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 Abstract: 

       Inclusive spectra and the two-particle correlation 

  functions of nucleons and pions in  high-energy heavy-ion 

  reactions are investigated based on the statistical model. 

  Our formulation is fully relativistic and is applicable to 

_ the reaction including multi-pion production. The dynamical 

  correlation results from the strong interactions among 

  nucleons and pions in the thermal system. Using the S-matrix 

  formulation ofAgrand partition function, we derive expressions 

 for inclusive cross sections and the correlation functions 

  in terms of the phase shifts of hadron-hadron scatterings. 

       We calculate these functions for selected heavy-ion 

  reactions with high-multiplicities using a large amount of 

  experimental data on the phase shifts. Some results for the 

  reactions Fe+Cu and Ar+KC1 at  400 MeV/A are shown and dis-

  cussed. Furthermore the calculated proton-proton correlation 

  is compared with experimental data on the reaction Ar+KC1 

  at 1.8 GeV/A. We find  that the reasonable value of parameter 

 Pc  ( the density of the thermal system) should satisfy the 

  condition,  pee.5p0,  p0 being the density of the normal 

  nuclear matter. Also, it appears that the contribution of 

  the p meson resonance to the pion-pion correlation is very 

  small because of its larger mass than the threshold of  Trrr 

  scattering. Our analyses for the pion-nucleon interaction 

  reveal that the finite width of the A resonance plays an 

  important role for the pion spectra. 

                               —I— 
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                       §1. Introduction 

        The primary motivation for studying high-energy heavy-

   ion collisions has  been  to achieve high nuclear densities 

  and high temperatures during the collision, and to obtain an 

   information on the nature of nuclear  matter beyond the point 

   of normal nuclear density and temperature. Various new 

          1.11.2 
   phenomena, such as shock waves, pion condensation 

 1.3 
   nuclear density isomers , the transition from nuclear- to 

                          14.  1.5 
  quark- matter and hidden color (QCD) effect , etc, 

   have been predicted to occur under such extreme conditions. 

   A large amount of experimental data concerning the relati-

   vistic heavy-ion reactions with beam energies from a few 
 1.6 
   hundred MeV to a few GeV per nucleon have been  accumulated. 

   These have come mostly from the Bevalac at the Lawrence 

   Berkeley Laboratory. 

         However, until now those expected unusual phenomena 

   are not confirmed yet experimentally. Various reasons for 

   this situation are considered:  (i) The incident beam energy 

   is not enough to induce these phenomena. (ii) As these 

   various processes occur simultaneously, the observed data 

   are largely smoothed as if there is no such abnormal feature. 

   (iii) Production cross sections of the new phenomena are so 

   small that they are buried in the ordinary processes. (iv) 

   The physical quantities observed so far are not suitable 

 __



   for detecting such phenomena. 

        Therefore it is important to calculate accurately the 

   background value for these phenomena with theoretical models 

   in order to find out the extraordinary feature. 

        A great variety of theoretical models have been used to 

   calculate the background processes. They are the statistical 
1.71.8 
   modelwith a simplified participant-spectator geometry 

   (the nuclear fireball model), the nuclear fluid-dynamical 
 1.9  1.10  1.11 

   model and the microscopic cascade model , etc 

   All these models have been successful in  deicribing at least 
 1.12 
   the gross feature of inclusive distributions . Various 

   quantities to provide a test of these models have been 
 1.13 

   suggested such as the particle correlation , the energy 

 1.14 
   dependence of the pion multiplicity , the ratio of deuteron 

 1.15  1.16 
   to proton , the collective hydrodynamical side-way flow , 

 1.17 
   the strange particle production and the antiproton 

 1.18 

   production In particular , under the present experi-

   mental situation, obvious differences among the existing 

   dynamical models will appear in the particle correlations, 

   which may be sensitive to the existence of the exotic 

   phenomena. Thus a detailed investigation of the correlation 

   functions is essential to select out a reasonable theoretical 

   model and to reveal the new physics. 

        Among the various models the statistical model is con-

   sidered to be an appealing one for the following reasons: 
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 (i) It is simple, and (ii) the recent data mostly sorted into 

       central collisions are well described  by  the statistical 
 1  .19 

       model in the gross feature . Note that the data averaged 

        over the impact parameter should not be compared directly 

       with the statistical  model  based on the assumption of the 

        thermal equilibrium, because such data contain a considerable 

        contribution of the peripheral collision. In the latter 

              )141e 
        collisionAnumber of participating particles is not enough to 

       reach an equilibrium. 

             The purpose of this paper is to investigate in detail 

        the system produced by the central high-energy heavy-ion 

        collision basing on the statistical model. We take account 

        of various interactions among hadrons involved in it in terms 

        of the scattering phase shifts. Our formulation is fully 

        relativistic and is applicable to a system with super high 

        temperature. Using the method of statistical mechanics 
 1  .2  0 

        formulated by Dashen, Ma and Bernstein for the relativis-

        tically interacting system, we derive expressions for the 

        one-particle distribution and the two-particle correlation 

        function. These functions involve, in addition  to  well known 

        terms of ideal-gas, some new remarkable terms due to the 

        interactions. These are written by using the phase shifts 

        of the nucleon-nucleon, the nucleon-pion and the pion-pion 

        scattering. Then we calculate the inclusive cross section 

        and the correlation of protons and pions for selected heavy-

        ion reactions with high-multiplicities. A large amount of



   experimental data on the phase shifts  is utilized  in  our 

   calculation. 

        The proton-proton correlation function has been studied 

   by Koonin1 .21. However, his treatment is nonrelativistic and 

   formulated by using a nuclear potential between protons. So 

   the method is not applicable to the system including pions. 

   Above the energy about 1.0 GeV/A the contribution of the 

   pion production can not be negligible. 
 1.22 
        In Kapusta's simple fireball model , the system con-

   tains the A resonance with zero width. His treatment is 

   insufficient because, according to our analyses, the finite 

   width of the resonance plays an important role for the pion 

   spectra. 

        The contents of this work are as follows: In §2 we 

   give a brief review of the S-matrix formulation of the grand 

   partition function for the system composed of one species 

   of particle which was presented in Ref. 1.20. The two-

   particle correlation function is expressed in terms of the 

   scattering phase shifts in §3. Section 4 is devoted to the 

   summary of an interferometric correlation effect of the 

   identical particles in our framework. We derive in §5 the 

   expression of the two-proton correlation and inclusive dis-

   tribution functions integrated over the impact parameter 

   for the reaction of equal-mass nuclei. Then we apply them 

   to heavy-ion reactions Fe+Cu and Ar+KC1 at 400 MeV/A. Con-

   tributions due to the pion production are neglected at this 

 -  4  --



          energy. 

 In  §6 we treat the system composed of pions and nucleons, 

         and generalize the formulas for the inclusive cross section 

         and the two-particle correlation function in §5 so as to 

         include the pion production. Using these formulas, we 

         calculate in §7 the proton-proton correlation functions at 

         higher energies and compare  them  with preliminary experiments 

 1.23 
        in the reaction Ar+KC1 at 1.8 GeV/A . We find that the 

        reasonable value of the parameter  pc (density of the thermal 

        system) should  satisfy  the condition,  pc  V.5p0, with  pc) 

        being the normal density of the nuclear matter. The  pion-

         pion correlation functions are also calculated for various 

        combinations of colliding nuclei. It appears that the 

         contribution of the p meson resonance to the dynamical corre-

         lation function is very small because of its larger mass 

         than the  threshold of the pion-pion scattering. The remainder 

        of §7 is devoted to calculations for the inclusive distribu-

        tions of protons and pions and we compare them with the  data 
 1.24- 

        for the reaction Ar+KC1 at 0.8  GeV/A  . Our result fits 

        better to the data of pion spectra than the simple fireball 

         model does. 

              Finally, section 8 contains a summary of our results 

         and some concluding remarks. Appendix A gives some conve-

        nient formulas for the derivation of Eq. (2.13) in §2. In 

        Appendix B we describe a brief review of the simple nuclear 
 1.22 

         fireball model formulated by Kapusta and generalize it 

         so as to include the hadron-hadron interactions. 
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            §2. S-matrix formulation of grand 

                      partition function 

 2  1 *he.     I
n this section S-matrix formulation  of  grand partition 

function is briefly reviewed. For the simplicity of discussion, 

we treat the system composed of one species of particles with 

 Boltzmann statistics. The grand partition function is given by 

       E = tr  exp[-p,(H  - pN)] (2.1) 

where  P.-1 is the  temperature; p the chemical potential, and 

    H = H0HI  ,(2.2) 

 Ho and  HI being  the free and interacting Hamiltonian , 

respectively. To evaluate the trace, we use the complete 

set of H0.The eigenstate of H0is labelled by the set 

{KN}  = {k1,k2'..,kN}'and is denoted as 

                           =  Ikl>1k2>"'Ike 

for N-particle state. Here 1k> is a single particle state of 

H0with momentum k. Then the grand partition function is 

               =  IAN  tr
N e-1311                                                        (2.3)                 N 
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           where 

 trN  e-13H = <k.11                                        12'kNle-6lkik2..tN>  (2.4)  {
KO 

          and  A is the fugacity 

        A =  exp4p)  (2.5) 

          The right-hand side of Eq.  (2.4)  may be interpreted as the 

          amplitude of finding the state  lk1k2..kN> at the imaginary 

          time  -if3 when the state  lk1k2..kN> is given at time  zero. 

          Let us write Eq.  (2.4) as the Feynman-Dyson diagrammatic 

           expansion as shown in Fig. 1. In the figure the circular 

           boxes mean the connected diagram with all order interactions. 

          Let CV(K"V) be the contribution of the connected diagram with v 

           particles with momenta  ki,k2,...,ty as shown in Fig. 2, then 

 trN  e-B1-1 1, (1 C(K)  )mv 
              vI Ivmy'vv(2.6) 

           where the positive integer  m
y is selected so as to satisfy 

                     y vmv  =  N . 

          The division by ITm
y! is to avoid counting the same amplitude 

           more than once. This is in accord with the basic rule of 

           statistical mechanics that each distinct configuration must be 

           counted only once. Summing over N, we find 

 -  7--



                               1 
                E=R  (y c(K)  )mv 

                                    v v 

                                   v 
                  m=0mom'K

V 

                     = exp  xv  (tr e-f311                     )
c(2.7)                                            v=1 

           Hereafter we use the suffix n instead of  0 . The subscript c 

           denotes that only the connected diagrams are kept . We write 

           Eq.  (2..7) as 

                                          = 77.                                                                        (2.8) •                                -0' -int 

                        -0= expp, trle )  (2.9) 

                   -int= expy A(trne-18H) 
                                         n=2 

                  = exp  V y In  at  ,                                                                (2.10) 
 n=2 

            where 

                    Vaint =  (tr e-f3H ) 

           and V is the volume of the system. The partition function 

            7-7
0is the ideal-gas part ofE. 

             - 

                  Now we express  7.:i
nt in terms of the S-matrix. Let us first 

 •calculate the term from n=2 . We have 

 (tr2e )c= tr2(e-f3H - e--f3H0 ) 

 — 

 8_



                       —  f
odE e—SE Im tr2(G-G0) , (2.11) 

where 

  11   G =(2.12) 
       E-HGO-                                  E-Ho" 

                                 2.1 
Using the identityin the formal theory of scattering( see 

Appendix A ) 

           tr(S-1 — 3ES) =  -4i Im tr(G-G0) ,  (2.13) 

Eq. (2.11) can be written as 

     13H1oa -1  (tr2 e-)c = f odE e-13E(tr2 S yg  S)c .  (2.14) 

One can obtain the similar result as above for the term
s n>3; 

                                                                       ,                                           E 

      (trne-131-1)--lic'dEe-13E(trS-S)c (2.15)     cJ
o--3 

 2  1 
     Eq. (2.15) can be extended to quantum statistics . 

Also the quantity-0must be replaced by the one calculated 

                                                                                 2 .2 
with quantum statistics, and is given as follows : 

                                              co 

  -0 n(       =exp[VYxan0) , (2.16) 
 n=1 

 V  a(°)  -  n-1 8V3fd3p e-n13P24712                                                    ,(2.17) 
                        (2Tr) 

 —9—



where g is the statistical weight of spin, and 

                +1 (the Fermi-Dirac statistics) 

         y = -1 (the Bose-Einstein statistics) 

 0 (the Boltzmann statistics) . 

     From Eqs. (2.10) and (2.16), the partition function can 

be expressed as 

                             m 

          E = exp(V y  An.an) , (2.18) 
 n=1 

                  (0) au
nt.           an = an+ an  (n  >  2) 5 

              (  a
1 = al0) (2.19) 

     In the application to high-energy heavy-ion reactions, 

                   in contributions of at(n > 3) to the grand partition 

                    n function could be negligible. In the next section we express 

the two-particle correlation function due to interactions in 

terms of the scattering phase shifts by taking account of 

only a2nt. 

 —10—



                   §3. Phase-shift representation for 

                      two-particle correlation function 

          By using the relation 

               S = 1 -  2Tria(E-110)T (3.1) 

     Eq.  (2.-14) can be divided into three terms: 

                 (tr2  e-131-1)c 

              =  fwdE  e-"  tr2{ - P5E  [6(E-110)(T+T-/-)] 

                            aT        — TriEs(E-11 )T+s(E-11 ) — s(E-11 ) 6(E-11 )T]      0 0 
aE 0 0 

 2S(E-H0) 3S(E-H)                                         0  
 -  TriN(E-1-1

0)T  3E3ET -45(B-H0)T]l. (3.2) 

     The third term above gives no contribution, because it reads 

         opb-Ea)2      -ye-P-b                             [l<alTib>1-1<bITIa>12] . (3.3) 
   abb 

     The second term in Eq. (3.2) which we denote as A2 can be 

     written as follows: 

        - A
2  =  -  Tri X  e-I3Ea 6(Ea-Eb)[Tba(Eb)  Tba(Eb)]  (3.4) 

                      ab 

 —11---



      = - Tri1   V[fd3p
1d3p212d3p'd3p'e-l3Ea 

              2 

                    (2.ff)3,4 spin a,b 

                 r                x  6(E
a-Eb) [Tba(Eb),E b Tba(Eb)]3(3.5) 

where 

         V22V22gyp'2'gy
p22         a      E=p+m+p2+m, Eb=pi+m++m 

             1 Division by 2! in Eq.  (3.5)  is done from the same reason as 

the division by  r y! in Eq. (2.6). Note that the replacement 
                                                                                             3.1 

of summation by integration is done relativistically . 

The contribution of inelastic reaction is neglected. Using 

the relations 

             4(3)           (2w) 6(
PW-P)              1212Ts- f (3 .6)  T

ba- V2V   ba'                                     0000 
                                        PPPTPi                                    1 2 1 2 

and 

            (2703 6(3)(0) 1 (3 .7)                     V 

we obtain the expression for A2 as 

                                         00r-
          V 2                                d3'Did3p2 _v_04_0\(pi+p2)Ys  A

2  =[]e'PlP2'   
       (2Tr)3I 0 0 spin a,b  pi p2 

           x V            1( ) 5,52(f  f)(3.8) 
             4p'babap'=p 
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       where  fba is the scattering amplitude of particles with 

       momenta  pi and p2 to  pi and  1:), p is the magnitude of 

        momentum of particles in their c.m. system, and 

• 

                  s = (p1+p2)2 ,kp°='132k+ m2  (k=1,2) . (3.9) 

      The first term in Eq. (3.2) which we call as  Al becomes 

                        3 3                                         d p
id p2 0( 0, 0,           V 02 y 13171)2) 

  e "                   0 0                  Al -
(270-1 spin a,bf  P1  p2 

                     x " 2(f aa!a)8=0 , (3.10) 

                                                   8 being the c.m. scattering angle. 

            In the following  we treat the case of spinless particles 

       in  order  to simplify the formulation. We will consider the 

       case of particles with spin later. By using the expansion 

 f(8) -  2i
py (2L+1)(e2iSL - 1)P(cos0), (3.11)                                                   L.• 

      we obtain the identity 

          dT i 2 
                   -   

p al) ap \pi ,pije.0  .(3.12)         (2L+1)dp   = fdS2 (f f) + 1 9 ( 4,\ 

• 

       Then Eq. (3.2) becomes 

 —13-



 (tr2  e-°)c 

 =  A
l  +  A2 

                                       0 ,                d3Pa.(13P2 o o ..cp14-p2J's 
     [   V  12 f  e-“_pl+p,)- 1_1  

  (21030V 4                 P1P20 

 (2L+1)   _ (pf+piA)                                                             =0 
 p2 L2p,313e 

         + E (f +(343)                  e=o' 

Thus we obtain the following result: 

                                 11               X2Va2nt= X2(tr2 e-0)c 

                      1                      =.33p2  Cint(p1,p2)  , (3.14) 

where 

         Cint(P1,P2) 

               0 0 (p      _ E   Ay  12 e-f3(1311-132)1  1
0 zo  z.rr                                     2 Y(2L+1) dSL    (2 703 4p, p2 p2 dP 

                            (P1041D20                                           )7r .a 
  [27rP.(f+f)0=010(Pf+lpffr)001/ .(3.15) 

   2Vp0 0ip22p2 

 —14-



The quantity Cint becomes the dynamical two-particle correla-

tion function due to the interactions, which we shall discuss 

in §5. We define a quantity Rint(p1,p2) as 

                 1  de1da  
   Rint401,102) = Cint(P1,P2

i                  )/(a)(), (3.16)                           n d30a 

                                                     i 

                      pin d30                                             p2 

ain being the inelastic total cross section. For ideal 

Boltzmann gas the inclusive cross section is given as 

            1  da AVe-fip°    (
a)(3.17)            .30               in d p (27)3 

Then  Rint(pp2) can be expressed in terms of phase shifts as 

                   0                    (10
1-FP20                       )1/S1    Rint(

10P2)087(2L+1)RL(p) , (3.18)               4
p1p20V L 

where 

                                 d6                                 p.     R
L(p) =12 sin(SL [2p0  0 cos6L + dpL sineL] . (3.19) 

 P  P1+132 

     For the  case  of particles with spin, Eqs. (3.17), (3.18) 

and (3.19) are replaced as follows: 

               (  1  da  )  =  gVA   e-pdpo                                                     (3.20) 
               Gin d3p °  (2103 

                 00 
    pit((P1AT2)1/-187    -)- 

0 0-2 (2J+1)RJ(P) , (3.21)  4p
ip2 Vg SJ 

 —15-



              1S2e.pSd6JS]  ,(3.22).         R
j(p) =sin6j[cos6+sin6                  00 J dp                                     P

14-102 

       where J and S are total angular momentum and spin,  respec-

        tively. 

           The correlation  Rint has the following features: (i) 

       The expression is simple and relativistic, and (ii) it  is 

        expressed in terms of phase shift of which we have a large 

        amount of experimental data. In the energy region we deal 

       with in §5, the first term in Eq. (3.19) is dominant. (iii) 

        So if the interaction is attractive (repulsive), the corre-

       lation becomes positive (negative). (iv) Contribution of 

 s  wave,is dominant in the small relative momentum region, 

         because 

                                   fin
0ite(LL)=0)        RL(p)  (3.23)                      ( 

                                      p 4-0 

 —16-



 54. Identical particle effect 

     In the quantum statistics there is an  interferometric 

correlation effect of identical particles even for ideal gas 

known as the Hanbury Brown-Twiss effect in radio  astrophys-
      4.1 

 ics. In this section we derive the correlation function 

for various statistics. - 

      The fluctuation of particle number for the system of 

identical free particles is given by the relation 

           22           A --- 
n2log7.                               -0 

    = V  n(n-1) a
n(0)An (4.1)                n=2 

      =  id3p gV   (-1)X2 e-2f3p01                                                         (4.2) 
     (2703a02                                          (1+ yXe-'4))- 

 = fd3pld3p2  gV, (-Y)A2 e.4(1)141)2) 6(3)(Pl-P2) 
                   (27r? 

       1  

                                                     (4.3) 
                                   -13(PC1+0)/2 2 

                             [1+ yXe11D2 

• where g is the statistical weight of spin. The integrand of 

 Eq.-  (4.3), which we denote as  C(0)(p1,p2), can be interpreted 

 —1  7-



as the correlation function of identical free particles as 

shown in  g5: 

                                    3   (0)1 d
o(2Tr) (5(3)(PI-I)2)   C°P

1'1P2)  =3)0bin )                 in dp
in d3p20 gV 

 x  (-y)   (4.4)  0  0 

 [1+ yAe-                       f3(pl+p2)/232 

 (0)  C(p
i,p2) has a definite sign independent of  pi and -p2.                        0 

As the condition 1Xe-"aP  1«l is fulfilled in our application 

 to haevy-ion  reactions in the following section, Eq.  (4.4) 

 can be written approximately as 

e(0)((273(3)             1 du )(1 do-  10P) = ()0      1,2eT.30
ia3                                     0(—y)gv6(131-P2)•              in dpin dp2 

 (4.5) 

We define R(0)12) as 

   (0)/ N (0) / ,1 , /1 ,     R up
l,P2)  = c 0P1,P2) /  )0 kTf.  )0                                       in cl-Jp

i in d-Jp2 

               =  (-Y) (;T)3  6(3)(1PI-I)2)  (4.6) 

We  replace hereafter the delta function  6(3)(pi-p2) with 

 —18-



 1 -(p1-p2)2/2a,2 
                           ,e 

                  (i2TraT)j 

 considering the finiteness of volume of the thermal system . 

From Eq. (3.7) the parameter  a' can be determined as 

                                                   (4.7) 
                      V1/3 • 

Then we obtain 

 (0)  (P
1'132) 

        (1 da(1da )(-y)  e-(p1-p2)2/2a,2                                                    0 .8) 
        In=\CY.3JO'a.3'0g           dpiIn dp2 

and 

             R(°)(p1' -p2) - (-Y) e-(131-132)2/2a,2 (4.9)                            -g 

 -19-



      §5. Two-particle correlation in high-energy heavy-ion 

            reactions at a few hundred MeV per nucleon 

       In this section the expression of the two-particle 

 correlation function is derived. We apply it to heavy-ion 

 reactions at a few hundred MeV/A. Contributions of the pion 

 production can be neglected at this energy. 

      In the following we employ the simple Kapusta's nuclear 
 5.  1 

 fireball model for the statistical system without inter-

 action. This system is described by the grand partition 

 function 70*Details of the fireball model will be presented 

              - 

 in Appendix B. 

    The two-particle correlation function  Cb(pl,p2) at fixed 

 impact parameter b is defined as 

 Cb(Pp2)  = Eda Ibll 
               uin d3p

1d3p2[bin d3dap1JbL1-ain d3dap2 

                                                   (5.1) 

 Here [(da/d3p)/a. ]band [(da/d3p1d3p2
in)/a]bare the single  in 

 particle and the two-particle distributions at fixed impact 

 parameter b , respectively. The correlation function can be 

 obtained from the grand partition function  E =  Eo.Ei
nt in the 

 following. The fluctuation of the number  nb at fixed impact 

 parameter b is given by 

                                                                                         r-  <nb(nb-1)> - <nb>23=japld3p2 Cb(pl,p2) (5.2) 

 _20-



and can be expressed in terms of  E of the system at the 

impact parameter b by using Eqs. (2.18),  (3.14) and (4.1): 

          22   log E 

            3A2 

 =.Arn(n-.1)41.°)X11-1-  VA2aint 
          n=2 

    = id3P1d3P2b [ c("(1101,P2)Cirt(P13P2)  ] 3  (5.3) 

     ( where Cbo)(1pp2) and  CntOpp2) are previously given in 

Eqs. (4.8) and (3.18), respectively. Thus we get 

 Cb(pp2) =  C(0)(pp2) Cint(p1,p2)(5.4) 

                                              The single particle distribution which we denote as Ib(p) is 

obtained from the partition function  E, and can be written as 

           (in) = i(0)(„„) fd3n? cint(1,,,c) (5.5) 
      b`vl b `1"' P b `v 

     ( where I
bo)Op) is the single particle distribution obtained 

from the partition function  E0 and is given in Eq. (3.17). 

Eq. (5.5) is obtained from the relation 

 <nb> =  Ada( log  E0 + log  Eint ) 

 f[   1  da  

                         d 

              ]bd3p  (5.6)                        3 
 inp 

 -  21  -



From the definition of the function Rbnt(pi,p2) at fixed 

b Eq. (3.16) ], Eq. (5.5) becomes 

                 (              I
b (p ) = Ib0) (p ) 1 +  c  (p)  , (5.7) 

where 

       (i          9
3(10) =,3P' Ib)(PT) Rbnt (PAP')  -  (5.8) 

     To compare with the  experiments, the single particle 

distribution Ib(p) and the two-particle distribution 

       6 ida ]b= Cb(pl'p2) + Ib(pi) Ib(p2)   33(5.9)           ndpldp2 

should be integrated  over  the impact parameter. The 

integrated two-particle correlation which we denote as 

 C(p1,p2) is given by 

 C(1p1,P2) = <  Cb(Pl,p2) +  Ib(pl)Ib(p2) >b 

                     - <  I
b()p1) >b <  Ib(p2)  >b (5.10) 

where 

               d1                      bmax 
<  Qb >bj              2 2Trbdb  Qb (5.11) 

                         b
max0 

 -22  -



bmax being the maximum impact parameter. The function  Ib(p) 

and  CbOpl'2) are dependent of the impact parameter, because 

in these functions the quantities T, p, and V vary with it. 

The explicit dependence is determined by solving the equa-

tion of state for the fireball.( See Appendix B ) 

     We calculate  C(ip1,p2) for the collision of equal-mass 

nuclei. In this case the temperature is shown to be 

independent of the impact parameter. So we can write 

                          (0)^(0)             I(o)(p)=n
bI (p) (5.12) 

for the ideal gas, where  n(o) is the total proton number in 

the fireball at the fixed impact parameter, and the function 

I(0)     (p) (p) is independent of b. Eq. (3.21) is written as 

          int1int                R
b(Pl'P2V) =-R(lPl'P2)(5.13) 

where 

                   00                        (P
1 -FP2))(E.       int     R(pl;p2) =  87ryy (2J+1)Rs(P), (5.14) 

                    4p0p0  S  J                         1 2 

 int R(p
l,p2) being independent of b. From Eqs. (5.7), (5.8) 

and (5.13) the single-particle distribution integrated over 

the impact parameter, which we denote as  I(p), is obtained 

as follows: 
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              I(p) = I(o)(ID)[ 1 +  c(P)  I  3 (5.15) 

where 

              I(0)(p) = < n(0)> I(0)(p) , (5.16)                b b 

and 

               6,1p)=1,_d3p,          -j( )  h  (  ,  ) .  (5.17) 
 V0 

Here V0is related  to  V through the following relations; 

                    (            V = V
0nb0)(5.18) 

 3 

       Vn                       0 =2
pn(b             0) '(5.19)                       c

b 

where  pc is the density of the thermal system (i.e. the 
                                                                    5.1 

critical density in the fireball model), and is one of 

                            ( parameters in our model. The ratio nb/nb0) becomes  inde-

pendent of the impact parameter in the case of equal-mass 

nuclei. 

     Finally we define the normalized correlation function 

 R(pp2) as 

 R(P13P2) =  C(P13P2)/I(pl)I(p2)  . (5.20) 
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    This function is obtained from Eqs. (5.10) and (5.15), and 

    written as 

                                                                 _,  R(p1,P2) =  RL + RHBT(131,P2)hdynU01,P2) (5.21) 

    The first term in Eq. (5.21) is given by 

                          < n2 > 
            RL - b b- 1 . (5.22) 

                              < nb>b                                  b 

    It represents the fluctuation of proton number due to its 

    impact parameter dependence, and is independent of  pi and 

    p2. To select high-multiplicity events we restrict 

    ymax%<0.7,ymaxbeing defined by 

                               bmax  

                             max                                                        (5.23) 

                                                                                5 

                                Rp + RT 

    where R
p(=RT) is the radius of the projectile(target) 

    nucleus. In this case, RL can be negligible as shown in 

    Figs. 3(a) and (b). The second  term,  RHBT(p1,p2), is due to 

    the identical particle effect (Hanbury Brown-Twiss effect), 

    and is expressed as 

     HBT CHBT(P1,P2)   R(
P1,P2)  (5.24) 

 C  1+  c(p1)  7C  1+  E(p2) 

    where 
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 CHBT(P1,P2)  -1 2< n2exp-(p1-132)2°.                                                /2'                                                 2       2b>b 
                         <  rib >b 

                                                (5.25) 

The b dependence of  a' can be determined by Eqs. (4.7) and 

(5.18). The last term in Eq. (5.21),  RdYn(p1,132), represents 

the dynamical correlation due to the nucleon-nucleon inter-

actions, and is written as 

                               dyn                            C(10
1,P2)  RdYn(

P1,P2)  , (5.26) 
 1 +  6(p1)  1C 1 +  c(p2) I 

where 

    dyn1 int       C(10
1,P2)R(pl,p2) , (5.27)                        < v >

b 

Aint 
R(pp2) being given in Eq. (5.14). 

     Using Eq. (5.21), we calculate the proton-proton corre-

lation function  R(pl,p2) for various reactions at 0.4 GeV/A 

in the laboratory system. At this energy the contribution 

of pion production can be neglected. In Fig. 4(a) the 

dependence of the correlation function on azimuthal angle 

between two protons for reaction Fe+Cu is shown at the same 

kinetic energy (TL) and polar scattering angle  (00 for both 

protons. Asymmetry of the mass and the charge between Fe and Cu 
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is neglected here. The functions  Rdyn(El,p2),  RHBT(p1,p2) 

and  R(pl,p2) are shown separately. We put tentatively 

ymax0.5 and  pc=p0 in Fig. 4(a);  ymax=0.5 and  pc=0.3p0 in 

Fig. 4(b). The quantity  p0 is the normal density  of nuclear 

matter. The same correlation functions for reaction Ar+KC1 

are shown in Fig. 5(a) and (b) with the same parameters used 

in Fig. 4(a) and (b). The  y
max dependence of  R(pi,p2) is 

shown in Figs. 6(a)(b) and 7(a)(b) for  p c=p0 and  pc=0.3p0 at 

the same TL and  0L as  used  in Fig. 4. We can see the value 

of R at the peak increases with  v  -max' 

      The  p
c dependence of  R(pi,p2) is shown in Fig. 8(a) and 

(b) with the same and TL as in Fig.  4.  In the calculation 
                                                                         5.2 

we take account of the partial waves L<6 . The peak of 

Rdyn       is due to the strong attractive force in the 1S0channel 

of proton-proton scattering. The results are almost well 

described with only the s-wave contribution as shown in 

Fig. 9, and agree qualitatively with  Koonin's nonrelativistic 

          5.3 
model . The relativistic effect decreases the correlation 

function by a few percent at the peak of R. 

      The  eL and TL dependence of  R(p1,p2) are shown in Figs. 

 10(a)(b) and  11(a)(b) with the same parameters as in Fig. 

4(a). The dependence of  R(pp2) on projectile and target 

nuclei is also shown in Fig.  12(a)-(c). 

      At higher energies we must consider the contribution 

from the pion production. In the statistical model the 
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proton-proton correlation becomes small at high energies. 

Because the density of pion increases at high energies and 

correspondingly that of proton decreases for fixed hadron 

density (See Appendix B). In the next section we discuss 

the pion contribution to the correlation function. 
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     §6. Two-particle correlation in high-energy heavy-ion 

           reactions at a few  GeV per nucleon 

     In this section we generalize the formulas for the 

single particle distribution and the  two-particle correla-

tion function in the previous section so as to include the 

pion contribution and apply them to the heavy-ion reaction 

at higher energies. In section 2 we have formulated the 

grand partition function for the system composed of one 

species of particles by using the S matrix.  Eqs.  (2.7)rb 

(2.10) are readily extended for the system of more than two 
 6.1 

species of hadrons . For example, we have the following 

results for the system of pions and nucleons: 

       -0 •int 3(6.1) 

       =7,(N);7(7)  (6 .2)            -0-0 

                         00 co 

               AnCnm]exp[yy(6.3)     -int= ex3 
                          m=0 n=0 

where 

               Cnm = (tr nme-(31)c (n+m>2) 
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     (N);7(70 Here--andare the ideal gas parts of the partition                    -0 

function  E for the nucleon and the pion, respectively.  The 

quantity Cnm corresponds to  Cv in §2, and is the contribu-

tion of the connected diagram with m  pions  sand n nucleons as 

shown in Fig. 13. From Eq. (6.3) one  can obtain the diagra-

mmatic expansion of log  Hint as shown in Fig.  l4. In 

application to the heavy-ion reaction, contributions of 

Cnm  (n,m>3) to the grand partition function could be negli-

gible. Thus Eq.  (6.3) can be written as 

     x2 0 (6.4)  log            =- AC11 CO2 

     The two-particle correlation function for hadrons 

A and B  (  A,B = nucleon or pion ) at fixed impact parameter 

b is defined as 

    dada1, 
                 3 b- E1A1  daBa]   Cb(Pl'P2)FL                          AB                  ain d3p

ldp2in d3p1b  ain d3p2b 

                                                  (6.5) 

This correlation function can be obtained from the grand 

partition function by using the same procedure done in 
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Eqs. (5.2) -  (5.4). We have 

         0) 0int    C
AB,b(P1'132) =  6AB `IAA,b`Pl'ID2) 'AB,bP1,P2) . (6.6) 

The first term C(0) 'is the correlation due to the              AA 

identical particle effect: 

     c(0) („ „ )  = i()(, ) i()( ) R(0) ( )       AB
,b'Pl'v2) A,b'vl) A,b`P21 AAb`1313P2J  (6.7) 

where  I(0)(p) is the single particle distribution obtained  A
,b 

from the partition function  4A), namely 

             I(0)(p)  = gAAAV               e-~p0 (6.8)                   A
,b  (2Tr)3 

      XA= e-31-1A (6.9) 

 • Here  gA and  pA are the statistical weight of spin and the 

chemical potential of the hadron A, respectively. By 

assuming chemical equilibrium,  pA is given by 

                   p (nucleon) 

   PA = (6.10) 

                0  (pion), 
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where p is the chemical potential corresponding to the 

baryon number conservation. See Appendix B for a detailed 

 discussion. The quantity R(0)(pl'p2) in Eq.  (6.7)  is          AA 

      R)(1-(p-p)2/2a'2                                                     , (6.11) 

                         , 

 gAe1 2            AAb`Pl'P2)  =  -lA 

where 

                     +1 (fermion) 

 YA = (6.12) 

                  -1 (boson) . 

The second term of Eq.  (6.6), CABintb , is the correlation due 

to the interaction between the hadrons A and B: 

  cint (, '12) = `i(0)(, ) i(0)(, ) Rint (p                                           'P2)AB
,bv1AB A,b'1 B,bv2 AB,b l 

                                                 (6.13) 

where 

                        1 (A=B=nucleon or pion) 

   KAB = KBA = (6.14) 

                          1/2 (A=pion, B=nucleon) 

and 
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                  0 0 
                87 (P1 +p2)1/ int S 0 0 

     (P P )  y (2J+1)Rj(pl,p2,p) .   RAB
,b l' 2 , 0 0                    4P

1P2gAgB 8 J 

                                                (6.15) 

In the Eq. (6.15)  R.t.  (P(1).,14,P) is expressed as 

 S 

  S001 (3SS d6J sin6] ,    Rj(pi,p2,p) =sin0.[00coscSj+ 
                      (101-FP2)dp 

                                                (6.16) 

where  6s is the scattering phase shift of the  collision 

between A and B with total spin S and total angular momentum 

J. 

     Similarly the single particle distribution at fixed 

impact parameter b can be obtained as

d 
           IAb(p)[

61  daA,.3b 

                           , 

                          dp 

                 =  I(0)(P)[ 1 +  E
A,b(P) (6.17)  A,b 

where 

   A,b(p) = y KABfd3p'I(0)(p')Rint (p'p') . (6.18)                    ,bAB,b 
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In order to compare with the experiments, we should integrate 

the single particle and the two-particle distributions over 

the impact parameter as in §5. In the following we treat 

the collision of equal-mass nuclei. In this case we can 

                   (0) express the quantities I
A,b(p) and Rintb(Ipl'p2) as follows             AB 

(See Eqs. (5.12) and (5.13)): 

               (0)(0)I(0)                           (p) = n
A,bIA(p) , (6.19) 

    Rint1^int(6.20)                               )  ,ABb(PlP'2) =RVABl'P2 

     ( where n
A0)bis the total number of the hadron A in the  fire-

ball at fixed impact parameter b which is obtained from 

                    0)                              _( the partition function-and                              -A 

      -(0)1

3  e     IA(p) -(6.21)  4 ffmA  K2(f3mA) 

                   (ID01 +ID20)1/ ;intS0 
  "B°P1'132)=8' 0 0y y (2J+1)Rj(pl,p20                                                    ,p). (6.22) 

                   4p1p2gAgB S J 

Here mAis the mass of the hadron Aand K2(x) is the 
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modified Bessel function (See  Appendix B). The quantities 

(0)^int I
A(p) and RAB(pl,p2) are independent of b. For conve-

nience we define the following quantity; 

                 (0)(0)(0)             r=
A-nA,b/ nb(6.23) 

where  n(°) is the total proton number and ;(A0) becomes 

independent of b for the collision of equal-mass nuclei. 

Using Eq.  (6.23) we can express Eq. (6.19) as 

                                                                                                                                                                                                                             • 

             (0)(0)(0)I(0)                       (p)= r
AnbIA(p). (6.24) 

From Eqs. (6.17) (6.20) and  (6.24) the integrated single 

particle distribution which we denote as IA(p) can be ob-

tained as 

              (-(      I
A(p) = rA0)<nb0)> IA0) (p) [ 1 +  EA(p)  ]  , (6.25) 

where 

            nb> —2           (0)1  b         < (0) (6.26)                               f21-rbdb nb 3 
 Trbmax 0 

b
max being the maximum impact parameter, and 

           1v(0) rd3i(0)(1)iiint 
    EA(PJ)=L KAB rBPB`PAB(13'131) . (6.27) 

            Vo B 
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Here, as in §5, 

               (      V
0= V/nb)(6.28) 

         =23( 1 +r
ff+ )(6.29)  c n

b                                         `b  

where 

           r Tr+= nTr+/ nb (6.30) 

nTr+ and nb being the total  Tr+ and proton number in the fire-

ball obtained from the partition function E, and  p the 

critical density. Eq. (6.28) is obtained from the constraint 

that the hadron density be  p
c (See Appendix B). 

     Finally the integrated correlation function  C
AB(p/;p2) 

can be obtained from Eqs. (6.6), (6.7) and (6.13). We define 

the normalized correlation function  RAB(pl,p2) as 

           C 
AB(P'                             AB 12)        R(pl'p2) =(6.31)  I

A(p1)  IB(p2) 

Using Eqs. (6.20) and  (6.24) we get the final results; 

 RAB(P13P2) = RL  +p"HBABT(`Pl'ID2)'„  "
AB (P1'132)  °  (6.32) 
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The first term in Eq. (6.32) is the same quantity as Eq. 

(5.22) 

                        <n2> 
 RL  -  2-1 , (6.33) 

                        <nb> 

and can be negligible for high-multiplicity events with 

ymaxq<0.7 (ymax being given by Eq.  (.23)). The second term 

due to Hanbury Brown-Twiss effect,  RgT(p1,p2), is given by 

 HBT 

    pHBT( CAB (101;102)                                                  5(6.34)       -AB'Pl5P2) -
[l +  EA(p1)   El + EB(P2)] 

where 

    cHBT(plp2) =  6AB (7A)  1 2 <4exp-431P2)2/2a'2>   AB'                        A <nb> 

                                                (6.35) 

The b dependence of  of can be determined by Eqs. (4.7) and 

(6.28). The last term in Eq. (6.32),  RApp1,p2), is given 
by 

                                 cdynt„ 
      RABdyn(pl'p2) - AB`Pl'v2J^, (6.36) 

 [1 +  EA(101)]  El + EB(P2)] 
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where 

    yKAB   C
ABn(PP2)  <V> RABint(PP2)  , (6.37) 

-pp;in 
-ABt(`P1'132) being given by Eq. (6.21). 

     In the next section, using Eqs. (6.25) and (6.32), we 

calculate the single particle and two-particle distributions 

for pions and nucleons and compare them with experiments at 

higher energies. 
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                    §7. Numerical results and comparison with 

                           experimental data at higher energies 

             In this section we give the results of numerical  calcu-

       lations of Eqs. (6.25) and (6.32) and compare them with the 

        experimental data at higher energies. 

        7.1) the proton-proton correlation  

             When the incident energy becomes  larger than about 1 

       GeV/A , effect of  tfie pion production to various quantities 

       can not be negligible. Fig. 15(a)-(c) show the beam-energy 

       dependence of the azimuthal angle distribution of the proton-

       proton correlation  R(p1,p2) for the reactions Ar + KC1, 

       Fe + Cu and U + U. We employ the same parameters ( p
c,ymax) 
       and the same TL and  0L as those in Fig.  4(a) in §5 [p
c=p0' 

       ymax=0.5,TL=0.1 GeV and  eL=30°1. For fixed hadron density, 

       the density of pion increases with incident energy and corre-

        spondingly that of proton decreases. Therefore the correla-

        tion due to proton-proton interactions becomes smaller. 
 7,1 

             Preliminary experiments on the proton-proton corre-

       lation in  the  reaction Ar + KC1 at 1.8 GeV/A are compared 

       with our calculation in Fig. 16. Asymmetry of the mass and 

       charge between Ar and KC1 is neglected here.  A good fit is 

       given at  pc = p0and  ymax = 0.4 as shown by a solid curve. 
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As the selected data have large multiplicities of charged 

particles, one may put ymax=<0.8 in this experiments. Then, 

in order to get comparable values to the data, we must have 

at least  pc>  0.5p0 . For instance, a dashed curve is obtained 

with  pc =  0.3p0 and vmax0.8 . In Fig. 16 the result of 
           -= 

 Koonin7•2 is also shown by a dotted line, which agrees 

qualitatively with ours. 

• 7.2) the pion-pion correlation  

     Figs.  17(a)-(c) and 18(a)-(c) show the dependence of 

the correlation function on azimuthal angle between two 

positive (or negative ) pions in the reactions Ar + KC1, 

Fe + Cu and U + U at  1.8  GeV/A in the laboratory system. 

Same values of the kinetic  energy(TL) and the polar  angle(0L) 

are taken for both pions. We put  tentatively  max =  0.5 

and  pc = p0.'It is  shown that the correlation RdYn(o1'.o2) 

                                                                                                                                                                                                                        ' due to pion-pion interactions is almost negligible at this 

energy. In the calculations we take account of the partial 

waves  L<57.3. The  ymax and  pc dependences of  R(pl,p2) are 

shown in Figs. 19 and 20, respectively. The correlation R 

for various nuclei are also shown in Fig. 21. The  qualita-

tive difference among three reactions in Fig. 21 can be 

 -40-



easily understood from the V dependence of  y' (See Eqs.  (4.7) 

and (6.35) ). Fig. 22(a)-(c) show the beam-energy depend-

ence. For fixed hadron density, the increase of pion 

multiplicity means the increase of the volume V, so  a' becomes 

smaller at higher beam energies. 

     Fig. 23 shows the correlation function  Rdyn(pp2) for 

 + 
and  Tr . The contribution of the p meson resonance is 

very small. This is caused by the larger mass of p meson 

than the threshold  of+ scattering. 

7.3) the pion-nucleon interaction  

     In the simple fireball model formulated in Appendix  B.1 

which we call ideal-gas model from now on, the system 

contains A resonances with zero width instead of employing 

realistic pion- nucleon interaction. In our model the inter-

action is introduced in terms of experimental scattering 

phase shifts with  L<57•4 . So it is very interesting to 

compare our model with the ideal-gas model. Of course if 

we neglect the other interactions among pions and nucleons 

except the one in the I=J=3/2 channel and take the width of 

the A resonance to be zero, our model becomes equivalent to 

the ideal-gas model. 
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     Using Eqs. (B.24)-(B.30) in Appendix B, we calculate 

the average multiplicity of Tr+ per proton, the entropy per 

baryon and the chemical potential. The results are given in 

Table I. For comparison we also show in the parentheses the 

same quantities with the ideal-gas model. The values in 

Table I are independent of projectile and target nuclei. 

In our model the multiplicity of pion is slightly larger 

than the one in the ideal-gas model. Therefore the entropy 

per baryon of our model is also larger. The increase of pion 

multiplicity in our model results from the finiteness of 

width of the resonance. Low-mass side of the tail of the A 

resonance yields a finite contribution to the multiplicity 

at rather low energy of 0.8  GeV/A. 

     Figs.  24 and 25 show the proton and pion inclusive dis-

tributions for the reaction Ar+KC1 at 0.8  GeV/A calculated 

by using Eq. (6.25). The dashed lines are obtained by the 

ideal-gas model. The data are from Ref. 7.5. The parameter 

ymax is determined so as to fit the experimental proton 

spectra. To fit to the pion spectra, calculated values are 

multiplied by the factor 1/2 - 1/3. All models based on the 

equilibrium assumption give rather higher pion multiplicities 

than observed for values of  pc below or equal to  p0. 

Except the normalization, our calculations fit better to the 

data than the ideal-gas model does in the low-energy region. 

This feature can be easily understood. The peak of pion 
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spectra in the ideal-gas model is caused by the decay of A. 

As stated above, a lower mass part of the tail of A makes 

the position of the peak of pion spectra shift to lower energy. 

• 
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                         §8. Conclusions 

       The nonrelativistic proton-proton correlation functions 

 R and C for  heavy-ion collisions at low beam-energies have 

 been investigated by Koonin in terms of the soft Reid  poten-

. tial. We express these functions relativistically with the 

 scattering phase shifts by using the S-matrix formulation of 

 statistical mechanics in §5. 

       There are two parameters in our model; the critical 

 density  pc ( density of the thermal system  )[Eq.(5.19) and 

 Eq.(B.11)] and the maximum value of the impact parameter 

 ymax  [Eq.(5.23)]. The former is considered to be independent 

 of the kind of colliding nuclei and their energies, but the 

 latter may vary with different experimental situations. 

 We have studied the proton-proton correlation function at 

 400  MeV/A, using some fixed values of the parameters. The 

 correlation  R(pp2) has a peak due to the strong attractive 

 force in theS0channel of the proton-proton scattering. 

 The other interactions are almost negligible in this energy 

 region. The value of  R at the peak increases with  ymax and 

 pc. Furthermore the correlation R increases as the volume 

 of the thermal system becomes larger. The latter is a 

 general feature of the statistical model. 

       The relativistic effect decreases the correlation 

 function by a few percent at the peak of R. The results 
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agree qualitatively with Koonin's one by choosing appropriate 

values of the parameters. The pion contrbution is neglected 

at this energy. 

     In §6, in order to investigate the heavy-ion reactions 

at higher energies in which pion production can not be 

negligible, we have generalized the formulas for the single 

particle distribution and two-particle correlation function 

given in §5. To our knowledge, there has been no investiga-

tion on the heavy-ion reaction which includes the pion-nucleon 

and pion-pion interactions relativistically. The hydrodynam-

ical model does not include the pion explicitly. In the 

nuclear cascade model the treatment of the interactions 

between the produced pions and the nucleons is insufficient. 

In §7 using the experimental data of the pion-pion, the 

pion-nucleon and the nucleon-nucleon scattering phase shifts, 

we have calculated relativistically the proton-proton and 

pion-pion correlations and the inclusive distributions of 

protons and pions. 

     The proton-proton correlation R decreases with incident 

beam-energy in our model. A good fit to experimental  data 

has been obtained with suitable parameters. From our 

analyses, we find that the reasonable value of p
cshould 

satisfy the condition, pc0.5p0 . 

     The contribution of the p meson resonance for Tr+7 

correlation is very small because of its larger mass than the 

threshold  of+ scattering. 
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     The simple fireball model uses the A resonance with zero 

width instead of employing realistic pion-nucleon interaction, 

and so its treatment is insufficient. In our model the 

interaction is taken into account exactly by using the 

experimental phase shifts of pion-nucleon scattering. Indeed 

our calculation for the pion inclusive cross section in the 

reaction Ar +  KCl at  0.8 GeV/A fits better to the data in 

the low-energy region than the simple fireball model does. 

This favourable feature in our model is caused by the low-

mass tail of A resonance. We emphasize  that, in the high-

energy heavy-ion reactions, the A resonance  should be treated 

as a real one with the width experimentally observed. 

     For three-particle correlation function, etc., the 

terms Cnm  (n,m>3) become essential.  The investigation on 

these contribution to the grand partition function will 

appear in the forthcoming paper. 

     Contribution of Coulomb interaction is neglected in 

our calculations. It is considered to be  small between the 
                                           8.1 

particles with high momenta . Effects of the composite 

particle (deuteron, alpha, etc.)  production are also neglected. 

Our results may be altered to some extent in the region where 

the Coulomb effects and/or the composite particle production 

cannot be ignored. 
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                      Appendix A 

Formal Theory of Scattering and the Derivation of Eq. (2.13)  

     Using the operators G and  Go given by Eq. (2.12), we 

define the following operators which are functions of the 

complex energy E; 

                                      - 

              0=1 + GHI = GG                              1                             0 

 T  =  H +  HIGHI = HISS ' 

 S =-1*Q  (A.1) 

where  S2  (E)  E  Q(E  ). Following identities can be derived 

easily from these definitions: 

        Q-1 = 1 -G0HI=G0G-1 , (A.2) 

      T =  HI +  BIGOT (A.3) 

 S  =  1  +  (Go  -  Gi/i)T ,  (A.4) 

 S-1 = 1 - (G0-  G+)T+       0  0 (A.5) 

        G+ =  GG+= G                              T= T*  '00  • (A.6) 
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When the variable E approaches the real axis, Eqs.  (A.4) and 

(A.5) become 

          S = 1 -  2.0_6(E-H0)T , (A.7) 

                  -1 
         S = 1  + 27ricS(E-H0)T+ . (A.8) 

The operator S formally given by  (A.l) is actually related 

to the S-matrix describing the actual scattering processes. 

From the definition  (A.l) the following relation can be 

derived easily 

 tr(S  u- S) = 2iIm  tr(Q  -5-y  0) . (A.9) 

Using Eqs.  (A.l) and (A.2) and utilizing the fact 

                G - G0=  GHIGO =  GOHIG 

one can obtain the relation;

-la
Etr(Q  Q) = -2 tr(G -  Go) .  (A.10) 

From Eqs. (A.9) and  (A.10) we have the final result: 

 tr(S-1 u-m-rs)-4't(GG) .            -- 

                  0 (A.11) 
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                 Appendix B 

The Statistical Model with a Simplified Participant-

Spectator Geometry  

     In this appendix we give the brief review of the 

statistical model with a simplified participant-spectator 

geometry which has been applied to relativistic heavy-ion 

reactions and discuss the generalization of  this model so 

as to include the hadron-hadron interactions. 

 B.1) A simplified participant-spectator geometry  

     Consider the collision of two heavy ions at a given 

impact parameter b (Fig.  B-1). A certain part of projectile 

nucleus will meet a certain part of target nucleus. Since 

the energy of collision is very high, the systems P and T 

shown in Fig.  B-1 will fly off after the collision with 

essentially unchanged velocity. Thus the system P(T) can 

be called the projectile(target) spectators. Residual parts 

of each nucleus, however, will hit together. If the incident 

energy is large enough, many hadrons(pions, kaons, etc.) 

can be produced and they together with hitting nucleons are 

called participants. This clean-cut participant-spectator 
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model stated above is confirmed experimentally. Of course, 

from more detailed investigation this simple geometrical 

description may be altered to some extent. In the following 

we discuss the participants only. The system composed of 

these participants has been called " nuclear-fireball  ". 

B.2) The nuclear-fireball model  

     In the nuclear-fireball model the  therm'al equilibrium 

is assumed for the fireball composed of many hadrons. This 

                   * * 
fireball includes the hadronic resonances ( A, N , p, K 

etc. ), so in this model the hadron-hadron interactions are 

partially taken into account in terms of resonance approxi-

mation. 

     The grand partition function of this thermal system 

can be written as 

                                 -(0)             -(13)(13
, v) = II LI. (P., V)  (B.1)        Pi, Pi, 

where 

                   -1                                               f3. 
                                  A= e11     = T(B.2) 

Here T, V and  pi are the temperature, the volume and the 
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 chemical potential of the i-th hadron. Assuming chemical 

 equilibrium, we have 

 pi =  B1p +  Sips  , (B.3) 

 where  B. and  Si are the baryon number and the strangeness of 

 the i-th hadron, respectively. Thus all chemical potentials, 

 pi,      can be expressed in terms of two chemical potential  pB 

 and  ps corresponding to the baryon number and strangeness 

 conservation, respectively. The  Gell-Mann-Nishijima rela-

 tion for an isospin averaged Q=A/2 system yields  Q=(B+S)/2, 

 where Q is the total charge  and  A the atomic  number. Thus  if-- 

 one conserves B and  S, Q is automatically conserved on the 

 average. 

      In the.Boltzmann statistics, w10) can be expressed as 

       log  E(0)gi                             fd3p e      = A.V(B.4)  (
2ff)3 

                                     g.m.3  K2(0m.) 
          1V   '2_      =A. (B.5)  2Tr 

 where  gi is the internal degree of freedom(spin and isospin) 

 and  m.  the mass of a particle of type i, and 

       01/2 2•                  p =p  +  m. 
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 Kn(x) is the n-th Bessel function. From this partition 
function the number and the energy  of  the i-th hadron can 

be obtained as follows: 

 (                         ma.Kft.)2(   N.0)g= X.V(        ft .(B.6)                              27.2 

                            K (ft.) 
        E(0)=1           I       NiE3+mia.7(B.7)  K2ft(.) 

For a given impact parameter we can calculate  the mass WFB, 

the baryon number BFB, and the strangeness SFB of the fireball 

uniquely by the  kinematics  and the geometry. The unknown 

parameters are  g, V,  pB, and  ps. They are determined by the 

equations for the conservation of the energy, the baryon number 

and the strangeness, and the constraint that the hadron number 

density of the fireball be  pc (the critical density): 

                  (0)           E
i  =  WFB  , (B.8) 

          y BiNi = BFB  , (B.9) 

            y sNC0=  SFB  ' (B.10) 
                 i11 
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                 VLvN(0) Pc        . (B.11) 

                                    The charm particle production will not be  considered in this 

   paper but it is straightforward to include it. 

        The inclusive spectra of the i-th hadron in the fire-

   ball frame at the fixed impact parameter are then given by 

           (                dN .0)  g-
      ( 31 )bA.V   1 e-"0 (B.12) 

       dp  (2703 

                       (0)  1 (3,mi e-ft0       =N .  (B.13)                          1  4THO K(f3m.a.) 

              2 

   If the a-th hadron will decay and produce the i-th hadron, 

   one must add this contribution to Eq. (B.12); 

             (               dN0) 

         ( 1 )= (B.12)(dN (B.14) 
       d3pba d3p 

   For the case of  two-body decay  (a÷  i + ), we approximate 

   the distributions of the i-th and i'-th hadron to be isotropic. 

   Then this contribution becomes 
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                  dN(0) 
  p0(dN  )a-pi  _ (d3_P( a )b                                    8(E-Ec) 

   d3pa`d3p
ab  47pc 

               ma AaVga 1 1 [e(1+13x)]x=E                                                     .(B.15)           2
pc (27)3)f32 px=E+ 

                                                      a Here 

 14  4 4  2  2  2  2  2  2  1/2 
          p = (ma+m.+m.-2mam.-2ma1m.'a .-2m.m.' ) /2ma 

      E.„24.m2072 , 
         c('vc 

• 

        E =  (E
apo -  pa•p)/ma  ' 

      E±
a= ma(Ecp° ± pcp)/111.(B.16) 

The inclusive cross section in the laboratory system (Lab) 

is given by 

       (0)(0)       dN .dN. 
         (dT

L dQL)b  PLPO (d3p1 )b  (B.17) 

where 

 -55-



    00                  P= I
FB‘(PL-a"FB'n                                   L cosOL) 3 

                   0              T
L = pL - mi , 

           2)-1/2(B .18) 

                                      a 

 YFB = (1 -''FBI  • 

Here1D1Bis the velocity of the fireball and OL the emission 

angle in the Lab system. After integrating Eq.  (B.17) over 

the impact parameter, we obtain the final expression for 

inclusive distribution of the i-th hadron: 

     (0)b(0)     dN .
1max dN.11  =ffflodb () 

      dTch2 aindTdS2      LL02LLb 
                   T 

            Y(0)                        maxdN .              1  
            - 

Y2f 2ydy (dT1 dC2)y  (B.19)                       max                   2       Y0 L L3 

where 

      in2 
 ,aT=(Rp+RT)(B.20) 

   bmax  
   Y  =Y=b. (B.21) 

                                               3 

    R+ RR+ R      pTmaxpT 
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     Here bmaxis the maximum impact parameter and Rp(RT) the 

     radius of the projectile(target) nucleus. In the simple 

     nuclear-fireball model stated above, there are two free 

     parameters  pc and  v  -max' 

           Some results from the model are shown in Figs.  24, 25, 

     B-2 and B-3. Note that the experimental proton spectra in 

     the low energy region should not be compared directly with 

     the nuclear-fireball model unless one includes the Coulomb 

      effects. The fireball model describes successfully at 

      least the gross feature of inclusive distributions.  Partic-

     ularly it fits better to the selected data with high-multi-

     plicities as shown in Fig. B-3 and Refs.  92)-94).  However, 

     the model fails to reproduce the observed pion production 

     rate (See section 7.3). All models based on the equilibrium 

     assumption give rather higher pion multiplicity than observed. 

     Some reasons for this situation has been considered: (i) 

     The energetic pions produced at the early stage of the  fire-

      ball carry out a considerable energy, or a compression energy 

     term which lower the temperature of the system may be added 

     to the fireball model. (ii) A significant amount of pion 

     absorption by the spectator nuclei may occur. (iii) The 

      incident energy is not enough to reach the thermal equilibrium 

      for pion component of  the  fireball because of its small 

      particle number. 
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B.3) A generalized nuclear-fireball model  

     We generalize the nuclear-fireball model stated in B.2 

so as to include the hadron-hadron interactions. In the 

generalized model , instead of resonance approximation, all 

interactions among hadrons are taken into account and so 

the fireball contains no resonance as an elementary particle. 

In the following, for the simplicity of discussion, we treat 

the system composed of pions and nucleons. 

     The grand partition function of this system has been 

already given by Eqs.  (6.1)-(6.3): 

 EO,P,V) =  E00,11,7)  Eint(R,11,7)  - (B.22) 

Here, as in §6, we neglect the term Cnm(n,m>3). Thus  Eint 

can be written as 

               log  Eint  =  X  C20 AC11  CO2 (B.23) 

     By using these partition functions, the multiplicities 

of nucleon and pion can be obtained as follows: 

                      (0)(nt)           N
N = NNO) NN (B.24) 

             N = N(0) + N(int)  (B.25) 

                                                                              5 
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where 

        (0)_(0)  -N
N-C N-CO1'                10 ' 

        (int)_2           N
N-AC112AC20 3 

             N(int)  - -XC11+  2C02 (B.26)      'FE 

          ( The quantity NN0) and  N(0) are  already  given by Eq.  (B.6). 

Similarly the total energy of the system can be expressed 

as 

         E = - [  a— log  Ell (B.27) 

The unknown parameters in this case are p and V. These 

are determined by the following relations like as Eqs.  (B.8)- 

(B.11): 

     E  =  WFB (B.28) 

     NN= BFB(B.29) 

 3               V 

           1( 
                N           + N1-7) =  pc (B.30) 

     Using thus determined parameters, we can calculate 
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the inclusive cross section and the two-particle correlation 

function by Eqs. (6.25) and (6.32). 
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Table I. Calculated  values of the chemical  potential(p),  the  Tr+ to proton(P) ratio 

       and the entropy per  baryon(B) for various incident  energies(ti). Values 

       estimated from the  ideal-gas model are shown in parentheses. All these 

       values are independent on projectile and target nuclei. 

 ti (GeV/A)  0.8  1  .  8  2.1 

     T (MeV)  76  109 115

 t (GeV/A) 0.8 1.8 2.1

T (MeV) 76 109 115

 P (GeV)
 0.86

(0.82)

0.61

(0.66)

0.57

(0.64)

 Tr  /  P

0.15

(0.11)

0.49

 (0.36)

0.56

(0.42)

 S  /  B

5.3

 (5.o)

8.1

(7.5)

8.7

 (8.o)



                     Figure Captions 

Fig. 1. A typical diagram in the Feynman-Dyson expansion 

       of Eq. (2.4) which corresponds to a term in Eq. (2.6). 

       The momenta Kv'Ky'"1. mean various sets of momenta 

        of  v particles. The connected part of v particles 

        occurs  my times in the figure. 

Fig. 2. A connected diagram corresponding to Cv(Kv). The 

       v particles with momenta k1, k2, kv are inter-

        acting with each other. 

Fig. 3. Dependence upon the maximum impact parameter  v  -max 

       of the correlation RL for the reaction (a) Fe+Cu and 

       (b) Ar+KC1. 

Fig. 4. Proton-proton correlations in the reaction Fe+Cu 

        at 0.4 GeV/A. Variable  11)14 is the difference between 

        the azimuthal angles of two scattered protons. The 

       scattering angle  01, and the kinetic energy TL are fixed 

       for both protons at  30° and 0.1 GeV in the laboratory 

        system, respectively. The parameter ymaxand the 

        critical density  pc are chosen as  ymax=0.5 and (a) 

        pc-p0 and (b)  pc-0.3p0' p0 being the normal density 

        of nuclear matter.



         Fig. 5. Proton-proton correlations in the reaction Ar+KC1 

                at 0.4 GeV/A. TL and  AL are the same as in Fig. 4. 

                 The parameter  ymax and  pc are chosen as                                                               Ymax=°°5and 

               (a) p=pand (b) p=0.3p      c00' 

         Fig. 6. Dependence upon  v  -max of  (pL distributions of the 

                 proton-proton correlation function R in the reaction 

                Fe+Cu at 0.4 GeV/A with the parameter (a)  pc=p0 and 

                (b) p=0.3p0*TLandALare the same as in Fig. 4. 

         Fig. 7.  Dependence upon ymaxof the proton-proton correla-

                                        tion function R in the reaction Ar+KC1 at 0.4 GeV/A 

                with the parameter (a)  pc=p0 and (b)  pc=0.3p0. TL 

                and  0 are the same as in Fig. 4. 

         Fig. 8. Dependence upon  p
c of  cp distributions of the 

                 proton-proton correlation function R in the reaction 

               (a) Fe+Cu and (b)  Ar+KC1 at 0.4 GeV/A with the  para-

. 

                 meter  Y
max=0'5' TL and  AL are the same as in Fig. 4. 

         Fig. 9. Contributions to the correlation function Rdyn 

                 from various partial waves of proton-proton 

                scattering in the reaction Fe+Cu at 0.4 GeV/A. TL 

                 and  el
, are the same as in Fig. 4. The parameters are 

          taken asY
max=°'35 and pc=po. The values forPo and



        3P
1 partial waves are multiplied by factor  102. 

Fig. 10. Proton-proton correlation function R with various 

        kinetic energies of two protons in the reaction 

        (a) Fe+Cu and (b) Ar+KC1 at  0.4 GeV/A. Same value 

        of the kinetic energy TL is taken for both protons. 

        The scattering angle  0L is fixed at  30° for  both  pro-

         tons. The parameters  ymax and  pc are the same as in 

         Fig. 9. 

Fig. 11. Proton-proton correlation function R with various 

        scattering angles  el , in the reaction (a) Fe+Cu 

        and (b) Ar+KC1 at  0.4 GeV/A. Same value of the scat-

        tering angle  OL is taken for both protons. The 

        kinetic energy TL is fixed at 0.1 GeV for both protons. 

         The parameters  ymax and  pc are the same as in Fig. 9. 

Fig. 12.  Proton-proton correlation functions for various 

        combinations of  colliding  nuclei at 0.4 GeV/A; 

        (a) R , (b) RHBT and (c) Rdyn. TL and  0L are the 

         same as in Fig. 4. The parameters  ymax and  pc are 

         the same as in Fig. 9. 

Fig. 13. A connected diagram corresponding to Cnm. Here 

         n and m are the number of nucleons and pions,  respec-

         tively.



Fig.  14. Diagrammatic expansion of log Eint 

                                                                                                                                        . Fig. 15. Proton-proton correlation function R with various 

        incident energies in the reaction (a) Ar+KC1 , 

        (b) Fe+Cu and (c)  U+U. The scattering angle  el , and 

        the kinetic energy TL are fixed at 30° and 0.1 GeV 

         for both protons, respectively. The parameters are 

         taken as  Ymax=0.5 and pc-p0' 

Fig. 16. Comparison of the experimental data on the proton-

        proton correlation function R(Ap) with our  calcula-

        tion, where  Ap=lp1-p21/2. Reaction is Ar+KC1  colli-

         sion at 1.8 GeV/A. Kinematical variables are fixed 

        as IP=IP-FID                 12/2=1.0 GeV/c andL=13.45°. The param-

                                           eters are set as  pc=po and  ymax=0.4 for the solid 

         curve,  pc=0.3p0 and  ymax=0.8 for the dashed curve. 

 Koonin's result for T=0 and r0=2 fm is also shown by 

         the dotted curve for comparison. 

Fig. 17. Azimuthal angle ((pL) distributions ofi+Tr+(or 

        ffTr) correlation functions in the reaction (a) Ar+ 

 KCl , (b) Fe+Cu and (c) U+U at 1.8 GeV/A. The scat-

        tering angle  0L and the kinetic energy TL are fixed 

        for both pions at  30° and 0.1 GeV in the laboratory 

         system, respectively. The parameters are taken as



        ymax=0.5 and pc=p0. The correlation function Rdyn 

         is almost zero. 

Fig.  18.++ correlation functions in the reaction (a) 

        Ar+KC1 , (b) Fe+Cu and (c) U+U at 1.8 GeV/A for 

 TL=1.0 GeV. Same values TL and 0L are taken for 

         both pions. Here  8L'  ymax and  pc are the same as 

         in Fig. 17. 

Fig. 19. Dependence upon ymax ofT+T+ correlation function 

        R in the reaction Ar+KC1 at 1.8 GeV/A. TL and 8L 

         are the same as in Fig. 18. The parameter  pc is 

 taken  as pc-p0' 

Fig. 20. Dependence upon  pc of  Tr++ correlation function 

        R in the reaction Ar+KC1 at 1.8 GeV/A. TL and 0L 

         are the same as in Fig. 18. The parameter  ymax is 

          chosen as y
max=0.5. 

Fig.  21.++ correlation function R for various combinations 

        of colliding nuclei at 1.8 GeV/A.  TL' 0L'  ymax and 

         pc are the same as in Fig. 18. 

Fig. 22.  71-++ correlation  function  R with various  inci-

        dent energies in the reaction (a) Ar+KC1 ,(b) Fe+Cu



        and (c) U+U  . TL,0L'ymaxand  pc are the same as 

         in Fig. 18. 

Fig. 23. Azimuthal angle distributions  of  11--  correlation 

                                                                           . 

        function Rdynin the reaction Ar+KC1 at 1.8 GeV/A. 

 TL' 0L'  ymax  and  pc are the same as in Fig. 18. 

        The values of  Rdyn are multiplied by factor 102. 

Fig. 24. Inclusive cross section of proton in the reaction 

        Ar+KC1 at 0.8 GeV/A with various scattering angles 

         in the laboratory system. Our results are shown by 

         the solid curves with the parameters  pc=p0 and v                                                                      -max 

         =0.5. For comparison, calculations by Kapusta's 

         simple fireball model with the same parameters pc 

         and  ymax are also shown by the dashed curves. 

Fig. 25. Same as Fig. 24 for pions. 

Fig.  B-1. Participant-spectator geometry. Parts P and T 

          are the projectile and target spectator, respectively. 

          The figure is drawn in the c.m. system. 

Fig. B-2. Neutron inclusive cross  section for the reaction 

         Ne+U at 337 MeV/A compared with the simple fireball 

          model  (pc = p0). Data are from ref. 101.



Fig. B-3. Inclusive cross section of charged particles for 

         Fe on Al, Cu and W at 1.88 GeV/A. The results from 

         the simple fireball model are drawn by the solid 

          curves with the parameters  pc =  p0 and  Ymax = 0.7 

         (Al), 0.5(Cu) and 0.3(W). Almost the same results 

         are obtained for  pc =  p0 and vmax= 0.8(A1), 0.6(Cu) 

             - 

          and  0.4(W). Data are from ref. 94.
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