<table>
<thead>
<tr>
<th>Title</th>
<th>tractographyによる皮質脊髄路描出法の比較検討 : one-ROI法とtwo-ROI法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>森, 塚; 増谷, 佳孝; 青木, 茂樹 他</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 2003, 63(1), p. 51-53</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td><a href="https://hdl.handle.net/11094/15182">https://hdl.handle.net/11094/15182</a></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
tractographyによる皮質脊髄路描出法の比較検討:
one-ROI法とtwo-ROI法

森 磐1) 増谷 佳孝1) 青木 茂樹2) 阿部 修1)
林 直人1) 増本 智彦1) 山田 喜耕1) 吉川 健啓1)
國松 聡1) 大友 邦1) 桟沢 宏之2)

1) 東京大学医学部放射線科 2) GE横河メディカルシステム

はじめに
脳における拡散現象は白質組織に沿った異方性があり、
拡散テンソルにより解析できる。われわれは3次元コンピュータグラフィックスの手法を利用して、tractographyによる脳の各部位における拡散異方性の視覚的評価法を開発し、実用化をはかった。今回は、tractographyを使った皮質脊髄路の簡易描出法としてone-ROI法とtwo-ROI法を比較検討したので報告する。

対象および方法
対象は健常ボランティア5名（平均34.8±3歳、すべて男性）であり、左右合計10大脳半球について評価した。single-shot echo planar imagingによる拡散テンソル画像の収集はGE社製Sigaa Horizon LX 1.5Tを用いた。各パラメータは以下の通り：TR/TE=6000/78.3ms、3×5mm、gapless、FOV 24×24cm2、NE=2～4、matrix 128×128、b=1000、6～13軸。
われわれの開発したtractographyは汎用表示ソフトウェア（VOLUME-ONE）と拡張ソフトウェア(VizDT-2)による拡散係数最大方向の追跡表示である。任意断面上の任意形状関心領域(ROI)による開始点と標的領域の設定ができる。two-ROI法では開始ROIおよび標的ROIの両者を通るものの表示される。開始ROI内では一定密度の開始点から軌跡の計算が始まる。また、軌跡上の各点の拡散異方性に応じた色づけができ、最大逆方向の信頼性が分かれる。つまり、赤色は線状拡散、黄色は面状拡散で、白色は球状拡散を表す。異方性(FA値)や見かけの拡散係数(ADC値)による軌跡導出条件などの各種設定もできるが、今回は初期設定のまま使用した。
one-ROI法による描出：開始ROIの設定は拡散テンソルのb=0画像を用い、前交通レベルの椎間背部内を行った。まず、インデックスレベルの操作によって画像を2分割し、Yagishitaら10の言う内包後脚の高信頼域を抽出して開始ROIとした。
two-ROI法による描出：開始ROIは中脳上部レベルのb=0
1. 定性評価
1-1. 軌跡の信頼性の視覚的評価：それぞれの方法によって描出された軌跡が運動の途中で異方性の低下なく連続しているか視覚的に3点評価した。点数定義は1点=軌跡のほとんどが白く描かれており、2点=全体が白く描かれており、3点=軌跡が途中で消失しない、と定義した。
1-2. 軌跡の相違性の視覚的評価：それぞれの方法によって描出された軌跡を同一空間内で重ねて表示し、両者の異同を視覚的に3点評価した。点数定義は1点=両法による軌跡のほとんどが重なり合わず、2点=多少は重なり合うが一部が分離、3点=ほとんど全ての軌跡が重なる、と定義した。

2. 定量評価
それぞれの方法による軌跡の頭頂各部の分布を定量的に評価した。具体的には、終端が一次運動野や脳室運動野にある軌跡の数とその他の領域に終わった数を計測した。軌跡の面積自体はROI面積や観察点密度設定で変化するため、総数中の総数に対する割合(%)を比較した。統計計算にはpaired t-testを用いた。

結果

1. 定性評価
1-1. 軌跡の信頼性の視覚的評価：健常者5例の脳裏についてone-ROI法、two-ROI法のいずれでも評価は3点であり、軌跡の信頼性を確認した。
1-2. 軌跡の相違性の視覚的評価：視覚的相違性は2.0±0.1点であった。two-ROI法による軌跡はone-ROI法よりやや内側を走行する傾向にあった（Fig.1）。また、one-ROI法の背側成分は中心軸側に約半分が存在するもの多かった。いずれの方法でもprecentral knobより外側の皮質では分布していたなかった。

2. 定量評価（Table 1）
one-ROI法による描出では約4割の軌跡が運動野以外の視覚野などに分布した。これに対し、two-ROI法ではほぼすべての軌跡が運動野に分布した、one-ROI法でも1大脳半球では slogans ROIを越えた頭頂部で一次視覚野に向かう軌跡が少なかった。両法の軌跡分布の違いには統計的に有意差があった。

Table 1 Proportion of tracts

<table>
<thead>
<tr>
<th></th>
<th>average number of tracts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>motor-premotor area</td>
</tr>
<tr>
<td>one ROI method</td>
<td>39.7±3 (58.3±7) *</td>
</tr>
<tr>
<td>two ROI method</td>
<td>35.2±3 (57.5±3) *</td>
</tr>
</tbody>
</table>

*significant difference (p<0.01)
一般的に扱われる神経変性部の問題であり、部分容積現象が異常性を示し、また、具体的には皮質滑区路の外側で上総束と交差しているためは外側での描出が難しい（Fig. 2）。

今回の結果からは、いかなる内包後投の高信号域は動脈性の皮質運動細胞路のみならず一過性覚性力に向け求心性の神経束も含むと考えられる。また、内包後投の高信号域よりやや内側側の領域に皮質運動細胞路が走行する可能性を示唆している。この病理学的確認には細胞染色による多細胞分析を含む特徴検査技術が必要である。one-ROI法とtwo-ROI法の線路がどのように多少異なることはtractographyを臨床応用する上で注意を要する。つまり、one-ROI法で描出された軌跡が仮陽性の病変に重なっていても運動障害についての臨床像と差を生じる可能性がある。従って、皮質滑区路の描出により正確なtwo-ROI法をできるだけ使用する必要がある。しかし、one-ROI法とtwo-ROI法での描出像のオーバーラップは大きいため、病变による中心前回の圧迫変形が強く標的ROI設定が困難な場合には、より簡便なone-ROI法による代替が可能ですと考える。

今回の検討によりone-ROI法およびtwo-ROI法を使ったtractographyで脳皮質滑区路が描出されることが確認された。tractographyは梗塞などの白質変状による臨床症状の説明や予後予測、脳腫瘍の浸潤評価（1）やナビゲーションなどにすぐれた活用できると考えられ、今後はこれらの簡易描出法の有用性について症状との比較など実際の臨床症例での検討を行いたい。

文 献
1) 塚谷佳之, 阿部修, 青木茂樹, 他: ME拡散テンソル画像の解析による脳白質神経線維構造：実験的“tractography”。Ned Imag Tech 20: 581-592, 2001
2) Yagishita A, Nakuno H, Oda M etal: Location of the corticospinal tracts in the internal capsule at ME imaging. Radiology 191: 455-63, 1994

平成13年1月25日