|

) <

The University of Osaka
Institutional Knowledge Archive

Tale Implementation of Service Specifications on
Distributed Computing Systems

Author(s) |ILO, BAfE

Citation |KFRKZ, 1998, EHIHwX

Version Type|VoR

URL https://doi.org/10.11501/3144071

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Implementation of Service Specifications

on Distributed Computing Systems

Hirozumi Yamaguchi

January 1998

e

Implementation of Service Specifications on
Distributed Computing Systems

Hirozumi Yamaguchi

January 1998

Dissertation submitted to the Faculty of the Engineering Science
of Osaka University in partial fulfillment of the requirements for

- the degree of a Doctor of Philosophy in Engineering

Abstract

This thesis summarizes the work of the author as a master/doctor stu-
dent of Osaka University on the implementation of service specifications on
distributed computing systems.

In a distributed computing system, multiple computers, called protocol
entities, communicate with each other, exchanging messages for synchronization
and data transfer. On the implementation phase of such a distributed system,
the behavior of all the protocol entities must be specified. The specification of
each protocol entity is called a protocol entity specification and the set of all
the protocol entity specifications is called a protocol specification. In general,
the control flow of each protocol entity specification may become complicated,
since it contains communications among other protocol entities for cooperative
computing. Therefore, it is hard for designers to describe a protocol specification
directly without mistake.

In the recent years, for designing reliable distributed computing systems,
many approaches based on a design method, called protocol synthesis, have been
studied. In the studies of protocol synthesis, from a service specification of a
distributed system and a resource allocation, a protocol specification of the dis-
tributed system is automatically derived. At the level of service specifications,
protocol entities and communication channels among them are hidden, and only
the actions of the system and their temporal ordering are specified. The resource
allocation specifies an allocation of I/O ports and internal resources to protocol
entities. On the other hand, at the level of protocol specifications, for each pro-
tocol entity, its own actions, communications with other protocol entities and
their temporal ordering are specified. Both service and protocol specifications
provide the same behavior for the service users of distributed system.

In general, tradeoff exists between the class of service specifications and
the complexity of derivation algorithms. Therefore, it is one of the goals for the
researches of protocol synthesis to provide an efficient derivation algorithm for
service specifications written in a powerful model. From such a point of view,

this thesis provides the following two issues of protocol synthesis.

As the first issue, an algorithm to derive a protocol specification from a
service specification written in an extended model of Petri nets and a resource
allocation is proposed. In general, almost all distributed systems perform in-
puts/outputs with parameters and the internal calculation of their new values.
Also they may be performed concurrently on single/multiple protocol entities.
Therefore, an extended Petri net model, called a Petri net model with Regis-
ters (PNR model in short) is used so that parallel and choice can be naturally
~ specified and I/O’s with parameters and internal calculation of their new val-
ues can be formally modeled. In the proposed mefhod, a resource allocation,
which specifies an allocation of I/O gates and registers to protocol entities can
be given. Therefore the method is flexible for the change of distributed envi-
ronments, such as the increase/decrease of the number of computers and the
alternation of database servers. '

In the derivation algorithm, first, for each transition in a service speci-
fication, how each protocol entity simulates the behavior of the transition is
decided based on a fixed simulation policy. The behavior of each transition is
simulated independently of other transitions, therefore, the correctness of the
simulation can be proved easily. Note that in the simulation policy, the way
of exchanging messages may not be uniquely decided. In such a case, the way
which needs the least number of messages can be decided using a technique to
solve 0-1 integer linear programming problems. Then each protocol entity per-
forms the simulation of the transitions in the same execution order as that in
the service specification. As a result, the behavior of all the transition sequences
in the service specification is simulated. For such a purpose, each protocol en-
tity needs to extract the execution order of the related transitions by removing
other transitions from the service specification. However, in Petri net based
models, transitions may represent synchronous points, therefore, they cannot
be removed easily. In the algorithm, using a property of Petri nets, they are
removed without inconsistency.

Based on the proposed method, a derivation system, which derives a proto-
col specification from a service specification and a resource allocation has been

developed. Also an execution system, which interprets a protocol entity spec-

i

ification on one machine, communicating with others on a network, has been
developed. Using these systems, the proposed method can be applied to Com-
puter Supported Cooperative Work (CSCW). Suppose that all the activities of
every worker are regarded as I/O events using computer tools, on a specific I/O
gate for the worker. Also suppose that resources for a cooperative work, such as
files, are represented as registers, and the modification of resources is regarded
as the calculation of register values. At an abstract level, all of such I/O gates
and registers are placed on one machine. Then the process of the cooperative
work is described in PNR model. This process description is treated as a service
specification. On the other hand, at an implementation level, suppose that each
worker uses his own machine on a network. The machine is regarded as a proto-
col entity. Also suppose that the execution system is running on each protocol
entity and I/O gates and registers are allocated to the protocol entities. The
derivation system automatically derives a set of protocol entity specifications (a
protocol specification) and each of them is interpreted by each execution sys-
tem. As a result, the working process of each worker is automatically managed
in a distributed environment. Using the above scheme, a protocol specification
of ISPW-6 example process which specifies the modification of a software code
and its examination is derived.

For distributed systems where time constraints between actions are speci-
fied, communication delays among protocol entities must be considered in their
protocol specifications. As the second issue, an algorithm to derive a protocol
specification from a service specification written in an extended model of time
Petri nets, a resource allocation and maximum /minimum communication delays
between each pair of protocol entities is proposed. In the proposed method, no
synchronous clocks among protocol entities are assumed.

Protocol entities simulate the behavior of service specifications as follows.
First, for each transition in a service specification, each protocol entity which
has executed its I/O event sends notification to the protocol entities which will
execute the I/O events of next transitions. Also each protocol entity which has
calculated the new value of a register sends the value as early as possible, to

the protocol entities which may need it in future. In this policy, it is necessary

iii

to check whether there exist the time constraints of transitions in the protocol
specification satisfying those in the service specification or not. It is also neces-
sary to decide the time constraints if they exist. In the proposed method, time
constraint of each transition to be decided is represented as a pair of variables
and the restrictions among them are represented as linear inequalities. Using a
technique to solve linear programming problems, they are decided automatically

if they exist.

iv

(1)

List of Major Publications

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K. : Synthesis
of Protocol Specifications from Service Specifications of Distributed Sys-
tems in a Marked Graph Model, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, Vol.E77-A, No.10,
pp.1623-1633, Oct. 1994.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K. : “Synthesis

of Protocol Entities’ Specifications from Service Specifications in a Petri

~Net Model with Registers, Proceedings of the 15th IEEE International

Conference on Distributed Computing Systems (ICDCS-15), pp.510-517,
May 1995.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K. : Protocol
Synthesis in a Petri Net Model with Registers and Its Application, The
Transactions of the Institute of Electronics, Information and Communica-
tion Engineers, Vol.J80-A, No.7, pp.1064-1072, Jul. 1997. (in Japanese)

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K. : Protocol
Synthesis from Time Petri Net Based Service Specifications, Proceedings
of the IEEE 1997 International Conference on Parallel and Distributed
Systems (ICPADS’97), pp.236-243, Dec. 1997.

Yamaguchi, H., Okano, Kl., Higashino, T. and Taniguchi, K. : Protocol
Synthesis in a Time Petri Net Model with Registers, Transactions of In-
formation Processing Society of Japan, Vol. 39, No. 3, Mar. 1998 (to

appear). (in Japanese)

Acknowledgments

This work could be achieved owing to a great deal of helps of many indi-
viduals.

First, I would like to thank my supervisor Professor Kenichi Taniguchi of
Osaka University, for his continuous support, encouragement and guidance of
the work.

I'm very grateful to Professor Mamoru Fujii, Professor Toru Kikuno and
Professor Hideo Miyahara for their invaluable comments and helpful sugges-
tions concerning this thesis. I’'m also very grateful to Professor Nobuki Tokura,
Professor Masaru Sudo, Professor Toshinobu Kashiwabara, Professor Akihiro
Hashimoto, Professor Kenichi Hagiwara, Professor Masaharu Imai, Professor
Katsuro Inoue and Professor Toru Fujiwara for their valuable comments on this
thesis.

T grieved to hear that Professor Seishi Nishikawa passed away in August,
1997. I will remember him with great affection and pray for the repose of his
soul.

I would like to express my sincere gratitude to Associate Professor Teruo
Higashino of Osaka University for his adequate guidance, valuable suggestions
and discussions throughout this work. This work could not be achieved without
his continuous support, encouragement and guidance.

I wish to express my special gratitude to research associate Dr. Kozo Okano
of Osaka University for his continuous support, helpful suggestions, encourage-
ment and adequate guidance.

I also wish to express my special gratitude to Assistant Professor Keiichi
Yasumoto of Shiga University for his helpful suggestions and encouragement.

I wish to thank Professor Tadao Murata of University of Illinois for his
helpful comments for starting this work. 7

Finally, I would like to thank all the members of Taniguchi Laboratory of
Osaka University for their helpful advice.

vi

Contents

1 Introduction

2 Definition

21

2.2
2.3

3.1

3.2
3.3
3.4

3.5
3.6
3.7

Petri Net and Its Properties

2.1.1 PetriNet
2.1.2 Properties o
Time Petri Net,
Extension of Petri Net and Time Petri Net
2.3.1 Petri Net Model with Registers
2.3.2 Time Petri Net Model with Registers

Service Specification and Resource Allocation
3.1.1 Service Specification L.
3.1.2 Resource Allocation.
Protocol Specification. 0oL
Derivation Problem « o o v e e
Derivation Algorithm
3.4.1 Simulation of Each Transition
3.4.2 Simulation of Transition Sequences
3.4.3 Register Conflict
Sketch of Correctness Proof
Evaluation

Conclusion v o i e e e

vil

© o 0o

Protocol Synthesis from Petri Net Based Service Specifications 14
14

4 Application of Protocol Synthesis : Cooperative Work Support 38

4.1
4.2

4.3

4.4

4.5

Why Is Protocol Synthesis Useful? 38
Process Modeling in PNR Model 41
4.2.1 Whole Description 41
4.2.2 Task/Resource Allocation 43
Derivation of Individual Descriptions 44
4.3.1 Individual Descriptions 44
- Computer Support for Cooperative Work 46
44.1 Derivation System, 46
442 ExecutionSystem, 49
4.4.3 Supporting Facilities 50
Conclusion 0 e 55

5 Protocol Synthesis from Time Petri Net Based Service Specifi-

cations 56
5.1 Service Specification 57
5.2 Resource Allocation and Communication Delays 58
5.2.1 Resource Allocation. 58
5.2.2 Communication Delays 39

5.3 Protocol Specification59
5.4 Derivation Problem 60
5.5 Derivation Algorithm o0 63
55.1 Deriving Nets, 64
5.5.2 Deciding Time Constraints 65

5.6 Sketch of Correctness Proof 73
5.7 DISCUSSION . . . v v v v e e e e e e e e e e e e 75
58 Conclusion e 76
6 Conclusion 78

viil

Chapter 1
Introduction

Due to the recent progress of high-speed networks and high-performance com-
puters, many systems are implemented as distributed computing systems on
networks, where computers communicate with each other for cooperation. On
the implementation phase of such a distributed computing system, the behav-
ior of all the computers must be specified. However, their control flows may
become complicated, since they contain communications among the computers.
Therefore, it is hard for designers to describe their behavior directly without
mistake.

In the recent years, in order to design and implement reliable distributed
computing systems, many studies of protocol synthesis [10, 11] have been stud-
ied. In protocol synthesis methods, the specification of a distributed system
is described at two different abstract levels. At an abstract level, comput-
ers (protocol entities) and communication channels among.them are hidden.
The specification at this level is described as the I/O events on Service Ac-
cess Points (SAP’s), the modification of internal resources and their ordering.
SAP’s represent interfaces between the system and users. On the other hand,
at an implementation level, each protocol entity has some of SAP’s and internal
resources. The specification at this level consists of a set of all the protocol
entities’ specifications, each of which is called a protocol entity specification:
Each protocol entity specification is described as the I/O events on its SAP’s,
the modification of its internal resources, communications and their ordering.

The specifications at the former and latter levels are called service and protocol

specifications, respectively. In protocol synthesis methods, a derivation algo-
rithm automatically derives a protocol specification from a service specification
and a resource allocation, which specifies an allocation of SAP’s and internal
resources to protocol entities. Therefore, it can prevent the mistake and reduce
the complexity for describing protocol specifications.

Several approaches of protocol synthesis based on some computational
models such as FSM/EFSM [23, 24, 25, 26], LOTOS [17, 18, 19, 20, 21, 22]
and Petri nets [51, 53] have been proposed. In FSM/EFSM based approaches,
parallel synchronization cannot be specified in service specifications essentially.
It is a serious disadvantage point. In LOTOS based approaches, complex control
flows can be specified in service specifications using several LOTOS operators
such as parallel, choice, disenabling and process invocation. However, these
approaches except [19] only focus on the efficient implementation of the control
flows, therefore they do not consider to treat the calculation of state variables,
which represent internal resources. Although variables are treated in [19], it
only describes a way to delivery input values to protocol entities. Also the same
problem can be found in Petri net based approaches, even though they have an
advantage for the graphical representation of service and protocol specifications.
It is desirable that both parallelism and choice can be specified and that the
. calculation of state variables can be modeled explicitly in service specifications.

Also those approaches are not sufficient for real-time distributed systems
since they do not consider the urgency of services (time constraints). It is
more complex and troublesome to decide suitable time constraints of protocol
specifications under the presence of communication delays, satisfying the time
constraints of service specifications. For service specifications with time con-
straints, a timed automaton based approach in [47] and a timed LOTOS based
approach in {48] have been proposed. The former one is the first approach for
this issue and the latter one is an extension so that they can treat service speci-
fications with more complex structures, using a timed LOTOS model. Although
these approaches can handle service specifications with time constraints between
non-successive actions, they assume the existence of synchronous clocks among

protocol entities. In addition, the state variables are not considered although

the transmission of their values among protocol entities may need additional
communication delays.

In this thesis, the following three issues are described.

1. A protocol synthesis method from service specifications written in an ex-
tended Petri net model is proposed. The method provides how to simulate
a service specification including parallelism and the calculation of state
variables in a distributed environment, without inconsistency. In order to
make the correctness of protocol specifications easy to prove, a simulation
policy, which simulates the behavior of each transition independently, is
adopted. The number of messages exchanged for simulating the behavior

of each transition based on the simulation policy is minimized.

2. An application of the proposed protocol synthesis method is shown. From
a whole process description of cooperative work in PNR model and an
allocation of tasks to workers, a set of process descriptions of workers is
automatically derived. A derivation system which derives a set of process
descriptions of workers and an execution system which interprets a pro-
cess description of a worker have been developed. Using the system, the

efficiency of the synthesis method for cooperative work support is shown.

3. A protocol synthesis method from service specifications written in an ex-
tended time Petri net model is proposed. The method provides how to
simulate a service specification with time constraints in a distributed en-
vironment under the presence of communication delays. Therefore the
different cost measure, urgency of time, is introduced and an adequate
simulation policy suitable for the cost measure should be adopted. In this
method, a simulation policy, where each protocol entity holding the latest
data sends it as soon as possible to the protocol entities which may need
it in future is adopted, even though it may lead unnecessary messages.
The total sum of possible time range intervals of actions in the protocol

specification is maximized.

As the first issue of this thesis, a method for deriving a protocol specification

from a service specification and a resource allocation is proposed. Both service

and protocol specifications are written in an extended Petri net model, called
Petri Net model with Registers (PNR model in short). In general, almost all
distributed systéms perform inputs/outputs with parameters and the internal
calculation of their new values. Also they may be performed concurrently on
single/multiple protocol entities. In this thesis, a Petri net, where concurrency
can be naturally treated, is extended so that such 1/O’s with parameters and
the internal calculation of their new values can be treated. In PNR model, an
I/O event executed on an I/O gate (SAP) and the calculation of new values
of registers (state variables) are specified as an action of a transition. Also a
predicate on input and register values can be also specified as one of the firing
conditions of a transition. In the proposed method, a resource allocation, that is
an allocation of I/O gates and registers to protocol entities, can be specified. It
means that the method can cope with the change of distributed environments,
such as increase/decrease of computers and alternation of database servers, by
deriving a protocol specification again from the same service specification and
a new resource allocation.

In the derivation algorithm, first, for each transition in a service specifi-
cation, the behavior of each protocol entity for simulating the behavior of the
transition is decided based on a fixed simulation policy. Note that‘not all the
protocol entities are related to the simulation of the transition. Here, the behav-
ior of each transition is simulated indep‘endently of other transitions. Therefore,
the correctness of the simulation can be proved for each transition. It makes
the correctness proof of the derivation algorithm easy. In the simulation policy,
the ways of exchanging messages may not be uniquely decided. In such a case,
it is desirable that the best one, which needs the least number of messages, can
be found. In the proposed method, a 0-1 integer variable is introduced for each
message to be exchanged. Its value is 1 if and only if the corresponding message
is sent. Then the conditions to be satisfied based on the simulation policy are
represented as 0-1 linear inequalities on those variables. Using a technique to
solve 0-1 integer linear programming problems, a best solution to provide the
least number of messages can be found. Then each protocol entity performs

the simulation of the related transitions in the same execution order as that in

the service specification. As a result, the behavior of all the transitions in the
service specification is simulated in the protocol specification. For such a pur-
pose, each protocol entity extracts the execution order of the related transitions
from the service specification. In general, such an extraction is simple if the
service specification is written in an FSM based model, since every transition
can be removed by merging its unique input state with its unique output state.
However, in Petri net based models, such a technique cannot be easily applied
to all the transitions, since some transitions may represent synchronous points,
that is, they may have several input/output states. In the algorithm, the Petri
net of a service specification is restricted to be live and safe. Such a Petri net
can be divided into a tuple of FSM’s. Then the transitions which are not related
to the protocol entity can be removed easily, and each protocol entity obtains
the execution order of the related transitions. _

As the second issue of this thesis, a derivation system, which derives a
protocol specification from a service specification and a resource allocation has
been developed. Also an execution system, which interprets a protocol entity
specification on one machine, communicating with others on a network has
been developed. Using these systems, the proposed method can be applied to
Computer Supported Cooperative Work (CSCW). Suppose that all the activities
of each worker are regarded as I/O events using some tools, on a specific I/O
gate for the worker. Also suppose that resources for cooperative work, such as
files, are represented as registers, and the modification of resources is regarded
as the calculation of the new values of the registers. At an abstract level, all of
such I/O gates and registers are placed on one machine. Then the process of the
cooperative work is described in PNR model. This working process description
is treated as a service specification. On the other hand, at an implementation
level, suppose that each worker uses his own machine on a network. The machine
is regarded as a protocol entity. Also suppose that the execution system is
running on each protocol entity and I/O gates and registers are allocated to
protocol entities. The derivation system automatically derives a set of protocol
entity specifications (a protocol specification) and each of them is interpreted

by each execution system. As a result, the working process of each worker is

automatically managed on a network. In this thesis, using the above scheme,
a protocol specification of ISPW-6 example process [43] which specifies the
modification of a software code and its examination is derived. |

As the third issue of this thesis, a method for deriving a protocol specifi-
cation from a service specification written in an extended model of time Petri
nets [4], a resource allocation and maximum/minimum communication delays
among protocol entities is proposed. The extended model is called a Time
Petri Net model with Registers (TPNR model in short). The derived protocol
specification satisfies the time constraints of the service specification.

In general, synchronous clocks which provide a precise global time are not
always available in distributed systems, even though almost existing methods
assume such a global time. Therefore, in distributed systems where a global
time is not available, the way of simulating the behavior of service specifica-
tions with time constraints should be considered. In the derivation algorithm,
the TPNR model is used, where each transition’s time constraint is specified
by the upper and lower bounds of the elapsed time from the time when all
the previous transitions have been executed. Then for each transition in a ser-
vice specification, the protocol entities which have executed the I/O events of
its previous transitions send notification messages to the protocol entity which
executes the I/O event of the transition. By receiving those messages, it can
estimate the time when all of the I/O events of its previous transitions have
executed in other protocol entities. Therefore, the time constraint of the I/O
event can be decided. Also, messages for transmitting register values may need
additional delays. Therefore, each protocol entity which has calculated the new
value of a register sends the value as soon as possible to the protocol entities
which may need it in future. Note that such a policy may lead unnecessary
messages. Here, if the delays of notification and value transmission messages
are considered, there may not exist the time constraints of transitions in pro-
tocol specifications which satisfy those in service specifications. Therefore, it is
- necessary to check whether such time constraints exist or not. It is also neces-
sary to decide time constraints when needed. In the proposed method, the time

constraint of each transition to be decided is represented as a pair of variables.

Then the relations among such variables are represented as linear inequalities.
Using a technique to solve linear programming problems, they are decided au-
tomatically if they exist. Otherwise it is decided that the service speciﬁcatioﬂ
cannot be implemented on the resource allocation and the minimum/maximum
communication delays.

In this thesis, two methods for deriving protocol specifications from ser-
vice specifications and resource allocations are presented. These methods are
based on different concepts, therefore, the simulation policy and cost measure
of one method are quite different from those of the another. The results of
these researches can spread the applicable class of service specifications in pro-
tocol synthesis methods. They may be helpful for the design phase of reliable

distributed computing systems.

Chapter 2

Definition

2.1. Petri Net and Its Properties
2.1.1 Petri Net

The formal definition of Petri nets [4] is given below.

Definition 2.1 Petri Net: A Petri net is a kind of weighted, directed, bipartite
graph, with an initial state called the initial marking, and is denoted by a 5-tuple
PN = (P,T,F,W, M,) (or simply (N, M) where N denotes (P, T, F,W)).

e P is a finite set of places,

o T is a finite set of transitions, PNT =@ and PUT # 0,
e Fisasetofarcs, FCPxTUT x P,

o W is a weight function, W : F — {1,2,3,...} and

e M, is the initial marking, My : P — {0,1,2,3,...}.

If a marking assigns a nonnegative integer & to a place p, we say that p is marked
with k£ tokens. |

For u,v € PUT, we denote the arc from u to v by (u,v) and the weight of
the arc (u,v) by w(u,v). A Petri net is said to be ordinary if the weights of all
arcs are 1’s. We also denote the preset {v|(v,u) € F} of u by eu, the postset
{v|(u,v) € F} of u by ue and the set of all the elements in the postsets for the

elements in ue by u e e.

A transition £ is said to be enabled if each input place p of ¢ is marked with
at least w(p,t) tokens. A firing of an enabled transition ¢ removes w(p,t) tokens

from each input place p and adds w(t,p) tokens to each output place p of t.

2.1.2 Properties

Definition 2.2 Liveness:' A Petrinet PN = (N, M) is said to be liveif, for any
pair of a marking M reachable from the inifial marking M, and a transition ¢,
there exists a finite length of firing sequence (enabled transition sequence) from

M which let fire the transition ¢. |

Definition 2.3 Safeness: A Petri net PN = (N, M) is said to be safe if, for
any marking M reachable from M,, the number of tokens for each place is at

most one. 0

Liveness and safeness guarantee that a net is deadlock-free and that the
number of its reachable states from the initial marking is finite, respectively.

Now we define a class of subgraphs of Petri nets.

Definition 2.4 SM-Component on PN: A subgraph PN’ of a Petri net PN is
said to be an SM-component on PN if each transition in PN’ has exactly one

input place and one output place.]
Here, we introduce the following theorem for live and safe Petri nets.

Theorem 2.1 Decomposition of Live and Safe PN: For a live and safe Petri
net PN, there exists a set of strongly connected SM-components which covers
PN.

Proof: Live and safe Petri nets are strongly connected [4]. The procedure
“Find” (it is described in 3.4.2) finds all the transitions and places which do not
belong to any SM-component and appends them to one of SM-components. Also
“Find” finds a loop and all the place-to-place paths belonging to the loop, and
regards them as an SM-component. Therefore, each SM-component is strongly

connected. O

2.2. Time Petri Net
Merlin’s time Petri net (TPN) [1] is defined as follows.

Definition 2.5 Time Petri Net: A time Petri net is an extended model of Petri
nets and it is denoted by a 6-tuple (P, T, F, W, C, M) where

e PN = (P,T,F,W, M) is a Petri net and

e C:T > 0UZ*x0UZT is a time constraint labelling function where Z*

denotes nonnegative rational numbers. O

Each transition # in TPN is said to be enabled if, it is enabled in PN. Now
suppose that ¢ becomes enabled at time 7' and has a time constraint [Eft(t),
Lft(t)] (Eft(t) < Lft(t)). t must not fire before T + Eft(t) and must not stay
enabled beyond T + Lft(?).

In time Petri nets, only upper and lower bounds between the time when ¢
becomes enabled and the time when t fires can be specified as constant values.
Therefore, if we would like to specify the time constraints between two transi-

tions from ¢; to t;, they must be successive transitions, that is, ¢; € £; ¢ ® must
hold.

2.3. Extension of Petri Net and Time Petri Net

2.3.1 Petri Net Model with Registers

In this chapter, we introduce a Petri Net model with Registers (PNR model in
short) to formalize I /O’s with values and the calculation of the new values of the
state variables using input values. Suppose that a system has a finite number
of registers which represent state variables (internal resources of a system) and
I/0 gates which represents SAP’s (interfaces between the system and its users).
In PNR model, a pair of an I/O event which occurs on an I/O gate and the

calculation of new register values can be specified as the action of each transition.

Definition 2.6 Petri Net Model with Registers: A Petri Net Model with Reg-
isters (PNR model) is denoted by a pair PNR = (PN, X), where ¥ is defined
as a 8-tuple X = (G,,R,V, E,G,C, 0, Init).

10

PN is a Petri net,

G, is a finite set of I/O gate symbols,

R is a finite set of register variables,

V is a finite set of input variables,

e E s a finite set of I /O event expressions, whose I/O gates are the elements

in G, N

G is a finite set of guard expressions,

C is a finite set of register value substitution statements,
¢ §:T — G x E x C* is a labelling function where C* = {s | s C C} and

Init: R — D is a function specifying the initial values of registers where

D is a domain of register values.

Each transition ¢t has a label of 3-tuples { G(t), E(t), C*(t)). An I/O event
E(t) has the either form “a!Ezp;(...), Ezps(...),...7z,y,...” or an internal event
“”. “a” is an I/O gate symbol, “!Ezp,(...), Exps(...),...” is an output action

”

emitting the values of “Exp(...), Exps(...),...".

”

“lx,y,..” is an input action
getting input values and assigning them to input variables “z,y,...”. The scope
of those input variables is on the transition ¢. Register variables are global

“3” means that

variables whose scope is on all the transitions. An internal event
no I/O event occurs on any I/O gate. A guard expression G(t) is a predicate
whose arguments may be input variables on ¢t and/or register variables. Each
register value substitution statement in C*(t) has a form like “R, « f(..)”.
f is a function whose arguments may be input variables on ¢ and/or register
variables, and returns the new value of R,. C*(t) is allowed to be an empty set

0. O

Definition 2.7 Firing Rule of Transitions in PNR Model: A transition ¢ issaid
to be enabled in PNR model PNR = (PN, X) iff t is enabled in PN and the

value of guard expression G(t) is true. If an enabled transition ¢ fires, the I/O

11

1/0 gates (SAP’s)

—+

R1 <-R2
a®/R2:-R1 I§2+x{}*
Registers

Figure 2.1: A Transition in PNR Model.

event E(t) is executed. If F(¢) includes an input action and no input values
are given from the I/O gate, ¢ cannot fire until input values are given. Then all
of the register value substitution statements in C*(¢) are executed in parallel.

Note that each transition ¢ is regarded as an atomic action. m]

An example of a transition in PNR model is shown in Fig. 2.1. Suppose
that an input value given from I/O gate “a” is 3, and the values of registers
R; and Ry are 1 and 2, respectively. Now the value of the guard expression
“r > R;” is true and each input place has a token. Therefore, the transition
is enabled. If it fires, the I/O event “a?z” is executed (that is, the input
value is actually read from I/O gate “a”). Then the register value substitution
statements “R; < Rp + 2” and “Ry + R; + Ry + z” are executed in parallel.
In this case, the values of registers R; and R, are substituted to 5 (=2+3)
and 6 (= 1+ 2+ 3), respectively.

2.3.2 Time Petri Net Model with Registers
A Time Petri Net Model with Registers (TPNR model in short) is an extended

- model of time Petri nets. The definition is given below.

Definition 2.8 Time Petri Net Model with Registers: A Time Petri Net Model
with Registers (TPNR model) is denoted by a pair TPNR = (T'PN, X) where

12

o TPN is a time Petri net and
e Y is a 8tuple & = (G,,R,V,E,G,C,$, Init).

The definition of ¥ is the same as that in Definition 2.6. O

A transition ¢ in TPNR model TPNR = (T'PN,X) is said to be enabled
if, it is enabled in TPN and the value of its guard expression is true. Now
suppose that ¢ becomes enabled at time T' and has a time constraint [Eft(z),
Lft(t)] (Eft(t) < Lft(t)). t must not fire before T + Eft(t) and must not stay
enabled beyond T + Lft(¢).

For example, assume that the transition in Fig. 2.1 has a time constraint
[3, 5]. The transition must fire between times T'+3 and T'+5 unless it becomes
disabled by time T+5. If it fires, its behavior is the same as that of the transition
explained in Section 2.3.1.

Finally, in PNR and TPNR models, there can be a pair of transitions which

substitutes/refers the value of the same registers concurrently.

Definition 2.9 Register Conflict Transition Pair: In PNR or TPNR model, for
a pair of ¢; and ¢; each of which is firable in parallel with the other, if (a) both
t; and t; have the same register R’s value substitution statements or (b) ¢; has
a register R’s value substitution statement and ¢; refers the value of R, the pair

is called a register conflict transition pair.]

13

Chapter 3

Protocol Synthesis from Petri

Net Based Service Speciﬁcations

In this chapter, we propose an algorithm to derive a protocol specification in
PNR model from a service specification in the same model and a resource al-
location. In Section 3.1, we will show examples of a service specification and a
resource allocation. The behavior of the service specification is also explained.
In Section 3.2, we will show the derived protocol specification from the service
specification and a resource allocation in Section 3.1. The behavior of the pro-
tocol specification is also explained. Then we formally define the derivation
problem treated in this chapter, in Section 3.3. The derivation algorithm is de-
scribed in Section 3.4. In Section 3v.5, we will give a sketch of correctness proof.
The experimental results of derivation time are shown in Section 3.6. Finally,

we conclude this chapter in Section 3.7.

3.1. Service Specification and Resource Allocation

3.1.1 Service Specification '

Let Sspec denote a service specification of a distributed system. Sspec is de-
scribed in PNR model. Figure 3.1 shows an example Sspec. At the level of
service specifications, protocol entities (computers) and communication chan-
nels among them are hidden. 1/O gates “a”, “b” and “c” are used as interfaces
between the system and its users. Registers Rap, Ridz, Riog and Ryyum represent

a database, a database index, a log-file and an access number, respectively. R,

14

a‘ b‘ c _
t2 s, key

Rusr <=usr
Rnum <~

Riog<-append(Rlog, Rusr, Rnum)

Rusr || Rlog || Rdb || Ridx (| Rres || Rnum

Figure 3.1: Service Specification in PNR Model.

and R,., are used for holding an input value and a calculation result, respec-
tively.

On the transition ¢;, a user ID given from I/O gate “a” (the value of usr),
is stored to R,s and an access number (the value of R,,,) is incremented.
Then, which transition ¢y or t3 fires is decided according to a keyword given
from I/O gate “b” (the value of key). If the keyword is not found in the index
(the value of R;4,), then to fires and the value of R,.; is set to null. Otherwise
t3 fires and the value of R,., is set to the result of the retrieval of the database
Rg,. In parallel with ¢5 or t3, the user ID and access number are appended to
the log-file (the value of Rj,,) on the transition t4. Finally, the result of the
retrieval (the value of R,.s) is emitted to I/O gate “a”. Here, functions such
as “retrieve” and “append” are user-defined. Their semantics are not necessary
in the algorithm. Hereafter, the guard expressions whose values are identically

true and the empty sets of register value substitution statements are omitted in

15

figures.
In this chapter, for simplifying the algorithm, we assume that Sspec satisfies

the following restrictions.

¢ [Restriction 1] The Petri net of Sspec must be live and safe.

¢ [Restriction 2] Sspec must not include any register conflict transition

pairs.

”

e [Restriction 3] Sspec must not include internal events “

The liveness and safeness are defined in Definitions 2.2 and 2.3, respectively.
Restriction 1 is necessary for the derivation algorithm. It will be discussed in
Section 3.4.2. The reason to assume Restriction 2 is shown in Section 3.4.3.

Restriction 3 is not essential.

3.1.2 Resource Allocation

At the level of protocol specifications, a distributed system consists of p protocol
entities (PE’s) 1, ..., p. Here, a protocol entity k is denoted by PE;. The 1/O
gates and registers used in Sspec are allocated to p protocol entities. Such an
allocation is called a resource allocation and denoted by Alloc(p, Sspec). In
Alloc(p, Sspec), each I/O gate is allocated to exactly one protocol entity, while
each register can be allocated to more than one protocol entity.

Table 3.1 shows an example resource allocation Alloc(3, Sspec). In this
resource allocation, one register R, is allocated to two protocol entities PE;
and PE;. Similarly, the register Ry is allocated to two protocol entities PEs
and PE3. Such a multiple allocation of one register means that there are some
copies of the register and they are maintained by multiple protocol entities
indepehdently. It does not mean that there is a shared variable.

Here, we assume a restriction for Alloc(p, Sspec).

¢ [Restriction 4] For any pair of transitions ¢; and ¢; which share an input
place p in Sspec, if G(t;)NG(t;) # false for some values of registers/inputs,
I/0O gates of their I/O events must be allocated to one protocol entity in
Alloc(p, Sspec), that is, RPE(t;) = RPE(t;) must hold.

! 16

Table 3.1: Resource Allocation.

PE, PE, PE;
1/O gate | a, ¢ b
Register Rusr Rid:c; Rlog7 Rres; Rdb Rusra Rdba Rnum

RPE(t) is defined as follows.

Definition 3.1 Responsible Protocol Entity: For each transition ¢ in Sspec, sup-
pose that the I/O event of ¢ is executed on an I/O gate a. The protocol entity
which has the I/O gate a is called a responsible protocol entity of ¢ and denoted
by RPE(t). ‘ m]

Restriction 4 prohibits a distributed choice, where more than one protocol
entity has the initiative of the choice. In our derivation algorithm, we assume
that the responsible protocol entity of ¢; has the initiative of ¢;. If Restriction
4 holds, for each choice, a protocol entity which has the initiative of all the
transitions in the choice is uniquely decided. Note that there are several methods
to decide such a protocol entity that has the initiative of a choice. However, we

assume this for the simplicity of discussion.

3.2. Protocol Specification

A service specification Sspec is implemented on p protocol entities. Here, the
specification of each PE is called a protocol entity specification, and protocol
entity specification of PEj; is denoted by Pspecy. Also a set of p protocol
entity specifications (Pspeci, ..., Pspec,) is called a protocol specification,
and denoted by Pspeci!®),

For each pair of PE; and PE;, there is a reliable duplex communication
channel and the PE;’s (PE;’s) side of its ending point is modeled as an I/O
gate gi; (gj:). If PE; executes an output event g;;!d, the data d (a message) is
transmitted to PE; (message sending). If PE; executes an input event g;;?w,

the transmitted message is assigned to the input variable w, and removed from

17

af o}

} ‘ Protocol Entity 1

D=t 31

sHfes

Protocol Entity 2

-

1D{w)==]

< retrieve (Rdb, Tmp2.key)

o= .21

O

7 3
Mot | Fi9x |[Rlog] [Rres | [Rdb | [Tmp2]
Protocol Entity 3
Bi{} sps_(
rw Wrod 32{Rnur, Fust 1

ia2(} 1D(w)==Mro4.13

l Rusr | fndb [| Rnum| [Tmp3|

Figure 3.2: Protocol Specification in PNR Model.

18

the communication channel (message receiving). If there is no message in the
channel, PE; cannot execute any input action via g;;. We assume that each
message has its identifier (ID). PE; gets the message ID from received data using
a function ID. ID(w) returns the message ID included in an input variable w.
We also assume that each PE; has a local register T'mp,. Tmpy can hold
multiple values. It can hold the values of input variables and registers received
from the other protocol entities. Tmpy.R; (I'mpi.z) denotes the value of the
register R, (the input variable z) stored in Tmp. '
For Sspec in Fig. 3.1 and Alloc(3, Sspec) in Table 3.1, Pspect™® in Fig.
3.2 is derived in our derivation algorithm. In Pspeci!®, I/O event sequences
executed on I/O gates “a”, “b” and “c” are the same as those in Sspec. Note that
in Fig. 3.2. for better readability, transitions for sending/receiving messages

are represented as white rectangles.

3.3. Derivation Problem

We formally define a derivation problem treated in this chapter as follows. From
a given pair of a service specification Sspec described in PNR model and a re-
source allocation to p protocol entities Alloc(p, Sspec), which satisfy Restric-
tions 1, 2 and 3 in Section 3.1.1 and Restriction 4 in Section 3.1.2, the problem

is to derive a correct protocol specification Pspect!?).

Definition 3.2 Correctness: We say that Pspec{l? is correct with respect to

Sspec iff it is equivalent to Sspec. O
The equivalence is defined below.

Definition 3.3 Equivalence: Suppose that all the I/O events in Pspeci! via

each I/O gate ¢;; and internal events “”

are unobservable, and the other I/0O
events are observable. We say that Sspec and Pspectl'? are equivalent if, both

specifications are observational congruent [16]. O

Definition 3.4 Observational Congruence: Sspec and Pspec are said to be

observational congruent if the following conditions hold. (a) All the observable

' 19

1/0 sequences in Sspec can be also observable in Pspect!® and vice versa. (b)
After the execution of every observable I/O event sequences, the set of all the
executable and observable I/0O event sequences in Sspec and Pspeci!?) are the

same. O

For example, if a sequence of four I/O events by transitions t;, t3, t4 and

t5v
a?“ID(352)”; b? “query=book”; c!“ID(352)”; a!“13 records were found”

is executable from the initial marking in Sspec in Fig 3.1, it is also executable

in Pspec in Fig 3.2 and vice versa.

3.4. Derivation Algorithm

Basically, our algorithm takes the following two steps to derive Pspect!.

o [Step 1] For each t; in Sspec, a set of p PNR-subnets SP!(t;),...,SPP(t;)
is constructed. Each SP*(t;) is a part of Pspec, and SP(t;), ..., SPP(t;)
simulate the behavior of t;. How to simulate ¢; is decided based on a fixed

policy (simulation policy of t;).

o [Step 2] Each Pspec; is derived using the control flow of Sspec. For each
k (1 < k < p), Pspecy is derived by replacing ¢; in Sspec with SP*(t;).
As a result, SP*(t;), ..., SP*(t,) are executed in the same order as that
of tl, ceny th.

3.4.1 Simulation of Each Transition

The components of each SP¥(t;) are some of following transitions : (a) a transi-
tion with the I/O event and guard expression of ¢;, (b) transitions with some of
the register value substitution statements of ¢;, (c) transitions with an output
event for sending messages and (d) transitions with an input event for receiving
messages, a guard expression for checking message ID’s and register value substi-
tution statements for storing received values of registers and/or input variables

to a local temporary register Tmpy.

20

Each SP*(t;) is constructed by composing these transitions based on the

simulation policy of ; described below.

[Simulation Policy of ti]v

¢ Suppose that RPE(t;) = PE,. PE, executes t;’s [/O event if (a) the
value of the guard expression of ¢; is true and (b) the simulation of all the
previous transitions of ¢; has been completed (PE, can know it by receiving
SF messages explained later). Note that PE, may not know the values
of some arguments (value of registers) of the I/O event and/or the guard
expression. We assume that PE, has already know those values by the
above SF messages (this is also explained later). At the initial marking,
we also assume that each protocol entity knows the initial values of all the

registers.

o Each register R,’s value substitution statement is executed by each proto-
col entity which has R, (denoted by PE,). PE, sends some of the following

messages after the execution of the I/O event of ¢;.

— Suppose that PE, needs the values of some arguments (input vari-
ables and/or registers) of register R,’s value substitution statement.
If PE, has some of those values, it sends them as a message (called
a RC message) to PE,.

— If an another protocol entity PE,, (v' # u) has some of such values,
PE, sends a message which requests PE, to send a RC messages
(called a RC' message) to PE,. If PE, receives the RC' message, it

sends a RC message including those values to PE,.

— If PE, does not need any values of the arguments of the statement,

PE, sends a RC message including no value to PE,.
As a result, each PE, receives at least one RC message.

¢ Each PE, receives all of RC messages sent to PE, and executes some of
the register value substitution statements of ¢;. If © = v, PE, executes
them after the execution of the 1/O event of ¢;.

21

o After the execution of the statements, each PE, sends a message (called
a SF message) to each RPE(t;) (denoted by PE,) where ¢; is one of the
next transitions of ¢;. If PE, holds the values of some arguments of ¢;’s
I/O event and/or guard expression and PE, does not know those values,

PE, includes those values in the SF message.

o If a protocol entity PE,/ (2’ # z and 2z’ # v) holds the values of some
arguments of ¢;’s I/O event and guard expression and PE, does not know
those values, PE, sends a message which requests PE,, to send a SF

message (called a SF’ message) to PE,.

e If PE, does not send any of the above messages, PE,, sends a SF message
to each PE,. O

For example, for the transition ¢, in Sspec, SP2%(t;) has three transitions
of types (a), (b) and (c) (see Fig. 3.2). Also, SP3(t,) is not appeared, since
PE; does not concern the simulation of t,. Note that a message ID “Mrc; 5,,”
(“Msf; ;,”) represents that it is a RC (SF) message sent from PE; to PE, for

simulating the transition ;.

Minimizing Number of Messages
Here, we consider to optimize Pspec!?) based on an appropriate cost mea-
sure. In general, both communication and processing costs can be considered
as the cost measures of distributed systems. The communication costs are, for
example, the number or size of messages, the number of hops, average link uti-
lization, and so on. Also the processing costs are load distribution, average
CPU utilization and so on.

In our approach, it is uniquely decided which protocol entities execute ¢;’s
I/O event and register value substitution statements, based on the simulation
policy of ¢; and Alloc(p, Sspec). However, there are several ways of exchanging
messages to simulate the behavior of ¢;. For example, suppose that a register
R, is allocated to both RPE(¢;) (say PE,) and PE,. Also suppose that PE,
(# u, ") needs to refer the value of R, for executing a register value substitution

statement of ¢;. In this case, there are two ways to sends the value of R, to

22

PE,. If PE, sends it, a RC’ message is necessary from PE, to PE! therefore,
the number of message is one more than that in the case PE, directly sends
the value to PE,. However, suppose another case that PE, needs not only the
value of R, but also the value of Ry which is allocated only to PE,. If PE,
sends them as a RC message, the number of message is one lesser than that in
the case PE, and PE,, send the values of R, and R, respectively.

As mentioned above, processing costs are fixed in our method, however,
communication costs are not. Therefore, we adopt the communication costs,
especially the number of messages exchanged in simulating each ¢;, as the cost
measure and optimize it.

In this algorithm, we formalize such a problem as a 0-1 integer linear pro-
gramming problem (a 0-1 ILP problem) and get an optimal solution. The
following is the technique to get such a solution.

First, for each transition ¢;, we introduce boolean variables. We assume

that the values of these variables are 1 (true) or 0 (false).

[Variables]

e RC,, : its value is 1 iff a RC' message is sent from PE, to PE,, otherwise
0.

o RC,, : its value is 1 iff a RC message is sent from PE, to PE,, otherwise
0.

e RC;,-Ry (RC,y-xk) : its value is 1 iff the RC message sent from PE, to
- PE, contains the value of a register Rj, (an input variable zy), otherwise
0.

o SF,, :its value is 1 iff a SF' message is sent from PE, to PE,, otherwise
0.

e SF,, : its value is 1 iff a SF message is sent from PE, to PE,, otherwise
0.

o SF,,_Ry : its value is 1 iff the SF message sent from PE, to PE, contains

the value of a register R;, otherwise 0.

23

Then we represent the conditions to be satisfied if we follow the simulation

policy of ¢;, as 0-1 integer linear inequalities on these variables.

[0-1 Integer Linear Inequalities]

o For each tuple of protocol entities PE,, PE, and a register R;,, the follow-
ing inequalities must hold, due to the definitions of the variables RC,,,
RC,,-Rh, SF,, and SF,,_Ry.

RC,, > RC,y-Ry (3.1)

SF,, > SFuyRh (3.2)

Also for each tuple of PE,, PE, and an input variable z, the following
inequality must hold, due to the definitions of the variables RC,, and
RCyy-zk. '

RC.y > RCyyi (3.3)

o Hereafter, we denote the responsible protocol entity of ¢; (RPE(t;)) by
PE,. For each pair of a protocol entity PE, (v # u) which executes
at least one of the register value substitution statements of ¢; and an
‘input variable zj, if PE, needs the value of z; to execute substitution

~ statements, the following must hold.
RCW_’J}k =1 (34)

The equation means that the value of the input variable is sent from PEu'
to PE,.

e For each pair of a protocol entity PE, which executes at least one of
the register value substitution statements and a register Ry, if PE, does
not hold Ry and PE, needs the value of R, to execute the substitution
statéments,b_ the following inequality must hold.

> RCupw-Ra>1 (3.5)
1<z<p,z#v
It means that at least one RC message which contains the value of R}, is
sent to PE,.

24

e For each pair of a protocol entity PE, (v' # u) and a protocol entity
PE, (v # v') which executes at least one of the register value substitution

statements of ¢;, the following inequality must hold.
RC:“)/ Z Rcv'v‘ (36)

It means that an RC’ message is sent from PE, (RPE(t;)) to PE, if PE,

sends at least one RC message.

o For each protocol entity PE, which executes at least one of the register

value substitution statements of t;, the following inequality must hold.

Y RC,, >1 (3.7)
rH#v
It means that at least one RC message must be sent to PE,,.
e For each pair of a protocol entity PE, which executes at least one of the
register value substitution statements of ¢; and the responsible protocol
entity of a transition ¢; (¢; € ¢; e ¢) (denoted by PE, and z # v), the

following equation must hold.
SF,.=1 (3.8)
It means that a SF message is sent from PE, to PE,.

e For each pair of a protocol entity PE,, (w # u) which does not execute
any of the register value substitution statements of ¢; and the responsible
protocol entity of a transition ¢; (t; € t; e 8) (denoted by PE, and z # w),
the following inequality must hold.

SFy, > SFu. (3.9)

It means that a SF’ message is sent to PE,, which sends a SF message and

does not execute any of the register value substitution statements of %;.

o For each pair of a register R;, and the responsible protocol entity of each
tj (t; €t; 0 o) (denoted by PE,), if PE, needs the value of Rj to execute

25

the I/O event of ¢;, the following inequality must hold.

SF,.., Ry, >1 (3.10)
2#2,PE.holdsRy

It means that at least one SF message which contains the value of R} is
sent to PE,.

e For the responsible protocol entity of each t; (t; € t; e o) (denoted by
PE,), the following inequality must hold.

Y SF,.>1 (3.11)
T#£z

It means that a SF message is sent to PE,.

There may be some solutions which satisfy all of the above inequalities
(3.1) - (3.11). In order to find the best solution which minimize the number
of the messages for simulating the behavior of ¢;, the following formula N is

introduced.
N = Y RCly + ¥ S RCyy + L SF . + X X SFu.

N represents the total number of messages exchanged. A solution which
minimizes N can be found using a techniqlie to solve 0-1 ILP problems, where N
is regarded as an objective function. Therefore, the way to exchange messages

whose total number is minimized can be uniquely decided.

3.4.2 Simulation of Transition Sequences
Each Pspec is derived using the control flow of Sspec.

It is derived by replacing ¢; in Sspec by the corresponding PNR-subnet
SP*(t;) if SP*(t;) is not empty. Otherwise ¢; is replaced by a e-transition (a
transition with no label). Note that if SP*(¢;) has only one input transition (a
transition which has no input arcs) and only one output transition (a transition
which has no output arcs), such replacement is only to reconnect the input
(output) arc of ¢; to the input (output) transition of SP*(t;). Otherwise we add

a e-transition as a unique input (output) transition of SP*(;).

26

. —Ebsﬂot:: _d{__*>

Epsilon e

TN

(b)

Epsilon
P | __[___>
p Epsilon pom
\O——-[_.
(c)

Figure 3.3: Removal of an e-transition.

Figure 3.3(a) shows an example protocol entity specification Pspecy with a
e-transition. In this marking, Pspec, may receive one of three messages which
force to start executing PNR-subnets S P* (ta), SP*(ty,) and SP*(t;,). PE; must
check the message ID and decide which subnets to execute. Here, e-transitions
can fire according to the firing rule of original Petri nets. However, after the
free firing of the e-transition, SP*(t,,) may not be executed even though the
message “M,” arrives. To do so, we want to get such a structure that makes it
possible to select SP*(t,) or both of SP*(t,) and SP*(t;,), as shown in Fig.
3.3(d).

We remove all e-transitions in Pspecy. The idea of removing e-transitions
is as follows. In Petri nets, e-transitions represent synchronous points (that is,
each of them has more than one input/output place). Therefore, it is difficult

to use a well-known technique, which removes a e-transition in a finite state

27

automaton, by merging the input and output states of the e-transition. So we
decompose the Petri net of Sspecy, into a set of finite state automata, and apply
such technique to each decomposed e-transitions.

In Section 3.1.1, we assume Restriction 1, where the Petri net of Sspec
must be live and safe. Therefore, we can say that Pspec; is also live and safe.
From the live and safe Petri net PN, of Pspecy, the following procedure “Find”
finds strongly connected SM-components SMj, ..., SM,, which cover PN} (see
Theorem 2.1). Note that a SM-component is a subnet of PN;, where each
transition t; has exactly one input place and one output place (see Definition
24).

The following procedure finds such a set of SM-components SMj, ..., SMp,.

[Procedure Find]
Initially, suppose ¢ = 1.

1. Suppose that there are ¢ — 1 SM-components SMj, ..., SM;_; found on a
given live and safe Petri net PNj. If there exists an arc e which does not
belong to any of SMy, ..., SM;_;, a directed loop which contains e exists
on PN, since PN is live and safe. Denote the loop by SM; and go to the

next step. If there is no such e, exit this procedure with m =1 — 1.

2. For each pair of places p, and p, on SM;, if there exists a directed path
from p, to p, on PN, any of whose components except p, and p, does not
belong to SM;, append the path to SM;. Continue this step until such a
path does not exist. Go to the next step.

3. i =141 and go to the first step.

Secondly, using SM,..., SM,, obtained by the above procedure, a proce-

dure “Remove” removes all e-transitions from Pspec;.

[Procedure Remove]

1. Decompose PNy into a set of SM-components SMy, ..., SM,, using “Find”.

28

2. Merge the decomposed transitions f; which are not e-transitions into one

transition ¢;.

3. For each e-transition ¢, merge its input place with its output place (it is

possible since it has only one input place and one output place).

4. Remove t by deleting ¢ and its input and output arcs. v a

Finally, Pspec; without e-transitions is obtained.

An example to remove a e-transition is shown in Fig. 3.3. A Petri net which
contains a e-transition ¢ (Fig. 3.3(a)) is decomposed into two SM-components
(Fig. 3.3(b)). Then decomposed transitions except ¢, which were the same
transition are merged into one transition (Fig. 3.3(c)). Then each ¢ is removed
(Fig. 3.3(d)).

3.4.3 Register Conflict

We assume that there is no.register conflict transition pair in service speci-
fications (see Restriction 2 in Section 3.1.1). If such a pair exists in service
specifications, we may have to consider an additional control to prevent incon-
sistency in protocol specifications.

Suppose that there are two transitions ¢; and t; which are a register conflict
pair in a service specification. Also suppose that their register value substitution
statements are “R «+ 1” and “R + 2”, respectively. Here, the action of each
transition is regarded as an atomic action in PNR model (see Definition 2.7).
Therefore, in the service specification, if the transition ¢; fires after ¢, the values
of R is 1, otherwise 2. On the other hand, in a protocol specification, suppose
that R is allocated to both PE, and PE,. In this case, both PE, and PE,
execute both statements “R <+ 1” and “R < 2”. Here, in each PE, these two
statements are parallel actions, since t; and £, in the service specification can fire
in parallel. Here, for example, PE, may execute “R ¢ 1”7 after “R + 2” (the
value of R becomes 1 in PE,) and PE, may execute “R + 1” before “R + 27
(the value of R becomes 2 in PE;). In a correct protocol specification, all the
values of R must be substituted to the same value. Therefore, the values of R’s

must be all 1’s or all 2’s in this case.

29

In our experiences, the service specifications of many practical distributed
systems do not contain register conflict transition pairs. However, some service
specifications may contain a few (not so often) register conflict pairs. For such
a class, we use mutual exclusion control methods. Several methods have been
investigated [12, 13] for such a purpose (for survey, see [14]). Here, we give

following two solutions.

Decentralized Solution

We use Lamport’s algorithm [12]. To make the discussion simple, we assume
that each PE has its own clock and all the clocks show the same time. Note
that Ref. [12] also shows that logical clocks which only need counter registers
and time stamps and so on can be substituted for these clocks. Here, for each
register conflict pair ¢; and %, in a service specification, we regard the section
from the starting point of the simulation of ¢; (¢2) to its ending point as a critical
section in a protocol specification, and use Lamport’s algorithm.

Suppose that there are a set of transitions ., ..., t, in a service specifica-
tion, each of them conflicts a register R with others. The algorithm uses three
kinds of messages “req”, “reply” and “release”. Each message includes a pair
(T.;,c;). ¢; means that the message is related to a transition t.,. T, is the time
when the message generated (a time stamp). The responsible protocol entity
of ., (denoted by PE,,;) has a message queue Q,, which can sort entries by
ordering of their time stamps. Now, we regard the section from the start of the
simulation of each t., (the head of SP¥(t.,)) to its end (the tail of SP"(t,),
where PE,, is the responsible protocol entity of a transition in ., e) as a critical

section, and denote it by CS(c;). The algorithm is described below.

[Decentralized Algorithm]

1. If PE,, tries to start the simulation of ¢, (tries to enter the critical section
CS(c;)), it sends a request message req(T;,c;) to each PE,; (1 < j < k)

and enqueues req(7e,, ¢;) to Q.

2. Each PE,; which has received the message req(T,, ¢;) enqueues it to the

queue Q,; and sends a reply message reply(Z:;, ¢;) to PE,,.

30

3. For each received message reply(T.;,c;) (1 < j < k), PE,,; checks (a)
T., > T.; and (b) the top entry of the queue (., has an identifier c;. If so,
PE,, starts the simulation of ¢; (starts the execution of the critical section

4. In our simulation policy, each of the responsible protocol entities of | tran-
sitions in t., ® ® can know the end of the simulation of ¢, by receiving SF
messages. Therefore any of such protocol entities (denoted by PE,,) sends
a release message release(c;) to each PE,; if it knows that the execution
of critical section CS(c;) has been finished.

5. Bach PE,; receives the release message release(c;) and dequeues the entry

with an identifier ¢; from the queue @,,.

An implementation of the algorithm in PNR model is shown in Fig.3.4.

Note that the end of the critical section is informed by PE,, (the responsible
protocol entity of a next transition of t.,), not PE,, (the responsible protocol
entity of t.,). This is different from the original algorithm. Therefore PF,, must
know the identifier ¢;. To do so, we assume that all messages for simulating the
behavior of t., include the identifier c;.

The algorithm can guarantee load fairness, on the other hand, it needs
additional number of messages. Let k be the number of transitions which conflict

the same register, and the algorithm needs 3(k — 1) additional messages.

Centralized Solution
If we adopt a centralized control technique, the solution is simple. If PE,, tries
to execute the critical section CS(c;), it sends a request message to a specific
protocol entity PE,. On ¢, the request message includes the names of all the
registers whose values are substituted. If PE,; received a reply message from
PE,, PE,, can start the execution of CS(c;). If PE,, finishes the execution of
CS{¢;), it sends a release message to PE,.

PE, has a table which keeps the states of all the registers. Each register
has two states “locked” and “unlocked”. Also PE, has a message FIFO queue.

If PE, receives a request message, it enqueues the message. For the top entry

31

PEui
guiut ¢ req(Tei, ¢l) guiui ? reply(Tei, c1)

O__,I ,b_,l_.'d“ O\)

Starting Point
!—*O—> of CS(Ci)
cf)) gui! req(Tei, ¢i) gukui ? reply(Tcy/Tk)
&I < TckI

PEvi gvun ! release(cl)

sP'lte) /)+Q\ |
One of End
Points of CS(CI) [—> O—"

O Gviuk! I’GIGSSG(E;/Q'W <- deq(Qvi, ¢)

guiyj ? req(Tei, ¢i) - gujul ! reply(Tei, ¢i) gujul ? release(ci)

Quj <- qnq(Qul, req(Tc:, ci)) | | Quj <- d;q(om, ci)

Figure 3.4: Algorithm by Lamport.

Qui <- enq(Qui, re:

PEuj ¢=1,..k not i)

of the queue, PE, checks whether the states of all the registers specified in the
entry are “unlocked” or not. If so, PE, changes their states to “locked” and
sends a reply message. If PE, receives a release message, it dequeues the entry.

This technique needs the lesser number of messages than that of the pre-

vious one, however, the load of a specific protocol entity may become high.

3.5. Sketch of Correctness Proof

Here, we give a sketch of correctness proof for our derivation algorithm.
According to the algorithm, we can divide the proof into two independent

phases. The first phase guarantees the correctness of the simulation of each

transition. The second phase guarantees that the transitions are simulated in

the same order as the execution order of the transitions in service specifications.

32

In the first phase, for each ¢;, we should show that the followings hold.

(Al) (a) the evaluation of the guard expression’s value, (b) the execution of the
I/O event and (c) the execution of register value substitution statements

are done in this order.

(A2) (a), (b) and (c) are done with correct values.

In the simulation policy, RPE(¢;) first evaluates the value of ¢;’s guard
expression and executes t;’s I/O event. Each protocol entity which executes
some of ¢;’s register value substitution statements cannot execute them without
receiving RC messages. Here, all the RC messages are sent after the execution of
the I/O event, since every protocol entity which sends RC messages sends them
after receiving a RC' message from RPE(t;) and RPE(t;) sends RC' messages
after the execution of the I/O event. Therefore, we can show that (A1) holds.

In order to show that (A2) holds, it is sufficient to show that both (A2.1)
and (A2.2) hold. |

(A2.1) RPE(t;) knows all the values of the arguments of the guard expression
and I/O event. ‘

(A2.2) Each protocol entity which executes some of register value substitution

statements knows all the values of the arguments of the statements.

Now we assume that (A2.1) holds and show that (A2.2) holds.

Each protocol entity which executes some of register value substitution
statements, say PE,, can get the values of their arguments as follows. If
PE, needs the values of input variables and/or registers which RPE(%;) holds,
RPE(t;) sends their values as a RC message to PE,. Similarly, if PE, needs
the values of some registers which PE, holds (PE, # RPE(%;)), PE, sends
their values as a RC message. In this case, RPE(%;) sends a RC' message to
PE,.. Therefore, PE, can know all such arguments’ values. Here, we should
notice that if PE, needs the value of a register R, which PE,s holds and the
value of R, is substituted on ¢;, PE,» must send the value before it executes the
register R,’s value substitution statement. In the simulation policy of ¢;, this is

guaranteed. From the above, we can show that (A2.2) holds.

33

Each responsible protocol entity of each t; € ¢; ¢ ¢ (RPE(t;)) can get
the argument values of the I/O event and guard expression of ¢; as follows. If
RPE(t;) needs the values of registers which PE, holds, PE, sends their values as
an SF message to RPE(t;) after the execution of the register value substitution
statements of ¢;. Similarly, if RPE(¢;) needs the values of the registers which
PE, (w # v) holds, PE,, sends their values as a SF message to RPE(¢;). In this |
case, RPE(t;) sends a SF’ message to PE,,, after the execution of the I/O event
of t;. Therefore, RPE(t;) can evaluate the value of the guard expression of ¢;
and execute the I/O event of ¢; with correct values. Similarly, at the start of
the simulation of ¢;, we can say that RPE(¢;) can evaluate the guard expression
of ¢; and execute the I/O event of #; with correct values. As a result, we can
show that (A2.1) holds.

Finally, we can show that (A2) holds, since both (A2.1) and (A2.2) hold.

In the second phase, we should show that the followings hold.

(B1) For each transition ¢;, the simulation of ¢; has been finished when the

simulation of each t; € t; ® o is started.

(B2) The simulation of transitions ?i, ..., t,, are done in the same execution

order as that of t1, ey tme

In the simulation policy, only RPE(%;) can start the simulation of ;. Also
each RPE(t;) do not start the simulation of ¢; before it receives all the SF mes-
sages. Here, we should notice that there may be more than one next transition
of t; (it means that there are more than one responsible protocol entity which
receives SF messages). Now suppose that ¢; ¢ ¢ = {¢;,t}. RPE(¢;) may not
be able to know that the simulation of ¢; has been finished. The reason is as
follows. Suppose that a protocol entity PE,, which should send SF messages
to both RPE(t;) and RPE(t), has sent it to RPE(t;) and has not sent it to
RPE(tx) yet. When RPE(¢;) receives the SF message from PE,, it may start
the simulation of ¢;. However, at this time, PE, may not have sent the SF
message to RPE(t;,) yet. Therefore, the simulation of ¢; may be started before

the simulation of ¢; has not been finished.

34

In this case, the problem is only the following issue. Suppose that PE, sends
the value of a register R, (suppose that the value is one) as the SF message.
Here, if the value of R, is substituted to two on the transition ¢; in the service
specification, the simulation of ¢; substitutes the value of R,. If PE, sends
the SF message to RPE(t;) after the simulation of ¢;, the value of R, sent to
RPE(ty) is not one but two. PE, may send the value two to RPE(t,) although
it must send the value one.

In our simulation policy, such a situation does not occur. When the simu-
lation of ¢; tries to substitute the value of R, on PE,, PE, has already finish the
simulation of t;, since the PNR-subnet SP(¢;) is executed after the execution
of SP*(t;). PE, sends the SF messages with a value one to both RPE(t;) and
RPE(t:), and then substitutes the value of R, to two. As a result, we can show
that (B1) holds.

For each Pspecy, PNR-subnets SP*(t)),...,.SP*(t,,) are executed in the
same order as that of ¢;,...,t,, in Sspec. Also if there is a nondeterministic choice
of ¢, and t, in the service specification, we assume that RPE(¢,) and RPE(t,)
are the same protocol entity PE,, (see Restriction 4 in Section 3.1.2). Therefore
it can be decided which transition to be simulated. Notice that Procedure
“Remove” removes all e-transitions in each Pspec,. When “Remove” tries to
remove ¢-transitions, it may destroy their parallel synchronization structures.
Although many reformation rules of Petri nets have been proposed, however,
“Remove” is different from any of them, because it does not guarantee the
equivalence in terms of Petri nets. However, the reformation is correct in Pspec;,
..., Pspec,. we will show that below.

Basically, from the above discussion, we have shown Sspec and Pspecl?
are equivalent if there are no e-transitions in each Pspecy,. First, we focus on the
procedure to decompose a live and safe Petri net into a set of SM-components,
and recompose them by merging decomposed transitions into one original tran-
sition. Obviously this procedure do not change the firability of any transition in
the Petri net, since it only adds some redundant places as a result. Then, assume
that there is an e-transition ¢;, which is not merged in “Remove”. The difference

between merging decomposed transitions into an original transition and leaving

35

them decomposed is only whether the parallel synchronization structure is re-
stored or not. Here, suppose e o t; = {t.,, ..., e, }. From the previous discussion,
RPE(t;) starts the simulation of ¢; after the simulation of all the transitions
teys -y be,. It means that the simulation of Z.,, ..., t., is synchronized on the
start of the simulation of ¢; on RPE(¢;). Therefore, there is no mean to have
a synchronization structure of ¢; on PE;. As a result, in each Pspecy, there is
no difference between merging decomposed e-transitions into one e- transition
and leaving them decomposed. We can easily show that “Remove” can remove
e-transitions from Pspecy, correctly if any e-transition does not have parallel
synchronization structure, since it is the same technique to remove e-moves

from finite state automata. From the above discussion, we can show that (B2)
holds.

3.6. Evaluation

In our algorithm, the number of messages for simulating each transition is mini-
mized using a technique to solve 0-1 ILP problems. However, in general, it takes
much time to solve such problems. In this section, in order to show that our
derivation algorithm can derive protocol specifications within realistic time, we
have measured the derivation time for typical service specifications. We have
developed a derivation system and run the system on PC/AT compatible (CPU:
Intel Pentium 200MHz, Memory: 96M byte). First, we have measured the time
to derive a set of PNR-subnets from a transition in a service specification with
5 registers on 10 protocol entities. We tried 20 patterns of register allocations
- and could get solutions within 10 seconds for all the register allocations. As a
result, we can get optimal protocol specifications within realistic time for such a
number of registers and protocol entities. Secondly, we tried another derivation
from a transition with 50 registers on 10 protocol entities. In this case, the
derivation needed more than 10 minutes in almost all cases. So we implement a
heuristic algorithm and the derivation can be done within only 2 seconds, and
the increase rate of the number of messages compared with the optimal number

of messages is almost within 10%. As a result, we can get protocol specifications

36

which are near optimal within realistic time although the number of registers is

rather large.

3.7. Conclusion

In this chapter, we have proposed a method to derive a protocol specification
of a distributed system from a service specification and a resource allocation.
One of ouf future work is to extend the class of service specifications so that we

can treat more general distributed systems in our method.

37

Chapter 4

Application of Protocol
Synthesis : Cooperative Work
Support

In this chapter, we show the efficiency of our protocol synthesis method de-
scribed in Chapter 3 by applying it to cooperative work support. In Section
4.1, we discuss why the protocol synthesis method is useful for cooperative work
support. In Section 4.2, we show how we model the process of a cooperative
work in PNR model using an example. Then in Section 4.3, we derive the de-
scription of each engineer’s working process from the description of the process
of the cooperative work in PNR model, using the derivation algorithm written
in Chapter 3. Section 4.4 describes how we realize cooperative work support
using prototype systems which we have developed. Finally, we conclude this

chapter in Section 4.5.

4.1. Why Is Protocol Synthesis Useful?

Since the size of software becomes larger, software development needs cooper-
ative work among some engineers. However, there are some problems in such
cooperative work. '
Here, we focus on the following two problems. The first one is how we
clarify each engineer’s work from a whole working process and the second one

is how we cope with the modification of the working process and the change of

38

the environments during work.

1. In general, process designers specify a whole working process description,
and each engineer must consider what he should do now and in future,
from the whole working process description. For each engineer, it is obvi-
ously desirable that his own working process description is specified. Each
engineer’s working process description specifies what he should do now and
in future clearly. However, such a description may contain communica-
tions with the other engineers for synchronization and data exchange. On
the contrary, for process designers, it is desirable that they only specify
the whole working process description, since it contains no communica-
tions. Therefore, there are two types of descriptions at the different levels.
Here, each engineer’s working process description is called an individual
description and a whole working process description is called a whole de-

scription.

2. Due to the uncertain aspects of software development, the working pro-
cess may be modified frequently during the work. Also environments (the
number of engineers who participate in the work, the allocation of tasks to
the engineers, the allocation of resources (such as databases) to machines,
and so on) may be changed frequently during the work. Such modifi-
cation/change during work is called dynamic modification. The process
designers must modify each engineer’s working process description for ev-

ery dynamic modification.

We have developed a derivation system and an execution system, based on
our protocol synthesis method, to provide solution for the two problems men-
tioned above. The derivation system automatically derives a set of individual
descriptions and the execution system automatically interprets an individual
description. Using the derivation system, the process designers do not have to
specify each engineer’s individual description. They only specify a whole de-
scription in PNR model and an allocation of tasks and resources to engineers (a

task /resource allocation). Then a set of individual descriptions in PNR model is

automatically derived (automatic derivation). Here, we assume that each engi-
neer uses his own machine and the execution system is running on the machine.
The execution system interprets the engineer’s individual description and tells
the engineer what tasks he should do now (guidance of work). Also the system
can show the individual description graphically to the engineer. Therefore the
engineer can understand easily what tasks he should do not only now but also
in future (work process visualization). This is our solution for the first problem.

The execution system on each machine can suspehd the execution of the
individual description keeping the consistency with other execution systems.
Also it can reload a modified individual description and restart the execution.
Therefore, if process designers need to modify the working process and/or the
task /resource allocation, they indicate all the execution systems to suspend the
execution of individual descriptions. Then they only modify the whole descrip-
tion and/or the task/resource allocation, and call the derivation system to derive
new individual descriptions. After the modification, they send the modified in-
dividual descriptions to the execution systems. The execution systems receive
and reload them, and then restart the execution (dynamic modification). This
is our solution for the second problem.

In the recent years, various approaches to formally describe the processes
of software development have been studied [31, 27, 28, 29, 30, 32]. They can
be classified by their process models: (a) the programming models such as
APPL/A [33], (b) the functional models such as HFSP [28] and PDL [34], (c)
the rule-based models such as GRAPPLE [35], MARVEL ([36, 37] and Merlin
[38], (d) the Petri net based models such as MELMAC [39] and SLANG [40,
41], (e) the LOTOS based models [30, 44] and so on. These approaches are
useful for reducing the ambiguity of the processes, understanding and evaluating
the processes, developing systems for Computer-Supported Cooperative Work
(CSCW) and so on. However, most approaches except [44] do not consider the
automatic derivation. And in [44], resources cannot be allocated to engineers
(that is, they must assume that the copy of each resource is held by every
engineer). Also the process visualization is not so sufficient since the method

is based on LOTOS model. In Petri net based models, individual descriptions

(3]

t3 t3 [e= te
SC IRspec,Rsrc ?2x2 SC !Rsrc "/%T"
IRsrc,Rtest

Robj <- link(Robj,Rlib)
Robj <- compile(x2)

Rspec Riib Rsre Robj Riest ||Rres

Figure 4.1: Whole Description in PNR Model.

can be represented graphically.

4.2. Process Modeling in PNR Model

4.2.1 Whole Description

Figure 4.1 shows a whole description of a cooperative software development
process in PNR model.

At the level of whole descriptions, we assume that there is one computer
machine. We also assume that engineers do their tasks using compﬁter tools
(such as editors) on the machine. The interfaces between engineers and the
machine are represented as I/O gates. Therefore, all the engineers’ tasks are
represented as I/O events. Here, each I/O gate is related to a role in the
working process. For example, the I/O gates QA, SC and TC in Fig. 4.1 are
related to the roles of the quality assurance, the modification of the code and
the test of the code, respectively. The transition ¢, in Fig. 4.1 has an I/O event

“SC!Rypecs Rsrc?r2” . It means that the specification Rgp.. and the source code

41

R, of a software are shown to the engineer which uses the [/O gate SC. The
engineer modifies the source code and the result z; is returned via I/O gate
SC. Note that at the level of whole descriptions, process designers do not have
to consider how many engineers participate in the work. They only classify the
tasks into some roles.

The machine has all the resources (files) necessary for the work. The in-
puts are modified and stored to the resources. These resources are represented
as registers and the modification of resources is represented as register value
substitution statements. For example, the transition ¢, has register value sub-

stitution statements “Rg.. < 5"

and “Rey; ¢ compile(zs)”. They mean that
the input x5 (modified source code) is directly stored to R, and also modified
to an object code using the tool “compile” and the object code is stored to Rop;.

Now we will explain the whole description in Fig. 4.1. I/O gates QA,
SC and TC represent the interfaces between engineers and the machine. Also
registers Rspec, Rsrc, Robj, Riip and Ryes; Tepresent the specification, source code,
object code, library code and test package of a software, respectively. R, holds
a test result.

First, the transition t; fires. The value of Rype. (the specification) is emitted
to the I/O gate QA and the modified specification z; is stored to Rspe.. Then
the transition ¢, fires and the values of Ry, and R, (the modified specification
and the source code) are emitted to the gate SC. After that the value of an
input variable x5 (the modified source code) is stored to R,,.. Simultaneously,
the value of the function “compile(z2)” (an object code) is stored to R,;. After
the firing of 5, t3 fires and the value of R,,. (the modified source code) is emitted
to the gate SC. Then the value of the function “link(R;,Ri»)” (a final object
code) is stored to Re;. In parallel with the sequence of £ and i3, t, fires and
the values of Rgpec and Ri.s (the modified specification and the test package)
are emitted to the gate T'C. The value of input variable z, (the modified test
package) is stored to Ryes:. After the firing of both t3 and t4, t5 fires and the
values of R, and R (the modified source code and test package) are emitted
to the gate QA. The value of the function “test(Rgpj,Reest)” (the test result) is
stored to R,.;. After the firing of ¢5, the shared input place of ¢ and ¢7 has a

42

Engineer 1 Engineer 2 Engineer 3

_*QA 8 SC 8 TC 8

Machinel Machine2 Machine3

Rspec

Rtest Rsre
gi2 g21 g23 g32

Rres ||Riib ?_f—-* Rsre *—tT Robj
g13 g31

Figure 4.2: Task/Resource Allocation.

token. In this case, it is decided either tg or {7 fires by an input value from the
gate QA. If the input value is the string “ACCEPT”, t fires and the marking
becomes the initial one (finish of the process). If the input value is the string
“FEEDBACK?”, t; fires (repeat of the process from ts and t4).

4.2.2 Task/Resource Allocation

Suppose that there are p engineers 1,...,p. At the level of whole descriptions, we
assume that all the engineers use one machine. On the other hand, at the level
of individual descriptions, we assume that each engineer k uses his own machine
k. For each pair of two machines ¢ and j, there is a communication channel
between them and the machine ¢’s (machine j’s) side of the channel is denoted
by an I/O gate gi; (g9;:). We specify an allocation of I/O gates and registers to-
p machines as described in Section 3.1.2.

In our method, an allocation of an I/O gate “a” to machine k£ means that
the engineer k plays the role related to “a”. For example, the I/O gate SC is
allocated to the machine 2. It means that all the tasks related to SC (code
modification) are assigned to the engineer 2. Also, the allocation of a register R
to machine k means that a resource R (such as a file and a database) is placed on
the machine k. For example, the register R,.. (source code) is allocated to the

machines 2 and 3. It means that two copies of R,,. are placed on the machines

2 and 3. Such an allocation of I/O gates and registers is called a tésk/ resource
allocation in this chapter.
Figure 4.2 shows an example of a task/resource allocation for the whole

description in Fig. 4.1.

4.3. Derivation of Individual Descriptions
We derive each engineer’s individual description from a whole description and a

task/resource allocation. We use the derivation algorithm described in Section
34.

4.3.1 Individual Descriptions
Figure 4.3 shows the derived individual descriptions from the whole description
in Fig. 4.1 and task/resource allocation in Fig. 4.2. '

Now we focus on the transitions t; and %5 in the whole description. At the
level of individual descriptions, the engineer 1 first evaluates the value of the
guard expression of ¢;. It is identically true (therefore that is omitted in Fig.
~ 4.1), then the engineer 1 executes the I/O event of t; “Q A!Repec721”, because the
1/0O gate QA is allocated to the machine 1. Then the register value substitution
statement “Rgp. ¢ 1" is executed by the engineer 1 (because the register
Rygpec is allocated to the machine 1). Then the engineer 1 sends two messages
“Msfy.12” and “Msf; 13" which inform the completion of “R,pe. < z1” to the
engineers 2 and 3, respectively. The engineer 2 receives the message “Msf) 12"
and evaluates the value of the guard expression of t,. Now the engineer 2 knows
that the simulation of ¢; has been completed and %, is executable. Therefore,
the engineer 2 executes the I/O event of tg, “SC!Rpec, Rsrc1%2” . However, the
engineer 2 does not know the value of Rpec, since it is allocated to the machine
1. In this case, the engineer 1 attaches the value to the message “Msf; ;5" . After
the execution of the I/O event of t2, the engineer 2 executes the register value
substitution statement “Rs.. < Z2”. In parallel with it, the engineer 2 sends
the message “Mrcyo3” which includes the value of zy to the engineer 3. The

)

engineer 3 receives the message and executes the statements “R,,. < z2” and

“Ropj + compile(zs)”. After the execution, the engineer 3 sends the message

44

8 Engineer 1
QAf

Machine 1

Tmp:

(o

QA lprea.7x6
{ | xGe="ACCEPT*
i
gi2ow 13 Mred.1d 913 7w 1_
'"55&"_.0 m.ﬂ“.’.&"’s’ﬁﬂ O sPlts) SF)
L IWRIRNSOA ITmptRdfgRtest IS G
SP(t3) 1 _.dsia]_.o_.}.
SP(ts)
N)

Rtest <-|

frmp1xe

e R AMOP AR
e {Rspec)

Tmp 1 5131(115';;1: 913 —
1
LTV s o)
8 Engineer 2
sci
; — Machine 2._
T - A (D) g21
3 s SC!Rsrc g2t iNredR()
1D(w]
st
Rercc-Tmpax2 2 m
SP(t7) “—'P"’"‘.""’ 923"_
-m -ml Tmnﬂunpcl!;lvmp‘c
l! ,,,)_"n" 932 1Ms1232(} DB ™ @31 tMs.31Rerc) . M, hi";: p-
3
! g -Q\ SPts) +—
{Tmp3X2<w.x2 Robi<-compile(Tmp3.x2) T”T"“’""'m Rty Tmps.Rib) 1 7w 931 1Mires.31{Rd 931
SP(t) S e]eo—f—
g, TC }?Txlslps.ﬂl pec, Tmp3.Rtest ga1 1 Mrca.31{Tmpaxe)

)
EdL

Tmpd.xdexd

sPte)

(=

Figure 4.3: Individual Descriptions in PNR Model.

“Msfy 35" to the engineer 2. Note that a message ID “Mrc; " (“Msf; ;") means
that it is a RC (SF) message for simulating t;, sent from PE, to PE,.

As mentioned above, engineers cooperate with each other by exchanging
messages. So each engineer’s individual description contains communications

with other engineers.

45

Table 4.1: Resource Allocation for ISPW-6 Example Process.

Project Design QA Engineer | Design

Manager Engineer Reviewer
I/O gate | a b, d c e f
Register | R;, Ry Rs, R4, Rs R3, Rg, R R4, Rg

4.4. Computer Support for Cooperative Work

We have developed a derivation system which derives each engineer’s individ-
ual description from a given whole description and a task/ resource allocation.
We have also developed an execution system which interprets each engineer’s
individual description on his machine. In this section, we will describe how we

use these systems for cooperative work support.

4.4.1 Derivation System
The derivation system can automatically derive a set of individual descriptions.

In the derivation system, both the whole description and task/resource al-
location can be given. At the level of whole descriptions, the process designers
do not have to consider the number of engineers who participate and the allo-
cation of tasks in the work. The process designers can give these information
separately, as a task/resource allocation. Therefore, if the circumstances about
the engineers are changed, the process designers do not have to change the pro-
cess description. They only modify the task/resource allocation and derive the
new individual descriptions again. It is the main advantage of our method for
cooperative work support.

We described ISPW-6 example process [43] and measured the derivation
time. ISPW-6 example process is used by several researchers for evaluating
their modeling abilities. It describes the process of modifying the design of some
software modules, reviewing the design, modifying the codes and testing them.
It assumes a project manager, software engineers and a design reviewer. The
software engineers are classified into a design engineer and a quality assurance

(QA) engineer. The design engineer modifies the design and codes, and the QA

46

RS«

R8<-
di
?l‘?%. ?1.x) revisw(R2,x) za:‘,’%,x)Ocompllo(m)

modity
?ﬁ%‘.‘%.x) (RS, R2, R3, R4,x)
o!R7

R9<- B3
update(RS, R7)
R1: Requirements Change R4 : Source Code R7: Test Results

R2 : Software Design RS : Object Code R8 : Review Results
nit Test Package j

Figure 4.4: Whole Description of ISPW-6 Example Process.

engineer modifies the test plans and unit test package, and tests the codes.

Figure 4.4 shows the whole description in PNR model. It needs 16 transi-
tions and 9 registers. From this description and a resource allocation shown in
Table 4.1, it took about 3 minutes to derive 4 individual descriptions (CPU: In-
tel Pentium 200MHz, Memory: 96M byte) shown in Fig. 4.5. It shows that the
derivation system can derive individual descriptions from a whole description
of a typical example within realistic time.

The number of transitions in the individual descriptions are 77, and 52 of
them are transitions for communication. As a result, the number of transitions
for communication is twice as that of the other transitions. Even though the
individual descriptions include many communicating transitions, the derivation

system can derive them without mistake.

47

sp(t,)

sP'(t)
S'FJIE)'_'“ gizmk w: i ﬁ
g"" » ¥ AT atend
: save X SPI(t) —
mao.x) a0, Buw gamw 17w : ;
L_T%(%%W” P .[SP 1(t13) :1: . Ol
'-§i;r—-~-— _ 1(t15) PUL(RO, w) wzss
(N =
! tw |
i glatMz2 !
! a3 put(i«m1 |
Ptoject Manager [Ceeate™ SP (1) Design Reviewer
@

sP(t)

g2

Design Engineer

QA Engineer

dlnll [--3b
O

-
3|

;- O -:?E-f

i
SP%(ts) SP°(ts)

g 8P (ts)
ind

a&‘tf&?:&‘i)

Figure 4.5: Individual Descriptions of ISPW-6 Example Process.

48

Network

Message Handiind Part

Interpreting Part g

Resources

Individual Description

— Execution System p

Task Result Executable
Tasks

Visualization &
User Interface Part |-

L AN Zz
Tasks Tasks \ /

Engineer 1 - Engineer p

Figure 4.6: Design of Execution System.

Figure 4.7: Snapshot of Execution System.

4.4.2 Execution System)

The execution system is shown in Fig. 4.6. It is placed on each machine. It

consists of an interpreting part, a user interface part, a visualization part and

49

a message handling part. It works as follows.

First, the interpreting part extracts enabled transitions from the individual
descriptions. Then it sends the list of I/O events of the enabled transitions to
the user interface part. The user interface part shows the list to the engineer
and lets the engineer select one of them. The engineer selects and executes one
of the I/O events. Then the interpreting part receives the working result (the
input data) from the user interface part. After that, the interpreter executes
the register value substitution statements of the transition. Then it changes
the current marking. Similarly, if the enabled transitions need to send/receive
~ messages, the interpreting part receives/sends messages from/to the message
handling part. The visualization part can represent the engineer’s individual

description by using the graphical representation of Petri nets.

4.4.3 Supporting Facilities

Our goal is to provide a solution for two problems in cooperative work. The
first one is how we can clarify each engineer’s individual working process. Each
engineer’s working process may contain communications with other engineers.
So process designers do not want to describe such an each engineer’s working
process. The second one is how we realize dynamic modification. The working
process may be modified frequently during the work. Also environments (the
number of engineers who participate in the work, task and resource allocation
to each engineer, and so on) may be changed frequently during the work. How-
ever, it is troublesome for process designers to modify each engineer’s individual
description for every change.

We provide following facilities for these problems.

e Automatic Derivation: The derivation system can derive individual de-
scriptions from a whole description and a task/resource allocation. It is
helpful for process designers, since they do not have to write individual

descriptions directly.

e Guidance of Work: The execution system shows each engineer his ex-
ecutable tasks. Also it hides communications and register value substi-

tution from the engineer (they are executed by the execution system).

50

Therefore, the engineer can know which tasks he should do now and does
not have to consider communications and register value substitution. Note

that the user interface part is provided by World Wide Web browsers.

Visualization of Work Process: The execution system can represent an en-
gineer’s individual description using the graphical representation of Petri
nets. Therefore the engineer can know which tasks he should do not only

now but also in future graphically.

Figure 4.7 shows a snapshot of the execution system.

Dynamic Modification: For dynamic modification, each execution system
can suspend the execution of its own individual description. Here, if some
execution systems suspend the execution of their individual descriptions
at non-global states, some unreceived messages may be left in communi-
cation channels and the values of some registers may be incorrect (this
is explained later by using an example). In our system, if an engineer
k wants to modify the working process, the number of engineers and so
on, he sends a suspénd message to each engineer’s machine. Then the
execution system on the machine suspends the execution of its individual
description at one of its global states. As a whole, the execution can be
suspended correctly on all the machines. Then the engineer k collects
the states of all the other engineers’ individual descriptions and modifies
the whole description and/or task/resource allocation. After that, the
engineer k derives new individual descriptions using the derivation sys-
tem. The engineer k sends each of individual descriptions with the new
task/resource allocation to each engineer’s machine. Each execution sys-
tem receives the new description and task/resource allocation, and restarts

the execution of the new description.

Example of Dynamic Modification

Here, we give a simple example of dynamic modification. The whole description

of the example working process is shown in Fig. 4.8. It specifies the modification

and test of a system code. The tasks are classified into quality assurance and

51

yOA §sC

m (@) /
< True,
Tt QA IRspec ?x1

< guard sxpression,
VO event,
{register vaiue substitution statements} >

P2
< True,
T2 SC IRcode 7x2
{Rcode <-x2} >
3
T3

{Rree <- append(x3) } >

< O Srcode estt 753
[Frea’]

Figure 4.8: Whole Description.

Table 4.2: Task/Resource Allocation.

Machine (User) Machine 1 (Engineer 1) | Machine 2 (Engineer 2)

Task Allocation QA SC
Resource Allocation | Rspec, Reode, Riest1s Rres Reode

system coding. Suppose that they are represented by I1/O gates QA and SC,
respectively. Also Table 4.2 shows a task/resource allocation. There are two
engineers 1 and 2. Figure 4.9 shows the derived individual descriptions for the
engineers 1 and 2 (their markings show that now they are in execution). Now,

let us consider the following case.

¢ [Case 1] The engineer 1 was required to test the code twice, using another

test package (we assume that the package is stored on the machine 1).

The engineer 1 suspends the execution of both execution systems 1 and 2.
The machine 1 sends the suspend message to machine 2. However, suspension
at non-global states causes inconsistency of the system status. For example, if
the execution systems 1 and 2 are suspended at the markings in Fig. 4.9, the
value of the register R .4 allocated to the machine 1 is not the same value as
the one allocated to the machine 2, since the transition ¢ in the engineer 2’s

individual description in Fig. 4.9 is not firing yet. To avoid this problem, all

52

gEnglneer 1

Y

SP (T

o

)
V¢“

ID{w)=M2

gl2?2w
{ Tmpl.x2<wx2}>

SP(T

’4

QA ? !Repec 7x1
{TmplXiext} >
4 Tewe,
i
{Repec <- Tmplxt} >
< True,
o121 M1y
>
<
<

)

iTrue,

2

{Reode<-Tmp1x2} >

<True,

"“1QA IRcode,Rtest! ?x3
;{Tmpi X3 <-x3} >
e,

{Rres <- Tmp1.x3) } >

Machine 1 ysc

g2 g2

Al

Machine 2

Tro?

systems do not start the new simulation of transitions after they received the
suspend messages. Also the systems continue the simulation of the transitions
which have been already started. In this case, the PNR-subnet SP!(t3) is not

executed while SP2(t,) is continued to execute. After the execution finished,

Figure 4.9: Individual Descriptions.

YyOR §SC
P1
< True,
T QA tRspec ?x1
1 {Repec <-x1} >
P2
< True,
T2 ?F?e&og-‘xz >
m
< True,
T3 QA !Rcode,Rtest1 ?x3

{Rres <- append{x3) } >

Al

Figure 4.10: Modified Whole Description for Case 1.

33

Table 4.3: Modified Task/Resource Allocation for Case 2.

Machine (User) Machine 1 (Engineer 1) | Machine 2 (Engineer 2)

Task Allocation QA SC
Resource Allocation || Rspec, Reodes Rtest1, Rres

Table 4.4: Modified Task/Resource Allocation for Case 3.

Machine (User) Machine 1 (Engineer 1) | Machine 2 (Engineer 2)

Task Allocation QA,SC
Resource Allocation || Rspecs Reodes Rtest1, Rres Reode

all the systems are suspended (of course, SP?(t;) is not executed). Then the
execution system 2 sends the marking to the system 1. Engineer 1 modifies the
whole description and task/resource allocation. The modified whole description
is shown in Fig. 4.10. Then each engineer’s individual description is derived
using the derivation system, and sent to each system. In this way, the systems
can restart the process.

In addition, let us consider another case.

¢ [Case 2] Assume that the system code on the machine 2 is no longer
available due to crash, maintenance and so on. We want to continue the

work process using the system code on the machine 1.

In this case, the whole description need not be modified. Engineer 2 sus-
pends all the systems, and modifies just the task/resource allocation. The
modified task/resource allocation is shown in Table 4.3.

Let us consider another case similar to case 2.

e [Case 3] The engineer SC cannot continue his work. The engineer QA
must do the tasks of SC.

Also in this case, the whole description need not be modified. Engineer 1

suspends all the systems, and modifies the task/resource allocation shown in

! 54

Table 4.4.

The PNR model is suitable for dYnamic modification. Since a system status
can be represented by the pair of a marking and values of registers, a process
modifier can easily specify the restart point by a marking, like the above case 1.
Also, since the whole description and the resource allocation are separated, the
process modifier need not modify the whole description if the resource allocation
is only changed, like the above case 2.

The facility of dynamic modification of a process allows flexible change of
the process and environment. Due to the facility, more practical supports of
developments will be possible. And our modification method can ensure no

inconsistency of the system status before and after the modification.

4.5. Conclusion ,

In this chapter, we have applied the protocol synthesis method described in
Chapter 3 to cooperative work support, and shown the efficiency of the method.
We have developed the derivation system which derives each engineer’s individ-
ual description from a whole description and a task/resource allocation. We
have also developed the ’execution system which interprets each engineer’s indi-
vidual description on his machine. We have shown that we can realize CSCW
based on our protocol synthesis method using those systems in this chapter.

The main advantages of our approach are following.

e We can clarify each engineer’s work process from the whole work process.

Each engineer can easily know what he should do.

e We can modify the work process and the work environment during the
work, without modifying each engineer’s individual description directly.

It is important since they are frequently changed during the work.

55

Chapter 5

Protocol Synthesis from Time
Petri Net Based Service

Specifications

In this chapter, we will propose an algorithm to derive a protocol specification
in TPNR model from a service specification in the same model, a resource allo-
cation and maximum/minimum communication delays. In this algorithm, the
time constraints of actions are specified in service specifications. Also for each
communication channel between two protocol entities, we assume that there is a
communication delay, whose minimum and maximum values are bounded. We
address in this chapter how we implement such service speciﬁcations as protocol
specifications, where communication delays exist.

In Section 5.1, we will show an example of a service specification. The
behavior of the service specification is also explained. In Section 5.2, a resource
allocation and communication delays are shown. Then we will show the derived
protocol specification in Section 5.3. The behavior of the protocol speciﬁcation
is also explained. We formally define the derivation problem treated in this
chapter, in Section 5.4. The derivation algorithm is described in Section 5.5.
In Section 5.6, we will give a sketch of correctness proof. We discuss in Section
5.7, the different points from the previous algorithm described in Chapter 3.
Finally, we conclude this chapter in Section 5.8.

56

Process A Process B Process C
a . b C
request * * result traffic mf(* Ack/Nack *

\ \

Request Ack/Nack : Route Info. Topolo;
R1 Buffer R2 Buffur R3 Buffer R4 Tall:?e &y

Figure 5.1: Service Speciﬁc‘ation in TPNR Model.

5.1. Service Specification
Figure 5.1(a) shows a service specification of an example protocol sub-layer in
TPNR model.

The example is a simple connection management sub-layer. It commu-
nicates with its upper sub-layer, which consists of three processes A (request
process), B (network observation process) and C (connection policing process),
via I/O gates a, b and c. It has a topology table (register R,). Registers Ry, Ry
and Rj3 are used as temporary buffers. ’

The sub-layer first receives a connection request (the value of input variable
z) from process A (via I/O gate a) and stores it to R; (request buffer). Then it
gets the current network traffic information (the value of input variable y) from
process B (via I/O gate b) and calculates a route using its topology table (Ry),
the request (R;) and the network traffic information (y). Then the calculated

route is stored to R3 (route information buffer). It also receives an acknowledge-

57

Table 5.1: Resource Allocation.

PE, |PE,| PE;
I/0 gate a b c
Register Rl, R2 R3, R4

ment for the request (Ack or Nack, the value of input variable z) from process
C (via I/O gate c) and stores it to Ry (Ack/Nack buffer). After that, it passes
a pair of the acknowledgement and the route to process A. “calc_route” is a
user-defined function.

We assume that service specifications satisfy Restrictions 2 and 3 described
in Section 3.1.1. Also the following restriction (Restriction 1’) must be satisfied.
(Restriction 1’) The Petri net of Sspec must be a live and safe free-choice net.

A Petri net is a free-choice (FC) net if, for any pair of transitions which
share an input place p, they do not have other input places except p. In a FC
net, the decision which side of transitions fires in each choice structure is done
only by a token in the input place p. Restriction 1’ simplifies the control flow of
Sspec, and therefore simplifies the derivation algorithm (see Section 5.4). Note
that for a given free-choice net, there exist polynomial algorithms for safeness

and liveness problems [5, 6].

5.2. Resource Allocation and Communication Delays
5.2.1 Resource Allocation

We assume that the example sub-layer consists of three protocol entities 1, 2
and 3. Each protocol entity has some of I/O gates and registers. We can specify
a resource allocation Alloc(p, Sspec), as described in Section 3.1.2. An example
resource allocation Alloc(3, Sspec) is shown in Table 5.1. Also in this method,
an I/O gate is allocated one protocol entity, and a register can be allocated
more than one protocol entity.

We also assume that Alloc(p, Sspec) satisfies Restriction 4 in Section 3.1.2.

58

Table 5.2: Minimum/Maximum Communication Delays.

PE, | PE, | PE;
PE;|0/0|3/4]1/3
PE,|1/4]0/0]0/1
PE;|[2/3[1/3]0/0

5.2.2 Communication Delays

For any pair of PE; and PE; (i # j), we also assume that there is a full duplex
communication channel, as described in Section 3.1.2. Here, each communi-
cation channel is sufficiently reliable, so that the maximum/minimum commu-
nication delays can be bounded by constant values. The maximum/minimum
communication delays from PE; to PE; are denoted by Dmax;;/Dmin;;. These

are shown in Table 5.2.

5.3. Protocol Specification

The protocol entities communicate with each other by exchanging messages in
order to provide the same behavior in Sspec. For example, PE; Aexecutes the
I/O event “a?z” of t; (since PE; has the I/O gate a) and sends two messages
to PE, and PE; for notifying the completion of the 1/O event execution. The
messages “Mn; 12" and “Mn; 13" are sent to PE, and PE; via I/O gates g12 and
913, respectively. PE; and PE3 receive these messages and then execute the I/0O
events of the next transitions ¢ and t3, that is, “b7y” and “c?z”, respectively.
On the other hand, PE; executes the substitution statement of register R; (since
PE; has register R;) using the value of input variable z and sends the message
to transfer the latest value of the register. The message “Mr; 13" is sent to PE3
to transfer the value of R;. PEj receives the message and stores the received
value as the latest value of R; to its local temporary register, I'mps. This value
is used to execute the substitution statement of register R (See Fig. 5.2 to
find Tmps.R; in the second argument of the substitution statement). Here,

we assume that if the received register R,’s value is stored to the local tempo-

59

rary register, the name of the transition where the value of R, is substituted
is also stored. In Fig. 5.2, for simplicity, we assume that sencﬁﬁg/receiving
transitions can be executed immediately. So, the time constraints of all the
sending/receiving transitions (represented by white rectangles) are [0, 0], and
they are omitted. Note that we can easily extended our method for treating the
case that it takes some units of time to execute sending/receiving transitions
(See Section 5.8). ’

5.4. Derivation Problem
In this section, we formally define the derivation problem treated in this chapter.

Suppose that all I/O events executed on the [/O gates used in Sspec are
treated as observable, and that all sending/receiving events on the I/O gates
for communication among protocol entities (such as “g;;?z” and “g;;!E(...)")
and internal events (“”) are treated as unobservable. If all the observable I/O
event sequences (including a time interval between each pair of successive I/O
events in the sequences) in Sspec can be observed in Pspect?) and vice versa,
we say that Sspec and Pspec{l? are equivalent.

It is ideal that for any given Sspec, Pspec!? which is equivalent to Sspec
can be derived. However, considering communication delays, for almost all
cases, such a derivation is impossible. For example, suppose that there is an I/O
event sequence “a; b” in Sspec and the time constraint of b is [3, 6]. In Pspect'?,
also suppose that PE; and PE, have the I/O gates a and b, respectively and
Dminys and Dmazxio are 4 and 5 units of time, respectively. PE; must know
that the action a has been executed in PE;, therefore PE; sends a message after
the execution of the action a. PE; receives the message and executes the action
b. If the message arrives at PE, in the shortest delay (4 units of time), the
action b can be executed immediately after receiving the message. On the other
hand, if the message arrives at PE; in the longest delay (5 units of time), the
action b must be executed within 1 unit of time after receiving the message. As
a result, the time constraint [3, 6] of the action b in Sspec should be modified
to [4, 6] (=[Dminis + 0, Dmazi2 + 1]) in Pspect™P). In this case, although

60

l Process A

Y

0.2
W <k g121mMn1.12()
™

[4,4]
'Rz,-T;:nptRa[tz]

[0 11 oter 136m1) gsw 053] g3 pw
(W)

ID(w)== ‘
Ri<Tmpx ‘ Tmpl.z<e-w.2 Hz«TmFL.z M:;<-W'R3 Tmp1
: .

3-4
1 Process B I
b 1-41
]
g1

g23 IMi2.23
{Tmp2.y}

J

823 ¢

0-1 §
1-3

I 931 IMI3.31(Tmp3.2} 232 ¢
T [::,?3 o5 N3 41} =

1832 W [0, 0] 931 Mr2.31(R3)
TS O O I Tmp3
T 5 .y R3<-calc_route

mmlﬁ YWy ; ., R1t9], Tmp3.y)

Figure 5.2: Protocol Specification in TPNR Model.

61

f s

Pspecil?) satisfies the time constraint of Sspec, it is not equivalent to Sspec.
Here, considering the case above, we define the correctness of Pspeci!)
w.r.t. Sspec as follows. Suppose a specification denoted by Sspec which is
obtained from Sspec by narrowing time constraints of some transitions in Sspec.
We say that Pspect!®) is correct w.r.t. Sspec if, there exists Sspec where (A)
Ssped and Pspec”?) are equivalent and (B) selectable transitions in Sspec
can be also selectable in Pspec!!””’. The condition (A) means that if the time
constraints in Pspectt?) are narrowed due to communicaiion delays, Pspeci:P?
is correct as long as they are within those in Sspec like the above case. However,
narrowing time constraints may change selectability in a choice structure. In the
specification in Fig. 5.3(a), both actions a and b can be executed. On the other -
hand, in the specification in Fig. 5.3(b), which is time-narrowed specification in
Fig. 5.3(a), the action b cannot be executed according to the firing rule of TPN
(the action @ MUST be executed within 5 units of time). That is, the action
bis a “dead ” (unexecutable) transition. The condition (B) is used to prevent
“dead” transitions appeared in Pspect”. In a choice structure as shown in Fig.
5.3(c) which is not a free-choice net, checking the selectability is difficult, since
it depends on time when two independent tokens come into the places. In our
method, we restrict the class of the Petri net of a service specification to a free-
choice net. Free-choice nets have a simple choice structure where input places
are at most 1. It facilitates to guarantee the correctness of derived Pspec{}),
Note that even if the condition (B) is satisfied and we ignore the occurrence
time of I/O events, the observable I/O event sequences in Sspec’ may be lesser
than those in Sspec. The reason is as follows. In Petri net models, we can
specify parallel transitions. Here, narrowing time constraints does not prevent
the occurring of events, however, the possible range of event occurrence time is
reduced. As a result, in such a case as there are the event sequences generated
by the interleave of parallel transitions, the possible interleave patterns may
be reduced. For example, suppose that there are four transitions aj, ag, b
and by shown in Fig. 5.4(a). In Fig. 5.4(a), the event sequences a;;bs; az; bo,
ai; by; by as, byjar;by;as and by;as;as; by can be executed by the interleave of

the transitions. However, in Fig. 5.4(b), which is a time restricted version

62

ORNNCINNONO
[3,7] [4,9] I[3,5] [6, 9] [3, 51 [3, 5] [3, 5]
a b a b a b + c

(a) (b) - {e)

Figure 5.3: Narrowing Time Constraints in a Choice Structure.

[35]a1 i i bi[1,7] [55]a1 i 1 b1[7,7]

13, 8] ,,2 21,77 [&8la b2[7,7)

+

@ ®)

Figure 5.4: Narrowing Time Constraints in a Parallel Structure.

of Fig. 5.4(a), only one sequence a;; bi;as; bs can be executed due to the time
constraints. Here, we do not consider this case, since designers are not interested
in the execution order of a; (or az) and b; (or be) in a parallel structure in general.

In this chapter, we treat a problem to derive a correct Pspeci? from a
given tuple of Sspec, Alloc(p, Sspec) and Dmin;;/ Dmaz;; for each communi-

cation channel where Restrictions 1’, 2, 3 and 4 hold.

5.5. Derivation Algorithm
Our algorithm consists of two steps: (1) deriving each protocol entity specifica-
tion without time constraints from Sspec according to a simulation policy, and

then (2) deciding its time constraints.

63

5.5.1 Deriving Nets

In step (1), from given Sspec and Alloc(p, Sspec), actions and their execution

order at each protocol entity are decided uniquely based on the following sim-

ulation policy (e.g. PE; executes the I/O event “a?z” of t; and then sends

messages “Mny12” and “Mn; 13”). According to the policy, Pspect’” without

time constraints is constructed.

“[Simulation Policy]

(a) For each t; in Sspec, the protocol entity which has the I/O gate of the

(b)

I/O event of t; executes the I/O event. Such a protocol entity is called a
responsible protocol entity of t; and denoted by RPE(t;). RPE(t;) receives
messages from all of the protocol entities, each of them has executed the
I/O event of a previous transition of ¢;. These messages are called I/0
completion notification messages. Also RPE(t;) sends a message to each
protocol entity which executes the substitution statement for a register
R, of t;. This is explained in (b).

Each protocol entity executes the substitution statement for a register R,
of t; if it has the register R,. If it receives a message (called an input
value transfer message), which includes the value of input variables, from
RPE(t;), then it calculates the new value of the register and stores it to
R,. Then it sends the new value to all protocol entities which may need
it to execute future I/O events and substitution statements of registers,
or to evaluate guard expressions of future transitions. These messages are

called register value transfer messages.

In Fig. 5.2, the components MAIN-1, MAIN-2 and MAIN-3 are derived

according to the policy (a). Each of the components is derived by replacing

a transition in Sspec with a subnet. For example, PE, and PEj3 execute the

I/O events of ¢ and t3 (“b?y” and “c?2”) and send I/O completion notification

messages “Mng2” and “Mng3”! to PE;, respectively. In this case, in PE,,

1 A message ID is defined as “Mt; ,”, where t is its message type (n, ¢ and r denote I/O

64

the transition to in Sspec is replaced by a subnet which has two transitions.
One executes the I/O event of t; and the another sends the message “Mny9;”
after that. PE; can know that the execution of the I/O events of ¢ and t3 has
been finished. The rest of the components in Fig. 5.2 are derived according
to the policy (b). They are derived by adding some transitions or sub-nets.
PE, sends an input value transfer message “Miges” to PE3, which includes the
value of input variable y. In this case, a transition sending the message “Mip 23"
is added to the net MAIN-2 in PE,. PEj receives the message, calculates the
new value of R3, and sends PE; the register value transfer message “Mrs3;”,
which includes the new value of R3. Also in this case, in PE3, the net which
is a sequence of three transitions (a receiving transition, a transition executing
the substitution statement and a sending transition) is added. PE; receives the
message and it can know the latest value of R3, which is necessary for executing
the I/O event of t4. PE; has a transition receiving the message which forms a

self-loop.

5.5.2 Deciding Time Constraints

In step (2), time constraints of Pspec{’?) are decided. In Pspec{’?) derived from
step (1), only the execution order of the I/O events in Sspec is implemented by
exchanging I/O completion notification messages. Therefore, in order to obtain
a correct Pspecl'?, the following three issues must be guaranteed in step (2).

(a) Every time interval between a pair of successive I/O events in Pspecl:»)
must satisfy the corresponding time interval in Sspec.

(b) The input/output values of I/O event sequences in Pspect!®) must be equiv-
alent to those in Sspec. In our simulation policy in Section 5.5.1, the execution
of an I/O event which needs the latest value of a register does not wait for the
arrival of the register value transfer message (as a result, the I/O event may
be executed with an old value). Therefore, we need guarantee that each reg-
ister value transfer message has always arrived before the I/O event becomes

executable.

completion notification, input value transfer and register value transfer, respectively), ¢ is
the transition name concerned with the message, and PE; /PE, are the source/destination
protocol entities, respectively.

65

(c) Considering the case discussed in Section 5.4, selectable transitions in each
choice structure in Sspec must be also selectable in Pspect?.]

However, since there are message delays, such time constraints of Pspectip)
that satisfy all the above (a), (b) and (c) may not exist. For example, the
message “Mrss;” includes the value of Rj3 necessary for the execution of the
I/0O event of t4 in PE;. Although it is sent immediately after the execution of
the substitution statement of R3, it may not arrive at PE; in time (therefore,
it may not be able to satisfy the condition (b)). On the other hand, if we delay
the earliest executable time of the I/O event of ¢4, the message may be able to
arrive at PE; before I/O event of ¢4 becomes executable.

In step (2), the time constraints of Pspec(’? derived from step (1) are
represented by some non-negative variables and the conditions (a), (b) and
(c) are represented as linear inequalities over those variables. If there exists a
solution which satisfies all of the inequalities, the time constraints of Pspect!)
will satisfy the above conditions (a), (b) and (c). Using a procedure to solve
linear programming problems, a solution cé,n be obtained where the total sum

of ranges of time constraints in Pspec!’?) is maximized.

[Introduced Variables]

e For each transition in Pspect!"?) executing the I/O event of ¢;, we introduce
two non-negative variables, and represent the time constraint of the transition
as [ETmin(t;), ETmaz(t;)]. ETmin(t;) and ETmax(t;) represent the mini-
mum and maximum time from the time when it receives all the I/O completion
notification messages to the time when it executes the I/O event of ¢;, respec-
tively.

e For each transition in Pspect:? executi'ng the substitution statement of regis-
ter R, in t;, we also introduce two non-negative variables, and represent the time
constraint of the transition as [RTmin(Ry,t;), RT'maxz(R,,t:)]. RT'min(Rg,t;)
and RTmaz(R,,t;) represent the minimum and maximum time from the time
when it receives the input value transfer message to the time when it calculates
the new value of R, respectively.

o We assume that the time constraint of each sending/receiving transition is [0,

0]. That is, we assume every sending/receiving event is executed immediately

after it becomes executable, as explained in Section 5.3.
[Linear Inequalities]

For Condition (a):
e For each pair of a transition ¢; and its previous transition ¢; :

ETmin(t;) < ETmax(t;) (5.1)

Eft(t;) < Dming,+ETmin(t;) < Dmazy,+ETmaz(t;) < Lft(t;) (5.2)

where we assume that RPE(¢;) and RPE(t;) are protocol entities PE,
and PE,, respectively.

For Condition (b):

o For each transition ¢; in Sspec and each register R, whose value is sub-
stituted in i :
RTmin(Ry,t;) < RTmaz(Ry,t;) (5.3)

o For each transition #; in Sspec and each register R, whose value is sub-
stituted in ¢;, suppose that the new value of R, is used for the execution
of the I/O event of a future transition t; in Sspec. Assume that RPE(¢;)
and RPE(t;) are protocol entities PE, and PE,, respectively, and that a
protocol entity PE, has the register R,. Then the following must hold :

min_seq(t;,t;)n > Dmazy, + RTmaz(Ry,t;) + Dmat,, (5.4)

where each min_seq(t;,t;), (h =1,2,...,7) is the minimum time from the
I/O event of ; has been executed to the I/O event of ¢; becomes exe-
cutable in Pspectl?) (the minimum execution time of I/O event sequences
in Pspecti?). |

67

Similarly, if the new value of R, is used for the evaluation of the guard

expression’s value of a future transition ¢; in Sspec, the following must
hold.

min_seq(t;, t;), — ETmin(t;) > Dmaty, + RTmaz(Rgy,t;) + Dmaz,,
(5.5)

If the new value of R, is used for the execution of the register R,’s value
substitution statement of a future transition t; in Sspec, the followings

must hold :

min_seq(t;,t;)n + Dmin,, + RTmin(R,,t;)

> Dmazy, + RTmaz(Ry,t;) + Dmaxm;, (5.6)
Dmaz,, + RTmaz(Rs,t;) '

< min_seq(t;, ti)k + Dming, + RT'min(Ry,t;) + Dmin,, (5.7)

where PE, holds the register R,.

For Condition (c):

e For each pair of transitions ¢;, and t;, which share an input place p and
a transition ¢#; which has p as an output place, assume that RPE(Z;) is
‘a protocol entity PE, and RPE(¢;,) and RPE(¢;,) are the same protocol
entity PE, (See Restriction 4 in Section 5.3). If Eft(t;,) < Lft(¢;) and
Eft(¢;,) < Lft(t;,) hold.

ETmin(t;,) < ETmax(t;,)
ETmin(tjb) < ETmax(tja) (58)

Objective Function:

OBJ =Y (ETmaz(t;)—ETmin(t;))+ _ >_(RT'maz(R,,t;)—RTmin(Ry,t;))

t; Ry ¢
For the condition (a), two types of inequalities are given. Inequality (5.1)

is obviously necessary from the definition of those variables. Inequality (5.2)

68

guarantees that even if there is the delay of an I/O completion notification
message between two successive I/O events, the time interval between the I/O
events in Pspec” must be within that in Sspec.

For the condition (b), two types of inequalities are also given. Ineqﬁality
(5.3) is also necessary from the definition of those variables like Inequality (5.1).
Inequality (5.4) guarantees that the new value of R, necessary for the execution
of an I/O event of t; must arrive at PE,, before the I/O event becomes exe-
cutable. We consider the time when the I/O event of ¢; has been executed as the
base time (denoted by T'). The earliest time when the I/O event of t; becomes
executable can be represented as T' + min_sequence(t;,t;) (h = 1,2,...,7). On
the other hand, the latest time when the value of R, arrives at PE,, can be rep-
resented as T + Dma:tm, + RTmaxz(R,,t;) + Dmaz,,. Therefore if Inequality
(5.4) holds, the new value of R, necessary for the execution of an I/O event of
t; is in time for the executable time of the I/O event of ¢;. This is the main
idea of the register value transfer. For the similar reason, Inequalities (5.5) and
(5.6) are necessary.

Here, if the value of R, is used for the execution of the I/O event or the
evaluation of the guard expression, we can guarantee that the next new value
of R, on t; arrives at PE, after the I/O event (guard-expression) of #; has
already been executed (evaluated), since there is a message sequence between
the I/O event (guard-expression) of £; and the substitution of R,’s value on
t;. However, there may be no dependency between the substitution of R, on ¢;
and the substitution of R, on ¢;. For example, suppose that ¢; and ¢; form a
loop. t; and t; substitute the values of R, and R;, respectively. Also suppose
that PE, and PE, have R, and R,, respectively, and PE, needs the value of
R, for the substitution of the value of R,. In this case, PE, receives the new
value of R, and substitutes the value of R,. However, any protocol entity does
not wait for the finish of the substitution, therefore, PE, may start the next
substitution of R, before the finish of the substitution of R, and may send the
new value to PE,. So the substitution of R; may be done with next new value.
Here, in order to guarantee the execution order of the substitution, we assume
Inequality (5.7).

69

For the condition (c), Inequality (5.8) is given. Eft(t;,) < Lft(¢;) and
Eft(t;,) < Lft(t;,) represent that both t;, and ¢;, are selectable in Sspec. In-
equality (5.8) represents the condition to guarantee that ¢;, and t;, are selectable
in PspeciiP), |

Finally, we get a solution which satisfies all of Inequalities (5.1) - (5.8) using
a procedure for solving linear programming problems. If such a solution exists,
we regard that the time constraints in Sspec also hold in Pspec™® . Here, we
would like to get elastic time constraints whose ranges are possibly wide (this
is our evaluation basis for optimization). Therefore, we represent the total sum
of the ranges of time constraints in Pspec!? as the objective function OB/,
where the first and second terms represent the time range of the I/O events and
the register value substitutions, respectively. Then we get an optimal solution

to maximize the objective function OBJ.

Example
The following example will help readers to understand the detail of the algo-
rithm.

For the transitions executing the I/O events of ¢;, t2, t3 and ¢4, the following

inequalities must hold according to Inequalities (5.1) and (5.2).

Eft(t;) < Dminy; + ETmin(t;) < Dmazy + ETmaz(t;) < Lit(t)
Eft(ts) < Dminys + ETmin(t2) 5 Dmazxia + ETmaz(ts) < Lft(t2)
Eft(t3) < Dmingg + ETmin(ts) < Dmaz3 + ETmaxz(t3) < Lft(t3)
Eft(t4) < Dming + ETmin(ty) < Dmazy + ETmaxz(ty) < Lt(ts)
Eft(ty) < Dming + ETmin(ts) < Dmazs + ETmaxz(ts) < Lit(t,)

As a result, the following inequalities can be obtained.

0 < ETmin(t;) < ETmaz(t)) <5
0 < ETmin(t;) < ETmaz(t:) <3
3 < ETmin(ts) < ETmaz(t3) <3
2 < ETmin(ty) < ETmazx(ty) <4
1< ETmin(ty) < ETmaz(ty) <5

7

o

DY T i

[RTmin(R3,2),
RTmax(R3,12)]
931 IMr2.31{R3)

3 Tmp3.y<w.y R3<caic_route
H4 mp3.H

®)

Figure 5.5: Example.

Then, for the transition t; and register R;, the calculated value of R; is used
for the register value substitution statement of t5. Also for the transition 5 and
register R3, the calculated value of Rj is used for the I/O event of t4. Similarly,
for the transition {3 and register R, the calculated value of Ry is used for
the I/O event of t4. Therefore, according to Inequalities (5.3) and (5.4) , the

following inequalities must hold.

0 S RTmz'n(Rl,tl) S RTmaa:(Rl,tl)

71

0 < RTmin(Rs3,t2) < RTmaz(Rs,t2)
0 < RTmin(Rs,t3) < RTmax(Ra,t3)

min._seq(t1,t2)1 + Dmings + RTmin(R3, ;)

> Dmazy; + RTmaz(Ry,t) + Dmazi3
min_seq(ta,ts)1

> Dmazos + RT'max(Rs,t2) + Dmazs;
min_seq(ts,ta)1

> Dmazs + RTmax(R3,t3) + Dmazyy
min_seq(ts,t2)1

> Dmazsz + RT'max(R3,t3) + Dmazyy

For the second inequality, min_seq(ts,ts); = Dming; + ETmin(ts). The left-
side expression represents the earliest time when the I/O event of t4 becomes
executable, from the time T’ (when the I/O event of ¢, has been executed). On
the other hand, the right-side expression represents the latest time when the
register value transfer message “Mry 3,” arrives at PE;, from the same time T.

As the result of the inequalities, the following inequalities can be obtained.

Dmings + ETmin(ts) + Dmingg + RTmin(Rs,t2)

> Dmazxy + RTmaz(Ry,t) + Dmazis
Dmingg + ET'min(ts)

> Dmazoz + RT'maz(R3,t2) + Dmazs;
Dming; + ETmin(ty)

> Dmazxz + RTmax(Rs,t3) + Dmazyy

That is,

ETmin(ts) + RTmin(R3,ts) — RT'max(Ry,t)
ETmin(ty) — RTmaz(R3,1s)
ETmin(ty) — RTmaz(Ray,t3) > 1

AV
@«
—_

72

We illustrate how the time constraints of transitions are represented by variables
in Fig 5.5.
Here, we give the following objective function and obtain a solution to

minimize it.

OBJ
= i:(ETmax(ti) - ETmé'n(ti))
zI—;’il'ﬁnaa:(Rl, t1) — RT'min(Ry,t1)
RTmaz(R3,ts) — RT'min(R3,t2)
(

RTmaz(Rs,t3) — RT'min(Ry,t3)

+ + +

The solution is shown below.

ETmin(t;) =0, ETmaz(t1) =35
ETmin(ts) =0, ETmaz(ty) =3
ETmin(t3) =3, ETmaz(ts) =3
ETmin(ty) =4, ETmax(ty) =4
RTmin(R;,t1) =0, RTmaz(R,t) =1
RTmin(Rs,ts) =0, RTmax(Rs,t2) =0
RTmin(Rs,t3) =0, RTmaz(Ra,t3) =3

5.6. Sketch of Correctness Proof
We show a sketch of correctness proof for our derivation algorithm in this sec-
tion.

From the discussion of the correctness of protocol specifications in Section

5.4, we should show the following issues.

(1) The observable I/O event sequences (ignoring the time intervals between
two successive events and the values of the sequences) of Sspec and Pspeci!?)

are the same, except the sequences by the interleave of parallel transitions.

(2) The observable I/O values of the sequences are the same.

(3) Every time interval between two successive I/O events in Pspecl? is

within the corresponding time interval in Sspec.

We adopt a simulation policy where an I/O completion notification message
is sent after the execution of each I/O event. Therefore, the execution order of
I/O events of t1,..., t,, in Pspect!P)is the same as that of t1,..., t, in Sspec, if we
ignore the time intervals and I/O values. Here, the discussion of the correctness
of removing e-transitions is the same as that in Section 3.5. Therefore we omit
the discussion. As a result, we can show that (1) holds.

Then in order to show that (2) holds, we should show that the following
(2.1) and (2.2) hold.

(2.1) (a) the evaluation of the guard expression’s value, (b) the execution of the
I/0O event and (c) the execution of register value substitution statements

are done in this order.

(2.2) (a), (b) and (c) are done with correct values.

In the simulation policy, RPE(¢;) first evaluates the value of ¢;’s guard
expression and executes t;’s [/O event. Each protocol entity which executes
some of t;’s register value substitution statements cannot execute them without
receiving an input value transfer message, which is sent after the execution of
t;’s 1/O event. Therefore, we can show that (2.1) holds.

In order to show that (2.2) holds, it is sufficient to show that both (2.2.1)
and (2.2.2) hold.

(2:2.1) For each transition t; which needs the value of a register R, a transition
t; which substitutes the value to the latest value is uniquely decided in

Sspec.

(2.2.2) The value of the register R, substituted on t; has already arrived and the

next new value has not arrived when the value is referred on ;.

74

In our algorithm, we assume that there is no register conflict pair of tran-
sitions. Therefore, when we trace the Petri net graph of Sspec backward from
t;, we can find only one transition ¢; where the value of R, is substituted. Note
that the net contains choice structures, so we may find more than one such a
transition t;. However, they never fire in parallel, therefore we can treat them
as one transition ¢;. As a result, we can show that (2.2.1) holds.

In our simulation policy, the protocol entity which holds the register R,
sends the substituted value of R, to the protocol entity which uses the value for
the simulation.of ¢;. We restrict the time constraints of transitions in Pspecil:»}
to guarantee that the value always arrives before it is used. Inequalities (5.3)-
(5.6) guarantee such a condition. As discussed in Section 5.5.2, the next new
value of R, must not arrive before the previous value is used. Inequality (5.7)
guarantee such a condition. As a result of the above discussion, we can show
that (2.2.2) holds.

Finally, for any pair of two successive I/O events, Inequality (5.2) guaran-
tees that the time interval between them in Pspeci!:? is within that in S spec.
However, when we consider time intervals, we must consider the special case
of choice as discussed in Section 5.4. Here, Inequality (5.8) guarantees that
the selectability of transitions in a choice structure in Pspec!"?. We do not
have to consider the interleaves of parallel I/O events due to the definition of

correctness. Therefore we can show that (3) holds.

5.7. Discussion
We propose two different protocol synthesis methods although TPNR model is
a superset of PNR model, because the available classes of service specifications
are different. Also simulation policies are quite different.

Table 5.3 shows the comparison of two methods described in Chapter 3 and
in this chapter.

The method in this chapter restricts the class of the Petri nets of service
specifications as live and safe Free-Choice net. This is because choice structures

in general Petri nets may make it difficult to guarantee the correctness of pro-

75

Table 5.3: Comparison.
Method in Chapter 3 | Method in this chapter

The Class of Petri Nets || live and safe Petri | live and safe Free-

net Choice net
Register Conflict considered not considered
Time Constraint not considered considered

tocol specifications (for details, see Section 5.4). Also in the method, avoiding
the register conflict problem is not considered, since it is not practical to adopt
distributed mutual exclusion mechanisms. The distributed mutual exclusion
mechanisms need additional messages and we must consider the delays of those
messages in the derivation algorithm. Instead of those restrictions, we adopt a
simulation policy where the values are sent as soon as possible for the future ex-
ecution of actions. Such a simulation policy needs to extract data dependencies
in service specifications.

On the other hand, the method in Chapter 3 only assumes liveness and
safeness for the class of Petri nets. Also it considers the control of register
conflict. Instead of those advantages, it adopts a simulation policy where each
transition is simulated independently of the others. It facilitates to guarantee

the correctness of protocol specifications.

5.8. Conclusion
In this chapter, a method to derive a correct protocol specification from a
given service specification in TPNR model, a resource allocation and maxi-
mum/minimum communication delays among protocol entities has been pro-
posed.

As briefly discussed, our concept is to provide a synthesis approach for
distributed environments where (a) a global clock is not available and (b) state
variables are considered. As a solution for (a), we use a time Petri net based

model. In time Petri nets, time constraints can be specified between only succes-

sive actions, therefore it facilitates to implement service specifications in such
a distributed environment. Nevertheless, it is commonly used and powerful
enough for formal specifications of real-time systems. As a solution for (b), we
extend time Petri nets, so that state variables can be treated formally. Also we
adopt an implementation policy where data values are sent as early as possible
(sent in advance) for the efficient implementation of service specifications. This
concept is very common in real-time distributed systems.

For practical use, many system-specific things must be considered. For
example, in distributed real-time databases, data with large capacity may be
treated. Therefore the execution time of actions, such as the retrieval time of
data, may not seem to be zero, while we assume it is zero in our method. To

allow for such a case, we only change Inequality (5.4) to :

min_seq(ti,t;)n > Dmazy, + RT'maz(Ry,t;)
+ maz_ezec(Ry,t;) + Dmazyy,
where maz_exec(R,,t;) represents the maximum execution time of the substi-
tution statement of R,. Our concept itself can be applied to many real-time

distributed systems by slightly modifying the inequalities even though there are

some system-specific aspects practically.

77

Chapter 6
Conclusion

In this thesis, the following three issues have been described.

1. A protocol synthesis method from service specifications written in an ex-
tended Petri net model has been proposed. The method provides how
to simulate a service specification including parallelism and the calcula-
tion of state variables in a distributed environment, without inconsistency.
In order to make the correctness of protocol specifications easy to prove,
a simulation policy, where the behavior of each transition is simulated
independently, is adopted. The number of messages exchanged for sim-
ulating the behavior of each transition based on the simulation policy is

minimized.

2. An application of the proposed method has been shown. From a whole
process description of cooperative work in PNR model and an allocation of
tasks to workers, a set of process descriptions of workers is automatically
derived. The derivation system which derives a set of process descriptions
of workers and the execution system which interprets a process description
of worker have been developed. Using the system, the efficiency of the

synthesis method for cooperative work support is shown.

3. A protocol synthesis method from service specifications written in an ex-
tended time Petri net model has been proposed. The method provides how
to simulate a service specification with time constraints in a distributed

environment under the presence of communication delays. Therefore the

78

different cost measure, urgency of time, is introduced and an adequate
simulation policy suitable for the cost measure should be adopted. In this
method, a simulation policy, where each protocol entity holding the latest
data sends it as soon as possible to the protocol entities which may need
it in future is adopted even though it may lead unnecessary messages. By
doing so, the total sum of the possible ranges of the executable time of

the actions in a protocol specification is maximized.

In the first method, it has been shown that service specifications with par-
allelism and the calculation of state variables can be implemented correctly. The
simulation policy implements each transition independently and it may make
the correctness proof of the algorithm easy. In the third method, it has been
also shown that service specifications with time constraints between successive
actions can be implemented efficiently in a distributed environment where a
global time is not available. In order to implement such service specifications
efficiently, a simulation policy suitable for real-time properties is adopted. These
methods are based on different concepts, therefore, the simulation policy and
cost measure of one method are quite different from those of the another one.

The result of these researches may spread the class of service specifications
in protocol synthesis methods and may be helpful to design reliable distributed
computing systems. As one of future work, in order to treat more general
class of service specifications, a method to derive protocol specifications, from
service specifications where a number of the same services can be provided,
will be considered. In practical, systems may have to provide a number of
the same services, for example, several similar projects progress concurrently in
cooperative work. For modeling a number .of the same services simply, coloured

Petri nets can be considered as a description model.

References
[1] Merlin, P.M. and Farber, D.J.: “Recoverability of Communication Proto-

[2]

[3]
[4]
[5]

[6]

[7]

8]
[9]

cols Implications of a Theoretical Study,” IEEE Trans. on Communica-
tions, Vol. COM-24, pp. 1036-1043, 1976.

Kosaraju, S.R.: “Decidability of Reachability in Vector Addition Systems,”
Proc. of 14th Annual ACM Symp. on Theory Computing, pp. 267-281,
1982.

Mayr, E. W.: “An Algorithm for the General Petri Net Reachability Prob-
lem,” SIAM, J. Comput., Vol. 13, No. 3, pp. 441-460, Aug. 1984.

Murata, T.: “Petri Nets: Properties, Analysis and Applications,” Proc. of
IEEFE, Vol. 77, No. 4, pp. 541-580, 1989.

Barkaoui, K. and Minoux, M.: “A Polynomial-Time Graph Algorithm to
Decide Liveness of Some Basic Classes of Bounded Petri Nets,” Proc. of
Int. Conf. on Application and Theory of Petri Nets 1992, LNCS, Vol. 616,
pp. 62-75, 1992.

Kemper, P. and Bause, F.: “An Efficient Polynomial-Time Algorithm to
Decide Liveness and Boundedness of Free-Choice Nets,” Proc. of Int. Conf.
on Application and Theory of Petri Nets 1992, LNCS, Vol. 616, pp. 263
278, 1992.

Bucci, G. and Vicario, E.: “Compositional Validation of Time-Critical
Systems Using Communicating Time Petri Nets,” IEEE Trans. on Software
Engineering, Vol. 21, No. 12, pp. 969-992, 1995.

Bruno, G. and Balsamo, A.: “Petri Net-Based Object Oriented Modelling
of Distributed Systems,” Proc. of ACM OOPSLA ’86, pp. 284-293, 1986.

Berthomieu, B. and Diaz, M.: “Modeling and Verification of Time Depen-
dent Systems Using Time Petri Nets,” IEEE Trans. on Software Engineer-
ing, Vol. 17, No. 3, pp. 259-273, 1991.

[10] Probert, R. and Saleh, K.: “Synthesis of Communication Protocols: Survey

and Assessment,” IEEE Trans. on Computers, Vol. 40, No. 4, pp. 468-476,
1991.

[11] Saleh, K.: “Synthesis of Communication Protocols: an Annotated Bibliog-

raphy,” ACM SIGCOMM Computer Communication Review, Vol. 26, No.
5, pp. 40-59, 1996.

[12] Lamport, L.: “Time, Clocks, and Ordering of Events in a Distributed

80

System,” Communication of ACM, Vol. 21, No. 7, pp. 558-564, 1978.

[13] Maekawa, M.: “A +/N Algorithm for Mutual Exclusion in Decentralized
Systems,” ACM Trans. on Computer Systems, Vol. 3, No. 2, pp. 145-159,
1985.

[14] Lamport, L. and Lynch, N.A.: “Distributed Computing : Modes and Meth-
ods,” Hand Book of Theoretical Computer Science, B: Formal Models Se-
mantics, The MIT Press/Elsevier, pp. 1157-1200, 1990.

[15] Park, D.: “Concurrency and Automata on Infinite Sequences,” Theoretical
Computer Science, Vol. 104, pp. 167-183, 1981.

[16] Milner, R.: “Communication and Concurrency,” Prentice-Hall, 1989.

[17] ‘Bochmann, G.V. and Gotzhein, R.: “Deriving Protocol Specifications from
Service Specifications,” Proc. of ACM SIGCOMM °86, pp. 148-156, 1986.

- [18] Khendek, F., Bochmann, G.V. and Kant, C.: “New Results on Deriving
Protocol Specifications from Service Specifications,” Proc. of ACM SIG-
COMM ’86, pp. 136-145, 1989.

[19] Gotzhein, R. and Bochmann, G.V.: “Deriving Protocol Specifications from
Service Specifications Including Parameters,” ACM Trans. on Computer
Systems, Vol. 8, No. 4, pp. 255-283, 1990.

[20] Langerak, R.: “Decomposition of Functionality; a Correctness-Preserving
LOTOS Transformation,” Proc. of 10th IFIP W(G6.1 Symp. on Protocol
Specification, Testing and Verification (PSTV-10), pp. 229-242, 1990.

[21] Higashino, T.: “Service Specification and Its Protocol Specifications in
LOTOS,” IEICE Trans. on Fundamentals, Vol. E75-A, No. 3, pp. 330-338,
1992.

[22] Kant, C., Higashino, T. and Bochmann, G.V.: “Deriving Protocol Specifi-
cations from Service Specifications Written in LOTOS,” Distributed Com-
puting, Vol. 10, No. 1, pp. 29-47, 1996.

[23] Chu, P.-Y.M. and Liu, M.T.: “Synthesizing Protocol Specifications from
Service Specifications in FSM Model,” Computer Networking Symp. 88,
pp. 173-182, 1988.

[24] Chu, P.-Y.M. and Liu, M.T.: “Protocol Synthesis in a State-Transition
Model,” Proc. of COMPSAC 88, pp. 505-512, 1988.

[25] Higashino, T., Okano, K., Imajo, H. and Taniguchi, K.: “Deriving Protocol
Specifications from Service Specifications in Extended FSM Models,” Proc.
of 18th Int. Conf. on Distributed Computing Systems (ICDCS-13), pp. 141-
148, 1993.

81

[26] Kakuda, Y., Igarashi, H. and Kikuno, T.: “Automated Synthesis of Proto-
col Specifications with Message Collisions and Verification of Timeliness,”
Proc. of 1994 Int. Conf. on Network Protocols (ICNP’94), 1994.

[27] Osterweil, L.J.: “Software Processes Are Software Too,” Proc. of 9th Int.
Conf. on Software Engineering (ICSE-9), pp. 2-13, 1987.

[28] Katayama, T.: “A Hierarchical and Functional Software Process Descrip-
tion and Its Enaction,” Proc. of 11th Int. Conf. on Software Engineering
(ICSE-11), pp. 343-352, 1989.

[29] Kishida, K., et al.: “SDA: A Novel Approach to Software Environment
Design and Construction,” Proc. of 10th Int. Conf. on Software Engineering
(ICSE-10), pp. 69-79, 1988.

[30] Saeki, M., Kaneko, T. and Sakamoto, M.: “A Method for Software Pro-
cess Modeling and Description using LOTOS,” Proc. of 1st Int. Conf. on
Software Process (ICSP-1), pp. 90-104, 1991.

[31] Curtis, B., Kellner, M. and Over, J.: “Process Modeling,” Communication
of ACM, Vol. 35, No. 9, pp. 75-90, 1992.

(32] Iida, H., Mimura, K., Inoue, K. and Torii, K.: “Hakoniwa: Monitor and
Navigation System for Cooperative Development Based on Activity Se-
quence Model,” Proc. of 2nd Int. Conf. on Software Process (ICSP-2), pp.
64-74, 1993. ‘

[33] Sutton, S., Heimbigner, D. and Osterweil, L. J.: “Language Constructs
for Managing Change in Process Centered Environments,” Proc. of 4th
SIGSOFT Symposium on Software Development Environments, Software
Eng. Notes, Vol. 15, No. 6, pp. 206-217, 1990.

[34] Inoue, K., Ogihara, T., Kikuno, T. and Torii, K. : “A Formal Adaptation
Method for Process Descriptions,” Proc. of 11th Int. Conf. on Software
FEngineering (ICSE-11), pp. 145-153, 1989.

[35] Huff, K.E. and Lessor, V.R. : “A Plan-based Intelligent Assistant that
Supports the Software Development Process,” Proc. of 3rd Software En-
gineering Symposium on Practical Software Development Environments,
Software Eng. Notes, Vol. 13, No. 5, pp. 97-106, 1989.

[36] Barghouti, N.S.: “Supporting Cooperation in the MARVEL Process-
Centered SDE,” ACM SIGSOFT, Vol. 17, No. 5, pp. 21-31, 1992.

[37] Kaiser, G.E., Barghouti, N.S. and Sokolsky, M.H.: “Preliminary Experi-
ence with Process Modeling in the Marvel Software, Development Envi-

ronment Kernel,” Proc. of 23rd Annual Hawaii Int. Conf. on System Sci.,
Vol. 11, pp. 131-140, 1990. '

82

[38]

[39]

Peuschel, B. and Schafer, W. : “Concepts and Implementation of a Rule-
based Process Engine,” Proc. of 14th Int. Conf. on Software Engineering
(ICSE-14), pp. 262-279, 1992.

Deiters, W. and Gruhn, V. : “Managing Software Processes in the Envi-

" ronment MELMAC,” ACM SIGSOFT, Vol. 15, No. 6, 1990.

[40]

[41]

[42]

[46]

[47]

[48]

[49]

Bandinelli, S., Fuggetta, A. and Grigolli, S.: “Process Modeling in-the-large
with SLANG,” Proc. of 2nd Int. Conf. on Software Process (ICSP-2), pp.
75-83, 1993.

Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M. and Picco, G.P.: “Model-
ing and Improving an Industrial Software Process,” IEEE Trans. on Soft-
ware Engineering, Vol. 21, No. 5, pp. 440—454, 1995.

Leonhardt, U., Kramer, J., Nuseibeh, B. and Finkelstein, A.: “Decen-
tralized Process Enactment in a Multi-Perspective Development Environ-
ment,” Proc. of 17th Int. Conf. on Software Engineering (ICSE-17), pp.
255-264, 1995. ’

Kellner, M. et al.: “ISPW-6 Software Process Example,” Proc. of Ist Int.
Conf. on Software Process (ICSP-1), pp. 176-186, 1991.

Yasumoto, K., Higashino, T. and Taniguchi, K.: “Software Process De-
scription Using LOTOS and its Enaction,” Proc. of 16th Int. Conf. on
Software Engineering (ICSE-16), pp. 169-179, 1994.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K.: “Software
Process Description in a Petri Net Model and Its Distributed Execution,”
Technical Report of IEICE of Japan, 94-SS-38, Vol. 94, No. 334, pp. 25-32,
Nov. 1994.

Koler, M.-K.: “Deriving Protocol Specifications from Service Specifications
with Heterogeneous Timing Requirements,” Proc. of 1991 Int. Conf. on
Software Engineering for Real Time Systems, pp. 266-270, 1991.

Khoumsi, A., Bochmann, G.V. and Dssouli, R.: “On Specifying Services
and Synthesizing Protocols for Real-time Applications,” Proc. of 14th IFIP
WG6.1 Symp. on Protocol Specification, Testing and Verification (PSTV-
14), pp. 185-200, 1994.

Nakata, A., Higashino, T. and Taniguchi, K.: “Protocol Synthesis from
Timed and Structured Specifications,” Proc. of 1995 Int. Conf. on Network
Protocols (ICNP95), pp. 74-81, 1995.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K.: Protocol
Synthesis from Time Petri Net Based Service Specifications, Proc. of 1997
Int. Conf. on Parallel and Distributed Systems (ICPADS’97), pp. 236-243,

83

[50]

/53]

Dec. 1997.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K.: “Synthesis of
Protocol Specifications from Service Specifications of Distributed Systems
in a Marked Graph Model,” IEICE Trans. on Fundamentals, Vol. E77-A,
No. 10, pp. 1623-1633, 1994.

Chao, D.Y. and Wang, D.T.: “A Synthesis Technique of General Petri
Nets,” Journal of System Integration, Vol. 4, pp. 67-102, 1994.

Yamaguchi, H., Okano, K., Higashino, T. and Taniguchi, K.: “Synthesis of
Protocol Entities’ Specifications from Service Specifications in a Petri Net
Model with Registers,” Proc. of 15th Int. Conf. on Distributed Computing
Systems (ICDCS-15), pp. 510-517, 1995.

Kahlouche, H. and Girardot, J.J.: “A Stepwise Requirement Based Ap-
proach for Synthesizing Protocol Specifications in an Interpreted Petri Net
Model,” Proc. of INFOCOM’96, pp. 1165-1173, 1996.

84

Appendix

In Chapter 4, we have applied our derivation method in Chapter 3 to cooperative
work support. In this appendix, we will show an another application.

We model a work-flow of a manufacturing system [8]. We describe the over-
all work-flow of the system in PNR model and regard it as a service specification.
Then we derive a set of protocol entity specifications of six computers.

The system consists of six computers PEy, ..., PEg (Fig. 1). For each pair
of PE; and PE;, they are connected by a communication channel and both end
points of the channel are represented as I/O gates g;; (PE;’s side) and g;; (PE;’s
side). There are three processing machines 1, 2 and 3, an operator, a stockroom
operator and a carrier. The operator uses the computer PE4 and indicates the
system to process the parts of a product. Also it watches the behavior of the
processing machines and carrier. These are done through the I/O gate OP on
PE,. The stockroom operator uses the computer PE5 and checks whether the
required parts are in a stockroom or not. If so, it takes the parts out from the
stockroom. These are done through the I/O gate STK on PEs;. The carrier
carries the parts from the stockroom to one of three processing machines. PEg
controls the carrier through the I/O gate CR on PEg. The processing machines
1, 2 and 3 process the parts carried from the stockroom. PE;, PE,; and PEg
control the processing machines 1, 2 and 3 through I/O gates MC1, MC2 and
MC3 on PE,;, PE; and PEj3, respectively.

The system has two types of databases. One keeps a stock list and the
another keeps a parts information list. They are represented as registers R,q
and R.g, respectively. Each entry in the stock list consists of a parts name,
the number of the parts in the stockroom and the type of the parts. Also each

entry in the parts information list consists of a parts name and the information

85

Processing Processing Processing

Machine 1 Machine 1 Machine 1
‘MC‘I ‘Mcz ‘Mca
¥ Protocol Entity 1 Y Protocol Entity Y Protocol Entity 3
| Rparts] [Redb || || Rparts| [Riog |
A A A A A

912 g13 g14 gi5 g16 g21 g23 g24 g2b g26 @31 932 g34 g3b g36 Communication
Channels

) Stockroom
Operator Operator : Carrier
4 OP ASTK ACR

¥ Protocol Entity 4| ¥ Protocol Entity 5| ¥ Protocol Entity 6

|_Rnum | | Rtype |

[Rparts| |Rrepor{| |[Rparts| [Rsdb |
A A A A A

Communication g41 ga2 g43 gab gd6 g51 g2 g53 g54 g56 g61 g62 g63 g64 ges
Channels

Figure 1: Computers and System Resources.

of the parts. The register Rjo, keeps the system logs. The registers Rparts, Roum,
R, eport and Rcon; are used as variables to hold input data, computation results,
and so on. Each register is placed on at least one computer.

First, we assume that all of the I/O gates and registers can be used and all
the communication channels and their end points are hidden. Then we describe
the whole behavior of the system in PNR model. It is shown in Figures 2 and
3.

The system receives the parts name to be processed, from the operator
(through the I/O gate OP) on the transition ¢;. Also it retrieves the entry of
the parts from the parts list Ryg and the result of the retrieval is stored to the
register Rpym. If the number of the parts in the retrieved entry (the value of
R,.m) is equal to zero, the system tells the stockroom operator to supply the
parts on the transition s, then tells the operator that the parts are out of stock

on the transition ¢3 and then goes back to the initial state. If the value of Rpym

86

is less than zero, the inconsistency has occurred. In this case, the system tells
the stockroom operator to correct the inconsistency on the transition t4, then
tells the operator that the parts are out of stock on the transition t5 and goes
back to the initial state. Otherwise the system lets the stockroom operator to
check whether the parts are really in stock or not. If the system is told that the
parts are out of stock on the transition ¢7, the system tells the opera,toi‘ that
the inconsistency occurs, then lets the stockroom operator to supply the parts,
and goes back to the initial state. Otherwise the system tells the stockroom
operator to carry the parts out from the stockroom on the transition ¢;;, and
receives the signal of the finish on the transition ¢;5. At this time, the contents
of the database R,q, is updated and the type of the parts is retrieved from R,g.
The result of the retrieval is stored to the register R,,,.. After that the system
lets the carrier to carry the parts from the stockroom to one of three processing
machines according to the type of the parts (the value of Ryyp.). It is done by
the choice of the transitions ¢4, t15 or t16. Then the system receives the signal
of the finish on the transition ¢;5. Now we assume that the processing machine
1 receives the parts. For the processing machine 1, the system lets the machine
to mount the parts on the transition o, receives the signal of the finish on
the transition to4, lets it to process the parts on the transition t3; and receives
the signal of the finish on the transition ¢39. Here, on the transition t3g, the
system receives not only the signal but also the report of the processing. Then
the system checks whether the processing has been successfully completed or
not. It is done by the choice of t34 or t35. If not, the system lets the machine
to reset itself on the transition ?3g9, tells the operator that the process has not
been completed, and then goes to the initial state. Otherwise the system lets
the machine to unmount the parts on the transition #35 and tells the operator
that the process has been completed. Then the system goes back to the initial
state. Here, the system records the behavior of the machines and carrier onto
the log-file Rjog. These are done on the transitions 13, t17, t19, t23 and so on, in
parallel with the main work-flow of processing.

Then we regard the description in Figures 2 and 3 as a service specification,

and derive a protocol specification on the six computers in Figure 1. The derived

protocol entity specifications are shown in Figures 4 and 5 (Pspec,;), Figures 6
and 7 (Pspecs), Figure 8 (Pspecs), Figures 9 and 10 (Pspecs), Figures 11 and
12 (Pspecs), and Figure 13 (Pspecs).

88

¢

J
<True,
m OP?parts,
{Rparts<-parts, Rnum<-retrieve(Rsdb, parts, "NUM")}>
T3 T2 T4 75
e .l o N |
T T (N i
<True, <Rnum==0, <Rnum<0, <True,
OP!"Out of Stock®, STK!"SUPPLY", Rparts, STKI"CORRECT", Rparts, OP!"Out of Stock",
{}> {}> { {3
76 <Rnum>0,
<True, : STK!I"CHECK",Rparts,
STKI"SUPPLY", Rpar!
0> T8
—O—+
9 <True,
OP!"lllegal”

{Rsdb<-setdb(Rsdb, Rparts, -1) }>~ <ans=="INSTOCK",
STK?ans,

(>

<True,
STK!"OUT" Rparts,
11

<ans=="END-OUT",
STK?ans,
{Rsdb<-setdb(Rsdb, Rparts, Rnum-1),
Rtype<-retrieve(Rsdb, Rparts, "TYPE"

T14 <Riype=="TYPE1",
CRI"CARRY","MACHINE1",
{}

T15 <Rtype=="TYPEZ",
CRI'CARRY" "MACHINEZ",
8:4

T16 <Riype=="TYPES",
CRICARRY" “MACHINES",
{}

<ans=="END-CARRY",
CR?"ans,
1022

T20 <Rtype=="TYPE1",
MC1 I"'MOUNT" Rparts,

>
T21 <Rtype=="TYPEZ",
MC2 I"MOUNT" Rparts,
{}>
T22 <Riype=="TYPEZ",
MC3 I"'MOUNT",Rparts,
{3

{Rcont<-retrieve{Rcdb, Rparts}>

<True,
OP!"Out from Stockroom*,

{Rlog<-append(Rlog, Rparts,
OUT"}>

<True,

OP!"Finished",

{Rlog<-append(Rlog, Rparts,
"END-OUT"}>

<True,

OPY'Carry",
{Rlog<-append(Rlog, Rparts,
‘CARRY")}>

[<True,

OP!"Finished",

{Rlog<-append(Riog, Rparts,
"CARRY-END")}>

Figure 2: Specification of Manufacturing System. (1 of 2)

89

T24 <ans=="END-MOUNT",
MC1 ?*ans,

{H
T25 <ans=="END-MOUNT",
MC2 ?*ans,

(3>
Te6 <ans=="END-MOUNT",

MC3 ?"ans,
T27 <True 0= . .

MC1 "PROCESS",Rparts,Rcont
g 127 128
T28 <True,

MC2 I"PROCESS", Rparts,Reont

MC3 "PROCESS",Rparts,Reont . .

> T30 <ans=="END-PROCESS"
MC1 ?ans, report
{Rreport<-report }>
731 <ans=="END-PROCESS"
MC2 ?ans, report
{Rreport<-report }>
732 <ans=="END-PROCESS"
MC3 ?ans, report
{Rreport<-report }> ‘

<Rreport=="COMPLETE"
OP ! "Finished"

{Rlog<-append(Rlog, Rparts, *PROCESS SUCCEEDED") }

736 <Riype=="TYPE?1",
MC1 I'UNMOUNT",

{r T36 / 137 738
T37 <Rtype=="TYPE2',
MC2 "UNMOUNT*,
{}>
738 <Riype=="TYPE3",
MC3 "UNMOUNT*,
{3

742 <ans=="UNMOUNT-END",
MC1 ?ans,

T42 T43 T44

{»
743 <ans=="UNMOUNTEND",
MC2 ?ans,

{¥
T44 <ans=="UNMOUNT-END", O
MC3 ?ans,

) {}>

<True, T‘sv
OP!*Complete*,

{Rlog<-append(Rlog, Rparts, "PROCESS COMPLETE")>

T24 25 T26

729
0> \
T29 <True,

T34

733

<True,
OP¥Processing” Rparts,
{Rlog<-append(Rlcg, Rparts, "PROCESS")}>

<Rreport=="ERROR"

T35 OP ! “Processing Error, Dist "
{Rlog<-append(Rlog, Rparts,
"PROCESSING ERROR") }>

745 T46 T47 745 <ans=="RESET-END",

48 <True,

OP!"Reset Compiete”,
{Rlog<-append(Rlog, Rparts, “RESET")>

Figure 3: Specification of Manufacturing System. (2 of 2)

90

<ID(w)=="Mrc1",
a1417%w,
{Tmp1.parts<-w.parts }>

<Ttue,

13
{Rparts<-w.parts }

<True,
gi16t"Msf1",
{}>

<True,
g14"Msf11*,
{}>

3
t
t
i
g
$
<True,
togisMst117,
P
t
t
g
4

<ID(w)=="Msf18",
: gi5?w,
o~ {Tmp1.Rtype<-w.Rtype }>

bt

Figure 4: Specification for PE;. (1 of 2)

91

<Tmp1.Rlype=="TYPE1", » = = % 4y,
MC1!I"MOUNT", Rparts, |, T]- _t
{F
<ID(W)=="Mrc26"_ T26 <ID(w)=="Mrc'26",
. T25° T Tgi2tw, =R T T 9187w,
<ens="ENDMOUNT", , = L =, ; o : g
MC1t?ans, B il 4] i i ‘ g
{3 3 3 <True, s <True,
3 3 g12!"Mre25* y g13!"Mrc26"{Rcont},
@, == oo, A (s
<Tue, 727 (>
MC1I'PROCESS", ™ " § ™"
Rparts, Reont : ¥
{}> i
r O
<True, $ 3
914!"Msf27"{Reont}, 3 s
{)> -
T30
<ans=="END-PROCESS*, » ~ ~ %
MC1?ans, report, § |
{Tmp1.teport<-report}> 1 . 1
<True, ! '
g141"Mre30"{Tmp1.teport}’ $
> 1 AN l

<Dw)=="Msf34’, <DW)=="Mst3#, g4,

9127w, g152w, h :

(> { Tmp1.Rtype<-w.Riype). g
JONOr

§
[RER |

2
H
-

o

<Rtype=="TYPE1", ;’ I
MCIIUNMOUNT", *w o] we ook
{}> T3s

MC1?ans
{}>
<True,
g141"Msfa2",
{P

w o ww am we

"

<7

- ,Q <ID(wj=="Msf35", <ID(w)=="Msfas",
: g127w, 9157w

; :
i (3> { Tmp1.Rtype<-w
rQ O
H
H

v] o od

o <Rlype=="TYPE1",
MC1"RESET",

win RS

T39

- e o

O) T45 1. .. ,<ans=="RESETEND",
§ 5 MC1?ans
H N {}>
§ ‘ i<True,
b g14I"Mst45",
LI AR 5 Y8

Riype }>

Figure 5: Specification for PE;. (2 of 2)

92

<ID(W)=="Mst8",
gis™w,
{Tmp1.Rtype<-w.Rtype }» = —

o

0>

<ans=="END-MOUNT",
MC2?ans,
{}>

g211"Msf25°0,
{>

<ID(w)=="Mst'26",
g21?w,
{Tmp2.Roont<-w.Reont }> f v wf v i

~own A A

-
H
H
H

<True, F
H
H
H
H

¥

<True,
MC2!"PROCESS", - -

Rparts, Tmp2.Reonts
{}> t

H

<True, ¢
g24I"Msf28", e il
{>

<ans=="END-PROCESS", ,. o 4
MC2?ans, report, 1
{Tmp2.report<-report }> 3

<True, '
g24!"Mre31 “{Tmpz.report),g

jid e ol

-t

<ID(w)=="Mre1",

g2417w,

¢ (Tmp1.parts<-w.parts }>
H

: <True,

i,
¢ {Rparts<-w.parts }
H

H
3 <True,

o~y T18

gR5IMsf1”,
>

<ID(w)="Mrc13",
T g247w,
i {

i <True,

LA
¥ { Rlog<-appned(Rlog,
$

KW v W e

- o <TrUS,
g24I"Msf13",
{}

- o = <ID(W)=="Mrc17",
gRAW,
)

§
3 <True,

T17 ¢

! { Rlog<-appned(Rlog,

o~ v v

w v e, <ID(W)=="Mrc19",
T19 H

H
g <True,

i,
! { Rlog<-appned(Riog,
. §<True,
w4 g24I"Mst19”,

(>

§
H
H
H
H
Ao

s le

Rparts, "OUT")}

Rparts, "END-OUT")}

Rparts, *CARRY")}

Figure 6: Specification for PE,. (1 of 2)

93

ID(Wj="Mrc34" > Jo4 I T",.l <ID(w)=="Mrc35},
g247w, 3 t , J2rw
<Trus, (» ¥ § {}>
i,) ' % Vo cTrue,
{ Rlog<-appned(Rlog, Rparts, H ; 1
"PROCESS SUCCEEDED')‘ H ! LI { Rlog<~appnet*ﬂlog, Rparts,
X 3 . ' *PROCESSING ERROR")}
<True, <True, 3 i H § <True, <qTrue,
g21"Msfa4", g22!'Msf34", H ¢ I g21I'Msf3s", [g23"Msf35",
{ {}> ' : 3 : {> (3>
t el T

<Rtype=="TYPEZ", » = % <Riype=="TYPE2",
MC2I'UNMOUNT", ¢ = 3 - oTo .4 MC2I'REBET",
{> {}>

-y <ans=="RESET-END",

<ans=="UNMOUNT-END", y MC27ans]

MC27ans . ;P
{)> $ P
<True, 3 <True,
g2AI'Mstd3”, 4 ; ; 924"Mside’,
{P it Bl el R § -
<ID(w)=="Mrcds" ;" _y_ ~t T48 7495 Ty "1 <ID(w)=="Mrc4g9",
<True, g247w, 5 i § gadw,
i, {}» § H H H {}>
{ Rlog<-appned(Rlog, Rparts, ¢ i N 3 <Ttue,
"PROCESS COMPLETE")} ; ;b
£ i { Rlog<-appned(Riod, Rparts,
<True, ¢ t 3 : *PROCESS RESET")}
1 LI Qg Lo ok = o <TTUE,
g241"Msf4s”, " .
O ??4. Msfdg",
>

Figure 7: Specification for PE,. (2 of 2)

94

w5 <ID(W)=="Mrc1",
" gldt?w,
3 {Tmp1.parts<-w.parts }>

:<_Ti‘ue,
H
t
§
$<True,

- i G15"Msfi®,

1924

I,
{Rparts<-w.parts }

T22
Tmpa Rype=="TYPES" = =
MC3I"MOUNT", Rparts, ¢
{)>

- ¢ <IDW)=="Msf18",

<ans=="END-MOUNT", = -~ (Tmps Rype<wRtype >
MC3%ans,

{}>

<True,
g31!"Msf26'(},
{}>
<ID{w)=="Msf26",
g317w,
{Tmp3.Reont<-w.Rcont }>

H
H
H
H
H
H

<Ttue,
MC3I"PROCESS",
Rparts, Tmpa.chn!
(>
<True, £
gl4!"Msf29"}
{} -

<ans=="END-PROCESS!,™
MC3?ans, report, H

{Tmp3.report<-report }>¢
<True, i
g341"Mre32"{Tmp3.report},™
{}>
<ID(w)=="Mst24", H ; <ID(W)=="Mst35",
27w, g . H 9327w,
B (b dD==M
) H W,
{ Tmps'mype"‘"'m"": ¥ {Tmp3 Atype<-w.Rlype }>
<Rtype=="TYPESZ", = = - 5 <Rtype=="TYPES",
MC3!"UNMOUNT",§ MC3!I"RESET",
{3 /i R §
<ans=="UNMOUNT-END",
MC3?ans "o~ -y <ans=="RESET-END",
{» % ; MCa?ans
H ¢ 1
! :
<True, H <True,
934" Msta4", i ; G34IMsHT,
{» i DR § -3

Figure 8: Specification for PEs.

95

|
<True
True, I1
ame., | e e
ga11"Mrc1*Tmp4.parts), _ ! ”’""4 p“"s""a"s”
{l <Tue, i !
g42!"Mrc1*{Tmp4.parts}, i . . ' [} <T;lge;,M . -
{» <Tiue, l 9 rc1"{Tmp4.parts},
"Mrc1 *{Tmp4.parts}, % <True,
QQ QO O T
4 {Rparts<-Timp4.parts }>
nnnnnnnnnnnn !
<'D(W)—'M5fz' <ID(w)=="Mst4*
= ™ T e e
3 4 ga2mw, 3 3 1 gd27w, s 4
<True, ' Y] P > ‘ ;
OPFOUt of Stock' 1 1 il LY s Vi <True,
{}> 5wt 1wt 4wl 3 i OPVlliegal”,
T10 {}>
oo e e w /37 T TE <ID(w)=="Msf10",
e ;) T8 775 S 94(5?);,,-
T OO
5w S] 3wl
<ID(w)=="Msf9", <Ttue, <True, <AD(w)=="Ms7", O O <True
gas7w, . g45I'Mreg’(}, OPllliegal®, g4s7w, 7131 3 ™ oprout from Stockroor
{)> {}> (> {3> i {»
T11 i O
<ID(w)=="Msf11", i N tf t 3<$"Mm1a-()
ga1w, : t s
{3 ; 3 <ID(W)=="Msf13",
ol e’ g429W,
o o O 7
’ .] w9 <True,
<ID(W)=="Ms14", nr 4 OP!‘Finished",
(g;f?W. T16 I ‘ g {)>
1 — "; 1 i <True,
<IDiw)=="Mst15",™ ™ s § . : (g4>2' Mrc17°(},
g467w, i
<ID{yy=="Msf16", . 1 <ID(w)=="Mst17",
0467w, =TT gd2w,
{}> {P>

Figure 9: Specification for PE,. (1 of 2)

96

T18
<ID{w)=="Msf18" }

o

= g |
2w, N

{}>

T27 T28
<ID(w)=="Msf27", <ID(w)=="Ms28", <ID(w)=="Msf29", ;"‘” e fon -
g417w, g42ow, 437w, e i N
(3> {» {P
<ID(w)=="Mrc30", <ID(w)=="Mrc31", <ID(w)=="Mrc32",
g417m, gd2w, g43w, PR N
{Tmpa4.report {Tmpd.report {Tmpd.report ']
<w.report}> <-w.report}> <-w.report}> H ‘ ;] ‘
<;m'°' <True, <True, £ i !
g i i H [}
(Rreport {Rreport {Rreport i N
<Tmpdreport}> " ympareport)> <-Tmpd.report}>

<Rreport=="COMPLETE",

OP!"Finished", i 1 7ag 195 ' OP!"Processing Error, Dig
{3 i H {>
§
<True, i . : H . <True,
g421"Mrc34*(}, | Wi A i oL .. 942"Mre34'{},
{)> {3

<ID(W)=="Mst42", <ID(w)=="Msld3", <ID(w)=="Msf44’, ..."_2
g417w, 942w, ga3?w, t
{}> {}> {3

<True,
OP"Complete, }
> ¢

<True, ¥
g42"Mrcas®(), ¢

{3 i

<ID{w)=="Msf48", ;
g42w, :
{)>

T19k

- | ox

p e
§

- =y <True,

- = <True,

- |

- - <True,

PRI PR

§ OP!"Carry®,

g {3 -

& <True,

3 g42"Mre19%{},

' d

; <ID(w)="Mst1",
g427w,
{}>

¢ OP!"Finished",
s {)>
§ <True,
3 g42"Mre23'(},
p (>
I <ID(w)=="Msf23",
9427w,
{>

3 OP!"Processing’,
1 (P
1 <True,
§ g42t*Mre33'{},
i
§ <ID(W)=="Msf33",
g42?w,
{P

<Rreport=="ERROR",

jcarded”,

() <ID{w)=="Msf45
{>
T4 T45 T47 AD(w)=="Mst46
o o e
oo v v ow 2o {}>
<ID(w)="Msf47"]
9437w,
‘ {}>
.{.,, - <True,
: ; {?P!"Resei%mp&ete',
>
: ‘ :<True,
¢ ¥ g42!"Mre49'{ },
O e
: ; <ID(w)=="Mst4g",
o ow G427,
1>

Figure 10: Specification for PE4. (2 of 2)

97

H

! H e
<ADW)="Mst1", <lD(w)=='Msf1',: . <g;g”%”= Mrct,
{g;&:?w, ?}530 w, : (Tmps.'pans<-w.pams}>
<ID{w)=="Mst1", <lD(w)='Msf1".: § <True,
g53%w, g547w, i
0> {» ! ! (Rparts<-Tmps.parts,

Rnum<-retrieve(Rsdb, TmpS.parts, *N

e] v o
<True,

Ta v o e e e o GEAMSIT),
(>

£

<True, ~ o~ v o v e W
g54"Mst4™{}, <Rnum == 0, <Rnum <0,
HS STK!'SUP?’_I;Y', Rparts - STKI"CORRECT", Rparts
13:4 . {)>
<True, <ID(Wj=sMrc8", tF . cAnum >0
STKI"CORRECT", g54%w, STKI"CHECK", Rparts
poLr A >
: 8
§
o o Y e v b e hen e v vy v e A v e
<Troe <True) - <Tille, ZaRs=="OUTQFSTOCK"
g54MSIo™]), i g54I"Msf7°(}, STK?ans,
{» {Rsdb<-setdb : {(» > 3" <ans=="INSTOCK"
(Rsdb, Rparts, -1)}> T10 ~ ~} ~ STK?ans,

(>

UM

Figure 11: Specification for PE;. (1 of 2)

98

<True,
g51!"Msf18"{Rtype},
{}>

<ID(W)=="Msf18"
g567w,
{¥

<True,
g52!"Mst18"{Rtype},
{}>

<True,
T11;

(>

<True,

(>

po o o
e W ox e e we e

T12;
{}>

<True,
i

o a s w e w w

<True,

L

ORI P Y

STKI"OUT", Rparts,

g511"Mre11°(},

<iD(w)=="Msf11"

<ans=="END-OUT",
STK?ans,

(Rtypeoretrieve(ﬁsdb, Rparts, “TYPE"),
Rsdbe<-setdb(Rsdb, Rparts, Rnum-1}>

95B!*Ms2"{Riype},
0

<True,
¢53!"Msf18"{Rtype},
>

Figure 12: Specification for PE;. (2 of 2)

99

<Tmp6.Rtype=="TYPE1",

{}>

<True,
g64!"Msf14"(},
{}>

<Tmp6.Riype=="TYPE2", -
CRI"CARRY", "MACHINE1", CRI"CARRY", "MACHINE2", T144

e <BNS=="INSTOCK"
§ STK?ans,
R § 2

w w <TMpPB.Riype=="TYPES3",
t CR!"CARRY", "MACHINES",

{P 8 g (>

I O
<True, i § <True,
g64"Mst15Y }, 1 § gB4I'MsH8Y(},
{3 - R 2

w v cansz='END=CARRY",
s CR?ans,
i {P

<True, <True,
gesI"Msf18",; t gearMst18(},
> {}>

Figure 13: Specification for PEg.

100

List of Figures

2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
3.9

A Transition in PNR Model., 12
Service Specification in PNR Model. 15
Protocol Specification in PNR Model. 18
Removal of an e-transition. e e e e 27
Algorithm by Lamport., . 32
Whole Description in PNR Model. 41
Task/Resource Allocation. 43
Individual Descriptions in PNR Model. 45
Whole Description of ISPW-6 Example Process. 47
Individual Descriptions of ISPW-6 Example Process. 48
Design of Execution System. oo 49
Snapshot of Execution System. 49
Whole Description. 52
Individual Descriptions. 53
Modified Whole Description for Case 1. 53
Service Specification in TPNR Model. 57
Protocol Specification in TPNR Model. 61
Narrowing Time Constraints in a Choice Structure. 63
Narrowing‘lTime Counstraints in a Parallel Structure. 63
Example. e 71
Computers and System Resources.. 86
Specification of Manufacturing System. (1of2) 89
Specification of Manufacturing System. (20f2) 90

101

© 00 ~ O v

11
12

13

Specification for PE;.
Specification for PE;.
Specification for PE,.
Specification for PE,.

Specification for PE3

Specification for PE,.
Specification for PE,.
Specification for PEs.
Specification for PEs.

Specification for PEg

(Lof2) o oo 91
(20f2) 92
(Lof2) oo oo 93
(20f2) 94
......................... 95
(LOf2) v oo 96
(20f2) L 97
(Lof2) o v ve oo 08
(20£2) © e 99
......................... 100

102

List of Tables

3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3

Resource Allocation. 17
Resource Allocation for ISPW-6 Example Process. 46
Task/Resource Allocation. e e e e 52
Modified Task/Resource Allocation for Case 2. 54
Modified Task/Resource Allocation for Case 3. 54
Resource Allocation. 58
Minimum/Maximum Communication Delays. 59
CompariSon. v v vt e e e e e e e e e 76

103

