|

) <

The University of Osaka
Institutional Knowledge Archive

Computation-Universality, Synchronization and
Title Self-Reproduction in Reversible and Conservative
Cellular Automata

Author(s) |S#, B=

Citation |KPrKZ, 1999, {BEt:m

Version Type|VoR

URL https://doi.org/10.11501/3155648

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

X706

Computation-Universality, Synchronization
and Self-Reproduction in Reversible and
Conservative Cellular Automata

Katsunobu IMAI

December 1998

Computation-Universality, Synchronlzatlon .
and Self-Reproduction in Reversible and
Conservatlve Cellular Automata

Katsunobu IMAT

December 1998

B

ﬁ%%?ﬂ{l,%%ﬁﬁ,DNA%ﬁ&E@%ﬁﬁ@ﬁﬁﬁ%&Béhfw6%@®
%(d,%Wﬁ#?UTt&&%EKE%ﬁwowTBD,ﬁ%wﬁ??ﬁ4z&mﬁ&
5ﬁﬁ®#ﬁ&ﬁib6hfwé.it,ﬁ%@NwS?N4xuﬁwf%,%ﬁka
%&wlfvbw#?UT<®%¥ﬁﬁﬁ&L,ﬁ%ﬁw6nfwél5&%E@%
DRRL R 2 2L EDRTVD. 20:0%F v) 7 & LTOWEOWEIGHE + Kbk
LIBHET N OBMESEE ENE L Ik oTETV A, 20T AHREIC £ ¢
Wﬁﬁﬁ%?WﬁﬁﬁﬁB%%b5l5K&of§t.tti@%%ﬁﬁtﬁwfﬁﬁﬁ
ﬁﬁﬁﬂﬁ?&b,ﬁﬂﬁ%%wr&@ﬁﬁ@ki—v%%ﬁ@kﬁ%#bf,%@ﬁﬁ
BRETHENLZOOL L THE SR 2ITTE S 2w,

%@15&ﬂﬁ&%ﬁ9x%A®%?w@UtoaLf,ﬂﬁkw-ﬁ—bvbyKM)
ﬁ&%.ﬂﬁCAku,E@ﬁﬁf%ﬁf1X%vfﬁoﬁ%m~ﬁmﬁﬁbﬁééi5
&CA?&%.:@ﬁﬁ@tb,ﬂﬁCALf@E%@N&—7@&&¢%ﬁtuﬁ%ﬁ
'ﬁactmééﬁ,%nm@##bef~ﬁ®CAﬁﬁ,%ﬁﬁ%ﬁ%ﬁ?é%@ﬁﬂ%
T2, LoL, BROLHIERS T DS SATWR V. S5 IZHERD CA T
FROWRDATOR TV DR FREEC FRER Y, kb FROBEEIZOWTIZIF LA
ERbNTwrdot:, FEBMEOEBUCIMED LN OBEASFTRTH 575, W
- CALTE, HARESLHREEOLRLEVEW S B S 132 " AAEHE TR
ARG EHREETLE . TOLDERD LN OFBIEL EBT 2 72011348
ROCA LEBRLR 7 /U —F P PBETHLEEL LN, DI LIBFEEETL
&k@Tﬁﬁﬁﬁ&kszﬁﬁom%ﬁ%%ﬁﬁk(H%%tor)mﬁb,Jﬁ%%,
oy R &#mﬁf&%ﬁﬁkﬁrfét%xanfwé

| %uﬁﬁﬁiﬁu,WECAKEH%%ﬁ%ﬁOH%%;%ﬁﬁ%ﬁ,ﬁ%ﬁﬁ,ﬂ'
y— Y REMEL L TOACHMBIOBEY bffof. $FEEREEI oV 2E
L, SERPEAMENTOREF N L) b REROS7% v 2 KTEOFEF T CA 27 L
72, RICHEROFTME CA DFMIEE L THIRS LT & 72 —F4HREE T3k CA k
VT%ﬁTétbG%#%TL KRS R WL 72, & O ICHBREEN R T Kk

LZZCAIRKBZEFNVELTY y MEFI: CA % JL3R L 72 Number-Conserving CA %32 =

KL, ZOLETCO—FHEHBBEBRL 7. it;Tﬁ/xTAkbﬁémﬁﬁﬁmﬁwﬁ
BIINTA2T7Su—FL L, 2£mt3kmjﬁ§ﬁkbﬁ%%EXﬁeXAkﬁo<
ﬁaﬁﬁtw-%—FVFVﬁ%mﬂﬁﬁéézk%%Lt.

B1E, F2RICBNT, MEBFEL LTI, THCA KL OVTOEEHELENOEE
ERERICOVTHNS. | | |

HIBETIEEARML AT 2 SRBOTH CA 2 BEL EETT. TFTHEL -
A= b7 OREHEECOVT, 2OERMICHCON TV ZEEREE & b IoH
ET%.ﬁﬁﬁ%&ﬂﬁ%w’i—bvbytbfu,MmMWKlé%?w¢Mmmh

Ueno iC L 2530&IE N - F =+ < b ¥ (PCA) Z V= EF AL N TV, Margolus
| ETNVRIBERREEERFOCTNVTH 572728, Morita & Ueno i3 53&IL 7o/t — b %8¢
- DODDERD CADYT 75 AL RETI LN TE S PCAF AT 16 REDEF L %

WL LAL, FECRIABROEELH VLI LIC L) SREDHEH e
VERBL, REBASLIHBRTETHSZ L &RT. Thid PCA OBM AT v 72
%ﬁm&ﬁméﬁo%?w@¢ﬁm%$ﬁ%ﬁw%@f&&.ffmﬁ%wzﬁ%ﬁ%
ﬁﬁ%%?»%%&Ltﬁ%%ﬁL,%n%s&%uﬁ&#%.%&LtCAﬁﬁﬁﬁ%
TharIlid, FRETEREHETFTHS Fredkin 7" — b D AMTEMEH BT X 2 =
EIZEoTREN S,

.%4$TH,CAL@E%%E@EK%&%?W&LfﬁanTW6~ﬁ%E%%%
& Y BV, ¥ CA % Number-Conserving CA I~ 3} 5 EHTT etk % Ewmd b, IR
ROFRIFHZEN - 3 — b= b YO LO—FEHRIEICOWTEBIL , —AF 5/ RRE

‘ﬁﬁ%&CAﬁiﬁfétwm%#uomrﬁﬁia.::vuﬁ%®$~®%ﬁﬁﬁﬁ

5% BEIMRT IRV L ERL, WHCAICBY 2 —FEHERENL T icek

T, ZOREOTT, Minsky &0 3n I 2T < 99 REME 1 KTTE PCA 12
Lo TRELRRERT. S 2RTOBPEDMP, L Y&k AL+ 2|0 EDN
VL= a Y20 TOFERSRT. KIC Number-Conserving CA kic 51} 2 —F 55

- ME%%E%75. %7 Number-Conserving CA DEXGLEBEIIOVWTEEL, 20+
?@“ﬁﬁﬁﬂﬁ@%ﬁ:k’)‘/"cl_’\Z) ZLT, EBIC Number-Conservmg CA Lo

PHERITETH 52 L4273,
%5&1@1 Mvn‘fﬁ”“l%ﬁ'caaiéﬁffé 8 KDL - 7} sl 4 SRs ¥R

T 5. Z i Langton O 8 IKFEH CHHl CA 2TV TV 279, Eﬁ’EB’O)ﬂ":{k%#&Bﬁ P
THIEIZLY, MELBEIC bbb HBEOR WHIE A B = X Ak MM R

%EL'C\A% 72, SRy DHTEBR AN =X MBI TR E FEANEL 272010
Bebhad, E6188 Y ORBEFOMHMEICLIRHATE S S LEBRNRD. EbIT,
SRy EAM L MR ERo-F I CIRTHETEZ ki’TL HZERICBIT S

AT A /E’E‘E‘@f’b@#ﬁ&k&b?% EERY.

Acknowledgements

This work was produced with co-workers Kenichi Morita, Masanori Oglno Talchl
Adachi, Katsunori Chikamune, Shinichi Furusaka, Takahiro Hori, Kenji Sako, Yukio Mat-
suda and Kenji Fujita.

I wish to express my gratitude to Shunsuke Sato, Kaoru Nakano and Kunihiko Fukushlma
at Osaka University for their useful comments and suggestions as superVISers

I would thank Jaques Mazoyer at ENS Lyon, Maurice Margenstern at LU.T. de Metz
and Hiroyuki Aga at SONY Co, Ltd. for their useful comments and disscusions.

I would also thank Chuzo Iwamoto and all members of Knowledge Engineering Labo-

ratory for their support.

Almost all simulations are performed by Macintosh Common Lisp and its graphic li-
braries. These systems are maintained by engineers at Digitool, Inc. and John Wiseman

at Neodesic, Inc.

Xy

Contents

1 Introduction

2 Cellular Automata

2.1 Definitions e e R RTI
2.2 Computation- and Construction-Universality of CA L.
2.3 Firing Squad Synchronlzation Problem
231 3n-timeSolutions
2.3.2 Minimal Time Solutions e e e e
2.3.3 Higher-Dimensional Cases e
2.3.4 Standard Synchronizing Condition (SSC)
24 Reversible and Conservative Cellular Automata
24.1 CA and Conservative Constraints | |
2.4.2 Margolus Neighborhood oL
243 Partitioned CA (PCA), o AU

3 Computatlon-Umversal Two-Dlmensmnal Triangular Reversible CA
© 3.1 Defimtlonof’I‘nangularPCA
32 lG—state'IhangularRPCA Cui e e e e,
3.3 8-state Triangular RPCA o Ce e P
3 3 1- A Computation-Universal 8—sté,te Model

4 Synchromzatlon on Rever31ble and Conservative Cellular Automata ‘~
4.1 Reversible Solutions for FSSP e
4.1.1 FSSP Conditions for Rever51ble Solutions e .
4.1.2 3n-time Solutions e e
4.1.3 2*-divided Solutions on Reversible PCA

4.14 Minimal Time Solutions and Reversibility

i

10
11
12
12

13

13
14
16

23

23

25
27
28

4.1.5 Two—dimensional Cases , 58

416 Summary e 69
4.2 Number Conserving Solutions for FSSP 69
4.2.1 Number-Conserving Partiti(')ned Cellular Automata 69
4.2.2 FSSP Conditions for Number-Conserving Solutions 70
4.2.3 A Solution on Number-Conserving PCA 71
5 Self-Reproduétion in Reversible Cellular Automata . 75
5.1 Self-Reproduction in é Two—Dimensiolnal‘RPCA 75
5.1.1 Definitionof SRg E S 5
5.1.2 Signal Transmission on aWire. 76
518 AWOIm 76
9.1.4 Self-Reproduction ofa Worm 78
9.1.5 Self-ReproductionofaLoop 79
9.1.6 © Controlling the Position of Daughter Loops in SR . e 79
5.2 Self-Reproduction in a Three-Dimensional RPCA e 85
5.2.1 An Extension of SRg into a Rotation—Sy_mmeric Three-Dimensiona.l
RPCA S D 85
9.2.2 Three-Dimensional Self-Reproducing RPCA (SRy) 86
9.2.3 Controlling the Position of Daughter Loops in SRy 87
6 Conclusion | ' o 89

A Transition rules for 2n + 2-time solution 99

B Transition rules for SR i (o L 103 :

C Transition ’rules for SRy : | ‘ i "107_

ii

Chapter 1

Introduction

Year by year, the number of transistors contained in a MOS LSI becomes larger and
larger, chip size and power dissipation smaller and smaller, and the number of electrons
as a carrier of information goes to less and less. And it is said that one-bit must be
represented with only dozens of electrons in near future. So many researchers try to find
a break-through for this problem and several approaches such as single-electron devices
and the adiabatic CMOS [5] are proposed.

Recently several non-electron based computing models, such as quantum computing
[17] and DNA computing [2], were proposed and these models turned out to have pos-
sibility to achive higher computing efficiency. In such Computing models which are con-
sidered as computing mechanism of the next generation, information is closely related
with substances as carriers. And it is considered that different approaches rather than

that of traditional logical devices are needed. For example, in traditional electrical dig-

ital circuits, when a bit changes its value, electrons return back to power lines‘ and they"' o

are consumed as heat. But this inevitably causes energy dissipations. Then the idea of
- CMOS are used, and moreover in the adiabatic CMOS model, conservation of 1nformat10n
,carners have an 1mportant roll [5] In quantum computing, every computing stages are
represented by unitary transformations and it is very difficult to place preferred initial -
patterns and advance computing usmg only with unitary transformations [17, 76]. So
importance of reversible and conservative computmg models come to be widely noticed.
‘A reversible cellular automaton (RCA) is one of the reversible computing models. Its
global function is injective and every configuration has at most one predecessor. Intu-
itively, it “remembers” the initial configuration and one can reconstruct its initial config-

uration from a configuration of any time. So reversible property is a strong constraint and

1

one cannot genérate nor extinct signals freely. Hence RCAs had been considered not to be

computation-universal, i.e., they cannot simulate deterministic universal Turing Machine.

But in late 70’s to early 80’s, cellular automata are intensively studied again. Toffoli |
“showed that there exist computation—univeréal RCAs [79] and an important reversible
model, the BBM cellular automaton (BBMCA) was introduced by Margolus [47]. It is
computation-universal and it has a direct relation with a physical reversible and conserva-
tive computlng model (the Billiard Ball Model) [21, 19]. The Billiard Ball Model (BBM) ‘
has an important aspect that it is possible to compute any function without dissipation
of balls as garbages. Once von Neumann conjectured that computing without erasing
information i is impossible and erasing one-bit infomation must dissipate at least In2 kT
joules of energy. But the BBM is a conservative model and it is possible to construct
a computer that caﬁ computes with no energy dissipation in principle. It is also used
for hydrodynamic modeling by physicists (18], and the BBMCA is regarded as one of
the most important contact point between physical phenomena and analysis of reversible

computing.

So in this paper, we have studied reversible and conservative computing processes by
RCAs. We show simple RCAs which has computation-universality and we also construct

RCAs which have synchronizing ability or self-reproducing ability.

In chapter 3, we discuss how simple RCAs have abilities of univérsal-computation. We
show an 8-state computation-universal RCA model. This model is an improvement of
Morita and Ueno’s 16-state RCA models [56).

As mentioned above, it is very dlfﬁcult to place a preferred mltlal conﬁguratlon andstart

‘computing on reversible and conservatlve computing models. This problem is descnbed
as a restriction of generatlon and extinction of signals in RCAs, and synchromzlng signals
and distributing specific patterns on RCAs are also quite difficult. So in chapter 4.1,
we discuss synchronization problem of 81gna.1s in RCAs. We have studied the “Firing
squad synchronization problem (FSSP)” in RCAs. This is a btraditional synchronizatioﬁ
problem for usual CAs and widely studied [84, 9, 42, 48]. We show several solutions to
the FSSP on RCAs. Due to the reversibility constraint, some FSSP algorithms can’t |
be used. But 3n and 2n + 2-time solution can be constructible. In tms chapter, we
also introduce the number-conservmg property as a conservation constraint and we also

construct number-conserving solutions to the FSSP.

In chapter 5, we consider distribution problems of preferred initial patterns on RCAs.
We construct a two-dimensional self-reproducing RCA (SRg) based on a shape-encoding

mechanism and this model is an approach to the problem. We also extend it into a
three-dimentional RCA.

Chapter 2

Cellular Automata

2.1 Definitions

‘Definition 2.1.1 A deterministic one-dimensional cellular automaton (CA) is a system
defined by

A = (Z’ Q’N’ (pA7 #)’

where Z is the set of all integers, Q is a non-empty finite set of internal states of each
cell, N = (my,my,---,my) (m; € Z) is a neighborhood index, ¢, : Q¥ — Q is a mapping
called a local function, and # € Q is a quiescent state which satisfies oal#, -, #) =
#. A CA is called a three-neighbor CA if N = (—1,0,1), and in this case, it can be
denoted by (Z,Q, p4,#). A three-neighbor CA is also said to be a CA with radius 1, i.e.,
neighborhood index of a CA with radius r is (=r,---,0,-- 7).

A configuration over Q is a mapping ¢ : Z — Q. Let Conf(Q) denote the set of all
configurations over @, i.e., Conf(Q) = {c|c: Z — @}. The function &4 : Conf(Q) —
Conf(Q) defined as follows is called the global functzon of A. .

LA()(E) = paleli+m),cli-+ma), -, eli +m))

We a.lso define a two—dlmensmnal CA. Neighborhood indices of two-d1mens1onal CAs
are more complex than one—dlmensmna.l cases. So only two neighborhood mdlces, von

- Neumann nezghborhood and Moore nezghborhood are often used (Fig. 2. 1)

Definition 2.1.2 A deterministic two-dimensional cellular automaton(CA) w1th von
Neumann neighborhood is defined by

= (Z2"Q7 Pa, #) .

5

where Z is a set of all integers, Q is a finite set of states of each cells 04 : Q% > Q
is a mapping called a local function, and w4 € @ is a quiescent state which satisfies

Cal#h,#) = #. | ~ | |
A configuration over Q is a mapping ¢ : Z2 — Q. Let Conf(Q) denote the set of all
configurations over Q, i.e., Conf(Q) = {c|c : Z? — ®@} The function &, : Conf(Q) -

Conf(Q) defined as follows is called the global function of A.

V(:L‘, y) € Z2a q)A(c)(z’ y) = ‘pA(c(xa y)a C(.'L‘, y +‘1)7 c(a: +1, y)a C(.’E, Y- 1)’ C(.’II -1, y))

A CA with Moore neighborhood is defined in the same way. Its local function is defined
as ¢4 : Q° — Q and its neighborhood index is depicted in Fig. 2.1.

von Neumann Moore

Figure 2.1: Typical neighborhood indices of two-dimensional CA

Throughout this paper, we assume two—dlmensmnal CAs have von Neumann nelghbor-
*hood unless spec1ﬁed otherwise.
In two-dimensional CAs, there are directions in its cellular spaces. So we can cons1der
following isotropic propertles
A is called a rotation-symmetric CA 1ﬁ' (i) hold.
(i) Vm,a,b,c,d,m' € Q
if o(m,a,b,¢,d) = m' then ¢(m,b,c,d,a) = m'
A rotation—stetric CA is also called reﬂection-symmétric iff (ii) holds.
(ii) Vi, a,b,c,d,m’ € Q
if ¢(m, a,b,c,d) = m' then p(m, a,d,c, b) =m’

6

Intuitively, on a two-dimensional reflection-symmetric CA, the plane has no distinc-
tion of between two surfaces. In one-dimensional case, reflection-symmetry and rotation-
symmetry are the same notions. Moreover, higher-dimensional cases such as three-
dimensional CAs can be defined in the same way. Of course, their isotropic properties

become more complex:

2.2 Computation- and Construction-Universality of
CA

\In this section, we briefly describe the history of computation- and construction-universality
of cellular automata.

A deterministic CA A is said to be computation-universal iff A can simulate any
deterministic Turing Machines (TM), and A is said to be intrinsically computation-
universal iff it is capable of simulating any deterministic CAs of the same dimension.
Althoﬁgh intrinsically-universal is stronger notion, we handle only computation-universal
CAs through out this paper.

In 1950s, von Neumann showed that his 29-state cellular automaton has an ability to
self-reproduction, like a organism [66]. His CA has an ability to simulate a universal TM
and thus it was the first computation-universal CA. ;

He used the following strategy to construct his CA. -
~ (A) logical universality

(B) constructibility -

(©) construt:tion-universa.lity

(D) self-reproduction

(E) evolution 7

He used a tape as “gene” for his logical organism, and a universal constructor interpret
its tape and construct its copy. His strategy antl model were outstanding because the

_structure of DNA had not been specified in the era. _ '

Anyway he ﬁlaced computation—universality as the basic property of his logical organism '
because he want to exclude trivial self-reproduction such as crystal growth. And he
regarded his organism as an integration ’of construction-universality and computation-

universality. But von Neumann’s model was too complex, so after it was widely known,

7

- many smaller state models were reported. Codd [16] showed an 8—state model and Serizawa
[73] reported a 3-state model. Codd also proved that any 2-state von Neumann nelghbor
CA cannot be computation-universal [16], thus 3-state is the smallest in two-dimensional
von Neumann neighbor CAs. But increasing the number of neighbors CAs get more
ability. In fact, a 2-state Moore neighbor CA can be computation- and construction-
universal; an example is the game of Life [23, 13]. The relation between the number of
neighborhood size and ﬁniversality, i.e., the universality of 2-state 6,7,8-neighbor CAs has
not been studied by now. .

Codd, and Serizawa’s CAs are said to be computation- and construction;universal,
but notions of construction-universality and self-reproducuction are rather ambiguous
than computation-universality. So several researchers began to propose CA models which
has only computation-universal or an ability to self-reproduce. Langton thought that
computation-universality is not inevitable for self-reproducing organisms and he showed
a simple 8-state self-reproducing CA (Fig.2.2) [44]. He posed a criterion only requiring
that the self-reproduction should be activly controlled by a mother structure by processing
a genetic’ code of itself in two manners. It is “interpreted” to make a physical shape of
“daughter structure, and just transferred into the daughtef “uninterpreted”. It is possible

to avoid trivial self-reproduction by this criterion.

2
212
212
212
272
2222222 2
2111117712
2 22222272
242 2 2
212 212
2 2 272
242 2 2. 2
2122222212 212
2.71 71 72 212
, 22222222 212 :
2222222222222 2222222 2 22222223 -
1117 17 17 17 2 2111117 12 27 17 14 2
22222122222212 2 22222272 2122222212 -~
2 2 272 242 2 2 2 27777242
272 2 2 212 212 272 2 2
212 212 2 2 272 212 212
2" 2 242 242 2 2 2 3 212
27222222 2 2122222212 2722222212222
211111 412 2 71 71 72 21 71 71111111
. 22222222 22222222 222222222222

Figure 2.2: Langton’s Loop(t = 300)

After that, several variants and simplified models appeared [14, 70]. For example,
Byl [14] showed a 6-state CA model in which a configuration consisting of 10 cells can

self-reproduce, reducing both the numbers of states and cells.

8

Next we consider computation-universality of two-dimensional CAs. Their computation-
universality can be proved by embedding universal logic elements. There are several sets
of universal logic elements’ [51]. For example, computation-universality of the game of
Life was proved by constructing AND, OR, NOT, and fan-out gates on its cellular space.
Sequences of glider patterns were used as signal carriers and glider generators found by .
Gosper and Speciner et al. [24] act as “batteries” and “clocks”. Finally it is proved-
that the Life can simulate a universal counter machine [13, 68]. Among the 3—state von
Neumann neighbor models, Serizawa’s model also uses a special type of “spaceshlp” for
signal carriers and one can construct small state computation-universal CAs by using this

approach.

In the case of one-dimensional CAs, it is hard to consider to “wire” any logic circuits,
and it is impossible to take a constructive approach to prove its cemputation—universality.
Proving universality of a one-dimensional CA, direct simulation of a universal Turing
Machine are usually used. As a result, the number of states are apt to erllarge. Currently,
7-state von Neumann neighbor (radius 1) universal CA is known [45]. But even smaller
state (such as 3,4,5-state) CAs can generate variety of configurations and Wolfram suggests
that the class 4 CAs can be computation-universal. So 4 or § state universal CAs might
be possible [86]. In one-dimensional CAs, the number of neighbors is also important :'for
its computing ability. 4-state universal CA with radius 2 is known [45]).

- To the contrary, similar to the situation of proving the determinisity of Turing Machines

with small tape-symbols and states, ‘proofs of decidability of small state CAs are very
" difficult. | “

2.3 ,' Firing_Squad Synchronizatiorr‘Problemf -

" The Flrlng Squad Synchromzatlon Problem (FSSP) was’ ﬁrst devised by Myhill and was |
introduced by Moore[52] This is the problem to construct a one-dlmensmnal three- '
neighbor cellular automata of arbltrary finite length such that one of the end cell (general) ‘
makes all the other cells (soldiers) be in a particular state (firing state) at a certain time. |
Although Myhill thought that the notion of FSSP is useful for synchronizing all parts of
a self-reproducing machine, the FSSP itself has been solely studred by many researchers

and many apphcatlons are developed by now.

9

'

t=tkm)\ F | F | F|F|F|F|F|F|F|F

Figure 2.3: Firing Squad Synchronization Problem

2.3.1 3n-time Solutions

At first, it was thought that there is no solution to this problem. But it was first solved
by Minsky and McCarthy [51). They constructed a’solution' synchronizing n cells in 3n
steps using a divide-and-conquer method. Until now, a 7-state solution based on this
algorithm has been known by Yunes [88].

The outline of 3n—time solution is shown in Fig. 2.4. Reflected signal of velocity 1
meets a signal of velocity 1/3 at the center cell, and the problem is divided into two

sub-problems.

(a) nis odd (a)niseven

Figure 2.4: Geometries of 3n-time solution -

As depicted in Fig. 2.4, the phase of collisions of velocity —1 and 1/3 signals varies as

10

the number of cell is even or odd. If the number is odd, two cells are changed into new -

general cells.

2.3.2 Minimal Time Solutions

Minimal time solutions are completely different from 3n-time solutions. Goto proved that
2n — 2 steps is the minimal steps for the FSSP, and he gave a niinimal time solution to
this problem [29]. Then Waksman [84] and Balzar [9] reduced the number of states. At
present 6-state minimal time solution has béen given by Mazoyer[48]. The outlines of

Waksman-Balzar type and Mazoyer‘ type solutions are depicted in Fig. 2.5.

(a) Wal Balzer type soluti (b) Mazoyer type solution

Figure 2.5: Geometries of minimal time solutions

In Waksman-Balzar solution, generals must generate ‘synchronizing signals in both di-
rections. But in Mazoyer’s solution, generals genérate signals only in one direction, and
thus he sucbeeded to reduce its state. It has been proved that 4-state is insufficient
to construct solutions. But existence or inexistence of 5-state solution is still an open
problem. '

FWaksman,’Balzar and Maiojer’é solutions use recursive generation of slower signals to
synchronize, but Goto’s original solution did not ﬁses recursive signal generation. Unfor-
tunately, Goto’s solution ‘was not published, and its existence was only known by Moore’s

comment [52]. Lecture notes [28] are said to exist, but nowadays no researchers have a

11

chance to see it and Goto himself does not have it. There are also a short notes written
in Japanese [29] referring to his solution exists. Although it is too short to “decode” his
complete algorithm correctly, recently Umeo [83] reconstructed Goto’s solution. Further
‘Mazoyer [50] constructed another solution based on the algorithm of Goto’s solution. In
this paper, Mazoyer’s algorithm is used to construct our reversible solution in section
4.14.

2.3.3 Higher-Dimensional Cases

In the two-dimensional case, Rosenstiehl [72] showed a solution for any connected figures.
Shinkahr [75] also showed that solutions to FSSP on two- and three-dimensional arrays.
Some special classes of figures can be synchronized shorter time, and Kobayashi [42] howed
some special classes of figures synchronizing in linear time. Nishitani [67] also reported a

faster linear time solution. Until now, many variations of FSSPs were studied.

2.3.4 Standard Synchronizing Condition (SSC)

In this section, we define ‘the Firing Squad Synchronization Problem formally, i.e., we
define the Synchronizing Condition for one-dimensional three-neighbor CAs. In contrast
with traditional model of the FSSP (i.e., n connected automata are considered for firing),
we consider an infinite length one-dimensional CA and n automata are embedded inﬁo
the CA.

Let A = (Z Q,(—1,0,1),04,#) be a three-neighbor CA. A standard synchromzmg ‘

condition SSC for A is stated as follows.

[SSC] There exist three distinct states 9,8, f € Q@ — {#} that satisfy the following (g, s

and f correspond to general, soldier, and firing states, respectively).

L (pA(#, S, 8) =8, (PA(S, s, 8) =&, and QOA(sa S, #) = 8.

2. Let ¢ be a configuration defined by

: g ifxz=1
Pa)={ s ifz=2---,n
frzr<O0orz>n+1.

12

Then, there is a function ¢; : Z, — Z,, where Z, is the set of all positive integers, that

satisfies

VneZ, Nz eZ ,

A<z <n= (™)) =) A (@ <1Vz >n) = 4P (,™)(z) = #)),
and
VneZ,VieZVre Z(O <i<ty(n)= (<I>z (c‘"))(:v) # f))-

-0

If A satisfies the above condition, we say A is a solution to the FSSP under the syn-
chronizing condition SSC. The configuration c™ is called an initial configuration for the
FSSP, where cells c{"(1),c{™(2),---,c{™(n) should be synchronized. The function t;(n)
is called a firing time functzon which gives the steps to synchronize these n cells. F‘urther
() _

i =] 40 (™) is called a firing configuration.

2.4 Reversible and Conservative Cellular Automata

2.4.1 CA and Conservative Constraints

Reversibility and conservativeness are very important viewpoint when we use cellular
automata for modeling physical phenomena.
A CA A is said to be reversible (or injective) iff its global function ® 4 is one-to-one.
Once Burks conjectured that any reversible cellular automata would not be computation-
universal But on the process of finding non-trivial RCAs, several techniques for construct-

ing RCAs were developed [80] and Toffoli ﬁna.lly showed that an arbitrary d-d1mens1onal

zrreverszble CA can be embedded in a d+1- dlmensmnal RCA, thus RCA can be computatlon- o

“universal [79]. After this study, Margolus showed that hlS s1mp1e revesible BBMCA can
directly embed the BBM (thus computatlon-umversal) [47]. . o
In general, the revers1b1hty is defined as a property of global functlon of a CA and
thus it is very difficult to'determine the reversibility from its local function. So 1t is
- also very difficult to give transition rules for a non-tfivial RCA. In one-dimensional CAs, }

- there is an algorithm to determine their reversibility from the transition rules [4], but in
two-dimensional cases, their reversibility is proved to be undecidable [40, 41] Hence itis

hard to find a general method to construct rever31ble CAs. -
In this paper, we use a partitioning techmque to construct RCAs. In the following

sections, we briefly describe computation-universal RCAs based on this technique.

13

2.4.2 Margolus Neighborhood

Conservative Logic and BBMCA

As mentioned in section 2.2, computation-universality of two- or higher-dimensional CAs
can be proved by embedding universal logic elements. But on RCA, erasing mformatlons
is mhlblted and such irreversible logic gates can not be embedded directly. So when
Margolus proposed his two-dimensional computation-universal RCA (BBMCA) [47], he
realized its universality by embeddlng Fredkin and Toffoli’s Billiard Ball Model (BBM)
[21]. The BBM is a physical model of the conservative logic in which logical operations are
performed by elastic collisions of balls. They showed that a 3-input 3-output reversible and
bit-coﬁserving Fredkin gate (F-gate) can be embedded in their BBM, and combining F-
gates and unit delays, any logic circuits can be constructed on the BBM. On the BBMCA
and Morita and Ueno’s 16-state RPCA models, the BBM is simulated foxj showing.their
computation-universality. First we make a brief description about conservative logic and
BBM. |

A Fredkin gate (F-gate) is a basic element in the theory of Conservative Logic proposed
by Fredkin and Toffoli [21] (This gate was first introduced by Petri, but the relation with
conservative logic was first discussed by Fredkm and Toffoli). It is a reversible and bit-
conserving loglc gate and simply switches its two 1nputs p’ and ‘q’ by the input ‘¢’ (Fig.
2.6). They showed that AND, OR, NOT, and fan-out gates can be constructed by an-

C - > C
D> — X ='Cp+Eq
q —» —>-y = Ep+cq

Figure 2.6: A Fredkin gate

F-gate (Flg 2. 7) Because of rever81ble and blt-conservmg property, some constants e

must be put from the- source lines and some garvage 51gnals should be generated and
come out along the sink lines deplcted in Fig. 2.7. Usmg F-gates and unit delays any
m-input n-output function (Fig.2.8 (a)) can be embedded in a conservatlve logic circuit
with constants and garvages deplcted in Fig. 2. 8 (b) ‘Then they showed that such garvage
signals can be “recycled” by the diagram in Fig. 2.9.

14

_F

I/ x\\ > x >

‘ i

\ ! . AP A N
A 2 g x*y
input oleut

L —1) y —————> _]
(::’Q' _’E :s;nk Ty x
AND OR

X x X
NOT FAN-OUT

Figure 2.7: Construction of AND, OR, MOT, FAN-OUT gates by Fredkln gates

C ——> —— g
_ h , h_—l—m-n
x> f ey F
0 T

(@) (b)

Figure 2.8: Any function can be embedded into a conservative logic circuit

- They also introduced a switch gate (S-gate) and its inverse gate (Fig. 2.10). An S-gate

is a 2-input, 3-output reversible and bit-conserving logic 'gate. An S-gate swii;ches the -

input z by the control signal ¢. They showed that S-gates can be directly embedded in
 their BBM. : |

Fig. 2.11 shows the realization of an S-gate by balls. Using two S-gates and two inverse
S-gates, an F-gate can be realized (Fig. 2.12). So any function can be computed without
dissipation of balls as garbages. I.e., the BBM is a conse’rvative/ model and it shows that
it is possible to construct a computer that can computes with no energy dissipation in

principle [11, 12].

15

C —F> - g . > g ——> - C
h h+m-n h+m-n -1 h
F — F
X =—r—pp +>y+‘> +‘>y+> i X
m n- n n n m
00—+ § >y
__________ !
1 - - § : Yi—> — Vi
n n
L 0—» S; Vi :
| -
[11— yi |

C-» - C C ~» — C
— CX N

X = —> y+2
- CX VA

Figure 2.10: An S-gate and an inverse S-gate

Margolus introduced the BBMCA that can directly simulate the BBM. The BBMCA
has alternating neighbor (Margolus neighbor) that varies depending on the parity of time
depicted in Fig. 2.13. At the even time, grid of thick lines is used and thln grid is used ‘ :

- at the odd time. Fig. 2.14 is a realization of a wall and reflection of “balls” -

2.4.3 Partitioned CA (PCA)

Definition of Partitioned CA

~Althou.gh the BBMCA is a simple RCA, it has a norr-uniform neighbor. So Morita and
Ueno proposed a different type of 4-neighbor 16-state computation;univérsal RCA [56].
They introduced partltloned cellular automata (PCA). PCA is regarded as the subclass of
standard CA. Each cell is partitioned into the equal number of parts to the neighborhood

size and the information stored i in each part is sent to only one of the neighboring cells.

16

[e

- £t
x~¢-<
ox

. an

{a} {b}

Figure 2.11: An S-gate by BBM

i Yl Yeill

y
X =cp+iq, y = Cp+cq

Figure 2.12: A realization of a Fredkin gate by S-gates and inverse S-gates

In PCA, injectivity of global function is equivalent to injectivity of local function, thus a
PCA is rever81ble if its local function is injective [55]. An advanta.ge of PCA is that 11; is

. easy to extend it into different number of dimensions and nelghbors ,

A deteministic one-dimensional three-neighbor PCA P is rega.rded as a spec1a1 case of

a normal one-dimensional CA, where each cell is partltloned into three parts L, C, andv‘ .
R It is defined by k

= (Z’ (L: C, R)a Yp, (#1 #, #))7

where Z is the set of all integers, L, C, R is a non-empty finite sets of left, center and
right internal states of each cell, pp : Rx C XL — L x C x R is a mapping called a local
Junction, and (#,#,#) € L x C x R is a quiescent state which satisfies op(#,#,#) =

(.,).
Aconﬁguratien over L X C'x Risamappingc:Z — L x C x R. Let Conf(L x C x R)

17

o0__ 0o

0o o0
aod_ 0On
|0 00
Um__ B0
m0 T 0Om
om__0Om
Oom~ 0Om
aN_an
os~om
E_RB
T 173

Figure 2.13: Margolous ﬂighborhood and transition rules of BBMCA

denotes the set of all configurations over L x C x R.
Conf(L x C x R)={c|c:Z — Lx C x R}

Global function ’
®p : Conf(L x C x R) — Conf(L x C x R)

is also defined by

®p(c)(z) = gop(RIGHT(c(a: —1)), CENTER(c(z)), LEFT(c(z + 1)))

where LEFT (CENTER, RIGHT, respectively) i is the projection functlon which plcks out‘_ :
the left (center, right) element of a triple in L x C x R. It has been proved that
reversible iff pp is one-to-one [55]. Usmg PCA, we can construct a reversible CA Wlth =

ease.

Definition of Two-Dimensional Partitioned CA

A determzmstzc two-dimensional partztwned cellular automaton (PCA) P is regarded as

a spec1a1 case of two-dimensional CA and defined by

= (Z%,(C,U, R, D, L), ¢p, (4, 4, #))

“where Z is the set of all integers, C,U; R, D, L are non-empty finite sets of center, up,
 right, down, left parts of each cell, op:CXxDXLxUXR—>CxUxRxDxL is

18

Figure 2.14: Ball reflection by BBMCA

a local function and (#,#,#) € CxUXxRx D x L is a quiescent state which satisfies

vp(# ##) = (#, #, #).
AconﬁguratlonoveerUxRxDxLlsamappmgc Z2—>C><U><RxDxL
Let Conf(C x U xR x D x L) denote the set of all cnfigurations over C x U x R x D x L

Conf(CxeRxDxL) {clc Z2—)CxU><RxDxL}

-Global functlon is also defined in the same way as in the one-dlmenswna,l case.

Computatidn—'Universal Reversible PCA

Morlta and Ueno’ s 16-state two-dlmen81onal computatlon-umversal model used a frame—

work of 4-neighbor PCA, and Fig. 2.15 shows its domain and range of the local function.

' They proposed two models and Fig. 2.16 is the local function of one of thelr models.
Their RPCA has following properties. '

(1) B1t-conserv1ng the numbers of state “1” parts (i.e., black parts) on both sides of the

transition rules are the same.

19

Figure 2.15: Domain and range of local function’ in a 2D 4-neighbor PCA

p
-K Q-
A

Figure 2.16: The local function of the 2D 16-state 4-neighbor RPCA

(ii) Reflection-symmetric

They proved its computatlon-umversahty by constructing S-gates Inverse S—gates and
F-gates on its cellular space. A “ball” is represented by two black parts depicted in 2.17.

. Fig. 2.18 shows a reflecting wall and Fig. 2.19 is a realization of an S-gate.
|
I

l]
4 —- [4
I | |

Al
|

[1]
44
L[]

Figure 2.17: A ball in the 16-state 4-neighbor RPCA.

20

;
++

Figure 2.18: Ball reflection in the 16-state 4-neighbor RPCA

]
}

i
1

Tr-F4=cx

T

ST I D

B s

|
IV [B Iy Y
{

+

%
X

SR LT

i
-

Y IR IR I A

C—ra-

Figure 2.19: An S-gate in the 16-state 4-neighbor RPCA

21

Chapter 3

Computation—Universal
Two-Dimensional Triangular
Reversible CA

3.1 Definition of Triangular PCA

In this section, we show that fhe number of states of Morita and Ueno’s models can be
reduced. To decrease the number of states with preserving rotation-symmetry and bit-
conservation, we used a triangular three-neighbor PCA, and thus 8-state RCA can be
possible. This is the smallest state two-dimensional RCA under the condition of isotropic
property in the framework of PCA. | |

First, we deﬁne a triangular neighber PCA(TPCA). A TPCA has four neighbors if it has
a center part. A three-nelghbor TPCA is also avallable, if the center part is suppressed.
- We show 16—state and 8-state computatlon-umversal rever31ble TPCA models usmg four- -
-. neighbor and three-nelghbor TPCAs respectlvely .
A four-neighbor TPCA (TPCA4) Pry is defined as follows:

PT4 = (Z2 (M A BSC) §0T47 (#a# # #))

e 72 is the set of points where cells are placed (Z is the set of all mtegers)
° M,A,B,C are non—empty__ finite sets of four parts of a cell.
® 1y MxAxB><C’——)MxAxBxstalocalfunctlon

o (#, #, #,#) € M x A xBxCisa qulescent state.

23

et e & hmnih oo

Figure 3.1: Index of 4-neighbor triangular RPCA

ky_A configuration over the state set @ = M x A x B x C is a mapping o : Z2 — Q. Let
Conf(Q) denotes the set of all configurations over Q. Let pro, : @ — X is a projection
function (X € {M, A, B,C}). The global function @74 : Conf(Q) — Conf(Q) of P is
defined as folloWs. ‘

Y(z,y) € Z2, if T + y is even, then
r4(0)(2,9) = pra(prom(a(z,v)), pros(alz, y + 1)), prop(alz +1,y)), proc(a(z — 1 y)))

if z 4y is odd, then

@r4(0)(z,y) = som(pmM(a(w ¥)), proa(e(z,y — 1)), prog(a(z +1,9)),proc(a(z — 1,y))) .

We say Pr, is globally reversible iff ®14 is one-to-one, and locally reversible iff <pT4 is

one—to—one

Pis called a. rotatzon-symmetrzc TPCA iff (i) and (11) hold.

(i) A=B= C

(ii) V(m,a b,c), (m,ad’ b’ d) e Q _

if or4(m,a,b,c) = (m',d', ¥ c’) then @r4(m, b, c, a) (m', b, ¢ a’)

A rotatlon symmetrlc TPCA is called reflection symmetrzc iff (iii) holds
(i) V(m,a,d,c), (m',a', ¥’) EQ

if 90T4(m3 a,b,c) = (m',d,¥,c) then/goT,;(m, a,c,b) = (m',ad,c,b)

Fig. ‘3.2' shbWs domain and range of the local function of Pry. A three-neighbor

i TPCA Pr3 can be defined by suppressing the center part M, and is denoted by Prs =

(22, (A, B,C), ors, (# #,#))

24

Figure 3.2: Domain and range of the local function in a 4-neighbor triangular PCA

3.2 16-state Triangular RPCA

A single cell of 16-state reversible TPCA4 can be regarded as a 3-input 3-output reversible
logic gate with 1 bit internal state. Although an F-gate is also a 3-input 3-output gate,
it cannot be possible to realize under the rotation-symmetric condition. ;But an S-gate
and an inverse S-gate can be constructed under the rotation-symmetric condition. So the
local rules of our model was chosen so that an S-gaté (inverse S-gate) can be implemented
by a single cell.

- The local function of our proposed model is depicted in Fig, 3.3. Each part has 2-state
and thus it is a 16-state reversible bit-conserving and rotation-symmetric one. Using this
rule, an S-gate and an inverse S-gate can be embedded into a cell with the input/output
relations depicted in Fig. 3.4. The rules used to realize the functions of S-gate and inverse

S-gate are the rules where center parts are 0 (i.e., white).

'
|

/
K

|
¥

DIRIRIE
>)
DRI
243

Figure 3.3: The local function of the 4—neighbor triangular RPCA

On the proof of computation-universality of the game of Life, gliders were used to

25

E

TP SOUICR S P

/\ _4>/4425§§\ -

S-gate

A

inverse S-gate

Figure 3.4: Construction of an S-gate and an inverse S-gate in the 4-neighbor triangular
RPCA | -

encode signals. Similarly, the BBMCA and 16-state RPCA models used “ball’s. They
propagate in a quiescent cellular space as signal carriers. But on TPCA, simple signals

propagating in a quiescent cellular space cannot be constructed. To realize computation-

" universality, “wiring elements” i.e., data transmission wire, a delay element and a crossing

element should also be given.

A data transmission wire is shown in Fig.3.5. Sequences of cells of this wire has alter-
nating center part. A propagating signal turns right and left alternately, and thus it Eoes

along the wire.

Figure 3.5: Data transmission wire in the 4-neighbor triangular RPCA

A delay element is shown in Fig. 3.6. This configuration act as a 2-step delay element.
The transmission wire depicted in Fig. 3.7 is an example of changing its row. by two

lines. Signals propagating on this wire has 2-step delay. Thus if the straight wire contains

26

Figure 3.6: A delay element in the 4-neighbor triangular RPCA

a delay element as in Fig.3.6, both signals can be Synchronized.

VI NISINININ

Figure 3.7: Changing signal orbit in the 4—neigh60r triangular.RPCA

Sincé this model uses wires for data transmission, we must give a data crossing mecha-
nism. Fig. 3.8 shows a configuration for crossing wires.-A cell of crossing point has black _’
center part.. Using these wiring elements and delays, it is possible to int;'oduce‘ signalé fo :
~S-gates and inverse S-gates. An S-gate with synchronizing mechanism for inﬁut/oUtpﬁt ‘
sigilals is shown in Fig. 3.9. v _ | »

Combining circuit elements mentioned above, it .is;pOSSible to construct an F-gate by

the dié,gra.m" of Fig.2.12, and thus any complex circuits can be assembled.

3.3 8-state Triangular RPCA

To decrease the number of states from Morita and Ueno’s models with preserving bit-

conservation and rotation-symmetry, we have to remove the center part from 16-state '

27

- Figure 3.9: An ‘S—gate with input/output lines in the 4—neighbbi‘ triangular RPCA

TPCA mentioned in the previous section. If it is possible, an 8-state computation-

universal RPCA can be constractible. Fig.3.10 shows‘domaih and range of a local fun‘c"tio‘r\l.‘; f;

~ This is the smallest state two-dimensional PCA under the rotation-symmetric conditioﬁ;:{;fi

~ There are nine bit—conserVing and rotatiOn—symmetric local functions by choo_sing f(_)ur ot

rules out of eight rules depicted in Fig.3.11 . And there are five different local functions " M o

if we exclude symmetric cases.”

3.3.1 A Computation-Universal 8-state Model

We show that the RPCA where local function is given by Fig.3.12 is computation- =

universal.
First, we construct signal transmission wires.

In this model, it is difficult to construct simple patterns- propagating in a quieséénf

28

(V-A (Y-
@ :

Figure 3.11: Rotation-symmetric transition rules in a 3-neighbor triangular PCA

cellular space. But there are two simple stable blocks shown in Fig.3.13 , and combining _

(b) -type blocks, it is possible to construct signal transmission wires (Fig.3. 14) A 31gnal o
ca,rner is shown in gray color. The gray s1gnal takes 4 steps (regarded as 1 cycle) to move “
- -to the next dent (the part shown by the number 4) | | /
A4 steps (1 cycle) delay element is shown in F1g 3.15 (a) This wire ‘has a cave J
~and s1gnals take 4 steps in traveling through it. ThlS delay element can be used as a -

/ synchromzatlon element for changmg columns / rows of transmlssmn w1res

The transmission wire depicted in Flg 3.15 (b) changes its row by two lines. The wire
contains one right turning and one left turning, so 81gnals propagatmg on the wire have
~ strictly 4 step (1 cycle) delays. Thus 1f the straight wire contains a delay element (Fig.
3.15 (a)), both signals can be synchronized.

When a circuit contains feedback loop like Fig. 3.16 , the transmission wire turns

29

Figure 3.13: Stable blocks

right /left six times, and thus output signal phase of the feedback wire differs from i:hat' of
input signal by %2 steps(+0.5 cycles). Delay element of 42 steps can be constructed by
the crossing of two signals. Fig. 3.17(a) is a —2 steps phase shifter. The stable star shaped
block above the horizontal wire has a “fin”, and it turns around the 6 projections of the |
‘block in 30 steps. When this fin crosses the arriving signal along the wire, itb»advances the
phase of the signal 2 steps. So this —2 steps phase shifter accepts signals every 30 steps.
And combining a delay element, +2 steps shifter can be also available (Fig. 3.17(b))§ o

This model uses connected stable blocks for transmission wires and we need a épecial
- structure to realize crossing wires. Fig. 3.18 shoWs a module for crossing wires. Rotating
“fin” swit.ches;sign;als from two input wires to each output wires. This crossing element
accepts signals every 30 steps.

We showed that it is possible to realize signal transmission wires, delay elements, phase
shifters and crossing wires. Next we show the function of S-gates and inverse S-gates can
be avaﬂa,ble. Though, an F-gate cannot be realized under rotation—symmetric conditibn;
an S-gate or an inverse S-gate is embedded into a single cell.

Fig. 3.19 shows the input/output relations of an S-gate and an inverse S-gate. Fig.3.20

30

Figure 3.15: A delay element

shows an S-gate with synchronizing phase shifters. This element takes 40 steps (10 cycles) -~ -
to get output signals, and inputs must be given every 30 stepé.'i"'~ . e s v’

Although all input/output Signéfs in Fjg?3.20 afé syuchfduized, it does not ép’mblétély '
- fit the diagram: of the Srgute in Fig.2.10. Because the output terminal uf signal “c” is
‘placed in the opposite side of this elelueut. By improving this we show a complete pattern
of an S-gate in Fig.3.21. In this pattern, an'output_‘sigual “c” ,tr:avre‘ll‘s along a feedback
 wire and a crossing element, Thus it has a lcing:k delay against other output signals. So
the right part of this patters are used to synchronize all the output signals. This elemeut
takes 140 steps to get output signals, and inputs must be given every 30 steps. |

Because an S-gate and an invefse S-gate are symruet\ric,“ an inverse S-gate can be con-
structed by> reflecting a pattern of the S-gate with simple modiﬁcationsA of rotatiug ﬁns.
It is shown in Fig.3.22. |

31

R

‘171‘)\V1,‘
RS
NN
4

)

)

D

/N RIRRRIRY

Figure 3.17: Phase shifters (a) —2, (b) +2

Combining the circuit elements mentioned above, an F-gate is constructed by using the

diagram of Fig.2.12 (Fig. 3.23). It takes 704 steps (176 cycles) to simulate an F-gate.

32

151&1

Figure 3.18: Crossing wire in the 3-neighbor triangular RPCA

S-gate
z

inversp S-gate

&

Figure 3.19: Construction of S-gate and inverse S-gate

A
A
A
A

A

A

mﬂ

Av

A
>

\\‘(/r

e

A

Av\

AV\A

ﬂ
ﬂA

>
)
0z

<z
>
<>

e
S0

e

<>

e

f

WN\A7

LN\

L

S
(7

>
A‘
S

eﬁ»

-
K |
>

Figuré 3.20: An S-

gate with phase shifter

33

)

NN 7NN 7NN
VAUV ~ W) - TN/ - WA~ WA \TAV

Sw-

AAAAAAAAAAAAAAAAA
T T S VT e

T S, T W W

o NN\, S S Se e

o SV S S S

v o o o e e I O —o—

))) L\ T L\ TN T A\
v, N W N, o e S w w w ow

T

NANNN/N/ /N \ S
NN NN NINININ/NY

il N

Figure 3.21: An S-gate with complete wiring

- =

NN N SN NN NNNININA

Sw-,

NN MY AN AN AVIONNNNY
VAN AN _ NN L VN VAN _ VAT

S

NAVAVAVAUAATAAAAAUNUTATAY / ~ WA

‘ v S v S S ST TS S SSSSTe e —-

T,

A S o T e R N

e
N S N S g SN e S

T T S S S

N ST I

)) i) i "L\ T AN T\

S

e e e NN

™ R)

- NN

' Figure 3.22: An inverse S-gate with complete wiring ,

34

. *y *x »{c :

Figure 3.23: A’conﬁguration of an F-gate

35

Chapter 4

Synchronization on Reversible and

Conservative Cellular Automata

4.1 Reversible Solutions for FSSP

In the previous chapter, we showed that it is possible to construct an 8-state computation-
univereal model on a reversible CA. But constraint of reversibility and conservativeness
affects severely on the synchronizing activity, and it is the main difficulty of constructing
_ reversible PCAs. So in this chapter, we try to construct several solutions to traditional
. Firing Squad Synchronization Problem (FSSP). But as we show in the next sectlon,
standard solutions where only one firing state is used cannot be constructed in a reversible

cellular space. So we define a special weaker type of synchronizing COHdlthIl./

Even if the weaker condition is introduced, signal generations are restricted. At first in .

section 4.1.2, we show a 3n-time (Minsky type) reversible solutlon is possible.

In the followmg sections, we disscuss faster solutlons to the FSSP in RCA. But Waksman— L

Balzar-Mazoyer type solutlons are very difficult to embed into a reversible cellular space

mainly because their methods of signal generations. Although both methods use recursive

algonthms to synchronize, Minsky solution uses only constant kinds of signals (velocity 1

and 1 /3) at every recursive stages and no other signals are generated. So it is fairly easy

to cope with. Yet Waksman-Balzar-Mazoyer solutions use a recui:sive signal generation at

each recursive stages, i.e.,’ the number of signals with different velocity varies by the size ,

of cells, and it is almost impossible to collect such signals. In RCA, un-collected signals
are usually spreaded as garbages.

So we put a lower limit to the velocity of signals (hence a finite kinds of signals are used),

37

and show 2*-divided solution can be embedded into RCA to achieve faster synchronizing
solutions. We assigned states and rules for the case of k =2, 3 Although (2 + €)n-time
solution could be possible, it is impossible to achieve an optimal time solutlon or even
(2n + c)-time one by this strategy.

But recently, Umeo [83] and Mazoer [50] reconstructed Goto’s original optimal time
solution. Goto’s solution is very complex yet quite “traditional” and it become possible
to construct an optimal time based reversible solution. We show our solution in section
4.1.4. Due to several reasons, our solution is not time optlmal It takes 2n + 2 steps to

synchronize.

4.1.1 FSSP Conditions for Reversible Solutions

The synchronizing condition SSC in section 2.3.4 requires all n cells to become single firing
state f on firing éonﬁguration. We can prove, in reversible CA, this type of solutions do
not exist. It is proved using the next result by Richardson [71].

Proposition 4.1.1 [71] Let A = (Z,Q,(~1,0,1),p4,#) be any CA, and @, be the
global function of A. If ®4 is an injection, then there isa CA B — (Z,Q, N, pp, #) whose
global function is & p=®,7". ' h

Theorem 4.1.1 There is no one-dimensional three-neighbor reversible CA which satlsﬁes
the synchronizing condition SSC

Proof.” Suppose there is a one-dimensional revers1ble CA A= (Z Q,(1, 0 1),(,0,4, #)‘ -
which satisfies SSC, and let ¢ f(n) be the firing time function of A. By Propos1t10n 4.1.1,
there is a CA B = (Z,Q, N, pp, #) whose global function is &5 = &, ~!. Without loss of
generality, we can assume N = (my,my,---,m,) € Z? and |m1| <|mgl<---< [my|.

Assume, at time ¢ = 0, B is in the configuration c(")(—) (c(”))) We consider the
transition process from c(" to c(") on B, which is the reverée process from ™ to c(™ o
A. At time t == 1, all the n — 2|m,| cells of B at the positions from [mp| +1 ton — |m,,|
 are in the same state wp(f,- -, f), because c(") (z) = f holds for 1 < z < n and the next
state of each cell depends 6nly on the present states of the cells within the distance [mp).
That is, ‘ .

Imp| +1<z<n- Imp| = @B(cf,"))(:z:) f(l)

38

where f) = p(f,---, f). Generally,
ilmp| +1<z <n—ilmy| = @H(c[)(z) = f9 (4.1)

holdsfori = 0,1,-- -, [(n—1)/2|m,||, where f@ = fand f@ = pp(fU-,..., fi-D) (j =
1,2,---). |
Let s be the number of states of B (i.e., s = |Q|). Then, apparently there are i;, 4, € Z
that satisfy 0 < 4; < iy < s and f®) = £(2) for large enough n. We claim that there exits
k (1 < k < i) such that f@ = f®. If 4, = 0 it is done. So consider the case i; > 0.
Suppose n > 2islmy| + 3. Then, from (4.1), the followings hold for all i € {0,1,2,--- 4}

| ; (c‘"’)(fnm —1) = f0, o

B2 =10,
B(cy) ([n/2] +1) = fO.

Further, since A is a three-neighbor CA such that &5 = &,7!,

857 () (In/2]) = pa(@5 () (Tn/2] ~ 1), @) ([n/21), () ([n/2] + 1))

for all i € {1,2,---,i}. Therefore f6-1 = 0a(fD, f& §O) especially, fE1-1) =
pa(fl), fla), f(il)) and f02-1) = o a(fl2) fl2) f@2)) hold. Thus f¢1-1 = fG2-1) i ob-
tained. By repeating this, we can conclude f@ = f®) for k =i, — i;. Consequently, the
firing state f appears at time ¢ = k on B, or equivalently, appears at time t = ty(n) —
on A. Since ty(n) >2n—2 and 0 < kis i < 8, the relation 0 < ¢7(n) — k < t(n) holds
 for large enough n. This contfadicts the fact that A satisfies the synchronizing condition
SSC. | | o | ‘ o
: ‘Synchronizing Condition for Re\l/ersibie CA. (RSC)

- As shown above, In reversible CA, there is no solution W‘ithbr single firing state. So"w_e
define a set F'(C Q) of finite nnmbef of firing states, and regard that the cells synchronize -

if the state of each cell is in F at time ¢ 7 (n) Moreover, we assume that not only the n

cells but the other cells are allowed to change its internal states.

Let A = (Z,Q,(-1,0,1), 04, #) be a rever31ble CA. A synchromzmg condltlon RSC

for rever31ble CA is as follows ‘

[RSC] There exist two dlstlnct states g,s € Q — {#} and a state set F CcQ—-{#,9,s}
that satlsfy the followings.

39

1. <PA(#,S, S) =s, QOA(S’ S, 3):: 8, and ()OA(S) S, #) =Ss.
2. Let ¢, be a configuration defined by
g z=1
¢ (z) = zT=2,...,n
<0,z > n+ 1.

Then, there is a function t; : Z, — Z,, that satisfies

VneZ,VxeZ

(1<z<n= ")) e F)A((z<1Ve >n)= ‘Pt’(n)(cs("))(x) ¢ F)),
and
VneZ,Vie ZVz € Z(0 < i < ty(n) = (& (c™)(z) & F)).

4.1.2 3n-time Solutions
3n Time Solution on Reversible PCA (99-state)

We present a 99-state solution where the numbers of elements of each state sets L,C,R

are 3, 11, 3 respectively.

Solution on reversible PCA (99-state)

= (Z’L307R7§0P:(#)#,#))) C = {#,t,?,g,—g,g,u a,E,U,f}, L = R =
{#’+’*} . ' ‘

e General, soldier, and quiescent states are (+ $,%) , (#, s #) and (#, #,#) re-

spectively. Initial configuration is:

’ (+’3)*) rz=1
a"(z) ={ (#5,#) z=2,...,n
(#’#’#) -'L'SO,:CZ n+ 1.

e Firing states set F' is

F= {(#,f,+) (+, £, #), (* f,+) (+; f,*) (#: £,48), (4, £, 4), (%, £, #), (#, f,*)}

) Trans1t10n table of local functlon @p is shown in Table 4.1.

Figure 4.1 shows transition of conﬁg’urations (n=9).

Ifwe regard PCA P as a normal CA (denoted by A), then [RSC]1. becomes

(G #, #), (#, s, #), (#, 5, %) = (#, 5, #)
soA((#,S #), (#, 5, #), (#, #; #)) = (#, 8, #)
Cal#, 5, 4), (1,5, #), (3 5, 4) = 3,5, #).

40

Since @p(#, s, #) = (#, s, #) holds, the above condition [RSC]1. is satisfied. Theb
reversiblity of P is concluded by the fact that ¢p is one-to-one.

This solution is based on Minsky’s 3n time one. First, the leftmost cell (general) emits
two kinds of signals of velocity 1 and 1/3 to the right. At time 3n/2, they collide at the
center of the n cells, and thus the problem is divided into two subproblems of synchronizing
[/2] cells. Then the center cell(s) becomes a new general, and emits these signals in both
directions. Repeating this process, it is finally reduced to the problem of synchronizing
single cell. Propagation and bouncing of signals can be easily performed reversively 6n
a PCA. But, in order to make it completely reversible, the following informatioh must
~ be kept in the cells where the collisions of signals have occurred: (1) the direction of the
velocity 1/3 signal, and (2) the phase of the collision of two signals (it depends on the
parity of the length of the array). They are memorized by an “arrow” of the center part
state and the state “+” of the left and right parts. They,can be thought as “garbage”
information. | _

From the construction of P, we can see the following facts. If the length n of the array
is even, the (n+2)/2-th cell from the general becomes a new genéral for the two arrays of
length n/2 at time 3n/2 (hereafter the old general acts as a “wall” that bounces the signal
of velocity 1). If the length n is odd, the (n +1)/2-th and the (n+3)/2-th cells from the
general become new generals for the two arrays of length (n — 1)/2 at time 3(n+1)/2.
By above, t;(n) = 3n is concluded (by a simple induction on n).

In gehera.l, simulating an irreversible CA by a reversible one, “garbages” spread over.
But in this solution, all signals (including signals introduced to keep reversibility) are
confined to the n + 2 cells and do not spread over the entire cell space. We call it a

’garbage preserving reversible CA.

41

Table 4.1: Transition table of 99-state reversible PCA P (s and @ are symmetric with 3 and
— o
w.)

: +

3 * + ¢ # * +
| #FHE | #FHE | #A | # [#T# st | xut | # | #t# | o # | vt
* *H# * +te+ | #w+ x | #3« | x5«
+ |+ + #Ee+|[+0+| + [#t+ | +3+ | Hug
u # * + v # * + w # * +
| #o# | #5+ | #5+| # | sux | #ot [#3+]| # |Fu#| #ox| A1t
* x5 # ' * | +o# * W

+ |+5# + |+5# + | +o# | +0 | +f+
€ # * + e # * +

| #T# # | +f+ ' #f*

* *

+ * fH# +

42

t=0. [si*] sl 0 0sl | ISl QIS Il N sl Il {15
t=1 LT BT el o T Tol T Tl L Tal {Jal | sl | 1o
t=2 mu A COC Ao R G RGNS
t=3 H Gol § Jul 1 ie] PHel] [s] | [s] 0 ISl][5l 0[5
t=4 v| Ht t] el 15l | I51] 511 15
t=5 H | I3t [t K¢ t| HHel*l {511 [l | |5
t=6 5] | v t| Bt t| HHtl{+ [5]] [s
t=17 H 5] v| HHt t| HH ¢ t| HHelH [5
t=28 L 5 sIH [t ¢ t| HHt t| HHtl*
t=9 HH 3| rl U t| HHt t| Ht t] |*
t=10 i 5| S| v| HHi t{ Hit ti J*[s]
t=11 H o) B sHH ¢ HHel 1 ¢ *[g| 5|
t=12 ol | Ts] | TS 6] 1 ful 1ol el5] T T L I
t=13[TH Fl iGN NG ECE OGN NG NGE A
t=14] TT Pl | 1] | 1o] | 5] L1oF (sl | Jal | Gs1 1 [s
t=15) [M 511 1 | T8t Jxful«buld 51] Ist 1[5
t=16 [s] | (51 It [stHls] FHel+] [5] T 15
t=17 H =l Ikt ¢ +"'_+"+ t| Hitl+] [s
t=18 *tH [¢]] fu 0 u 1 1¢] FHEl*
t=19 H ol ¢ tHH v v] FH¢ t| I*
t=20 w1 Sl {t] 5 [SHH t]]*[3]
t = 20| T B | 1o ate] [s| AECADNG
t=22 x|t || Htl* *itHH [B+
t=231 1 M Wil [¢] P 1] kel Bl [¢] B Tel T+
=24 * [*[31*] *|'gl* *[g]*
t=25 n *| 3l Bhol*] 151 |+ Hol*] {51 {*ll*] 151 I+
t =26 HeH ’ﬂi [Her e
=27 H FHHHA A HA AHH A

Figure 4.1: Synchronization of 9 cells by the 99-state reversible PCA P.

4.1.3 2*-divided Solutions on Reversible PCA
‘.2’°-divided, Sd}ut.ioﬁs o '

~3n-time based solutions use the collision of two s1gna1s (1 and 1/3) and find the center cell
and divide the problem into two sub problems Waksman reahzed an optimal time (2n — 2
time) solution. [84] using slower s1gna,ls (1/7,1/15,1/31,-) at a time, ice. Waksman s solution.
generates slower SIgnals recursivly. But in reversible CA, this approach seems to be’ very
difficult to apply, because their restriction of generating/erasing signals. So cutting off infinite
generatlon of such 31gnals and using only k slower signals, 2* -d1v1ded solutions can be realized
in reversible spaces (k is any finite non-negative integer). We construct examples of this type
of solutions in k=2,3in this section, and thus we show (2 + €)n-time solution can be possible

(e > 0).

43

Construction of a 22-divided Solution

Fig.4.2 is the outline of a 22-divided solution. 1 /7 signai is also used with 1 and 1/3 signals
and soldiers are divided into four parts after about 7n /4 steps.
Generally, 2*-divided solution takes (2 —1/2%)n steps for the first division and the firing time
is
2k+1 -1
b =g

So the firing time for a 22-divided solution is 7n/3.

Tnl 4

T

Inl

'

Figure 4.2: The outline of 2? divided solution

We have constructed an example of 22-divided solutions. -

44

22.divided solution P,

® Py = (Z,L4,C4, Ry, 0p,, (#,#,#)),
= { GIR, G1L, G2R, G2L, G3R, G3L, GAIR, GAIL, GA2R, GA2L, GA3R, GA3L,
GBIR, GBIL, GB2R, GB2L, GB3R, GB3L, GCIR, GC1L, GC2R, GC2L, GC3R, GC3L,
GDIR, GD1L, GD2R, GD2L,}GD3R‘, GD3L, #, U1R, UlL, U2R, U2L, V1R, V1L,
V2R, V2L, V3R, V3L,‘V4R, V4L, VSR, V5L, V6R, V6L, S, AR, AL, GAOL, GAOR,
BR, BL, GBOR, GBOL, WR, WL, XR, XL, YR, YL, GCOR, GCOL, GOR, GOL; PR,
PL, QR, QL, GDOR, GDOL, HR, HL, HAR, HAL, HBR, HBL, HCR, HCL, HDR,
. HDL, EUR, EUL, ESR, ESL, EHR, EHL, EHAR, EHAL, EHBR, EHBL, EHCR, EHCL,
EHDR, EHDL, FUR, FUL, FSR, FSL, FEHR, FEHL, FEHAR, FEHAL, F EHBR, FE-
HBL, FEHCR, FEHCL, FEHDR, F EHDL, FHR, FHL, FHAR, FHAL, FHBR, FHBL,
FHCR, FHCL, FHDR, FHDL, FGIR, FG1L, FGAI1R, FGA1L, FGB1R, FGBIL, FGCIR,
FGCIL FGDIR, FGDIL, FGR, FGL, FGAR, FGAL, FGBR FGBL, FGCR, FGCL,
FGDR, FGDL },

:R4={—*,//,++,/,*1_a**3#7'+} ’

o General is (x, GOR, *) , soldier is (#, S, #), quiescent state is (#,#,#) . Initial configu-

ration is .

(*,GOR,*) z =
™ (z) = (#S,#) =z=1,...,n-1
(#7#,#) xSO,xZn l

e The number of elements of the Firing state set Fy is 146.
e Local function is composed of 376 transition rules.

The number of states n(L),n(C), n(R) are 9,140,9 respectively and ‘thus 11340 states and
* because of the injectivity of its local function, P; is reversible.

- Fig 4.3 shows its configuration for n=11.

Construction of 2*-divided Solutions (k=13)

In this section, we construct a 23-divided solution more systematically and show that 2k_divided
solutions for arbltrary (k < 2) can be constructed, i.e., we show (2 + &)n-time solution can be
achieved.

Main problems are the following:

45

*_JGOR f+

** S
*

(33

3

*
1R *x
2R X3

qqmms'igia
b B
o]

0 |

GIR
G2R

G3R

R

HR

HR

HR V3R ULR **

HR V4R U2R i K

HR VSR + S [

HR V6R N ULR >
HR s |- U2R s : *
HR 1R + S *+Juip

HR R U1R] L U2L

HR V3R U2R ** +

HR V4R S + 8 x* ulL

HR VSR S / JHAR T+ J2L,

HR L JV6R "'I_H._AL H’_&R ++ +

HR s 1- *x HAL HAR_ PL

HR S _ L/]BR HAL HAR L_1//

HR s *_JGoL GBOR| * S HAL HAR s * _lepoL, GOR [+ S

HR *+ |y GlL GBIR ULR _[*+] THAL HAR **luin, GDIL 1R UIR | **
HR__{+ 02 1621 GB2R U2R *_|HAL HAR |+ u2L GD2L, G2R U2R

HR + _|EU + G3L GB3R + _JEUR |+ HAR + {FUL {+ GD3L G3R + JEUR 1+
FHR_{+ FUL +_|FGL FGBR} + FUR_ + JFHAL FHAR|+ FUL +_|PGDL FGR |+ FUR +

Figure 4.3: A conﬁguratioﬁ of 22-divided solution (n=11)

e Can all new nodes (new generals) be generated by collisions of signals?
¢ Can all new generals be placed at the center of cells?
e Can next four generals be generated at the same time?

e Can all signals be generated in reversible manner?
We will denote about these four points.

A. Signals make collisions

On a 23-divided solution, after generated b, cy, dy nodes, four nodes a; ; are generated as new

generals (Fig.4.4). All nodes except b are generated from a same node, and these nodes are

created by the collision of two signals 1 and one of the opposite signal of 1 /3,1/7,1/ 15, e
On usual CA, two opposite signals must make a collision, but on PCA, these signals dof ﬁbt 4

always make a collision. Fig. 4.5 shows the difference of phase between 1/3 and —1 s.i'g‘nalé.

when these signals make a colhslon Signals depicted in (1) make a collision, but in (2), two

mgnals do not make a collision and s1gna1s are crossing. But on this 2*-divided solution, one

can set the initial phase of signals that all these signals should make collisions. Let the posmon

of the first signal with velecity 1 from general at time ¢ be s1(t). After reflected by the right

wall, it exists on the L partition of a cell which posmon satlsﬁes the number ¢ + s1 (t) is always

even. And slow signals for a collision have velocity 1/m (m is-odd). If their initial phase (i.e.,

" the delay time for moving to the next cell) are even, the moving to the next cell occurs only on

a cell which satisfies the sum of the time and the position of the cell is even. This is the same

46

15n/ 8

- 15n/7

Figure 4.4: The outline of 23-divided solution

as the velocity 1 signal and two signals always make a colhslon and it-never occur the crossing
: 81gnals like Fig. 4.5 (2). ' | |
“Same discussion can be possible in the odd case and a condltlon for signal carriers can be

-denoted as follows)

[A condition for state of signal carriers] : On time t, each cells (say position x)‘which A
contain carriers of signals of velocity 1,1 /3,1/7,-- - in its LorR partitioils should satisfy that

t + z are all even or all odd.

To satisfy above condition, initial phase of each signals are set by table 4.2.

Using this initial phase, only (1) and (3) patterns i in Fig. 4.5 occur on collisions by velomty
1/3 signals.

B. Divisions are made in equal length of four part

47

: [s s
2|s s s s
(1) 11R s s s
12R s S 1 S
s 2 s 1 s s
A
s s s s
. 2] s s s s
) 11R s . s 1 s
12R s 1 s S
S 211 s S S
s s s . s
2]s s s 1 s
(3) 11R s 1 s s
12R 1 s s s
* * - * s s s
s s) 1 s
2| s s 1 s s
11R 1] s]
(4) * * * s s s
* * * * * s s

Figure 4.5: Phase of collision signals

‘Each nodes ¢,d and a new general a should be generated to divide cells into two parts of
equal length. If the number of cells is odd, single center cell is assigned to a new node and if
it is even, two cells are assigned and the number of the divided cells are kept to same number

Fig. 4.6 is a part of conﬁguratlon that new node cis generated (1) is the case of n =38,
i.e., the number of the cells to be divide is 7. (odd) and state c is assigned as a new node fora -
center cell. On the other hand, if the number of the cells to be divide is even, symbol cL and ‘

-cR are used to denote generated new nodes for two center cells (2a), (2b)

" As deplcted in (2a) if the node ¢ generate signal “3 to both directions at ¢ = 14 both
) signals are synchronized correctly But the right signal v1olate the condition of signal carriers.
So “c34-" is generated one step before the correct time and “+” symbol remernbers the dlfference

of the time.

C. Can next four generals a be generated at a time? » ;
As mentioned above, accordmg to the condition for signal carriers, s1gnals should preserve the
difference from their true pos1tlons by themselves. A 23-divided solution has 8 cases according .

ton (table 4. 3). The number (0 to 3) in table 4.3 denotes the difference of true position of

48

Table 4.2: Initial phase of signals

speed | initial phase
1 0
1/3 -2
1/7 -2
1/15 | -8

generated nodes from collision point signals. If an item contains R or L, it shows that two cells
are used for the new node and R and L are directions from the collision point which cell is

another node. Le. R (L) means that a right (left) neighbor cell of collision pomt becomes also

a new node.

Table 4.3: Construction of each nodes

n(mod8) [¢ | dy | dy | ag | a1 | @y as
0 0Ofo0ofo0ojojo0o]|oO
R|O0]1 0 1 1

OR|OL| 0 |1]1]o0
{RJOR|[1L]| 0O 1 2 |11

0 | 0|OL|IL|1R|OR
R{0|1]|IR|IL|2R]IR
OR|OL|[1R|2L| 1R |IL
R|OR|IL|1R|2L|3R | 2L

~N O Ut i WM

‘To synchronize the generated time of four new general d, j» specific delay steps‘ should be |
.inserted accordlng to table 4.3. Delay steps k for 23-d1v1ded solution is at most k(= 3).
Although at t = 0 general a generates signals only single direction, new generals of the other.

‘successive recursive stages generate sagnals to both dlrectlons But both s1gnals are symmetrlc

and no new phase composition appears

D. Rever81b111ty

To achieve reversiblity, local function of the PCA should be injective. And to assure of thls
injectivity, at all collision pomts directions a,nd velocities of signals should be preserved after
~ each node generations. It is possible to embeded 'such informations into the subcases of state

of each nodes and we show the state table in case of general a; ; node on table 4.4.

49

(l) n=2§8

3 4 5 6
9 s 2 s s s
10 s 11R s 1| s
11 s 12R 1 s s
12 S c3 {c0 c3 s 11L
13 L cl jellL c0 cl1R| cl 12L
14 c12L c0 c12R diido1 {da1
15 {3 jao10| 3 c0 _3ph020] 3 do1
(2a) n=9 .
3 4 5 6
9 s 2 s s s
10 s 11R s s
11 s 12R s s
12 s s 2] 1 S
.13 S S c3* cR! s
14 s c3|cL cR c3 s
15 Lcl jeliLn cL CR clir| cl
(2b) n=9
3 4 5 6
9 s 2 s s s
S 10 s 11R s s
11 s 12R s s
12 s s 2 s 1 S
13 s s c3* cR {c3+ s
14 s c3icL : cR cllR| cl+
15 Lcl [e111n cL CcR cl2R

Figure 4.6: The difference of phase of collisions by the difference of parity

In the case of n = 4,-- -, 8(mod8), generated a nodes are always denoted alL,aR (sée table
4.3), Reflecting signals between aL and aR preserve phase and directions of signal collision such

as a state “42+” in fig. 4.7.

An Example of 23-divided Solution

To construct transition rules for 23-d1V1ded solution all cases should be assigned. Fig. 4.8
shows a configuration of n = 18. 23-d1v1ded solutlon has 64 subcases for generatlng the next

‘generation of generals a; ;.

4.1.4 Minimal Time Solutions and Reversibility
As mentioned in previous section, it is possible to construct (2 + €)n-time solution. But the
number of its state should be huge and it is not appropriate way to construct faster synchroniz-

ing solutions. Recently, completely different algorithm can be reconstructed based on Goto’s

algorithm by Mazoyer [50] and this leads to a construction of fairly small state minimal time so-

30

Table 4.4: Subcases of general a; ;

: n(mod 8) Qo a3 as as
0 a000 | a010 | a020 | a030
1 100 0120 | a130
2 a200 | a210 a230 -
3 a300 -1 a320 { a330
4 40+ | 41+ | 42+ | 43+
5 50+ 52+ | 53+
6 60+ | 61+ 63+
7 70+ 2+ | T3+
6 7 8 9
" 20 c0 + c12R s cl 12L
21 cO s c2 S di |do1 d1
22 c0 S - 42HaR! Aol
23 c0 L+ 42+ aR+ d01
24 1. icO 3 ja0L 42+Ha0R 3 . |do1
25 1+ lecO + alL 42 + 21R + led0l
26 feco fall 424f1R fedol |

n=12
Figure 4.7: Reservation of collision phase in generating general a

lutions. This method is based on an idea that construct sublines of length 2° and to synchronize
~each regions using 3n-time solutions. :

In this section, we construct a reversible solution based on this algo_’rithm.:

- Dividing into Two Regfons

First, n cells are divided into two part of same length using signals 51 (velocity 1) and s;

(velocity 1/3) as follows (Fig.4.9). This is the same approach as 3n-time solution.
o the case of n is 0dd[L,|]| + 1 (G1)],[[Z] + 1,n]

® the case of n is even[1,| 2] (G})],[|2] + 1(G1),n]

- Construction of Sublines

To construct symmetric 2¢ sublines, we mark cells of the position E; with the following method.

51

{Z 2t 2n — E 2'}
(1) The posmon of tgg_(}eneral is marked as E,.
(ii) A collision cell of signals i and S; is marked as a righthand side of E;.
(iii) E;(2 <= j) is marked by collision of signals z and s3 these two signals make collisions at
all cellsof 1,3,7,-- _
(iv) Signals e; are generated at each collision point of z and S3, and cell at collision point of-

e and 5; are righthand side of E;(2 <= j). and both E; and E; are symmetric.

Invoking 3n-time Solution

After constructing 2¢ sublines, 3n-time solutions are applied to all regions of separated sublines.
In our réversible solution, we use modified version of 99-state 3n-time based reversible solution
in section 4.1.2. Several statés and rules for invoking 3n-time solutions are added.

| When signal S; reaches Mj, a 3n-time solution is invoked for the fegion of separated sublines.
But central region do not always have the same length. So invoking timing has several subcases

by the following property.
e the length of central region is 0 or not
e the number of cells in left-hand side of central region is odd or even
e the number of cells in right-hand side of central region is odd or even

® outside cells of the central region E; or M;

Construction by Reversible PCA

Partitioned cellular automata with layers . o
We use PCA to construct a solution as well as 3n-time one. Although this algorithm\u"ses
many signals and local rules seems to become very complex, the algorithm of making subhnes'.,
and the part of 3n-time solution are independent except the posmon of 1nvok1ng 3n-time solu-“
tion (i.e., collision point of signals S; and M. ;). So we use PCA with two layers LPCA(2) to
construct a solution. Using LPCA(2) it is possible to construct rules for makmg sublines and

for invoking 3n-time solution separately:

A one-dimensional three-neighbor PCA with two layers LPCA(2) LP is defined as follows,
P = (Z, (PR, Py}, (10,71), ¢)

52

e Z is the set of all integers at which cells are placed

e Py =(Z, (Lo, Co, Ro), po,q) is a PCA on layer 0

Py =(Z,(L1,C1, Ry), ¢1,q1) is a PCA on layer 1

To : Do — Lo X Cy x Ry(Dy C D) is a local transaction function between layers -

T1: D1 — Ly x Cy X Ry(Dy € D) is a local transaction function between layers,
where D = (RO X Co X Lo) X (R1 X Cl X L1)

@D — (Lo x Cy X Rp) x (Ly x Cy x R,;) is a local function of LP defined as follows: -
Vr = ((rﬂa cOrlO)’ (7’1, ¢y, ll)) €D

(i) if z ¢ Do and = ¢ Dy then () = (¢q(ro, o, o), p1(r1, c1, 11))
(i) if z € Dy and z ¢ D, then o(z) = (10(z), p1(r1, €1, 1))

(iii) if z ¢ Do and = € Dy then o(z) = (go(ro, co, lo), 11 (z))

(iv) if z ¢ Do and z ¢ D, then o(z) = (10(z), 1 (x))

But if the numbers of states of Po,Pl are large, one cannot expand the direct product in
practice. So we made a simulation from n = 1 to 500 for checking reversibility for the followmg ‘
FSSP solution. i.e. We checked only used rules for this 31mulatlon were one—to—one

2n-time Reversible Solution . i

We constructed a following LPCA(2) for FSSP. (This solution rapid protoytyping one and
has 24 X 42 x 24 x 4 x 11 x 4 states.) | '

P = (Z, (PO, Pl)’ (‘pﬂh ‘pIO)a (P)

- ® po =(Z, (Lo, Co, Ro), o, (“0”, “4#7, “0")), | | o
! ={“#7’ “O” , “a” “b” “C” “d” “e” “G” ((G37’ “Gz)? “Gk” “E” “M” ‘(F” “A” ‘(B” “C”’ “D” , \ »
“Z” “Y” “I” ‘(A" » ‘(B" ” “C“ ” “Z" ” “[” “Mc” “Md” “Me” “M" » “EC” “Ed” “Ee”
“Fc”’“Fd” “Fe” “Id” “Ie” &« A » “C » “Z ” « A“' ”} : : .]
LO — }20 {“0” “'77 “+” “*77 “_» “ ” “” » “@” “{” “}” “[” “~ “$” “?’” “&” “(”’“ ”’(f ”, '

“~ » “1” Q€I «”n “ ” “/” }
LA A |

°p = (Z (LI;Cth) (pl’(u#n a#” a#n))
{u #n “n “OI‘” “OS” « r” “el” au” “WI'” « l”,“V”,“f” },

53

. Ll Rl {“0” R “*” , “_77 }

e General, soldier and quiescent state are (“0”, “G3”, “ =) (“0”, “wr”, “07),,

(“O”, aon, “0”)1(“0”,‘ “Orn, “0’7)2’ and (cton’ u#”’ “0”)1(“0”, u#”, uon)2 reSpectively.
o Firing state set: F' = (ly, ¢y, 1) X (b, £, 11), (Vlo, o, 70, by, 1)

o Transition rules g, ©1, @01, ¢10 are described in appendix A.

This solution is based on Mazoyer’s 2n — 2 time FSSP construction without recursive cé,lls.
The layer 0 is used for constructing 2¢ léngth sublines ahd the layer 1 for invoking Minsky
solution. But due to using PCA, signal reflection takes 2 steps longer than usual CA. On this
solution, constructihg 2' length sublines makes 2 step delays, and moreover, applying Minsky
like solution makes 2 step delays too. And thus it takes 2n + 2 firing time.

But it might be possible to construct 2n time solution on reversible PCA.

Fig.4.10 is the configuration of n = 9

94

ion (n=18)

ded solut

1V1

f a 23-d

35

100 O

A configurat

a0y 3 5 s 8 [s [8 [3 8 [] 8 8 8 8 8 8
alR 11R)] [s [[L] 3 [] s] 8 3 L] [] 8 3 d
a2y 4 12R 3 1 3 3] $] [] 3 s 8 3 [3] s s
a3y 21R 2 8 [l 1 [8 = 8 £l 8 8 F] s 8 s patd 8 8
ad 22R] 11K $ 5 kY 8 8 [) 8 8 3 [[l 8 8 s i 8
a5 23 128 8 [8 1 8 8 8 [F) 5 [s 3 8 8 8
aé! 24] 2 8 8 8 8 1 s s s [3 8 8 8 8 8 i
a7y 25! B 11R] s [[3 1 [s) : s 8 s 8 8 8 8
. W ap 26! [12R] s 8 s s [1 [[l 3 [8 3 3 8 s
. W 31K 4 [8 2 8 8 [) F 8 1 [}) 8) [} 8 g 8
w 32! 21 [] 11R| s 3 [] 8 8 [] 3 8 s [8 3 s 8
W 33 22 8 12R| s [] 8 [] 3 [] 1 8 8 8 8 L 8
. w 34 23R 3 8 2 8 5 g 1] 3 [s [1 3) [) s
W 35, 24|] 3 11R]] [) [} [» [] 1 s [s g
W 36! 25! s 8 12R [8 [8 8 8 [[[] 1 8 8 8
w 37, 26! 3 [) [] 2 8 3 [[l [8 8 3 8 8 1 8 g
w 38 E] 4] 3 [11R 8 [) 3)) 8 %]) B s
w 39K [] 21R] [] 3 12R [3 [3 5 [) 3] 8 s
w 3, [22R} 8 g [] 2 8 8 [s 8 8] 8 » 14 id
N ' w 3. B 23R 8 8 s 11R [8) 8 8 8 s 8 s b0
w 3C [) 24R} [3 8 12R (] 8 [8 [[l 8 8 1 s
w 3D [l 2SR 8 5 5 8 2 $ 3 F) 3 [8 [1l |s 8
~ w 3 [26R]| 8 s [s 11R s 3 8] [1 |s [] | 11L
w [) [5 8 4 s 8 s 8- 12R E) 3 s 8 1l|s 8 [] 138
W s 31R] [21R] 8 8 - 3 [2 8 [E) 1|8) s 8 2 |s
w [] 32R] 8 22K 3 8 [L] 11R [] 1is [3 [11L 8
W 3 33R] 3 23R] [8 L] 12R 1ls [] 5 8 12L 3
w) 34 [] 24R] 3 [8 [] c3]c0 | c3 8 § 8 [] 8 2 1s 3
w [35, [25R) & 8 s cll c11z <0 CllB c) 8 B L 11L 8 8
w L] 36! 3 26R [] [) cl s <12 c0 €12 [c| 8 8 12L [L
w [37, [s 4 g cl s [c2 s c0 8 <2 s 8 cl; [] 2 |s [] 21L
w 8 38! 3 8 aj*drR | 4+ |'s cll 8 <0 8 cll [diydL jaif |s 3 22L
W s 39 [d} dL dR 8 df+ | c12 3 c0 8 12 dl}s L dr | a1 8 23L
: w 8 3, d} s aL dR s azl 8 <0 s 212+ 8 dL dR 8 qal 24L
. W s 3] a20p 3 [dL dr 8 3] a219 3 8 c0 [] 3 [al2d 3 8 dL 3R 8 3 [a230
: \d 1} 11 a20| 11R[1 dL dr 1] 11L a2l 11R| 1 <0 1 |11L al2y 11R| 1 4L dR 1 [11L a231
N W b 121 4] a20p 4 12R] bl dan dR | b 121 4 a213 4 12R blcO [b 12L 4 |a12d 4 12R b jdL @R | b 12L 4 [a232
R e W +| @121 +| a20j +| ©12Rb+ dL dR +| el2h + a2l + | 812Rb+ c0 + [el2l + 2123 + | el2Rb+ dL dR > _1e13Lf+ a233
BT : a [{ £12L £20) £12 £4L fdr £12}, £21. £12Bb fc0 £12 f12 £12] £dL TaR £12L) £233

Figure 4.8

L

.

4 emrat

Y ST NV Ry ey
|
)
hag

. ; : ; |
56 L4 5.. = ué‘ (-4 = N .

1 35 79 11 131517192!\23‘2527

Figure 4.9: outline of 2n-time solution by Goto and Mazoyer

56

(n=9)

1001

lut

1me SO

f 2n + 2-t

57

10N O

oo*&ocoomut_..ooooo_.oocooo..oeoooo—.oocooo_.cooooo_.ooooco_.coocom.—.oooooc..oooo**co
4ooanooooausoooocoﬂ.ooooo..ooooooaoooooo_.oocooo-coooo?ooooop.‘ooooew.-occo**oo
ooa&oo_omiq..ooooo_.oooooo_,.coooo-ocoooonooooco»cocooo..oooo,ommoocooo..oooo&&oo
oo*n_oocog‘oooouo—“.oo.ooo_.ooooeo—‘.ocoo?coooo?cooooc..oooooc_.ooocoo..oooo**o‘o
oon*oo+00w2-uooovo_.eoccoo...ooooonoooeoe_..ooooo—.oooooc!.‘ooccoc_.cocooo..oooo*&oo
co*&...ocowa,eoooZnonkooooo-oooooo_..coooo..ocooo?-oceoc..ooooooﬁooocoo_.oooo**co
oo**ooooOi-+oooZno~ocooso—..ooooo..ooooo?.oooocnoooocp_.-ooeco-ocoooonocoo**oo
oo«toooomi—.oeooZ..mo-+ooocc_.oooooo-.coooo—.ccooco...oeooonoooooon 010 010 Orf0 010 Ol# #!0 0
oo*%oocoﬂ.taooooz_o_..o+om«hnooooo—.oooooo_‘~ooeoonococoo-.oooooacoocoo..-ooc**co
oo*&coocO€~oo+oKo_,ocoommn£_oooowo-.coooo—.oeoooon.o,oooonoooocon 010 010 0rt0 0]- Ol# #i0 0

0 O1# #:0 0+ 0/G wrfo 0f0o oiM ori0 01f0 0Kkdwlio 0f0 0]b OcjO 00 0 0 Ori. 00 0:0 orf0 0J0 ojo orf, 030 0i0 orio 0 ooﬁoooc.%ao 0
oe**.vooccinocoogonooocxni_oooooc_.\oocoo_.oocooo—..oooco..oo‘ogooocmi_ccoo**oo

, octaoo...oo_n«:.ooooZo_.oooo_ns_aooooo..oooono~cooooonoo omﬁ.—_oooozm_oooomioocc**oo
ooa*+oooowi~ooooz_o_.oooo_niooooomw_.uoooco_.oe co@.oooemi_.ooooZo_ooooOi_cooo**oo
oo*&ocoooﬁ.+ooo&o—.oocoﬂioccoaoﬁoo.;>w--.«oocw_oooomﬁ.oooczgoooooioooo**oo
ooaucooth..ooooZo...vooo_ni_oo.»o-o+oo>o~ooo+op.»oomi_.coooKo_ooocmt_OQQO*too

: v oca*coeocﬁ.oooowgoo o_n£~+.ooo~oeo+>5vo+o.co"ooo-mt—..oocKo.coooQi—oooc**oo
g oouaooooocﬁoo..K.!w.-oooo_ni_ooo.co_...«uo>§.ooc«oo~c&oomgooo»§n.uooat_ocoottoc
; oot%oo.cafo.oogc__coo,.wio..coe_oco.>§.+«ocoo~oooam§.cnoo_so_.‘ocoo\oﬂ_.ooo%&oo
oo*&.occ@i-ooo+§ﬂ.o+.owt_ooo+co~o+oo>€qoco+co~++oom§.ooc#KQe.To.oQE_oo Of# #i0 0
ooateoooom.+.oz_nooo+ﬂmo«o+0qo+o.>mo+ooonoocemn++ochco.+Ow,,oo Oj# #i0 0

A configurat

Figure 4.10

4.1.5 .Two-dimensional Caseé

In this section, we construct reversible FSSP solutions to two-dimenstional connected ﬁgures

Two cells p = (z,y),p' = (¢',3') € Z? on a two-dimensional CA A are called adjacent if
E=2'Ay-y|=1)V(z-2|=1ry=y)

If a sequence po,p1,-+,Pn, (Po,P1, "+, Pn € Z?) satisfies- py = p,p, = p’ and Pi, Piy1 are
adjacent for all i(0 < i < n), the sequence is called a path from p through p'. The 1nteger nis
the length of the path. : _

A subset M € Z? is connected if for any p,p’ € M , there is a path in M fromptop. f M

contains finite cells and also contains (0,0), we call M is a figure.

Synchronizing Condition for Two-Dimensional Reversible CA

In reversible CA, there is no solution with single firing state. So we define a synchronizing
condition [RSC2] for two-dimensional reversible CA as well as one-dimensional case [35].
[RSC2] Let A =(Z2,Q, ¢4, #) be a two-dimensional re&ersible CA. A Synchronizing Condi- ,
tion bfo‘r two-dimensional reversible CA is as follows. |

Any figure M(C Z?) , there exist two dlstlnct states g,s € Q — {#} and a state set F C
Q- {#,9,s} that satisfy the followings.

1. Vur, u, us, ug € {3, #},

©0a(s,u1, u2, u3,u4) = s.

2. Let ¢,™) be a configuration defined by

g z=(0,0) .

Mz)={s zeMzx # (0,0) C
€M : o

Then, there is a function ¢; from subset of Z2 to natural number, that setisﬁes ,

Vz € Z2
(zeM= <I>tf(M)(c (M))(z) € F)
AegM= @‘f‘M’<cs<M>)(z) ¢ F)),

Vie Z, (0 <i<tp(M)-
= Vz € 22, (84 ™(cM)(z) ¢ F)).
This deﬁnltlon implies that we deﬁne a set F(C Q) of finite number of ﬁnng states, and regard
that the all cells synchronize if the state of each cell is in F at time ¢ = ¢ 7(M). Moreover, we

assume tha.t not only the n cells but the other cells are allowed to change its internal states.

58

Realization of the Kobayashi’s Solution on a Reversible PCA

Figure M, |

Kobayashi defined a class of figure M., € M and constrncted a minimum time solution for
it [42]. In this section we first show a reversible FSSP solution for Mgiep. Although his main
interest is to find faster synchronizing figures, we use it for its simplicity of assigning states. A

Synchronizing sokution to any connected figures are disscussed in the next section.
1. Figure F contains one-left-down corner as (0,0) (the general cell)
2. F contains exactly one right-up corner

3. We can arrive at any cell starting form the left-down corner by properly proceeding up

or to the right.

4. If we proceed up or to the right starting from a cell, we can eventually arrive at right up

corner irrespecti\}e of the starting cell and the way we proceed
5. F' contains no holes

We say the length of F is the Hammmg distance between the general cell and right-up corner
cell and denoted by length(F) If all soldier cells of F which has a same Hamming dlsta.nce
- from the general have same behavmrs, FSSP on F can be regarded as one-dimensional case of
length(F). |

B

s|s|s]|s]
S

w

wln|n|n
- |
©w

o
L)
[]w]on]en]|wm

glsl|s

Figure 4.11: An example of M;tep

'A)reversible solution for My,

We constructed a reversible PCA in Whlch Kobayashl s algorldhm and one—dlmensmnal 3n
time reversible solution was embedded.

All cells are categonzed into 9 types(fig.4.12), As the result, the directions of up and rlght
(left and bottom) of the each cells are regarded as the same behavior as in a solution of one

dimensional cases.

59

Figure 4.12: cell types

Following formula shows the solution we constructed. In the formula, like ”(A, B)(a, b)”

denotes ” Aa, Ab, Ba, Bb” and parentheses are eliminated if they contain only one element.

o Pp =
(2%, (Ck, Uk, Rk, Dk, Lg), ¢k, (# #, 9 #,#)),
Cx = {#,(A,B,C,D,E,F,G,H,I)(t,3,5,¢,¢, uwwvf, §,é,4,%)},
UK——RK DK—LK—{#’+* 1}

e General is (;1_)3, *, #, #,#), soldier is ((7§, #, #, #,#), quiescent state is (#, #, #,#,#).
° Firing state set‘conta.ins all states which their center part are (A,B,C,D,E, F,G, H I f

e Local function <pK is omitted (1t can be found at the Web c1te shown at the end of thlS ;

sectlon)

\
Next, we show the outline of this solution.

First, the general cell generates cell classification signal ("*") at t = 0. When the cell reveives
a signal “*”, it sends “*” signals to positive directions and if it is a soldier cell then it returns
a signal “1” otherwise (i.e. a blank cell) it returns a signal “*” simultaneously (fig.4.14).

Receiving signals from positive direction, the general cell determines its cell type and generates

60

Figure 4.13: Configuration (¢ = 1)

Figure 4.14: Configuration (t = 2)

speed 1 signal for synchronizing(fig. 4.15)- All other soldier cells determine their cell types by
returned signals and advancing speed 1 signals in turn (fig. 4.16).

Types of all cells are determined in the similar way and the signals of velocity 1 are trans-
mitted. Most of all transition rules are direct product of transition rules P1 and cell types, but
keeping rever81b111ty, a several rules should be changed.

The solution we constructed has 127 state for C part, 4 state for U,R,D, L part The ﬁrmg
time t; =3n -1 for a length n figure. |

: Realization of the Res’enstiehl’s Solution-on a Reversible CA

The algorithm of Rosenstiehl . \
FSSP solution for figures were shown by Rosenstiehl in 1966 [72], [42]. Firing time ¢t; = 4N —6
for a figure of N cells. His algorithm is the following.

61

Figure 4.16: Configuration (¢ = 4)

Suppose M C Z? is any figure of n cells. We make a path which contains all cells of M by

~ the following rules.
- 1. Let p‘be the cell (0,0) (i.e. the geﬁefal oell). Go to (2).

- 2. If p has no adjacent cell which has not been visited then go to (3). Otherwise select one
~ of such adjacent cells with the highest priority (Priority for p depends its dlrectlon right
is the highest and up, left, and down follows) Set the selected cell as p and go to (2).

3. Let P1," ", Pm are the adjacent cells of p then there exists exactly one 23 which has not
been v1s1ted from p. If p is (0,0) and there is no adjacent cells which has not been v131ted

then stop, othermse set p; as p and go to (2).

By this algorithm, a path of 2N -2 points is generated (Fig. 4.17). If one-dimensional 2N —2
time solution is applied to this path, firing time of this figure M is 22N —2) —2 = 4N — 6.

62

09
Ly [[|6
(<
 £Pgfi RN
v

NN N SN S

Figure 4.17: Rosenstiehl

A reversible Construction of Rosenstiehl’s Solution ,
First we construct a reversible PCA Py which constructs a path for any figure by the Rosen-

stiehl’s algorithm.

o Pp=
(Z%,(Cr, U, Rg, Dg, Lg), ¢, G ###4),
Cr = {#,aa, ab3, ab34, ab4, aba, aba01, aba02, aba03, abca, abca01, abd3, abdd,
abda01, abda02, abdca, aca, ad3, ada, ada01, adca, ba3, ba34, bad, bab, bab01,
bab02, bab03, bach, bacb01, bad3, badb, badb01, badb02, badch, bb, beb, bd3, bdb,
bdb01, bdeb, cas, cac, cacOl, cade, cbL, cb14, cbd, chad, chac, cbacOL, chach?,
cbadc, cbe, cbc01, cbc02, cbc03, chdc, ¢bdc01, cc, cdc, da3, dacd, dad, dad01, db1, /
db13, db3, dba3, dbacd, dbad, dbad01, dbad02, dbcd, dbed01, dbd, dbdo1, dbd02, dbd03,
dcd, dd, g, g#, ga, ga01, ga02, ga3, ga34, ga4, gac, gac01, gad, gad01, gad02, gad3,
gadc, gb, gb01, gb02, gb03, gb04, gb05, gb06, gbl, gb13, gb134, gb14, gb3, §b34 gb4,
gba, gba01, gba02, 9ba03, gba04, gba05 gba06 gba07, gba08 gba3 gba301 gba34
gba4 gbad01, gbac gbac01, gbac02, gbad gbado1, gbad02 gbad03, gbad3 gbadc gbe,
gchl gch2, gbc03, gbd, gbd01, gbd02, gbd03, gbd04 gbd05, gbd3, gbd301 gbde,
gbchl gd01, gd3, gde, s}, y

Ur=Rp=Dp=Lg= {#, %+ = =}

e The transition rules of local function Yr are'omi\tted. (See the Web site described later.)

Next we explain the outline of this solution:

Realization of the Rosenstiehl’s algorithm is clasSiﬁCé,tion of the all cells by the connected

relation between each cells. This is the same approach as Kobayashi’s algorlthm but it ismuch -

complex than Kobayashl s algorlthm

63

a 14

1 1
u - >
a1 [o 5 2
C
(1)dd (2- lv) ada (2-2) dbd
4 34
s U, ({2

2 4]

x

(3) abda (4) cbadc

Figure 4.18: the codings of connection of a path(soldier cell)

Four directions “up”, “right”, “down”, “left” are encoded by symbols “a” ,“b”,“c”,“d” (al-
phabetlcal expressron) or “1”,“2",“3” “4” (numerical expression) respectlvely A type of a
cell is denoted by a string cons1sts of direction alphabets which show the directions of enter-
ing/outgoing points of path.

Because the number of the entering points of path for a cell is at most 4, type encoded

strings for a soldier cell are classified into 5 categorles 32 types. Length of all cell types [must. _ '

satisfies 2 < 1 <5 and first and last alphabet should be the same. The general cell denoted as

a catenation of “g” and direction alphabets.

At t =0, the general generates inspection signals “?” (Fig. 4.19(b)). Att =1, If the nelghbor‘u~ ey

cell which receives srgnal “? is a soldier cell then it returns srgnal “qn otherwrse (i.e. a blank i
cell) it returns srgnals “» (Frg 4.19(c)). ' ‘
Att=2, the general changes its center state by the returned 81gnals On this example “u
and “right” cell returns “+” signals. “nght” direction has hlgher pnorlty than “up” d1rect10n :
s0 the path outgorng to “rlght” direction. the general generates “= s1gnal to go to the next
cell and changes its center part to “gbl” (Fig. 4.19(d)). “b” means ‘that the path is connected
to the “right” cell and “1”v means that “up” direction has not been visited.
All other soldier cells update their cell type as the same method and untll path is completed

We shows an example for explanatron

64

8 8 8] 8
?

g 8 s ? 1g#| ? s
?

+
g# + é s| gbl| = s
- ©t=2 - @t=3

~ Figure 4.19: Start generating a path.

65

8 s = |cde 8 ?7]s cde
\ ?
gbl dbl dad| ¥ | e dbl |das
- = [

@t=12 (b)t = 13

s s s §
+
s |+] " ede] ba4 cdc
gbl dbl gbl] | [abr d

(c)t=14 dt=15

Figure 4.20: Determiing process of cell types:

We make a brief explanation about a center soldier in this figure. When the cell received “=”

- signal from “b” direction (Fig. 4.20(a)), it generates inspection signals “?” (b). If the neighbor

cell which receives 31gnal “Pisa soldier cell then it returns signal “+”, otherwise (i.e. a blank
cell or already tested soldier cell) it returns signals “—” (Fig. 4. 20(c)). The cell changes its
center state by ‘the returned 31gnals and generates “=" signal to go to the next cell {(d). We

need 3 steps to determine the next cell. This is because we are using PCA.

In this manner, after all cell types are confirmed and the signal “=" has returned the general,
path generation is finished. The states of center part of all cells on the figure are changed to
cell type strings (Fig. 4.21). In Fig. 4.21, some state strings include the number starting with

66

90", these state should be needed for keeping injectivity of local function. After all, we need
3(2N — 1) steps to complete a path for a figure of N cells.
The reversiblility of Pg is concluded by fact that ¥pg is one-to-one (tested by computer).

bebh cdc
aa ~ BabOp cde
gb dbdo dad

t=37

Figure 4.21: Configuration for confirmed Rosenstiehl’s path

Invoking One-Dimensional Solution along a Rosenstiehl’s Path

Direct products of all rules of reversibleq3n-time solution and all céll types for Rosenstiehl
path leads to the solutlon But many cell states are needed and it is very difficult to assign
true states.) »

So, in this section, we constructed a solution Pgo ’which can synchronize'connected ﬁgures
with no branching Rosenstiehl path. Flgures should be combmed with the cells which has the
- ‘number of input less than 2 such as (a),(b) in fig. 4.18.

Configurations of Pg, for a example ﬁgure is deplcted in fig. 4.22.

(a) is the conﬁgura,tlon of the time that velocity 1 (“*”) and velocity 1 /3 (“o” s1gnals are
emitted after completed path (fig. 4.21). (b) is the conﬁguratlon of firing time.

Firing time ¢; is 3(2N — 1) + 3(2n — 2) when the method for emlttmg 3n—t1me firing signal
after completing Rosenstieh!’s path is used. But no branching case such as Pg, is equal to the
firing time for NV cells.) '

Transitoin rules and detail explanation of Pgy is omoitted. Transition rules and some con-

figurations are available at

67

bcb cde

aa ab0 cde
gbl*o] dbd dad,
(a)t=37

Figure 4.22: Configuration to a no-branching figure

Gbd go
/ /
Faa F(ibab02 gede
| /-
Fgb FGdbdol £
(b)t=55 firing

http://kelp.ke.sys.hiroshima-u.ac. jp/projects/rca/fssp/

68

4.1.6 Summar){ |

In this section, we constructed following reversible solutions to the FSSP. The numbers of their

states are not optimal and more improvements are possible.

Table 4.5: Constructed reversibel solutions to the FSSP.

used algorithm sync. time | the number of states
1D | 3n-time 3n 11 x 32

22-divided 7/3n 40 x 92

-23-divided 7/3n 44 x 288 x 40

Goto and Mazoyer based | 2n+2 |24x42x24x4x11x 4
2D | Myep 127 x 4*

Rosenstiel’s algorithm 51 x 5%

4.2 Number Conserving Solutionsy for FSSP

4.2.1 Number-Conserving Partitioned Cellular Automata

As we explained in section 2.4 the bit-conserving property is one of the most important property.
for the BBM.It is based on the analogy of mass conserving property on a physical system.
Although the bit-conserving property is defined on a 2-state CA, one can extend it into

- multi-bit cases. In this section, we define the number-conserveness for CA as follows, .

Definition 4.2.1 A one dimensional deterministic CA A = (Z,Q, N, p4,d), Wlth global func-
tlon D, is sa1d to be number—consermng, 1f A has followmg propertles

OQ Nm,N —{01 }

. Vc,‘Z ® A(c) @=c,C is an integer. |

~ There are several models such as sand pile [27] whlch based on the notion of number-
conservmg But they are very special CA and they have very limited rules.And synchronizing
problems are not studled on these models. Because, in general, it is very difficult to design a
CA with number—conservmg rules as well as reversible rules and as well as rever31b1hty, number-
conserveness is defined as the property related to its global function. So it is very difficult to

determine whether CA is number-conserving or not.

69

But conserveness of local maps of PCA is useful for constructmg number-conservmg rules.
i.e. its cell is d1v1ded into three parts and hence each cell is represented by a triple of non-
negative integers. Only neighboring parts are concerned in evolving each cell’s state. So we
use the framework of PCA to construct number-conserving CA. Number-conserving PCA [65]

is defined in the same way.
Deﬁmtlon 4.2, 2 APCA P,
e = (2, (L,C, B), o, (1 Gos 1)
is said to be number-conserving, if following conditions holds,
¢ L=C=R=Ny,Np={0,1,-,m}.
° Quiescent‘state is (¢r, dc, Gr) = (0,k,0),(0 < k < m).

e For all (r,¢,) a.nd\(l', d,r') e N3, if op, (r,c,l) = (I, 2, rYthenr +c+Il=0+¢ + 7.

In NC-PCA, only the constraint that the local transition function should satisfy the number-
conserving condition is supposed. Thus, it makes relatively easy to construct an NC-PCA.
Because each cell can hold three non-negatlve integers, it is possible to represent dlfferent
states even if the sum of three numbers are equal.

In this section, we show the result of constructing the number-conserving solution to the

Firing Squad Synchromzatlon Problem [39).

_4.2.2 FSSP Conditions for Number-Conserving Solutions

Ina nuinber—conserving cellular space, propagation of signals are formed by moving some num- -

ber ‘to neighboring cells, and Pglobal transfer of signals change the balance of numbers. On g

 FSSP, all cells must be synchronized into a single state (i.e., the same number) using only local -
rules, so all signals used for algorithms to FSSP on number-conservmg CA use mgnals should
be “balanced”. -3n-time algorithm is based on a divide-and-conquer method. It is possible to -
realize FSSP solutions on NC-PCA, if its transition rules are constructed to keep the sum of
* each side of cell states are equal number at all points of generating new generals.

As mentioned. in section 4.1.1, on reversible CA, it is impossible to construct the solutloﬁ
to FSSP even if framework of PCA is used. But on NC-PCA, it can be possible to construct

the solutlon based on a single firing state f = (fi, fe, fv)- But because we use the framework

70

of PCA, in order to recognize the right most soldier cell, a cell state of right wall should be

changed, so the second constraint of RSC in section 4.1.1 is still remained.

Synchronizing Conditions for N umber-Conserving Solution (NCSC) All condition is _
the same as RSC in section 4.1.1, except single firing state f=Ufe fr)-

4.2.3 A Solution on N umber-Conservmg PCA

Under the synchronlzmg condition denoted above, we constructed a, number-conserving solution

P, ncfssp

‘ Pncfssp = (Z’ (9: 9, 9)’ Dncfssps (07 Oa 0))

general state is g = (1,7,1), soldier state is s = (0,9, 0), firing state is f = (2,5,2) and local
function @pcs,sp is composed by the listed local transition rules in Fig.4.24. ‘

Configuration of Ppssp (n = 8) is depicted in Flg 4.23 We briefly denoted the outline of this
solution. | »

This solution is based on 3n-time algorithm. Rules {1} are used for the static states. Signals
of velocity 1 and —1 are denoted by the rule {2}, {3} and signals of velocity +1 /3 uses rules
{5}. {6}, {7} are rules for collisions and final transitions for firing state are denoted by rules
{8}. -

Differ from reversible PCA, Although NC-PCA allows the existence of same states in the right
hand side of its transition rules, the following type of transitions: (0,%,0) — (0 1,0),(k #1)
are inhibited. ThlS type of rules are usually used to implement. counters but reahzatlon of
these counters (i.e., a signal delay feature) w1th a single cell is 1mposs1ble When - we 1mplement -
a signal of velocity 1 / 3, it is impossible to make a delay only a center part of a PCA cell. We

must send a signal to a nelghbormg cell and receive its reflection signal to reallze a delay.

On reversible solution in section 4.1.2, we uses the state for preparmg to ﬁre denoted by .

the symbol e. Preparmg symbol e can be autonomously changed to firing state 1In contrast
to reversible solutions, preparing conﬁguratlons for a number-conservmg solution are quite.
confusing. Because in its preparmg stage, the numbers are completely dlstnbuted to each
partitions for 1ts firing conﬁguratlons _ 7

When cells are divided into two parts by generating new generals, the sum of states should

be equal number. A signal of velocity 1 is described by the state 1 and it is generated by

71

decrement the state number of a generé,l. So after the collision of signals oﬁ the center cell, the

signal of velocity —1 is encoded by state 2 and the number of general cell can be recovered.
This solution is m = 9 but it might be possible to find smaller solutions. Although this

solution is based on 3n-time algorithm, a 2n + c-time solution will be available if Goto and

Mazoyer algorithm [50] is used.

72

1

1|

I |o|o|ojo|o|aa|ao]o|olala|alalalalalalalelols
]’ ’] e o
1 - — [e STIE

=l Ko S K e S S R R R R B R B B R R B B R I M I
— © o IS

— — o e o]l eN

Sl |a|ojojo|o|ao]olo|o|o|a|o|~~lololalalonl=lol
— e o N O]~

— - e N L' ol B el s
999999999999661111771175
| © on e} 0 |
— o — 0 o N Ol
S |a|a ool lololalo|~ |~ lolelala o= s
‘ 0) v o i O|=|eq}-

i) N ©) i

e K2 K2 K e K o B R I B R R E B R R B D I T ™M S D
) o™ — o |y

vl) N , — O]
S |a -~ lojolo|o|olalololalalalalalalalaol=nt
w|. [<t w0 BRI

— o [Te) <t 0 1
o)~ jooloofoo]oofofoofoofofoo]eofo o= == l—=[=l—=loo 5
— o , <t <] < o~

— o <t < <t

Figure 4.23: A éohﬁgufation of Pn;f,,sp (n=8)

73

1

{2}
{3}

{4}
{5}

{6}

{7}

{8}

(0,0,0) = (0,0,0),
(0,6,0) — (0,6,0),
(0,9,0) — (0,9,0),
(1,9,0) = (0,9,1),
(0,9,2) = (2,9,0),
(1,0,0) = (1,0,0),
(2,8,0) - (5,1,4),
(4,1,5) - (4,1,5),
(0,0,4) — (0,0,4),
(4,9,0) = (4,9,0),
(3,9,0) = (5,7,0),
(5,6,0) - (2,9,0),
(1,7,0) = (3,2,3),
(3,0,0) = (3,0,0),
(3,9,1) = (6,6,1),
(6,6,0) = (1,9,2),
(5,1,5) = (5,1,5),
(3,1,3) = (0,7,0),
(2,7,1) = (0,4,6),
(1,7,5) = (6,4,3),

) (079’6) - (116:8)1

(0,0,8) — (0,2,6),
(0,6,2) - (0,2,6),
(0,4,1) = (0,4,1),

- (1,4,5) =+ (7,1,2),

(5,9,3) - (6,3,8),
(4,1,6) = (0,8,3),
(6,1,6) = (3,7,3),
(0,8,1) = (2,5,2),
(5,1,3) = (2,5,2),

' (1,6,2) = (2,5,2),

C (5’216) - (6,374)’

(1,2,6) =+.(0,7,2),

(0,3,2) = (1,1,3),
(0,7,4) - (0,6,5),
(8,4,1) =+ (5,7,1),

(6,4,1) = (2,8,1),

(8,6,1) - (6,2,7),
(6,1,0) - (0,7,0),
(7,0,0) =+ (7,0,0),

(71 2’ 0) - (23 5a 2) '

Figure 4.24:

(0,1,0) =+ (0,1,0),
(0,7,0) = (0,7,0),

(0,9,1) = (1,9,0),
(4,9,1) = (5,9,0),
(0,0,1) = (0,0,1),
(5,9,0) - (4,9,1),
(5,1,4) - (5,1,4),
(4,0,0) — (4,0,0),
(0,9,4) - (0,9,4),
(0,9,3) = (0,7,5),
(2,7,0) = (0,6,3),
0,7,1) = (3,2,3),
(3,2,5) = (0,8,2),
(1,9,3) = (1,6,6),
(1,6,0) = (3,1,3),
(0,7,5) - (3,6,3),

(1,7,2) - (6,4,0),
(0,4,0) = (2,0,2),
(6,9,4) — (8,6,5),
(8,0,0) — (6,2,0),
(0,2,6) = (3,4,1),
(1,4,0) - (1,4,0),

V (07 17 7) — (018’0),

(3,9,5) - (8,3,6),
(6,1,4) — (3,8,0),
(8,1,6) -+ (5,8,2),
(1,8,0) - (2,5,2),
(1,7,1) = (2,5,2),
(0,1,4) = (0,1,4),
(6,2,5) = (4,3,6),

0,3,4) » (1,1,5),

(2,3,0) = (3,1,1),

(3,6,0) - (2,5,2),

(1,4,8) = (1,7,5),
(3,2,6) — (0,3,8),
(1,6,8) — (7,2,6),
(1,2,0) - (1,2,0),
(0,0,7) - (0,0,7),

(0,2,0) - (0,2,0),
(0,8,0) -+ (0,8,0),

(2,9,0) — (0,9,2),
(1,9,4) — (0,9,5),
0,8,2) = (4,1,5),
0,9,5) — (1,9,4),
2,7,2) = (5,1,5),
(4,1,4) > (4,1,4),

(0,6,5) = (0,9,2),

(O, 7’ 2) _) (3’ 6’ 0)’

(0,0,3) - (0,0,3),
(5,2,3) — (2,8,0),
(0,6,6) — (2,9,1),
0,6,1) — (3,1,3),
(5,7,0) — (3,6,3),

(5,7,1) = (3;4,6),
(6,9,0) - (8,6,1),
(4,9,6) - (5,6,8),
(2,6,0) - (6,2,0),
(6,2,0) = (1,4,3),
(5’ 4’ 1) - (2$.15 7)a
(7,1,0) = (0,8,0),
(0,3,0) - (1,1,1),
(8,1,8) = (5,7,5),
(6,1,8) = (2,8,5),
(3,1,5) = (2,5,2),
(2,6,1) = (2,5,2),
(4,1,0) —»'(4,1,0),
(6,2,1) = (2,7,0), -

(4,3,0) = (5,1,1),

(4,7,0) = (5,6,0),
(0,6,3) - (2,5,2),
(1,4,6) = (1,8,2),
(6,2,3) = (8,3,0),
(0,1,6) - (0,7,0),
(0,2,1) = (0,2, 1),
0,2,7) = (2,5,2),

The local rule of Pyefssp

4

Chapter 5

Self-Reproduction in Reversible

Cellular Automata

5.1 Self-Reproduction in a Two-Dimensional RPCA

5.1.1 Definition of SRy

In this chapter, we construct non-trivial self-reproducing structures can heconstractible in a
reversible cellular space. l o

The idea of our model is based on Langton’s sheathed Loop, and to achieve more ﬂexibility
we introduced a self-inspection method. Although Ibafies et al. [32] showed a 16-state model
in which sheathed loops can reproduce by using a self-inspection’ method independently, our
model is realized in a “reversible” cellular space. 7

In the cellular space of SRg, encoding the shape of an obJect mto a “gene” represented by
a command sequence, copylng the gene and interpreting the gene to create an object, are all ’
performed reversibly. By using these operations, various obJects called Worms and. Loops can .
reproduce themselves in a very simple manner. '

‘The RPCA “,SRB” is deﬁned by

SRg = (Z(CURDL)g,(#####))
C=U=R=D=L={#++,— ,A,B,C?D}.

Hence, each of five parts of a cell has 8 states. The states A, B, C and D mainly act as signals
that are used to compose “commands”. The states *, +, and — are used to control these signals.
The local function g contains 765 rules, and is a one-to-one mapping. The complete listing

of the rules is given in Appendix.B.

75

Figure 5.1: Signal transmission on a part of a simple wire (zi,y: € {A,B,C}).

Command

First | Second Operation
signal | signal

A A Advance the head forward
Advance the head leftward
Advance the head rightward
Branch the wire in three ways

B{w| |
wl>|alw

Branch the wire in two ways
(making leftward branch)
Branch the wire in two ways
 (making rightward branch)

w
Q

Table 5.1: Six commands composed of A, B, é.nd C.

5.1.2 Signal Transmission on a Wire

A wire is a configuration to transmit signals A, B, and C. Fig. 5.1 shows an example of a part
of a simple (i.e., non-branching) wire.

A command is a signal sequence composed of two signa.ls There are six commands consisting
of 81gnals A, B and C as shown in Table 5.1. These commands are used for extending or

branching a wire. -

5.1.3 A Worm

o

A Worm i is a simple wire with open ends that are called a head and a tazl It crawls in the

reversible cellula,r space as shown in Flg 5.2.

76

»*
_ + :
*
{ M
i + m b m
[}
= 5 3 i =
MA+B * G CA+M *C+M H-O
¥ * T
+ i
L
m e
< 0 .
: H-< MA+ 2 < MB
=] w M M
* *]
+ |

i

Figure 5.2: Behavior of a Worm.

(4

t=0 t=28-

*+A
P
g+BB+v~T-~+CB+c
* *
+*+CB+§
*
. y\
% B
+ BB+*+ e
4 oot
+ * . §
Eate
t=16 t=32
*
5,
"4
T B+
* Aot +eta
§+A¢ "+Bg -+
?Hm : +e+A
At oA +
A *.
«+BB Atet XA+2
«+BB + T
Rusy
T

Figure 5.3: Self-reproducing process of a Worm.

Commands in Table 5.1 are decoded and executed at the head of a Worm. That is, the
command AA extends the head straight, while the command AB (or AC, respectively) extends
it leftward (rightward). On the other hand, at the tail cell, the shape of the Worm is “encoded”

into an advance command That is, if the tail of the Worm is stralght (or left-turmng, right-

turning, respectlvely) in its form the command AA (AB AC) is generated The tail then

retracts by one cell

5.14 Self-Reproduction of a Worm

By glvmg a branch command, any Worm can Self-l‘eproduce indefinitely provided that it nelther e

cycles nor touches itself in the branching process. Fig. 5.3 shows self-reproducmg processes of

Worms.

78

- whole shape of the mother Loop mto command sequences simultaneously and these commands '

<+

AA
+
A
A+HAA

2> -+ -

p

+AAHA

Figure 5.4: An example of a Loop.

Command
First | Second Operation
signal | signal
D B Create an arm
D C Encode the shape of a Loop

Table 5.2: Commands DB and DC.

5.1.5 Self-Reproduction of a Loop

A Loop is a simple closed wire, thus has neither a head nor a tail as shown in Fig. 5.4.

If a Loop contains only advance or branch commands, they simply rotate in the Loop and self-
reproductlon does not occur. In order to make a Loop self-reproduce, commands in Table 5.2
are used.

Examples of entire self-reproducing processes of Loops are shown in Figs. 5.5 and 5.6. By
putting a command DB at an appropriate position, every Loop having only AA commands in all

the other cells can self-repioduce in this way. When DB reaches the bottom right corner, it starts

making an “arm” and this corner become a transmitter of commands. First, all AA commands‘*f

in the mother Loop are transmltted through the arm and generated DC commands encod 3

are. transmitted after all static AA commands are transmltted Finally DC commands reaches"f B

the bottom right corner and the arm is sphtted from the mother Loop.

5.1.6 COntrOlling the Position of Daughtér Loops in SRg

One of our main motivations is to place preferred initial patterns to a reversible cellular space. . :
As mensioned above, a closed Loop has only AA commands. If AB or AC commands are placed
in the Loop, generated positon of the daughter Loop can be cahnged.

But DB (create an arm command) advaces the bottom side of a loop and the length of

the Loop does not equal to the running length of the whole commands. Thus the embedded

79

t=0 t=16 it =42
A+ A+AA A+, A+AA
A A A
%D:%, Ep+2a+Ba+BA+E IA-:% Ta+2a+BA+BA+
t=4 t=20 t =56
A+ A+AA oo A+AA A+AA A+AA
A A A A A
y UL XA+A— AA+BA+§ IA+§ +§ $D+§
t=28 t=24
R‘i- k-i-AA §+
Bariasa 0 S
t=12 t =28
AA A+AA A+AA
A A
A+—A+BA+A— +§ $D+§

Figure 5.5: Self-reproducing process of a Loop (1)

t=50

ﬁ+AB+A-H-AA
§ AA+A A
N

§ A+AA+AA

$A+AA+CA+*A+BA+BA+AA+AA+AA+AA+AA+AA+AA+AA+*

¢ = 100

A+AATAATAA - g

L aata

2 -

34 fud i

§ A+AA+AA ACH

xA+AA+AA+A = AATAATAAHAAFAAHAATBA+AAHAAHAA+BA+AAFAA+BA+AA

=152

A+AA+AA+A% ﬁ+AA+AA+AA
AA+A A X +A A

A A A A

£ 5 A 14 nd

‘% A+AA+A% § A+AA+A%

fatantandd { ED+aatas+d

Figure 5.6: Self—reprodﬁcing process of a Loop (2)

80

~ position of turning commands in the daughter Loop differ from the mother Loop (Fig.5.7).

t=0
A+]AA+|AA+|AA
A +
+ A
A AA+ A A
A + A +
+ A + A
A A AA+ A
A +
+
A A+ AA
A +
A
+ AA+ AA+ A
t=80
A+]AA+JAA+[AA A
A + +
+ A
A AA+ A A B
A + A + +
+ A + A A
A A AA+ A B
A + +
+ A
A A+lAA+|aa A
A + +
+ X
AA+CD+AA+-A+AA+AA+AA+BA+AA+AA+BA+AA+BA+BA+CA+CA+AA+C
t=152
A+IA A+ A
A +
+
A+J]AA+[AA+|AA A A A A A
A + A + A +
+ A + A + X
A AA+ A A A A+|AA+|AA A
A + A + 4 A +
+ X + X *
A A AA+ A AA+ AA+ AA+ A
A +
+ A
A A+]AA+AA
A + -
+ A
AA+ AN+ AA+ A

Figure 5.7: A shifting command sequence by the self-reproducing process of a Loop of SRg

Although such a shifting of reading-frames of its command sequence is interesting phe- .
nomenon, it is difficult to control. So we modify SR, for solving this timing problem.
Fig.5v.8 is the process of modified version of SR3. DB signal is not advance bottom side
and reproducing starts from the bottom right corner as soon as the Worm reaches at this -
position. So created daughter Loop is rotated in 90 degrees. Because of this rotation, Loops

make collision after 4 generations. But this collision can be avoidable by inserting direction

81

commands into the mother Loop (Fig.5.9) and this modlﬁcatlon acts important roll in extending

SRg to three-dlmensmnal one in the next section.

82

A

ANeBAen

*
X
A

ANEANe AMe ANs AN+ AN+ AN+ ANs BAe AN+ AN+ AlleB At ans

AN+ BN BNs s NeCA+ AN+ CA+ AN+ B Als AN+ AMe AN AMs anle aleadee

<4 pa < o 3 <o fe < < 4| <+ < 4| <o
] + < < k3 < < * < L3 >
L3 < * ¥ < + + < 3 * -
< < < < < < < < < < < < - <
< + i < + * < L < L2 i k2 < 3
+ < + L3 < < + < + < . * < + <
< < < < < < < < < < N < - < <
< > < < * < + 6 < +
Ep : T3 T3 ; ATE : BT 3
+ + 8

vy * — << 3 — <« j» < bt

L il N |

A - - LY

ey
X
-

ANeANe A
T
AN AN+ A

DO+ A
Adaadandandaa

Adandandandaa
A,

A
(3

f a Loop of modified SRy

83

cing process o

Self-reprodu

‘Figure 5.8

R
el <ofecste | <ifpn
+ -« + < + d
<z . N T+ 1= (]
< <] «chs | m | u =}
+ < + < +]
< A + < * <
. v < | cekkeik< | o =
+ < + O
< +* <
< N E A+ e < |+ € <c|e < -
*
T Cpant
© (=}
hd -
T o
S Q
% Q
T
s . .
" : -
T
« <
N
z]
< =]
+
< w2
p ‘ &
hd
b Q.
L3 < L
* + m
< <
< <) =¥
hd +
< T ap
< o
* + Qm
< < C
< < .
N . =
< < s w]
< < o
+ v
T < =
< < =}
+ + [«}]
< < 1]
<<f+ < <<|sa]
- +]
v < < T ——
<+ << <+ VHCm el <4l €< e < <+jce <+C <€ s ¢ <+ M) >
< + |l <1+ < + | <l < + | <+ < « el N
* < * < * < * < + < - - . * < + <
<] <<fb< |a|uw vl << | < | < <« | <<<c]| <} < | <eee | <« | < .o
< | <] « <l . < i+ <] « < | + < | « <]« N
* < +* < +* < +* < + < + < + < - < .
< | <<k | @ < | <secec | « < | <+fecsfcc | < < | ek | < Yol
< + < + < + < +
G T 3 T 3 T ¥ T [
<< v < <js < <fs < =] ver<<fracr<<lim © <<fr < <fs <<fs < cfe < 3 <<+ e <<le <<fs € =
pA1
i 0) mo
; - - - o
g e

5.2 Self-Reproduction in a Three—Dimehsional RPCA

5.2.1 An Extension of SRg into a Rotation-Symmeric Three-Dimensional
RPCA

In this section, we extend SRj into a three-dimensional RPCA.

A two-dimensional 5-neighbor PCA can be embedded directly into a three-dimensional 7-
neighbor PCA (Fig.5.10). But due to the rotation-symmetric condition of SRg, the Worm
cannot know the directions of right, left, up and down. In three-dimensional rotation-symmetric

CA, up to 24 rotated rules are regarded as the same rule. So we introduce another glue state

Figure 5.10: Domain and rage of local function in 3D 7-neighbor PCA

‘=" for SRg and combine two Worms whose command sequences are complementaly placed
as presented in table 5.3. An example of the Worm of width 2 is depicted in Fig.5.11. Each

Worms can determin the direction by a glue symbol ‘=" between itself and the opponent.

‘ Ta,ble 5.3: Commands for width 2 shaped worm

Command
wire 1 wire 2 - ‘
First Second | First | Second - Operations
Signal Signal | Signal | Signal .

A | A A ‘A | Advance the head forward

A B C | Advance the head leftward

A C A B Advance the head rightward

B A B A Branch the wire in three ways

B B B C Branch the wire in two ways (leftward)

B C B B Branch the wire in two ways (Irightward)

This ribbon of width 2 shaped Worm in a three-dimensional rotation-symmetric RCA has

completly the same behavior as that of SRs. But this Worm cannot construct three-dimensional

85

i 8t a2 251

Figure 5.11: A width 2 shaped Worm

“shape and only crawls in a plane. In the next section, we employ ribbon of width 3 shaped

Worms and show how they perform three-dimensional self-reproduction.

5.2.2 Three-Dimensional Self-Reproducing RPCA (SRy)

The three-dimensional self-reproducing RPCA “SRy” is defined by

S-RQ = (Zs’ (07 U’ R‘) D7 L, F’ B)’ g, (#’ #’ #, #’ #, #7 #))’

C=U=R=D=L=F=B={#++—-,= ABCD}
Local rules are shown in Appendix. C.

Although SRy has 6886 rules, if rotated rules are regarded as equivalent, it become only 338

rules.

To construct ‘true’ three-dimensional structures, A Worm in SRy can twist its head m :1:90_,‘ |

degrees (Flg 5.12). As far as using SRy command sequences in rotation-symmetric spaces the .
length of path should be kept equal and this Wldth 2 raddar approach in the prev10us sectlon

is impossible. So we add a center wire and Fig.5. 13 is a simple Worm in S.Rg

SRy has two more commands for twisting heads. ‘A -commands are extended for tmstmgk -

“heads and table 5.3 shows the command set.

When both worms has the same sequence ‘AB AA AC (or ‘AC AA AB’), its head is twisted
leftward (rightward). Using twisting commands, complex three-dlmenswnal Worms and Loops »
such as Fig.5.14 are available. Although the existence of twisting commands in SRy, its self-

reproducing mechanism is completly the same as that of SRs.

86

Al

left turn right turn
% j | 'J| 1
7 7

upward turn downward turn

Figure 5.12: Four kind of turns in SR,

@

tail head

Figure 5.13: A simplé Worm in SRy

5.2.3 Controlling the Position of Daughter Loops in SR;,

When extending SRg to SRg, we use the modlﬁed versxon of SRy dlscussed in sectlon 5.1.6. SO‘
Loop posmonmg commands can also be inserted freely in SRy. And this modification has an
important meaning in the three-dimensional case because it makes poss1ble to generate different N
topological shapes Fig.5.15 is a chain formed from a single Loop This shape—constructlon
techmque can be possible by the posmonmg a daughter Loop with a specific command sequences
in the mother Loop. ’ ' o

‘The self-reproducing processes are hard to describe on a paper. ‘They c#n’ be seen as Quick-
Time Movies at the following address via WWW. _
SRg: http://w,ww.ke;sjs.hiroshima—u.ac.jp/projects/rca/sr/
SRy: http://kelp.ke. sjs -hiroshima-u.ac.jp/proj ects/rca/sr3d/

87

Table 5.4:

‘A’-Commands for width 3 shaped worm

Command
wire 1 wire 3
First | Second | First | Second Operations
Signal | Signal | Signal | Signal
A A A A Advance the head forward
A B A C ‘Advance the head leftward
A C A B Advance the head rightward
A B A B Start rotating (leftward)
A C A C Start rotating (rightward)

t=1000

Figure 5.15:

A chain formed from\ a single Loop in SRy

'

88

Chapter 6

Conclusion

/

In this paper, we have constructed the following cellular models.
e A triangular computation-universal RCAs with small number of states

e Several solutions to the Firing Squad Synchronization Problem to show the abilities of

reversible and conservative CAs |

e Simple two- and three-dimensional self-reproducing RCAs

In chapter 3, we have constructed an 8-state triangular RPCA which has computation uni-
versality. This is the smallest state two-dimensional RPCA with bit-conserving and rotation

symmetric local functions. Open problems are as follows.
-e To find other 8-state universal RPCA models

e To find univereal'RPCA models with small ;iumbef of states

We conjecture that by using partltlomng, 6 or 4 state RPCAs can be possible. These RCAs ‘
have two-neighbors, and if they are embedded in two or hlgher dlmenswnal cellular space, they
do not have uniform neighbor. ‘ ’

In ehapter 4, we defined the Fir’ing\ SquadSynchronization Problem for reversible and conser- .
vative CA and constructed reversible or conservative solution based on Minsky’s 3n-time one.
Moreover, we also constructed 2n + 2-time reversible solution based on Goto and Mazoyer’s
minimal time algorithm. But it is not a minimal time solution.. Even if under the constralnt of

PCA, 2n-time solution will be possible, i.e., to find

89

e A reversible solution with minimal number of ﬁring states
e A minimal ﬁring time reversible solution

e A reversible solution with a minimum number of states
‘o A reversible and conservative solution

are remaining open.
In chapter 5, we constructed simple two- and three-dimensional self—reprdducing RCAs by

self-insiiection method. There are many problems remain in this field.

e 'To describe the shape constructing ability of SRy
e To design self-reproducing objects which have some functions in an RCA

e To construct a self-reproducing RCA of von Neumann’s sense

‘The shape constructing ability of SRy is not clear now. It might have computation-universality
or perform some other interesting functions. But it has not so strong ability as von Neumann’s
universal constructor. So it is also an open problem to construct a “true” construction-universal

self-reproducing RCA.

90

o)

Bibliography

-

[1] Adachi, T.: A Time 2n Reversible Solution to the Firing Squad Synchronization Problem,
Master thesis, Hiroshima university, (1996).

[2] L.Adleman: “Molecular Computation of Solutions to Combinational Problems”, Science,
266, (1994), 1021-1024.

[3] Albert, J., and Chulik II, K.: A simple universal cellular automata and its one-way and

totalistic version, Comples Systems, 1, (1987), 1-16.

[4] Amoroso, S. and Patt, Y. N.: Decision Procedures for Surjectivity and Injectivity of Parallel
Maps for Tessellation Structures, Journal of Computer and System Sciences, 6, 448-464,
(1972).

[5] Athas, W.C. and Svensson, L. “J.”: Reversible Logic Issues in Adiabatic CMQOS Physcomp
'94, (1994), 111-118.

[6] Baker, G. H.. NREVERSAL of Fortune: The Thermodynamics of Garbage Collection;
Proc. Int’l. Workshop on Memory Mgmt St Malo, France, (1992).

[7] Baker, G. H.: Lively Linear Llsp ‘Look Ma, No Garbage" ACM Szgplan Notzces 27, 8 -
(1992), 89-98. E

[8] Baker, G. H.: Thermodynamics and Garbage Collectlon ACM Szgplan Notices, 29 4 ;
(1994) 58-63. :

[9] Balzer, R.: An 8-states mihimal time solution to the firing squad synchronization problem
Inform. and Control, 10, (1967), 22-42. R

[10] Bennett, C.H.: Log1ca1 reversibility of computatlon IBM J. Res. Dev., 17, 6, (1973)5
525-532. . |

[11] Bennett, C.H.: The thermodynamics of computation, Int. J Theoretzcal Physics, 21, 12, A
(1982), 905-940.

91

[12] Bennett C.H.: Notes on the history of reversible computation, IBM J. Res. Dev., 32, 1,
(1988), 16-23.

[13] Berlekamp, E., Conway, J., Guy, R.: Winning Ways for Your Mathematical Plays, Vol. 2,
Academic Press, New York (1982).

- [14] J. Byl, Self-reproduction in small cellular automata, Physica D, 34, (1989) 295-299.

[15] Clementi, A., Mentrasti, P., P1er1n1 P.: Some Results on Invertible Cellular Automata
Physcomp ’.94, 143-150, (1994).

[16] Codd, E.F.: Cellular Automata, Academic Press, New York (1968).

[17] Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum
computer, Proc.R.Soc.Lond.A, 400, (1985), 97-117.

[18] Dooren, G, D. ed.: Lattice gas methods for partial diferrential equations, Addison-Wesley,
(1987).

[19] Duland-Lose, J.: About the Universality of the Billiard ball model, Proc. of the Second
Collogquium on Umversal Machines and Computations, Volume II (Metz), (1998), 117-132.

[20] Feynman, R.P., Simulating physics with computers, Int.J. Theoret. Phys., 21, (1982) 467-
488.

[21] Fredkin, E., Toffoli, T.: Conservative logic, Int. J Theoretical Physics, 21, 3/4, (1982)
219-253.

[22] Fredkin, E.: Digital mechanics: An lnformatlonal process based on reversible universal -
CA, Physica, 45D, (1990), 254. ' ‘

[23] Gardner, M.: MATHEMATICAL GAMES- The fantasic conibinations of John Conway’s
new solitare game “Life”, Scientific Amemcan, October, (1970), 120—123

[24] Gardner, M.: MATHEMATICAL GAMES: On cellular automata, self-reproductlon the
Garden of Eden and the game “Life”, Sczentzﬁc American, Feburary, (1971), 112—117

[25] Garzon, M.: Models of Massive Parallelzzm Analyszs of C’ellular Automata and Neural ’
- Networks, Springer, (1995)

[26] Goles, E., Sand pile automata, Ann. Inst. Henri Poincaré, 56, (1992), 75-90.

[27] Goles, E., and Margenstern M., Sand pile as a universal computer, Int. J. Modern Physics
C, 7 (1996), 113-122.

92

[28] Goto E: A minimal time solution to the firing squad synchromzatwn problem, Course

notes for applzed mathematzcs Harvard University, (1962).

[29] HkiEE— 7§FE73‘ A N —‘ﬁﬁlﬁo)ﬁﬂ%, BERPIEANDE (LNIBBE) Je37 MK,
(1966), 6877, (in Japanese).

[30] Gregorio, Di S. and Trautteur G.: On Reversibility in Cellular Automata, Journal of
Computer and Systems Sciences, 11, (1975) 382-391.

[31] Hori, T.: Ezpanding the self-reproduction model SRg in a 2-dimensional reversible PCA |

z’nto 8-dimensional one, Master thesis, Hiroshima university, (1997).

[32] Ibdiez, J., Anabitarte, D., Azpe1t1a L, Barrera, O., Barrutieta, A., Blanco, H., and
Echarte F., Self-inspection based reproduction in cellular automata, in Advances in Artifi-
cial Life (eds. F. Moran et al.), LNAI-929, Springer-Verlag, (1995), 564-576.

[33] Imai, K., Morita, K.: Firing Squad Synchronization Problem in One-dimensional Re-
versible Cellular Automata, Proc. of LA symposium 93 Winter, (1994), 66-72, (in

Japanese).

[34] Imai, K., Morita, K.: Faster solutions to Firing thad Synchronization Problem in One-
dimensional Reversible Cellular Automata, Proc. of LA symposium ’95 Wznter, (1996) (in

Japanese).

[35] Imai, K Morita, K Firing Squad Synchronization Problem in Revemlble Cellular Au-
tomata Theoretical Computer Sczence 165, (1996), 475-482. ’

: [36] Imai, K., Adachl T., Furusaka, S. and Morlta K., Flrmg squad synchromzatlon prob-_ '
lem in one and two dlmenswnal rever81ble cellular automaton Proc. of Cellular Automata
. Workshop 96, GieBen, (1996), 38-40. ' ‘

[37] Imal K., and Monta K, A computatmn-umversal two-dimensional 8-state tna,ngular'f "
revers1ble cellular automaton, Proc. of the Second Colloquium on Unwersal Machmes and

Computatzons, Volume II (Metz), (1998), 90—99

[38] Imai, K., . MOrlta, K.: A computation-universal two-dimensional 8-state triangular re-

versible cellular automaton, Theoretical Computer .S'clehce, (to appear).

[39] Imai, K., Morita, K., and Sako, K.: Firing Squad Synchronlzatlon Problem in Number-
' Conservmg Cellular Automata Proc. of AUTOMATA 98, Santiago, (1998)

93

[40] Kari, J.: Reversibility and Surjectivity Problems of Cellular Automata Journal of Com-
puter and Systems Sciences, 48, (1994), 149-182.

[41] Kari, J.: Representation of Reversible Cellular Automata with Block Permutations, Math.
Systems Theory, 29, (1996), 47-61.

[42] Kobayashi, K.: The firing squad synchronization problem for fwo—dimensional arrays, In-
form. and Control, 34, (1977), 177-197. -

[43] Kobayashi, K.: On the minimal firing time of the firing squad synchronization problem for
polyautomata networks, Theoretical Computer Science, 7, (1978), 149-167.

[44] Langton, C, G.: Self-Reproduction in Cellular Automata, Physica, 10D, 1/2, (1984), 135
144.

[45] Lindgren,’ K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular

automata Complex Systems, 4, (1990), 299-318.

[46] Lohn, J.:- Automated Discovery of Self-Réplicating Structures in Cellular Space Automata.
Models, Technical Report UMIACS-TR-96-60 (CS-TR-3677), (1996).

[47] Margolus, N.: Physics-like models of computation, Physica, 10D, 1/2, (1984), 81-95.

[48] Mazoyer, J.: A six-state minimal time solution to the firing squad synchromzatlon problem
Theoret. Comput. Sci., 50, (1987), 183-238.

[49] Mazoyer, J.: On optimal solutions to the firing squad synchronlzatlon problem, Theoret.
Comput. Sci., 168, (1996), 367-404.. '

[50] Mazoyer, J.: A minimal-time sdlution to the FSSP without recursive call to itself; ,
Draft,(1996).

[61] Minsky, M.: Computatzon Fzmte and mﬁmte machmes Prentlce Hall, Englewood Cliffs,
NJ, (1967). |

[52] Moore, E.F.: The firing squad synchronization problem, in Sequential machines (ed. E. F.
Moore) Addison-Wesley, Reading MA, (1964), 213-214.

[53] Moore F. R. and Langdon G G: A Generahzed Flrlng Squad Problem Informatwn and
Control, 12, (1968), 212—220

[54] Morlta K., Shirasaki, A., and Gono, Y.: A 1- tape 2-symbol reversible Turlng machine,
Trans. IEICE Japan, ET2, 3, (1989), 223-228.

94

[55] Morita, K., and Harao, M.: Computation universality of one-dimensional reversible (injec-
‘tive) cellular automata,' Trans. IEICE Japan, E72, 6, (1989) 758-762.

[56] Morita, K., Ueno, S: Computation-Universal Models of Two-Dimensional 16-state Re-
versible Cellular Automata, IEICE Trans. Inf. & Syst., E75-D, 1, (1992), 141-147.

[57] Morita, K.: Computation universality of one-dimensional one-way reversible cellular au-
tomata, Inf. Process. Lett., 42, 6, (1992), 325-329.

[58] Morita, K.: Any irreversible cellular automaton can be simulated by a reversible one'having
the same dimension, Tech. Rep. IEICE Japan, COMP92—45, (1992).

[59] Morita, K.: Reversible Simulation of One-dimensional Irreversible Cellular Automata,
Theoretical Computer Science, 148, (1995), 157-163.

[60] Morita, K.: Universality of a reversible two-counter machine, Theoretical Computer Sci-
ence, 168, (1996), 303-320.

[61] Morita, K., and Imai, K., Self-reproduction in a reversible cellular space, Theo-
ret. Comput.Sci., 168, 337-366 (1996).
http://kepi.ke.sys.hiroshima-u.ac. jp/pro jects/rca/sr/

[62] Morita, K., and Imai, K., A simple self-reproducing cellular automaton with ‘shape-
encoding mechanism, Proc. ALIFE V, Nara, (1996). '

[63] Morita, K., and Imai, K. , Logical universality and self-reproduction in reversible cellular
automata, Evolvable Systems: From Biology to Hardware (ICES%) LNCSl259 Springer,
(1997), 152-166.

- [64] Morita, K. Margenstern M., and Imai, K , Universality of reversible hexagonal cellular
automata, MFCS’98 Workshop on Frontiers between Dec1dab1hty and Undec1dab1hty, Brno,
(1998).

[65] 'Morita, K., and Imai, K., Number-Conserving Reversible Cellular Automata and Their
- Computation-Universality, MFCS’98 Workshop on Cellular Automata, Brno, (1998). '

[66] von Neumann, J.: Theory of Self-reproducing Automata (ed. A.W.Burks), The University =
~of Illinois Press, Urbana, (1966).

[67] Nishitani, Y. and Honda, N.: The firing squad synchronization problem for graphs, Theo-)

retical Computer Science, 14, (1981) 39-91.

[68] Poundstone, W.: The Recursive Universe, International Creative Management, (1985).

95

P PO SN Y ITE
-

[69] Priese, L.: On a simple combinatrial structure sufficient for syblying nontrivial self-
reproduction, Journal of Cybernetics, 6, (1976) 101-137. '

[70] J.A. Reggia, S.L. Armentrout, H.H. ‘Chou, and Y. Peng, Simple Systems that exhibit
self-directed replication, Science, 259, (1993), 1282-1287.

[71] Richardson, D.: Tessellations with local transformations, J. Comput. Syst. Sci., 6, (1972),
373-388. ’

[72] Rosenstiehl, P., Fiksel, J. R., Holliger, A.: Intelligent graphs: networks of finite automata
capable of solving graph problems, in Graph Theory and Computing (ed. R C. Rea.d)
Academic Press, New York, (1972), 219-265.

[73] Serizawa, T.: 3-state Neumann Neghbor Cellular Automata Capable of Constructing Self-
Reproducing Machine, Trans. IEICE Japan, J69-D, 5, (1986), 653-660.

[74] Shikano, T.: Synchronization problems in reversible cellular automata Master thesis, Ya-

magata university, (1993).

[75] Shinahr, I.: Two- and Three-D1mens1onal Flrlng-Squad Synchromzatlon Problems, Infor-
mation and Control, 24, (1974), 163-180.

[76] Shor, P.: Algorithms for Quantum Computation: Discrete Log and Factoring, Proceedings
of the 26th Annual ACM Symposium on the Theory of Computing, 35,(1994), 1-14.

[77] Sipper, M.: Evolution of Parallel Cellular Machines, LNCS1194, Springer, (1997).

[78] Smith ITI, A.R.: Simple computation-universal cellular spaces Journal of A CM, 18 (1971)
339-353. |

[79] Toﬂ'oh T.: Computation and Constructlon Umversahty of Reversnble Cellular Automata L
Journal of Computer and System Sciences, 15, (1977), 213-231. '

[80] Toffoli, T., Margolus, M. Cellular Automata Machmes MIT Press, London, (1987)

[81] Toﬁ'oh T., and Margolus, N.: Invertlble cellular automata a review, Physica, 45D 1 /3 »
(1990), 229-253. | o

[82] Torre, S., Napoli, M., and Parente, M.: Synchronization of One-way Connected Proces-
sors Complez Systems, 10, 239-255, (1996). ' R

[83] Umeo, H.: A Note on Firing Squad Synchromza,tlon Algonthms, Proc. of Cellular Au-
tomata Workshop ’96, Giefen, (1996).

96

[84] Waksman, A.: An optimum solution to the firing squad synchr(_)nization problem, Inform.

and Control, 9, (1966), 66-78.

[85] Watrous, J., On one-dimensional quantum cellular automata, Proc. 36th IEEFE Symposium
on Foundations of Computer Science, (1995), 528-537.

[86] Wolfram, S.: Universality and complexity in cellular automata Physica, 10D, (1984),
1-35.

[87] Wolfram, S. ed.: Theory and Applications of Cellular Automata, World Scientific, Singa-
pore, (1986).

- [88] J.B.Yunes: Seven-state solutions to the Firing Squad Synchronization Problem, Theoret.
Comput. Sci., 127,(1994), 313-332.

97

Appendix A

Transition rules for 2n + 2-time solution

Yo :

H#O(40”, “47 90") — (40", “4",%0")
#O(“0™, “#7,“I7) = HO(“0", ", 1)
HO(“0™, 47, “47) = HO(40", “#", %4)
#o(mn!u#n’«*n) - #o(uon,u#n,unm)
HO(“0", “4,%7) s HO(“0", 4", %)
HO(“0”, “47,“77) 5 H0(40", 44, “n7)
#0(“0”,“#”,“@”) — #0(“0", “#",“@")
FO(0,“47,40") = #O(“0", “4",%(*)
#o(a@»,u#n'uon) _’#O(u@n’u#n,«on)
HO(4, 47, 407) s (", 4", “0")
HO(, “47,0) - HO(“, “#,“0")
#O(unn’u#»’uon) — FO(Wnn uggn ugn)
#0(“0",“GL",“0") — #0(“0”,“Gk”,“0")
#4707, %0%) = #0(“0", 0", “+")
H#0(07, 40", “1") = H0(“4,%0",0")
#0(“Q", 0", “0%) —+ #0(“0",%0",“@")
#0(“0", 0, “G") — #0(“@",“0",“0")
#O(“4",%G™,07) — HO(“4”,“GL",“0")
FO(“+™,“GK",“0") — F#0(“0",“G”,%+")
H#O(“0,“G™, “47) = #0(“4",%G",0")
#o(u_’_n'uMn,aon) —)#0(“0”,“M”,“+”)
#o(u[n,uMn’u.‘_n) e #0(“+","M”,“[”)
H#O(“0",“M”,“47) = HO(“+",“M",%0")
#o(a+n’uEn,uou) — F#0(“0",“E”,“4")
| #0(“0",“E",“47) — #0(“4",“E”,0")
#O(,“E” ,“47) — #O(“4",“E", 4[")
#0(“+”.‘K",“0")'f) #0(“‘0”,“K",“+")‘
. #0(“0’,"!(”,“4-") - #0(«4_»,«1{”,«0”)\
#0("+”,"A",“0") - #o(uon’uAn'u_'_n) .
#O(“47,“A" *,“0") s H0(%0",“A" ", 44")
#o(«+n,azn'¢°n) - #0(“0",“Z",“+")
#0(u+n'uBn’uon) - #o(uon‘,«Bn’«_'_n)
#0(“4",“B~ ",%0") — #0(“0",“B" » uyn)
#O(“47,“Y™,%0%) & $0(0", Y, “4")
H#O(“4,“[7,407) = H0(“0", ", “4")
HO(“47, 407,47 — H0(“+" 4", 44)
#O(“47,“G", =) y 0(4",Glen, 0"
H#O(“I" “GK”,“0") —+ H0(+0",“G", ")
#O(“",“G",“07) — #0(“+",“Gk",“5")
H#O(“D",B”407) s o(«+" “B,«4)
#0(“!",“Y",“0”) - #o(«*n’u‘rn‘u_*_»)
H#O(“7, %07, 0") —+ H0(“0", %", 447)
HO(**7 %07, “4*) — H0(“+", %", 0")
H#O(“7, 407, “47) = H0(“47,5c7, >)
#O(“0", %™, “+7) — #O(“+,%d",“0")
(HO(“47,%C7,“0") — #0(“0",“d", ")
#0(“-]-",“::",“-") - #0(“-",“d",“+")
#o(uon,«dn’u+n) - #0(“+”,“e”,“0”)
#0("+”,“d”,"0") - #o(uon,uen,u_’_n)
FO(“H7, 4", %) 4 F0(47,%en, % 17)
H#O(40", %", 447) = H0(“47, 407, %)

FO(“0", “Mc”,“+") — HO(“4",“Md",“0")
FO(“+7,“Mc”,“0") — #0(*0",“Md",“47)
#0(“+”,“Mc",“-") - #0("-",“Md”,“+")
#o(uon’uMdn'u+n) — #0(“+",“Me”'“oﬂ)
#0(“+”,“Md”,“0") - #o(uon’uMen,u+n)
#0(“+",“Md","_") - #0(“-",“Me",“+”)
#0(“0”,“Me",“+") e #o(u+”,“Mw,“’”)
#O(“47,“D",“0") — FO(“4,E”, (")
#0(“+",“b",“-") - #0(“.",“0”,“@”)
FO(“47,407,%/7) —+ $0(“",“B",«4)
#o(«+n,u0u’u_n) — #0(“-”,“0”,“+")
HO(“47,0°,“.7) = HO(“", %", “47)
HO(4° 2,407, 447) -5 FO(“47,%0",%")
#O(“47,4G",%7) — #0(“@",“GK”,“0")
#O(“0",“Gk™, ") = H0(“",“GK”,“0")
#0(“@",“(;](”,“0”) — #0(“0"’&G’1,“°”)

i #o(uon,qun’ann) - #o(u*n,ucn’a@n)

#0(“@",“G",%0") — #O(“+",“Gk",4.)
#O(“4",“GLe™, %-7) =5 FO(4",G", “47)
#O(“[",“GI",5-7) = #0(", Gk, “[")
#O(“[",“G™,%0") — #0(“0”,“Gk",[")
FO(“+",“Gk",“(") — #0(“{",“G",“+")
#O(“+”,“M”, ") — H0(“, “M", %)
#0(u+n,uEn'«_n) —0‘»#0(“_",“E".“+")
#o(«_ﬁ”,“K",G_H) — #O(H-M,KK”'“_'_")
#0(“+H,KM",II‘") - #O(K#”’HM)I,“_‘_H) .
#o(“_'_”,“M’l,“}") -3 #O(K{H,KMQI'&_‘_")

© HO(“H”,“M” ", 40%) o HO(“0",“M" ”,%47)

#0(“'",“0",“””) - #O(an;uckn'u’sn)
#0(“1",“0”,“0") - #0(“0",“0",“1”)

- #O(“0,“A”, “47) = HO(“4", A", %0") -

HO(“07,“M™ %, 47) 0(“47,M" ",%0")

L #O(407,9C7 “4M) o O(“47,9C7,40")

#0(“—”,“M",“+") —+ FO(“4",“M",4)
#0(“Q",“M”,%0") — #0(“0",“M",“@")
#o(“on,“M"'“*ﬂ) ey #0(«*"'“M”'“°”)
#0(“0",“E",“0”) — #o(uon'uEn‘uQ») .
#0(“Q",4[",%0") — #0(“0",“[", Q")
#o(do",“o”,“*’l) - #o(“‘",“o"'“o”)
#o(mﬂ,“G”'“#H) -’ #o(ﬂtn’“G"'“o")
FO(“*",“G",%0") — H0(“0",4G",“*)
#o(u_n’acn’«tn) - #o(amn,an,u_n) .
#O(K*H,IGH,“_H) pury #0(“_”’“(;’1’“*”)
#o(“o”'«Eﬁ,“‘”) -3 #o(“*”,“Eﬂ,“o”)
#o(«on’uxn,uan) - #o(u\tm’uxn’uon)
#o(ﬁo”‘“Mﬂ'“tw) - #0(“*”,“M”,“0”)
#o(uon,ﬂKn'«{n) — #o(«}”,“K”’l‘on)
#0(“0",“G", (") — #0(*(",“G",“0")
#O(“(7,“G™,“0") —» #0(“0",“G",*(")
#O(“(",“M”,“0%) - #0(“0",“M", (")
#0(“{",«!("’“07!) — #o(uon,uxn,u{n)

99

F#HO(“*”,407,“0") — #0(“0”,“c”,“0")
FO(“xn “gr w7y —+ FLO(47, 4c” 40"
FO(wHn wgn « my _y #O(4", %, “g")
#0(“0”,%c” ,“0") — #0(“0”,“d”,“0")
F#0(“0”,%c", ") — F#FO(“-",“d” ,“0”)
#0(“0",%c”,% ") — FO(“_7,%d", “0")
#0(<07, 0", “0%) —» HO(“0", “e”,%0")
#0(40”,4d”,«") -5 F#HO(“-", %", “0”)
F#0(“07,4d”,%_") — FHO(“" ,“e” ,“0")
H#O(407,46%,07) —+ #0(%0", 407, 4+7)
H#O(“0", %", 5.7) =5 0(%." g7, ww)
F#0(“0",“e”,“") — FO(“7, 407, “*7)
H#O(“47,“M",%0%) — #0(“0", “Mc”,0")
F#0(“0”,“Mc”,“0") — #0(“0”,“Md",“0")
#0(“0”,“Md”,“0") — #0(“0",“Me”,“0")
H#O(“07, “Me”,“0") — #0(“0", “M>, <)
H#O(4" 4", %0%) — #0(0",“Ee”,“0")
#0(“0”,“Ec”,“0") — #0(“0",“Ed",“0")
#0(%0”,“Ed™,“0") — #0(“0”,“Ee”,“0")"
#0(“0”,“Ee”,“0") —» #0(“0”,“E",“$")
#0(“0”,“Ec”,“-") - #0(“.,“Ed",“0")
#0(“0”, “Bd",%.") —+ #0(“" “Ee”,“0")

7 #0(“0”,"Ee",“-") - #o(«_n,uEu,usn)

#0(“0",“Kc™,“0") — #0(“0",“Kd",“0")
#0(“0",“Kd",%0") —+ #0(“0",“Ke",“0")
#0(KOH’KKeﬂ’MO") _)\‘#o(“o'l,“K’l'“s”)

. #E0(%0", “Ke™,4-") = FO0(“",“K", “g") :
. #O(Mtw.uAn’uon) — #o(utu’uAn’uon) :
- #o(ut»,uA- v"’“o") - #o(a.n,uA— ",“0")

FHO(“*" “Z7 [“07) —5 JO(“*, 2", %0")
H#O(“*7, 2" »,%0%) — O(“*",“Z" »,%0")
#O(Ktﬁ'l(c”.,ﬁoﬂ) — #o(‘(*”,“c”'“oﬂ)
#0(“*",“B",“0") — 0(“*",“B",“0")
#O(“*",“B" *,“0") — 0(“*",“B" »,%0")
HO(“*", Y™, “07) — J0(4*,“Y",%0")
#o(“*ﬂ'ﬁD"'“o’!) — #0(«‘”,“0",“0’!)
F#0(“$”,“07,“0") — #0(%0",“c",“=")
#0(“67,“07,47) — FO(4",“c” 4=
H#0(“8”,“0",%/™) — #0(“{",“B", /")
HO(“8”,“b",“0") — #0(“0",“Mc”,“&")
F#O(“",“E”,“0") —+ #0(“0",“Kc”,“0")
#0(“77,“B",“0") — #O(«*",“B" ",«/m)
#0(“87,“B,“0") — #0(“*",“B",*/")
H#O(“8”,“Y",“0") — HO(“*",«y™ %/m)
FHO(7, 407, %07) — FO(“0",“c”,«* ")
#o(um’uon‘«_u) -t #0(«_n’ucn’tu n)
FHO(7,“0%,“7) —+ HO(47,%c”, %")
F#0(“0",“Kc™, /™) — #0(“",“1d",“0")
#0(“0”,“Id”,“0”) —+ #0(“0",“Ie”,“0")
F#0(“07,“Ie”,“0") — #O(“*",“I",“0")
#o(«nn,uckn’ut’l) _’V#o(utn,ucn,uuﬁ)

#O(“/” 0" ,“0") — #0(“0”,“a”,“0")
#0(“0",“a”,“0") — H0O(“0”,“b",“0")
#0(“0",b",0%) — #0(*0",%0",%/")
#0(“0”1‘1’":“-") b #0(“«",“}\",“-”)
#O(“[",“b",%0") — #0(“0",0",%)")
#0(“=",b",“0") — #O(“0",“M", &™)
H#O(477,40",%0") — #0(“0",“”,%.")
#0(“87,“07,0") —+ #0(“0”,%a",%,")
#O(“(7, 407, 0") —+ #0(“0"“a”,.")
H#O(4),07,40%) —+ #0(“0”,“a”,[")
#O(“/", 07, “7) s #O(4/",%A" ", %0")
#O(“&",“0", %) —+ H0(“/",“A-",%0")
FO(“(",“0" %) — #O(4/” ,“C-",“0")
FO(“"” “Q7 «7) 5 F#O(“"" “G”,“0") ‘
F#O(“"" “GK”,“07) —+ #0(“0",“G",“"")
FO(U"” 4G, ") #0(“"”,“G3",“0")
FHO(4",%0”,“0") — F#0(“0", 40", ")
#0(“0",“0”,«") — F#0(“", %0, “0")
#0(“07,%0",“.") =+ #0(“.%,“0",0")
#0(“",07,57) —5 #0(“.7,%G",%0")
©H#O(7,4G7,0%) 4 0(“0",4G7, %"
F#O(“" *,%07,%0") — #0(“0", 0", " ")
#O(“=",40" %) - FO(“-", 40", “==")
H#O(“" 7,407, %) 3 o(4, 40", ")
#O(“™ 7,507, %.7) — #0(47, 50", <" »)
#O(47,40%,%.7) — g0, “M",“0")
#O(“2,%07,%%) — H0(“",“E”,%0")

¥

#LO,“H7,50") 5 H1(“0", “7,0%)
L™ 7, 407) — gE1(4xn g, 47)
FL(4O", “ftm wwn) _’#l(uou'u#n,u*w)
#1(“0",“#”,“_'_") — #1(u+7l’“#’l,“o”)
FLE", 7, 907) — #1(40", “#”,“47)
F#1(40",%0r",“0") — #1(“0”,%0r",%0")
#1(“0",“01‘",“*”) = FL(n g wym)
F1(40",“0", “47) = 1(“*7,%u” 5 47)
FL(", 900", %47) - (44", %er™, “4")
FL(*", 908", “47) = 140", “ws” “47)
FL(H, %07, “37) 4 H1(407, %er”,“47)
FL(E", 0", “47) = 147, “wr”, “4)
F#1(“0",%01",%0%) — #1(“0",“01",%0")
FL(“*, 401, %07) — F1(“47, %", “n)
#1(“+"‘“ol”'“°") pry #1(u+u,uun,u#n)
FL(ES", 01, “¥7) oy 1447, %ol 547)
#1(u+n’a01n’«-m) - #1(“+”,“wl”‘,"0”)
FEL(“" 401", “47) — F1(“4",%I", %0")
FL(“4", 01" “47) — 1“4, “wl?,4)
#1107, 47,%07) - #1(%0",",%0")

.po1 -

FO(“4",“Mc”, %), H1(“0",“0r,%0") — F0(%",“Md",“ ")
#O(“47,“Md",“7), #1(“0",“0r",40%) — #0(%-", “Me”, %47
#0(“+",“Md",“/”), #1(“0",“01‘",“'{-") - #0(«_n,«Bn’n+n)
#o(“+”,“M",K_"), #l(“o",“or”,“o”) - #o(“_"’“M"’“+ﬂ)
HO(“4, “M”, “{"), 1(0",“0r",407) — FO(“{", M, 447)
+ O(“17,“M™,07), #1(“0",“01",0%) — HO(%0",“M" *,%q")
H#O(“0%, “Mc”, "), F1(“0",0r",0) — F0(*-",“Md”,“0")
#0(“0",“Md”,“"), 1(“0",“0r”,“0") — F#0(“",“Me”,%0")
#0(0",“Me”,“-7), F1(“0",“0r",“0%) — #0(*-",“M", %)
H#O(“87,“b",“7), H1(0",“0r",“0") — HO(“{",*A",%»)
(47, “A® 0%), H1(407,“0r",“07) 4 HO(*" 4A" », 4"}
H#O(“S”,“A",“07), #1(“0",“0r",“0") — HO(“*",“A” “Qm)
H#O(“87,“27,40"), H1(“0",“0c",“0") — HO(“*", 427 %q")
#0(“87,“C",“0%), #1(“0",“0r",“07) — FO(“*",“C",40")
H#O(“,“C”,407), #1(“0",“WI", “0%) — HO(“*",“C", ")
#o(“sn,ﬁaﬁ,ﬂo")’ #l(“‘",“orﬂ’ﬁﬁﬂ) - #o(u*n’ucn’uon) .
#O(“=", b7, 47), H1(“0",“0r",0") —+ H0(%",“A", «.7)
#0(“0",“1)",“-"), #1(“0”,‘0!'",“0") - #o(u_n,uAn’u- n)
#O(P,“b", %), #1(“0",“0r",“0) — H0(%-", 7, 4.»)

#O(“",“07, %) =+ #0(“,4[",%0")

#0(“0",“0",“-”) - #0(“-",“(}”.“0”)
#O(“",“G",%7) = H0(%",G, ")

#0(“-",“M",“0") ey #0(“0”,“M”,“—")
#0(“7,“E”,407) — #0(*0”,“E",%.”)
#o(ua ",“E”,“—") - #0(“.",“E",“[")
#0(“0",“](",“—") - #0(“.”,“!(",“0”)

) #0(“0",“1\-”,"0") _’#o(uon,uAn’u_n)

F#0(“0”,“A” »,40") - H0(0",“A", %~)
#0(“0",“2-",“0") - #0(“0",“2",“-")
#0(“0",“C-",0") — #0(“0”,“C",%")
FO(-",4[,40%) — #0(“0",“[7,%.")
HO([7,07,%7) = #0(“», 40", [")

#0(“- ",“M”,“O") - #o(uon,uM-' n’u_n)
FO(“0™, “M™ ”,%07) ~+ HO(“0",“M~ ",%0")
F#0(“0”,“M~ neny FO(“-" , “M~ ”,“0”)
#0(“0",“C",%") — FO(“-",“C",“0")
#0(“0’1,“[",«0") 'y #o(“o”,«l”,“oﬂ)
_#o(uon’uGzn’u_n) e #O(unn,aGn,unn)
HO(“=",%0", “0") — #0(“0”,%0" ="
#0(%" 7,407, %0") — H0(“0", %07, %~)
FO(“07,“A" »,%0") - $0(“0",“A" ", %0")
#0(“=",“B",“0") = #0(0",“B",%/")
H#O(“ *,“B",40") —5 #0(“0",“B" ",4/")
#0(“0”,“B" *,“0”) —+ #0(“0",“B" »,%0")
#0(“" 7,“D",“0") — #0(“0”,“D",[")
#O(“=",%Y",“0") & #0(“0",“Y™, /")

#I(K*W,Kt”’“o") — #1(“0”,“01_"'“‘7!)
HL(“H?, 47, %07) — H1(%0", %", %47)
#l(uoﬂ’l(tﬂ,l(#") - #1(“‘”,“0‘",“0’!)
#1(u+u'utn,utn) — #l(um”’uorw’utn)
FL(407, ", “47) 5 #1(“47, %47, %0")
#l(w‘m‘utn'u_'_n) - #l(u*n,“olﬂ'“'")
FLH", 47, 547) - $1(40", “u”,“0")
#1(40",“u”,“0”) — #1(%0",“v",%0")
#l(“*”’ﬁu”’uo") -3 #1(“*",“0‘3"“0”)
#L(“H", 0%, %0%) - #1(“+",“06",%0")
FL(4O7, 50", ")y 1(%07, “OI”, “*)
F#1(407,“u”, “4+7) -3 #1(“0”,“0I",“4™)
F1(40",“v™ Q") 3 g1(*wn wyn wxn)
FL",7,907) 4 147,47, 07)
HL(“H", 47, 407) 5 #1(“+”, 01", “0")
FL(UO", 6v7 437}y g1 (4, 4y, w4)
HL(O™,“V", “47) o5 #1(“0",%0r",“4")
F1(“0”, “wr”,“0%) = #1(“0", “wr",“0")
F1(40”, “wr” “47) —y H1(40", %wr”,**7)
FL(O, “we”, “47) -+ H1(“0", 4, “47)

#O(“/7, 40", “.7), #1(407,“0r",0%) — H0(“/",“A-",%0")

100

#0(“07,“0",“0") — #0(“0",%0",“0”)
#0(*,",“07,0") —+ #0(“0",“0", %"
F#0(“.”,“0",“0") —+ #0(“0",“0",«.”)
#0(“[,“07,“0") —+ #0(“0",“0”,“[")
#0(“0",“G3",“0") — #0(“0",“G2",%0")
F#0(“0",“G27,0") — HO(“I”,“Q",«»")
#0(“07,“G”,40") —+ #0(“0",“G",“0")
F0(“0",“M™,“0") — F#0(“0",“M”,“0")
#0(“0”,“E",“0”) — #O(uon'uEn,uon)
#0(“0”,“K",“0") — #0(“0",“K”,“0")
F#0(“0",“I”,“0") —» H0(“0",“I",“0")
FO(“0”,“A",“0") — F#0(“0",“A”,“0")
#0(“0”,“2”,“0") - #o(uon’“zn,uon)
#0(“07,“C",“0") — #0(%0",“C",“0")
#0(“0",“B”,“0”) — #0(“0",“B",“0")
F#0(“0",“Y",“0") = #0(“0”,“Y",%0")
#0(“0",“D",“0") — #0(“0",“D",“0")
#0(“0",“[*,0”) — #0(“0",“[",“0")
#O(“[",“B",“0") — #0(“0",“B",“[*)
H#O(“[",“A”,“0") = #0(“0",“A”,“[")
#O(“[",“[7,“0") — #0(“0”,“[",“[")
#O(“[",“C",“0") — #0(*0",“C",“[")
#O(“[",“E”,“0") — #0(“0”,“E",“[")
H#O(“[",“M",“0") ~ #0(“0”,“M",“[*)
#o(u[”,“Gn'uon) oy #o(uon,ucn,u[w)

FEL(U, wr™, 48Ty (R gy wwn)
FL(“H",“wr™,“0") = #1(“4", “wr",“0")
FL(HD, “wr” ,“*7) o FL(“™, “wr®, 9*7)
FI(A7, “wa™, 4 47) = F1(4* 47, wq0)
#1(“0",“w1”,“0") —+ #1(“0”,“wi”,“0")
FL(“", W17, 90") — F1(“*", “w1”,“0")
FLH™, W17, %0%) — F1(“+, %P, “0")
#l(utu'uwln,‘(*”) -3 #l(u*ﬁ'uwl"’u*”)
F#I(“0", “wl”, “+7) =5 #1(%0", “wl”,“+")
#l(“‘",“wl”,“"'”) — #l(“*”,“wl",“+”) .
HL(H", W17, 547) = #1474, 4*)
F#1(“07,%er”,“0") — #1(“0", %, %0")
HL(“+7, %er”, ") = F1(“*", 4, %0")
H1(40”,%l”,“0") — #1(“+", ", “+")
FL(“O", “el”, “4") — #1(“0”, %, 45")
FL(*7,4wr”,%07) — F1(“*7 “wr”, 407)
#1407, “wl”, “*7) — F1(“Q", “wl”,“*n)

FO(“&7,07,%7), #1(0”,“0r",0") — HO(*/",“A->,%0")
H#O(“=",%0",%/"), #1(*0",“0r",0") —+ FO(“-", B, %/")
#0(“0",%07, /"), #1(“0",“0r",“0") — F0(*-",“B",%0")
#O([", 07, /"), #1(“07,“0r,%0") — #0(%-",“Y™,0")

| H#O()7,407,97), H1(H07,%0r",40%) ~ #0(*/",“2*,%0")
HO(07,“M”, /"), #1(*0,“0c",%47) —» #0(<",“B", ")
#o(uol,“E’l,“/")’ #1(“0”’le"'l‘0”) — #0(“.”,“D"'Ilo’l)
H#O(* 7, “E7, /"), #1(“0",“wI",%0%) — $0(*.",“D" ")
#O(“/ “A”,%0"), H1(07,“0r",40%) — F0(“0",“A",%0")
F#O(4/7,“27,%0"), #1(“0",“0",“0") — #0(“0",“Z",“0")
#0(“0",“M",“-”), #1(“0",“0!'",“0") - #0(“-',"M",“0")‘
#O(“0",“M™, "), H1(“07,“0r",%0") — F0(*-",“M", “0")
#0407, “E”,%.7), #1(40",“wl", “0%) —+ F0(“.",“E”,“0")
FO(“0",“EP,), $1(“0°, “wl”, “47) s H0(%.",“E",%0")
#O(“" ", “E",07), #1(“0",“wl”,“0") — H0(0",“E", ")
HO(“" ", “A7,“07), F1(“0",“0r™,“0") — F0(“0",“A" ,%0")
H#O(“=",“A”,“0%), H1(“0",“0:",0") -+ #0(“0",“A", ")
#O(“=",27,40"), #1(“0",“0r",0") — #0(*0",*Z",“0")
H#O(X" ",4C",%0%), H1(“0%,“wl”,“0") — #0(“0",%C",“[")

P10 :

F1(40",“0r”,0"), #0(“0",“0”,“.") — #1(%0”,“0I",“0")
#1(“07,“07,40%), #O(“[",“07,“") — #1(*0”,“01",“0")

- #l(i(o”,l‘or,lluo)’)' #o(u'n,«ou'u_n) - #1(“0”’“01”’“0”)
#1(0",%0r",%0"), #0(“+7,0”,%7) — #1(“0",“01",“0")
F#1(“0",“07,07), #0(*" ",“0”,%) — #1(“0",“0I",%0")
#1(“0”’«01.”’“01!)’ #O(K)ﬁ’uon'u_n) — #1(“0”,(0[",“0”)
F#1(“0",“0r™,%0"), #0(“07,%0",“") — #1(0”,%01",%0")
#l(uon,ﬂor”'uoﬁ)' #0(“*”,!(07!,((_”) — #l(uoﬂ‘uol“’uon)
#l(uoﬂ,uorn,uon)’ #O(uon’acn,«_n) - #1(“0",“0[",“0”)
#1407, “0r",40), #0(“0",*d",“") —+ #1(%0”,“0I",%0")
F#1(40",“0c”,“0%), FO(“0",“e”,“ ") — #1(“0",“01",“0")
#1(“0", 405" %0, #0(“~ *,“0",%0") — #1(“0",“01",“0")
#1407, 401", 40"), FO(“17,07,%0") — #1(“0”,“0I”,%0")
#l(“o”,“or".‘o"), #0(“.”’¢0”'“_”) - #1(“0”’er”,“0)l)
H#1(40”,%0r™,%07), H#0(“(”,%0",%-") > F1(“0”,“wr”,%0")
F#1(“0",%0r" ,“0"), FO(“-", %07, %) — #1(“0",“w1”,“0")
H1(40%, 40", 0"), #0(“47,“b",%") - H1(0”,“wl”,“0")
FL(40",“0r”, “0"), HO(“+7,“b",“0") — #1(“0",“wl”,“0")
#l(uon,uorn’uon)’ #o(u=n.uAn'uon) =y #l(“‘"’“orﬂ’“‘")
#l(aoﬂ'uor’l"o”)' #0(‘(“ ”’“A"’UO”) - #1(“*”,“0!‘”,“‘")
#1(“0",“01‘",“0"), #0(“3",“A”,“o") — #l(l‘*"’“or”’“*n)
#1(“0",“0""‘“0"), #o(ufﬂ'uAn,uon) — #1(“*",“0:7!,“‘")
#l(ﬂoﬂ'l‘or”’“on)' #0(“3”,“0”,“0") — #l(uﬂm,uorn’w‘m)
#l(ﬁoﬁ'ﬂor”,“oﬂ)‘ #0(“3”,“z",“0”) - #l(“*”,uor”'“*”)
#1(“0”,((01.”'“0”), #o(u=n’«zn,u0n) — #1(“‘”,“01‘”,“‘")
#l(uou'“or"'uon)’ #O(“O”,“M",“-") — #l(u*n,uorn,u*n)

#l(uon’ﬂorn’uon), #o(u_‘_n,uMn’u_n) — #l(utn,uorn‘unm)
#l(uon’uo'n,uon), #0(“0",“M",“}”) —_ #1(“‘”,“0,”,“‘")
#1(“0”,“0..",«0”)' #O(M+H'HM”,“}7I) - #l(u#n’aorn,utn)
#1(“0”,“01”,“0"), #0(“—",“M",“0”) —_ #l(“*",“Or",“"'")
H1(407, 401", “0"), FO(@",“M”,0") — F1(“*", 40m, «xn)
#l(“O”,“Or",“O”), #o(t(:n’ubn,u_») - #1(‘(*”,“01.”’“‘7,)
#1(“0",“01‘",“0”), #0(“3",“[7",“.") — #1(“'",“0"',“‘”)‘
#1(«0”,4&0‘_71’“0”)' #0(“"",“0”'“_") - #l(“‘”'uor”'u‘”)
#1(“0”,"0!‘”,“‘0”), #o(u&n'«on,u_n) — #l(u_'_n’uvn,uon) B
#l(“o”’“or”’ﬂoﬂ)’ #0(“/”,“A","0") pry #1(u+n’uvn’uon)
#1(40”, 40" ,0%), #0(“/”,“Z7,“0") — H1(“47, %", 4g")
H#1(40", %01, “0”), #0(“0”,“M”, ") — F1(“*",“wr”,%0")
#1(“0","01‘”,“0”), #o(u+n,uMn,«_n) - #l(utn’uwrn'uon)
#1(“0”,“0!‘",“0”), #o(uon’“M",u{n) -t #l(utn'awrn’uqm)
#l(uon,aorw,uon)' #0(“+”,“M”,“{") — #l(ﬂ‘"’“wr”'“*‘")
#1(40",%0r™,“0"), #0(“0",“M™,“@") — #1(“*",%wr”,“0")
#1(40”,“0c",“0"), #0(“0”,“Mc”,“-") — F1(“* “yre, 4g”)
#1(“0",“0r",“0"), #O(“+™,“Mc”,“") — FL(**" 4w «Q")
#1(“07,“0c”,“0%), #0(0”,“Me",“") — F£1(“*»,%wr”,%0")
#l(llo”'“orw'llo”), #0((‘0",“Me”,“eﬂ) - #l(u*n,«wrn,«on)
#1((‘0"’“01”’“0")’ #O(“' ”,“M”,“o”) — #l(m”’uwl”’“*n)
F#1(40", %017, %0"), #0(“1”,“M",“0") — F1(“0",“wl”,*")
F1(40", %0, “0"), #0(“/",%0",“7) — #1(40",“0r",%0")
#l(uon'uwrn’«on), #0(“”",“(;""("”) —) #l(ﬂ_nykf'l’“_”

101

Appendix B

Transition rules for S Ry

(#9903 9] — (#9339 (1)
(- ##3—) — [d4.4,-] (22)
[#.#.#.#.B] — [#,#,%.#,B] (31)
[#.#,#,#.D] — [#.#,#.#,D] (59)
+#.D,A,4] = [#.4,3,+,A] (89)
(= #3,— #] = [#,3,3#.—.3] (22)
[—1#n#a‘_,-] -+ [#v#'#;"u"] (52)
[+.D.#,+,A] = [#.3.3,A,+] (90)
[#.,#,4,B,#] ~ [#.4.#,B,#] (31)
[#.#.#.D.#] - [#.#,#,D,#] (569)
[D.#,+,+,A] = [#.#,%,A,+] (82)
DA, +#] = [#.4,+,A,#] (89)
(D.#,A, 4,4+ = [#.#,+.4,+] (81)
[D#,B,+.#] — {#,#,+.,4,D] (57)
[=#.— . #] = 43,3 (22)
[=#,——#) = [#.#,—~ #] (52)
[—t#a_y""‘] had [#v#v—’-s_] (51)
[+#,+,A,D] — [#.#,A,+.#] (90)
[A#+.——] = [##,A,+,D] (86)
[#.,#,B,#.4#] — [#.#,B,#,%] (31)
[#.4.D,3,#] = [#.#.D,3#,#] (59)
[A)#v"r-1+] - [#1#:D)+)A] (85)
[D.#.#,+,Bl - [#,#,D,A,+] (58)
[D,+,#,A.+] - [#,%,%,+,A] (81)
D+ +A#] & [#,+,A,+,#] (82)

[+,A,D,3,+] = [#,+,3,#,A] (90) -
DA+, 4]~ [#,+,3,%,A] (82) -

[D.B.#.#,+] = [#,+.#,D,A] (58)

A, +,#,D) = [#,4.A,4,#] (89)
A=+ #~] = [#,+,A,#.D] (85)
DA+ #] = [#,4,4, %3] (81)
(D,B,+,#,#] ~ [#.,+.A,D,%] (57)

[Av—=#,4] = [#.+.D,#,A] (86)

[_9"»#1#:#] -+ [#1")#,#1#] (22)

[—= it =] = (- #4,-]1 (62)

["r_b#v_t-] i [#a ‘:#r"-—] (51)
! [_y)#!#] -+ [#1 1#9#] (52)
["'» v#a"] — I#v

[+.+,#,D,A] = [#.A.%,#,+] (89)
(Atd#,—=] = [#,A,4#,D,4] (85)

[D+.+.#.A] = [#,A,%,3#,+] (81)

H+AD#] = [#,A,+,4,#] (90)
D+ Ad+] = [#.A4+,#,4] (82)
[D+,B,#,#] = [#,A,+,#,D] (58)

" [Avk——#] — [#,A,4+,D,#] (86)

[Di+,#,3,B] = [#,A,D,#,+] (57)
[#.B,#.#.#] - [#.B.#.#,#] (31)
[#.Dd 3,91 — [#,D,4,3,3#] (59)
[D.#.#,B,4] — [#,D,#,+,A] (57)

—#,-1(51) -
[_)_!_!_1#] - [#f‘;‘r‘v#] (51) .

[A,—,#,-‘-,—]—?[#,D,#,A,-F] (86)
[A, ==+ #] - [#.D,+,A,#] (85)
[D.#,+,B,#] - [#,D,A,+,4#] (58)
[+.#.#.#, «]={ #3941 (17)
[A.#,— 3, H = [#.#.#,A] (26)
[B,#,#,—,’F]—)[*,#,#,#,B} 27
[C,—,#,#,"']—)[*,#,#,#,C] (28)
[+#.#, «#] =3 #,+,#) (17)
[A##, % 4] ‘r#!#r“_vA] (20)
[B,#.3,+ 4] *#,%,—,B] (20)
[C.##,2, 4] [*#,#,—,C] (20)
[Al"y#,+p#]"['y#a#:Aq#] (26)
[A#,#,+,+]] «#7,A,—] (21)
[B.#,—+,+]— [*.#.#,A,B] (45)
(B.#,—,+. 3] — [, #.#,B,#] (27)
[B,#,3#,4,+1 [*,#,#,B,~] (21)
[C.#.#.+,—)= [+, #.#.0,%#] (28)
[C.##,+] = [, #,3,C,—] (21)
[Ci—#.+,+] = [=.#.#,C,A] (46)
[—:#.B,H,A] = [»,4#, *,C,+] (65)
[+.#, ‘;#t#]"[wF o+, HE, 9] (17)
[*1#7A9+1+]"’ [*y#r‘i‘yAvA] (66)
[—1#’A;+,+] -+ [*v#v+)A:B] (66)
[+:#,A,+,4] - [+.#.,+,A,C] (66)
[—#,A,+,B] = [+,#,+,C,«] (64)
[Ar#y t,#,+];)[#,#,—,#,A] (19)
[B.#, . #,+]—+ [*#,—,%,B] (19)

: [Cy#v‘v#i"']_’[*)#v—)#vc] (19)

[A#, "v+:#]"["s#$—"As#] (20)

[A#, * 4] { #,—,A,A] (39)

[B#,» S R d R +B,#] (20)
[B#, +;+,+]1~+ [+,4.—,B,B] (39)
(Cy#,] - [, #,— G, #] (20)
[C#, » 4+, 4] = [*#,—,C,C] (39)
[Ay#:"'t#,']_’[‘t#bAv#a#] (26)

{A#,+ 4. 5] [%#,A.#,-1(19)
S A] o [#A, - #] (21)

[«# 44,412 [«,3.4,A,4] (67)

[Ad#+it, 5] [+,#.A4,A,-] (40)

[B1—1+»+y#] = [*,#,A,B,#] (45)

[B:_s‘!‘r#v#]"’["‘i#:B)#t#] 27) -

[Bi#,4.#, 51— [*#,B,#,~] (19)
[B,#,+, %, #] - [«#,B,—,#] (21)
[—’#y+9+1A] b d [*9#1B,A'+] (6?)
[As— 4+ = [%, #,B,A,C] (44)
[B.#,+,+,%] = [+.#,B,B,—] (40)

[Cy#:+n_1#]—'[‘v#;ci#v#] (28) .

(Ot +#, x] =+ [, #,Cit.~] (19)
[Co#tst, = #]1— [+, #,C,— #] (21)
[Co#,+,4,—1 [«,#.C,A,#] (46)

103

The Set Of 765 rllles Of SRS. (Rules are sorted on their righthand sides.)

[+#,++.A] = [+.#,C,A,+] (67)
[C\#t+,+,#] — [+,#,C,C,—] (40)
[-B.#,A,+] — [*#,+,C] (64)
[~B,+,A#] = (*v""cv"'l#] (65)
[Fomodt#t gt - [+ 3,4 17)
[—sA,#.B,+] = [*,+.#,%,C] (65)
[*:A#,+,4] = [+,+.#,A,A] (67)
[_-AQ#;+,+] -+ [*,+,#,B,A] (67)
[+ A8, +,+] [++.#,C,A] (67)
[*’A7+y+)#] - [*)+xA;Av#] (66)
[=A,+,+.#] = [*,+.A,B,#] (66)
A+ +.#] = [+,4,A,C,#] (66)
[—A+.B#] = [»+,C, *#) ,(64)
[Ay*)#v#s"’] —+ [*v—x#)#:A] (21)
[B, «,#,#,+] — [i,—,#,#,B] (21)
(C: ‘1#»#’+] - [*l"v#,#icl (21)

A A] o (o AL #] (19)

[A, = #,4+,4+] [*.—,#,A,A] (40)
[B, »,#,+.#] -+ {%,—,#,B,#] (19)
[B,*,#,+,+] = [*,—.#.,B,B] (40)
[Cy*.#.,+.4] = [*,—#.C,#] (19)
[C ##,+,+] ~ [+,—,#,C,C] (40)
[A, o431 = [#,— A #,#] (20)
[A, %+, + . #] = [+,—,A,A,4#] (39)
[A, *4,4,+] —[*,—,A,A,A] (38)
B, » o+, #] = [»,—, B,#.#] (20), ;

B, #,+.+,#] = [»,~,B,B,#] (39)
“ B, %, obi+, 4] — [*,~;B,B,B] (38)
G vt #] = [+,—,Cof,#] (20)

[C, %+, +.#] = [+,—,C,C,#] (39)

1C, %, 4.+, 4] = [4,—,C,C,C] (38)

[A,+,#,—,#] [*.A#,#.#] (26)
[A, 4,44, *] = [*,A!#v#t_] (20)
[CY+I-1#)+] had [*,A,#,#,C] (46)
[*4+,#,A,+] = [*,A,#,+,A] (66)
[A 3, w9 — [*,A#,—,#] (19)
[As+ it 4] = [«,A#,~,A] (39) -
[*+A 4] = [«,A,+,4,A] (67)

T= A, +] - [%,A,+,3,B] (67)

[+s+)A’#v+] -+ ["'lAs+:#vC] (67)
[A:+»*v#1‘#] = [+, A,~,#,4#] (21)
[A,+, % 3,4] — [*,A,~,#,A) (40)
[Ast, e 4,4+ [*,A,~,A,A] (38)
[*++.3,A] = [«A,A#,+] (66)
[A b+, 0] = [4,AA4,-] (39)
[t 4+,A,7] = [%AA,+,#] ©7)"
[A+ 4 %,#] - [*,AA,—,4] (40)
At 4] [*A,A,—,A] (38)
[Avt 44,4 = [«A,A,A,—] (38)
[B,+1+y#-_] =+ [«,A,B,#,#] (45)

[—s++#,A] [*,A,B,#,+] (66)
[+,4,+.#,A] =+ [*.A,C,#,+] (66)
[At+,—H] = [«.A,C.#,B] (44)
[B»+1#y#$-] - [*131#:#v#] (27)
(B, 43,3, «] ~ [+,B,#,#,-] (20)
‘[B,+s#v_v+] = [+,B,#,#,A) (45)
[—t+'#’A’+] - [*st#r"'-A] (66)
[B:+1#7*,#] - [*-Bl#!_v#] (19)
[B,+,#,+,+] = [=,B,#,~,B] (39)
B+, » 4] — [#,B,—,#,#] (21)
[B,+, «,#,4+] — [*,B,—,#,B] (40)
[B,+,*+,+] = [+,B,—,B,B] (38)
[+ A#] = [*B,A,+.#] (67)
[A,+,+,+,—] —+ [*,BxA’Cv#] (44)
[Byt, 4,3, 4] — [+B,B,#,~] (39)
[By+y+, », 3] = [+ B,B,~,#] (40)
B+, 4, %, 4] = {+~,B,B,—~,B] (38)
Byt 4yt#] - [+,B,B,B,~] (38)
[Cot,— . #.#] - [#.C.#,#,#] (28)
[Ci+.#,#,¢] = [=.C.#.#,~] (20)
[++.4.A,4+] = [+.C,#,+,A] (66)
[C’+0#y‘v#] had I*tcv#:_i#] (19)
[c:+y#s"|+] g [*,C,#,*,C] (39)
[A+,—+,4] = [+,C,#,B,A) (44)
{~+.B,#,A] - [*/C\»#,+] (64)
[=s+,A,3,B] = [+,C,+,#,+] (65)
[C|+1"‘v#!#] -+ [‘.C,‘,#,#] (21)
[Cy+, *,#,+] = [*C.—,#,C] (40)
[C+, x4+, +] = [*,C,—,C,C] (38)
[Cy+,+1—t#] —+ [*!C’Av#)#] (46)
[+ 44,43 = [+,C,A,+.#] (67)
[Cito+.#,4] —+ [+,0,C.#,-] (39)
[Cotot,» #] = [+,C,C,—,#] (40)
[Cotit,%t] — [%C,C,—,C] (38)
[C+i+,+,%] =+ [+,C,C,C,—] (38)
[ttt] = [+, 4. %%, 4] (29)
#9331 = {438,335, H] (13)
[ottt = [0, «, 3] (20)
[esd,3F,] = [+, %, 4] (48)
[#,3.3—] = [+, 8.+, (13)
[D,#.#.C,+H] — [+,#,#,+,A)] (69)
[D.#.#:+,0) = [+.#.4.A,+] (70)

[t tidtodt] = (.8, v 30,#] (29)

[t h b] = [+, %, %, 8] (48)
[*#,++,4] — [+.#, *s %y *] (47)
[#l#!"»#x#] hnd [+y#s'Fv#)#] (13)
[D.#,C#,+] = [+.#,+.4#,A) (68)

[*#,B,#.#] - [4+.4.+,#,B] (30).

[Dy#.Cot 3] — [+.3#,+,A,#] (69)
[*#.C\ 4, +] ~ [+,#,+,A,A] (66)
. [=#.Cot 4] = [+.#,+,A,B] (66)
- [+#.Cotit] = [+.#,+,A,0] (66)
[D,#,+,#.C] -+ [+1#:Av#0+] (68)
DA Co] -+ [+ A, +,#] (70)
[#v#»"’"’"y#] - [+,#,A.+,D] (88)
[*#,+,+.,Cl = [+,#,A,A,+] (67)
[*.#,#.7#,B] = [+,#,B,#,+] (30)
[=#,++,Cl = [+,#,B,A,+] (67)
i ++,C] —+ [+,3,0,A,4] (67)
[#.#.4, 4] = [+t#:Dt+,A] &7
['v+v#:#i#] -+ [+, = #.3,#] (29)
[‘l+t#l#v+] = [+, %, #,#, «] (48)
Lottt t] = (4,08, %, %] (47)
Teatitidadt] = [4,%, %, 95,4] (48)
[* it 4+ = [+,0, * ¥, %] (47)
[*t 4+ = [+.%, %, %3] (47)
[#r‘:#v#t#] -+ [+v+:#1#:#] (13)
[D,C.#,%,+] —+ [++,#.4,A) (70)
[D,C.#,+.#] = [+,+,3,A,#] (68)
[+,C,+,] = [+'4'-#1AvA] (67)
[*)B’#br#t#] = [+’+v#1B,#] (30)
A=iCodt] = [+,+,#,B,A] (67)
[+.C#+,+]) = [+,+,#,C,A) (67)

o Dottt #] = [4,4,A.#,#] (69)

vt # — [+,4,A,#%,D] (87)
[+.Cotit.#] = [+,+,A,A,#] (66)

[—:Ct,+#] = [+,+,A,B,#] (66)
[+:Cy+i+,#] = [+,4+,A.0,#] (66)
[#, *#.#,+] ~+ [+,+,D,#,A] (88)
[Dy+.#.,#,C] = [+,A,3,#,4] (69)
[D,+,#,C.#] = [+,A,4,+,#] (68)
[%,+.:#,0,4] = [+,A,#,+,A] (66)
[#.+#.#,+] = [+,A,4,D,4] (87)
[D,+.,C.#,#] = [+,A,+,#,#] (70)
[*+,Co#,+] =+ [+,A,+,4,A] (67)
[-+.C#,+] = [+,A,+,#,B] (67)
[+ +.Co#t] = [+,A,4,#,C] (67)
[#.+, «#.#] = [+,A,+,D,#] (88)
[*++.#,C1 = [+,A,A,#,+] (66)
[*+,+.C.#] = [+,A,A,+,#] (67)
[=s+.+,3#,C] -+ [+,A,B.#,+] (66)
[+ +.#.C1 = [+,A,C,#,+] (66)
[*/#.#.,B.4] - [+,B,#,+,#] (30)
[=++#,C,+] = [+.B,#,+,A] (66)
[=:+,+.Ci#) = [+,B,A,+,#] (67)
[+1+.#,C,+] = [+,C.#,+,A) (66)
[+++.C.#) = [+,C,A,+,3#] (67)
[#.# %+, %] = [+,.D,#,A,+] (88)

[##, =,+.#] = [+.D,+,A,#] (87) .

[#3841 [— 3.8, #, 5] (18)
[« #,#,4,A] -+ [—#.4.%#.4] (9)
[+.#.#,+,#] = [— 8, %] (18)
[+y#'#v+1+] = [—.#.4#, -,] (50)
[#.#,A,#] [— 3%, +,4#] 9)
[+ #,3%,A,+] = [—,#,#,+,B] (72)
[+1#|#:+»A] g [_v#n#vcv"'] (73)
[+, +.#,#] = (=%, =, #,#] (18)
[+#.4,+,#] [—#, *, »,#] (50)
[, 4) = [— 5,0, *] (49)
[* A #,#] - [~ 4+.3,#] 9)
[+1#vA1#1+] -+ [—,#,+,#,A] (71)
[*,#,B,+,+] = [~,#,+,A,A] (66)
[—#,B,+,+] = [-,#,+,A,B] (66)
[+#.B,+,4] =+ [-,#,+,A,C] (66)
[+, A+ 3] = [—,3,+,B,#] (12)
[#!#»Av"‘n#] g [—1#)+vByB] (60)
[‘1#:A1+'D] —-+ [‘1#»+’Dr"] (62)
[‘:#le""A] g [—t#r-;Ds+] (63)
[+1#l+l#)A] had [‘v#rAv#t“"] (71)
['t#v+’+1B] -+ [_v#yAvAv+] (67)

. [‘:#v+l+1B] -+ [_1#$B’Ai+] (67)
»[#:#v#)+1A] g [—,#,B,C,+] (61)
[+y#s+1As#] g [—)#1C»+3#] (73) .

[+:#:+7+'B] ind [—,#,C,A,+] (67)
[ttt #] = [~ = 8.3, #] (18)
[+.+.#,#,+] - [—y =33, %] (50)
[+;+|#v+s+] = [—w ., «] (49)

. [+,+v+-#1#] = {—y 0, 8,#] (50)
[robobidtt] = [~ 0, n,3,4] (49)

[+n+|+v+y#] =+ [—, %, 0, 9] (49)
[“)A,#y#t#] = [~ #,#,4#] 9)

A [~ #.#,C] (13)

[f:Av#»Dy+] - [—1+’#1—1D] (63)
FhoA g+] = [,8,4,%] (71)
[*B.#,+.+] = [~ +,#,A,4) (67)

[Bi#,,+] =+ [, +,#,B,A] (67)

[#lA7#1#1+] g [—_,+,#,B,C] (61)
+:B.#, 4] =+ [—+.#,C,A] (67)
[*.By+,+#) ~ [-,+,4,A,%] (66)
B, +,+,#] = [~,+,A,B,#] (66)
[+’Pr+:+y#] =+ [-:'f‘vA:Ca#] (66)

- A+ ##] = [~ +,B#.#] (72)

#.A+,#,#] = [-,+,B,B,#] (60)
{_YAI+1D!]_’ [_1+'Dl_,#] (62)
[=D\#A,+] = [-,—,#,+,D] (62)
[—,D,-I-,A,#] -+ [—,-—.D,+,#] (63)
[+,+,#,A,#] g [—’Ar#)+1#] (71)
[‘1+v#1B9+] -+ [—,A,#,+,A] (66)
[+ B, +] = {=,A,+,#,A] (67)
[=s+By#, 4] — [—,A,+,#,B] (67)
[H+B#+] = [—,A4,#,C) (67)
[«,4.+.#,B] = [-,A,A#,+] (66)

104

. [*y+y+)Bv#]_* [_’A,Av"’v#] 67)

[")+-+y#rB] - [—,A,B,#,+] (66)
[+,++,#,B]—+ [—,A,C,#,+] (66)
[+ #.4,A] = [B#,#,4] (72)

., [=+#B, 4] [~,B,#,+,A] (66)

[#l#?#!A!+] hnd ['_»B1#,+:B] (60)
[=s+,+B,#]~ [-,B,A,+,#] (67)
[#v+v#,#vA] —+ [_ vB’Br#!"'] (60)
[#.#.+.A,%]-[~,B,C,+,#](61)
[+,+,#,B,+] g [‘ ,C,#,+.A] (66)
(+y+;Ay#:#]"["' !ct+i#7#] (73)
[#,+,A,#,#] —+ [—,C,+,#,B] (61)
[+1+)+,Bt#] -+ [_ !cht+l#] (67)
[-—,+,A,#,D]—)[—,D,+,#,-] (63)
[—,+,D,#,A]—)[—,D,—-,#,+] (62)

oo, w0 [A#,#,#,A] (23)

(Ot #,3,Al —+ [A .4, +,+] (16)
[B.#.#, A 3]~ [A,#,#.+,%] (15)
[A#,#,A,+] = [A##,+A] (3)
(B #,A+] -+ [A#,#,+,B] (3)
(O #.A,+]— [A#.#,+.C] (3)
[t +] = [A#,#,A, %] (23)
(A, Al A ##.A,4] (4)

-[Bud,d#+H Al - [A#,4,B,4] (1)

[Co# 3+, Al = [A#,#,C,4] (4)
[A,#,#,#,A]—)[A,#,t,#,-}-} (14)
[C.#.B,#,A] = [Ay#v *%,+] (37)
[Co#t 2. A #]) = [A#, %, +,#] (16)°
[AGEA##]1- [A#,4,3,4] (14)
[~ #,A.#.#] - [A#,+.3#,~] (10)
(A A%+ [Ad,+.#,4] (2)
[B,#,A.#,+] + [A#,4.#,B] (2)
[C.#. A+ [A#,+,#,0] (2)
(B #,A,3,#] = [A#,+,+,3#] (15)
[B,#,A,#,B] -+ [A»#,*"y*: *] (36)
(AdhA A+ #] = [A#4,A#] (3)
[#,#,A,-F,—l—)[A,#.-F,A,‘] (83)
[A#A+ 4] [A#,+,A,4] (5)
(B.#,A,+,#] -+ [A#,+,B,#] (3)
[B.#,A,+,4] - [A.#,+,B,B] (5)
[C#t A+ #] = [A#,+,C,#] (3)
[C.#,A,+,+] - [A#,4,C,C] (5)
(= #.#4. Al [A#, - #,4] (10)
[#,#,~,+,A]—'[A,#,-,A,+] (84)
[os#,4. 8, *)— (A #,A#,#] (23)
(Adt+ 8, A] - (A #,A#,4] (2)
[Adh+ A H#] - [A#.A,+,3] (2)
[A#+,A 4] [A#,A,+,A] (7)
[Adt, o+, Al [A#,A,A,4] (6)
(B.#,+.#,A) =+ [A#,B,#,+] (2)
(B.#,+.A,#] = [A,#,B,+.#] (4)
[B,#,+,A,+]—) [Al#iBl+IB] (7) !
[B,#,+,+,A]—+ [A,#,B,B,4] (6)
[b4, 4] [Ay#vaBvB] (41)

IC,#,+.#.A] 2 [A#,C4,4] (2)

[C)#t+. A #]) =+ [AH#,Ci+#] (1)
[Co#+,A+] = [A#,C,+,C] (7)
[C#+,+,A] = [A,#,C,C,4] (6)
[B,#,#,#,A] —+[A, «#.#,+] (15)
[A,#,#,A,#] —{A,» Fh#] (14)
(B.B,#,A,#] — [A, x.#,+,+] (36)
[B.#,B,#,A] -+ [A, %, +,%,+] (36) :

[A,#,B,#,A] » (A, »,+, *+] (35) . .

[C,B,#,A,#] —+[A, *+.#] (37)
[ArB:#vAv#] =+ [A, %, %+, "‘] (35)
[C,#,A,#,#] —[A, *y+n#:#] 16)
[Cr#rAv#sB] —+[A, *,+.#, «] (37)

R [A,#,A,#,B] = {A, %4, %, =] (35)

(C.A#,7.9F] = [A,+,#,4. 4] (16)
[AA 8,1 A+ d#,A] (9
[B.A#,#,+] [A,+#.#,B] (1)

(CA#.#,+] 2 [A+,#.#,C] (4)

[A,A .4, ‘]ﬂ[A,q—,#,*,#] (14)
[C.A#.B,#] — [A,+,#,+, «] (37) -
[A28 #]1- A +,#,-,#] (10)
[#.A4,~] {A+,#,—,A] (84)

[AA#,+#] = [A+4#.A4#] (2)
[A A #,+,+] = [A+.#,A,A] (6)
[B,A#,+.3) — [A,+.#,B,#] (2)
[B,A,#,+,+] = [A,+,#,B,B] (6)
[C.A#,+.#] = [A+.#,C.#] (2)
[C.A#,+,+] = [A+,#,C,C] (6)
[B,A 3,3, #] = [A,+, +,#,#] (15)
[B,A,#,B,#] ~ [A,+, «, +,#] (36)
[AA,#,B,3#] = [A+,%,+,+] (35)
[+ A #]~ [A+,—,—,-]1 (32)
[A A+, #.#] = [A+.A#,3#] (3)
[A,A,+,#,+] - [A,+,A,#,A] (&)
[#:A,4+,— #] - [A+,A,— ,#] (83)
[A A+, +#] = [A4,A,A,#] (5)
{AA+ 4+ = [A+,AA,A] (8)
[B,A,+,3,#]— [A,+,B,#,#] (3)
[B,A,+#,+] — [A,+,B,#,B] (7)
[B,A,+,+,#] ~ [A,+,B,B,#] (5)
[B,A,+,+,4+] =+ [A,+,B,B,B] (8)
[C.A+#.#] = [A+,C.#.4] (3)
[C.A,+.#,+] =+ [A,+,C#,C] (7)
[C.A+,+.#] ~ [A,+,C,.C#] (5)
[C.A+++] = [A,+,C,C,C] (8)
[#.A,#]1 5 [A,— #,+,#] (10)
[#7—v#1As+]_’ [A’_'#s""A] (83)
[+ A (A~ +,—,-] (32)
[+##,A,#] 2 [A,—,—+,-] (32)
[+,#,#,#,A]ﬂ[A,—,~',—,+] (32)
[#,— A #]— [A,— A +,#] (84)
[*st3, *#] =+ [A:Av#’#i#] (23)
[A,+ #80, A1 [AA #.4.4] (3)
[A,+.7,A,8#] = [AA#,+,#] (2)
[As+d, A+ = [AA#,+,A] (5)
[A+#.4,A] 2 [AA#,A,4] (7)
[A+A# 3] [AA 48,3 (4)
[#+, A3, —] = [A A +,#,-] (84)
(A A#,4+] - [AA+,4,A] (6)
[As+ A+ = [AA A #] (T)
(At A+, 4] — [AA+,A,A] (8)
[#’+:—:#'A]_’ [AiAl—‘#1+] (83)
(At 3#,Al 5 [AAA £+ (5)
(At HA#] o [AAA L+ #] (6)
[A++,A,4] = [A,AA,4,A] (8)
{A,+,+,+,A] = [AAAA4] (8)
Bt #.Al = [AB##,4] (3)
[B,+.#.A,#] - [A,B,#,+.#] (2)
{B,+,#,A,+] = [A,B,#,+,B] (5)
(B, +,3#,+,A] = [A,B#,B,4] (7)
. [ecbixcti+] = [A,B#,B.B] (41)
(B,+,A#.#] - (AB+#.#] (4)
[B.+,A,#,+] -+ [A,B,-!—,#,B] (6)
[B,+,A,+.#] = [AB,+,B.#] (7)
{B,+,A,+,+] -+ [A,B,+,B,B] (8)
[B,++.#,A] = [A,B,B,#,+] (5)
[*,+,+,%,4+] = [A,B,B,#,B] (41)
[B.+,+,A,#] - [A,B,B,+,#] (6)
(B.,+.+,A,4] - [A,B,B,4,B] (8)

[“‘y+:+1+!‘] -+ [A,B,B,B,#] (41) -

[B,+.,+,+,A] = [A,B,B,B,+] (8)

i [01+y#1#1A]—' [A’Ct#v#v'"] (3) :

[C.+.#.A,#] = [A,C#,+,#] (2)
[Co+,#,A,+] = [A,C,#,4,C] (5)
[Co+.#,+,A] =+ [A,C#,C,+] (7)
[C A, #] = [A,C+,4.#] (4)
[C+.A#,4+]) = [A,C,+,#,C] (6)
[CH A+ #] = [A,C+,C#] (7)
[C.+,A+,4] =+ [A,C,+,C,C] (8)
[Ci+,+.#.,A] = [A,C,C#,4] (5)
[Ci+,+,A.#] = [AC.C,+,#] (6)
[C++,A+] = [A,C,C,+,C] (8)
[C,+.+.4,A] = [A,C,C,C4] (8)

[*.#.#, %+ - [B.#,#.,#.A] (24):

[C.#.#.#.B] = [B,#.#, *+] (16)
[B,#.#,B,#] = [B.#.,#,+,+] (15)
[—#.#.B,#] = [B,3#,#,+,—] (11)
[A#,#,B,+]1— [B,#.,#,+,A] (3)

[B.#,#,B,4] > [B##,+.8] (3)

[C.#.#,B,+] = [B.#,#,+.C] (3)
[#.#.D,B,+) — [B,#,#,+,D] (91)
[*.#, *,+,#] — [B.#,#,A,#] (2¢)
[A#,#,+.B] = [B,#,#,A,4] (4)
[« %+ = [B.#.#,A,B] (42)
[B,#,#,+,B] —» [B,#,#,B,+] (4)
[C.#.#,+.B) — [B,#,#,C,+] (4)
[#.D,#,+,C] — [B#,#,D,+] (92)
[A.#.#.,#,B] - [B,#, *#,+] (14)
[C\#.#.B.,#] — [B,#, ,+,#] (16)
[A#,B.#.#] = [B,#,+,#,+] (14)
[A.#.B,#,+] = [B.#.,+,#,A] (2)
[B,#,B.,#,+] — [B.#,+,#,B] (2)
[C\#,B,#,+] = [B.#,+.#,C] (2)
[D,#,B,#,+] — [B,#,+,#,D] (56)
[B,#,B.#.,3] — [B,#,+,«,#] (15)
[—1#5Bt#_1#] - [B,#,-l—,—,#] (11)
{+y#vBs#’#] — {Bv#-"'r—)‘] (33)
[A#.B,+,#] — [B,#,+,A,#] (3)
[A#.B,+,+] = [B.#.,+.A,A] (5)

[B,#,B,+.#] — [B,#.+,B,#] (3) .
. {B,#,B,+,+] = [B,#,+,B,B] (5)

[C.#.B,+.#] —+ [B,#,+,C,#] (3)
[C,#.B.+,+] — [B,#,+,C,C] (5)
[#.D,B,+,#] — [B,#,+,D,#] (91)
(% *o+,d,3] — [B,#,A,#,#] (24)
(A, +,#,B] = [B,A#,4] (2)
[A#,+,B,#] = [B.#,A+,3] (4)
[A#,+,B,+] = [B,#,A,+,A] (7)
[A#,+,+.B] > [B,#,A,A,4] (6)
[*, *+,+.#] = [B’#YA’B'#] (42)
{B.#,+.#.B] — [B,#,B,#,+] (2)
[B.#,+B#] - [BAB+# (1)
[B,#,+,B,+] —+ [B,#,B,+,B] (7)
[B.#,+,+,B] — [B,#,B,B,+] (6)
[Co#,+#,B] — [B,#,C,#,+] (2)
[C.#,+.B.#] — [B,#,C,+,#] (4)
(C.#.+.B,+] - [B.#,C,+,C] (7)
[C,#,+,+,B] = [B,#,C,C,4+] (6)
[D,#,+.,#,B] — [B,#.D,#,+] (56)
(#.#,+,0,D] =+ [B,#,D.+,#] (92)
[B.#.#.,#,B] — (B, * 3 #,+] (15)
[A.#,#.,B,#] = [B, »,#,+.#] (14)
(C.#,B,#,#] — [B, *,+,4,#] (16)
[C.B#.#,#] — [B,+,#,#,%] (16)
[A.B,#.#,+] - [B,+.#,#,A] (4)
(B,B.#,#,+] =+ [B,+,#,#,B] (4)

[C.B,#,#,+] = [B,+.#,#,Cl (4) °

[#.C.D.#,+] = [B,+,#,#,D] (92)
[AB#.#,#] — [B,+,#,+,#] (14)
[AB.#.,+.#] = [B,+#,A.#] (2)
[AB#,+.4] - [B,+,#,A,4] (6)
[B,B,#,+.#] -+ [B,+,#,B,#] (2)
[B,B,#,+,+] — [B,+.#,B,B] (6)
[C\B,#,+,#] -+ [B,+,#.C,#] (2)
[C.B.#,+,4+] — [B,+,#,C,C] (6)
[D,B.#,+,#] = [B,+,#,D,#] (56)
[B:B,#s#:#] s [B,+,*,#,#] (15)
[—B.#.#.#] = [B,+,— ,#,#] 11)
[+.B.#,#.,#] - [B,+,—,—,#] (33)
[AB4+.#.#] = [B,+,A#,#] (3)
[A,B,+,#,4] = [B,+,A,4,A] (7)

[AB,+,+.#] = [B.+,AA#] (5)

[A.B,+,+,+] = [B,+,A,A,A] (8)
[B,B,+,#,#] = [B,+,B,#,#] (3)
[B,B,+.#,+] = [B,+,B.#,B] (7)
[B,B,+,+,#] —+ [B,+,B,B,#] (5)
[B,B,+,+,4+] = [B,+,B,B,B] (8)
[C.B,+.#.#] = [B,+,C.#:.#] (3)
[C.B,+.#.+] =+ [B,+,C,#,C] (7)
[C,B,+,+.#] ~ [B,+,C,C,#] (5)

[C.B,+,+.4+] = [B,+,C,C,C] (8)

[#,B,+,#,D] — [B,+,D,#,#] (91)
[—#.#,%.B] — [B,— 3,#,+] (1)
[+#,9,B,#] — [B,—,#,+,—] (33)

105

[+r#u#:#yBl” [Bv_v-'#""] (33)
[t #,0] > [B,A,#,#,#] (24)
(At o#3,B] — [B,A#.#,+] (3)
{A,+,#,B,#] > [B.A#,+,#] (2)
[A,+,#,B,+] = [B,A,#,+,A] (5)
[A\+.#,+,B] - [B,A#,A,+] ()
(A+.B,##] — [B,A+ #,#] (4)
[As+,B,#,+] — [B,A,+,#,A] (6)
[A,+.B,+.#] = [B,A,+,A#] (7)
[A,+.B,4+,+] = [B,A,+,A,A] (8)
[A,+,+.#,B] = [B,A,A#,+] (5)
[As+,+,B,#] = [B,A,A,+,#] (6)
[A,+,+,B,+] = [B,AA+,A] (8)
[A+++,B] = [B,AAA+] (8)
[*4,4.9, *] = [BvArB:#r#] (42)
[B,+,7%.#,B] - [B,B,#,#,+] (3)
[*+.#,%,+] = [B,B,#,#,A] (42)
(B,+.#,B.#] = [B,B.#,+.#] (2)
[B,+.#,B,+] — [B,B,#,+,B] (5)
[B,+,#,+,B] = (B,B,#,B,+] (7)
[B,+,B,#.#] = [B,B,+,#.#] (4)
[B,+;B,#,+] = (B,B,+,#,B] (6)
[B,+,B,+.#] — [B,B,+,B,#] (7)
[B,+,B,+,+] — {B,B,+,B,B] (8)
[B,+,+.#,B] —+ [B,B,B,#,+] (5)
[B,+,+.B,#] — [B,B,B,+,#] (6)
[B,+,+,B,+} — [B,B,B,+,B] (8)
{B,4+,+,+,B] = [B,B,B,B,-l-] (8)
[C.+.#,#,B] = [B,C.#.#,+] (3)
[C.+.#,B.#] = [B,C,#.,+.,#] (2)
[C.+.#,B,+] = [B,C,#,+,C] (5)
[C.+.#,+,B] + [B.C#,C,+] (T)
[C/+.B.#.#] - [B,C,+.#,#] (4)
[C+,B.#,+] —+ [B,C,+,#,C] (6)
(C,+,B,+,#] — [B,C,+,C\#] (7)
[C,+,B,+,] ~+ [B,C,+,C,C] (8)
[Ci+,+.#,B] — [B,C,C,#,+] (5)
[C,+,+.B,#] = [B,C,C,+,#] (6)
[Cy+,+,B,+] —+ [B,C,C,+,C] (8)
[C,+,+,+,B] = [B,C,C,C,+] (8)
[#.+,#,D,B] = [B,D,#.#,+] (91)
{D,+,#,B,#] - [B,D,#,+,#] (56)
[#,+.C,D.#] = [B,D,+,#.#] (92)
Lo, .98, +] = [4,8, A] (25)
[C.#,#.,#,Cl = [Co#.#, +,+] (16)
[B,#.,%.,C.#] - [C,#.,#,+,%] (15)
[A#.#.C,+] = [C#,#,+,A] (3)
[B,#,#.,C,+] = [C.#.,#.,+,B] (3)
[C.#.#,C,+] - [C.#.,#.,+,C] (3)
[_ v#'#-Av+] -+ [C!#)#v+:D] (75)
["v#!#v#vcl—' [Cr#s#:—""] (12)

Dilwadtttio] =[O, #,3,A,#] (25)

[A#.#,4+.C] = [C,#.4,A,4] (4)
[B,#.#,+.C] —+ [C.#.#.,B,+] (4)
[*, = #,+,+H = [C.#,#,B,A] (43)
[C.#,#,+,C] - [C#.,#,C,4] (4)
[_i#y#y"'IA]" [C)#r#th"'] (76)
[A#.#,#,Cl = [C.#, *#,+] (14)
[C.#.#.C.#] = [Cr#s*1+;#] (16)
[A#.C.#,#] = [C,#,+.#, «] (14)
[A#,C#,+] = [C# .+ #.A] (2)
[B,#,C.#,+] —+ [C.#.,+,#,B] (2)

- [C#,Codt,+] —+ [Ci#t+.#,C1 (2)

[#:,A.3,+] - [Cy,+,#.D] (74)
[B,#,C.#.#] = [Co#t 4, +,#] (15)
(A Cot #] = [Ct+A#] (3)
[A#.C,+,+] - [Co#,+,A,A] (5)
(B.#,C,+.#] = [C.#.+,B,#] (3)
[B,#,C,+,+] —+ [C,#,+,B,B] (5)
[C#.,C+.#] = [C#.+.C#] (3)
[C.#.,Cv+,+] =+ [C#,+.C,C (5)
[—#,A,+,#]— [C#,+.D,#] (75)
[—.#,#,C,#]—’ {cv#v—1+1#] (12)
[+,#,#,#,C]—) [C!#v_t—v+] (34)
[+ 3+, « . #] = [C.#,A4,#] (25)
[A#,+,#.C] = [C.#,A,#,4] (2)

(A#,+.C#] [CHALH#] (@)
[A.#,+,C,+] = [C.#,A,+,A] (7)
[A#,+,4.01= [C,#,A,A,4+] (6)
{B.#,+,#.C1 = [C,#,B.#,4] (2)
[B,#,+,C.#]— [C#.,B,+.#] (4)
[B,#,+,C,+] = [C,#,B,+,B] (7)
[3,4+, 4] = [C,#,B,A,#] (43)
[B,#,+,+,C] = [C,#.,B,B,+] (6)
[Co#,+.#,Cl =2 [C.#,C#,+] (2)
[C.#,+,C,#]— [C.#,C,+,#] (4)
[C,#,+,C,+] = [C,#,C,+,C] (7)
[C.#,+,+,Cl = [C,#,C,C,+] (6)
[#,+.3, A= [C,#,D,#,+] (74)
[— %+, A,#]—[C,#,D,+,#] (76)
[B,#,3,#,C]~ [C,»#,#,+] (15)
[A#,3#,C.#]1— [Cyn 8, +,%] (14)
(C#.Co#t #] -+ [C, »,+,#,#] (16)
[C.C\#., 3,31 = [Cot,#, 3, #] (16)
[Ottt [Co 8, -] (12)
[ACo#t #,+] - [Cot #,4,A] (4)
[B,C#t.#,+] = [C.4,#,#,B] (4)
[C.C##,+] =+ [Co+#.#,C] (49)
[~ A, 9,3, +] 2 [C. 4 #,#,D] (76)
[A.C.t 3] [Cot it + #] (14)
[+:cv#1#1#]_’tcv+!#-_v—] (34)
[A,Ct,+.#] = [CH#.A#] (2)
[AC# 4+ [C+#,A,A] (6)
[B.C.#,+,#] —+ [C.+.#.B,#] (2)
[B,C,#,+,+]— [C,+,#,B,B] (6)
[C.C.d#+.#] =+ [Co+,#.C#] (2)
[C.C#,+,+] = [C\+,#,C,C] (6)
=A%, +,#] - [C,+,4#,D,4#] (74)
[B,C,#,#,#]—)[C,-l-,!,#,#] (15)
[A.Co+\#H#] =+ [C,+,A#,#] (3)
[ACot#,+]— [Co4,A,3,4) (7)
[ACit,+.#]— [CoH.A,A,#] (5)
{A.C,+,+.4]—+ [C,+,4,4,4] (8)
[B.C,+,#,#]—+[C.+,B,#.#] (3)
{B.C,+,#,+]1— [C,+,B,#,B] (7)
{B.C,+,+,#] — [C,+,B,B,#] (5)
[B,.C,+,+,4+] =+ [C,+,B,B,B] (8)
[C.C,+,#,#]1 = [C+.C.it.#] (3)
[C.C,+,#,+] = [C,+,C.#,C] (7)
[C.C,+,+,#] —+ [C,+.C,.C.#] (5)
[C.C,+,+,+] = [C.4,0,C,0] (8)
[‘- ,A,+,#,#]—)[C,+,D,#,#] (75)
[_t#vcs#v#]_'lct‘,'l"#y#] (12)
[+y#ﬂ»ct#»#]—’[01-t+v#’_] (34)
[+l#l#101#]'-)[ci—l_’+_'#] (34)

ity = 3, #) — [C A #,#,#) (25)

[A+,7,#,Cl= [CA#,#,4] (3)
[+, =2, +] = [C,A,#,#,B] (43)
[A+#,CH#] = [CA#,+.#] (2)

[A+#,C4] = [CA#,+,A] (5)
[A+.#,+,C] = [CA#,A,+] (7)
[A+.C#.#] = [CA+#.#] (1)
[A.+.C#.4] = [C.A+.#,A] (6)
[A+,C+.#] = [CA,+,A,#] (7)
[A,+,C,4.+] = [C,A,+,A4,A] (8)
[A+,+.#,0] = [CAA#.+] (5)
[A+,+.C.#] = [C,AA,+.#] (6)
[A+,+,CiH] = [C,AA,+,A] (8)
[A+,+,+.C] = [C,A,AA+] (8)
[B,+.#,#.C] = [C,B#,#,+] (3)
[B,+,#.,C.#] — [C,B,#,+.#] (2)
[B,+.#,C,+] — [C,B,#,+,B] (5)
[B,+.#,+,C] = [C,B,#,B,+] (7)
[B,+.C.#.#] = [C,B,+.,#,#] (4)
[B,+.C,#,+] — [C,B,+,#,B] (6)
[B,+.,C,+.#] — [C,B,+,B,#] (7)
[B,+,C,+.4+] = [C,B,+,B,B] (8)
["‘:+y+t‘1#] - [C,B.A,#,#] (43)
[B.+,+.#,C] = [C,B,B,#,+] (5)
B,+,+,C,#] — [C,B,B,+,#] (6)
[B,+,+,C,4] —~ [C,B,B,+,B] (8)
{B,+,+,+,C] - [C,B,B,B,+] (8)
[C\+.#.,#.C] — [C,C.#.#.,4+] (3)
[Co+.#.,C.#] ~+ [C,C.#,+.#] (2)
[C.+.#,C+] = [C,C.#,+.C) (5)
[Co+.#,+,C] = [C,C.#,C.+] (7)
{C.+.C.# #] = [C,C+.#.#] (9)
[CH.C#,+] =+ [C,C+,#.C] (6)
[C:+,C,+#] = [C,C,+,C.#] (7)
[C,+,C,+,4] = [C,C,+,0,C] (8)
[C.+,+.#.C) = [C,C,C.#,+] (5)
[C\+.+,C\#] = [C,C,C,+,#] (6)
[C+,+,C4] = [C,C,C+,C] (8)
[Ci+:+,+,C} = [C,C,C,C+] (8)
[_x+r#u#)A] -+ [C,D,#,#,+] (75)
[—.+.#.A.#] = [C,D,#,+,#] (74)
["'1+9Ay#v#] - [ch7+!#!#] (76)
[A.#,#,D,+] - [D,#.#.,+,A] (54)
[B.#.#,D,4+] = [D,#,#,+,B] (54)
[C.#.#.D,+] - [D,#,#,+,C] (54)
[A.#.,#.,+,D] - [D,#.#,A,+] (55)
[B,#.#,+.D] — [D,#,#,B,+] (55)
[C\#.#.,+,D) = [D,#,#,C,+] (55)
[D,#.+,+,C] — [D’#r*vAv+] (80)
[A#.,D.#,+] — [D,#,+.#.,A] (53)

-[B.#,D,#,+] = [D,#,+,#,B] (53)

[C\#.D,#,+] — [D,#,+,#,C] (53)
{A#,D,+,#] ID,#,+,A,#] (54)
[D.#,C\+,+] —+ [D,#,+.A, «] (79)
[+.#,D,+,+] = [D,#,+,A,A) (77)
[~.#.D.,4+,4] = [D,#,+,A,B] (77)
[+:#,D,+,+] = [D,#,+,A,C) (77)

106

[B,#.D\+,#]— [D,#,+,B.#] (54)
[C.#.D,+,#] - [D.#.,+,C,#] (54)
[A,#,+,#,D]=[D,#,A,#,+] (53)
[A,#,+.D,#]1—[D.#,A,+,#] (55)
[*.#,+,+,D]— [D#.,A,A,+] (78)
[B,#,+,#.D] = [D,#,B,#,+] (53)
[B#,+,D,#]—[D,#,B,+,#] (55)
[_ -#!+-+’D] — [D,#,B,A,+] (78)
[C/#t,+,3#,D]—[D,#,C,#,+] (53)
[C.#,+,D,#] - [D.#,C.+,#] (55)
[+:#,+,+.D]= [D,#,C,A,+] (78)
[D,+,#,C,+] = [D, «,#,+,A] (79)
[D+,+,C,#] = [D,*,A,+,#] (80)
[AD,#,#,+]1—[D,+.3,#,A] (55)
(B,D,#,3#,+]—+[D,+,%,#,B] (55)
[C.D,#,#,+]1- [D,+.#,#,0] (55)
[D,C.#,+,+] = [D,+,#,+,A) (80)
[A'Dy#,+,3#]1[D,+.#,A,#] (63)
[«:D\#,+,+] - [D,+.#,A,A] (78)
{B\D,#,+,#]—[D,+,#,B,#] (53)
{-D.#,+,+][D,+,#,B,A] (78)
[C,D#,+,#]-[D,+,#,C,#] (53)
[+.D,#,+,+]— [D,+,#,C,A] (78)
[A,D,+,#,#]-[D,+,A,#,#] (54)
[D,C\+,+,#]— [D,+.A,+,#] (79)
[+.D,+,+.#] = [D,+,A,A,#] (77)
[=Dy+,+,#]— [D,+,A,B,#] (77)
[+:Ds+,+,#]—= [D,+,A,C,#] (77)
[B,D\+,#,#] - [D,+,B,#,#] (54)
[C.D,+,#,#]—[D,+,C,#,#] (54)
[A,+,#,#,D]- [D,A #,#,+] (54)
[A+.#.D.#1—[D,A,#,+,#] (53)
[*+3#,Dy+] [D7A'#’+-A] 7
[D,+,+.3#,C) =+ [D,A,«,#,+] (79)
[As+:D#,#]1-[D,A, +,#,7#] (55)
[D.+.C,#,+]~+ [D,A,+.#,+] (80)
[+,+.D/#,+] = [D,A+,#,A] (78)
[“ ,+,D,#,+]—) [D-A1+»#vB] (78)
[+++.D.#,+]—+[D,A,+,#,C] (78)

* [%++#,D]= [D,AA#,4] (77)

(*++.D,#] = [D,A,A,+,#] (78)
{=»+.+.#,D]+[D,A,B,#,+] (77)
[+,+,+,#,D]+[D,A,C.#,+] (77)

“[By+.#,#,D]—[D,B,#,#,+] (54)

[B\+,#.D,#]—[D,B,#,+,#] (53)
[~»+,#,D,+]—+D,B.#,+,A] (77)
(B,+,D,#,#]—[D,B,+,#,#] (55)
[_ 1+1+1D’#] g [D,B,A,-l-,#] (78)
[Cy+,#,#.,D]—[D,C,#,#,+] (54)
[Cy+#.D,#]—[D,C,#,+,#] (53)
[+,+.#,D,+] - [D.C,#,+,A] (77)

C+D##1-[D.Co+ 4, 4] (55)

[+.+,+,D,#]—+{D,C,A,+,#] (78)

[F# . # #5855

Appendix C

[Ad# 4= A #] = [A#,A,=+#,#]
[A,#y+s=y31#’#] — [Bv#:As=,+1#7#]

[A#.+.=,C#,#]
[B.#,+.,=,A,#,#]
[B,#,+,=,B,#,#]
[B.#,+.,=,C,%.#]
[Co#+,=,A,3,#]
[C\#.,+,=,B,#.#]
[C#.+,=.C,#,#]
[A#.3#,=A,4,+]
[A#.#.,=,B,#,+]
[A,#,#,:,C,#,+]
[Bv#:#v=tAa#a+l
[B,#,#,:,B,#,+]
[B,#,#,=,C,#,+]
[Cv#a#a=,Au#|+]
(C.#.#.,=,B,#,+]
[C,#,#,:,C,#,-l"]
[A#.4#.=A+,#]
[A.#,#,=,B,+,#]
[A,#,#,:,C,+,#]
[B.#.#,=,A,+,#]
[B.#,#,=,B,+,#]
[B.#.#,=.C,+,#]
[C.#t 3=, A, +,#]
[C.#.#,=B,+.#]
[C.#.#,=,C.+.#]

o A# A #]

[A!#t+!#'Bt#)#]
[A#,+.#.C.# . #]
[B,#,+,#,A,#,#]
[B,#,+,#,B,#.#]
[B.#,+,#,C.#,#]
[Co#t A2 #)
[Co#.+,#,B,#.#]
[Co#t+.#.C.#.#)
[A #9844 3, 4]
A #3483, 4]
[A.#.4,3.C#,+]
[B.#, 3. 45,A#,+]
[B,#,#.#,B#,+]
[B.#,#.#.C#,+]
[Codt #,4,A 3, 4]
[C.# #,#6.B.# ,+]
(Codt, 3, #,C,#,+]
[A#,+,=A,+,+]
(A #,+,=,B,+,+]
[A#,+,=,C,+,+]

[B.#,+.=A++] = [A#,B,++,BB]

—
—
—

S T S A A A A A N A A A A N A A AR A1

—
—
—
-

[C.#,A,=+,4#,#]
[A#,B,=4,#,#]
[B.#,B,=,+,#,%]
[C\#,B,=,+,#,#]
[A#.Cy=+,4,#]
[B,#.,C,=,+,#,#]
[C\#,C\=,+,#,#]
[A#.#,=+.#,A]
[B,#.#,=,+,#,A)
[C.#.#.=,+.#,A]
[A’#r#a=1+y#)B]
[B:#,#»=,+,#vB]
[C.#.#,=,+,#,B]
[A 43 ,=,+,#,C]
[B,#,#,=,+.#,C]
[C,#,#,=,+,#,C]
(A=A, #]
[B.# . =,+,A,#]
[Co#t i =4,A,#]
[A,#)#v=y+gB:#]
[B,#,#,=,+,B,#]
[C,#,#,=,+,B,#]
[A#,#,=,+,C,#]
[B.#.#.=,+,C,#]
[C,#,#,=,+,C,#]
(A, A 4,43, #]
[B.#,A# .+, #,#]
[Codt A # -+ 4, 3]

TA#,B#,+,3#,#]

[B.#,B.#.+,#,#]
[Ci#.B.#,+,3,#]
[A#,Codt i, #]
[B.#.Codt,+,#,#)
[C’#’C'#,-")#'#]
[A 3.4 4.4,A]
[B.# #.#,+,#,A)
[C#.#.#.+#,A]
[A#.#.%,4.#,B]
[B.#,#.#.+,#,B]
[C.#.# . #,+.#,B]

[A#.#,#,+,#,C] -
[B.#.#.#,+,#,C} -

[C.#.#.#.+#.C]
[A#.A4+,4+,A,A]
[B.#.,A,+,4.A,A]
[C#.A,+,4,A,A]

(¢))]
@
@)
2)
2
)
2)
2
&)
(2)
3)
)
(3)
®)
3)
@)
®3)
&)
@)
)
(4)
O]
4)
4)
(4)
(O]
“
(4)
-(8)
%)
%)
%)
(%)
(5)

(8)

(%)
)
(O]
©)

().

(6)
(6)

- (8)

(6)
(6)
©)
@10)
(10)
(10)
Q10)

N

Transition rules for SRy

[B.#,+,=,B,+,+]

AB.#,+,=,C,+,+]

[C,#,+,=,A,+,+]
[C.#,+,=,B,+,+]
[C.#.,+.=,C,4,+]
[A#,+,=A,#,+]
[A#,+,=,B,#,+]
[A#,+,=,C,4,+]
[B.#,+,=,A,%,+]
[B.#,+,=,B.#,+]
(B.#,+,=,C.3#,+]
[C’#x+1=1A!#)+]
[c'#1+)=1By#C+]
[C.#,+,=,C#.,+]
[A#.+=A,4,#]
[A)#1+1=1B,+!#]
[A#,+,=,C,+,#]
[B'#1+x=)A1+9#]
[B'#!+,=18y+1#]
[Bi#r+:=:cv+v#]
[Cx#s+y=:A’+v#]
[C\#,+,=,B,+,#]
[C.#.+,=,C,+,#]

[#.=+==##] -
[#=#==d+] =

-3

R A N A T A A A A A A

—

[#=t==9+ =
[#|+3+’+1=7+$+] —+ [#,=:=|=s+’=v=]
[Fo=dt ittt #4033, #)

{B,#,B,+,+,B,B)
[C.#,B,+,+,B,B]
[A#,C,+,+,C,C]
[B,#,C,+,+,C,C)
[C,#,C,+,+.C,C]

[A#,A,=,+,#,A]

[B.#,A,=,+,#,A]
[C#.A=+.#,A]
[A.#,B,=,+,#,B]

[B,#.,B,=,+.#,B] .

[C.#,B,=,+.#,B]

[A#.C=+#,C] .

[B,#,C,=,+,#,C]
[C.#.C.=,+,#,C]
[A#.A,=+,A,#]
[B,#,A,=,+,A,#]
[C.#,A,=,+,A,#]
[A#,B,=,+,B,#]
[B.#,B,=,+,B,#]
[C.#.B,=,+,B,#]
[AI#YC!=!+101#]
[B,#,C,=,+,C,#]
[C.#,C,=,+,C,#]
[#===+##]
[#=,=,+,#,=]
[#’=)=x=;+:#y=]

X [#1=I='#1#1#1#] - [#!"‘t",#r#:#s#]’~
AR e R gl B X |
Te=dt,= A #] (A= =,— #.#)

[#=— ==, #] = [#=,— =+, %, %]
[#=tt==t =] - ([#=8=+8,-]
[#’zi_’=?=!#'—] had [#v=s-v=1+1#v—]
Ft—h== =] = [#=—= -, -]
[_"v#v=xA1*'*] —+ [A9#1_’A:+:#)#]

‘[‘v“v#s=le"'"“] had [B:#i#:Bv“‘v#:_]

I--"#v':scr‘i*] — ‘[C!#!#lcv','v—v#]

. [As=)#:=’—1#v#] -+ [A7=‘#1‘:)+1#1#]
[## 5= H] = = =t==]
[A#.#.=A#.39] = [At#:*aAf+)#r#]

[B.#.#.,=.B,#,#]

[C.#.#.=.B#.#] —
[AA A, — #.#]

[A.B.#,C,—#.#]

. [AB#,B,— #,#]

B # = A #]
[Co# = A #]
[A#.#.=B##] —

-

-
e

[A 4,3, B+, #,+]
[A#.38,Co+,* #]

B s ,—tet]

[Bo#,#,~,+,9,%]
[Br#r#y—:+|*s#]
[+=,A,=+,#,#]
[+1=1#1=1+y#,A1
(B1=-#1=1+y"‘,_1

[A,C,#,C,—,#,#] had [Ca=:#r=:+l—’—]

107

1)

(10)
(10)
(10)
(10)
(10)
@
@
1)
1)
(4
(€4)
M
@)
G}
(8)
®)
®
(8)
)
@)
®
@)
®)

(12)

- (13)

(14)

(15)
“{(16) "
(17)

(18)

- (19)

(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

. (32)
33)

34)
(38)
(41)
(42)

[+.3.% 4.+] e = =t=, =)
[+DA)#’A!=D#7#] - [#v=!A’=v+’#y#]
[+.B,#,C\=#.#] = [#.=#,=+#A]
[B’B’#’Bi=?#!#] g [B,=,#,=,+,‘,*]
[C,CD#DC!-‘:)#?#] = [Cy=,#,=,+,+]
[#7=#=A %, #] — ["‘1=v#’="-»#»#]
[#1=l#!#v#:_!#] - [=s='#v#v#1+:#]
[+y-1#1_t=»#v#] had [#,:,B,=,+,#,#]
[=:=1#t#s#a“‘1#] -+ [=’—'#s#1#!=v#]
[B,=,#,=,=,+,+] — [Bl=!#$=v+)+y+l
[C=#=,=,+4] = [Ci=#,=,+,+.+]
[—owot,— %A] — AA =]
[=,=,#,#,#,+,#] it [A|+l#)#1#!=t#]
[B,=,#,=,=,=,=] — B,=,#,=,+,=,=]
[C=#t==,=,=] = [C,=#,=+,==]
[Av"'9#1#v#)=9#] - [+l+y#1#$#'='#]
[+ A###,=8] = [x+#4%B.#]
[A =] = [, +.8.%.#,0,#]

{B,=,#,=,=,B,B] ~+ [B,=,#.=,+,A,A]
[C,=,#,=,=,B,B] =+ [Cy=#,=,+,A,A]
[+ ,C,#,#,#,A,#] - [Cit,— y#y#)=:#]
[*,B,#,#.#,A,9] —+ B+ #,#,—,=,#]
[B,'—',#,=.=,C,C] - [=,=,#,=,+,B,B]
[C1=:#t=t=vcvc] - [=,=,#,{=,+,C,C]
[C,A,#,#,#,B,#] o [A’+v"1#,#v=,#]
[B,A,#,#,#,C,#] =+ (A8, =r#]
[=)=t#l=’=:=’= — [A,=,A,=,+,=,=]
[A=#===,=] o [C,=,A,=,+,=,=]
C\=,— ==, == -+ [Cy=,—=h,=,=]

4 [c’=’=l=)+l='=]
%, ,0] = [—!#»‘y#s#t#v#}

[A,#,+,=,*.#,#] -+ [3#A,=,—#,#]
[B,#, 4=+ 4, #] — [“'-#vBy=9‘_'#’#]
[Cr#,+,=v"’#1#] -+ [“';#,C,=,'—y#,#]
[A»#v#1=v*1#’+] -+ [«.#,#,=—,#,A]
(B =] [*,#,#,=,—,#,B]
[C’#v#»=1*,#'+] = [##,=,—,#,C]
[A##=4#] = [« # #=,~ A, #]
[Bv#v#"_‘-"""r#] —+ ("!#v#v=l—vas#]
[C,#,#,=.;",+,#] - [‘t#v#!=,-scv#]
Dottt]l [, n,dt 8 #]

[#.=+=] = == 8]
(#1=y#,=v'7#’+] — [—,B,#,C.#,#,:]
[Co=t =y, ==] +-=—#.~,=]
[—%= s, 00] = [#y#:‘a#-#‘#:#}

[‘v#:+|_n‘i#1#] -+ [Ay#vAv=s#s#'#]
o [B #E] - [BV#!A’——'Y#Y#)#]
[« #,4+,Codt, e 9] — [C.#.A, ==, #,#]
[73~ % 4] — [B,#.#,B,#,#,A]
[t e b t] — [C.#,#,C\#,A,#]
[Au#s'!'rAv#)#v—] - [A!#JA1+I#9#s-]
IA,#,+,B,#,#,—] —+ [Bl#,Av"'s#v#,y']
[A,#,+,C,#,#,-—] Pad [cs#vAs"_'v#’#r"]

[A,#,+,A,#,—,#] — [Av#:As"'v#n-’#] ’

[A1#1+'Bv#v_ ’#] —+ [B'#'A,+’#s_ 0#]
[A#,+.Co#ts~ 3]~ [Co#,A 4,3~ #]
==t #] o A=A #,#]

[—'=1#s=1*’#:+] - [+'B)#,Cy#v#v=] ’

H=me=m] o [HA=A4,4,4]
[A,#,+,A,—,#,] -+ [‘s=1A'+1#1=1=]
[B,#,-'-,B,#,#,-—] -+ [*i=1Bt+n#v=v=]
[C.#,+,C,#,.—,#] =+ [+,=,C,+,; =y=]
[B.#.#,A,~ #,4] = [*,=,=,B,=,#,B]
[C,#,#,A,—,+,#] [*1=v=n01=ycr#]
[B,A,+,#.4,A,#] (A +,B.#,#,+.#]
[C.A+,#,3,A,%] [A+,C 83, +,#]
[+:=y+:=x#s#s#] -+ [#t-s=§_9#1#,#]
[+,C,+,C,#,—.—]‘ -+ [C,C,=,C,#,A,A]
[+:B,+.B#,-,~] ‘= [B,B,=,B,#,A,A]
[*v#s"‘t—x#v#!#] - [+;=s“v+’#:=D=]
[‘1#r#lcy#v#y+l -+ [+y=y=:cg=v#l*]
[+ #. 3B A+ - [+,=,=B,=#,]
[#,+:+r+1#y#1#] -+ [*-*1"‘!*1#v#1#]
[C.C.+,C#t 4+, +] [Cot =, ,=,=)
[B,B,+,B,#,+,+] — [B,e,=,%,#,=,=]

-
[AA+##A#] o [A+A RS #]

-

-

(36)
37
(38)
(43)
(43)
(39)
(44)
(40)
(45)
(46)
(46)
“7n
(48)

© (49)

(49)
(50)
(51)
(52)
(83)
(83)
(54)
(85)
(56)
(86)
(87)
(58)
(59)
(60)

- (61)

(62)
(63)
(64)
(64)
(64)
(65)
(65)
(65)
(66)
(66)
(66)
(67)
(68)
(69)
(82)

- (70)

(1)
(72)
(73)
(83)
(84)
(85)
(85)
(88)
(86)
(86)

", (86)

(74)
(75)
(87
(76)

. (1)

(78)

~ (88)
(89) -

(20)
(90)
(00)
(79)
(91)
()
(80)
(92)
(92)
(81)
(93)
(93)

[B,#,#,+,#,*,#] -+ [*1#y#er#)’_y#]
[Cv#’#y+v#"'y#] -+ [*v#,#,cr#:_i#]
[ttt e #] = [A#.,4,A,8,—#)
{Cr#y"'v#y#r:v:] -+ [C,+7=9+1#)=1=]
[B.#,+.##,=.=] — [B+,=,+#,==
[#’#y#y“‘v#)#n"] = (#v#v#v_'#s#v::]
[A#.#,4+ 8- #] - [#,=A= =]
["‘y#v#’=|#r#’+] -+ [+-=7=1—1=7#1*]
[##d#s] o [#.8,9+890])

CC— i —#==] = [C,C,=,0,#,=,=

[Bi—t,—#y==] =+ [B,B,=,B,#,=,=]
[#.4#.#.Cot#—] = [#.#.9,C.%#,4.%]
[#.#.76,B 3. #.,~1 — [#.9,#,B,#,#,*)
[Cy+y+y+y#’=t=] —+ [Cr#1=v#v#,B:B]
[B!+)+1+5#’=,=] -+ [B,#,:,#,#,C,C]
[Cy=9+;=t#1qu s [+yB)=:Bv#)#1#]
[B,=,+,=,#.B,B] — [+,C,=,C.#.#.#]
[+ ,#,=,By o] = [, #,4,B,+,#,#]

[o=,=B.#,#] = [B,B#,B,—##]

[— % #.B,A v 6] = [A#,—A+,—,-]
[—a"‘)#»BvB’*v‘] —+ [B,#,—,B,+,#,—]
[—B,#,%,Cy%,2] — [C.Cy— #.+,#,—]
[B;By#va_’#i#] - [B!‘s#x"‘s"'_,#»#]
[A,#,#,‘MA,#,#] - [A1#1*1A1+7‘1"‘]
Byt # s A #] — [A9,%,B,4,#,4]
[Cy‘v#t,#,At#r#] - [Ayci"v#y"'v#y"]
[B,A,#,A,—,#,#] -+ [B’=’A:=:+:A0A]
[B,B,#,C,—,#,#] - [Bv=1A’=r+-#)A]
[BvA»#,A7=,#‘#] g [#,=,A,=,+,A,A]
[B,B,#.C,=,#.,#] — [#,=A,=+#,A]
[Ay#r+»=-"‘9#,+] i {*,#,A,:,—,#,A]
[A=4 %8, 4] = [x=,A,#,—,#,A]
[A# 4=t 4] = [+d,A,=~,A,A]
[#v=)+s=,"a#s+] g ["th=’Cv#y#t=]
#4440 4] o [_1=7=l=’#$=1=]
[*s#l+187‘1#y+, = [B,#,B,=,#,#,B]
[‘,C,+,#'*,#.+] —+ [C,=,B,#,#,#,B]
[*,#|+;=)"‘.+x+] - [Ar#vBy'_':v#thB]
[-=+=# 4] - [+,B,=,0,#,#,=)
[—=t=4,4] o [+ === #,==]
[A,#,+,—?—,+,+] -+ [«,=,A,+,#,C,B]
[B,#,+,B,— #,+] = [«,=,B,+,#,#,B]
[C.C+.#,— #.4H] = [+,+,C,=#,#.C]

R s S I X

[+|=:+p=r#»+y+] s [#'_,=7-s#,=1=]
[ttt it] = (=48, 8,4
[« #.+.—] = [F=, 4,8, 0,0]
[#. 4+ % 94]) — [ERRRR X 1Y |
(eI R S 5 O 5 B I e |
[+1‘v+s"’#v#v+] hd ["1#1*t#1#'#,*]

Tt #bt] o [# # 0]

["‘y+-+,+r#v#y+] - ‘[#t‘r‘!"s#:#y"]
[‘,+7+1'F1#l+i+] - [#i*r"r":#s‘r‘]
(==, #8,-] = [##,~ 34,
[—— st —=] = [#.#,—# %, ~,—]
[Ay#y+y=1D!#»#] -+ [D,#,A,:,-l—,#,#]

[B.#,+,=,D,#,#] — [D:#,B,=+,##]
[9:#'+1=|Di#|#] -+ IDi#ics=y+’#v#]
[Av#y#1=yDt#:‘+] -+ [Dt#v#9=s+y#sA]
. [Bv#7#1=th#v+] -+ [D,#,#,=,+,#,B]
[C.#,#,=,D,#,+] -+, [Ds#l#)=l+'#lcl
[Ar#s#1=1D|+y#] =+ [Dl#l#)=I+’A7#]
[B,#,#,=,D\4,#] — [D,#,#,=,+,B,#]
[C,#r#,=yD:+y#] -+ [D,#,#,:,-I—,C,#]
[A#,+#.D#.#] ~ DA+ 84
[B#.+,3.D,#,#] — [D,#,B,#,+,4,#]
- (Ot +#.D##] = [D,#,Codt,+, %, #]
[A#.4,3.D,3,+] — [Dd.#,3#,+.#,A)
[B.#.,#,#,D.#,+] ~ [D,#,9,#,+,#.B]
C.#.#.#. D+~ [Dghd.#,+.4.0]
[D,+.#,A.#.#,=] = [A,D,#,+.#,#.=]
D, +i##,A4#,=] = [A.D#,#,+,#,=]
[D,+,A#,#.#,=] — [ArDy+v#v#y#1=]
[D1+1#'#!A1D1#] = [*,Cor 4, —#]
[D,+,#,#,A,#,D] — [*.Ce . 8,4, #,~1

[#.A 4 #.35%] = [Dt,=A#,==)

108

(94)
(94)
(95)
(96)
(96)
97)
(98)
(99)
(100)
(101)
(101)
(102)
(102)
(103)
(103)
(104)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)
(112)
(113)
(114)
115)
(116)
117
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)
(126)
(127)
(128)
(129)
(130)
(131)
(1382)
(133)
(134)
(135)
(136)

©(187)

(138)
(139)

- (140)

(141)

. (142)

B

(143)
(143)
(143)
(144)

(144)
(144)
(145)
(145)
(145)
(146)
(146)
(146)
147)

(147) -

47
(148)
(149)
(150)

. (151)

(152)
(153)

(oAt tdtdt=) = [*+,AA#,#,=]
[oA+ =] = [+ AA#=#]
[—:A+,+ . #,=] = [*+,AB#,#,=]
[A+ =#] = [+.+,A,B#,=,#]
(A, +h =] — [« +,A,C,#,=]
A+ +.#.=#] [« +,A,C.,=,#]
[*,B,+,+,#,#,=] [—+.AA#,#,=]
[*sByty o #,=,9] [—+.AA #,= 4]
[~By++.#,#,=] [—+.A,B#.#,=)
(=B, 4+, #,=,#] [~+.A,B#,=,#]
[+:B,+,+.#,#,=] [—+ACot 3#,=]
[+,B,+,+,#,=,#] [—+,A,C3,=,#]
[*,Cyt s+, #,#,=) [++.A,A,3,3#,=]
oGt =] o [AA = #]
[—Cy++,#,%,=] [++,A,B,#,#,=]
[-:Citt #,=.#] [+,+,A,B,#,=,#]
(.Gt ##=] =+ [++,A,Ct,#,=]
[+.C, 4+, #,=,#] [+.+,A,C #,=,#]
[Dy=,+.#,#,—,=] [#.+.:=.A,#,=,=]
[#=+,—#,== [#+.=,~#,=,=]
[D\C.#,+.#,=#] [+,+.#.A, 8, =,#]
[D,C,+,#.,#,=,#] [+ A 3, =, 4]
[D!Cv#1#1+)=5#] [+»+-#,#yAr=v#]
[D\C+# .4, #] [+.+,A,#,3.3%,#]
[+1A7#)+7#i=7#]
[+A#.#,4,=#]
A+ #,%,=,4#]
[A+ #. 8, #,3#]
[— A+ #,=#]
(A, +,=#]

[—+#.#,B,=,#]
[=+.Cot #,=.#]
[— At 4%, #)
[C\+.#.D.#,=,#]
[Ci+.#.,#.D,=.#]
[— A+ 3= = [C+,D,d #,=#]
[— A+ 84 #] o [CA.D,3, 3, 4,#]
[*:D,+y+y#1=1#] - [D,+,A,A,#,*,#]
Dyttt =] = [Di,A A #,4]

A T A A A A S A A T R A A S

[=Dytih#,=#] = [D,+,A,B,#,+,#]
[—Dst s+ #3#,=] — [D,+,A,B,#,#,%]
[+.D,++,#,=,#] - [D,+,A,C,#,%#]
[+,D'+,+,#,#,=] g [D,+,A,C,#,#,*]
{D.Cot,+#,=#] — [DA,Ax2#,—,#]
[D.Cit +dtdt=] = [D+,A,x#,#,-]

[-tdt A, =]

(154)
(155)
(156)
157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
167)
(168)
(169)
(170)

- (7)

172)
173)
(174)
ars)
(176)
Qam
(178)
179)
(180)
(181)
(182)
(183)
(184)
(185)
(186)
(187)
(188)
(189)
(190)
(191)
192)
(193)

[#,=+,+,3,%,%] = D,+,=,%,#,=,=]
DA+ +3#,=#] = [#+,A,D.%,=#]
[D,A,+,+.3#,=] = [#,+.A,D,#,#,=]
[D,=++.#,—.—] [#,+,=%#,=,=]
[#.A4+,—#,=,#] [A+,A,—#,=,#]
[#.A,+,—#,#,=] [A+,A,— #,3#,=]
[*,#,+.#.D.#,-] A #.D,#.#.,#,=]
[A, =~ +.#,A,#] [~ ¥+ A#,=#]
[A,——,+.#.#,A] [—#.+.A#,3#,=)
[A,D,#,#,#,#,:] [A1+1#vDy#,#yA]
[_»+:#:#)D"r#] [D,Dt_v#)"'i"‘:#]
[—!+1#’#1DI#!—] —+ [D,D,—,#,-{-,#,*]
[##, A+ #,==] = [##,+,=#,D,D]
[#.D.#.#.#.#.#] = [#.4#D,##.#]
[— .8 —#] o [AvAva#v"'v:r#]
[=+# 5 8,=] = [AAB#,+,#,=]
(Ast #.3.A.3,D] = [+,A %4, +#,=]
[A,+.#.4,AD#] — [0, A8, +,=#]
B # 4.3, — [#.B.##4.4.#]
[*»+:B,3,A,#,D] — [A,A3.#,+,%#,D]
[*,+.B.#,A,D,#] — [AA4,%,+,D,#]
[#,+.#.:#,=D,D] = [#,=D.#,+,==
[#.+.#.D,==,=] = [#,=,#,B,+,D,D]
[« +.#.3.A,4,=] = [*A,#,#,+,#,B]
[xsbst,dt Av=] = [, A#,#,+,B,#]
[#,+.#,B,=,=,=] — [D,=,#.#,+,D,D]
[*,4+,#.#,A,4,D] — [D,D,— #,+.#,-]
[x+#,%.A,.D,#] - [D,D,—#,+,—#]
[D,+.#,#,=,B,B] — [B,=#,#,+,D,D]
[Ba+y#-#-=t-7_] — [Do=vA’#v+»B’B]
[ests b #,A#,B] — [, A,A3#,+,#,B]
[‘v+v+v#’A:Bi#] - [*$AyA1#‘+vB1#]
[#:+,—#,=,B,B] = [#,=,—,#,+,B,B]
[#,+,+.#,=,B,B] = [#,=,=#,+,B,B]
["‘,+-+1#1B1#1B] —+ [_vAsA)#"".:#rB]
(«s++#,C.B#] — [+,AA#,+.B.#] .
[D.Cyt+ . B.#] — [#,4,A,0,#,—,#]
[D,Cyts+,#,#.B] — [#.+,A%#,#,-]
[#)+y+-#1Ay#v=] —+ [#.A e # 4 #.=]
[#1+s+v#vA,=’#] — [#vAa"‘v#,+y:v#]

Lidldyey

109

(194)
(195)
(196)
(197)
(198)
(199)
(200)
(201)
(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)
(211)
212)
(213),
(214)
(215)
(216)
(217)
(218)
(219)
(221)
(222)
(223)
(224)
(225)
(226)
(227)
(228)
(229)
(230)
(231)
(232)
(233)
(234)

MEFE—E
1 RREEEERHIAR

1.

WINT5HE, 43508, HEHE, HERARE, UREE S8 v/ suasae s
et & Al 7 ME BB MR S B Bl SR, 29, (1993), 888-895.

. Katsunobu Imai and Kenichi Morita: Firing squad synchronization problem in re-

versible cellular automata, Theoretical Computer Science, 165, (1996), 475-482.

Kenichi Morita and Katsunobu Imai: Self-reproductlon 1n a reversible cellular space.
Theoretical Computer Science, 168, (1996), 337-366.

RFAR, HREE—, 437005 2 RETHLL - 4 —F < b /_I:'C@%EIE%AEE
BT HHOERE#RWMICEE, J81-D-I, (1998), 350-352.

Kenichi Morita, Satoshi Ueno and Katsunobu Imai: Characterizing the ability of
parallel array generators on reversible partitioned cellular automata, International
Journal of Pattern Recognition and Artificial Intelligence (to appear).

Kenichi Morita and Katsunobu Imai: Uniquely parsable array grammars for gener-
ating and parsing connected patterns, Pattern Recognition Journal (to appear).

. Katsunobu Imai and Kenichi Morita: A computation-universal two-dimensional 8-

state triangular reversible cellular automaton, Theoretical Computer Science (to ap-
pear).

I ERSEBEEMR X

1.

- versible cellular automata, Evolvable Systems: From Biology to Hardware (ICESQG), :

. Ken1ch1 Morita and Katsunobu Imai: A simple self-reproducing cellular automaton' ‘

. Kenichi Morita and Katsunobu Imai: Logical umversahty and self-reproduction in re-

Kenichi Morita and Katsunobu Imal Self-reproduction in a reversible cellular space,
Proceedzngs of International Workshop on Universal Machines and Computations, -
Paris, (1995) a

. Katsunobu Imai, Taichi Adachi, Shinichi Furusaka and Kenichi Moritas: Firing squad =~ o
- synchronization problem in one and two dimensional reversible cellular automaton :

Proceedings of Cellular Automata Workshop 96, Giefien, (1996), 38-40.

with shape—encodmg mechamsm Artificial Life V, The MIT Press, (1997), 489—496 :

LNCS1259, Springer, (1997), 152-166.

Kenichi Monta Satoshi Ueno and Katsunobu Imai:- Characterlzmg the a,blhty of

parallel array generators on reversible partitioned cellular automata, Proceedzngs of
International Workshop on parallel image analysis, Hiroshima, (1997), 144-156.

111

Katsunobu Imai and Kenichi Morita: Generation and parsing of connected patterns

by uniquely parsable array grammars, Proceedings of International Workshop on

parallel image analysis, Hiroshima, (1997), 315-325.
Koji Okuhara, Katsunobu Imai, Kenichi Morita and Shunji Osaki: A de51gn method

for parameters of synergetic computers for i Image recognition, Proceedings of Inter-

10.

11.

national Workshop on parallel image analysis, Hiroshima, (1997), 102-111.

Katsunobu Imai and Kenichi Morita: A computation-universal two—dlmenSmnal 8-
state triangular reversible cellular automaton, Proceedings of the Second Colloguium
on Universal Machines and Computations, Metz, (1998), 90-99.

Kenichi Morlta, Maurice Margenstern, and Katsunobu Imai: Universality of re-
versible hexagonal cellular automata, Proceedings of MFCS’98 Worksll,op on Fron-
tiers between Decidability and Undecidability, Brno, (1998).

Kenichi Morita and Katsunobu Imai: Number-Conserving Reversible Cellular Au-
tomata and Their Computation-Universality, Proceedings of MFCS’98 Workshop on
Cellular Automata, Brno, (1998).

Katsunobu Imai, Kenichi Morita, and Kenji Sako: Firing Squad Synchronization
Problem in Number-Conservmg Cellular Automata Proceedings of AU TOMA TA’98,
Santiago, (1998).

TII B

1.

..A#%E BN 8E, Feiksea: E&@%ﬁkbh‘bb#ﬂlﬁl‘ﬁ %ﬁiﬁ‘ﬁliwﬂﬁpﬂ‘

Y= 7 R4 W00C92, ﬁﬁﬂscﬁ (1993), 181-192.

BT, SHBE, FLHT: FARONT= 7 R L5 H0ED, LEBOR
R, B ME 22 RUIBITRAL RSO KRR R T
HiG4E, 1-6, (1992), 211-216. :

W, HeMES - £BMTE LRy IN 3 (1991) 431-434.

tﬁ IR, 53, TﬁE‘J THRERE, BE Hk: T NF A 4 Vi ake mm
l/‘kﬁbf‘ﬂ"f/.:?l*-'ETﬂ/ 7]“7"/’.17%?‘*[‘]3/&::—-7‘4/71 EMS‘»/’/'

BT, 435008, HLHR, BERAR, BRLE Z6%. ﬁm%mmm{lr
LIRS, S8R, BME, 7, (1993), 48-54.

TRILE, 490k, THER, EEHE: %&&%Am&vmmw’f7/17 we‘
T»@ﬁ%krm%9@i7ylah#mdﬁv 7> av7, (1993).

AdETiNg, ZREE— 14’17571‘93@1/ *— F=} /uoam—%&lglﬂﬂ%kowr

iﬁﬂﬁ?ﬁﬁf%ﬁﬁf%&‘ﬁﬁ 871, (1994), 66-72.

112

11.
12.
13.
14.
15.
16.

17.

. AT, FREE— LRTTHELL - F— < b 2B 5 ﬁﬁTEFﬁ%how‘(

152 5:#% COMP93-92, SS93-60, (1994), 41-48.

. AT, BEE— TRTTHLN -+ — b | :/a:zs»m—ﬁaffsﬂaﬁ%@%m,

BRI ZERTRZE4R 906, (1995), 119-125.
FREB—, SHEE: TEELVEHICBT 2 HEHM LAEDS Y RY Y AT,

© (1995), 19-24.
10.

REK—, HRE—, $HBE, REE— 2XTTLLL - F— b b iz BT 2—

FRERIE, BEMATHIZRT G 950, (1996), 228-232.

S, HREE— SFEHREL 2 RIUATHELN - F =+ < Y220, LA E@/
VAT T AFRE, (199), 19-24. '

GHG, ZER—, ZEE—: 20 BERICET S 1ATETHEELL - F—F < by |
D—HHER, LAED Y VRV 7 ATHE, (1997), 87-92.

THZNG, HREE—: FHEHEL 2 KT 8 IREE 3 AIKTHLL - +— b < } v, ¥
BATHT AT REZR 6% 992, (1997), 228-232.

HHEE—, 4HRG: & dkf%v‘?ftﬁﬁt%%ﬁ’)ﬁﬁ& ﬁaiéﬁﬁw F—r<h>, LA
ROV RTY AFRE, (1997), 93-98.

SITEMG, HREE— BHETR &2km81kﬁ“3ﬁaif’1k7i§~l:)v -+ — r—ew =]
#Hek COMP97-80, (1998), 17-22.

HHEE—, 4H 75 Computation-Universality of One-Dimensional N umber—Conséving
Reversible Cellular Automata, LA D3 > KT v A THif, (1998), 113-118.

’%ﬁ#ﬁ%, FRHFE—: Firing Squad Synchronization Problem in N umber-Conserving
Cellular Automata, LAE DY ¥RV 7 A TR, (1998), 119-124. '

113

N & 5IABRRRB/LE OB

FFX BER X
Introduction ’
Cellular Automata
Computation-Universal Two- | I-7,
Dimensional Reversible CA I1-4,8,9
4. Synchronization on Reversible | I-2,
and Conservative Cellular Au- | I1I-2,10,11
tomata |
5. Self-Reproduction in Reversible | I-3,
Cellular Automata | II-1,3,4

6. Conclusion

114

