<table>
<thead>
<tr>
<th>Title</th>
<th>99mTc標準リン酸化合物による骨シンチグラフィの臨床的検討（Ⅳ）-骨折ならびに骨移植について-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>山本, 逸雄</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 38(10) P.970-P.975</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1978-10-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/15312</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
Clinical Evaluation of Bone Scintigraphy with
99mTc-Labeled Phosphate Compounds

(Part Four)
—Fracture and Bone Graft—

Isuo Yamamoto

Department of Radiology and Nuclear Medicine, Kyoto University Hospital

Bone scintigraphy with 99mTc-labeled phosphate compounds (mainly 99mTc-EHDP) was performed on 45 cases with mandibular fracture and 22 cases with bone graft to the mandible. Scintigraphy was also repeated on artificial fracture in rats.

On fractured rats, the course of scintigraphic changes following a fracture was recognized. The fractured site accumulated 99mTc-EHDP on the second day after the fracture, rapidly increasing to the seventh day. After two weeks of the same level, the accumulation increased maximally at 21st day and then decreased gradually reaching to the control level at three months after the fracture. Clinically, cases with mandibular fracture showed increased accumulation of 99mTc-EHDP on the sixth day, reaching at maximum between first month to forth month and then the accumulation gradually decreased. On cases with autologous iliac bone graft to a defect of the mandible, the uptake by grafted bone appeared between 2 to 6 weeks after the graft, increased slightly more than by normal mandible between 6 weeks to a year, and then decreased to the normal level. In a case with an unsuccessful graft, the uptake by the grafted bone did not appear. In a case with osteomyelitis, the uptake by the grafted bone was very extensive. As a conclusion, bone scintigraphy was very useful for the evaluation of bone graft.
述べてきたが9-13, 今回、骨折および骨移植における骨シンチグラフィの意義につき検討を加えた。骨折の骨シンチグラフィに関しては今までに少数の報告があり9-13, 骨折の発見に骨シンチグラフィの有用なことが報告されているが、骨折の経過をみた報告はなく、また、骨移植の骨シンチグラフィについては、動物実験による報告はあるが9, 臨床的な報告はなく、その意義も明らかにされていない。そこで著者は、99mTc リン酸化合物を用いて、42例の下頸骨骨折例および25例の下頸骨の自体骨移植例にradiophospho 付近骨シンチグラフィを施行し、その変動を観察し、また、ラット下頸骨骨折実験も併せて施行し、骨折および骨移植における骨シンチグラフィの意義につき検討を加えた。

2. 方法および対象

a) 使用した放射性医薬品

放射性医薬品に、主として、ダイナポット社およびメディファックス社製の99mTc 栄養thiohydroxydiphosphonate (EHDF) を用いた。ダイナポット社製のものは凍結乾燥にEHDFキット1パックに約5ccの99mTc H2O溶液を加えて標識を行い、メディファックス社製のものは、すでに標識された99mTc-EHDPを用いた。その他、若干例には99mTc標識 oxyproposphate, 99mTc標識 mono-fluorophosphosphate, 99mTc標識 methylene diphosphonate等を用いた。いずれもその10～15 mCiを99mTc標識操作後2時間以内に静注投与した。

b) スキャンの方法

放射性医薬品投与3時間後、4,000ホールコリメータ装置の Nuclear Chicago 社製 Pho/Gamma HP にて下頸部、正面、両側面の3方向につき、100秒間、約10万カウントを集め、シンチフロットを作成した。

c) 検査対象

動物実験では、250g Wister 系ラットの右下腿骨を折り、その後1日、2日、3日、4日、5日、7日、10日、14日、21日、28日、60日、90日、180日後、各3匹ずつに99mTc標識 EHC

1mCiを尾静脈より静注投与し、3時間後に没し、シンチカメラによりシンチフロットを作成し、また、左右下腿骨を採取して、ウエル型シンチレーションカウンターにて放射能を測定して、右/左比を求め、各時期毎の、3匹の平均値を算出した。

骨折の臨床例は、42例の下頸骨骨折症例である。骨折3日後より最も3年後の間にシンチグラフィをくり返し施行し、骨折部の放射能集積の变化を検討し、集積の強さをシンチグラムの読影により3段階に分けて、異常集積を認めないものをA、軽度の異常集積を認めるものをB、著明な異常集積を認めるものををCとした。

骨折症例では、下頸骨骨折症例の下頸骨の欠損部の自家骨移植症例の25例を実施し、骨移植6日後より3年後間隔で骨シンチグラフィをくり返し施行し、移植部の放射能集積の変化を観察した。放射能集積の強さをシンチグラムの読影により判断したが、移植骨への集積を認めないとーとし、正常下頸骨と同程度のものをA、正常下頸骨より軽度強い集積を認めるものをB、著明に強い集積を認めるものをCとした。

3. 結 果

イ) ラットにおける骨折について

骨折後の骨折部への放射能の集積はFig. 1に示す加く、骨折2日後に骨折部の放射能が増加し、骨折4日後より7日後迄、放射能は急速に増
加し，以後14日後はほぼ同等の放射能集積を示し，それから再び上昇し，21日後に最高値に達し，その後，放射能集積は減少して90日後に前値に復した。また，骨シンチグラムではFig.2に示す如く，骨折4日後より骨折部は集積の増加としてとらえられ以後急激に強くなり，また21日目には広範にあつた集積がより限局してくるのが認められた。

ロ）下顎骨骨折について

Fig.3は，臨床例における下顎骨骨折部の放射能の集積の変化を示す。骨折部への放射能の集積の増加は，骨折6日後には異常集積としてとらえられ，以後急速に集積が増し，1ヵ月以内に最高値に達した。その後，4ヵ月後に徐々に

--- Fig. 2 Chronological changes in bone scintigrams after fracture of lower leg bone of a rat.

--- Fig. 3 Changes in 99mTc-EHDP uptake by fractured mandibles.

--- Fig. 4 A case with a fracture of the right mandibular process. 99mTc-EHDP uptake was maximum at or 3 months after the fractur and decreased gradually to 9 months after the fractur. At 17 months after fracture, bone scintigram was normal.
常の像に戻っている。

（ハ）骨移植例について
下顎骨への自家移植例において、下顎骨断端部の放射能の集積の変動は骨折の場合とほぼ同様の経過をとった。一方、移植骨自体の集積はFig.5に示す如く、正常の治癒経過をとった例では、2週後頃から1ヶ月後の間に集積が認められるようになり、それは1～2ヶ月の間に、正常骨とはほぼ同等あるいは程度に強い集積を示した。以後、多少集積の増加を示す例もあるが、強い異常集積を示すことはなく、1～2年後のうちに正常骨と同様程度の集積を示すようになった。Fig.6は、このような正常の経過をとった1例の骨シンチグラムを示す。Fig.7は移植骨の吸収され、再移植後、移植骨に集積が認められるようになった例を示す。また、Fig.8は移植2年後に骨折炎をきたした例を示すが、本症例においては正常の経過と異なり、2年後の骨シンチグラムにおいて、移植部に強い集積が認められた。

4. 考案

イ）ラットにおける骨折について
骨折部の99mTc-EHDP集積の経時的な変化的
検討では、骨折部の集積は1週後に第1のピークに達し、その後1週間の横ばい後、再び集積は増し3週後が最高値となり、その後、経過とともに集積の減少が認められた。また、同時に撮像したシンチグラムにおいては、最初や軽度にあった集積が徐々に接合部に局所として認められ
た。骨折部の放射能の経時的な経過において、その集積の強さが2相性をとることは、ラットにおいて、抜歯後の集積の経過をみたLurie等の報告と一致し、彼等は、抜歯に対する骨の修復機構において、最初の1週後のピークは歯槽骨の外部の骨形成が主因であり、第2のピークは歯槽骨そのものの骨形成によると説明している。下顎骨々
折において、放射能の集積が最初軽度にあったものが徐々に接合部に局局してくるという所見とあ
わせて、最初の集積の増加は、炎症等による血流の増加が主因であり、第2のピークは、仮骨形成
後の骨新生によると考えると理解しやすいが、今後更に検討を要する。

下顎骨骨折例について
骨折後、正常の治療経過をとる場合には、骨折
6日後に骨シンチグラムにて集積がとらえられ、
1カ月以内に最高値に達し、4カ月頃より徐々に
集積が減少し、1～2年後には集積を認めなくな

Fig. 7 A case of unsuccessful bone graft. This case showed no accumulation of ⁹⁹mTc-EHDP in the grafted bone at 7 months after the graft. The accumulation appeared 3 weeks after the successful regrafting.

Fig. 8 A case complicated with osteomyelitis after bone graft. This case revealed high accumulation of ⁹⁹mTc-EHDP in the grafted bone, two years after the graft, which was unusual for a normal course.
なるという経過が認められた。ヒトとラットの骨折のシンチグラムにおける経過において、その経過はややは異なるが、異様の経過であり、ヒトの骨折においても初期の集積は広範囲にあり、経過とともに局限してゆくのが認められた。今回の対象群の中には含まれていなかったが、他の部位の骨折例において、仮関節形成においては、1年以上の経過後例においても強い集積が認められ、骨折の治療判定におけるシンチグラムは有効な情報を与えるものと思われた。

(5) 骨移植例について

骨移植の骨シンチグラフィに関するもの、臨床報告はみられず、Goldberg らはウサギの実験において移植骨における *Sr のとりこみが4週後に2週後の約4倍になり、その後激減していく経過をあきらかとしている。下顎骨欠損部に対する自体摘骨移植例における今回の臨床的検討で、移植骨自体の集積は、移植2週～1カ月後に正常骨と同等である。それより程度強い集積としてとらえられ、以後、程度に集積が増大することはあるが、高度の強い集積を示すことはなく、1年2年程度で集積がやや低下するという経過があり得た。また、移植失敗例においては、動物実験においてStevenson らは、移植骨に集積が認められず、報告しているが、今回の検討においても移植骨が吸収されていった例において移植2カ月後に、移植骨への集積は認められなかった。このことから、骨移植の成否の判定に於ては、移植1～2カ月後の骨のシンチグラフィ、およびその後の経過観察が有効と思われた。また、骨転移の発生も、骨シンチグラフィにてよくとらえられ、骨移植の経過観察に骨シンチグラフィは用いられるべきであり、治療判定に有効と考えられた。

5. 総括ならびに結論

(1) ラットにおいて骨折後の骨断部への放射能集積は、骨折2日後より増大が認められ、1週後には初のピークとなり、3週後には第2のピークを示し、以後、減衰し、12週後に骨折前と復した。

(2) ヒト下顎骨骨折症例の骨シンチグラムでは、受傷6日後に集積を認めることができるようになり、1～4カ月後に最も強い集積を認め、1～2年後の間に正常骨と同等に復した。

(3) 骨移植例の骨シンチグラムにおいて移植骨は、移植2週～1カ月後の間に集積を示すようになり、以後、正常骨より程度の強い集積を認め、1～2年後に正常骨と同等の集積を示した。移植失敗例においては、集積は認められず、骨移植の成否の判定におけるシンチグラフィは極めて有用と考えられる。

摘 要 以上の結果、本研究に懇切なる御指導と、御校閲を賜った京都大学放射線、核医学科鳥黒田教授、中央放射線部藤田親司助教に謝意を表しますとともに、本研究に多大の御協力をいただいた京都大学医学部放射線科学教室、放射線核医学科の前、カルルス研究グループの各位ならびに、中央放射線部シンチカムラの各係に厚く感謝致します。

文 献

1) 山本逸雄、髙田誠司、坂本 力、髙 誠、鳥 黒田、藤田 達、高坂秀子、長本 豊："Sr"シンチグラフィによる骨シンチグラフィの検討、Radiosotopes, 第23巻、614—619、1974
2) 山本逸雄："Tc"シンチグラフィによる骨シンチグラフィの臨床的検討(1)—骨発見性骨欠損例、核医学、第15巻7号、1978、掲載予定
3) 山本逸雄："Tc"シンチグラフィによる骨シンチグラフィの臨床的検討(2)—骨発見性骨欠損例、核医学、第17巻8号、1978、掲載予定