* is in (5-12). Then

(5-20) F¥(t) = g + gG(t) (t > 0),
y* = 0, L* = py ,
where G(t) 1is an arbitary distribution on [0,M] such that

0,1 t6(38) = 1/,
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Case 2 : W/M > g.

From the definition of yg in Corollary 5-2, the following

inequalities hold.
[ 10 yo}tF(dt) = 'qu, f{yo'M]tF(dt) < gM.
Yp 2 (p-aM)/q (> 0).

The equality holds if and only if F* has mass q at a point

M. Therefore,

(5-21) F*(t) = gG(t) + il[ (t),

M, ®)

y* = M, L* = cM+ h(M-u),

where I (t) 1s the indicator function and G(t) 1is an

[) ,
arbitary distribution on [0,M] such that / [ m1tG(dt) =

( u-qM)/q.

5.3 The Multi-Period Model

In this section, the demands in successive periods are
assumed to form a sequence of random variables whose
distribution are contained in Fu and can change from period
to period. The multi-periods model was treated as a minimax
problem in Jagannathan [13], Kasugai and Kasegai [15],

Nakagami [21] and Odanaka [27].
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As wusual, we define that fN(x, Fu) is the discounted
saddle valued costs over N periods as a function of the level
x of inventory before ordering and a prescribed class FU of
distributions. Then the following theorem obviously holds by

induction in applying Lemma 5-1.

Theorem 5-2. fN(x,F ) satisfies the following equation

u

(5-22) £fYN(x, F

u) value [ c(y-x) + f [Q, ﬂ h(y-t)+

y;x,FEFu
+ —
+ple-y) T+ atNhy-t, Fy0dF@an)],
where 0 < & < 1 and fo(x,Fu ) = -cx.
We have assumed fo(x,Fu ) = -cx followd by Veinott [341],

because a myopic policy for +the multi-periods inventory

problem is optimal when the demand distribution is known.

Now, we calculate fN(x,Fu ) in this myopic case. Let us
define
~ + +
(5-23) L(y,F) = (1- a)cy + I[O a>){h(y—t) + p(t-y) }F(dt)
similarly as (5-1). Then, (5-22) is reformed for N = 1 as
fl(x,Fu ) = value [ L(y,F)] - cx + ocu .
y;x,FeFu
If Fu is one of four examples in Section 5-4, a saddle

value L* and y* of a set of saddle points (y*,F*) of (5-23)

are unique and explicitly derived. Clearly,

f (x, F,,) = L* + acpy - cx for x < y*.
i <



So it holds by induction that for all N > 1.

N-1

(5-24) £Y(x, Fo)o= (rat..+ ol ) (Ervacu)  for x ¢ §*.

Hence, the following theorem is established.

Theorem 5-3. For each class FU in Section 5-2, if the
level x of inventory before ordering at period N is less than
v*, a set of saddle points for the N-periods problem (5-22) is
(y*,F*). That is, the inventory policy y* is stationary and

myopic, and the discounted saddle valued costs fN(x,Fu } over

N periods is given by (5-24).

Remark. If the level x of inventory before ordering is
larger than y*, the inventory policy y* is not feasible in the
equation (5-22). Namely, a set of saddle point and a saddle
value are not the same as (y*,F*) and (5-24), and the
inductive argument can not be used‘to construct the similar
one of Theorem 5-3.

In case of N = 1, Scarf [32] calculates fl(x, FU) for all
value of x when FU = F(pw,0 ), where fl(x, Fu) is not

linear for x > y*.
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