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Multiple Comparison Procedures
in the Unequal Variance Case

Shin-ichi MATSUDA



Summary

The purpose of this thesis is to give the results of the study on the principle of multiple
comparisons and of the research of multiple comparison procedures when the population
variances are unequal. There are many situations where multiple comparison procedures
should be adapted. In this thesis, we focus only on the one-wa& layout model with
normally distributed errors.

In Chpater 1, we give an introduction of this thesis. In Chpater 2, we give some
overview on the model and already proposed procédures.

Chapter 3 is devoted to the problem of the principle of multiple comparisons. We
consider the concept of powers for multiple comparisons as an especially important sub-
ject. The reason why many multiple comparison procedures have been proposed is that
the comparison of them is not easy because the concept of powers is not clea.rly defined.
Therefore, we compare several multiple comparison procedures using the known defini-
tions of powers and proposed ones and make features of those concepts of powers clear.
Moreover, we examine power properties of the procedures and discuss which procedure
is adequate in the practical situations.

Next, we discuss multiple comparison procedures when the variances are unequal in
Chapters 4 and 5. The theory and methods of multiple comparison procedures under
the assumption of the homogeneity of variances have been well developed. However,
the research of multiple comparison procedures under the unequal variance cases is not

satisfactory and in fact most of statistical software packages do not support them.



In Chapter 4, we examine already proposed multiple comparison procedures when the
variances are unequal to investigate the propertiés of them. We find that the procedures
do not meet the required nominal significant level when the populations have unequal
sample sizes and/or the fluctuation of the variances are large. We propose new procedures
to correct these defective features. A procedure proposed can maintain the nominal
signiﬁcant level in the wide range of parameters. Furthermore, in the situation that the
homogeneity of variances is doubtful, we discuss a system with a preliminary test for
the homogeneity of the variances and how to improve the system. The system with a
modified preliminary test can maintain the nominal significant level in the wide range of
parameters. |

In the final chapter, we discuss a way how to construct multiple comparison proce-
dures which do not need a preliminary test. The proposed procedure is based on a loss
function. The reason why we consider such procedure is to avoid the discontinuity of the
conclusions of multiple comparison procedures at the critical points of the preliminary
test. We feel there leaves something to be improved. However, they have relatively good

performances.
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Chapter 1

Introduction

In days of old, they tested multiple groups of data assuming the normal distribution using
the analysis of variance, but this method cannot point out which group is different from
which group. In order to conquer this disadvantage, multiple comparison procedures
were produced. Fisher (1935) proposed a primary multiple comparison procedure. This
procedure practices the preliminary F-test before repeated pairwise comparisons, but it
was shown that under some configurations of population means the real significant level
was nearby that in the case of repeated pairwise comparisons without the preliminary
F-test.

It is the 1950’s when procedures being useful at present were proposed. Those were
Tukey’s (1953) procedure and Scheffé’s (1953) procedure. Furthermore, the basic concept
for the Type I error on multiple comparisons was also established then. After that, several
procedures based on different types of comparison, e.g. Dunnett (1955), were proposed,
but large development was not occurred.

In the 1970’s, when powers of multiple comparison procedures were considered, step-
wise procedures that were improved on the point of powers were proposed. The general
principle of stepwise procedures, i.e. the closure method, were completed by Marcus,
Peritz and Gabriel (1976). Moreover, Einot and Gabriel (1975) and Ramsey (1978)

compared known procedures on the basis of the powers.



On the other hand, procedures not assuming the normal distribution were developed.
Those were nonparametric procedures (see Steel 1959, 1960, Dwass 1960, Sen 1969,
Shirley 1977 and Matsuda 1988) and sequentially rejective procedures of Bonferroni type
(see Holm 1979, Shaffer 1986 and Holland and Copenhaver 1987).

In such history, Hochberg and Tamhane (1987) is an important book about multi-
ple comparison procedures, which includes the previous historical changes of multiple
comparisons and various procedures. In this book, However, the principle of multiple
comparisons is not complete enough and multiple comparison procedures under singular
conditions are not solved.

In this thesis, we lay emphasis on the concept of powers especially in the principle
of multiple comparisons and on the case of unequal variances especially among singular
conditions. In particular, we consider pairwise comparisons as multiple comparisons.

In Chapter 2, we mention the principle of multiple comparisons and known proce-
dures. We improve the Type I error, which is not complete enough in Hochberg and
Tamhane (1987), introducing the consideration of Holland and Copenhaver (1987).

In Chapter 3, we mention powers of multiple comparisons and the merits and demerits
of known procedures. We increase the kind of power in addition to that in Einot and
Gabriel (1975) and Ramsey (1978). (The powers considered in this thesis are all-pairs
power, restricted all-pairs power, minimum difference power, mazimum difference power,
mean rejective rate and weighted mean rejective rate. Three powers are newly proposed.)
On the basis of those powers, we compare several procedures, which newly include a
sequentially rejective procedure. (The methods considered in this chapter are Tukey’s
procedure (Tukey-Kramer procedure), Tukey-Welsch procedure, Peritz’s procedure and
Holland-Copenhaver procedure.)

In Chapter 4, we will propose new multiple comparison procedures under the unequal

variance condition. Firstly, we study features of known procedures (GH-procedure, T3-



procedure and C-procedure) in detail, and produce new procedures (GHC-procedure and
GHC2-procedure) that conquer the disadvantage of the previous three procedures. Fur-
thermore, we study the effect of the procedures and the performance of a nonparametric
procedure (Steel-Dwass procedure) under realistic situations. Secondly, we discuss the
influence of preliminary tests, and propose a new preliminary test.

In Chapter 5, we will propose new multiple comparison procedures based on a loss
function (LMGH-procedure, LP1-procedure and LP2-procedure) in order to avoid thé
disadvantage of procedures with a preliminary test. And, we compare them with the
new preliminary test system in Chapter 4.

Mainly, Chapter 3 is based on Matsuda and Nagata (1990), Chapter 4 is based on
Matsuda (1993) and Matsuda (1994) and Chapter 5 is based on Matsuda (1997).



Chapter 2

Model and Known Procedures
for Multiple Comparisons

In this chapter, we mention a model and known procedures.
We focus one-way layouts as a model. And, we explain known procedures treated in

Chapters 3 and 4.

2.1 Multiple Comparisons for One-Way Layouts

Multiple comparisons are applied for various models. In this thesis, we consider the

following model of one-way layout.
sz_’/ =)u'i+€ij> 1= 1327"',k;j = 1)2a"'7’n‘ia
4; : unknown parameters,

€;; : independent random variables from N (0, 02-2 .

For this model, we practice pairwise multiple comparisons among all treatments. In

other words, we make a family of null hypotheses for multiple comparisons
{pi=pn:1<i<h <k}

This cituation is one of important multiple comparisons, on which many procedures

have been proposed for about half a century (e.g. see Hochberg and Tamhane 1987).



2.2 Type I Error Rates for Multiple Comparison Proce-
dures

The reasons why many multiple comparison procedures are proposed is that there are
several Type I error rates and several powers for them. Now, we make a list of Type I
error rates for multiple comparison procedures.

For simplification in this thesis, null hypbtheses H1 = po = p3 and py = po are
denoted by H{j 23} and Hy) 2}, respectively. Generally, the null hypothesis for an index
subset P

Hi = [bhy tL,heP

is denoted by Hp. Especially, the overall null hypothesis is denoted by Hy for K =
{1,2,...,k}. Moreover, let p = #P = (The number of elements in the set P) and call it
the size of the null hypothesis Hp.

We define Dy; py for 1 <1 < h < k as random variables that is 1 if Hy; ;) is rejected
and 0 if it is retained. (In multiple comparisons, we use the term ‘retain’ instead of
‘accept’, because the decision for a pair of treatments may contradict that for other
pairs; e.g. we reject Hy; 3y but do not reject Hyjgy and Hys3).) Furthermore, let
p = (p1,..., 1) be the true point in the parameter space of population means.

Now, we can define the following three Type I error rates for multiple comparison

procedures.

e Familywise error rate (FWE):

Pl‘{ Y. Dip> OIN} :
(i,h)e‘[ﬂ
o Pre-family error rate (PFE):

E{ > D{i,h}|li},

(i,h)elo



e Per-comparison error rate (PCE):

E { > D{i,h}\#} /#1o,

(¢4,h)elo

where Iy = {(3,h) : 1 <i<j <k, pi = pn}

Since we consider a similar situation as ANOVA in this thesis, we need to control
the Type I error rate on the overall null hypothesis. Therefore, we should use the Type
I FWE.

Furthermore, we call the upper limit of the Type I FWE for p the generalized Type
I FWE (see Holland and Copenhaver 1987).

2.3 Known Multiple Comparison Procedures

Multiple comparison procedures for one-way layouts can be classified into three large
groups: single-step procedures, stepwise procedures and sequentially rejective proce-
dures. Stepwise procedures are the extension of single-step procedures to increase the
power. On the other hand, sequentially rejective procedures are based on Bonferroni
inequality or its similarities. Therefore, they have another approach against the previous
two types, and the behavior of their relative power is not obvious.

In this section, we consider procedures in the case of equal variances. (Procedures in
the case of unequal variances are considered in the following section.)

Besides, any procedure shown in the following can control theoretically the general-

ized Type I FWE in the case of equal variances.
2.3.1 Tukey’s Procedure (Tukey-Kramer Procedure)

Tukey’s procedure (Tukey-Kramer procedure in the unbalanced case) has the following

(1 — a)-level simultaneous critical region for H (i,h)-

— — 1
Vi = Vol 2 Qi35 Wni + 1/m),



where

=
I
&
~
b

j=1
k
v = Zni—k,
=1
p— k i} —
57 = Y ) (v -Y.)? v,
1=1j=1

and Qggg is the upper « point of Studentized range distribution with the parameter k
and the degree of freedom v (see tables in Hochberg and Tamhane 1987).

Tukey’s procedure can control the generalized Type I FWE exactly, but Tukey-
Kramer procedure in the unbalanced case is conservative, which is proved by Hayter
(1984).

Besides, Scheffé’s procedure that is a well-known single-step procedure is worse at
pairwise comparisons than Tukey’s procedure, which is shown in Hochberg and Tamhane

(1987). Therefore, we do not deal with it in this thesis.
2.3.2 Tukey-Welsch Procedure

Tukey-Welsch procedure is a stepdown procedure, which uses the following nominal level
«a, for the test of null hypothesis Hp. This setting is called Tukey- Welsch specification
(Tukey 1953, Welsch 1972).

a = 1-(1-a)P* p=1,2,... k-2,

ap_1 = ap = a.

Generally, we denote Zp as a statistic for the test of Hp and &, as the corresponding

critical value. The procedure is the following.



1. Calculate a value of the test statistic Zx and obtain the critical value &.
2. Test the overall null hypothesis Hy.
(a) If Zg < & then retain all Hp’s, P C K without further tests.

(b) If Zx > & then reject Hy and proceed to the next step with m =% — 1.

. For each subset P of size m that has not retained yet, calculate a value of the test

statistic Zp and obtain the critical value £, (#P=p=m). Proceed to the next step.
4. Test the null hypothesis Hp.
(a) If Zp < §p then retain all Hg, @ C P.

(b) I Zp > &, then reject Hp.

If all Hp’s is retained or m = 2 then terminate the procedure, otherwise reset m—1

to m newly and repeat this procedure from the third step.

In practice, test statistics and critical values are

¢ ()-statistics:

Zp = max( IYi'—?h'l ),

SIS it 1)
max{QSY, &1} p=3,....k
Ep = ,
5;,?) p=2

or

o [-statistics:

Tiep ¥ — (Tiepni¥i)?/ Tiepmni
(»-1)5 ’
Ep = F(p_ 1,V9ap)7

Zp



where F(p — 1,v, ap) is the upper ¢, point of F-distribution with the degrees of

freedom p — 1 and v.

Besides, Q;Ef,f ), which is not on tables in Hochberg and Tamhane (1987), is calculated
by using the program in Yoshida (1988).

By the way, we need the previous monotone modification of critical values of Q-
statistics to omit extra steps as keeping the consonance: the property that whenever any
nonminimal Hp is rejected, at least one of its components is also rejected. (See Hochberg
and Tamhane (1987).) Even if it is not modified, it controls the generalized Type I FWE

at level a.
2.3.3 Peritz’s Procedure

Peritz’s (1970) procedure is a stepdown procedure, which is the combination of Tukey-
Welsch procedure and Newman-Keuls procedure. Besides, Newman-Keuls procedure is
the procedure with Newman-Keuls specification instead of Tukey-Welsch specification
in the previous subsecgion, that is, all op’s are made o (Newman 1939, Keuls 1952).
(Newman-Keuls procedure is not control the generalized Type I FWE at level . There-
fore we do not deal with it alone.) The procedure based on the algorithm of Begun and
Gabriel (1981) is the following.

1. Practice Tukey-Welsch procedure and Newman-Keuls procedure separately and
classify all null hypotheses Hp’s into the following three groups.
(a) Null hypotheses Rejected by both procedures.
(b) . Null hypotheses Retained by both procedures.
(c¢) Null hypotheses Retained by Tukey-Welsch procedure
but rejected by Newman-Keuls procedure.

2. (a) and (b) are final results because both procedures have the same result.



But, Hp in (c), which is called a contentious null hypothesis, is judged in the

following manner.

3. Let m be the maximum size of contentious null hypotheses. If no contentious null

hypothesis then terminate the procedure.

4. For each contentious null hypothesis Hp with size m, reject it if it satisfies the

following condition, otherwise retain it.

“ For any subset ¢ C P¢, the null hypothesis Hg is rejected by Tukey-Welsch

. U )
procedure,

where P€ is the complementary set of P.

5. If Hp is retained at the previous step then retain all contentious subset null hy-

potheses for Hp.

6. Repeat this procedure from the third step.
2.3.4 Holland-Copenhaver Procedure

Holland-Copenhaver (1987) procedure is a sequentially rejective type procedure. Al-
though many Bonferroni-type procedures are proposed, we consider this procedure in this
thesis because it is the most powerful procedure among Holm-type procedures. More-
over, Holm-type procedures control the the generalized Type I FWE théoretica,lly (see
Holm 1979, Shaffer 1986).

Holland-Copenhaver procedure is based on Sidak’s (1967) inequality that is better
than Bonferroni’s inequality. Thus, it is a modification of Sidék’s procedure, which is a
single-step procedure, to sequentially rejective type.

Besides, Sidék’s inequality is the following. When (7T1,...,T:) denotes a vector of

10



random variables with the multivariate ¢-distribution,

k
Pr(ITh| < c1p. .o, I TR < o) 2 [[ Pr(IT3) < ).

=1
Furthermore, Sidék’s procedure is better than Bonferroni’s procedure, but worse than
Tukey’s procedure (see Hochberg and Tamhane 1987).

The procedure is the following.

1. Order two-side p-values of t-statistics (Y;.—Y}.)/ \/ 3'_2(1 /ni+1/np), 1<i<h<k

for the null hypothesis p; = pp and call them
P < < Py,
where M = k(k —1)/2. Set m = 1.

2. In the family of null hypotheses {u; = pp}, let ¢, be the maximum number of
simultaneous true null hypotheses against m — 1 false null hypotheses (see the

table in Holland and Copenhaver 1987).

3. Define the function C(z) as C(z) = 1 — (1 — &)}/* and calculate C(t,,).

4. . (i) When P, > C(tm), reject null hypotheses corresponding to Py, ..., Pn_1
and retain null hypotheses corresponding to Py,..., Pyy.
(If m =1 then retain all null hypotheses.)
And, terminate the procedure.

(ii) When P, < C(tn),

if m < M then reset m + 1 to m newly and repeat from the second step,

otherwise reject all null hypotheses and terminate the procedure.

11



2.4 Known Procedures in the Unequal Variance Case

We show three known procedures with the nominal level a to inspect in Chapter 4.

All procedures in this section are single step procedures. We may not deal with
stepwise procedures because the behavior of the real significant level of them is same
as that for the corresponding single step procedure. On practical use, we can easily ex-
tend them to stepwise procedures. Moreover, Holland-Copenhaver procedure has similar
performance to T3-procedure because both are based on Sidak’s procedure.

Furthermore, whether the following procedures keep the generalized Type I FWE
has been studied by Monte Carlo simulation. Hochberg and Tamhane (1987) report that
T3-procedure and C-procedure keep it but GH-procedure does not so.

Besides, on any procedure in the following, if |Tj,| > &, then we judge p; and py, are

different.

2.4.1 GH-Procedure

GH-procedure is proposed by Games and Howell (1976).

The test statistic is
' Y. -7

/82 /ni+ S}/

n;
5% = Zng Yi) v, vi=n;—1.
i=1

Tin =

where

And, the critical value is
&n = Q0 /V2,

where
y (S2/n; + S%/ny)?
T SE 2 (n — 1) + 83 /nd(np - 1)

12



2.4.2 T3-Procedure

T3-procedure is proposed by Dunnett (1980).
The test statistic is same as GH-procedure.
But, the critical value is

& = M|

myVip?

where m = k(k—1)/2 and |M Igﬁ,),, is the upper « point of the distribution of Studentized
maximum modulus of m normal variates with the degree of freedom v. (See Hochberg

and Tamhane (1987).)
2.4.3 C-Procedure

C-procedure is also proposed by Dunnett (1980).
The test statistic is same as GH-procedure.
But, the critical value is

Qi (S3/m) + Q1) (S3/mn)

= R G e+ S2 )

2.5 Steel-Dwass Procedure

In Chapter 4, we discuss the disadvantage of nonparametric procedures under non-
homogeneous variances. Here we mention Steel-Dwass procedure as a representative
of nonparametric procedures. Steel-Dwass procedure is proposed by Steel (1960) and
Dwass (1960) independently (see Hochberg and Tamhane 1987), which is a nonparamnet-
ric procedure not needing assumption of the type of distribution. Therefore, the error
term €;; is only i.i.d. and may not be normal distributed. Needless to say, since they are
identically distributed, they have an equal variance. Thus, it is a mistake to use in the

non-homogeneity case. Nevertheless, it may be more robust for this assumption than

parametric procedures.

13



The statistic of this procedure is given in the following.

|Rin, — ni(n; + np 4+ 1)/2| — 1/2
\/ninhVih/(ni +np—1)

|Tin] =

?

where R;j, is the rank sum of the ¢-th group when it ranks with the h-th groups, and V,
is the variance of the rank. Besides, when there is no tie in the rank, Vip = {(n; +np —
(n; +np + 1)/12.

And, the critical value is given as
§in = QESQO/ V2.

Therefore, if |T;,| > &, then we judge p; and pyp, are different as same as the previous

section.

14



Chapter 3

Powers for Multiple Comparison
Procedures

We have almost unified opinion for Type I error rates of multiple comparison procedures
but do not so for powers of them. The purpose of this chapter is that we propose new
powers additionally and ascertain which power is useful for judgement of the merits and

demerits of multiple comparison procedures by comparison on Monte Carlo simulation.

3.1 Primary Comparisons of Powers

Most procedures in Section 2.3 are compared on powers before. (See Hochberg and
Tamhane (1987).)

Einot and Gabriel (1975) compare procedures in Section 2.3 except for Holland-
Copenhaver procedure in the case of the balanced one-way layout. Then, Einot and
Gabriel use P-subset power. It is defined as the probability of rejecting hypothesis Hp
for a given subset P C K when Hp is false. (Besides, when p = 2, it is especially called
per-pair power.)

Since many P-subset powers are considered, Einot and Gabriel use the average of them
with same p and get the following result. “Against these stepwise multiple comparison

procedures, the simultaneous test procedures, with somewhat smaller power (at most

15



6%), have the advantages.”
The advantages of Tukey procedure that is mentioned by Einot and Gabriel are the

following.

1. It is easy to extend the procedure for all contrasts.

2. The decision for a set P is independent of sample means of which index numbers

are outside P.

3. The simultaneous confidence intervals corresponding to the procedure can be used.

4. The calculation for the procedure is easy.

On the other hand, Ramsey (1978) also compares the same procedures in the balanced
case. Then, Ramsey uses all-pairs power, which is defined as the probability of rejecting
for all pairs that have different population means.

And, the result is that “The superiority of Peritz’s procedure based on F-statistics
over Tukey’s procedure is extremely high (Table 6¢, f = 2.7, .761 — .244 = .517).”

Furthermore, Ramsey mentions that for the comparison of )-statistics and F-statistics
in stepdown procedures F-statistics is better than Q-statistics slightly. Now, we attend
that this result do not contradict the fact that “Scheffé’s procedure is worse than Tukey’s
procedure for pairwise comparisons”, which mentions in Section 2.3.1. As shown on Ta-
ble 4.1 of p. 104 in Hochberg and Tamhane (1987), Scheffé’s procedure has less nominal
level assigned to each null hypothesis for pairwise comparisons than Tukey’s procedure,
thus the performance of Scheffé’s procedure is inferior. In stepdown procedures, however,
the same nominal level a;, for the test of Hp is used for both F-statistics and @-statistics.
Hence, the overall result is influenced by the difference of performance of two statistics
on the test for each null hypothesis. In testing of the overall null hypothesis on one-way

layouts, David, Lachenbruch and Brandis (1972) show that Q-statistics is superior in the

16



case that parameter configurations are extremely separated (e.g. Configuration MAX
in Section 3.3) and that F-statistics is superior in other many cases. Therefore, we can
understand that F-statistics is profitable for the test of a null hypothesis on each step.
(Although there may be the relation between steps in stepdown procedures, we cannot
easily explain it.) The knowledge in this paragraph is needed in the later consideration.

Subsequently, Gabriel and Ramsey exchanged comments to discuss which procedure
we should use, stepdown one or single-step one. Moreover, their main topic was the
the validity of powers proposing respectively. At last, their opinion settled down to the
conclusion: in multiple comparisons, it was difficult to select a power generally, but we
should know features of procedures by using each power.

We think that the standpoint like this is reasonable, but the previous two powers
are not enough to evaluate features of procedures from various points of view. Thus,
we propose new powers in multiple comparisons. In this thesis, furthermore, we expand
objects to compare by adding Holland-Copenhaver procedure and also study the behavior

in the case of the unbalanced one-way layout.

3.2 Proposal of New Powers

In this thesis, we consider the following six powers.

o A : all-pairs power.

PI‘{ Z 1- D{i,h}) = Olp.} , I = {(’I.,h) 1<i<h<Ek ui # uh}.
(1,h)e-[l

¢ B : the probability of rejecting all Hy; py’s with |u; — pp| > 1.5f [restricted all-pairs

power], where f is defined in the next section.

Py { > (1=Dgupy) =0|H} , In={(,h):1<i<h <k, |u—pp|>15f}
(ivh)el'.!

17



e C : per-pair power for a pair with the minimum difference [minimum difference

power].
e D : per-pair power for a pair with the maximum difference [mazimum difference
power].

Since both Powers C and D are per-pair powers, we get the following expression

by defining (7, h) as an objective pair.
Pr{Dy; py = lp}.

e E :the mean rate of the number of pairs rejected among all pairs that have different

population means [mean rejective rate].
E{ 2. D{i,h}lﬂ} /#1.
(i,h)el
e F : the weighted mean rate of the number of pairs rejected among all pairs that

have different population means [weighted mean rejective rate].

E{> ¢ nyen 1 — pnlDygipylp}
#I1 X pyer, 11 — pal

In the previous powers, B, E and F are newly proposed powers. We propose Power

B to detect all pairs that differ over some level and propose Powers E and F to know the

mean number of rejected pairs. Besides, the setting of level 1.5f on Power B have no

special reason, but it is enough to know a different feature against Power A that does

not omit any small difference.

Moreover, there is any-pair power that is defined by the following expression similar

to Type I FWE.

Pr{ > D{i,h}>0|u}.
(

i,h)el
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This is proposed by Ramsey (1978). It means ‘the probability of rejecting any pair that
has different population means’, thus it has the same result for Tukey’s procedure and
stepdown procedures with Q-statistics. (We note that the first rejecting of stepdown
procedures with Q-statistics is same as Tukey’s procedure.) As pointed out by Ramsey,
therefore, this power has little behavior generally and is not suitable for comparison,

thus it is not considered in this thesis.

3.3 Setting and Procedure for Monte Carlo Simulation

Using powers in the previous section, we study features of procedures in Section 2.3. The
following is the setting of simulation and the procedure.
At fivst, set 02 = 1 and consider the following four types of configuration of population

means p;’s.
e Means with equally spaced configuration (EQ) : p; = (a + bi)f.

e Means with the minimum range (MIN) :

if k is even then
pr=ccc =gy =—f, ppjop == = f,

and if k is odd then

1o~

p1= = gy = ~[(k=1)/(k+1)]7 He3ye = = g = [(k+1)/(k=1)]2 f.

o Means with the mazimum range (MAX) :
1
H1 = —(k/Q)Ef, P2 = = Pl = 0’ LE = (k/Q)%f

o Means with square root configuration (SQ) : p; = (Vi—1— a)bf.
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All the configurations become ¥ y; = 0 and {3 p?/k}}/? = f, where for Configu-
rations EQ and SQ we define constants a and b as satisfying this equation. Besides,
Configurations EQ, MIN and MAX are also used in Ramsey (1978).

Since under some configurations above many pairs with the minimum difference
and/or many pairs with maximum difference appear, we should exactly redefine Powers
C and D in the previous section. First, let the pair with the minimum difference on
Power C be the pair (k — 1,k). But, when Conﬁguratio.n MIN and %k > 4, it becomes a
part of Type I FWE and is out of consideration. Second, let the pair with the maximum
difference on Power D be the pair (1, k). But, when Configuration MIN, it also becomes
the minimum difference power. Besides, since both Powers C and D are per-pair powers,
we use them only to add some features of procedures.

At second, we set k£ and n; in the following.

k=4, (n,...,n;)=(6,6,6,6) D.F.v=20

4, (16,16, 16, 16) 60
5, (6,6,6,6,6) 25
4, (2,2,10,10) 20
4, (4,4,4,12) 20
4, (2,4,6,12) 20
4, (10,10,2,2) 20
4, (12,4,4,4) 20
4, (12,6,4,2) 20

For simplification, furthermore, we call Group I as the group that has the pattern of
n1 < na < n3 < ny in the case of the unbalanced one-way layout and Group 2 as the
group that has the pattern of n; > ng > ng > ng.

We simulate for each setting above with the repeat number 1000. This repeat number
is same as Ramsey (1978). Besides, we decide the setting of f, which depends k,n;
and configurations of means, as powers are located between 0 and 1. In practice, we
set f in every 0.1 or 0.05 and search the appropriate range by a primary simulation.
Subsequently, the range depends the type of power, but we simulate in the maximum

range for each configuration of means. In the case of Table 1 (k =4, ny =--- = np = 6)
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practical values of f are 0.1 to 3.1 on Configuration EQ, 0.1 to 1.7 on MIN, 0.1 to 1.9
on MAX and 0.1 to 5.0 on SQ. Large f values are due to Power A. In the case of Table
2 (k=4, ny =---=n; = 16) the range of f is reduced to half as large as that of Table
1, and in the case of Table 3 (k =5, n; =+ = n;, = 6) it expand to 1.2 times. Besides,
in the unbalanced case, the range of f in Group 1 is almost same as that of Table 1, but
that of Group 2 expands to 1.5 times.

We do not directly compare powers gotten by such a way as Ramsey (1978), but
relatively compare them as Einot and Gabriel (1975). For further details, for each power
among Powers A to F, we plot (z,y) = (the power of Tukey’s procedure, the power of
each procedure) for each f and fit a cubic curve, then we compare estimates of y at
@ = 0.25, 0.50, 0.75. (We select data that has the power between 0.03 and 0.97 for
Tukey’s procedure to get the fitting curve for each power.)

Besides, we note that Ramsey (1978) also simulates on the setting k = 4, (n1,...,n;) =
(16,16,16,16) and our result (Power A) is comparable with Ramsey’s one.

Now, we mention the procedure of comparison. Since we think that it is appropriate
as one of viewpoints for selection of procedures to consider the maximum difference of
powers, we compare by using the maximum difference at = = 0.25, 0.50, 0.75. The value
z corresponding to the maximum difference maybe exists nearby 0.5, thus this procedure
is enough to compare. However, we notice other values whenever we find unstable cases
where the sign of differences changes halfway.

Furthermore, since we are not interested in all pairs of procedures in comparing, we

select pairs as follows.

o Comparison 1. Tukey-Welsch procedure with Q-statistics [TW(Q)] vs. Tukey’s
procedure {TU] (Tukey-Kramer procedure [TK]).

e Comparison 2: Peritz’s procedure with Q-statistics [PE(Q)] vs. Tukey-Welsch

procedure with Q-statistics.
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e Comparison §: Holland-Copenhaver procedure [HC] vs. procedures with Q-statistics

[QS].

e Comparison 4: procedures with F-statistics [FS] vs. procedures with Q-statistics.

3.4 Consideration for Simulation Result

3.4.1 Case of Equal Sample Sizes

In this subsection, let n = ny = --- = n;, since sample sizes are same.

Table 1 shows the result for the case of £ =4 and n = 6.

Before we compare procedures using the simulatioﬁ result, the first remarkable point
is the problem of precision. Raw results of the simulation have standard deviations being
(.5 x .5/1000)1/2 = .016 or less, but on relative powers to Tukey’s procedure they are
smaller than the value. We can certificate this conclusion by noting the maximum of
standard deviations of the regression error as given in the last row on Table 1. The
values for Powers E and F are smaller than 1% for any procedure. Otherwise, Powers
A and B have values as same as simulation errors. We think it is the reason that the
fitness of curve becomes worse as leaving from the diagonal. However, since we estimate
population parameters for a given value of z, standard deviations of the estimators are
further smaller than standard deviations on the table. (The degrees of reduction are at
most 0.68 times at £ = 0.25, at most 0.62 times at z = 0.50 and at most 0.71 times at
z = 0.75.)

Furthermore, as a practical error read on tables there are reversals of powers. That is
to say, it is an error that reversals of powers occur by the regression whereas a procedure
is theoretically more powerful than another procedure (in fact, the raw result of the
simulation is so). The maximum error is 0.9% reversal of Holland-Copenhaver procedure
against Peritz’s procedure with @Q-statistics on Power C of SQ on Table 1.

From the previous thought, it is reasonable that we use 1% as the unit for comparisons
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on Table 1, where Powers E and F are more stable and changeless than others thus we
note the behavior till 0.5% if it is necessary. Besides, multiple correlation coefficients of
the regression are at least 0.9982 among all cases on Table 1. (In addition, values for
powers except A are at least 0.9990.)

Now, let us compare procedures on Table 1.

e Comparison 1: the case of TW(Q) vs. TU.

The differences on Powers A, E and F are stable for all parameter configurations,
that is, they are almost same values for all configurations and TW(Q) is more

powerful than TU.
A:17 - 19%, E:6 - 9%, F:6 - 8%.

On the other hand, Power B has extreme results that are 17% difference forl
Configuration MIN but only 2% difference for Configuration MAX. It is the reason
that TW(Q) has the same power as TU for detecting the first difference and B;MAX
(which denotes Power B for Configuration MAX) is about same probability as
D;MAX. (Slightly difference between B;MAX and D;MAX is due to rejecting the

maximum difference pair secondly.)

This result is also useful for us to understand features of Power B. It is practical
and interesting that Power B is made for rejecting differences being more than a
certain limit. As is shown in this case, however, the values of Power B depend on

parameter configurations, thus we take care to use it.

Conversely, on Power A that is important to less differences, the advantage of

TW(Q) is very large. This relation is backed by comparing Power C with D.

e Comparison 2: the case of PE(Q) vs. TW(Q).
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The behavior of powers is similar to Comparison 1. PE(Q) is more powerful than

TW(Q) and their differences is the following.
A8 -17%, E:2 - 4%, F:1 - 2%; B:0 - 8%.

The reason of the extreme variation of Power B is also similar to Comparison 1.
PE(Q) has large advantage on Power A, but it has slightly advantage on Powers
E and F. However, we must be concerned about the difference of features between
Powers A-B and E-F. Although Power E has at most 4% difference, it means to
reject pairs 4% more. If k£ = 4 and population means are all different, the number
of pairs having difference is 6 and the 4% difference means to reject pairs 0.24 more.

In other words, it can reject one pair more a fourth times.

Comparison 3: the case of HC vs. QS.

Powers E and F are stable for all parameter configurations. On the basis of them,
HC has the performance between TU and TW(Q). (According to Power E, it is 5
- 8% better than TU and 3 - 4% worse than TW(Q).) However, we should note

reverse phenomena that HC exceeds TW(Q) at higher level on Power E.

On the other hand, according to Power A, HC is 14 - 16% better than TW(Q)
and almost same as PE(Q) for Configurations EQ and SQ. But, for Configurations
MIN and MAX it is equal to or less than TW(Q). Moreover, on B;MAX it is equal

to or less than TU.

Furthermore, thinking with Powers C and D (where at higher level on Power
C reverse phenomena exceeding TW(Q) arise), we find that Holland-Copenhaver
procedure is better when the number of pairs to reject is large. (This is not quite
same as better at rejecting small differences. As for Configurations MIN and MAX

Holland-Copenhaver procedure is worse since the number of pairs to reject is small.)
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The reason of such result is that Holland-Copenhaver procedure is same as Sidak’s
procedure, which is worse than Tukey’s procedure, for rejecting of the first pair.

We study this situation in detail in the following.

In comparing Holland-Copenhaver procedure and stepdown procedures with
Q-statistics, we can find the differences by comparing critical values because we
use same statistics for these procedures. In the following, we study for = 0.05
to give an example with definite values, but results for other o are similar. Since
tm =6,3,3,3,2,1form =1,2,...,6 on Table 1 in Holland and Copenhaver (1987),

critical values of Holland-Copenhaver procedure are
t(20,C(t,)/2) = 2.918, 2.605, 2.417, 2.086, t, =6,3,2,1,

where t{v, 7) is the upper 7 point of t-distribution with the degree of freedom v.

On the other hand, critical values of Tukey-Welsch procedure with Q)-statistics are
QU3 /VZ = 2.799, 2.530, 2417, p=4,3,2.

By comparing these values, we find that Holland-Copenhaver procedure has the
disadvantage for rejecting of the first pair and the advantage for rejecting of small

pairs (especially, rejecting of the last pair).

In addition, critical values of Peritz’s procedure by Newman-Keuls specification

are

QS%/V2 = 2799, 2530, 2.086, p=4,3,2.

To compare with Holland-Copenhaver procedure, we get the following table by

ordering critical values from the largest difference.

HC | 2.918 2.605 2.605 2.605 2.417 2.086
2.930 or 2.530 or
P | 2799 2.530 9417 or 2.086 9.417 or 2.086 2.417 or 2.086 2.086
4 3 (3 or 2) (3 or 2) (2) (2)
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We note that Peritz’s procedure is not sequentially rejective type thus critical values
is divided into some patterns. (The number in parentheses on Peritz’s procedure
means the size of the null hypothesis.) As shown on this table, Peritz’s procedure

is always more powerful than Holland-Copenhaver procedure.

Comparison 4: the case of FS vs. QS.

There is little difference for Tukey-Welsch procedure. Tukey-Welsch procedure
with F-statistics [TW(F)] is 2% advantageous on D,E,F;MIN, and TW(Q) is 1%

advantageous on B;EQ.

Peritz’s procedure with F-statistics [PE(F)] is 2 - 4% advantageous for Config-

uration MIN and on A;MAX. But, there is no difference in other cases.

Consequently, FS is more advantageous than QS for Configuration MIN. Con-
versely, QS is suitable for rejecting large differences and is advantageous for Powers
B and D. As a whole, owing to the extent of critical regions, FS is a little advan-

tageous.

Next, we get the result for k = 4 and n = 16 by Table 2, and the result for £ = 5 and

n = 6 by Table 3.

On comparing Table 1 with Table 2, we find that powers are not very different as

a whole. The maximum change is about 2%, and generally changes are 1% or less.

According to the discussion above for the precision, this level of change is within error.

However, since there are same trends with 1% change or less through configurations on

some powers, we take notice of them in the following. Besides, Table 3 has larger change

than Table 2, but there is at most only 1% change on Powers E and F.

e Co:aparisons 1 and 2: the cases of TW(Q) vs. TU and PE(Q) vs. TW(Q).

On Table 2, there is the trend to approach on Powers E and F, but the changes

are 1% or less.
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On Table 3, the difference is larger on Power A (3 - 5%) and is smaller on
Powers E and F (1.5% or less). Moreover, we find phenomena that is the vanishing
of differences between PE(Q) and TW(Q) for Configurations MIN and MAX and
especially on Power B for any configuration. The phenomena on Power A is also

observed in Ramsey (1978).

Comparison: 3 the case of HC vs. QS.

On Table 2, the difference between HC and TU does not generally change so much,
and the difference between HC and TW(Q) is trend to reduce, but the change is
at most 1%.

On Table 3, the difference between HC and PE(Q) is clearly trend to reduce.

However, the change is inferior to that of the difference between PE(Q) and TW(Q)

in Comparison 2.

Comparison: 4 the case of FS vs. QS.

On Table 2, the difference is trend to reduce on D,E,F;MIN, but the changes is less
than 1%.

On Table 3, situations where differences between TW(Q) and TW(F) change
more a.dvanta.éeous to F-statistics than that on Table 1 are on A,B;MIN, A,C,E,F;
MAX and B;SQ, and the changes are 1 - 2%. On the other hand, situations where

differences change more advantageous to ()-statistics are on B,D,F;EQ, D;MIN,
B;MAX and D;SQ, and the changes are 1 - 2%.

Situations where differences between PE(Q) and PE(F) change more advanta-
geous to F-statistics than that on Table 1 are few and the changes are less than
1%. On the other hand, situations where differences change more advantageous to

Q-statistics have 2% change or less.

Consequently, procedures with @-statistics become better.
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3.4.2 Case of Unequal Sample Sizes

In this subsection, we will study the case of unequal sample sizes and compare the result
with that in the previous subsection.

In the case of k = 4, let the setting of (n1,n2,n3,n4) be (2,2,10,10), (4,4,4,12) and
(2,4,6,12) as Group 1 that have the pattern of n; < ng < n3 < ny4, and be (10, 10,2, 2),
(12,4,4,4) and (12,6,4,2) as Group 2 that have the pattern of n; > ny > n3 > ny. We
show results of Group 1 on Tables 4 to 6, and show a result of Group 2,i.e. (10,10,2,2),
on Table 7. (We easily find that results in same group are similar as shown on tables of
Group 1. Moreover, sample sizes used in Group 2 rearrange those used in Group 1 in
reverse order, thus each result of Group 2 does not differ from the corresponding result
of Group 1 except for results on Power C or for Configuration SQ. Therefore, we show
only one table for Group 2.)

Since there are many patterns of unequal sample sizes, we can never get the entire
behavior from studying these six patterns. Nevertheless, we believe that we can get
certain success because no one study comparisons for any case of unequal sample sizes.

In addition, we note that the difficulty of interpretation for results of the case of
unequal sample sizes (i.e. the clustering cannot be made in order of sample means), which
is mentioned by Yoshida (1989), is also shown on sequentially rejective type procedures.
Thus there is no superiority for them to other procedures in this respect.

First, a point to emphasize as results in the case of unequal sample sizes is that
there is little change of the degree of the relative advantage of procedures as is shown in
comparisons between Table 1 and Tables 4 to 7. We considered that there was certain
large change for the case of unequal sample sizes before the research in this thesis, but the
result is not so. The reason is the following. Our research adopt the relative comparison
based on Tukey’s procedure or Tukey-Kramer procedure. Therefore, even if there is any

effect for the case of unequal sample sizes, the counteraction for the change of powers
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can be yielded to some extent. (Surely our purpose is the comparison of procedures, so
that it is better to remove the unnecessary effect. In this point, we believe the validity
of the comparison method in this thesis.)

Next, we mention specified features in the case of unequal sample sizes that can be

gotten by more sensitive study.

¢ Comparisons 1 and 2: the cases of TW(Q) vs. TK and PE(Q) vs. TW(Q).

The differences on Powers E and F change 1.3% or less from Table 1. And, the

differences on Power A also changes 2.9% or less.

But, Power C shows large change. The change is different between Grou;;s
1 and 2, i.e. the difference of Group 1 decreases from Table 1 (5.8% or less)
and that of Group 2 increases (5.9% or less). On the other hand, the change of
Power D is negligible. In other word, if samples have unequal sizes, the power
for small differences between population means is influenced by the unbalance.
This phenomenon is interpreted in the following. As we have shown, the first
rejecting of stepwise procedures is same as that of the corresponding single step
procedure. Thus, the advantage of stepwise procedures is yielded when many
pairs are rejected. Since small differences between population means are hardly
rejected, they are easy to influence the result of stepwise procedures. Since ny <
ng < ng < nyg in Group 1, each treatment corresponding to small differences
between population means has a large sample size, thus even an inferior procedure
is easy to reject them. On the other hand, since ny > ng > n3 > ny4 in Group
2, each treatment corresponding to small differences has a small sample size, thus
the original superiority of procedures influence directly rejecting small differences
between population means. Consequently, the result is shown in the difference of

powers.
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e Comparison 3: the case of HC vs. QS.

Powers A, E and F have small changes from Table 1. On Power C for Group 1,
HC is relatively less powerful than TK (9.3% reduction or less) and TW(Q) (the
tide turns in a part of situations where HC is advantageous on Table 1). On the
other hand, HC is relatively more powerful than TK in Group 2 (7.3% increase or
less). Nevertheless, since the difference of HC with PE(Q) hardly change, PE(Q)
may be similarly influenced by the unbalance. This result supports the previous
consideration that the unbalance of sample sizes influence the rejecting of small

differences.

e Comparison 4: the case of FS vs. QS.

This comparison is most remarkable among Comparisons 1 to 4. We know that
Tukey-Kramer procedure and its stepdown modification are theoretically conserva-
tive (c.f. Hochberg and Tamhane 1987, Yoshida 1989). However, it has never been
studied how effect exists about powers, especially powers for stepdown procedures,

in this case.

As shown in tables, the maximum changes of difference on Power A, E and F
from Table 1 are 0.6%, 1.7% and 2.9%, respectively for TW(Q), and 4.8%, 1.8%
and 3.1%, respectively for PE(Q). Almost changés are advantageous to F-statistics,
but some especially advantageous differences on Table 1 are tend to decrease (e.g.
on D,E,F;MIN). For this reason, maximums of difference almost decrease, thus this
level of unbalance is not serious for stepdown procedures. Besides, on comparisons

between Groups 1 and 2 for Configuration SQ, FS has some advantage.

In addition, the procedure based on p-values of @-statistics using the program of
Yoshida (1988) is better than Tukey-Kramer procedure. Nevertheless, since the amount

time of the calculation is enormous, we exclude the procedure from objects for comparison
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In this thesis.

3.5 Discussion

3.5.1 Selection of Powers

We discuss known powers and the necessary of new powers in Section 3.1, but we rediscuss
them in detail.

First of all, it is due to the following consideration why we propose several new povv;ers
(evaluation criterions) and try to compare several procedures based on them in this
thesis: “Since the concept of ‘power’ on multiple comparisons does not get the consensus
among statisticians nor practicians, it is too hasty that we point out ‘the difficulty for
selection of powers on multiple comparisons’, only considering all-pairs power and per-
pair power (which is mentioned in Section 3.1). Furthermore, even if ‘we consider features
of procedures according to each power’, the kind of powers is not enough. Therefore, we
should evaluate each procedure from various viewpoints.”

Next, we consider features of each power. Since Power A rejects all differences, it is
influenced by rejecting small differences. As shown in comparison between Powers C and
D, the effect of per-pair power depends on the position of the difference of population
means for the pair in order of size among differences for all pairs. Conversely, Powers
E and F have a feature of few dependence on parameter configurations. (We note it
is not that they are not influenced by parameter configurations at all. In Particular,
the influence is shown on comparison of procedures with F;statistics and that with Q-
statistics.) This feature is suitable for the comparison of procedures. The reason is the
following. In analyzing practical data we do not know the real parameter configuration,
thus a power that hardly depends on the parameter configuration is easy to use for the
total evaluation of the superiority of procedure. (We do not conclude which of Powers

E and F is better because of few difference between them. However, few difference
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implies few variation for other various weights.) Although Power B depends on parameter
configurations, it has meaning enough to use if we are interested in some level of large
difference definitely. (Here, ‘some level of large difference’ means ‘the difference’ acquired
by analysts in the specific technology, e.g. ‘the biological significance’.)

Now. if we compared procedures using only primary powers A, C and D, what would
be happened? The especially remarkable procedure is Holland-Copenhaver procedure.
This procedure is suitable for rejecting small difference as considered in Section 3.4.1.
Hence, on Power A it is most powerful next to Peritz’s procedure and we would think
it is not so bad procedure because of easily using. (Since the result of Power D is bad,
we might note it is not suitable for fejecting of large differences.) However, this is not
enough evaluation. According to adding new Powers B, E and F, we can reduce that
Holland-Copenhaver procedure is not generally so good as the consideration in Section
3.4.

In general, on comparison among Peritz’s procedure, Tukey-Welsch procedure and
Tukey’s procedure with same statistics, the rank of advantage is invariant for any power
owing to the construction of procedures, thus there is no serious problem if we only
use primary powers. In the case that different results are observed for each power as
the comparison between Holland-Copenhaver procedure and Tukey-Welsch procedure,
only using primary powers is not so enough that we need to compare procedures while
understanding features of each power. Moreover, in the previous case of ‘no serious
problem’, we should note that certain procedure excessively emphasizes if we only use
Power A.

In conclusion, we center Powers E and F as the global power, and additionally use
Powers A and C as the power to judge the effect for small differences and Powers B and
D as the power to judge the effect for large differences.

Nevertheless, they may not be enough. Especially, on another model, we may need
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other new powers from the point of view on the model.
3.5.2 Selection of Procedures

The final purpose of this chapter is which procedure is better to use. Before concluding
it from the point of view considered in Section 3.4, we consider the advantage of Tukey’s
procedure mentioned by Einot and Gabriel (1975) (see Section 3.1).

First, about “It is easy to extend the procedure for all contrasts”, we will exclude
it. On setting in Einot and Gabriel (1975), Ramsey (1978) and this thesis, though only
pairwise comparisons are considered, Einot and Gabriel consider that it is merit because
we may extend to contrasts later. If we are really interested in general contrasts, we need
to study again adding Scheffé’s procedure.

Second, about “The decision for a set P is independent for sample means of which
index numbers are outside P”, we will consider it in detail. Now, for simplicity, we
consider that pairs with 3 groups (k = 3) are compared and there are two configurations of
parameters: “py =0, p2 = 1.0and p3 = 1.2” and “p1 =0, pe = 1.0 and p3 = 3.0”. Here,
let P = {1,2}. While on stepwise procedures Hp for the former configuration is hard to
be significant, on Tukey’s procedure same results for Hp are given for both configurations.
For this reason, though Tukey-Welsch procedure has better power than Tukey’s procedure
for any configuration, they assert it is unnatural that on stepwise procedures we have
the possibility of getting different results for Hp on account of the value of the third
population mean. However, is it sure? The situation to practice multiple comparisons is
that to reveal the global result for a family of null hypotheses, thus it is rather natural
that results are different if parameter configurations are totally different. Therefore,
it has no meaning to discuss the difference of result for each Hp. Conversely, if we
should consider about each (or important) Hp, we need to investigate whether it is
really valid construction of null hypotheses to adopt multiple comparisons. (For this

point, see Tsubaki (1989).) Consequently, this feature of Tukey’s procedure implies that
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the procedure is too conservative not to be influenced by parameter configurations, thus
we do not think it is advantage.

Third, about “The simultaneous confidence intervals corresponding to the test can be
used”, it is surely advantage of Tukey’s procedure. On simultaneous confidence intervals,
it needs to reveal its range for even rejected pairs, hence we cannot assign the significance
level to only not rejected pairs as stepwise procedures. Thus, simultaneous confidence
intervals on stepwise procedures cannot be obtained. Therefore, if we need simultaneous
confidence intervals for the difference of population means, we must construct them
by Tukey’s procedure. However, Yoshimura (1989) mentions that “What meaning do
simultaneous confidence intervals for the difference of population means have? If we
need the interval estimation, it is reasonable that we construct simultaneous confidence
intervals for each population mean apart from the test”, thus he has doubt about the
practical necessity of simultaneous confidence intervals for all differences of population
means. We do not have clear opinion about the necessity of simultaneous confidence
intervals and the effect of their result for decision making. Nevertheless, we are against
to adhere to Tukey’s procedure on account of the use of simultaneous confidence intervals.

Finally, about “The calculation for the procedure is easy”, we think it is important
because how to recommend procedures is different between the situation where a com-
puter package is available and the situation where it is not so. In conclusion, we will
recommend procedures from the point of view on ‘the power advantage’ and ‘the easiness
of calculation’. The best procedure for the global power is Peritz’s procedure with F'-
statistics. But, the difference to Peritz’s procedure with Q-statistics is small, and reverse
phenomena are observed for some parameter configurations as shown in Section 3.4. (For
Tukey-Welsch procedure the difference between F- and @Q-statistics is less than them.)
Moreover, the difference between Peritz’s procedure and Tukey-Welsch procedure are

also small except for Power A, and the difference between Tukey-Welsch procedure and
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Tukey’s procedure are generally large. On the other hand, from the point of view on the
calculation it is hard to calculate on F-statistics for not only Peritz’s procedure but also
Tukey-Welsch procedure. Against that, it is not hard to calculate on ()-statistics. If the
number of groups % is small, it is easy even for Peritz’s procedure. Moreover, for Tukey-
‘Welsch procedure, even if k is moderate, it is easy as almost same as Tukey’s procedure.
In addition to this, if sample sizes are same, there is the simplified procedure and it is
easier than the original procedure. (See Hochberg and Tamhane (1987).) In summary,
we will mention the following chart of recommendation of procedures. (Besides, we need

complete tables except for Tukey’s procedure.)
Peritz(F') =~ Peritz(Q) > Tukey-Welsch(Q) > Tukey

In addition, we do not recommend Holland-Copenhaver procedure because of the

inferiority to Tukey-Welsch procedure in many cases.
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Chapter 4

Multiple Comparisons in the
Unequal Variance Case

4.1 General Remarks

If we treat one-way layout data for multiple comparisons, we are often confronted with
the case assuming the normality but not assuming the homogeneity of variances. In the
case of two samples, it is called Behrens-Fisher problem and does not has a solution
to keep the significant level strictly. Hence, many methods that are approximately,
asymptotically valid are proposed, e.g. Welch’s method. In the multi-sample problem,
therefore, a strictly method does not exist either and asymptotically procedures are
proposed. However, the performance of them on the small sample does not study in
detail. The purpose of this chapter is the following. First, we study known procedures
using Monte Carlo simulation and improve them to conquer their disadvantage. Second,
we improve the homogeneity test of variances as a preliminary test to keep the global
significant level.

If we assume the homogeneity of variances on one-way layouts, many procedures
are known, including Tukey-Kramer procedure (see Section 2.3). On the other hand,
Hochberg and Tamhane (1987) show some procedures not assuming the homogeneity of

variances and recommend T3- and C-procedures (see Section 2.4) that are used properly
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with the sample size. However, they do not give a definitely criterion to use properly.
Matsuda (1991) roughly shows the performance of known procedures for the non-

homogeneous case using Monte Carlo simulation. It mentions an outline to use properly

the previous two procedures, but it is not enough as a criterion because the number of

configurations of sample size used in the simulation is few.
4.2 Proposal of New Multiple Comparison Procedures

For the same statistics as GH-procedure in Section 2.4, we will propose two procedures

with a modified critical value.

4.2.1 GHC-Procedure

As shown in Matsuda (1991), we know that T3- and C-procedures have the merits and de-
merits for each other and GH-procedure is liberal for some configurations of sample size.
We consider that it is possible to improve by combining C- and GH-procedures, because
T3-procedure is asymptotically so inferior to C- and GH-procedures that a combination
with asymptotically adaptation is only that of the two procedures.

Since the two procedures use the same test statistics, they can be improved according
to only combining critical values. GHC-procedure proposed here uses the average of
critical values of the two procedures as a new critical value. That is to say, it is the
procedure using critical values:

¢, o L (/) + QL (Sh/mn)
"T\T VASH i+ SE/m)

+Q) /\/5) .

4.2.2 GHC2-Procedure

On Monte Carlo simulation, we show that GHC-procedure is slightly inferior to T3-
procedure in some cases of the small sample. In spite of that, we find that GHC-procedure

is sometimes liberal in broader setting of sample sizes. GHC2-procedure proposed in this
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subsection is a modified version of GHC-procedure to be more suitable for the case of
unequal variances than other procedures.

Althc 1gh we can consider a simple improvement that we increase the weight of C-
procedure, it strongly reduces the real significant level and the power in the case of
balanced sample sizes and homogeneous variances. Therefore, we will make the weight
of the critical value dynamic to adapt each case.

First, we study the real Type I FWE’s of C-, GH- and GHC-procedures for some
situations. Table 8 is a part of the result. (The nominal significant level « is 0.05.) We
find that the practical Type I FWE of GHC-procedure are similar to the harmonic mean
of practical Type I FWE’s of C- and GH-procedures. Hence, we can get the optimum
weight to harmonize the real significant level to the nominal significant level in each case.
The value a on Table 8 is the optimum weight ratio of C-procedure to GH-procedure.

Next, we construct a predictor of a. It is difficult to design a simple predictor for
various sample sizes and various variances. We will make a predictor using the linear
regression based on some simple indices. Firstly, we select some indices largely influencing
the variation of a. (For example, the index of unbalance of sample sizes and the index
of unbalance of ratios of variance to sample size.) Secondly, We study the performance
of all indices and their combinations using the multiple linear regression with 400 values

of a such as Table 8. Finally, we find the following formula with a good performance.

a = 5.12z,

where

Figure 1 shows data and its regression. The dotted line denotes the regression line.
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GHC2-procedure proposed here uses the following critical values based on the result.

en=—t [Q@ 4 CALQEC,’,,),.(S?/m) + Q) (S3/nn)
ih = \/ﬁ(& +1) kpin S?/nz' + S;‘i/nh )

where
a=5%+0.6

and Z denotes the value of z using the sample standard deviation in place of 0;. Besides,
the constant term that is about three times of the standard deviation of residuals is
added to control the significant level certainly, and the significant figure of coefficients is
a single figure to decrease the degree of dependence on data. The solid line on Figure 1
denotes the line using in GHC2-procedure.

As shown later, GHC2-procedure has a good performance in any situation of sample
sizes and variances: it has almost the same significant level as T3-procedure in the case

of the small sample and control the significant level for very unbalanced cases.

4.3 Primary Comparisons among Procedures

The similar study given by Dunnett (1980) has comparison results among GH-, C- and

T3-procedures in the following.

o GH-procedure is liberal in some cases with small and unequal sample sizes.

o C-procedure is preferable for the large or moderately large sample.

On the other hand, T3-procedure is preferable for the small sample.

However, it has very few repeated number for the simulation and do not find a clear
criterion to use C- and T3-procedures properly. Matsuda (1991) studies the criterion in

further detail, but it gets only the range of the critical value to use properly.
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4.4 Procedure of Monte Carlo Simulation
The procedure of Monte Carlo simulation in this chapter is the following:

1. Set the number of treatments k, sample sizes (ny,ns,...,ng), means (g1, 2, . . . , fx)

and variances of the error term (o7, 03,..., 012:).

2. Construct data such as Section 2.1 using normal random numbers.

(See Appendix.)

3. Calculate values of the test statistics and the critical values for each procedure.
(The nominal level « is 0.05.) Besides, judge whether variances of data is homoge-

neous if a preliminary test is performed.

4, Test for each pair of treatments and investigate a Type I error (and rejecting for

an alternative hypothesis).

5. Repeat 10000 times from Step 2 to Step 4, and acquire the rejective rate for each
pair and the Type I FWE (and powers for the alternative hypothesis). Moreover, in
order to certify the performance of the simulation, also gain the standard deviation

of them for every 1000 repeats.

Standard deviations of the rejective rate and so on for every 1000 repeats in this
simulation show valid values in any case, hence it suggests that the procedure of the
simulation itself has no problem. |

In this thesis, the setting of parameters in Step 1 are that £ =3,4,5, n; =1,...,20
with the balanced case and some unbalanced cases until the number of missing values
is two, a;-z = 1,2,3 with the homogeneous variance case and some unequal variance
cases until the maximum ratio of variances is three times, and p;’s are the overall null

hypothesis and some alternatives. Furthermore, in order to consider data not designed
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previously, we also use data in which the maximum ratio of sample sizes is three times,
or k = 6,7, or the maximum ratio of variances is 10 times. In the following, we mainly

study the case of k = 3.

4.5 Consideration for Results on the Overall Null Hy-
pothesis

In order to show features of each procedure, we must first observe the behavior of the
Type I FWE on the overall null hypotheses that has equal means for all treatments:
11 = Mo = --- = p}, because we cannot use a procedure that has the high power but is
liberal.

Figures 2 to 15 show some results of the simulation on the overall null hypotheses.
These figures have dots of observed Type I FWE’s and fitted curves to the dots. We

choose the following fitting curve function through trial and error:

b c
o+ -+ —,
n ne

where n is the sample size of the first treatment and coeflicients a, b and ¢ are gotten by
the least square method. Since this fitting is good except for the neighborhood of the
smallest value of n on any figure, we judge that it is useful to find the global performance.

Besides, the notation PT on the figures denotes the result of the procedure with a

new preliminary test, which is explained in the section below.
4.5.1 Case of Homogeneous Variances

In this case, GHC2-procedure is almost conservative as is shown on Figures 2 to 5. GH-

and T3-procedures are also conservative. GHC2-procedure controls the Type I FWE as

well as T3-procedure. Therefore, we recommend GHC2-procedure to use alone.
Moreover, Matsuda (1991) predicts that C-procedure is better than T3-procedure

at more than sample size 20, but now we find that the critical value is larger than it.
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Although the value is out of the range studied, it is about n = 40 if regression curves fit
well. Besides, the effect by the number of treatments is negligible.

Furthermore, although we know that GH-procedure is almost liberal, as shown by
regression curves, it keeps the Type I FWE on Figure 2 and has only 5.2, 5.7 and 5.6%
the Type I FWE on Figures 3, 4 and 5, respectively. However, the degree of not keeping
the Type I FWE is more remarkable as the number of treatment k increase. |

We can get another effect in the asymptotic situation by regression curves owing. to
practicing the fine simulation. For example, the following table shows regression curves

on Figure 2: sample sizes (n,n,n) and variances (1,1, 1).

Procedures | Regression curves
T-K | 0.050 + 0.010/n — 0.025/n?
GH | 0.050 +0.010/n — 0.112/n?
T3 | 0.046 — 0.019/n — 0.054/n?
C | 0.049 — 0.188/n + 0.210/n2
GHC | 0.052 — 0.125/n + 0.089/n2
GHC?2 | 0.052 — 0.105/n + 0.051/n?

The coefficient a corresponds to the asymptotic Type | FWE and values of a on the
table are natural. On this fitting, we can confirm that T3-procedure is asymptotically

inferior.
4.5.2 Case of Unequal Variances

Figures 6 to 8 are balanced cases and Figures 9 to 15 are unbalanced cases. GHC2-
procedure is conservative on all figures except for n = 4 on Figures 14 and 15, which
have very non-homogeneous variances. But GH- and T3-procedures are liberal in many
situations with small sample sizes.

Furthermore, Tukey-Kramer procedure is liberal on any figure. The degree increases
as the non-homogeneity becomes heavy. In the past, there was the consideration that
on this case differing from the assumption we might use Tukey-Kramer procedure when

sample sizes were balanced, because it was robust. However, we find that the result of
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the procedure exceeds the nominal significant level with 1.0 - 1.7% on such situation
(Figures 6 to 8). Moreover, as pointed out in Matsuda (1991), we should note that
rejecting for each pair of treatments is handled differently. For example, in the case of
sample sizes (6,6,6) and variances (1,1,3), the result of rejecting for each pair is gotten

as the following table.

Types | Practical rejective rates

Parr (1,2) 0.006
Pair (1,3) 0.034
Pair (2,3) 0.034
Type I FWE 0.057

Seeing this table, we find that a pair of treatments that have both small variances
hardly rejects and pairs of treatments that have at least a large variance easily reject.
That is to say, it means that pairs to treat equally do not treat so. Therefore, if we find

the non-homogeneity, we must not use Tukey-Kramer procedure even if data is balanced.
4.6 Behavior on Powers

We compare procedures using a power explained in the previous chapter. We use ‘mean
rejective rate’, which has the good performance for the global judgement of the goodness
of procedure in the previous chapter.

Figures 16 and 17 is some results of powers for means with equally spaced config-
uration (EQ) in the case of homogeneous variances, where Tukey-Kramer procedure is
suited. (f denotes the standard deviation of the mean configuration.) If the sample size
is small, the difference between Tukey-Kramer procedure and GHC2-procedure is large,
that is, about 18% on Figure 16, otherwise it is only about 5% on Figure 17.

On the other hand, we show the non-homogeneous case on Figures 18 and 19, but it
is no meaning to compare two procedures because the power of Tukey-Kramer procedure

depends on the variation of the real significant level of it.
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4.7 Comparison with Steel-Dwass Procedure

If we judge the non-homogeneity on a preliminary test, we commonly use a nonparametric
procedure. In this section, we consider the problem.

We treat Steel-Dwass procedure as a representative procedure among nonparametric
procedures.

As comparisons to be especially careful, we show results of Steel-Dwass procedure on
Figures 9, 13, 15 and 17.

First, as is shown on Figure 9 where the maximum variance rate is three, Steel-Dwass
procedure keeps the significant level under the overall null hypothesis. However, it has
very small practical significant levels in the case of the small sample and rejects nothing
in some cases. Although this point may improve by means of the calculation of the
discrete probability in spite of the asymptotic result, the real significant level becomes 0
in the case of very small sample sizes.

Next, on Figures 13 and 15, Steel-Dwass procedure is liberal in very unbalanced cases,
which is similar to Tukey-Kramer procedure. Although the degree of that increase as
increasing of the non-homogeneity, it is robust when it is compared with Tukey-Kramer
procedure.

Finally, we consider the behavior of the power on Figure 17. We find that Steel-Dwass
procedure is less powerful than GHC2-procedure. If the distribution of data is normal
or the mean of data is closely normal distributed, GHC2-procedure is advantageous.
Besides, we add the information that Steel-Dwass procedure rejects nothing on Figure
16.

In global conclusion, Steel-Dwass procedure is a procedure that rejects nothing for the
case of very small sample sizes and is liberal for the large sample, though it is robuster
than Tukey-Kramer procedure. Furthermore, whenever sample sizes are in the range

to be able to use, its power is less than that for GHC2-procedure under the normality.
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Therefore, we do not recommend it as a mmultiple comparison procedure for data with

the normality.

4.8 Structure of Preliminary Tests

4.8.1 General View

It is common that a procedure under the non-hemogeneity and a procedure under the
homogeneity are properly used after a preliminary test. On our primary simulation, we
study the global significant level with the ordinary preliminary test. However, it has not
been satisfactory on the following point. Since we should sufficiently note the setting of
the significant level of the preliminary test on the two-sample problem (see Nagata 1992),
we contrive to raise the significant level of the preliminary test for multiple comparisons
up to 50% in the next subsection. Nevertheless, we observe the violation of the significant
level in the case of small unbalanced sample sizes owing to the sensitive reaction to the
non-homogeneity.

The purpose of this section is that we propose a new type of preliminary test because
of the consideration that it does not become drastic improvement to control the significant
level of the ordinary preliminary test. And, we study the behavior of the global significant

level of the new preliminary test system by simulation.
4.8.2 Performance of the Ordinary Preliminary Test

In practical problem, we do not previously know whether variances are homogeneous.
Thus, we need the basis how we properly use Tukey-Kramer procedure and GHC2-
procedure recommended in the section above. In the past, we properly use procedures
on the basis of the ordinary preliminary test for the homogeneity. Now, in this subsection
we will observe the behavior of the global Type I FWE in the case of the proper use with

Bartlett’s test as the ordinary preliminary test.
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Besides, Bartlett’s test is the test using statistics

vlog 5 - Zle(v,' log S;“))
Y-t
3k—-3

B =

1+

and critical values ngi)l’ where §2, S?, v and v; are defined in Chapter 2, and xzia_)l

is the upper « point of the chi-square distribution with the degree of freedom k£ —1. In
addition, log in B denotes the natural logarithm. Since this procedure is based on the
asymptotic result, it is liberal in the case of the small sample. (See Yoshimura (1987).)
The point is out of consideration in this thesis.

Global Type I FWE’s with the preliminary test for all parameters used in the previous
section are shown on Figures 22 to 35. | '

The notation B5 in the figures denotes the result of the proper use of Tukey-Kramer
procedure and GHC-procedure with Bartlett’s test of the significant level 5%, and the
notation B50 denotes that with Bartlett’s test of the significant level 50%. Since it is
the main current that the preliminary test is practiced for selecting procedures, we will
simulate in these two cases to confirm the view point.

First, what is generally shown in all figures is that the global Type I FWE with the
preliminary test is not certainly controlled even if each procedure is controlled well. This
phenome -on is conspicuously shown on B5: the practical global Type I FWE is located
over both Tukey-Kramer procedure and GHC-procedure. On the other hand, B50 is
located between Tukey-Kramer procedure and GHC-procedure.

Moreover, obviously B5 is more strongly influenced by Tukey-Kramer procedure than
B50. Hence, in the case of the unba.la.nced and non-homogeneous one-way layout, B5 is
very liberal. On the other hand, B50 is better than B5, but it is also liberal when data
is non-homogeneous and has small unbalanced sample sizes. Since the trend extends as
increasing of the number of treatment &, it becomes liberal at larger sample sizes for

large k. We cannot judge whether it is due to the unstability of Bartlett’s test for the
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small sample or due to another feature not depending on it. Although we can judge that
B50 is generally better, we need to note the previous indication. Furthermore, this result
is the reason why we do not easily improve GHC-procedure through changing the weight
parameter. That is to éay, if we improve to increase the real Type I FWE on the small
sample, we can easily predict that the violation of the Type I FWE with the preliminary
test becomes larger, and it is not clearly ‘improvement’.

In conclusion of this comparison, we obtain the result that we should use B50 rather

than B5. However, we cannot get satisfactory result even using B50.
'4.8.3 Proposal of a New Preliminary Test

The formulation of the primary, ordinary preliminary test is the following. Firstly, we
practice the usual test for the overall null hypothesis of the homogeneity of variances.
Secondly, we proceed to a procedure not assuming the homogeneity if the test rejects,
otherwise to a procedure assuming the homogeneity.

Recently it is pointed out that it is not suitable we practice the preliminary test
within the limit of the usual test though practicing it means selection of a procedure in
fact. (See Nagata (1992).) However, this consideration has not permeated yet, because
of not studying the performance of procedures with the preliminary test in detail. Since
it is difficult to study theoretically, we inspect it on the basis of Monte Carlo simulation
and try to improve the preliminary test in this thesis.

As is shown in the previous subsection, in multiple comparisons we cannot avoid
the disadvantage by means of adjustment of the significant level of the preliminary test,
which is the idea used in Nagata (1992). The reason is that the procedure assuming the
homogeneity is so sensitive to the non-homogeneity that the global significant level cannot
be kept and treating groups on the multiple decision becomes extremely unfair. To solve
this problem, we consider nothing but abandoning the ordinary, primary test system in

which the null hypothesis is centered and making a new system more emphasizing the
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alternative hypothesis.

At first, we enumerate features that may be needed in the preliminary test.

e Emphasize Type II error (especially in the case of the small sample).
e Hardly reject the null hypothesis if it is true in the case of the large sample.

o Easily reject the null hypothesis if it is false in the case of the large sample.

The ~rdinary test system ignore the first feature and realize the second feature
through making it be hard to reject permanently. Needless to say, it satisfies the third
feature. It is the problem that the preliminary test ignore the first feature though it is
selection in fact, because the following opposition holds when we want to practice the

preliminary test.

Procedure not keeping the significant level out of the homogeneity assumption
Vs.

procedure not restricted but being less powerful.

However, even if we control the significant level to emphasize the first feature and
to loosen the second feature, it dose not go well in multiple comparisons. Though we
make the concession raising the significant level of the preliminary test up to 50% in
the previous section, we observe the phenomenon not keeping the global significant level.
More increasing of the significant level means nothing but disregarding the second feature
and is almost same as using a procedure not assuming the homogeneity directly from
the start. Nevertheless, it is just a selection if we do not care the decline of the power.
Conversely, we will try to improve it while adhering to three features in this chapter.

The preliminary test proposed in this thesis is a test on the basis of the alternative

hypothesis, which is derived from Bartlett’s test. Although the procedure simply decides
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critical values to make the probability of the Type II error constant, usually the alterna-
tive hypothesis for the homogeneity is a composite hypothesis. Thus, if we control the
Type II error for all parameters, it is same as hardly accepting the null hypothesis. Fur-
thermore, if we test for a certain simple alternative hypothesis predetermined, the third
feature does not hold for alternative hypotheses being nearer to the null hypothesis than
the simple hypothesis. Hence, the selection of the simple alternative hypothesis largely
influence the test. Since the test statistic using in the preliminary test has the noncentral
chi-square distribution, how we treat the alternative hypothesis reduces how we deter-
mine the noncentral parameter. Therefore, we manage to satisfy the third feature by
means of determining the noncentral parameter.

Now, we will consider Bartlett’s test under the alternative hypothesis. The test

statistic adopted is the following corrected one.

vlogS’ — 5 (vilog S2)
E 1 _ 1 :

=1 Vi v

3k -3

B =

1+

Referring Kendall and Stuart (1979), we find that the noncentral parameter under a
simple alternative hypothesis is given in the following formula.

kv o2 2
— 4 i
A=) 5 (%’2' 1) ,
i=1
where a;-z denotes the variance of each group under the alternative hypothesis and
&2 = Y8 | vio?/v. However, on Monte Carlo simulation it does not fit well when the
noncentral parameter becomes larger as the sample size larger because of influence of

omitted terms. Hence, we use the following form as a prototype, which preserves the

original form of Bartlett’ test statistic.

k
A=— Z v;log(a? /2.
i=1
(See the next section in detail.)
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By using this A, we can test for a specified simple alternative hypothesis Hy : A = Xy
with a constant probability of the Type II error. In order to satisfy the third feature, we
should control increasing of the noncentral parameter with order ;. That is to say, since
fixed A means the situation of the null hypothesis and increasing with order V; means
the situation of the alternative hypothesis, the third feature is satisfied if we make A to
increase with less order than order v;.

As a simple setting, the following form increasing with order ,/7; shows a comparably
good performance in Monte Carlo simulation.

k
Ao = =/ Nmin — L 9 _ log(a3:/53),

i=1
where npi, denotes the minimum of n;, 03; = 28 — 27 (+ = 1,2,...,k) and 73 =
Ele agi /k. In this parameter, ‘7621‘ that is the basis of the power is determined in the
following way. Firstly, we select equally spaced configuration of variances among several
patterns because the pattern is least influenced by the number of treatments & on simu-
lation. Secondly, we decide the gap of the pattern as the probability of the global Type
I error becomes 5% at sample size 10 because the ordinary preliminary test with the
significant level 50% becomes so in the previous section. Figures 20 and 21 then shows
examples of the practical rejective rate. Since the test concentrate on the alternative
hypothesis in the small sample but it becomes harder to reject the homogeneity as sam-
ple sizes become larger, it satisfies the second feature. Besides, curves ﬁttéd to results is

determined in the following type of function.

PRI
vnoono nyn’

where n denotes the sample size of the first treatment and estimates of coefficients a,b, ¢
and d are determined by the least square method.
Moreover, since rejective rates for the null hypothesis at sample size 10 for some

numbers of treatments & are given in the following table, we find that they are stable.
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k | 3 4 5 6 7
Rejectivera.tesiﬂ.f)l 0.52 0.51 049 0.48

Furthermore, by comparing Ag and the primary A when k£ = 3, we obtain (1,4.5,8)
at n; = 10 and (1,3,5) at n; = 20 as values of variances of the corresponding sinple
alternative hypothesis to decide the critical value. It means that the simple alternative
hypotheses approach the null hypothesis as sample sizes become larger.

Finally, the procedure for the preliminary test proposed in this chapter is in the

following.
1. Calculate a value of Bartlett’s test statistic B.
2. Calculate a value of the noncentral parameter Ag.

3. Obtain the lower 1 percentile By of the noncentral chi-square distribution with the
degree of freedom & — 1 and the noncentral parameter Ag.

(In our simulation, we use Patnaik’s (1949) approximation to obtain the value.)

4. Practice multiple comparisons by Tukey-Kramer procedure if B < By, otherwise
by GHC2-procedure.
4.8.4 Evaluation of Bartlett’s Test Statistic under the Alternative Hy-
pothesis
We can obtain the following form of the probability density for one-way layout model by
another parameter setting.
k

L(Y|p, 0 r) =[] [(271'0'27“1')-_“"/2 exp {_ j=1(Yij = pa)? H ’

2
i 20%r;

where Y = {V;} and relation to the previous setting is that ¢? = Y n;0?/ ¥ n; and
T; = 01-2 / o2, hence ¥ ngr; / > ni = 1. Therefore, the likelihood ratio test statistic, that is,

the source of Bartlett’s test statistic for the null hypothesis Hy: r; =1 (: =1,2,...,k)
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is obtained as the following form.
_ Ly|y,v,1)
- LY|Y,v,T)’
where

i
Y = (?1‘,. - ,—Y-k.), ?i. = Zy;j/ni’
i=1

n; k

Vi=Y (Y=Y i, V=) nVi/Y m,
=1 . i=1

T,=Vi)V, T=(Tw....To), 1=(1,...,1).

By substituting the previous equation, we get the following result with some calcu-

lation.
k
—2logtl = Zn,(Ti —~1-1logT;).

=1

Through Taylor’s expansion for the logarithm, we reduce

=2LT{(T 17 m(T =1 -1 —}
i=]1

2 3 4

hence we can asymptotically omit the third order and later terms if the null hypothesis
is true.
When the alternative hypothesis is true, if we can omit the third order and later

terms then we obtain the noncentral parameter:
k 2
ni(r; — 1)
A=) ————.

5

However, we cannot omit the influence for a fixed simple alternative hypothesis because
we observe the increasing of error by simulation. Now, we consider the original equation
again before the expansion of the logarithm. It can be reformed in the following by using

the parameter of a simple alternative hypothesis.

k
—2logl = Z:{n,(ff’z —~1—1logT;) — nilogr; + ni(T; — T3)},
i=1
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where T; = V; /(Vr;). The former of the right-hand side is nothing but the logarithm
likelihood ratio test statistic when the simple alternative hypothesis is true, hence the

noncentral parameter that make it correspond to the asymptotic expectation becomes

k
A= — Z n;logr;.
=1

We get the noncentral parameter in the previous section by replacing n; with v; through
Bartlett’s correction. By Monte Carlo simulation, we can confirm that the approximation

with the noncentral parameter is considerably improved.

THEOREM 1: Bartlett’s test statistic

_ vlogS Tk (milog 57)
- sk, L1

k-3

1+

under the alternative hypothesis approzimately has the noncentral chi-square distribution

with the degree of freedom k — 1 and the noncentral parameter

k
A== vilog(0?/7%),

1=1
where S? = i (Y - Yi)? v, = S v and 3% = Y vi02/ T ui.
4.8.5 Consideration for Result on the Overall Null Hypothesis
Results shown with the notation PT on Figures 22 to 35 are those with the new prelim-

inary test proposed.

Case of :Iomogeneous Variances

In this case on Figures 22 to 25, we can find that the procedure with the preliminary test
almost keeps the significant level. The procedure with the preliminary test is occasionally

liberal though each procedure combined keeps the significant level. But, the violation is

at most about 0.3%.
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Case of Unequal Variances

In the balanced case as is shown on Figures 26 to 28, since the violation of Tukey-
Kramer procedure is small, the procedure with the preliminary test keeps the significant
level without trouble. On the other hand, in the unbalanced case on Figure 29 when
the variance of the sample with the smallest size is largest, the procedure with the
preliminary test does not slightly keep the significant level, but it is better than the
case of the ordinary preliminary test with the significant level 50%, which is practiced
in Section 4.8.2. Therefore, it has almost no problem on practical use. After here, as
the adopted limit on practical use, we examine situations where the practical significant
level for the procedure with the preliminary test is below 6%.

In about the twice unbalanced case as is shown on Figure 33, the violation of the
practical significant level of Tukey-Kramer procedure becomes heavy, hence that of the
procedure with the preliminary test is slightly dragged by it. Fortunately, proposed
GHC2-procedure keeps the significant level and the practical significant level of the pro-
cedure with the preliminary test does not exceed 6%. In more unbalanced case, we
think that GHC2-procedure will have little problem, but it is highly possible that the
significant level of the procedure with the preliminary test exceeds 6%. Therefore, it is
appropriate for us to use GHC2-procedure without the preliminary test.

On the other hand, in the case of Figures 34 and 35 that have heavy non-homogeneity,
the pract.cal significant level of the procedure with the preliminary test exceeds 6% at
one-way layouts with a sample of size 2. Hence, in the unbalanced case with a sample of

size 2, it is appropriate for us to use GHC2-procedure without the preliminary test.
4.8.6 Behavior on Powers

On Figures 16 and 19, results of ‘mean rejective rate’ in the case with the new preliminary

test also enters. The power of the case with the preliminary test has 4% reduction from
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the difference between Tukey-Kramer procedure and GHC2-procedure on Figure 16,
hence it is effective. In the case of larger sample sizes on Figure 17, differences among
three procedures is little, but the improvement rate of the procedure with the preliminary
test relatively increases against that on Figure 16.

Furthermore, although the power of the procedure with the preliminary test is below
the power of the ordinary preliminary test with significant level 50% on Figure 16, the

reversal of the power arises on Figure 17.
4.8.7 Combination with Steel-Dwass procedure

As is mentioned above, it is popular that we properly use Tukey-Kramer procedure and
Steel-Dwass procedure on a preliminary test system. Now, we will consider the problem.

The proper use with the ordinary preliminary test of the significant level 5% is out
of the question, but that of higher significant level is also liberal in the case of the small
sample, which is similar to the system of proper use of Tukey-Kramer procedure and
GHC-procedure. If we use the new prélimjnary test proposed in this section instead of
the ordinary preliminary test, the system almost keeps the global significant level but
is liberal in the heavy unbalanced case as Figure 13. Furthermore, in the case of the
small sample on Figure 9, it yields the extremely unbalanced result owing to the differ-
ence of the power between Tukey-Kramer procedure and Steel-Dwass procedure on the
border of the judgement of the preliminary test. That is to say, if data is judged as
the non-homogeneity then differences of means are hardly (or never) rejected, otherwise
differences of means are rejected with about twice of the nominal significant level. Al-
though the case of using GHC2-procedure is also unbalance, it is more improved than

the case of using Steel-Dwass procedure.
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4.9 Discussion

In the case of unequal variances, we recommend GHC2-procedure because it is conserva-
tive in the broad range of parameters. Furthermore, we conclude that we should avoid to
use Steel-Dwass procedure in the non-homogeneity case because it is sometimes liberal.

Another purpose of this chapter is that we improve the ordinary preliminary test that
does not satisfy the function needed, which is balancing the control of the significant level
and decreasing of the power. Consequently, proposed procedure with the new preliminary
test shows the good performance. Although the statistic of the preliminary test for the
homogeneity has the noncentral chi-square distribution, the labor for the calculation
increases only a little if we use the chi-square approximation.

Remained problem is avoidance of the discontinuity of results on the proper use
with the preliminary test. Although the case of Tukey-Kramer procedure and GHC2-
procedure is better than that of Tukey-Kramer procedure and Steel-Dwass procedure, we

do not find the degree of the difference on the border of the judgement of the preliminary

test.
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Chapter 5

Multiple Comparison Procedures
Based on a Loss Function

In this chapter, we propose new multiple comparison procedures based on a loss function
in order to avoid the discontinuity on procedures with a preliminary test. And, we

compare them with the new preliminary test system in the previous chapter.

5.1 Proposal of Multiple Comparison Procedures Based
on a Loss Function

5.1.1 Improvement of Variance Estimators

If we consider a variance estimator among unbiased estimators, we need the proper use
with a preliminary test. The reason is that estimators assuming the homogeneity of
variances are more stable than others. (See Matsuda, Fujimoto and Yoshimura (1990)
as an analogous problem.)

In this chapter, therefore, we consider to get a estimator that has good performance
among not unbiased estimators using a loss function. However, the class of not unbiased

estimators is broader, so that we consider only the following restricted class of variances.
&2 =2 2
S;r=bS5"4+(1-0)S;, 0<b<1

This class is the natural class combined separate variances, which respond to the
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non-homogeneity, and the pooled variance, which is stable.
5.1.2 Fundamental Construction of Multiple Comparison Procedures
We construct multiple comparison procedures using a estimator in the class restricted

above. The test statistic is the following natural form:

) 7. -7
Tih . 2. h.

\/5’?/11{ + S}%/nh’

and the critical value is considered using several methods in sections below.

5.1.3 Estimation of the Optimal Value of b

It is the problem how we determine b to use in the fundamental construction in the
previous subsection. In this subsection, we consider the estimation of the optimal value
of b using a loss function.

. . . . . =9
- We use the following function as a loss function of variance estimators S;:

N IR AT HL=b) e, (1P
E{Z-é-(—ij——l>} - zg{gE(?‘)Jrﬁ%—)Ew“S;)ﬁL‘—l;j’—)-E(S?)

=1 t 2 ?

2@ - 2(10'_2' Y B2 +’1}

dl 1

= b2A+2b(1—b)+ k(1 —0)>

= (A+Ek-224—-2k-1b+k
k-1 )2 Ak -1
A+k-2 A+E-2

- (A+k-2)(b

where
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k —9 2 4 k
A=ZE{(;*> * 4}’ vi= pve

Now, we get the following theorem.

THEOREM 2: Among the class of variance estimators: S’;? = b5 + (1-b)82,0<b<1,

the risk function corresponding to the loss function
~ 2

k Vi S;‘z

Z PR

get the minimum at

k-1
T A+E-2
Proof:
We must show
0< k-1 <1
“A+k-2" 7
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5.2 Multiple Comparison Procedures Expanding GH-Pro-
cedure

5.2.1 Setting of Critical Value

We consider to determine the critical value in the previous section using the approxi-
mation by t-distribution as like as GH-procedure. That is to say, we need the degree of
freedom 7, satisfying the following approximation:

S’?/ni-l-g%/nhN 1,

—_5 S, T~ T X', .
o?/ni + aﬁ/nh oy ik
However, the numerator statistic of the left-hand side is not unbiased for the denominator

of that, so that we use the following approximation:

S',?/ni+.5~’}f/nhN 1 5
G2 [ni+ 62 n, v U

where

52 = b5 + (1 - b)o?.

Here, we get the following variance of the numerator:

var (30 50) 2 Ly (8 + - —C (87,50 + — V (S7)
ar ne T = 77,22 Var ov(D;, O} —5 var(oj,
1 <2b" 4 4b(1—b) At 2(1—b)2 >
= - V4 +
n; v

2 b2 b(1-b
+—————<2 Vit 2—(—{;——)(0?4—0;%))

7N v
1 (22 4b(1 - b 2(1 — b)?2
+9( iy =Y g 2 >ag)

ny, v v 14

b2 - 4 g
S V4 N}, + _——b(l ) {Nih <_‘Zz_ + E}i)}
v n; Ny

4 4
+2(1—b)2<? + —h )
niV; N

?

where
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Besides, we note

) 4 — 2
Var(s2) = 2%, Var(3%) = v,
”

)

Therefore, we get the following theorem by solving the equation:

S 3 52 52\2
Var S—’Q + S—i =22 + Zh —1-
n; Ny n; M) Ui

THEOREM 3: The distribution of the estimator

?i. "'?h.
h = = -
\/S;-Z/n,' +Sz/nh

is approzimate to t-distribution with the degree of freedom.:

2
5; , %
< 4 2
n; np

Uip, =

v n; Ny

By this theorem, we can construct a multiple comparison procedure as like as GH-

procedure, which is the procedure using Q(a) /V2 as the critical value for the test

kD

statistic |T,~h |.

5.2.2 Improvement of the Degree of Freedom of GH-Procedure

The procedure proposed in this section is based on GH-procedure. Since GH-procedure
is liberal, we need to improve it. At first, we simulate GH-procedure with known o7’s in

order to study the reason why it is liberal. From the result, we find that we cannot test
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exactly even if we know the true value of variances, so that we will improve the degree
of freedom itself in the following.
The modified GH-procedure proposed here is the procedure using the following degree

of freedom:
o} 1 + o/ + 20303/ {(ni + [ n + 1))
o}/ (ndv) + Oﬁ/(nivh)

Vin =
instead ¢ " v in GH-procedure. This improvement is due to the thought that the cause

not well-fitting is at the term a;-za%, so that the coefficient has been changed through

trial and error.
The modified GH-procedure shows less violation of the significant level than GH-
procedure and is practical to use.
For example, in the result of a simulation with 10000 repeats when n = (4,4,2) and
©=(1,1,3), a practiéal Type I FWE of GH-procedure at level 0.05 is 0.083 but a
practical Type I FWE of the modified GH-procedure is 0.066.

5.2.3 Multiple Comparison Procedure Based on the Loss Function (the
Modified GH-Procedure Type)

We propose the modified GH-procedure type of multiple comparison procedure based on

the loss function using Theorems 2 and 3 in the following.

1. Calculate a value of the estimator b by the following equation:

k-1

b il
A+ k-2

where
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9. Calculate a value of the modified variance estimator:
52 =45+ (1~ bh)s2.

(It is possible to repeat the calculation of b using 5’;2 instead of S? in Step 1. In

this thesis, we repeat Steps 1 and 2 three times to improve the estimate b.)

3. Obtain the degree of freedom by the following equation:

s St N 25287

o n?  ni (ni+1)(na+1)

Vin = 73 4 4 4 4\
“ a 2b(1—b st 8 S; S
—V4N,.2h+—(———){Nih (—L+—h>}+(1—b)2( L ok )
v v n; Ny

2 2
i niyv;  Nivp

4. We test by comparing the test statistic:

with the critical value:

&in= Q,(La,-zzh/\/i
We call the procedure LM GH-procedure in this thesis.

For example, in the result of a simulation with 10000 repeats when n = (4,4, 2) and
o2 = (1,1,3), a practical Type I FWE of GH-procedure type of multiple comparison
procedure based on the loss function at level 0.05 is 0.102 but a practical Type I FWE
of LMGH-procedure is 0.085.

5.3 Multiple Comparison Procedures by Another Approach

Well-known Welch’s method is modified by Welch. However, Pagurova’s method is better
than it. (See Mehta and Srinivasan (1970), Kendall and Stuart (1979).) In this section,
we consider the similar approach to Pagurova’s method to construct the critical value of

the multiple comparison procedure based on the loss function.
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5.3.1 Pagurova’s Method

Pagurov.’s method is the method in the two-sample problem using the following critical

value for the test statistic 132 in Section 2.4.

t”{l -9)(6~g)° Hg%i—";-)z{g(l 9HOI1-0)+(g—0)(20~ 1)}+ )9{9(9 9%}
where
b = —1
v +va
_ _2) o1, 2Y _opsf(1 1
g = C(l Vz) 2¢ (V1+V~2> 2¢ (V1+V2)’
c = S2/nq

S%/m + S%/’ng.

5.3.2 Multiple Comparison Procedures Based on the Loss Function
(Pagurova’s Method Type)

The test statistic ;4 is reconstructed in the following:

Z

Tip = - —
\/CihS?/a;? -+ (l — C,'h)S]%/J%

where Z ~ N(0,1) and

2
O’T/ni
Cih = —5———5+—.
h o?/ni + o3 /ny

Therefore, we get the following critical value by the similar way to Pagurova’s method.

Ein =bQu /V2+ (1-b) [Cg:}: {(1 = gin) (6in — 9in)*} + —%ﬂ—)s{yzh - gin)}
X{0in(1 = Oin) + (gin — 0in)(20in — 1)} + —Q‘Iﬁj_g{gih(gih - gih)g}] /V2,
(1 - Bzh)
where
vy
bin = vi+uv’

2 1 2 R
gin = Ci (1———-)+202 ( —) - 263 (i+i).
Vp Vi Vp vi v
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Now, we consider two ways of defining v/ and C;n. We call these procedures LP1-procedure

and LP2-procedure, respectively.

R 52/ni
1. V=v, Cp=-———5—
=Y h 52 /n; + SE/n
2.V = z/—q—i > S?/ni

s Ci = ==
Ve T 320+ 82y,

Definition 1 is due to simply ignoring the difference of T}, and T.1,, and Definition 2
is due to obtaining the exact value of v/ by substituting b = 1 into ¥ in Theorem 3 in
Section 5.2 and calculating Cj, by using modified estimators of variance. Besides, we use

estimators S~ and V* in the practical procedure instead of 2 and V4 in o/ of Definition

2.

5.4 Comparison on Monte Carlo Simulation

In the result of a simulation with 10000 repeats, we get the following practical Type I
FWE’s.

n o2 |LMGH LP1 LP?2
2.2,2)  (,1,1) | 0.018 0.023 0.025
(44,2) (1,1,1) | 0.051 0.053 0.050
(44,2) (1,1,3) | 0.085 0.087 0.079
(553) (1,1,3) | 0.075 0.075 0.075
(6,6,4) (1,1,3) | 0.066 0.064 0.066
(11,11,9) (1,1,3) | 0.058 0.058 0.058

As a whole, LP2-procedure is the best. Besides, the difference of LP1- and LP2-
procedures is due to the change of éih, which is confirmed by simulation on several
definitions.

Next, we compare them to the procedure with the new preliminary test in Chapter
4. Figures 36 and 37 show the result. In the case of homogeneous variances as Figure 36,
LP2 procedure has the best performance. However, in the case of the unbalanced and

non-homogeneous one-way layout as Figure 37, the procedure with the preliminary test
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is conservative but LMGH- and LP2-procedures are liberal. LP2-procedure is slightly

better than LMGH-procedure and both are practical over sample size 10.
5.5 Discussion

In this chapter, we investigate whether a single procedure without the preliminary test is
conservative under the situation where it is possible that variances are non-homogeneous.
LP2-procedure is the best procedure among procedures proposed in this chapter. How-
ever, this procedure is inferior to the procedure with the new preliminary test that is
proposed in the previous chapter, that is, the range where LP2-procedure do not keep the
significant level is broader than that for the procedure with the preliminary test. Cer-
tainly, LP2-procedure has the continuous result owing to the absence of the preliminary
test, so that it has the merits and demerits.

Further problem is modification based on GHC2-procedure in the previous chapter
and more modification of LMGH-procedure, where it may be difficult to determine the

degree of freedom.
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Appendix

Generation of Random Numbers

We will mention random numbers used in this thesis.
First, we explain the basic uniform random numbers, which is a modification of the
method in Yamauti (1972). The practical C program is the following.

/* Uniform random number

* if (n_ran != 0)

* if (n_ran > 0) and (n_ran < 8388593L)
* INITIALIZE WITH n_ran;

* else

* INITIALIZE WITH 1;

* else

* MAKING UNIFORM RANDOM NUMBER ON (0,1);
*/

double urandom(long n_ran)
{
int i;
unsigned long x1, z;
static unsigned long y, ra[2], x[2];
double xd;

if (n_ran != 0) {
/* Initialize values for making random numbers */

ra[0] = 78125L;

ral[1] = 262141L;

y = 8388593L;

if ((n_ran < 0) &% (n_ran >= y)) {
fprintf(stderr, "Initial value is irregular.\n");
fprintf(stderr, "Initial value is set as 1.\n");
n_ran = 1L;

+

x{0] = n_ran;

x[1] = 1L;

urandom(OL) ;

return O.;
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T else {
/* Making of uniform random number on (0,1) */

for (1 = 0; i < 2; i++) {
xd = (double)x[il * (double)ralil;
x1 = (long)(xd / (double)y);
x[i] = (Long) (xd - ((double)xl * (double)y));
}
z = x[0] = x[1];
if (z == 0)
z=1;

return ((c’louble)z / (double)(y + 15L));
} .

This random numbers reveal good results for several tests. (Checked tests are the
frequency test by 1 digit, the frequency test by 2 digit, Gap test, Collision test and
Random walk test. See Knuth (1981).)

Next, we explain the normal random numbers, which generate adapting the inverse
function method to the previous uniform random numbers. The used function is the
approximation by Toda (1967). (See Yamauti (1972).) That is the following formula,

which is the function of the upper probability Q to obtain the percentile u(Q).
w(Q) = {y(bo + by +boy” +- -+ bioy"}?, (0<Q <0.5),
where
y = —log{4Q(1 - Q)},
bp= 0.1570796288x%10, by =0.3706987906x 1071, by=—0.8364353589% 1073,
b3=—0.2250947176x10~3, b, =0.6841218209x10~5, bs= 0.5824238515x1075,

bg=—~0.1045274970x 1075,  b; =0.8360937017x10~7, bg=—0.3231081277x10~8,

bg= 0.3657763036x10710, b5;0=0.6936233982x10~12,
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Tables and Figures

Tables 1-7: Powers of each procedure corresponding to powers of Tukey’s
procedure: .25, .50 and .75.

Table 8: Practical significant level of each procedure.

Figure 1: Prediction of rate for GHC2-procedure.

Figures 2-15:  Type I FWE.

Figures 16-19: Mean rejective rate.

Figures 20-21: Rejective rates of the new preliminary tests.

Figures 22-35: Type I FWE with preliminary tests.

Figures 36-37: Type I FWE for LMCP’s

(Multiple Comparison Procedures based on the Loss function).

69



‘g 0} Tenba I ... ‘g o) renba ., ‘Toie JodAT jo qred e @, “y of Tenbo :

L00° L00° 110° ¥10° ST10° LTO° (@)d
¥00° 00" 800" v10° P10° L10° (O)a | (x=w)
900" 600" 800° 600" 600° 910" OH "A9p
c00" c00" 010" 010" Y10° yI0" (DML | Puess
700" 700" L00° 600" e10° 10 (O)M.L

908" 999" L6T" | ¥E€]" €8S 86Z" | 69L7 928" ¥LC | £06° 0S4 06%" | €S8 PP9" GLE™ | LT16° T6L" €9¢° (B)d
Y08 £98° ¥62° | €€8° 648" ¥63° | SLL° T€S GLT | €06° TGL° 68%° | ¢S8" 39" €LE" | L16° T6L° 795" | (D)d
28L° L3S 19T | 118" €9 298 | 8EL” G8F° &% | €167 T6L° ¥E¥" | 618" 825" L0€" | 816" 88L" $9¢” OH 0s
G6L" 6997 96¢° | L6L° 698" L6Z | 89L7 GTST €LCT [ 9¥87 8€9° 0LE" | LP8 LE9T 0LE" | 968" 999" OTF (DML
T6L 8SC V65 | 86L° 699" 965" | PLL 188 GLE | GP8" 889" 0L€ | LPS" 989" 89¢° | 998 299" 0TF | (DIML

GP8’ ¢8G" 98T | 098" 609" 90¢" Kokk VL8 999" 6S€° | T9L” ¥1S° 65T | €66 €8L" &vS” (1)d
6€8° 08¢ G8¢" | £98° ¥09" ¥0¢° Aok $98" 6¥9° 99€" | 89L° 618 €9Z° | 816" 99 61¢° | (D)4
P08" 6€G L9C | P18 L8G" gLT sk €¢8° L8S° 80€" | TEL™ 9L¥" S€T° | 998" 899" 10¥" OH XV
P8 0LG 68C | €€8° 16S° £0¢” ok 868" $29° 6¥€ | 19L° $1C° 852" | 998" 1L9° L0%" | (A)MI
€28° T.G" 98¢" | TE8" 685" £0g” sk LE8 ¥29° 8%E | 89L° 61 292" | 98" 699" 0¥ | (DIML
Kokokk 1.8 $€9° 0€¢" | 998" €€9° ¢EE” *ok * 8¢6" 181" 60" (@)d
Kokskok 068" 209" ¥0¢" | €¥8 ¥6S° T0E” *k * L16° 25 89 | (D)4
kKoK 96L° 0¥S" €9¢° | ¥6L° O¥G" 99¢° *¥ * 618 ¢6S° L1¢" OH NINW
sHokeskok 178" ¢09" T1€" | 8E8" ©09" 9T¢ *% * 698 7L9° 26¢° | (DML
ofokesk 6C8" 8G" G6&° | Gc8 8LS' ¥6C *% * L98° 029" 28¢" | (D)MIL

OT8" 8LS™ 16T | 998" L09" 60¢" | T8L" 829" €9¢" | 006" TOL" T0¥" | 9€8° 0€9° €LE" | 926" €78 ¥09° (B)a
928" P18 62" | 998" €09° $OS | 8LL 6TS° L9T" | 006 00L' 66€ | 868" 2€9° 0L€" | 926" €28 #09° | (D)d
66L° €S 09%° | T€8" 84S™ G9¢" | €PL° L8%" LT | LGB 199" ¢¥€" | €18 ¥8¢ 61E" | L26™ 618" 26¢ OH od
€08 299" £6G° | 818" 928" T0E™ | 611" §28° 192" | 198" 689" 19¢° | 128 019" 9%€" | 998 069" L&V | (I)MI
$08° 19" 162" | 818" 9.8° 668 | LLL' 178" 69Z° | 1SS 689" 09€" | €68 029" SS€° | 998" 069" Le¥ | (DIML

70

L 0§ ST Gl 09 s¢ 6L 09 G¢ SL° 09 6T L 08 6¢ gL 09 6g° | ro01g | Syuop
q q d D q v

-9)el 94130001 URAW PajYSIom :J ‘@)l aA1)dafar ueswl :f ‘Tomod 9OULISYIP WINUIXRW (T
‘romod 9ouaIayIp WU :) ‘Temod sired-je pajorisel g ‘Tomod sired-fe 1y
(9=up=19)

"q)’ pue (0g° ‘gg" :aanpeooad s Leyny, jo stomod oy Jurpuodsaiico aanpavord yoes jo slamod ‘T 9qu]



if 03 renba : ... ‘g o3 Tenbo : . ‘o118 T odAT jo yred e : . ‘y 03 Tenba :

c00’ c00" 800" 910° e10° 910" (1)d
700" 800" 900° 910° 110° 910" (O)d | (xew)
L00 010" 600" 010° 010° e10" OH *A9p
700" 700" 800° 800° Al P10° (A)MI | puess
€00’ 700" 900° 800° z10° y10° (O)mL
$08' GOC° 167" | TES" T8S" 865" | 6LL 2€S° ¥LT" | L68° €FL° 8LV | 198" 639" 6L | 016" 884" 99¢° | (d)d
€08° 09" 162" | 0S8 L.S" €68 | 6LL TE€S §LT | 168 €L  LLV" | 268" 9%9° 1. | 016" 8827 99¢" | (D)d
£82° 08" 992" | 018 ¥PS" ¢9Z° | goL’ 86%" ¢¥Z" | S06° 82L 1€V | £28° 889" ¢T€ | 016° 88L° 19S° | OH bs
T6L' 89S 967" | LGL 8SS" 962 | 8LL 2ES° €LT' | TPS 99" 1LE | 6¥8° T¥9 €28 | 268" 299° 9T% | (IIMIL
6L 999° 262" | 26L° 89S ¥68° | 6117 2€9° 1LT° | TS 9£9° 1.¢ | 678 0¥9° 0L€° | 298" 299° 9T% | (D)ML
Z¥8 08S° 68" | 198" 209" 90€" . L98" 639" 98¢ | 96" L16° 022 | 816" ¥6L° 6¥S° | (d)d
Ge8" 618" 787" | 6¥8° 665" 20E” ok 008" L€9" O¥€" | §9L° 228" 892" | 216" LLL g2s | (D)
008" ¥%C" 292" | SI8 199" LLT’ sokk 128" 186G 60€° | 6€L° ¢6%° 8%2¢" | 098" ¥29° 11%° | OH XVIN
228 0.5 982" | 0£8 689" <0 - €€8° 619" OV€" | GSL° LTS 048" | 098" LL9" LT | (I)MI
618" 89" 98¢" | 828 189" €0¢’ o 2€8° Q19" 1" | G9L° 228" 892" | 698 929° ¢1¥ | (D)ML
. 198 229° 1€€° | 268" 929" 1€€ sk * 216" ¢9L 208" | (3)d
kA Zv8° 009 OTE" | 8€8" L6G" 60¢" sk " 206" 7L 997 | (D)a
ko V6L OVS" QLT | T6L €¥S FLT ok * 918" 88¢° 22¢° | DH NI
N 7€8 LGS GTE" | 068 ¥6¢° €1¢€ sk * 968" 199" 688" | (I)MI
ko T8 18¢° 10€° | 618 618" 00€ sk " ge8" €69° ¥8¢" | (DIMI | »
2T8 ¥LS L6T° | 168 209" L0E | LLL 9ES" 6LZ° | €68 ¥69° 00% | 168" 829" €18 | 826" 228 €19° | (A)d
128 015" 062" | 298 869" TOE" | LLL' €€9° $LT' | €68 ¥69° 86¢" | 1€8 829" 0L¢ | 826° 228 €19° | (D)4
LBL LES 997 | 628" 89S° 892" | 2SL T0S" 6%2" | ¥68° 099" €€ | €18 069" L3¢ | 826" 128" 809" | DOH tolci
108 199" ¥62° | GI8" ¥.8° T0€" | ¥LL° TE€S" LLT" | TFE 9€9° 99€" | ¥28 609" 8¥€" | 998" 969" ¢¥ | (I)ML
108 6SS° 162" | 918 €19° 862" | GLL° 189" €.8° | 2¥8 9£9° ¢o¢” | 128 219° ¢s¢” | 998" 969" 5% | (D)M.L
gL 0% ST | S 09 S2 | €L 09 gz | GL 0% ST | SL 0% 6 | <L 0% 6g | oig | ‘Syuop
K| q a D g Y

‘1omod eoueraylp wnurtuIw 1) ‘Tomod sired-fre pajotrysar :g ‘romod sired-ffe 1y

gr=u‘p=1)

"99e1 9AT100(01 weour pajyStom :q ‘@jel oapoafor weswr 1 ‘Iomod SOULISHIP WNIINRW (T

"GJ" pue (¢ ‘qg- :eanpesoid s Leyny, Jo 1emod o3 Jurpuodsariod axnpasoid yoed Jo om0 J ‘7 919D

71



g 0y 1enba ., ‘g o1 Tenba : . ‘10110 [ odLT, jo qred v :

! gx V03 enbo

¥00° 200" L00’ £10° 810" 610° (1)d
00" L00" L00° e10’ 020" 020" 0)a | (xelW)
$00" 600" 86" Z10° z10° ¥10° DH *A9p
700" 00" L00° 010" L10° JAL) (DML | ‘Puess
¥00° 00" 800" 010’ 020° 020° (O)mL
96.° 098" 28Z' | 628" 699" €8¢° | 1L 61" 69¢° | L€6° 86L° €16 | 28" 219" ¥ve | 096" 798" 969" | (A)d
G6L° 7SS 987 | 828" 898" €8%" | 6LL° FES €43 | 986" 86L° €1C° | 2€8° L09” GEE” | 096° $98° 959" | (D)d
BLL QTG €9C° | 608" 9€8” ¢S¢” | SPL' 06" 6£2° | T6" €8L' PLV' | 6LL° 9ES” LLT | 096" £98° 089" | OH oS
L8L° 8%Q° 98% | 86L° €897 08¢" | TLL  61¢° 69T | 998" 0L9° 86€" | ¢€8° 19" ¥¥¢ | 88 TIL 8¢ | (ML
L8)° 0SS 88T | 161" €6¢° 187 | 6LL° €S €12 | 998" 0L9° L6€" | 2€8 L09° ggg | 188" 21L° 8sh | ()M
1€8° 0L8° LL2° | 6E8° 886" S67° Kok 6¥8" S19° ¢ze | 0gL’ 8% 29" | €88 91L 09% | (A)d
238 699" 682" | 628 €89 86¢" Kok 8€8" $09" 22€ | ¢9L° 81S° 992" | 828 ¥0L v | (D)d
88L° 729 673 | €6L° ¥ES" 69¢ - L6L° 8¥S° SLT | LTL S9%° 0€C" | 0€8" 619" 9S€° | OH XVIN
0€8" 699" LLZ' | 6GES" 88¢" 96T sokok 678" ST9" 638 | 0EL" 88" 292" | €88 912 09% | (DML
128 89" ¥8¢° | 8%8° €89 867 fokk LE8° ¥09° 22€ | 29" 819 992" | 818 ¥0L ¥¥¥ | (DML
ko L€Y" 269 T0E" | 98" 169 T0E ok * ggg” ¢1L 6% | (d)d
sk €38 719" 163 | 2€8° €8S 26T sk % ¢18° 969 92y | (D)d
sk €8.° ¥29° €9¢° | 681 8C¢" £9¢T° ok * 618" 809 S¥€" | DH NI
Fockok LE8 T6S° 20€° | ¥FS LGS 00€ . * 788" PIL 6%% | (DMI
. €28 $.S° 468 | 788" 28¢° 268 - * 728" 969" s2v" | (D)ML
708" 095" 812" | OF8" 948" ¥8¢" | €97 SIS° 192" | €16° L0L° S0F" | L08" €L8° 90¢" | 996" ¥68° 869" | (d)d
Q08" 7SS €87 | OPS" LLG° 98T | ¥LL 0€S 2L | €167 L0L° %0V | L18° 88" 12" | 996° ¥68° 869" | (b)d
982" 618 192" | T8 €9C° 182" | 2€L° LLV" 9" | 026" L69" 0L | 28L° €€8° €22° | 996" L68 20L | OH ol
G6L" LFS 6L% | L18 99S° 982" | €9L° STS 192" | €98° 199" 68¢° | 608" 228" 90€" | ¥68° T¥L 88% | (I)ML
86L° 09S" $8¢" | L18 G9¢° 182" | PLL  6TS° 222" | €98 199" 28¢" | SI8" 286" 02€" | ¥68° 1v2 887" | (D)MI
gL 0% ¢z | oL o0g se | ¢ o0¢ ¢z | 9L 09 g | SL0¢ ¢ | gL 09 g | rooxg | Syuop
Jq q a o) g Y

‘931 2A1)08[01 weawr pajydiom ] ‘9yel aarjoefol ursw :5f ‘Tomod SOUSIOYIP WINWIINBUI (]
‘romod souezeyp winwiutw ;) ‘remod sired-[re pejowrysar g ‘demod sired-fe 1y

(9=u‘g=y)
‘¢)’ pue (g ‘gg- ompadoid s Aoyny, jo stemod o0y Bupuodsaiiod ainpedoid oes Jo s1emod ‘€ 91D

72



i oy [enbo .. ‘g 03 [enbo : . ‘Torre T odAT jo jred v ¢ . “y 03 enba @
900° 900" 600’ Z10’ 910" ST0" (d)d
00’ 00" L00° 010" P10° 10" ) | (xew)
700" 900’ 00’ L00° 110° e10° DH “a0p
Q00" 00" 600° 600" e10° 010’ (DML | puesg
¥00° ¥00° L00° L00° e10° 010’ (O)ML
G278 89C° 28" | 698" G09° TOE | 0LL° 028 €92 | 916" ¥2L VI | 288" 619" 18¢ | 816" 16L° 68S° | (d)d
028" €99° €87" | €98° L6S° 962" | 29L 228" 0LT | €16° COL' 68€ | 188" 129" 98¢" | 816  16L° 698 | (D)4
£6L° 0TS €9¢° | 878 9SS T9% | 6TL° 8LV LET | LS8 €99° OVE | 98 %09 PIE | 816" 98L' €¥S | DH bs
£08" 68" 8¢ | 918 €18° S6¢° | 89L° 618" 29T° | LPS 9£9° 09€ | 0S8 #¥9° 89¢" | 998" 999" ¢0%" | (I)M.L
108" $SS° €82 | ¥I8° 0.S° €62 | 29.° 188" 022" | L8 09" 068" | 168" 779" 89¢" | 958" 999" 60%" | (DIM.L
¥E8 64 T1€° | 9¥8" S09° 9T€ sk 1€8° L6S° 91€" | L28° ¥8¢° 162" | 916" ¥6L° 488" | (A)d
PE8" 089" 267 | LS 968" 10€ —_— €18° 999" 882" | 96L° 8%¢" 0.2° | S16 264 98¢ | (O)d
L6L  98C° 192" | €08 LPS" 897 sk 98.° 928" ¥62° | 19L° 20S" €¥2° | 298" ¥19° OTv" | DH XVIN
018 6.8 01" | 918" €8¢ 2IE - 628" G69° GTE" | 828" €8¢° 962" | 098" ¥29° ¥1¥" | (I)M.L
118" L9S° €63 | 8IS LLS° 668 ook 218" 999" 882" | 96L° L¥S 9.2 | 098 ¥29° €1% | (D)ML
ok 188" 619" L2€ | 098 619° 0€€’ % N 168 1€L° 69% | (1)d
ok TH8" L6S° S0E | 2P8° 869 01 % * 868" veL ¥9¥ | (D)4
. 06L° $€S° 292" | ¥6L° 6€S" 99T o % .| 018 286" €3e" | DOH NIW
. 1€8° 165" ¥1€ | 28 86 LIE % * £a8’ 099" ¥6¢ | (1ML
. 728" 08S° 862" | G28° €8S° £0€” - " ¥58" 199° #6¢° | (DML
¥E8" $09° 22 | 9¥8° 029" ¢€€’ | 908" $9S° €62 | 098" €79 96" | 688" 80L° L€F | 2T6° 908" ¥LS | (d)d
928" 18" 867" | P¥8° €09° €T | 122 229 7.2 | 998" 229 €6 | 998" 859" €8¢ | ¢g6° 08 #.8° | (D)4
L6L LES° €92 | 818 €GS° 14T | €L I8F 9T | LZ8 38S 6% | 818" 68S° €3¢ | €26° ¥08 99¢° | OH o
608" 185" ST | 908" ¥89° 1¢€ | S08° €9S° 167" | 198" 9€9° €6¢° | 298" ¥%9° GL€ | €98° ¥29° 80% | (A)ML
208" 999° 962" | 908" $LS° L0€" | TLL 988" €12 | 0S8 €29° 268 | €¥8 229 16" | £98° 719" 80% | (D)ML
€L 09 S | SL 09 9% | 9L 0% ST | SL 0% ST | L 0§ Sz | L 09S¢ | rooig | ‘8ywo)
d ! a o) g v

*¢) pue ¢’ ‘ez eanpaooad s £oynT, jo szomod o3 Surpuodsarrod aanpadcoid yoes Jo sIOMOJ P 99D

‘1emod sousIeyIp WINUIMUIM ) ‘Temod sired-[e pajoser g ‘remod sired-re 1y
({oT*01'2'g) PouerRqUDN ‘p = y)

“aye1 2A1308(o1 weatu pajySem : ‘ol aarpoafor weowr i ‘Tomod 90UIIOYTP WNWIIXRW (]

73



g 0y [enba ... ‘g ol enba ;. ‘0110 [ odLy Jo pred v 1 . ‘Y O3 renbo @,

Q00" 900" 800" 910" £10° 610" (d)d

$00" 900° 700" S10° e10° 610’ (O)a | (xew)
900" 600" 900" 010° 900" 810" DOH "A9p
700" 200" 800" 800" 010° Z10° (DMI | Puess
700" 700" 700" 800° 110° z10 (O)ML .

118" 999" 362" | 6€8° L8S 00€ | 6GL° 818" 692" | 016" ¢9L" 68%" | 298" LS9 €8¢ | €26 €28 96¢° | (d)d
608" ¥99° 062" | 468" €8%° 962" | T9L° 815" L9%" | 016 ¢9L° 98%" | 968" #99° 08¢" | g26° €28 965" | (D)d
V8L 828 T19¢" | €18 ¥¥S 69" | TSl TP  GEC" | BT6° 93L° €TF" | 818" £€8¢° 01€" | §C6° 188" L8Y” OH 0s
L6L° 09S° 263 | 661 398" 008" | 89L' LTS 69C° | €98 S%9° 69¢" | 678" 679" 6,€° | 998" 889" ¢v | (A)MIL
L6L 688 166" | 66" 298 862" | T9L° LIS 993" | £58° 6¥9° 89¢" | 678" LF9" 9.€" | 998" 889" Gzt | (DIML

.

138" 18G 887" | €98" €19° OT€" ok 0.8° €89 68€° | 1227 gze zLe | 8267 86L 9%¢ | (A)d
L€Y" ¥LG° 6LT" | 288" 009" 00€ —_— 098 €€9° OF€" | 192" $1¢° €92° | #26° 08L  61¢° | (D)
c08" L6S° $ST | PI8" LSS 1LT - 618 189" 20€" | 612" TL¥" 8€2° | 998:%29' 0¥ | DOH XVIN
628 ¥LS° 062 | €8 ¥6S° 80€" - 098" 2€9° 0SE' | 0227 628" 2LT" | #98° 829" ¥1¥ | (D)MI
128 199" 182" | 068" 188" 00¢" ook ¥p8° 619° ¢ge | 102" $1¢° €92 | €98 920" 1% | (D)ML
. 868" ¥29° T€E | LEY 219 2EE sk * 616" 19L° S6%" | (I)d
Frk 98" 109" 60€° | 6I8" 08" GOE" sk * 806" gL 2Ly | (D)d
— T6L 8€S° 992 | OLL' 128" €9T ok * 018 189" 028 | DOH NI
o €68 L6S" VIS | 728 €68 LTE - * 298" 699" €6¢° | (I)MIL
— 928" 189" 862" | 608" 898" 168" s * 098" 199" 28¢" | (D)ML

T8’ SLS° 96G° | LS8 P09 LOE' | S8L° 8€S" LT | 189 989" G6E | €78 839 9S¢” | 826 ¥es 619 | (A)d
28" 899" 982" | 188" 109" 662" | TLL 335 G9%" | 488" $89° 16" | €78 089" L9¢" | 836" ¥e8 ¢19° | (D)d
66.L° €€G° 89T’ | 1€8" LGC €92 | 6€L° LL¥" 12T | 618" ¥€9° LCE" | L18" 88S" 61¢" | 826" 0E8" ¥09’ OH ba
08" GOg" §67° | 818" GLG° TOS | §8L° 985 28" | 168 TF9 698" | 168" 209" 2€5° | 698 g0L Sv¥ | (DML
£08° 898" 18¢" | 818" 618" 262" | TLL GBS §9%° | 198" 2¥9° 99¢" | L€8° 619" L¥E | 698" 20L° S | (D)ML

gL 09 ¢¢ gL 09" ¢T gL 09 6% gL 0§ ST gL 09 9T SL 0§ S¢ o1 | “Syuo)
d q ad 2 q v

‘ayer 9A100fox uvowr pajySiom 1 ‘0yel aa1ioafel uweawn i ‘Tomod sduULIGYIp WINWIXRW (]
‘zomod soudIAYIp WnWIUIW :1) ‘Tomod sired-[[e pojolrsas :g ‘romod sired-[re 1y
((e1%'%'p) eouerequn ‘p = y)

"g)’ pue (g ‘cg" :oanpadoid s foxny, jo stemod o3 Sutpuodsaiiod ainpedoid yoes Jo s1OMOJ "G 240 ],

74



o 03 1enbe ., ‘golTenbd .. ‘To110 T od4T jo qred vt ‘Y 0) Tenbo @

700" 00" 800" e10° P10 Q10" (1d
$00° ¢00° L00° €10’ ¥10° e10’ ®)a | (x=;W)
700" L00’ 900" 110° 800" e10" OH "A9p
00" ¥00° 800° 010’ €10’ e10° (DML | "Puess
£00° £00° L00° 600° £10° e10° (O)ML
028" 88 00€" | 698" $09° 2TE" | 8LL S€S° 9.2° | €16° GGL" OL% | €98° 659" €8¢" | 086" L18" #8¢ | (d)d
Q18" ¢S G6Z° | 8PS 668" S0 | SOL 229 69%° | €16° ¥SL SOV | 798" 699" €8¢’ | 086" L18 ¥8¢ | (D)4
T6L° €€S° 29T | €28 $SS 19T | 6TL° 8LV LET | V16" 1L 96€ | 0€8" ¥6S° 8TE | T€6° €18 L9 | OH 0s
$08" 89S 862" | 808" ¥28° L0 | 8LL° $ES GLT° | L¥Y 6€9° 89¢" | 8¥9 ¢¥0° ¢LE | 698 189 9T | ()M
¥6.° 189 262" | 608" 228" €0¢" | S9L° 12S 692 | L¥S 6€9° L9¢" | 8¥8 ¢¥9° qLe | 698" 189 9IF | (D)ML
628 968" 81¢" | 9€8° 909" 92¢" - $68' 629" PEC” | 628 28¢° 962 | 668 ¥EL 16% | (A)d
628" 08S' €62 | 8€8° ¥6S° S0€ ok 6€8° ¥6S° 20E" | 884 L€ 122" | 006" ¥PL 88 | (D)
L6L" 6€S° 29T | ¥08" 198G 2LT —_ 108" $%C° $9Z° | €6L° S6%° 0% | 6%8° S¥9" 6.8 | OH XVIN
218 68¢" L1€" | SI8" 16G° €€ ook ¢b8" 819" 2EE | 828" 289 862" | 198" 8¥9° ¢8¢" | (A)IML
218 08" 762" | L18° 18¢" S0¢" —_ ££8° 069" 10" | 882" L£9° 0.2 | 098" 9%9° 28" | (DIML
Kok 6¥8° 819" L3¢ | €¥8 $29" ¢ve Kok * 068 ¢eL 9L¥ | (A)d
koo Z¥8 669 80€" | 398" 619" ¥TE sk * €68 geL  89% | (O)d
ko 164 6€S" 992" | €08° 8¢ LLT sk % €08° 08" 02" | DH NI
. 928" ¥6S° PIE | 928" 009" 92€ ok % 8¥8” £29° 88¢" | (A)M.L
. 128" 615" 663 | 2€8° 169" ZIE e * 8¥8" 099" 8¢ | (DML
1€8° 968" OTE | 298" 19" $2€ | $28 18" 662" | 998" 869" 9.¢" | 898" 899° 06¢° | 126" 962" 099" | (dA)d
128 8.8 ¥6T’ | TGS €09 90€° | S6L° ¥HS 9LT' | 898" GQ9° $OE" | S8’ 9€9° 29¢° | 126° ¢6L° 09¢" | (D)
66L° 9SS 192" | 928" LGS" 192" | 6GL° L6F T¥C' | 8¥8 909" 2T€ | €18 ¥8S° L1€" | 126" 16L° 0SS | DH bda
908" 828" 2T | €18° €89 $IE | €28 629" 86%° | 68" TH9" 69¢° | €8 029" 19€" | 898" 899" 607 | (A)ML
v08" 899" $62° | ¥I8 9.6 20" | ¥62° €¥9° 618 | 098" 6£9° 6SE | 1€8° S19° 6%€ | 898" 899" 60%° | (DML
¢ 09S¢ | SL 09 ST | 9L 0% 9T | G2 09 ¢¢ | ¢ 09 92 | 9L 09 6g | wooig | ‘Sywop
g q a D g Y

"¢l pue (0g* ‘qg’ :eanpaooid s foyng, jo stemod 09 Surpuodsaiiod ainpadold Yoed JO SI9MOJ "9 99U

‘oyel 2A1309f01 Ueown PoYSram : f ‘93RI 2A130a(aI Uesw 1§ ‘Iomod DUSILYIP WNUITXRUI (]

‘romod sousteyIp wnwutl ) ‘Tomod sired-[re pejoriysar :q ‘remod sired-fje 1y

((21°9%'¢) eouereqUn 4 = )

75



o 03 Tenba .., ‘g 03 [enbe @ ., ‘Jorre ] odLJ, Jo j1ed v @ ., ‘Y 01 Tenba :

00’ 010" 600" 910’ ¥10° 920" (@)d

c00" 600" 800" 910" e10’ 920" (0)d | (xew)
00’ 600" L00° e10° z10° 810° OH "A9p
00" 800" 800" 010" ali) S10° (DML | puess
500’ 900" 900" 010° . 110° e10° (O)IML

908" 864 0FE" | 138" 28" €1¢" | 188" 819" 92¢" | L06™ 8PL' €8%" | GL8° 189 80%" | S06° 2LL ¢¥S" | (A)d
66L° 0LS° 90€" | 618" L9G° 162 | 128 0,8 98C" | L06° 8FL™ €8%" | P18 929" 00% | 06" gLL  ¥¥S" | (D)
LLL T€S 697 | 008" G€S° 9% | ¥8L" ¥CS° €9C° | 0T6° S¥L° 8SF | L18 98" 1€ | S06° TLL  OFS OH oS
C6L° L8G 98" | 98L° 8SG° 608" | 098" 919" G2€ | 8F8" 989" 99¢° | 098" 999" 86¢" | 8F8 259’ 86€ | (A)M.L
681 ¥99° G0E" | 88L° 0SS €62 | 128" 0.8° 982" | 88" 9£9° 69¢" | 098" 299" 26¢ | 898 289 86¢" | (DIML

£€8° 88" 90¢” | 9¥8" €09 €I¢€" ok 206" €TL° €€F° | ¢I8 699" ¢6% | 1167 26L° 698" | (I)d
GE8 61" 682 | 878" L6S" 00€ sk 006" 2L S€%" | 06L° 6€S° 1.2 | ¢16 064" #9¢° | (B)d
96L° €£S° 8¢ | S08" 9¥S” 99T - 0S8" 229" 2EE" | LSL° S6¥° 9€C° | 998 089 9T { OH XVIN
608" 2L8° €0€” | 918" 08G" 80¢ ok 098" G€9° L8€° | 218 899" 06Z° | 998" €89 €2F | (I)MI
118" 69¢" 887" | 618" 9.9° 967 sk 878" 8£9° 66€" | 164" 6€8° 027" | 998 €89° 1¢¥ | (DIML
ko 9¥8" 819" 1€¢” | 8€8° 119" 62¢€ sk * 268 vgL osv | (A)d
Fak 0¥8" 965" 90€" | 2E8" 689 SOE” sk % 168 62L 9s% | (D)d
—_— T6L° LS $92° | 68L° TE€S" 6T sk % P18 286" L1 | DH NI
kK 128 96" L1€ | €28 06¢° 1€ ok * $98° 629° 06¢° | (I)M.IL
. £28" 08S° 867" | 818" ¥.8° 963 - * 7s8" 099" 16¢° | (D)MIL

$€8 G09° €2¢° | S¥8° 619 GEE" | 018" 19" 062" | ¥06° 98" 88%" | 868" ¥1L GE¥ | 916" €08 VL& (d)d
L38° G8S" 862 | ¥F8 €09 PIE | 6LL° GES" TLE | €06 9GL' 88F" | 918" L99° 98¢ | 9167 208 ¥L9° | (D)d
L6L" LEQ° ¥9C° | 918 99G" €L% | €VL% L8%" LEC | ¥16° PEL” 8C¥ | ¢€8° 009' ¢c€ | 916" 661" 995 OH (o) |
908" 189" ¥1€ | 908" €89° 0Z€" | 608" $9S” 88%" | 0S8 P9 0LE" | 298" 199" 3LE | ¥98° LL9° T | ()M
£08° 299" 96¢° | 908 PLS 90€" | 8LL 1€S° 69¢° | 098" ¢b9° 0L | 398" G€9° 93¢ | $98° LL9° ¥ | (DIML

6L 09 ST GL 0% ST 6L 0% 6T L 08" ¢¢ 6L 09" ¢¢ 6L 09 ST "v01d | "Syuop
g q a J g A4

"9y 9A1309(a1 weawn PO Siom : ‘91l aAT)0afal uesw i ‘Tamod DULILYIP WINUILXEUI (]
‘romod aousaeyip wrnwrutux :) ‘Temod sired-[fe pojorigsa ;¢ ‘Tomod sited-[[e 1y
((z‘z'01'01) :90uerRqUD ‘p = ¥)

‘q)" pue (¢° ‘qg” :aanpadoad s Loxng, Jo stemod 0} Surpuodsariod arnpanoid yoea Jo s1emod ‘/ 2jqD]

76



"21npodo1d-zHHD 103 93e1 JO UONDIPAId 1 ‘814

90+xg=¢

oococo oo

(\l(\l(\](\i ———r

9002'T | 200 | €0T'0 | S€0°0 | OT‘I‘T'T Al
gsL¥P0 170°0 | ¥80°0 | 2300 11T Al
695¢°0 | S¥0°0 | 65070 | SE0°0 01Tt 7'8'8
68%2°0 | ¢¥0°0 | 680°0 | T€00 I'T'1 788
€06L°T | GS0°0 | T0T°0 | 680°0 01°T'1 Al a4
9180°0— | %200 | ¢¥0°0 | ST0°0 1'g'e Pl 28
LOgv'0 | 2k0°0 | £€80°0 | 9200 e'1'1 Ak
€9L0°0 | L300 | 28070 | 6100 T'TT A
6LTT°0— | T10°0 | 620°0 | L0070 11 ¢'c'e
18810~ | 21070 | 180°0 | 20070 T'1'1 2'¢'e

(] Om..r.u H.ku O wuﬁdﬂd\/ 9218 wﬁaﬂﬁdm

._wbm& ﬁaomuv.mhn.m * ¢

(%G :1oAd] TeuTIION) 2anpadoid YOEA JO [9AS] JURdYIUSIS [ROIORIJ '§ 919D

77



(T°1°1°1) @ouelIRA ‘(U‘U‘Uu‘u) 9ZIS ordueg

u

Amd 1 2dAL ¢ 814

(1°1¢1) edouenep ‘(u‘u‘u) 9z1s ojdweg
AMd 1 °dAL T *8id

u

O+N _ w_v _ o__, _v_v : N_P _ o_r m

- [ a2OHD - t0°0
o OHD —-—
L o O —
v EL —— :
ol (i ..Mmo.o
L .. \u_
/i Heoo
, \4\..
\\ / M
v /] .
> o oo Y oa 0 O.%
S WU Tt o A2
.N...w.w..m:.? A" m n 9%+ °F \h -
. « ° _9- - ]
.--l.,qxn - B I R - E—— > .t\.\lqmo 0 s
ﬁ * o - . » ] jl_
{ 1 ! 1 i ] | ! ! I t | 1 i ! L 1 1

78



(1°1°1) souetIRp ‘(7-Uu‘u‘u) 9z1s ajdweg
AmMd 1 °dAy ¢ 814

u
o_N _ w_v _ m_v _ Nw i N_F : o__ _

8

T T 1T

200
€00

Y00

T}
<
o

IM4 | 8dA)

(1°1°T°1°1) @douenrep ‘(w'u‘u‘u‘u) ozis sjdweg
"AMA I 2dAL p 814

u

ol

o
\ ’
A A
< < o W\\ .‘\)
o v 4 0\N|M o %
L ||M|. v — IJH»'\IN.“.;‘| I...ﬂ.l...hndl v
A L
WEiTo T 8 A BT f . :
e S $
o .. . .
= —_—
al;nmrm----vnu-u. * n B o .
i BTl o .
oo TRl e
o

€00

¥0°0

S00

90°0

M4 | adAy

79



(E°T°1°1) oouBLIBA

u

3

(u‘u‘u‘u) 9z1s o1dweg
"AMd T °dAL L 814

ﬁm_mr_ﬁv_ﬂr_ﬂr_ﬁr_m

g

10°0
#4200

€00

(g°1°1) 2ouelIRA ‘(U‘U‘U) 9ZIs o[dweS

un

"HMdA 1 °dLL "9 814

IMS | 8dAL

80



(€°1°1) 2ouvLIRp ‘(g-u‘u‘u) ozIs ojdweg

u

9L vl
/171

AMd I 9dA) 6 814

cl 0L 8 9 ¥

02 81
[ 7

__J_\_____dzo

AN
R
- ,,..W.B.om
.. 3#800¢@
: 1600 7
\gHo =

(€1°1°1°1) @ourLIRA ‘(u‘u‘u‘u‘u) 2z1s ojdweg

u

‘IMd 1 odAL g 814

-

¢0'0
€00
R . SR oy DA 4v0°0
e B s *Xor A A
g0 g >.. 4 ¥
o o | .
B R a.. g0'0 rNL
- ° B ,.Q.m_,.-.b..u i w
- - "7 %900 -
- * L ) [ ) . JMJ
- * .. H00m
SN O DU N FOURY SN RN NN NN NUUN USRS OO NS DU NV N N B |

81



(€°T°1°T) sourLIRA ‘(Z-u‘u‘u‘u) 9z1s o7dwes (1°¢‘g) souruIRA ‘(Z-U‘U‘Uu) 9Z1s o[dweS

‘IMd I °dAL 11 "8i1g ‘ImA 1 2dAL 01 814
U o u
02 8L 91 ¥ 2L 0L 8 9 ¥ 02 8L 9} ¥L 2L 0L 8 9 ¥
I i 1 1 I T 1 T i ] 1 1| 1 ) ._INO.O H T I I T T 1 7 T T T 1 ¥ T T T T
° 3
£0°0 200
0.5t :
........ SERT Ay ey %o 0
G0'0 €00
90°0
§20°0 . ¥0'0 .
wo.om m
60°0 - 50°0 =
L0 m m
_v—.o 1 i | ] L 1 L 1 1 | 1 1 1 I ! pmo.o

82



(€1¢1) eourtIRp ‘(g/Uu‘u‘u) 2z1s orduieg (€T°T°1°1) @ourlIRA ‘(Z-Uu‘u‘u‘u‘u) 9zIs ordweg

IMA 1 9dAL g1 814 gmd 1 odAL 71 814
u ) U
OF OF 2€ 82 ¥2 02 9L 2L 8 ¥ 02 8 9L ¥ 2L 0L 8 9 ¥on
vrerTrrreTr T T T T O T 1T 77T 1 T 1 T § 1 1 T 171 _NO 0
3 i
o e A R "n+0°0 €00
o e Aﬁmo.o 0'0
- €00
L &.\ O GO0
B PR e g g gl ¥0'0 .
A R N e R TR T T 1500 900
- s - SO .
- ., v R 4\.\4.\.4 D/U//.M//IOO.O NO 0
§ ,,,,w\.oﬁo M_ 80°0 ,w
- 380073 6070 &
- 4600 — -
B T1vqn @ H0 1
e .. . JHO0 = -
RNt e L HHom

83



(01°1°1) eoueLIRA ‘(z/U'U‘U) 9718 o1dwWEg (01°1°1) @dourLRA ‘(T-U‘U'U) oz1s oydweg

AmA 1 2dAL G184 ‘IMd I 2dAL p1 814
u ‘ - u
Oy o€ 2€ 82 ¥z 02 9L 2l 8 ¥, 20°0
1200 00
¥0'0 2900
29070 800
80°0 10
10 X g Jz10
ANY . Jvi0
rog! 3 Joros
510 T N e Jero 2
810 1 i - 120 I
20 = L =g =
e TR (-1

84



(1°1°1) sdurLIRA “(OI°0T Q1) 2z1s ojdweg
[Od] o181 oan100(or URON L] 814

4
gl b 80 90 0
T T T T T T T T T X
L v A=
1ld ¢ a c0
o mmmx Mw ]
g + .
- gs - /R X
cOHD A &
B A1l o Te .
- MW I.VO
b Ve i
Ao
- MM dgo
ve
I 4Me N
Ao .
- s 190
B M ]
40 .
I~ v & o INO
<>M
L I i
4”9
B dMMo lmo
o s 09 ] | ! 1 ] 1 '

(1°1°1) eoueLIBA ‘($‘p‘p) 9z1s odweg
[OA] ro1e1 aanoala1 uesy "91 "1

}
14 g 4 } 0
L T T T T T T _|O
- o$9%
L [id s & 10
0S8 = 2¥e
o gd «+ wwe L )
I~ [[COHD 4 4%e —2°0
- Xl._. o er ] i
i >m..e Hm 0
o 8 .
- wm,u 170
N 0% 8 g0
- DW..GG . )
H MMA.V & |® O
o378 1,-
” mew am H\' 0
- 8% 50 1802
X o Taen S
A o887 68 1602
[ eosttssios0ns® 1y
1 H 1 L 1 1 ) ] 1

85



(1°1°7) 2ourLIRA ‘(£‘C‘C) az1s ojdwieg (Z°1°1) souenieA ‘(£°G°G) az1s ojdureg

[OH] r21e1 aa1300(a1 uvay ‘61 "814 [Od] o181 9A1100[01 UBSN QT "814
} }
14 e [ 3 0 14 £ c 3 0
.l_ i ] T T T T T Huo |_ ] 1 | ] ¥ ) I »»_IO
i ¢ | B 488 |
R 1d ¢ Qoww» a —...O N 1d ¢ WOWO | —..O
B . gt ] L& O
- + AOX

- A " 2" - A 20, © A2
i >%ee -N 0 - g wow o 1m 0
= 0:9 R . . AV [ _ .
- wm,e -m 0 - B €0
- >®.ee .I..VO C >.ww.. mm H.v 0
- Jn 6 Hs0 - U 450
L Lo 0 4 L RO 4
_ R 190 - B0 8 490
- 837,06 - - 80" #© .
N W87 ,° 47°0 - g8 ° 440
I~ >®va & -1 U - @@@.nx +Mo 1. 0
I~ @@W; eu -180 = oooxx.. e 18°0 o
= @@xx GG - M - OOOW::: ++OO - M
I oooowwu.aau |®O nlm lwwoww:x +mmoo |®O nlm
- ] - - ++#+++O -
R 1 [ 555280880000 o

! ! ] 1 ! ! ) 1 ! ] ! ! 1 I I L L ]

86



(z-u ‘u ‘u) az1s ordureS (u ‘u ‘u) az1s spdureg

1893 Areuruurjaid -mau oy3 JO sojel 0An0(oYy ‘17 814 189} Areurwirjaid mau oy Jo sajel oAnoafey 07 "S14
u u
0c 81 91 vI ¢t OF 8 9 ¥ Oc 81 91 ¥1 ¢ OF 8 9 ¥ ¢
] ] } i ] T T T I J i 1 4 i [} T T . 1 T 1 T T 0 T7T 7 I i i I | LI
=1 llm o [P .
e el
- el o el |
Cm—o%m:m> mu_wmp_:ww, 170
- 150 150
L 19°0 - 90
m_--m-.m-d-h.-n--n,-u-- 1, Brmeo-oeR.ao.g o .
u.d.d,d, L0 .M-Nw i sea /0 rnn._w.u.
I 180 m L 80 m
e o =L S 5 oo g )
o oo O 60 @ w\k.\\ﬁ..w.%\w.\«.%.\%uu:? 60 ©
S T RO N N R N NN OO N O S SO N S N A0S ISR SN TN DU SN N N

87



(1°T°1°7) @ouelIRA ‘(U‘u‘u‘u) o71s ajdweg
51891 Areurwrjard yitm gmd 1 odAL ‘¢z 814

u

O_N_w__._m__._.v__‘_N__._O__._ m T m —._V

- e ld —— /
* 058 ---- 9
. + 89 —o \\b...
AZOHD ---o S
© OHD —-— L
- et — e
° A \.. \».
s Sa !
o [ o
o R !
o -8 4. /i
\\A -\ \ ..
=2 o — L \ 4
o A °_.—"7 a- RE'S ol
eem T At Y, K
o — o B . ey
e O Kooobaoere” © 0 a > R n
8 --bemanT * x Lo
+ . A .-
4 A @ A A x ® S g
e e TR
. + % —— + -
+ o
R }..//
+ * o @
* P
SN SN N S NN TONURY DU S S RO A SN NS NNV SN SO MUNE N |

00

G00

IMS | 8dA]

(1°1°1) @ouenie A ‘(u‘u‘u) o2z1s 91dweg
"$159) Areutwitjold yiim gmd I °dAL 7z 814

u
0c 8l 91 ¥ 21 O 8 9 ¥ ¢
(St S I R R S SR SR SN N SR BN B S SR I wOO
- e ld —— :u
« 068 ---- 3*
| Il + 68 — H .
AZOHD - N rc00
© OHO —-— /i
b P V*'F — ﬁ.\. \I.
- 77 600
\\u.... \ ..
o S
B o \M\w...b /ST
o \?\\ .\\b ’ me .
- S P00 o
o om0 e g8 I 5
- Y 1o x x >
e v MNP B
e et e M SO 1y S
o ———F - M
[+ * * " 3 M
- - -
+ m
TN RS RO DU JOURS NN VRS NN SO U TN VU AN SN B S OOO

88



(1°1°1) soueuiep ‘(g-u‘u‘u) o2z18 ajdweg
s1s93 Areutwirjaid yItm gmMg I odLyL ‘¢z 814

u

o_N_m_w_m_P_v.P_N_v_oﬁF_

¢ 1d
x 059
-+ S8
AZOHO

© DHO ~-—
R e

Y00

0
Q
o

IM4S | 8dAL

(T°T°1°1°1) @ouenavp ‘(u‘u‘u‘u‘u) oz1s ojdweg
'$159) Areurwrerd yitm gmd I odA1 vz 814

u
Oc 8L 91 v1 ¢ 0L 8 9 ¥ @2
L rr-rr1rrTrr1rrrrr T WN0.0
| e ld —— /4
x 089 ---- L .N
L

¥0°0

S00

IMA | edfy.

900

89



(€1°1°1) adouerIR A ‘(U‘u‘u‘u) 9z1s sdwmeg (g°1°1) 9ourtae A ‘(u‘u‘u) 9z1s ojdwes

s1s9) Areurwijoxd yym gmg 1 °dAL Lz 814 '$189) Areutwiiford yiim gmd 1 odAyl 97 814
u u
Oc 81 91 vI ¢t 0L 8 9 ¥ @ 0¢ 81 91 ¥I ¢ 0L 8 9 ¥ ¢
H T T T T 17T 1T 1T 1 1T & T 11 17 1771 .M P T T T T T T T rrr g7 vVIr T T 1t %—.O.O
gH= AP I i
g = il e i
- e L — o/ HE00 ol il i
o ;

€00
00
00
S0°0

T3]
<Q
o

900

IMd | edAy

©
<
o

JM4 | edip

£0°0

90



(£°1°1) @ouenIB A ‘(7-Uu‘u‘u) 2z1s ojdwes
s1s9) Areurwtrard yitm gmd I 2dAL 67 814

u

Y00
S0°0
80'0
£0°0
80°0
60°0

S
IMA | edA)

(€°T°T°1°T) @ourLIBA ‘(u‘u‘u‘u‘u) oz1s o[dweg
'$189) Areutwitjeld yitm gMA I odAL g7 "Si14

u
0c 8L 91 vI ¢l O 8 9 ¥
T T T T 1T 1717 T T 7T
et T ‘o\nu..mmo.o
\\*
5

¥0°0

Go'0

©
Q
o

M~
(]
S
IM4 | adhy

91



(€1°1°1) @ourlIRp ‘(7z-u‘u‘u‘u) oz1s ojdureg (1°¢‘¢) aouruiep ‘(7-u‘u‘u) 2z1s ajdweg

siso1 Axeurwigaad yiim gmd 1 odAL 1€ 814 *s1s9) Areurwifaxd ynm gmd I odAl "o¢ 814
u u
0c 8L 91 ¥I 2L 0L 8 9 Vv _ . 0c 8L 91 vI ¢} 0L 8 9 ¢
F T T T T T T T T T 1500 N B S I B N S M S B B B S B B B
. i A
v00 ”mvrmm_u_m - o\.\...
+ 68 —— g .
Go'0 14€0°0
900
£0°0 700
800 ~
.Il_
6003 S
@ o)
O — G000 —
s s
O = - - =
poovoa vy e a1

92



(€1°1) @ouetiep ‘(g/u‘u‘u) oz1s ojdweg (€°1°1°1°T) oourlLIRA ‘(z-u‘u‘u‘u‘u) a2z1s ojdwes

's3s9) Areurwirford yiim gMd I 9dAL gg "814 ‘s1s9) Areutwtjord ynm gmg 1 odAL ‘zg 814
u u
0F_9€ ¢€ 82 V2 O_N 9L 2l m_.v O+N 8L 91 vI 2i o__( 8 9 v
N ] 1 T 1 1 1 ] ] ] “ 1 i I i o |.VO-O i i I i 1 1 1 I i T ] i i I “H .
W!IMWWJIMGJ...&”.D“ .ﬂw.unmu.uou.nn.n.uﬁ.w“w.uwu..w.\m ¥0'0
+|. H .ld:l#!.n....,l.,l,u/k/ * . G0'0 G00

+ * e

900
L0°0
80°0
60°0
FO

L0
cto

aMd | 8dA)

93



(01°1°1) sourlLIBA ‘(g/u‘u‘u) 9zIis ajdweg (01°1°1) @ourtIRp ‘(g-u‘u‘u) azis ojdweg

s1s91 Areurwijaid yiim gmd I 9dAL ¢¢ "Siyg 's3s91 Areurwijerd ynim gmd I odAL ‘yg 814
u u
Oy 9€ ¢t 8¢ v¢ 0c 91 21 8 ¥ 0c 8L 9FL %I 2L 0L 8 9 V54
i T 1 1 LR 1T T T T 7T 1771 I .vo.o ! T T T i T T I 1 J | { i 1§ T T HNO o
[ e SNy cegesaprogug.g 1700
= § s Ao - Tyof.
+ » N 900 " Y W@OO
- . /, X ,/ /I
- . %800 % 4800
e — 1 g0
-+ 8 — *\ 4210 420
I S 1. . - lv10
[ oSl — LA : T
. A< I n <
. 49103 - 9t0 S
810 — - || < 058 ---- 810 —
T B MNMMOH.HH 0 M
20 = [ | e oHS ~-~ <0 =
m ._. ! o_v_ .__. ._ll_ N NS OO N NN U N R S _NNO ™

94



(€°1°1) @ourLIRA ‘(7-Uu‘u‘u) 9z1s a1dweg
'S dDNT 103 AMA 1 °dAL "Lg 81y

u
O¢g 8!l 91 ¥l ¢l 0 8 9 ¥
T 7 7 T T T 1T 17 T 777 T 11777
- - -
* .
llllll 3 . o
o m T T ——
. g e . al.l.lold..ll..l\\k
M...’....MF..../::WT m: > . *
) T e i
D g,
- fﬁalr o
-] /:q,,,
i '
/oo -] N
n/r
- AN ~
(Y
//;
L -
_——/’
- vodl --— _,,M
GHDWT -~ -~ i
* |—.& —— )
| U O OO SN S NN I WU AU SN NN FRNN N N N m

GO0

90°0

£L0°0

80°0

aM4 | 8dAL

(1°1°1) @oueniep ‘(u‘u‘u) oz1s ajdwes
'S.dOWT 10y IMd T 2dAyL '9¢ 814

u
Oc 8L 9L #L 2L 0L 8 9 ¥ ¢
T T T T T T T T [ 1T 71T 1777
¢
v edl —--— .
5 BHOINT -~ -- he00
¢+ 1d —-— !
i .\...w
- 1iHE0"0
ay
/15
L / .Nl
\ ¥
- \. / *
e ; 1700 I_
> / ’ ~<
- I \\ m_\n_\. _ O
v .7 m- ) @
- e / —
2 ¥ 5000
. — \ 2 v -
v . o =
- v - m
S VN S NN (VR N AN WU N SOV HN (VU U U T O T

95



Acknowledgements

The author is indebted to Dr. M. Okamoto, Prof. S. Shirahata of Osaka University,
Prof. 1. Yoshimura of Tokyo Science University, Dr. Y. Nagata of Okayama University
and Dr. M. Ohtaki of Hiroshima University for their advice.

Dr. Okamoto and Dr. Shiré,hata. taught the basis of statistics for me in my graduate
days of Osaka University. I thank them for their careful direction. Furthermore, Dr.
Shirahata read the manuscript of this thesis for me. I appreciate his assistance.

I'am grateful to Dr. Yoshimura for many useful comments for this research in Nagoya
University. And, I also thank other members (Dr. K. Nishina, Dr. H. Yokoi, Mr. Y.
Sakamoto and Dr. H. Tanaka) of the statistical research group in Nagoya.

I studied with Dr. Nagata for the research in Chapter 3. I appreciate his help.

I thank Dr. Ohtaki for a useful comment for the research in Chapter 4.

Finally, I am grateful to Prof. M. Kimura for his kindly support in Nanzan University.

96



References

Begun, J. and Gabriel, K. R. (1981): Closure of the Newman-Keuls multiple comparisons
procedure, J. Amer. Statist. Assoc., 76, 241-245.

David, H. A., Lachenbruch, P. A. and Brandis, H. P. (1972): The power function of
range and Studentized range tests in normal samples, Biometrika, 59, 161-168.

Dunnett, C.W. (1955): A multiple comparison procedure for comparing several

~ treatments with a control, J. Amer. Statist. Assoc., 50, 1096-1121.

Dunnett, C.W. (1980): Pairwise multiple comparisons in the unequal variance case,
J. Amer. Statist. Assoc., 75, 796-800.

Dwass, M. (1960): Some k-sample rank-order tests, Contribution to Probability and
Statistics, Standord: Stanford University Press, 198-202,

Einot, I. and Gabriel, K. R. (1975): A study of the power of several method in multiple
comparisons, J. Amer. Statist. Assoc., 70, 574-583.

Fisher, R. A. (1935): The Design of Experiments, Edinburgh and London: Oliver &
Boyd A

Games, P.A. and Howell, J.F. (1976): Pairwise multiple comparison procedures with
unequal N’s and/or variances: A Monte Carlo study, J. Educ. Statist., 1, 113-125.

Hayter, A. J. (1984): A proof of the conjecture that the Tukey-Kramer multiple
comparisons procedure is conservative, Annals of Statistics, 12, 61-75.

Hochberg, Y. and Tamhane, A.C. (1987): Multiple Comparison Procedures, John Wiley,
New York.

97



Holland, B. S. and Copenhaver, M. D. (1987): An improved sequentially rejective
Bonferroni test procedure, Biometrics, 43, 417-423.

Holm, S. (1979): A simple sequentially rejective multiple test procedure, Scand. J.
Statist., 6, 65-70.

Kendall, M.G. and Stuart, A. (1979): The Advanced Theory of Statistics, Vol. 2
Inference and Relationship, 4th ed., Charles Griffin, London.

Keuls, M. {(1952): The use of the ‘Studentized range’ in connection with an analysis
of variance, Euphytica, 1, 112-122.

Knuth, D. E. (1981): The Art of Computer Programming, Vol. 2 Seminumerical
Algorithms, 2nd ed., Addison-Wesley, U.S.A..

Marcus, R., Peritz, E. and Gabriel, K. R. (1976): On closed testing procedures with
special reference to ordered analysis of variance, Biometrika, 63, 655-660.

Matsuda, S. (1988): Nonparametric T-method in two-way layouts, J. Japan Statist.
Soc., 18, 149-155.

Matsuda, S. (1991): Multiple comparison procedures on non-homogeneity, A Study of
Methods of Toxicological Data Analysis for the Risk Assessment ‘ The Institute of
Statistical Mathematics Cooperative Research Report 27, 41-50 (in Japanese).

Matsuda, S. (1993): Multiple comparison procedures for one-way layouts with
unequal variances, Nanzan Management Review, 7, 397-413 (in Japanese).

Matsuda, S. (1994): An improvement of the preliminary test of multiple comparisons
for one-way layout, Japanese J. Applied Statist., 23, 129-145 (in Japanese).

Matsuda, S. (1997); Multiple comparison procedures based on a loss function,

To appear Nanzan Management Review, 11 (in Japanese).

Matsuda, S., Fujimoto, T. and Yoshimura, I. (1990): A robust quadratic discriminant

function using a shrinkage estimator of variance matrix, Japanese J. Applied

Statist., 19, 33-51 (in Japanese).

98



Matsuda, S. and Nagata, Y. (1990): Definition of powers in multiple comparisons, and
features of several procedures based on them, Japanese J. Applied Statist., 19,
93-113 (in Japanese).

Mehta, J.S. and Srinivasan, R. (1970): On the Behrens-Fisher problem, Biometrika, 57,
649-655.

Nagata, Y. (1992): Nyumon Tokei Kaiseki Ho (Introduction: Statistical analysis
methods)”, Japanese Union of Scientist and Engineer (In Japanese).

Newman, D. (1939): The distribution of the range in samples from a normal
population, expressed in terms of an independent estimate of standard deviation,
Biometrika, 31, 20-30.

Patnaik, P.B. (1949): The non-central - and F-Distributions and their applications,
Biometrika, 36, 202-232.

Peritz, E (1970): A note on multiple comparisons, Unpublished manuscript, Hebrew
University, Israel.

Ramsey, P. H. (1978): Power differences between pairwise multiple comparisons, J.
Amer. Statist. Assoc., T3, 479-485.

Scheffé, H. (1953): A method for judging all contrasts in the analysis of variance,
Biometrika, 40, 87-104.

Sen, P. K. (1969): On nonparametric T-method of multiple comparisons in randomized
blocks, Ann. Inst. Statist. Math., 21, 329-333.

Shaffer, J. P. (1986): Modified sequentially rejective multiple test procedures, J. Amer.
Statist. Assoc., 81, 826-831.

Shirley, E. A. (1977): A nonparametric equivalent of Williams’ test for contrasting
increasing dose levels of a treatment, Biometrics, 33, 388-389.

Sidak, Z. (1967): Rectangular confidence regions fof the means of multivariate

normal distributions, J. Amer. Statist. Assoc., 62, 626-633.

99



Steel, R. G. D. (1959): A multiple comparison rank sum test: Treatments versus control,
Biometrics, 15, 560-572.

Steel, R. G. D. (1960): A rank sum test for comparing all pairs of treatments,
Technometrics, 2, 197-207.

Toda, H. (1967): An optimal rational approximation for normal deviates for digital
computers, Bull. Electrotech. Lab., 31, 1259-1270.

Tsubaki, H. (1989): Various Problems in Multiple Comparisons ‘ The Institute of
Statistical Mathematics Cooperative Research Report 18’, §7 (in Japanese).

Tukey, J. W. (1953): The Problem of Multiple Comparisons, Mimeographed monograph.

Welsch, R. E. (1972): A modification of the Newman-Keuls procedure for multiple
comparisons, Working Paper 612-672, Sloan School of Management, M. I. T, Boston,
MA.

Yamauti, Z. (1972): Statistical Tables and Formulas with Computer Application,
Japanese Standards Association (in Japanese).

Yoshida, M. (1988): Exact probabilities associated with Tukey’s and Dunnett’s multiple
comparisons procedures in imbalanced one-way ANOVA, J. Japanese Soc. Comp.
Statist., 1, 111-122.

Yoshida, M. (1989): Tukey’s multiple comparisons procedure in imbalanced one-way
ANOVA: Evaluation of Tukey-Kramer’s approximate method based on the exact
calculation, Japanese J. Soc. Comp. Statist., 2, 17-24 (in Japanese).

Yoshimura, 1. (1987): Dokusei - Yakko data No Tokei Kaiseki (Statistical Analysis of
Tozicological and Pharmacological Data), Scientist Co. (in Japanese).

Y osﬁjnlura, 1. (1989): Various Problems in Multiple Comparisons ‘ The Institute of

Statistical Mathematics Cooperative Research Report 18, §1 (in Japanese).

100



