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§1 Introduction

The time evolution of rarefied gas in the external-force field derived
from a potential ¢ = ¢ (x) 1is described by the nonlinear Boltzmann equation

with the external-force term
ft + A(¢)f = Q(fyf), (101)

where A(@) = £€-V.- V.9d:V.. = 1f(t,x, &) is an unknown function,
which represents the density of gas particles at time t=0, at a pdint xER?
and with a velocity £ €IR®. ¢ = ¢(x) is a sufficiently smooth real-valued

function. Q(-,-) is a bilinear symmetric operator defined as follows:

Qlg,h) = (1/2) S £'ER?,sE8? B(O,|&-¢7|)X

X{g(7)h(7 )+g(n Hh(5)-g(€)h(€ )-g(& Ih(&)}d & “ds,

where g(7) = g(t,x, 7), etc., 7 = €-((€-€")-s)s, 7 = £ +((£-€")-5)s,
cosO = (§-§€7)-s/|€-¢"|, s & S2. B(O,V) is a non-negative given
function of (0,V) € (-m, w)X[0,+0). In the present paper we will impose

the following assumption on B(O,V) (cf. [2,(55)]):

Assumption 1.1. There exist constants ¢; >0 and 0<e&,<1 such that

B(6,V)/|sinfcos | < ¢, (V+V£1‘1).

Substituting f = Q+Q*'"%u, Q = exp(-¢ x)-|€[%2/2), in (1.1), and

dropping the nonlinear term, we obtain the following linearized Boltzmann
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equation with the external-force term:

Ue = B(¢)U, (1.2)

where B(¢) = A(¢) + Li($), A(P) = -A(¢) + {exp(-9)}(-v), and L. ()
= {exp(-#)}K. v = v(€) 1is a multiplication operator, and K is a self-
adjoint compact operator on L*(R:*) (see [2]).

Qur primary concern is to study decay of solutions to the Cauchy problem
for (1.2) (we write CP¢ for this Cauchy problem in what follows). It is
important to obtain estimates for decay of the solutions, not only because they
are interesting in themselves, but also because if it is proved that the
solutions to CP¢ decay sufficiently quickly, then we can very likely apply
the decay estimates to demonstrate the existence of global solutions to the
Cauchy problem for (1.1) with initial data sufficiently close to Q (see Note
2.3).

It is conjectured that the order of decay of solutions to the Cauchy
problem

u, = A(P)u,

(1.3)
11(0) = Uo,

has a close relation to that of the solutions to CP¢. We also note that the
solutions to CP¢ are unlikely to decay more quickly than those to (1.3),
because v and K have properties described in Lemma 3.8, (i-1i1) of the

present paper. In addition, we can solve (1.3) more easily than CP¢. For
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these reasons, we will first try to investigate the order of decay of the

solutions to (1.3). It is clear that the semigroup e®*‘®’ has the form
(e f(, D& E) = £(x(-t,X, E), € (-t,X, ENexp{-U(t, X, )}, (1.4)

where
t —
U(t,X, E) = foe‘¢ 8.5 8D, (e (5,8 2))ds., (1.5)

x = x(t,K,Z) and € = € (t,X, E) denote the solution to the Cauchy problem

dx/dt = &, dé&/dt = -V¢ (x),
(1.6)

(x, £)(0) = (%, 2).

In view of (1.4-5), we conclude that the order of decay of e®*®’ varies
considerably depending on whether the variable point x = x.(t, L, E) runs in a
domain of higher potential energy or of lower potential energy.

Based upon the considerations above, we conjecture that the order of decay
of e"®®’ must also vary according to the behavior of the variable point x =
x(t,X, Z). Hence, we need to observe that variable point globally in time. In
general, however, it is difficult to make such an observation, except in the
case of some concrete potentials. For these reasons, in the present paper, we
will investigate CP¢ with ¢ (x) = |x|%2/2. The principal result is Theorem 2.
2.

In what follows, we will write A and B for A(¢) and B(@) with
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¢ (x) = |x|?/2, respectively. We note that B contains exp(-|x|2/2), which
is the multiplier of (-v+K) and converges to 0 as [x]| — +oo. Recalling
the properties of v and K stated in Lemma 3.3, (i-iii), we see that this
fact presents a difficulty in trying to obtain estimates for decay of e®®. We
will be able to overcome this difficulty by a method similar to that in [1].
This paper consists of 7 sections. In §2 we introduce the notation and
state the principal result. The purpose of §3 is to prove some lemmas which
will be employed frequently later. In §4 we demonstrate some estimates for
the semigroup generated by A and the resolvent operator of A. The aim of
§5 is to obtain all the eigenvalues of B on the imaginary axis and their
corresponding eigenfuctions. We prove estimates for some operators in §6. By

making use of those estimates, we will prove Theorem 2.2 in §7.

Acknowledgments. The author would like to express his deep gratitude to

Professor H.Tanabe for his encouragement and valuable suggestions. He would
like to offer his sincere thanks to Professor S.Ukai, who suggested the problem
treated in this paper and pointed out the possibility that the method in [1] is

applicable to it.



§2 The notation and the principal theorem

(1) Symbols. We write A and L, for A(¢) and L,($) with @ (%)

= [x[?/2, respectively. By B(XY) (C(Y) respectively) we denote the

set of all bounded (compact respectively) linear operators from a Banach

space X to a Banmach space Y. The norm of operators of B (X, Y) is

designated by || [ls . v. Wewrite B(X) and C(X) for B(XX) and C (X X)
respectively. By Z3(F), o(F) and o,(F), we denote the domain, the

spectrum and the point spectrum of an operator F, respectively. For

operators F;, j = 1,2, we designate the product F,F, by II,%F,. By Q(R?),
we denote the set of all one-rank operators of the form Mu(-)) (&) = (u(-),

£(-))g(€), where f(&€) and g(€&), €ER®, are infinitely partially

differentiable complex-valued functions with compact support. The brackets (-, )
denote the inner product in L2(R.?).

(2) The harmonic oscillator. ¢ (x) = |x|2/2 is a potential of a harmonic

oscillator. The motion of this harmonic oscillator is described by the Cauchy
problem (1.6) with @ (x) = |x[%/2. This Cauchy problem is solved as follows:
x = x(t,%, Z) = (cost)X + (sint) &,

(2.1)
€ = £€(t,X,E) = -(sint)X + (cost) =.

The trajectory of x = x(t,%, =), 0=t=2m, 1is an ellipse whose center is
the origin 0. By po(X,Z) (qo(X, ) respectively) we denote the half of

the length of the major axis (the minor axis respectively) of this ellipse. Set



p(X,E = pOZ(X’ E)/Zy Q(X9E = qOZ(X’E)/Z’

Car 5 v = €a 5. (x, £) = o®EBAl E) (1 pyv/2

where E = E(x, §) = (Ix|*+]€1%)/2, a, 8,7 ER.

Let 1sw=+c0, By x, = xu(x,€) and p, = p,(x, £), we denote the
characteristic functions of the domains q(w) = {(x, £€); q(x, €) < w} and
{(x, §); E(x, §) < w}, respectively. Set x, = l-x, and Pu = 1-p,.
Let H be a set of functions defined on R.®>XR:*. We write x.H for the
subset {f€H; x.f = 0}.

(3) Function spaces. Let a, 8,7y € R. By E.(R:*) we denote a

Hilbert space of complex-valued functions on R¢* with the inner product

Wvg R,y = TR, w(EV(E){exp(al £ |?))dE.

By Ea. s, we designate a Hilbert space of complex-valued functions on

R.*XR* with the inner product

WV)a 50 = SR sy 30 §V(K E)e?s 5. (x, € )dxd €.

Set  flulla 5. v = ((WWa 5 +)*"%. For simplicity, we write Be, Ee s, Julle
and ”u”a.ﬂ for E.. o, o0, Ea. 5. 0, ”u”m.o.o and ”U”a.a,o,
respectively.

We define sets of subscripts as follows:




S: = {(a, B); -1/2<a<1/2, 0<B<1),
Sz = {(a, 8); -1/2<a<1/2, 0<a+B/2<1/2),
S: = {(a, B); -1/2<a<1/2, -1<B<1),
S¢ = {(a, B); -1/2<a<1/2, -1/2< a+B/2<1/2),
Ss = 51 MNS,, S = S3NS,,
S = ((a, B); (a, B+1/2)ES,), Ss = {(a, B)ES,; a, 8=0),
Ss = {((a,a’,87); a’2a, (a,0),(a’, B°)ES:).
We set
(©3)s-1.2.0 = (xX£)Q'V2, @, = QY2 &, = EQ'"?,
s = (Ix|*-] & |2+2ix- £)Q'72, @, = (] € |>-|x|2+2ix- £) Q' 72,
Dy = (xy_r+1€5.,)QY%,  § =8,9,10,
Dy = (xs-10-16500) QY% j = 11,12,18,

where Q = exp(-E), E = E(x, €). x; and €, denote the J-th components
of the vectors x € R® and & & R® respectively, j = 1,2,3. Any
eigenspaces corresponding to eigenvalues of B on the imaginary axis are
spanned by ®;, j=1,---,13 (see §5). By -L, we denote the projector in

L*(R,*XIR¢*) upon the linear space spanned by ®;, j=1,---,13. let H
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be a set of functions defined on RR,®XIR.®. We denote the subset {feH; L,f
=0} by H,.

(4) An assumption. In addition to Assumption 1.1, we will impose the

following assumption on B(9,V):

Assumption 2.1. There exists a positive constant ¢, such that

c2V = B(6,V)/[sinOcos 6 ].

We need this assumption only when proving the first inequality of Lemma 3.3,
(i).

(5) Conventions. We set the following conventions:

(i) The letter ¢ denotes a positive constant. By ¢(0) we designate
a positive constant depending on the parameter 0 < 6 < 1 such that c(9)
T +0 as 6 T 1. Wewilluse ¢ and c(8) as generic constants, and so
they are not the same at each occurence.

(ii) Let L be a formally defined operator. Then L may happen to have
various realizations in a variety of spaces. For simplicity, we will use the
same symbol L for all such realizations. No confusion will arise.

(6) The principal theorem. The following theorem is the main result of

the present paper, which will be proved in §7:

Theorem 2.2. If (a, B)ES; and v =0, then the operator B, &(B) =

{UEE., 5. ,; AUEE,. 5. v}, generates a Co—semigroup in E. 5 , such that for

any (8,8°,e°) €8 and v =0,
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where a = 2(8°~-8)+e”’. ¢(8) is independent of t.
We conclude the present section with the following:

Note 2.3. (i) By making use of Theorem 2.2, we can prove that if the
initial data are sufficiently close to Q, then there exists a unique global
solution to the Cauchy problem for (1.1) with ¢ (x) = |x|2/2. We will discuss
this subject in another paper which is in preparation.

(ii) There have been several studies on the existence of global solutions
to the Cauchy problem for the nonlinear Boltzmann equation without an external
force. These studies are made with the aid of decay estimates for solutions to
the Cauchy problem for the linearized Boltzmann equation without an external

force. See, e.g., [1] and [3].




8§83 Some lemmas

Lemma 3.1. (i) For any X, Z € IR® there exists some k € [0,27)

such that for any t€IR

Ix(t,X, 2)1%/2 = p(X, E)cos?(t+k) + q(X, Z)sin?(t+k),

| € (t,% E)I2/2 = p(X, 2)sin®(t+k) + q(X, 5)cos? (t+k).

Gi) [X1*/2,1E1*/2 = o(X, E), E(X, E) = 2(X, 2).

(iii) EX, E) = Ex(t,X, B), € (t,%, 8)), qiX =) = ax(t, X, E), € (t,%, E)),

1
—
.

(iv) [D(x(t,%, 2), & (t,% E))/D(X, )|

(v) If %2, 7x €E R* and 7,€ER, k =1,2, then

[D(%0, €0, T1, T2)/D( %1, 92, T1, T2)| = |sin® ],

where %1 = X(-Ty, Xk, k), Exo1 = E(-Ty, %, 7x), k=1,2 (8.1)

Proof. We obtain (i), (iv) and (v) from (2.1). (i) implies (ii). (iii)

is clear.

We will make use of Lemma 3.1, (i) ((v) respectively ) in order to prove

Lemma 3.5 (Lemma 6.3 respectively).

Lemma 3.2. (i) If a=<ea’, B=B", v=<v’ and 6=0, then

”f” @, B+28, v = “f” a’ +8, 87,7 .
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(ii) If a=a’, B=B’, YER and 1=w<+c0, then
Il @, , .5, )= ee{-2(a~a)w(8"-B)w).
(iii) If a=<a’, B,YER and 1=w<+o0, then
"12”IIEB(Eaf_g,,,Ea_B,,) = exp{-(a - a)w).

Proof. We obtain (i-ii) by making use of the last inequality of Lemma 3.1

14

(ii). (iii) is clear.
Lemma 3.3. (i) There exist positive constants vi, J=1,2, such that
va(l+ 1) = v(8), v(€) = v, (14 €]).

(ii) K is a self-adjoint compact operator on LZ(R.%).

(iii) (-v+K) 1is a non-positive operator on L2 (IR¢%*) such that
(-v+K)f =0 iff f is a linear combination of $; = €507, §=1,2,3,
$s = 0'* and ¢s = [€|2w'72, where w = exp(-| £]%/2).

(iv) K € CE.(Re?)), if -1/2<a<1/2.

(v) If -1/2<a<1/2, -1<B=<0<8°<1, B-B<1 and v =0, then
L € B(Ea 4. v,Ba 57, 5+1).

Proof. See [2] for (ii), (iii) and the second inequality of (i). By
Assumption 2.1, we can obtain the first inequality of (i), in the same way as

that in proving the second inequality of (i).

Let us prove estimates for K.(&, 7), where K. (&, ») is the integral
— 11 —




kernel of the operator K. = {exp(a| & |%2/2)}Kexp(-a| & |2/2). Performing

calculations similar to those in [2], we deduce, from Assumption 1.1, that

KeCE, 2)] < el &-nltl€-718  Dexp(-Ca(] & [24] 7]2)) +
tcl -7l texp{-Ca(l E-n |2+(| £ 12-| 7|22 -9 ]72)), (3.2)

where C. is a positive constant such that C. | 0 as a 1 1/2 or a l

-1/2. It follows from (3.2) that
mK. (€, 7) € *(R*XIR,?), (3.3)

where m. = m.(§) is the characteristic function of the domain [€]|<r. In

the same way as that in [2], we conclude from (3.2) that for any n = 0
J 1K (€Y, £2)[(1+] €7]2) "2de® < c(l+] g*|7) -t w2 (3.4)

where (j,k) = (1,2),(2,1). Applying (3.4) and Schwarz’s inequality to the

operator m.K., m, = 1-m,, we see that IlmrKallHB(L2(H{ES)) < c(1+r?) 172,

It follows from this inequality and (3.3) that K, € C(2(Re*)), which

implies (iv). With the aid of Lemma 3.1, (ii) and (3.4), we can get (v).

We will make use of the first inequality of Lemma 3.3, (i) only when

proving Lemma 3.5.

Lemma 3.4. (i) If «a€R, -1=8=<0 and M € B(E.(R:*)), then
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Il {eXD(‘IXIZ/Z)}M ” B (E,. 5.8 541) = clM I B (Ea(IRga))’

where ¢ is independent of M.

(ii) If @,B,vER and M € Q(R¢), then {exp(-|x[2/2)M & B (E.. 4,
Eat1. ).

(iii) If -1/2<a<1/2 and -1=8=0, then L, € B(E. s,Eq 5:1).

(iv) Let -1/2<a<1/2 and &>>0. Then there exists a decomposition
L, = £,+8, such that

Il 2. ”IB(Ea, 5B 511) = ¢ for any -1<B<=0,
2. = {exp(-]x]2/2)}M,

where M is a finite sum of operators € Q(R.*).

) If («,8),(a’,B) €8 and v,y ER, then L, C (Ee, 5. +,
Bar. s v).

Proof. With the aid of Lemma 3.1, (ii), we obtain (i), (ii) and (v).

Lemma 3.3, (iv) and (i) of the present lemma imply (iii-iv).

Lemma 3.5. There exists a constant cs.s>0 such that for any t=0 and

any (X, 2)ER,*XR:®
Ut,X, E) = ca.s{exp(-q(X, E))}t - 27cs.s,

where U(t,X, Z) is that in (1.5) with & (x) = |x|%/2.
Proof. Applying Lemma 3.1, (i) and the first inequality of Lemma 3. 3, (1)

to U@n,X, =), we deduce that
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g AT
U2rn,X, E) = ce qJ'O e (p q)Coszt(h(p-q)“zIsintl)dt = cexp(-q),

where p = p(X,Z), q=q(X E). c is independent of (X, ). Noting that
the integrand of U(t,X, Z) 1is a periodic function whose period is equal to
2m, we see from the above inequality that there exists a constant Cs.s >0

such that
U(t,X, ) = 2mcs.s{exp(-q(X, 2))}t/2x . (3.5)
This inequality implies the present lemma.

We will make use of this lemma in the next section.
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§4 The operator A

Let «,B,v € R. With the aid of Lemma 3.1, (iii-iv), we see that A,
D) = {u€E. 4. +; Au € K. 4 ), generates a Co-semigroup in E.. ;. .,

which has the form (1.4) with & (x) = [x]|?/2. Let us study this semigroup.

Lemma 4.1. (i) If a’=Za, B°=8 and YER, then
tA < -a >
” € ” B (Ea’. B, 7y Ea:. 8, 7) - C(1+t) ’ t—o’

where a = 2(a’~a)+(B'-B8). ¢ 1is independent of t.

(ii) If @,B,YER and 1<w=+co, then

I e® | B(x.Ee ;. .) = cexp{-cCs.s(exp(-w))t}, t=0

where c is independent of t and w. See Lemma 3.5 for Ca.s.
(iii) Let 7 =-cs.s{exp(-w)}/2, 1<w=+oo, @, BER and fE x, k. ,.
For simplicity, we write A;, j = 1,2, for A and A* = A+{exp(-|x|2/2)}(-v),

respectively. Then,

+00
£ e 2T ez, udt < ol f )%, § =12

where ¢ is independent of vy, w and f.
Proof. We write (4.1) for (1.4) with ¢ (x) = |x|2/2. Replacing f by
€-m -nof, mn >0, in (4.1), and applying Lemma 3.1, (ii-iii) and Lemma 3.5

to the right hand side, we deduce that
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[(e**(e-m no(, )¢, INE E)| =

clf(x(-t, X, B), £ (-t,X, £))]exp{-cs.s (exp(-q(X, 2))t-ba(X, E)}, (4.2)

where b = 2mtn. We easily see that ngtoexp{—cs.s(exp(—q))t—bq} = c(1+t)_b
Q:

for any t=0. Applying this inequality and Lemma 3.1, (iv) to (4.2), and
noting that e*®e. 4. » = €a 4 ,€", we obtain (i).

Let mn =0 and f&yx,L*(R.*XR¢*) in (4.2). Recalling the
definition of x,L*(R.*XR¢*), we see that we can replace q(X, =) by w
in this inequality. From the inequality thus obtained and Lemma 3.1, (iv), we
have (ii) with @, B,v = 0. Hence, we get (ii) for any «, 8 and 7.

Let mn=0 and f€ x,Eo 1,2 in (4.2), and raise both sides to the
second power. Moreover, multiply both sides by exp(-2vt), and integrate them
over Ry*XR:*X[0,+00),. Because x.f = 0, we can apply the following
fact to the inequality thus obtained:

If X,E) €Eqw) and v = -ci.s{exp(-w)}/2,

then -27vt-2cs.s{exp(-a(X, E))}t =< -ci.5{exp(~q(X, E))}t.

Hence,

+00
J =< cfo fx |f(x(-t,X, 2), € (-t,% 2))|*>X

{1]

X (exp(-cs.s {exp(-q(¥X, £))}t))dXd Zdt,

where J denotes the left hand side of the inequality in (iii) with (a, B) =
. 16 _




(0,1/2), j = 1. Change the variables in the right hand side of this

inequality as follows: (X, E) — (x(-t,X, Z), &€ (-t,X, E)). By means of.Lemma 3.
1, (iii-iv), we have (iii) with (a, 8) = (0,1/2), j = 1. Hence, recalling

that €%, 5. v = €4, 5 ,€"*, we obtain (iii), j =1, for any « and B.

(iii) with j = 2 can be proved in the same way.

Lemma 4.2. Let -1/2<a<1/2, v=0, 0<a<l and Co=0. If f = f(t)

is a continuous function from [0,+c0), to Ee.0,+, and satisfies
) a0~ < Co(14t)73, =0,

then FZE) W) a0, v = c(0)C(141) 20 1=,
t
where () (t) = fo e(t_S)ALlf(s)ds.

Proof. Combining Lemma 4.1, (i) and Lemma 3.3, (v) with B =0, we have
e C SR E6) lao,ver = (B ILHES)) BT EE) [ ao. .
Integrate both sides with respect to s&[0,t], and apply the inequality

t
J‘O{1+(t—s)}‘m(1+s)‘“ds < ()™ g < opn < 1L

By replacing 1-a-B° by -af, 0<6O<I1, in the inequality -thus obtained,

we get the present lemma (see §2, (5), (i)).
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Let us pick out the integral kernel of (x-A)"'. We will express (uz-A)*
in terms of the Laplace transform of e"®. Let f&€ x,Ey 5 ,, 1Sw<+o0
and «, 8,vER in (4.1). Multiply both sides of this equality by exp(-ut),
Reu > —cs.sexp(-w), and integrate them over [0, +c0),. Moreover, decompose
[0,+0), as follows: [0,+®0), = U.%, [27zm, 27 (m+1)),, and replace the
variable of integration t € [2zm 2z (m+1)) by 2zxmts (0=<s=<2z) for
each mEINU{0}. Substituting the equality U(2zm+s, X, =) = ml(2r, % E) +

U(s,X, Z) 1in the integrals thus obtained, we formally get
(Ce-) ¢, NE E) =

2
fOnR(,a,s,X,E)f(x(—s,X,E),§(—s,X,E))ds, (4.3)

where
R(u,s,X E) = {exp(- £s-U(s,X, E))} Snioexp{-n@r £+ U2, %, £))}. (4.4)
Let us consider operators of the following form:
(R(z,WDul-, ))& E
= Jriem R, t, % EJu(x(-t,X, 5), € (-t,X, E))dt, M < [0,27z). (4.5)
Lemma 4.3. Let «, 8,7 € R.
(1) IRCa, g (4 g = cn(M),

sup =
ALED(W),1§W§+OO ®, B, 7» XwEa. B-1, 7)
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for any MC[0,27), where ¢ is independent of M. m(M) denotes the

Lebesgue measure of M. D(w) = {4 EC; Rep = -ci.s{exp(-w)}/2), 1<w<+oo,

G IRGD-RAM Ig o g = el a=2 1@,

@, B, 7y XwEa. B2,

for any u,A € D(w), 1=w=+c0 and M<S[0,27%), where c is independent
of u, A, w and M
Proof. First we will prove (ii). It follows from (3.5) with t = 27

that if (X, E)&q(w), x«&Dw), and 1=w=+00, then
2nRep-UQ2n,X, E) = -mes.sexp{-q(X, E)).

Applying this inequality to (4.4), we see that if (X, E)eqw), pED(w) and

1=w=+0c0, then
RCu,s,% E) = {exp(- £s-U(s,X, E))}/{1-exp(-2 7 -U(27,%, E))). (4.6)
Hence, for n = 0,1,

sup 1(8/3 w)"R(&,t,%, B)|
#ED(w),0=t=<2n

< c{l-exp(-mecs.sexp{-q(X, E)})} " < cexp{(n+t1)q(X, E)}. (U.7)

It follows from this inequality with n = 1 that if u, A € Dw), & Z)cqw)

and 1=w=+0co, then

sup  |R(u,t,X, E)-R(A,t,% B)| < c| -2 |exp{2q(X, E)).
0=t=2=m
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Applying this inequality and Schwarz's inequality to the integral
I = Joiem [RCu,t,% 2)-R(A,t,% E) | lu(x(-t,%, 2), € (-t,X, 2))[dt,
where u€& x,Eo. 2, we conclude that
I* = clu-21"mM) S ceu {exp(4q(X, 2))}Hulx(-t,%, 2), € (-t,%, £))|%dt.

Integrate both sides over Rx*XR:*, apply Lemma 3.1, (iii-iv), and note that
R(x,M) commutes with x, and e. 5 .. Then, we get (ii). We can obtain (i)

by calcultions similar to, but easier than, those above.

Noting that IR(g,-) 1is an additive set function, and making use of (i)
of the lemma above, we can approximate (u-A)"' with operators of the form (4.
5).

From Lemma 4.1, (iii), we can obtain the following lemma in the same way as

that in [5, Lemma 3.4]):

Lemna 4.4. Let «, BER, uxEDW), fE x,E.. s and 1=w<+00. Write

# = 7v+i6 (v, 6ER). Then,

+00
I o Ce-a) 7 ) %a 51248 = cllfll2e s §=1,2
(0.9

where ¢ 1is independent of v, f and w. A;, J=1,2, are the same as

those in Lemma 4.1, (iii).
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§5 The point spectrum of B

Let us obtain all the eigenvalues of B contained in D(c0) and their
corresponding eigenspaces (see Lemma 4.3 for D(c0)). lLet (&, 8) € Ss be
fixed in the present section. We can define the domain of A as follows: <3(4)

= {UEE., 5; AUEE., 5}. In virtue of Lemma 3.4, (iii), we can define the
domain of L; by 3(Li) = E. 4. Hence, we can define the domain of B as
follows: 25(B) = 23(A). We will regard B as an operator on E. , in this

section.

Lemma 5.1. If wx&D(o0) and vEE, ; satisfy uv = By, then v € L2
= L*(R,.*XR3).

Proof. Let &>0 be sufficiently small, and decompose L, in the same
way as that in Lemma 3.4, (iv) with a = 0. Combining Lemma 4.3, (i) and Lemma 3.
4, (ii), (iv), we see that P, = (u-A)"' 0,EB(Ra 5,L*) and (1-P,) *EB(1?),
where P, = (ux-A)"* Q.. Hence, P, = (1-P,) *P,EB (Ea, s,1?). Rewriting

#v = Bv as follows: v = P;v, we obtain the present lemma.

We write e(A) for the eigenspace corresponding to an eigenvalue A of

B. Combining Lemma 5.1 and [4, Theorem 3.2], we obtain the following:

Proposition 5.2. (i) g,(B)ND(c0) = {0, i, -1, 2i, -2i).

(ii) e(0) 1is spanned by {®y)y-r.....5s. e((-1)7"12i), j=1,2 are
spanned by @k, k = 6,7, respectively. e((-1)*"*i), j=1,2, are spanned

by {(Dk}x:a,s,xo, {q)k}kzll,lz,ls, respectively.
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§6 Estimates for operators

The purpose of the present section is to obtain estimates for the operator

IL(w, ), which appears in
(£-B,)™ = (-8 + (u-4)"*(1-L(w, ) (Lot ) (e-A)"t,  (6.1)

Where Bw = A+L1 ,w+LZ,w, Li;w = XWL:'I Xw, I[‘(wy /‘l’) = H—Jl(wy ﬂ)+l[‘2(wa /‘L)v
Ls(w, u) =Ly, ,(g-A)7", =12 « € Dw), 1<w<+co. The main result

is the following proposition, which will be employed in showing Lemma 7.1:

Proposition 6.1. Let (a, B) € Ss.

(1) | L (w, ) ”B(XVEa. 5) < +00, J =12

sup
wEDw), 1=w=<+o0

(ii) Let wuo&D(c0). Then, IIIL.a(W.#)—lLJ-(wLOO,ﬂo)llB(Ea ,) 0 as
K=o, W00,  u&D(w), j=1,2.

(iii) L*(w, #) € C(xyEa 5), if £EDW) and 1=w<+oo,

(iv) ”ILZ(‘"'“)”B(XWEO, ) 0 as | w|—>+00, w—otoo, uED(W).

We will prove this proposition, in the end of the present section, by
approximating IL.(w, #) and IL,%(w, ) with finite sums of operators of the

following forms (6.2-3), respectively:

Mw, 1, 8, €) = psxo{exp(-1x|2/2)Imx R (u,s(e)), (6.2)
Nw, 0, 8, ¢) = IT.%N(w, , 8, &), (6.3)
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where £ ED(w), 1sw=<+0o, IS §=<+00, 0<e<7n/4, m € Q(R:*) and s(e) =

[e,m-e]U[rn+e,2r-e]. Ne(w, 1, 8,¢), k=1,2, are defined as follows:

New, £, 8, e) = psxu{expC-I1x12/2))}re xR (u,s(e)), k=1,2

where ry € Q(R¢*), k = 1,2, For simplicity, we write M(w, x) and N(w, 1)
for M(w, ,+00,0) and N(w, z,+%0,0), respectively.

First we will prove some estimates for operators of the forms (8.2-3).

Lemma 6.2. Let «a, BER.

(i) sup | M(w, @, 6, &) |l < +00,
LEDW), 1=<w, 6 <+00,0< & < 1z /4 B (xuEa. 5)

.. -6

ii) su | M(w, «, §, €)-M(w, = cle+e Y),

( /LED(W),?§W§+OO I “ w) | B(x.Ee 5) (

for any 0=§=+00 and 0=<e=<m/4, where ¢ is independent of & and ¢.

(ii1) | M(w, )M, 2”) ”B(xw~E,,, ) = clexp(-wt| u-u"1),

for any w, w', 4« and g  such that wxED(®w), £ EDwW), 1=w=w =+c0
where ¢ is independent of w, w', x« and u’.
Proof. Lemma 3.4, (ii) and Lemma 4.3, (i) imply (i). By means of Lemma 3.4,
(ii), Lemma 3.2, (iii) and Lemma 4.3, (i), we obtain (ii). Combining Lemma 3. 4,

(ii), Lemma 3.2, (ii) and Lemma 4.3, we get (iii).

Lemma 6.3. Let «a, BER.
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(i) Nw, #) € C(x.E. 5), if £EDw) and 1=<w=<+oo,

(ii) ”N(w’ﬂ)”B(waa )0 as | ulo+00, wotoo,  peD(w).

Proof. First we will pick out the integral kernel of Nw, #, 8, ). By
rc(+,-) we denote the integral kernel of r, € QR :*), k =1,2. We write
(x2, §2) for the variables of N(w, g, &, eu, i.e., N(w, ¢, 8, e)u = (N(w, «,

8, eJu(+, *))(xz, €2). In view of (4.5) and (6.3), we see that N(w, £, &, €)u
has the form

(Nw, &, &, e)ul-, ")) (xz, €2)
= f tEs(e), n,ER®, k=1, 2 n(w, £, §)ulxe, €o)dndz, (6.4)
where d7 = d7.d7,, dt =dr.dt.. nlw, u, §) is defined as follows:
n(w, £, 8) = nW, &, 83Xz, €25 71, D2y T1, Ts)
= Thzi{os(xes €4) 2w (Re, € ) {exp(- 13 12/2))r (&, 74) X

X xw(xk’ vk)R(ﬂ’ T ky Xk, 7)k)}o

X« and £, k=0,1, are the same as those in (3.1). Change the
integration variables in (6.4) as follows: (71, 92, T1, T2) = (o, €0, T, Ta).
We regard 7;, j=1,2, in (6.4) as functions of Xk, €x, k =0,2, and

Ty, £ =1,2. By Lemma 3.1, (v), we can rewrite (6.4) as follows:

Nw, 2, 8, €)u(-, *)) (xz, €2) = %o, €. cRING, 2, 8, &)ulxo, €0)dxod &,
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where

N(W, “, 6v 8) = IN(W, “, 67 > ;Xz, &2,){0’ &0)

= erES(e),kZI,Z n(w, £, §)|sin* t,|dz. (6.5)

Next we will obtain estimates for this kernel. Let 1<§<+co and 0<e
<n/4. Note that if 7,Es(e), then Isin®7,] =< ce®, and apply Lemma

3.1, (ii-iii) and (4.7) with n =0 to (6.5). Then, we see that

Sup IN(W, ﬂ" 6’ > ;x29 éZ,X07 &o)l § C, (6.6)
Xz, § 2, Xo, €o, ﬂED(W),1§W§+OO

and that there exists a compact set SCIR;‘(ZXIR3 2><IR;0 ><IR“§o such that for

any £« € Dw) and 1 < w £ +0
supp N(w, ¢, &, €5-,-,+,*) € 8. (6.7)

c and S depend on & and & in (6.6-7).
Let us prove (i). It follows from (6.6-7) that for any LEDwW), 1=w=

t00, I=§<+0 and 0<e<gx/4
N(W, “, 6’ 8) & G(XVEDZ. ﬂ)- (6-8)

Note that any operator of the form (6.3) is equal to the product of 2 operators
of the form (6.2), and apply Lemma 6.2, (i-ii). Then, we can approximate N(w, z)

with N(w, 1, 5, ¢), 1=8§<+o0, 0<e<n/4, uniformly for x€D(w) and
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1=w=+0o. Hence, (6.8) implies (i).

Let us prove (ii). Let #ED(w). Let 1<w<+co, 1<§<+00o and 0<e
=n/4 be fixed in what follows. Substituting (4.6) in (6.5), and applying
Riemann-Lebesgue theorem, we deduce that for any x, and €xv, k=02,

N, 1, 0, &%z, §2,%, §0) > 0 as | u| - +00, pED(wW).
With the aid of this and (6.6-7), we conclude that

IIN(w,/-c,5,e)HB(waa ) 0 as |u| - 400, peEDW).

In virtue of this fact and Lemma 6.2, we obtain (ii).

Making use of Lemma 3.4, (v), we can demonstrate the following lemma in the

same way as that in proving Lemma 6.3:

Lemma 6.4. Let (@, B) € §,.
(i) L.w, ) € C(xEas), if £ €EDw and 1 <y < +00,

(ii) ”ILZ(W’#)”B()CVE., N~ 0 as [u| =400, w o +o0, 4 € Dw).

Proof of Proposition 6.1. Making use of Lemma 3.4, (iv) and Lemma 4. 3, (i),

we can approximate IL.(w, #) (L.*(w, £) respectively) in B(x,Ea. 5), (a,
B)ES,, with finite sums of operators of the form (6.2) ((6.3) respectively)
uniformly for x € D(w) and 1 < w < +co, Hence, Lemma 6.2, (1), (iii)
imply (i-ii) with j = 1, respectively, and we obtain (iii-iv) from Lemmas 6.3-4.
We can get (i-ii) with j = 2 in the same way as that in showing (i-ii) with j =

1.
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8§87 Proof of Theorem 2.2

The purpose of this section is to prove the main theorem. First we will

obtain estimates for the operator (1-IL(w, #))™!, which appears in (6.1).

Lemma 7.1. If (&, B)ESs, then there exists a W=1 such that

s | (1-IL Cw, )7 || < 400,
/LED(wl)lf)W§W<+oo W 4 B(xyEa 4)

Proof. Let us regard IL(w, #) as an operator on x.,E. ; (see
Proposition 6.1, (i)). We will prove, by a reduction to absurdity, that if 1 <
w < +00  is sufficiently large, then 1 & o(IL(w, z)) for any «&D(w).

We suppose that the assertion is false. It follows from Proposition 6.1, (iii)
that for any x«&D(w) and w=1, the continuous spectrum and the residual
spectrun of IL(w, #) are empty, i.e., o,(IL(W, £)) = o (L (w, #)). Hence,
there exist sequences 45, wn and u, such that £n € D(wy), wy — +00,
lunlle.s =1 and up = IL(wn, 2)up. Iterating the last equality, welsee
that up = IL2(wn, #n)un. Applying Proposition 6.1 to this equality, we deduce
that there exist subsequences of x, and un, denoted again by u«, and u,
such that there exist « & D(o0) and u € E. , satisfying that u, — 4,
Un > u and u = IL(o0, £)u. Rewriting the last equality as follows: LV =
Bev, vX0, where v= (g-A)'u € E, 1, (a,B-1) € Ss (see Lemma 4.
3, (1)), we conclude that this equality and Proposition 5.2 incur a contradiction.
We have thus proved the assertion above. We can deduce, in the same way as

that above, that there exists a W such that (1-L.(w, z))™* is bounded
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uniformly for x« & D(w) and w = W.

With the aid of Lemma 3.4, (iii), (v) and Lemma 4.1, (i), we see that B,
generates a Co-semigroup in x,E. 5 ,, 1=w<+oo, (a, 8) € Se, ¥ = 0.

Let us obtain estimates for decay of this semigroup.

Lemma 7.2. Let (a, B)ES,. There exists a W=1 such that if W =w

< 400, then
” eth ” ]B ( wau_ B) g Cexp{—Ca. 5 (eXp(_w))t/Z}’ tgo’

where ¢ is independent of t and w (see Lemma 3.5 for Cses).
Proof. Applying Lemma 3.4, (iii), (v) and Lemma 7.1 to P(w, QL) =
(1-IL (w, £)) *(Li,,+Lz,,), we see that there exists some 1 < W < +00  such

that

P(w, +00,
ﬂED(W§?‘g§W<+OO IPGs, ) ”B (XwBa. s-1/2, XuBa. 511.2) <

Applying this inequality, Lemma 4.4 and Lemma 4.1, (ii) to the inverse Laplace
transform of (6.1) (the integration path is Regx = —ci.s{exp(-w)}/2), we

obtain the present lemma in the same way as that in [5, p. 182].

Lemma 7.3. If (a,B),(a’,B°)ESs, a=<a’ and B=B"’, then

B, ) = c(0)Wt) 20, 12,

By La, 8

el g ..
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where B = Bo, a = 2(a’-a)+(B°-8). c¢(0) is independent of t.

Proof. We will follow the lines in [1] and [3]. By Lemma 3.4, (iii), (v)
and Lemma 3.2, (ii), we see that B, > B in B(E. ,) as w —> +co. Hence,
Lemma 7.2 implies the present lemma with a = 0.

Let >0 be a sufficiently large constant. Set

w = log{t/log(l+7)’), ¢ = 2a/cs.s. (7.1)
Multiply the following Cauchy problem by x.:

u. = Bu, t>0,
(7.2)

11(0) = Uo,

and solve the equation thus obtained with respect to g(t) = x.,u(t). Noting

that x.,A = Ax,, we conclude that
t o
g(t) = et By u, 4 . VB (Ll )h(s)ds, (7.3)
where h(s) = x.u(s). It follows from the present lemma with a = and
Lemma 3.2, (ii) that
Ih(t) e - = clexp(-(@+ )W)} luo | u-. 5, k = 0,1, (7.4)

IR Il -6z = clexp(-(a+ 0 I} o |l a. 5., 0<6°<1. (7.5)

Applying Lemma 3.4, (iii), (v), (7.5), (7.4) with k = 1 and Lemma 7.2 to (7.3),
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we deduce that
lg(t) e s = clluo Il o sexp{-cs.s (exp(-w))t/2} +
+ tc(0 )exp(-(0 " +a)w)} [l uo fl . 5.

Substitute (7.1) in this inequality, let t — 7 and replace

TI—O'—a(log(lJ,t)C) 6 +a by C(e)(1+1,-)_ae in the second term of the

right hand side. Moreover, substitute (7.1) in (7.4) with k=0, let t — ¢

and replace 7."?1(105;(1+'5)C)a by 0(6)(1+r)—ae in the right hand side.

From the two inequalities thus obtained, we get the present lemma.

Proof of Theorem 2.2. With the aid of Lemma 3.3, (v) and Lemma 4. 1, (i), we

see that B generates a C,-semigroup in E. ;. ..

By making use of Lemma 3.3, (iii), we easily deduce that if u, © Es- e o,
then L.e"®u, = 0 for any t = 0. Hence, we conclude that u - u(t) = e*Bu,
satisfies (7.2). Therefore Lemma 7.3 implies (2.2) with v = 0. Rewriting

the Cauchy problem u. = Bu, u(0) = u,, as folows: u(t) = e® u, + Z(u)(t),
and applying Lemma 4.2, Lemma 4.1, (i) and (2.2) with v = 0 to this equality,

we obtain (2.2).
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