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SUMMARY 

     This thesis is concerned with the theory of extreme statistic and 

order statistics, including applications of the latter in some fields 

of statistical inference. 

     In Chapter 1, an asymptotic theory of univariate extreme statistic 

was treated. Properties of tail equivalence and extreme value distribu~ 

tions were investigated. Simple sufficient conditions for the domain 

of attraction of the double exponential distribution and analytic expres-

sions of the normalizing constants were given. A number of examples to 

illustrate the results were shown. 

     In Chapter 2, an asymptotic theory of multivariate extreme statistic 

was treated. Basic properties of multivariate extreme value distributions 

were proved. Characterizations of multivariate extreme value distribution 

by its marginal independence were shown. Also, multivariate extensions of 

the results on univariate tail equivalence and extreme value distributions 

were established. 

     In Chapter 3, an application of the distribution theory of order 

statistics was considered. It was proved that the family of Weibull 

distributions with varying shape parameter is outlier-prone completely. 

Properties of tails of outlier-prone and outlier-resistant distributions 

were established. Relations between the properties of outliers and the 

types of extreme value distributions were shown. 

     Finally in Chapter 4, an application of the order statistics to 

statistical inference was dealt with. In the time truncated life testing 

problem, a sequential procedure was proposed and its properties were inves-

tigated. In the non-regular estimation problem, the second order efficiency 

of the maximum probability estimators was introduced and discussed.
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CHAPTER 0 

INTRODUCTION 

     Extreme statistic and order statistics have been studied by many 

authors, because they play an important role in statistical theory. In 

this thesis, properties of univariate and multivariate extreme statistic 

and applications of order statistics were studied. 

     In Chapter 1 we dealt with an univariate extreme statistic. Let X1. X 21 

... be a sequence of independent random variables with common distribution 

function F and then define the extreme statistic Z 
n = max(Xi,x 29 ... Y X n ). if 

there exist sequences of constants a 
n > 0 and b n for which (Z n - b n V a n has 

a nondegenerate limit distribution H, then F is said to be in the domain of 

attraction of H and H is said to be an extreme value distribution. 

    Fisher and Tippett [5] have established that a distribution function 

with non empty domain of attraction is of one of the following three types: 

                           0 if X < 0, 
             (X) =                   a 

exp(- x-a if X > 0, 

                         exp(-(- x)a) if x < 0, 

                          1 if X > 0, 

                     A(x) exp(- e -X co < X < 00 , 

where a is a positive constant. Sufficient conditions for the domain of 

attraction of the limit'distributions were given by Mises [15]. Gnedenko 

[8] has established necessary and sufficient conditions for the domain of 

attraction of 4~ , T. and A.- Gnedenko points out, however, that he has,not 
                                      a. , a 

found satisfactory results in the case of A. Haan [12] has established 

other necessary and sufficient conditions for the domain of attraction of A. 

Gnedenko's results were generalized by Smirnov [22]. Resnick [191 has



established the results on tail equivalence and asymptotic distribution of 

extreme statistic.. 

      In Section 1.2 we considered the normalizing constants of distribution 

functions which belong to the domain of attraction of T
., and extended the 

results of Resnick [19].- This section is based on Takahashi [23] . In 

Section 1.3 we considered the domain of attraction of A. We showed some 

properties of normalizing constants. Simple sufficient conditions that a 

distribution function belongs to the domain of attraction of A
, and expres-

sions of the normalizing constants were given. In Section 1.4, a number of 

examples to illustrate the results of Section 1.3 were shown. Sections 1.3 

and 1.4 are based on Takahashi [24, 28). 

                                                         (1)      In Chapter 2 we dealt with a multivariate extreme statistic . Let X 

 (2) X be a sequence of independent k-dimensional random vectors with 

common distribution function F and let 

           (n) (j)               Z max X k. 
                  .~~n 

If there exist vectors a (n) and b (n) in R k for which (Z (n)_ b (n) )/ a (n) has 

a nondegenerate limit distribution H, then F is said to be in the domain of 

attraction of H and H is said to be a multivariate extreme value distribu-

tion. Results for the multivariate extreme value distributions, obtained 

by Sibuya [20], Nair [16], Galambos [6] and others, have been summarized by 

Galambos [7]. Recently, Marshall and Olkin [14] have established a multi-

variate analogs of Gnedehko's necessary and sufficient conditions for the 

domain of attraction. 

     In Section 2.2 we proved the basic properties .of multivariate extreme 

value distributions. Next we characterized the multivariate extreme value 

distribution by its marginal independence. The content in this section is 

due to Takahashi [27, 30]. In Section 2.3 we established multivariate 
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  extensions of the results of Resnick [19] on tail equivalence and asymptotic 

  distributions of extremes. This section is based on Takahashi [27]. Some 

  examples were shown in Section 2.4. 

       In Chapter 3 we dealt with an application of order statistics. Using 

  the order statistics, Neyman and Scott [17] considered the ideas of 

  outlier-proneness and outlier-resistance of a family of distributions and 

  showed that the family of gamma distributions and the family of lognormal 

  distributions are outlier-prone completely. On the other hand, Green [10] 

  considered the ideas of outlier-proneness and outlier-resistance of indi-

  vidual distributions and gave theorems concerning necessary and sufficient 

  conditions for outlier-proneness and outlier-resistance of distributions. 

       In Section 3.2, using the same device of Neyman and Scott [17], we 

  showed the family of Weibull distributions with varying shape parameter is 

  outlier-prone completly. In Sections 3.3 and 3.4, we considered the outlier-

  prone and outlier-resistant distributions introduced by Green [10] 

  proved some properties of tails of outlier-prone and outlier-resistant dis-

  tributions. Next we showed the relations between the properties of outlier 

  and the types of extreme value distributions. The contents of this chapter 

  is due to Takahashi [29]. 

       Finally in Chapter 4 we dealt with
.the problems of statistical infer-

  ence,~,using the order statistics. Padgett and Wai [18] considered the fol-

  lowing life test. Let n , independent items with life distribution F 6 be 

  put on life test at the outset, and suppose items are not replaced upon 

  failure. It is assumed that F 
e is stachastically increasing in 0. They 

  considered the hypotheses H.: 6 > e. versus HI: 0 < 0, (e, < e.) and 

  proposed a one-sided sequential test based on X n (t), the number of failed 

  items before or at time t < t,, where t, is a specified truncation time 

  for the test. They derived the average sampling time, and developed an 

3



interval estimation procedure for e after acceptance of H,. 

     In Section 4.2 we improved and extended the results on the sequential 

test proposed by Padgett and Wei [18], and derived the average sampling time 

(see Takahashi [25]). In Section 4.3, another sequential test procedure 

based on X n (t) was proposed and analyzed its properties. This procedure 

allows a quick acceptance of H, when H, is true (see Takahashi [26]). 

     Weiss and Wolfowitz [31] developed a theory of maximum probability 

estimators and applied it to some non-regular estimation problems in which 

a function of extreme statistic is the muximum probability estimator. 

     In Section 4.4 we introduced the notion of the second order efficiency 

which we apply to some non-regular estimation problems (see Takahashi [23]). 

     In this thesis we have used the following results of analysis and 

probability theory. Proofs and further details can be found in Haan [12]. 

     DEFINITION 0.1. Let R+ be the set of positive real numbers. A 

function R : R+- e varies regularly at infinity if there exists a P e R 

such that for all x c R+ 

P 

            lim R(tx)l R(t) = x 
                             t-~-00 

This number P is called the exponent of regular variation. In the particu-

Lar case p = 0, R is often called slowly varying at infinity. For brevity 

we also say that R is p-varying at infinity. 

    THEOREM 0.1. (a) If a function R : R+ k+ is Lebesgue-integrable on 

finite intervals and regularly varying with exponent P, then theraexis*t 

functions a R+ - R and c with 

               lim c(x) c. (0 < c, < -), lim a(x) = p, 
                               X-~.00 X-"-Co 

X 

such'that R(x) c(x)expi f a(t) dt) for all positive x. 

t 4



 (b) If R is P-varying at infinity (- < P < then for aU sequences, 

 (a I and la'l of positive numbers with 
   n n 

                   lim a = lim a' and 
                     n n 

                          n-*-w n-m 

                 lim a / a' = c (0 < C < 
                      n n 

                     n-oo 

 we have 

P 
              lim R(a )/ R(a') = c 

                       n n 
                 n-w 

 (c) Suppose R 1 and R 2 are non-increasing and P-varying at infinity 

      < P < 0). For 0 < c < - we have 

              lim R 1 (x)l R 2 (X) = c 
                           X.*QO 

 if and onty if 

                                      -1/p 
              lim R*(x)l R*(x) = c                   1 2 

                                  X-~.Co 

 where Rt(x) inffy : R (y) < llxl, i 1, 2. 

      LEMMA 0.1. Suppose that for positive functions f and g on R both 

           f CO f(t)dt and foo g(t)dt 
               0 0 

 are finite and 

             lim f(t)l g(t) c with 0 < c < 

 Then 

                                           CO 

                 f(s)ds 

t 

                lim C. 
                                t-~.Co Go 

                  g(s)ds 
t

- 5 -



     THEOREM 0.2. Suppose that the distribution function H is continuous 

on the whole real line and strictly increasing on Ix : 0 < H(x) < 1.1. 

Suppose for a sequence IF 
n I of distribution functions there exist a n > 0 

and b n = 1, 2, - such that 

             F n (a x + b n ) - H(x). 

Let la 
n I and 10 n I be sequences of positive numbers tending for n to 

limits a and a respectively, where 0 < a < 0 < 1. If we define 

              B (n) B H-1 (a) 
                 n a 

n 

             A (n) B A H-1(0) B,                n B 
n 

n 

where C (n) infix F (x) > yl, then we have 
       Y n 

             F n (A x + B H(Ax + B). 

     LEMMA 0.2. Let U and V be two distribution functions neither of which 

is concentrated at one point. If for a sequence IF 
n I of distribution func-

tions and constants a > 0, a > 0, b and B 

(0 .1) F 
n (a n x + b n U(x), F n (a n x + B n V(x) 

then 

(0.2) lim a /a A > 0, lim (B b 
n )/ a B,                             n-*-co n-*co 

and 

(0.3) V(x) = U(Ax + B) 

is true. Conversely, if (0.2) holds then each of the two relations (0 .1) 

implies the other and (0.3).

- 6 -



CHAPTER I 

ASYMPTOTIC THEORY OF EXTREME STATISTIC - UNIVARIATE CASE 

1.1. Introduction 

      In this chapter we deal with the univariate extreme statistic. We 

extend the results of Resnick [19] (see Theorem 1.7),,and give simple 

sufficient conditions for a distribution function to belong to the domain of 

attraction of A and a method to determine the normalizing constants. 

      Let X1, X 2' ... ' X 
n be a sequence of independent random variables 

with common distribution function F and let 

                   Z = max X.. 
                n 1<i<

n 71 

If there exist sequences of constants a 
n > 0 and b n such that (Z n - b n U a n 

has a nondegenerate limit distribution H, or Fn(a 
n x + b n - H(x), then F is 

said to be in the domain of attraction of H (notation F e D(H)), H is said 

to be an extreme value distribution, and a 
n and b n are called normalizing 

constants. 

     In the sequel we use the following notations 

              40 = supix: F(x) < 1) 

and 

             71 (p) = inffx: 1 - F(x) < p), 0 < p < 1. 

Note that 0 < -. The number 0 is called the endpoint of the distribution          X~ - X~ 

function F. 

     Now we summarize some univariate results which are used in this thesis. 

     Gnedenko [8] showed the following classical results of necessary and 

sufficient conditions for a distribution function to belong to the domain 

of attraction of extreme value distributions. 

                                 7 -



     LEMMA 1.1. Suppose (a n I and Ib n I are sequences of real numbers and 

• n > 0 for n = 1, 2, --- . For distribution functions F and H we have for 

• fixed real x with 0 < H(x) < 1 

              lim Fn(a n x + b H(x) 
                n-w 

if and only if 

              lim n{1 - F(a n x + b n )I log H(x). 
                    n-co 

     THEOREM 1.1. A distribution function F belongs to D(O a) if and only 

if 1 - F is - a-varying at infinity. Moreover 

              E'n(a x) (x) 
                   n a 

holds with a 71 (1/n), n = 1, 2, 

n 

    THEOREM 1.2. A distribution function F belongs to D(T if and only 

if F has a finite endpoint xI and the function R defined by R(x) 

1 - F(x'- llx) for all x > 0 is - a-varying at infinity. Moreover 

              Fn(a x + x') - T (x) 

holds with a n = Ix* - 71 (1/n)1_1 . n = lp 21 

     Now we quote the following theorems concerning the domain of attraction 

of A. 

     THEOREM 1.3. (Necessary and sufficient conditions.) For a distribution 

function F, Let 

            b(s) 

             a(s) = Mes) - b(s) 

and 

                 X0 = X0 

8



     Then the following assertions are equivalent. 

(a) F c D(A). 

(b) (Gnedenko [8] and Haan [12]) There exist a > 0, b n = 1, 2, 

such that 

              E`n(a n x + b n A(x). 

Moreover, we can take b n = b(n), a n = a(n) or fa(b n)' where fa is the 
auxiliary function of F (see (c)). 

(c) (Gnedenko [8] and Haan [12]) There exists a function fa: R - R+ such 

that 

              lim 1 F(t + x- fa(t)) -x for all x c R. 
               ttxo 1 - F(t) 

Moreover, we can take 

                       X0 

           fa(t) ft fl - F(s)Ids for all t < x'. 
                         1 - F(t) 

Such a f a is said to be an auxiliary function of F. 

(d) (Mejzler, see Haan [12)) For every positive x and y (y A 1) 

                 b(sx) - b(s) log x 
             lim 

              s-- b(sy) - b(s) log y 

(e) (Haan [12]) There exist functions a R - R+ and 0 : R R, such that 

             lim sIl F(a(s)x + 0(s))) e -X for all x e R. 
                                  S-~-m 

Moreover, we can take a(s) = a(s) and B(s) b(s). 

    THEOREM 1.4. (Sufficient conditions.) If one of the following 

conditions holds then we have F c D(A).



(a) (Mises [15]) The endpoint of F is infinite, F is twice differentiable 

at least for all x greater than some value x., and is such that 

            d [ 1 - F (x)                lim 0, 
                    X-)-CO dx F'(x) 

where the prime denoting the derivative. 

(b) (Haan [12]) There exists a distribution function G c DW such that 

the function R : R+ - R+ defined by R(x) = [1 - F(x)]I[l - G(x)] is 

regularly varying at infinity. 

(c) (Haan [12]) There exist a distribution function G e D(A) and a 

function r which has a P-varying derivative (-1 < P < -) such that 

F (x) = G (r (x) ) for x > 0. 

( d) (Haan [12]) There exists a distribution function G e D(A) such that 

F(x) = G(e x 

    Note that we can take 

            fa(t) = ga(r(t))t1(P+1)r(t) in (c) 

and 

            fa(t) = ga(e t )e-t in (d), 

where f 
a and g a are auxiliary functions of F and G, respectively. 

     THEOREM 1.5. (Necessary conditions.) For a distribution function F, 

let 

            b(s) (11s), a(s) = Mes) - b(s). 

If F c D(A), then the following results hold. 

(a) (Marcus and Pinsky [13]) The function a(s) is slowly varying at 

infinity. 
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(b) (Haan [12]) If b(-) then b(s) is slowly varying at infinity. 

if b(-) < -, then b(-) - b(s) is slowly varying at infinity. 

     THEOREM 1.6. (Gnedenko [81) There exist a > 0 and b n = 1, 2, ---

such that 

              F'n(ax + b A(x) 

n if and only if F(log x) is a-varying at infinity and aa 1. 

     Resnick [19] proved the following theorem of tail equivalence and 

asymptotic distributions of extreme statistics. 

    THEOREM 1.7. Let F, G be distribution functions and let H be an 

e xtreme value distribution. Suppose F c D(H) and that ?'(a n x + b n ) - H(x) 

for normalizing constants a n > 0, b n n ~ 1.9 2, - . Then$ for some 

A > 0, B: Gn(a n x + b n H(Ax + B) if and only if 

                   0 X0 X0
,            X~ G -

                      - F(x) 
             lim exists. 

              xtx* 1 - G(x) 

Moreover, 

(a) if H = 0 a , then B 0 and lim [I F(x)ll[l - G(x)] = At 
                                                  X-*Co 

(b) if H = T a , then B 0 and lim [1 F(x)]I[l - G(x)] = A 
                                xtx' 

B (c) if H = A , then A = .1 and lim [1 F(x)]I[l - G(x)] = e 
                                xtxo

- 11 -



1.2. The domain of attraction of T 

     We show some properties of normalizing constants of the extreme 

from a distribution which belongs to D(T a ). 

     THEOREM 2.1. Let' F and G be distribution functions. Suppose 

or there exist a > 0 and b such that                 n n 

(2.1) Fn(a x + b (x) 
                    n n 

and there exist a > 0 and 0 such that 
                 n n 

(2.2) G n (a n X + a n - H(x), H nondegenerate. 

Then there exists c. (0 < co < -) such that 

(2.3) lim a /a C, and xI = x' (= x', say) <                     n n F G 
                          n-+aD 

if and only if there exists c,(O < c, < -) such that 

                1 F(x) 
(2.4) lim - = C,, 

              x+x,l G(x) 

where x, = x * or x0          F G 

    Moreover, if (2.3) or (2.4) holds, then there exist A > 0 and B 

that H(x)= IY (Ax+B). 

     PROOF. For 3 > 0, define 

            a(s) jx* Tl(l1s)j-l, F 

            a(s) {X~ 

            a(s) 

and 

            al(s) 0(es) - 0(s). 

    Sufficiency. By (2.4) it is easily seen that x! X0 X0 x                                               F G 

                                 12
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From Theorem 1.2 we get that 1 - F(x'- llx) is - a-varying. Then by (2.4) 

we have that 1 - G(xl- llx) is also - a-varying, too. Hence we have G 

E D(T 
a ) and H(x) = T a (Ax+B). By Lemma 0.2 in Chapter 0 and Theorem 1.2 

we can suppose without loss of generality that a = a(n) and a = Aa(n) . 

                                                                                  

. n n 

By (2-4) and Theorem 0.1 (c) in Chapter 0 we have 

               lim a /a C-1/a 1A 
                    n n 

                    n-co 

     Necessity. By (2.2), x0 < - and Theorems 1.1, 1.2 and 1.3 it holds G 

that H(x) = A(Ax+B) or H(x) = T 0 (Ax+B), where A, B > 0. If H(x) = A(Ax+B), 

then we can take a 
n = Aal( n). By Theorem 1.5 (a) a'(s) is slowly varying. 

On the other hand, a(s) is -6-1 -varying. Therefore, (2.3) does not hold. 

Thus we have H(x) = T (Ax+B) and we can suppose that a = Aa(n). Since a(s) 

n and a(s) are non-increasing and a(s) is -a -varying, we have 

             lim a(s)l Aa(s) = co. 

Hence we have that a(s) is also -a -varying, too. By Theorem 0.1 (c) in 

Chapter 0 it holds that 

                 1 - F(x) a                li m Ac.) 
               x+x'l - G(x) 

So we have a = a. Q.E.D. 

    COROLLARY 2.1. Let F be a distribution function with endpoint x' 0 
F 

and 0 < c < Then 

               1 F(x) 
     lim - c 

            Xto I T (X) 

if and only if 

              E'n' Wn 1/a c 1/a X) -

                                        - 13



    COROLLARY 2.2. Let F be a distribution function with 

0 < c < Then 

               F'n(x/n) - T,(cx) 

if and only if 

             lim f(x) = c and f(x) = 0 for x > 0. 
              X+O 

     REMARK 2.1. Theorem 2.1 is an extension of Theorem 

a simple proof. 

     REMARK 2.2. Corollary 2.2 is closely related to the 

estimators dealt with in Section 4.4.

density f and

1.7 (b) with

order of efficient

- 14 -



 1.3.'' The domain of attraction of A 

      In this section we consider the distribution functions which belong 

to D(A). 

      First we prove four theorems useful in choosing normalizing constants. 

     THEOREM 3.1. Let F be a distribution function. 

(a) Suppose F E: D(A) or there exist a n > 0 and b n such that 

(3.1) Fn(a n x + b n A(x). 

Then 

(3.2) lim n11 - F(b n )I 
                    n-co 

(b) .Conversely, if F c D(A), then (3.1) holds with b n which satisfies (3.2) 

and a n = fa(b n)' where fa is defined in Theorem 1.3. 

     PROOF. By Lemma 1.1 and Theorem 1.3 (b), (c), the proof is trivial. 

     THEOREM 3.2. Let F and G be distribution functions. Suppose there 

exist a n > 0, b n and a n > 0 such that (3.1) holds, and it holds 

(3.3) Gn(a n x + b n A(Ax+B), 

where A > 0. Then we have 

(3.4) lim a /a A. 
                     n n 

                     n-c* 

     PROOF. For s > 0, let b(s) (11s) and a(s) (11s). By 

Lemma 0.2 and Theorem 0.2 in Chapter 0. we can suppose without loss of 

g enerality that a n = Men).- b(n), b n = b(n) = S(e B n) and a n 

Ce A e B n) - Ce B n). It holds that 

             0(e B [enD < B(ee B n) < B(e B ([en]+l)) for all n, 

where [en] is the greatest integer less than or equal to en. Thus we have 

                                 15



            b([en]) - b(n) B(ee B n) - B(e B n) b([enl+l) - b(n) 
(3.5) < < 

              Men) - b(n) Men) - b(n) Men) b(n) 

As b is non-decreasing, we have for fixed c (1 < c < e) and sufficiently 

large n 

               b([en]) b(n) b(cn) - b(n) 
                   > > 

                 Men) b(n) Men) - b(n) 

By Theorem 1. 3 (d) we have 

                b(cn) - b(n) 
              lim log c 

               n-- Men) - b(n) 

Hence we have 

              b([en)) b(n) 
(3.6) lim 1 

              n-- Men) b(n) 

Similarly 

               b([en]+l) - b(n) 
(3.7) lim 1 

               n-co Men) - b(n) 

By (3.5), (3.6) and (3.7), it holds that 

                 a(ee B n) - 0(e B n) 
(3.8) lim 

               n-co Men) - b(n) 

On the other hand, by Theorem 1.3 (d) it'holdt, that 

                 O(e A e B n) - 0(e B n) 
(3.9) lim B B A 

              n- B(ee n) - s(e n) 

By (3.8) and (3.9) we have (3.4). Q.E.D. 

     The converse of Theorem 3.2 becomes the following theorem. 

    IMOREM 3.3. Let F and G be distribution functions. Suppose there 

exist a n > 0, b n , a n > 0 and 0 n such that (3.1) hoLds, and it hotds that 

(3.10) Gn(a x + 0 A(x). 
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(a) if X0 and for 0 < c <     X; G 

 (3.11) lim a /a c 
                      n-co 

 then 

             lim b /a C 
                     n n                 n-

(b) If x' x' = x' < - and for 0 < c < (3.11) holds, then        F G 

                        x0- b n               li m - = C 
                      n-co x0- a n 

      PROOF. For s > 0, define 

               a(s) = Mes) - b(s) 

 and 

              a(s) = 0(es) - 0(s) 

where b(s) P-1 (11s) and 0(s) (11s). By Lemma 0.2 in Chapter 0 

can suppose without loss of generality that a 
n = a(n), b n = b(n), a n 

and 0 = B(n). 

(a) By Theorem 1.5 (b) we have 

                     S a(t)          b(s) f dt 
and 

                   s a(t) dt 
t 

Suppose (3.11) holds, then by Theorem 1.5 (a) it holds that 

             lim a(s)la(s) = c 
                                S -0-co 

Thus we have 
                         S a(t) 

dt                b(s) t 

              lim lim C 

                          dt t 

                                  17
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(b) By Theorem 1.5,(b) we have 

              X* - b(s) s a(t) dt             fl t 
and 

              x, - a(s) a(t) dt             fl t 

so that a similar argument as in (a) proves (b). Q.E.D. 

     COROLLARY 3.1. -Let F be a distribution function with infinite 

Then 1 - F(log x) is -a -varying if and onty if there exists b n 

              F"'(x/a + b 
n ) - A(x) 

and b 
n nu log n /a , where a > 0. 

      PROOF. It is clear from Theorems 1.6 and 3.3. 

     TBEOREM 3.4. Let F and G be distribution functions. Suppose 

or there exist-a and b such that (3.1) hoLds. Then there exists a 

such that 

(3.12) e(a n x + b n A(Ax+B) and A > 0 

if and onZy if x1 x1 xO, say), a /a -*. A, and                F G n n 

                       G(x) _B 
(3.13) lim - = e 

               x+xO F(x) 

      PROOF. Sufficiency. By Lemma 1.1 we have. 

(3.14) lim n{1 - F(a x + b e'. 
                            n n 

So it holds that a x + b - x0 as n Hence we have                    n n 

                    1 - G(a 
n x + b n ) -B                li

m -
                 n-- 1 - F(a 

n x + b n )

endpoint. 

such that

>
n

D(A) 

0



Therefore it holds that 

(3.15) lim n1l - G(a x + b )I = e-(x+B). 
                             n n 

                   n-co 

By lim a 
n la n = A > 0, we have (3.12). 

     n-aD 

     Necessity. By Theorem 3.2 we have lim a 
n /a n = A. By (3.1), (3.12) 

                                                                  n--

and Lemma 1.1 we have (3.14) and (3.15), hence we get b X0 and b -)- xO 
                                                      n F n G' 

So -it holds that X0 = x0 = x0. By Lemma 0.2 in Chapter 0 we can suppose                F G 

without loss of generarity that bn is defined by F (1/n)9 and hence b n t x' 

as n For any x sufficiently near xo(x < x'), there exists an n such 

that b < x < b Then we have 

              1 - G(b n+l 1 G(x) 1 - G(b n 

               1 - F(b n 1 F(x) 1 - F(b n+1 

By (3.14) and (3.15), taking the limits of above inequalities, we have 

(3.13). Q.E.D. 

     REMARK 3.1. Theorem 3.4 is an extension of Theorem 1.7 (c) with.a 

simpler proof. 

     REMARK 3.2. Given a distribution function G c D(A), from Theorems 

3.1 and .3.2 we can present the following procedure to find normalizing 

constants of G. We first choose an appropriate simple distribution function 

F such that (3.13) holds for some B, seek b n which satisfy (3.2) and then 

define a n = fa(b n) . The explicit form of the function fa is given by 

Theorem .1.3 (c). 

     The following two theorems determine the transformations..of the.normiliz-

ing constants induced by a transformations-of the underlying random variable. 

    THEOREM 3.5. Let a n and b n be normalizing constants of a distribution 

function F c D(A) with infinite endpoint. For x > 0, Let G(x) = F(r(x)). 
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 where r is a function which has-a P-varying derivative (-l < P < Then 

 G c D(A), and 

               Gn(. 
n X + 0 A(x) 

 where a n = a n r-1 (bn)/(P+l)b n and B n = r-l (b n 

     PROOF. By Theorem 1.4 (c) it holds that G c D(A) and g
a(t) 

 f a (r(t))t1(P+1)r(t), where fa and ga are auxiliary functions of F and G, 
.respectively . Then we can suppose without loss of generality that B 

n = 

 Ti (1/n) and a n ga(on) (see Theorem 1.3 (b)). The inverse function r -1 

 of r is well determined, because r is continuous and strictly increasing. 

 Thus we have 0 n r-1 (b n ) and a n = a n r -1 (bn)/(P+l)bn' Q.E.D. 

     COROLLARY 3.2. Let F be a distribution function with infinite end-

point. For a > 0 and P > 0, we have 

                   I - F(t + xt 1-a /ap) 
-~- e -X as t - -

                   1 - F(t) 

if and onty if 1 - F((log X) 1/a ) is .- p-varying. 

      PROOF. It is clear from Theorems 1.6 and 3.5. 

     THEOREM 3.6. Let a 
n and 0 n be normatizing constants of a distribution 

function G c D(A) with infinite endpoint. Let F(x) = G(e X Then F e D(A) 

and 

             iz (a 
n x + b n A(x), 

where a = a a and b log 0 
         n n n n n 

     PROOF. By Theorem 1.4 (d) it holds that F c D(A) and f
a(t) ga(e t )e-t 

where f a and ga are auxiliary functions of F and G, respectively. We can 
suppose without loss of generality that 0 

n (1/n) and a n = ga(Sn) (see 
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Theorem 1.3 (b)). Then we have b n (1/n) = log ~ n and a n = fa(b n) 

  ga(Bn )exp(-b n) = a n/Bn' Q.E.D. 

     Now we show some simple sufficient conditions that a distribution 

function belongs to D(A) and determine the normalizing constants. 

     THEOREM 3.7. Let F be a distribution function. Suppose that there 

exist a > 0, a > 0, c > 0 and b c R such that 

                   1 - F(x) 
        lim - = 1. 

                       X-*.Co b _cxa                     ax e 

For c R and a > 0, let F, .(x) = F((x-p)1a.). Then F* c D(A) and. 

               "'(
a*x + b*) - A(x), 

                    n n 

                                                         1/a 
where a* = ca , b* = ab + ji, a = ((log n)/c) /ac and b ((log n)/c) 

       n n n n n n 
                                                    1-1/a 

+ (WaXlog (log n) - log c) + log a)/Mlog n)/c) ac). 

     PROOF. Consider the following distribution functions 

                                -x 
                G(,(x) = I - e x > 0 

and 

                                b -cxc'                 G(x) = 1 - ax e x > X1, 

where x, is a constant such that G(x), G'(x) > 0 for all x > xj. Then Go 

c D(A). By Theorem 3.5 and Theorem 1.4 (b). we have G c D(A). It is easy 

to show that 

                nil - G(b 
n ) I -'- 1 as n -

                                                               1-a B
y Corollary 3.2 , Lemma 0.2 in Chapter 0 and a -- b. /ac, we have 

                                                n n 

              G'n(a 
n x + b n A(x). 

Thus, by Theorem, 1. 7 (c) - we have 
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               F"'z (a x+b ) - A (X) 

Some obvious calculation gives the statement of the theorem. Q.E.D. 

     THEOREM 3.8. Suppose a distribution function F has a density f such 

that 

                   f(x) 
             lim 

                      X-~-00 a+b-1 -cx                      aacx 
e 

where a > 0, a > 0, c > 0 and b c R. For ji c R and a > 0, Let F,(X) 

F((x-p)la). Then the same conclusion as that of Theorem 3.7 holds . 

     PROOF. Consider the same distribut .ion,function G as in the proof of 

Theorem 3.7. Let g(x) = G'(X), then by the assumption it holds that 

lim f(x)lg(x) = 1. Thus, by Lemma 0.1 in Chapter 0, we have 
X-0-00 

                                                                    00 

              1 - F(x) f
x f(s)ds         lim - = lim 

                         X-1-00 b -cxc' x-1.00 00              ax e fx g(s)ds 
By Theorem 3.7 we have the conclusion. Q.E.D. 

    THEOREM 3.9. Let G.and G* be distribution functions such that G(x) 

F(log x) and G*(x) = F*(log x) for x > 0, where F and F* are distribution 

functions satisfying the conditions in Theorem 3.7. If a > 1, then 

G* c D(A) and 

n 

              G*(a*x + 0*) - A(x), 
                   n n 

where a* = a*o*, 0* = exp(b*) and a*, b* are the same normalizing constants 
       n n n n n n n 

as that of Theorem 3.7. 

     PROOF. Let H(x) = 1 - expl- c(log x)c'l, for x > 1. By Theorem 1.4 (a) 

we have H c D(A). Thus by Theorem 1.4 .(b) we have G e D(A). By the 

relation G*(x) = G(e-pla x 1/0 ) and Theorem 1.4 (c) we have G* c D(A). 

                               22 -



 Therefore, by Theorems 3.6 and 3.7 we have the conclusion. Q.E.D. 

      The following theorem can be proved similarly as Theorem 3.8. 

     THEOREM 3.10. Let G and G* be distribution functions . Suppose G(x) 

F(log x) and G*(x)= F*(log x) for x > 0, where F and F* are distribution 

functions satisfying the conditions in Theorem 3.8. If a > 1, then G* E D(A) 

and the same conclusion as that of Theorem 3.9 holds. 

      REMARK 3.3. (a) Theorems 3.7-3.10 are very simple and the conditions 

 are convenient to verify. In ,the next section we will see that many distri-

bution functions which are used in applied statistics satisfy these conditions . 

(b) Note that a > 0 in Theorems 3.7 and 3.8, whereas a > 1 in Theorems 3.9 

and 3.10. 

(c) It is well-known that b 
n is given by P-1 (1/n) (see Theorem 1.3 (b)). 

But with some distributions its exact values can not be expressed by sample 

size n in simple forms as in Theorems 3.7-3.10.
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1.4. Examples 

      We shall apply the results of Section 1.3 to some specific distribution 

functions which are often used in applied statistics. 

     EXAMPLE 4.1 (Inverse Gaussian distribution). Suppose a distribution 

function F has a density function 

                          1/2 2 

                                3 exp 2 X > 0 

               f(x) 21rrX 2p X 

                                0 otherwise, 

where p>Oand X>O. Then by Theorem 3.8 we have F e D(A) and 

             F"'(a 
n X + b n A(x), 

2 where a 
n = 2p A and 

b n = p 2 ( 2log n - 3log(log n) + log(X 2 /(47rp 2 )) + 2X/pl/X. 

    ,EXAMPLE 4.2 (Gamma distribution and Mixture of gamma distributions). 

(I) Suppose a distribution function G has a density function 

              g(x) = xP-le-xl r(p), 

where P > 0 and r(e) is the gamma function. For p c R and a > 0 , let 

G,(x) = Wx-p)la). Then by Theorem 3.8 we have G* c D(A) and 

n 

               G*(a*x + b*) -,- A(x), 
                   n n 

where a* = ca = a, b* = ab + p , a = 1 and 
        n n n n n 

b n = log [n/r(p)] + (p-l)log (log n). 

     Note that Gumbel's approximation 

            U 2 = log [n/r(p)] + (p-l)log log [n/r(p)] 

of infjx: 1 - GW < 1/nj (see Gumbel [11] , p.145) is not an exact 

normalizing constant. 
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 (II) Suppose F is a distribution function such that 

              F(x) = pG((x-p Va 1 ) + qG((x-p 2 Va 2 ), 

where pl, P2 E R, all a 2 > 0, p, q > 0 and p + q = 1. The density function 

of F is 

             f(x) = pg((X-P Va 1 Va 1 + qg((x-p 2 Va 2 Va 2* 

(1) If a 1 = a 2 = a, then 

             f(x)11g(x1a)1a1 - pe Pi + qe 2 as x -

Hence, by Theorem 3.8 we have F c D(A) and 

              ~'(al + bl) - Mx) , 

X 

                    n n 

                 1 P 1 /a P2 /a where a n = a and b n = a(b n + log (pe + qe 

(2) If a 1 < a 21 then 

             f(x)11qg((x-P 2 Va 2 Va 2 as x 

Hence, by Theorem 3.8 we have F e D(A) and 

             ~n(a 2 X + b 2 A(x), 
                    n n 

      2 2 
where a 

n = a 2 and b n = a 2 (b n + log q) + p 2* 

     EXAMPLE 4.3 (Normal distribution, Lognormal distribution and Mixture 

of normal distributions). 

(I) Suppose G is a distribution function such that 

               GW = Clog x) for x > 0, 

where 0 is a standard normal distribution function. For p c R and a > 0 

let O*W Wx-p)/a) and G*(x) = O*(log x) for x > 0. Then by Theorem 3.8 

we have 0* e D(A) and 

n 

               0*(a*x + b*) - A(x), 
                    n n 
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                                  1/2  where a* = cra b* = ab + p, a (2 log n)- and 
         n no n n n 

              1/2 _ 1/2 b 
n = (2 log n) (log (log n) + log 4TO/ 2(2 log n) 

      On the other hand, by Theorem 3.9 we have G * E D(A) and 

n 

               G* (a*x + B*) A (x) 
                    n n 

 where a* = a*~* and B* exp(b*). 
         n n n n n 

      Approaches presented in Galambos [7] (p.65 and p.67) and Singpurwalla 

 [21] to evaluate normalizing constants seem to be more complicated than ours. 

 It is hard to evaluate ~-l (1/n) and sometimes inadequate sequences (2 log n) 1/2 

 are claimed to be b 
n (for example see David [2], p.209). 

(II) Suppose F is a distribution function such that 

               F(x) = pb((x-p 1 Ua 1 ) + q-D((x-p 2 Ua 2 ), 

where pl, 112 E: R, alp a 2 > 0, p, q > 0 and p + q = 1. The density of 

F is 

              f (X) = P0 ( (X-11 /a 1 ) /Cy 1 + qo((x-P 2 Ua 2 /a 29 

where ~(x) (27r)-1/2 exp(- x 2 /2). 

(1) If a 1 a 2 = a and p 1 < P 21 then 

             f(x)11q0((x-P 2 )la)lal - 1 as x 

Hence by Theorem 3.8 we have F E D(A) and 

                (a 1 X + b 1 ) - A (x), 
                    n n 

where a n = aa n and b n =~ a (b n + a n log q) + 2' 

(2) If cr 1 < a 29 then 

             f(x)11q0((x-p 2 Va 2 Ua 2 1 as x 

Hence by Theorem 3.8 we have F E D(A) and 
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where
2 

a n

  F~'(a 2 x + b 2 A(X), 
       n n 

2 a 2 a 
n and b n a 2 (b n + a n log q) + 11 2
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CHAPTER 2 

ASYMPTOTIC THEORY OF EXTREME STATISTIC..- WJLTIVARIATE CASE 

2.1. Introduction 

     In this chapter, we establish some properties of multivariate extreme 

value distributions, and by using the results of Marshall and Olkin [14] 

(see Propositions 1.1 - 1.3) we extend some of the results given by Resnick 

[19] (see Theorem 1.7 in Section 1.1) to the multivariate case. We may 

use the same notations as in Marshall and Olkin [14]. 

k      For a , b, x e R , write ax + b to denote the vector 

                (a 1 X 1 + b 1, ... 'a kxk ' b k 

                                                    (1) (2) Basic arithmetical operations are always meant componentwise. Let X X 

... be a sequence of independent k-dimensional random vectors with common 

distribution function F and let 

             z (n) = max X W k.                i 
1<j .:Sn i 

            (n) (n) k (n) (n) If there exist a > 0, b c R n = 1, 2, (a > 0 means a i > 0, 

i = k) such that (Z (n)_ b (n) )/ a (n) converges in distribution to a 

random vector U with nondegenerate distribution function H (i.e., all uni-

variate marginals of H are nondegenerate), then F is said to be in the domain 

of attraction of H with the notation F e D(H) and H is said to be a multi-

variate extreme value distribution. The convergence in distribution is 

equivalent to the condition 

(1.1) lim F"'(a (n) x + b (n) H(x) for all x, 
                    n-co 

because multivariate extreme value distributions are continuous (see Theorem 

1.1). 

    Note that if (ZI(n)- b (n) V a (n) converges in distribution to U, then 
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 the ith component of (Z (n)_ b (n) V a (n) converges to the ith component of U 

 and thus normalizing constants la (n) 1, 1b (n) I can be determined from well-

 known univariate considerations, i = 19 ... , k. 

     For k > 1, let G be the joint distribution of (Y
,,y 21 ... P y k ) then 

G. denotes the joint distribution of (Y 
ivy I ... 9 y and - 11 1 2- m i i 2 m 

G. denotes the survival function of (Y fy ... y i.e., 
   1 2*** m ii i 22 9 i m 

                           (Y. ---,Yi P(Yi > Yi 'y > 
                   1 11 2- 1 1 i Yi 

where 1 < i 1 < i 2 < ... < i < k. Let 

                     0 = (xD 'XI                   G G 
k 

where x' is the endpoint of Gi, i k.       G. I 

      Now we summarize some multivariate results which are used in later 

sections. 

      We make extensive use of the following result (see Marshall and Olkin 

[14] and Theorem 5.3.1 of Galambos [7) ). 

     LEMMA 1.1. Equation (1.1) is equivalent .to 

             lim nil F(a (n) x + b (n) log H(x) 
                                  n-v-co 

for all x such that 0 < H(x) < 1. 

     It is well-known that the weak convergence of distributions implies the 

weak convergence of any finite-dimensional marginal distribution (for example 

see Billingsley [1], p.30). Thus Lemma 1.1 holds for any marginal distri-

bution of F. 

     Following results are seen in G alambos [7] (Chapter 5) . 

    THEOREM 1.1. Let H be an extreme value distribution . Then H is con-

tinuous, and its univariate marginats H i (i = 1, 2,--., k) belongs to one 

of -the types 0 al Ta and A. 
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    THEOREM 1.2. Equation (1.1) holds if and only if for each fixed 

(il3 i 2 i m I and for all x such that H(x) > 0, 

(1.2) lim nT. - - (a ~n)x. + b ~n), a (n)x. + b ~n)) 
                  n-co 1 2- m 11 1 1 1 71 1 m m m 

                                    h. . . (x- X                             11 1 1 2- 1 
m 71 1 i m 

are finite and the function 

k 
(1.3) H(x) = expf Z (-l)m h. (x 3 ... Ix. 

                            m=l 1 < i < < i < k ?1 1 m il 11 m 

is a nondegenerate distribution function. The actual limit distribution 

function of F`n(a (n) x + b (n) ) is the one given in (1.3). 

     COROLLARY 1.1. Assume that (Z (n)- b (n) )/ a (n) has a nondegenerate 

asumptotic distribution H(x). Then the components of (Z (n)_ b (n) V a (n) 

are asymptotically independent if and only if the limits in (1.2) are 

identically zero for m 2. 

     The following results were proved by Marshall and Olkin [14]. 

     PROPOSITION 1.1. Let H be an extreme value distribution such that 

           > 0 ., i k. Then F e D(H) if and only if 

a 

                   1 F(tx 11~2 Wx 23 *** 3~k WX k 
               lim - log H(x) 

                  t-*w 
- 1 - F l(t) 

for all x such that H(x) > 03 where (t) (t), i = 23 ... I k. 

    PROPOSITION 1.2. Let H be an extreme value distribution such that 

.H. T P a > 0, i k. Then F e D(H) if and only if x' c R k  11 a. i F 

and 

               lim 1 Mtxi,~2 WX 21 ... 10k WX k ) + X0) - log H(x) 
            t+O 1 F (x* -t) 

                               1 F I 
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for aN x such that 

     PROPOSITION 1.3 

H A, i k 

             lim 

              t+ 0                 X~ 

for aN x such that

H (x) > 0, 

    Let H 

   Then 

    F(a(t

                                    

11 - 0 - ~ ) )  where (t) = XO
.- (F (X~                      F 
2. 1 

be an extreme vaLue distribution 

F c D(H) if and onty if 

)x + b(t))
- = - log 

a (t)

H(x) 

(Tl(t)le)

i =I

such

2,---, 

that

  1 -

>

 (t) 

0, where
  -1-
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2.2. Multivariate extreme value distributions 

      In this section we establish some properties of multivariate extreme 

value distributions. 

     THEOREM 2.1. A nondegenerate k-dimensional distribution function H is 

an extreme value distribution if and only if for all s > 0 there exist 

vectors A (s) > 0 and B (s) such that 

             s (s) (s) k (2.1) H (A x + B ) = H(x) for all X E R 

     PROOF. Sufficiency is obvious so that we shall prove necessity. If H 

is an extreme value distribution, then there exist a distribution function F 

and vectors a (n) and b (n) such that 

(2.2) lim Fn(a (n) x + b (n) H(x). 
                    n-co 

It follows from Lemma 1.1 that 

              lim nil - F(a (n) x + b (n) log H(x). 
                               n-*.co 

Hence for all s > 0 

            lim [ns]fl - F(a Qns]) x + b Qns]) log H(x), 
                n-w 

where [ns] is the greatest integer less than or equal to ns. Then by Lemma 1.1 

(2.3) lim F"(a Qnsj) x + b Qns]) Hl /s (x). 
                    n-co 

Hence by (2.2), (2.3) and Lemma 0.2 in Chapter 0 (which can easily be 

extended to the multivariate case, see also the proof of Theorem 5.2.1 of 

Galambos [7]), there exist vectors A (s) > 0 and B (s) such that 

             H'(A (s) x + B (s) H(x) 

for all x c R k Q.E.D. 
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      COROLLARY 2.1. Let H be an extreme value distribution. Then for any 

 t > 0, H t is an extreme value distribution. 

      COROLLARY 2.2. Let H be an extreme value distribution. Then for all 

 s > 0, there exists vectors A(s) > 0 and B(s) such that (2.1) holds, and if 

                              (s) 1/a 1 1/a k (s) (a) H 
i k, then A = (s 3...'s and B 0 

                            (s) k (s) (b) H i 13---, k, then A = (S '...'s and B 0 

(c) H A i= 1,--- .,k, then A(s) = 1 and B(s) = (log S'..-,log s), 

where > 0 ., i k. 

     EXAMPLE. (See Galambos [7], p.254.) The distribution function 

                 H(xl,x2,***,x k expl- exp[- min(xlx2,...,x k )II 

is an extreme value distribution (with H. = Ay i lv***v k), since for 

all s > 0 

                 Hs(x + log S, x + log s) H(x tx                  1 k k 

On the other hand, the distribution function 

             H(x,,x2 A(x 1 )A(x 2 )[1 + *(l-A(x 1 ))(1-A(x 2 ))/2] 

is not an extreme value distribution, since 

        H s (xl + log s'X 2 + log's) A(x 1 )A(x 2 )[l+(l-A 1/s (xi ))(1-A 1/s (X 2 ))/2]3 

                                  H(xi,x 2) 

     COROLLARY 2.3. (Lemma 5.4.1 of Galambos .[7].) Let H be an extreme 

value distribution and denote by D H (y) = H(H 1 1 (yl),--- .,H k 1 (yk))' Y (O'l) k 

its dependence function. Then D H satisfies for all s > 0 

            D s (y 1/8 D (y).              H H 
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     LEMMA 2.1. Let H be an extreme value distribution and D 
H be the depen-

dence function of H. if there exists a real number c (0,l) such that 

k (2.4) D H (y) = YlY2 ... Yk for all y c (c,l) 

then 

k                D
,U(Y) = YlY2 ... Yk for all y c (0,1) 

                       k k      PROOF. For any y E (0,1) , there exists an s >0 such that y (c,l) 

Hence by Corollary 2.3 and (2.4) 

             D (D (Y 1/s )) s = (Yl/s Y 1/s ... Y 1/s              H(Y) = H 1 2 k 

                          = Y IY2*'*Yk 

k for all y c (0,1) Q.E.D. 

     LEMMA 2.2. Let H be an extreme value distribution. Let 1 < i 1 < i 2 

< < i 
m < k, 1 < j 1 < j 2 < < j k-m < k and 

ji 1J"2-4 ... 'i ml n {jlyj2-' "' -jk -ml Then it holds that 

(2.5) H(xl,,x X > H. . (X Ix x il)                            2""'3 k 71 1 1 2*** i 
m il i 2'...' m 

                                                    x H. - (x Ix s***,x                                  0
102*' jk-m i 1 j2 ik-m 

k for all x c R 

     PROOF. Since H is an extreme value distribution, there exist a (n) > 0 

and b (n) such that 

            H n (a (n) x + b (n) H(x) 

(see Theorem 2.1). It is easily seen that 

            1 H(a (n) x + b (n) ) 

                         n) (n) (n)           < 1 H. (a~ x. + b. a. x. + b ~n) 
                       1 1 2- lb M 1 1 1 1 71 1 71 m z m S m 

          + 1 H. (a (.n) x. + b a (n) X. + b (n)                     J
l'72-'7k'-m .71 ji J 1 jk-m Jk-m ik-m 
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Thus, by Lemma-1-1 it.holds that-

                - log H(x) < - log H,, (x 'x                                   1 1 2- 
m 1 m 

                              - log H 
jlj2***jk -m (x 0 - 1 'x ik-m 

Hence we have (2.5). Q.E.D. 

     COROLLARY 2.4. (Theorem 5.4.1 of Galambos [7]). Let H be an extreme 

value distribution, then we have 

            H(x) > H 1 (x 1 )H 2 (x 2 H k (x k 

k for all x = (xi,x 2 x k ) E: R 

     Now we have the following results which characterize the multivariate 

extreme value distributions. 

     THEOREM 2.2. Let H be an extreme value distribution. Then it holds 

either 

            H(x) = H 1 (x 1 )H 2 (x 2 ) H k (x k ) for all x c R k 

or 

            H(x) > H 1 (x 1 )H 2 (x 2 ) H k (x k ) for all x 

such that 0 < H i (X i ) < 1, i = 1, 2,---, k. 

     This theorem is trivial from the next one. We only prove the latter. 

    THEOREM 2.3. Let H be an extreme value distribution. Then 

(2.6) H(x) = H 1 (X 1 )H 2 (x 2 ) ... H k (x k ) for all x c R k 

if and only if there exists p = (PlIP2 -'***'Pk) c R k such that 

0 < H i (pi) < 1, i 2,---, k and 

(2.7) H(p) H 1 (p,)H 2(P2) ... H k(Pk)-
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      PROOF. Necessity is obvious so that we shall prove sufficiency . 

First we show that 

(2.8) H ij (pi,pj) Hj(pj)H 
J (pj) for any i < j. 

By Corollary 2.4 it holds that 

            H ij (pigpj) > Hj(pj)H 
j (pj) for any i < j. 

Suppose (2.8) does not hold, i.e., if for example for 1 and j 2 

            H 12 (P VP2 ) > H l(P 1 )H 2 (P 
2), 

then by Lemma 2.2 and Corollary 2.4 we have 

               H(p l'p2"**'Pk ) > H 12 (P VP2 )H 
34... k(P 39***Ppk) 

                           > H 
1(pi )H 2(P2 )H 3(p3) ... H k(pk)' 

This contradicts (2.7), thus we have (2.8). By Lemma 1 .1 and (2.8) we have 

                        (n) (n) (n) (n) (2.9) lim n( 1 H ij (a i pi+ b i a 
i Pj+ b i                     n-co 

                  log H 
ij (pi,pj) log Hi(pi) log H J (pj), 

where a (n) and b (n) are normalizing constants of H
V i, j. It holds that 

            H ij (Xitx i fl- H i (X i )I + {1 - H (x 

                               - fl - H 
ij (x i x j )I 

Thus, by Lemma 1.1 and (2.9), we have 

                   (n) (n) (n) (n)               lim nT7 
ij (a 11 p il + b a i Pj+ b i 0 

                   n-co 

                                        (n) (n) From the definition of T1 and the inequalities a a > 0 it holds that 

         (n) (n) (n) (n) (n) (n) (n) (n)     T1 
ii (a i pi+ b i , a i P i + b i ) > Tj ij (a i X i + b i a i x + b 

for all (xi X > (Pi Pj),- Thus we have 

             lim nfl-ja(~)x.+ b (n) , a (n)X .+ b (n)) 0 
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for any i < j. So, by Theorem 1.2 we have 

               H(xi,x 29 ... 1 x k ) = H 1 (x 1 )H 2 (x 2 H k (x k 

Let c = max H.(p.), then by Lemma 2.1, (2.6) holds for all 
       J<i<k 11 1 

     REMARK. The proof of this theorem is based on the 

Corollary 1.1. 

     COROLLARY 2.5. (Theorems 2.2, 2.3 and 2.4 of Takahashi 

be an extreme vaZue distribution. 

(a) Suppose H 11 . = 0 a ., a i > 0, i = 1, 2, k. Then 
                      71 

             H(x) a (x 1 )0 a (x 2 a (x k for all x                      1 2 k 

if and only if H(1) 0 a (l)-D a (1) ... 0 (1). 

(b) Suppose H. = T a > 0, i = 1, 2, k. Then                                   a . i                      71 

             H(x) = T a (x I Py a (x 2 a (x k for all x 

if and only if H(-1) T 
a (-l)T a (-1) ... T a (-l). 

(c) Suppose H i = A, i 1, 2, --- , k. Then 

             H(x) A(x 1 )A(x 2 )---A(x k for all x c R k 

k if and only if H(O) A(O)

 for 

x c R 

idea

all 

k 

of

[ 271.)

E; R k

c R k

  E. D.

Let H
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2.3. Multivariate tail equivalence 

     In this section, by using Propositions 1.1 - 1.3 we extend Theorem 1.7 

in Section 1.1 to the multivariate case. 

     The following theorem is a k-dimensional version of Theorem 1.7 (a) in 

Section 1.1. 

     THEOREM 3.1. Let F and G be k-dimensional distribution functions. 

Suppose for normalizing vectors a (n) > 0, b (n), n > 1, Fn(a (n) x + b(n))- H(x), 

where H. > o, i k. Then 

         ,n (n) (n) 1/a 1 1/a k            G (a X + b H(Ax+ B)
, and A = (c ...,c C > 0 

if and only if B = 0 and 

                   1 - F(txl .9Yt)X2'---'~k WX k) 
(3.1) lim - = C 

               t-- 1 - G(tx,102 WX 2'---'~k WX k) 

for all x = (xl1X ... X ) such that 0 < H(x) < 1, where 0 (t) (t),                    2' k 

i k. 

                                                  (n) (n)      PROOF. If F c D(H), then it is known that we can take b 0, a 

 F (1/n) and a (n) (a (n) (a (n) 2,---, k, n > (see 

Appendix I). 

     Sufficiency. Since a (n) as n and (3.1), we have that for all x 

such that 0 < H(x) < 1, 

                    1 F(a(n) xll~ (a (n) )X ... ~ (a (n) )X                             1 2 1 2' k 1 k

Then by Lemma

 c = lim 

      n-co 

   = lim 

      n-co 

1. 1 and

    G(a (n) xll~ (a (n) )X ... (a (n) )X         1 2 1 2' k 1 k 

nil - F(a (n) X)) 

nil - G(a (n) x)l 

Corollary 2.2 we have 
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                          1/a 1/a         (n) 1/c 1 k      G'(
a x) H (X) = H(c x 1 'c x k H(Ax). 

     Necessity. From the univariate result (Theorem 1.7 (a) in Section 1.1), 

it holds that B 0, i =1,---,k. So we have B = 0. Since a(n)< a (n+l)-,.                                                              1 - 1 

for any sufficiently large t there exists an n e N such that a (n) < t < 1 

 (n+1) ... a 
1 . For any x = (x 1, 'x k such that 0 < H(x)< 1, we have 0 < x 

Moreover, 0i is non-decreasing, i 2,---, k. Therefore we have 

              1 F(a (n+l) x) 1 F(tx,102 (t)x 2'...'Ok (t)x k 

                   G(a(n) x) 1 G(txi'~2 (t)x 2'---'~k Wx k 

                             1 F(a(n)x) 

                               G(a (n+1) X) 

for all x such that 0 < H(x) < 1. Taking the limits of above inequalities, 

we have (3.1). Q.E.D. 

     If we consider the particular case F F than we have the fol-                                      kv 

lowing handy result. 

    COROLLARY 3.1. Let F and G be k-dimensional distribution functions. 

                                    (n) (n) Suppose F F 
k and that there exist a > 0, b , n > 1 such that 

,_n (a (n) x+ b(n)1) H(x), where H it 
a , i k, a > 0. Then 

             Gn(a (n) x + b (n) 1) H(Ax+B) and A = c 1/a 1, c > 0 

if and only if B = 0 and 

                   I - F(tx) 
             lim C for all x 

                   t-P-00 1 - G(tx) 

such that 0 < H(x) < 1. 
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      Next we establish a k-dimensional version of Theorem 1.7 (b) in 

 Section 1.1 which can be proved similarly to Theorem 3.1. 

     THEOREM 3.2. Let F and G be k-dimensionat distribution functions and 
 (n) (n)

, n(a (n) x + b (n)) a > 0, b n > 1 are normalizing vectors such that F' 

H(x), where H. = T a > o, i k. Then                         11, a i 

           Gn(a (n) x + b (n) H(Ax+B) and A 1'... ,c k), C > 0 

if and only if B 0, x' x* c R k and                        F x~ 

                    - F((tx
,102 (t)x 2'---'~k (t)x k ) + X')         lim - - = c 

               t+O - G((tx
l.,02 (t)x 2---'~k (t)x k ) + X') 

for all x = (x ...,x such that 0 < H(x) < 1, where x~ = x' i k.            1 k F
V                      --l T 

, k. and 0 (t) = x~ - F. (I (xl-t)),i = 2,---

     COROLLARY 3.2. Let F and G be k-dimensional distribution functions . 
                                    (n) (n) Suppose F F 

k and that there exist a > 03 b , n > 1 such that 
F n (a Wx + b(n) 1) - H(x), where H i = T a 3 i = 1,,o*., k. a > 0. Then 

            Gn(a (n) x + b (n) 1) H(Ax+B) and A = c-1/a 1, c > 0 

if and only if B = 0, 1 = xI xI e R, i k, and                       x~ - G. 

                   1 - F(tx + x'I) 
              lim c for all x 

               t+O 1 - G(tx + x'1) 

such that 0 < H(x) < 1.

Finally, we establish a k-dimensional version of Theorem 1. 7 (c)
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 in Section 1.1. 

    THEOREM 3.3. Let F and G be k-dimensionaL distribution functions, and 

,,(n) > 0. b(n), n > 1 are normatizing vectors such that F"(a(n)x + b(n)) 

H(x), where H i = A, i = 13---, k. Then 

(3.2) Gn(a(n)x + b(n)) H(Ax+B) and A > 03 B = bl 

if and onLy if A = 1, 0 x' x' and             x~ G 

(3.3) lim 1 - F(a(t)x + b(t)) = e b for aU x 
              ttX1                 1 1 - G(a(t)x + b(t)) 

such that 0 < H(x)'< 1, where x' = x' a W = P-l(T (t)1e) - T-1 P (t) and 

b i (t) = i = k. 1 F, i i 1 i 1 

     PROOF. If F e D(H), then we can suppose without loss of generality 

that 

           b (n) TlT (b (n) 

and 

           a (n) (T (b (n) )1e) (b (n) ), i k. 

(See Appendix II.) 

     Sufficiency. Since lim b (n) = X0 and 1b (n) I is an increasing sequence, 
                                 n-co 

by (3.3) we have 

                     I - F(a(b (n) )x + b(b (n) 
b                e = lim 

                 n-co 
1 - G(a(b (n) )x + b(b (n)                               1 1 

                     nil - F(a (n) x + b (n) 
                  = lim 

                   n-co nil - G(a (n) x + b(n) 

Hence by Lemma 1.1 and Corollary 2.2 we have 
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               G'(a (n) x + b (n) ) - H 1 . le b (x) = H(x+B), where B = bl. 

      Necessity. Consider the marginal distributions F
i, G and H. = A, i = I i 

      k, then by Theorem 1.7 (c) in Section 1 .1, we have A = 1 and xI = xI xI. 
                                                          F G 

 Proposition 1.3 implies 

                1 F(a(t)x + b(i)) 
 (3.4) lim log H(x) for all x such that 

               ttxo                  1 1 - F 
l(t) 

0 < H(x) < 1. Now we shall prove that for all x such that 0 < H(x) < 1 

                1 G(a(t)x + b(t)) 
(3.5) lim e-b log H(x) . 

                 ttxo 1 - F W                 1 1 

                                ,n (n) (n) e -b From (3.2) and A = 1, we have G (a X + b H (x) . So it holds 

              lim sil - G(a(s)x + 0(sM e-b log H(x) , 
                                   S-P-M 

where a (s) P-1 (11(es)) - P-1 (11s) and (s) (11s) , i= k. (This 

result can be proved similarly to Theorem 1.3 (e) in Section 1 .1.) Now, let 

s(t) = 1/(l - F 1 (t)), then a(s(t)) = a(t) and B(s(t)) = b (t) , thus we have 

(3.5). The relations (3.4) and (3.5) imply (3.3). Q.E.D. 

     COROLLARY 3.3. Let F and G be k-dimensional distribution functions . 

                                    (n) (n) Suppose F 
1 F k and that there exist a > 0, b , n > 1 such that 

Fn(a (n) x + b(n) 1) - H(x), where H i = A, i = k. Then 

             Gn(a (n) x + b (n) 1) H(Ax+B) and A > 0, B bl 

if and only if A = 1, X0 X0 X0, i k and                    F G . 

              lim 1 - F(a(t)x + t1) = e b for all x. 
             ttxo 1 - G(a(t)x + ti) 

such that 0 < H(x) < 1, where a(t) = P
,-l(P1(t)/e) - t. 
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2.4. Examples 

      In this section, some examples concerning the multivariate tail equiva-

lence are shown. 

      First we consider an application of the multivariate tail equivalence 

to the limit distribution of an extreme statistic from a bivariate exponen-

tial distribution. 

      L et (X1,X 2 ) be two-dimensional random vector, where X 
1 and X 2 are unit 

exponential variate. Let F(x,IX2) be their bivariate distribution function. 

We put 

                F(x,,x,) = P(X 1 > Xj'X 2 > X2.). 

Then 

(4.1) F(x,,x2) = 1 - e -XI - e _X 2 + F(x,,x 2 

     Versions of the following theorem have been obtaind by Galambos [7] and 

Marshall and Olkin [14]; it has a simple direct proof. 

    THEOREM 4.1. Let F be a distribution function defined in (4 .1). Then 

              F c D(H) and H(x,'X2) = A(x,)A(X2) 

if and onty if 

(4.2) lim ST(X1+ 109 83 X2 + 109 S) 0-
                               S-).00 

     PROOF. Let 

                   Fo(xl,x,) e_x" - e _X 2 + e _X_1 e _X 2 e -X-j )(1 - e 12), 

Then Fo e D(H). By Corollary 3.3, F e D(H) if and only if 

                    1 - F(x, + t, X2 + t) 
(4.3) lim - = 1 . 

                     1- F0(X1 + t' X2 + t) 

Then it is easy to see that (4.3) holds if and only if (4.2) holds. Q.E.D. 
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       EXAMPLE 4.1. (See Galambos [7], p.247.) The Morgenstern distribution 

                 P(X19X2) = e-x'-x'[1 + a(l - e'l)(1 - e '2)] , 

 where -1 < a < 1, satisfies (4.2). The Marshall-Olkin distribution 

                 P(XIPX2) = exp[- x, - X2 - X max(x,IX2)], where X > 0 , 

 satisfies (4.2). On the other hand, the Mardia's distribution 

                  P(XIPX2) = (e X, + e X2_ j)-l 

 does not satisfy (4.2). Therefore, the Morgenstern and the Marshall -Olkin 

 distribution belongs to D(H), but the Mardia's distribution does not belong 

2  to D(H) , where H(x,,x,) = A(x,)A(X2) for all (XIIX2) c R 

       Note that in general univariate tail equivalence does not imply the 

 multivariate tail equivalence as the following ,counter-example shows. . 

      EXAMPLE 4.2. Consider the following two distribution functions . 

              F(xi,x 2 ) = H(x 1 )H(x 2 ) and G(xi,x 2 ) = H(min(x
i,x 2 

 where H is an univariate extreme value distribution . 

(a) If H = 0., then 

         F""(nl/a X1,n 1/a X 2 F(xix 2 ) and G n (n 1/a X
in 1/a X 2 G(xix 2 

But it does not hold that 

                    1 - F(xiX 2 
                 lim - 1 for all x

i, X 2 > 0.                  t- - 1 - G(x
ix 2 

(b) If H T., then 

          177'(n-l/a Xl,n-1/a X 2 F(xi,x 2 ) and Gn(n-l/a X
iln-1/a X 2 G(xi,x 2 

But it does not hold that 

                   1 - F(txl,tx 2 ) 
                 lim - I for all x

i, X 2 < 0                t+O 1 - F(tx
l,,tx 2 ) 
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(c) If H =

and 

But it does

A, then 

   F", (x 

   G' (x 

not hold 

1
lim 

t-*.co

• log n, 

• log n, 

that 

- F(x +

logx 2

logx 2

t,x 2
= I

F(xi vx 2 )

G(xi rx 2 ) -

1 - G(x 1 + t,x 2 + t)

for all (x i9x 2 )
2
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Appendix I 

     By Lemma 0.2 in 

(A.1) lim 
                    n-co 

     The relation 

           lim 
               n-w 

holds. Hence by The 

Chapter 0 we have 

Appendix II 

     It is sufficien 

(A.2) Fn(a 

      (n) where a 
i 

     Since the relat 

              lim n 
                   n-co 

holds, we obtain 

            lim 
                   n-ao 

             lim 
                   n-oo 

Hence by Theorem 0.2

Chapter 0 it 

   (1/n)

  (a (n)

n 

   (a (n) 

Theorem 1.1 

e (A.1).

sufficient to 

   Fn(a (n) x         71 i 

      (b (n) 

the relation 

   lim nF (b

2: in

is

1,

sufficient to 

   i = 2,---,

lim nil -

 n-co 

in Section

 prove 

+ b (n) 

)1e)

 - A (x) 

   (b

(n) 
1

  (b (n) 

  (b (n) 

Chapter

n 

Vel n 

0- we

prove

F (a (n) )I  1 1 

1.1 and Theorem

I 

(n) 
1

e 

   -e 
e 

have

and b (n) i

-1

(A. 2)

0.1 (b) , (c) in

(b (n) i =29- --
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CHAPTER 3 

OUTLIER-PRONE AND OUTLIER-RESISTANT DISTRIBUTIONS 

3.1. Introduction 

     In this chapter we consider an application of the distribution theory 

of order statistics to a problem of outliers. 

     Let S 
n be a sample of size n of independent observations of random 

variables with common distribution function F. In the following we only 

consider distribution functions with endpoint at infinity. Let the variable 

values be denoted by Xif X 2' ... 9 X 
n and let the ordered values be 

x n19 X n2' *** , X nn . For a positive number k, Neyman and Scott [171 called 

X nn a k-outlier if X nn - x n n-1 > k(x n n-1 - x ni ). Let P(k,nIF) denote 

the probability that a sample S 
n of observations from a distribution F will 

contain a k-outlier. Let F be a family of distributions and let R(k,nIF) 

stand for the least upper bound of probabilities P(k,nIF) for F c F. 

Then Neyman and Scott [17] offered the following definitions of outlier-

proneness and outlier-resistance of a family of distributions. 

    DEFINITION 1.1. If n(k,nIF) < 1 then we shalt . say that the family F 

is (k,n)-outtier-resistant. Otherwise, that is, if n(k,nIF) we shall 

say that the family F is (k,n)-outlier-prone. 

    DEFINITION 1.2. If a family of distributions F is (k,n)-outlier-prone 

for all k > 0 and all n > 2, we shall say that F is outlier-prone completely. 

     REMARK 1.1. Green [9] showed that the family of distributions 

F is outlier-prone completely if and only if it is (k,n)-outlier-prone for 

some k > 0, n > 2. 
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      Neyman and Scott [17] showed the following lemmas . 

     LEMMA 1.1. If a family F is composed of distributions F(xla) that 

differ only in the scale parameter a > 0, then the probability P(k ,nla) 

  P(k,nji) and for any k > 0 and n > 2, the family F is outlier-resistant . 

     LEMMA 1.2. If a family F is composed of distributions F(x - ~) that 

differ only in their Location parameter, c, then P(k ,nj0 = P(k,njO) and 

for any k > 0 and n > 2, the family F is outlier-resistantt. 

     Neyman and Scott [17] mentioned the following: 

     The two lemmas imply that the family N(~ ,a 2 ) of normaldistributions 

2  (with mean C and variance a ) i s outlier-resistant. Also, perhaps un-

expectedly, the family C(E,a) of Cauchy distributions (centered at E and 

having scale parameter a) is outlier-resistant . 

     Neyman and Scott [17] proved the following two theorems . 

     THEOREM 1.1. The family of Gamma distributions is outZier-prone 

completely. 

     THEOREM 1.2. The family of lognormal distributions is outtier-prone 

completely. 

     In Section 3.2 we show that the family of Weibull distributions is 

outlier-prone completely. 

     On the other hand, Green [10] considered the ideas of outlier -

proneness and outlier-resistance of individual distributions , introducing 

the following definitions. 
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     DEFINITION 1.3. A distribution F will be said to be absolutely 

 outlier-resistant (notation F E IAORI) if, for all E > 0, we have 

                  P(X nn - X n n-1 > E) - 0 as n - -. 

     DEFINITION 1.4. A distribution F will be said to be relatively 

 outLier-resistant (notation F E fRORI) if, for all k > 1, we have 

                P(X nn / X n n-l > k) - 0 as n - -. 

     DEFINITION 1.5. A distribution F will be said to be absolutely 

 outLier-prone (notation F E IAOP}) if there exist constants E > 0, 

 6 > 0 and an integer n. such that 

                P(X nn - X n n-1 > E ) > 6 for all integers n > n, 

     DEFINITION 1.6. A distribution F will be said to be relatively 

 outtier-prone (notation F E IROPI) if there exist constants k > 1, 

 6 > 0 and an integer n. such that 

               P(X nn / X n n-1 > k) > 6 for all integers n > n,. 

      Green [10) showed the following theorem connecting the definitions 

 of outlier-proneness and outlier-resistance to the classical laws of large 

 numbers for maxima and relative stability for maxima given by Gnedenko [8]. 

     THEOREM 1.3. Let F be a distribution function, then 

(a) F c WRI iff for all e > 0 

              lim [1 - F(x + e)] [1 - F(x)] = 0; 
                                   X-P-Co 

(b) F e 1ROR) iff for all k > 

             lim [1 - F(kx)] / [I - F(x)] = 0; 
                                X-).00 
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(c) F e IAOPI iff there exist constants a > 0 and B > 0 such that 

             [1 - F(x + a)] / [1 - F(x)] > a for all finite x ; 

(d) F c IROPI iff there exist constants k > 1 and 6 > 0 such that 

            [1 - F(kx)ll [I - F(x)] > 6 for all finite x. 

      Green [101 also showed the following theorem. 

     THEOREM 1.4. Suppose the distribution function F has a density 

(a) If 

 (A) f(x + c)lf(x) - 0 as x for all c > 0, 

 -then F c IAORI. 

     If f has a monotone right tail and F e JAORJ, then (A) holds . 

(b) If 

 (B) f(kx)lf(x) - 0 as x for all k > 1, 

then F e MORI. 

     If f has a monotone right tail and F e JR0Rj, then (B) holds . 

(c) If there exist constants c > 0, 6 > 0, x. such that 

             f(x + e)lf(x) > 6 for all x > x., 

then F e IAOPI. 

(d) If there exist constants k > 1, 6 > 0, x, such that 

            f(kx)lf(x) > 6 for all x > x., 

then F c {ROPI.: 

      In Section 3.3 some properties of outlier-proneness and outlier-

resistance are established. In Section 3.4 examples of outlier-prone 

and outlier-resistant distributions are given. 
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3.2. Outlier properties of the family of Weibull distributions 

      For a > 0, a > 0 and C, we say that a random variable X follows 

a Weibull distribution if its distribution function is given by 

                        1 - exp 1-((x-~)Ia) a for x > C             W(X) = 1 0, otherwise. 
      Because of Lemmas 1.1 and 1.2, in investigating the outlier properties 

of the Weibull distributions, we may restrict ourselves to the case 0 

and a = 1. 

     The weibull distribution function, depending upon a shape parameter 

a > 0, will be denoted by W(xla). The corresponding density will be 

             W(XIOL) = la X a-l exp (-xa), for x > 0 
                             0, otherwise. 

     THEOREM 2.1. The famity of Weibutl distributions is outtier-prone 

comptetety. 

     PROOF. The proof of this theorem is based on the same device as that 

of Theorem 1.1 (see Neyman and Scott [17) (pp. 416-417)). 

     Let Q(k,nla) denote the probability that the largest of the n sample 

menbers will exceed the next largest by more than a factor k+l. Then the 

probability P(k,nla) of a k-outlier in a sample of n will satisfy 

             1 > P(k,nla) > Q(k,nla), 

where 

           Q(k,n1a) = n f 0-1 (x1(k+l)ja)w(xja)dx. 
0 For any k > 0 and any n > 2, it holds that 
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weThus

Q. E. D.

have

Q (k, n 11 a)

that 

 P(k, n I a)

     w 
-(x/(k+l)) a n-1  n f 0 (1 e ) a x 

 n fcoo (i e-y/(k+l) a ) n-1 e-ydy 

> n T (i e-yl(k+l ), ) n-1 e-ydy  fo 

4. e-T ) n as a - 0. 

> Q(k,nia) - 1 as a - 0.

a 

e -x dx

for any T > 0
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3.3. Properties of outlier-prone and outlier-resistant distributions 

      In this section we establish some properties of outlier-prone and 

outlier-resistant distributions defined by Green [10] (see Definitions 

1.3-1.6). 

     Following results are seen in Green [10]. 

     PROPOSITION 3.1. Let F be a distribution function. 

      (a) If F c IAOR}, then F E IROR}. 

      (b) If F E IRON, then F c IAOP}. 

      (c) JR0R} n IROP) = 

      (d) {AOR}(-)IAOPI = 

    PROPOSITION 3.2. Let F be a distribution function with infinite 

endpoint. Then F belongs to one of the following disjoint classes: 

     Class I = {AORI, Class II = 1R0R}n{A0R} c n {A0PJ', 

     Class M = {AOPln{ROR}, Class 1V = {A0P1n{R0RJc n JR0PJc, 

     Class V = IROPI Class VI = {R0RJ c n 1A0PJ c 

     Now we have the following theorem. 

    THEOREM 3.1. Let F and G be distribution functions and the function 

R R R defined by 

            R(x) = [1 - F(x)] [1 - G(x)] 

is P-varying at infinity, where p c R and R+= (0,-). Then 

      (a) F e JAOR} iff G e {AORJ.; 

      (b) F c 1ROR) iff G c {RORI; 

      (c) F c {AOP) iff G c JAOPJ; 

      (d) F c IROPI iff G e {ROP). 
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       PROOF. By assumption of R(x) , we have 

 (3.1) lim R(x + e)IR(x) = 1 for all E > 0 , 

 and 

 (3.2) lim R(kx)IR(x) = k P for all k > 1 . 
                                     X-)-CO 

   By Theorem 0.1 (a) in Chapter 0 , it is easy to show (3.1).) 

(a) Suppose G e JAOR I - By Theorem 1 - 3 . (a) , f or all E > 0 

              [1 - G(x + E)]/[l - G(x)] 0 as x 

 Thus, by (3.1), for all c > 0 

               1 F(x + E) R(x + E) 1 G(x + E) 
                                                             0 as x 

                   F(x) R(x) 1 - G(x) 

 Therefore, by Theorem 1 .3 (a) it holds that F E JAOR}. 

      Similarly, we can prove the converse . 

(b) The proof is analogous to that of part (a). 

(c) Suppose G e {AOPI. By Theorem 1.3 (c) there exist a > 0 and > 0 

such that 

             [1 - G(x + $)]/[l G(x)] > a for all finite x. 

On the other hand, 

                  F(x + R(x + 6) 1 - G(x + 0) 

                   F(X) R(x), 1 - G(x) 

Thus, by (3.1) there exist x , c R such that 

              [1 - F(x + 0)]/[l - F(x)] > a/2 for all finite x > x0I 

Furthermore 

             1 F(x + 0) 
                             > 1 - F(x + a) > 1 - F(x

o+ a) > 0                 F(
x) 

for all x < x,. 
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 Let a'= minfa/2, 1 F(x,+B)l > 0, then it holds that 

               [1 F(x + 0] /[l - F(x)] > a' for all finite x. 

 Therefore, by Theorem 1.3 (c), it holds that F e fAOP}. 

       Similarly, we can prove the converse. 

(d) The proof is analogous to that of part (c). Q.E.D. 

     COROLLARY 3.1. Suppose F and G are distribution functions as in 

 Theorem 3.1, then F and G belong to the same class defined in Propo -

 sition 3.2. 

      REMARK 3.1. Let F and G be distribution functions such that 

 [1 - F(x)]I[l - G(x)]- c as x where 0 < c < -. Then F and G 

 belong to the same class. 

      Now let us consider the heaviness of the tails of distributions
, then 

 we have the following theorem. 

     THEOREM 3.2. Let F and G be distribution functions . 

(a) If F c fAOR} and G c WPI, then lim [1 - F(x)]I[l - G(x)] = 0. 

(b) If F c IRORI and G e IROPI, then lim [1 - F(x)ll[l - G(x)] = 0. 
                                                                       X-*00 

(c) If F c IAORI and G c IROPI, then lim [1 - F(x)]I[l - G(x)] = 0 . 
                                                                       X4-OD 

     PROOF. (a) Suppose F E IAORI and G e fAOP}, then by Theorem 1.3 

 (a) and (c), it holds that 

              lim [1 - F(x + c)]/[l - F(x)] for all .c > 0, 

and there exist a > 0 and 0 > 0 such that 

              [1 - G(x + 0)]/[l - G(x)] > a for all finite X. 

Thus there exists x. e R such that 
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               [1 - F(x + a) ]/[l - F(x)] < a/2 for all x > x,. 

 For sufficiently large x, there exists an n c N such that 

                 x, + nS < x < x, + (n+l)B. 

 Hence we have 

               1 - F(x) 1 F(x, + na) (a/2) n (1 - F(x,)) 

               1 - G(x) 1 G(x,+(n+l)~) a n+l (1 - G(x ,))) 

                        (1/2 )n 1 - F(x,) 0 as x 
                               a(l - G(x,)) 

 because n as x 

(b) The proof is analogous to that of part (a). 

(c) Using the relation IAOR}(--fROR} (see Proposition 3.1 (a)), the proof 

 trivial from (b). Q.E.D. 

      RENARK 3.2. This theorem shows a connection between heaviness of 

 tails and outlier properties.

is
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 3.4. RELATIONS BETWEEN THE OUTLIER PROPERTIES AND THE TYPES OF EXTREME 

 VALUE DISTRIBUTIONS 

       In this section we show some relations between the outlier pro
perties 

 and the types of extreme value distributions . 

      THEOREM 4.1. If F ED(O then F c(ROP} , i.e., F belongs to the class V. 

      PROOF. - Suppose F E D(O a ), then I - F(x) is -a -varying at infinity 

 (see Theorem 1.1 in Section.1.1). Thus, for any k > 1 

              lim [1 - F(kx)]I[l - F(x)] = k-a > 0 . 
                          X-*w 

 Hence there exists x, c R such that 

               [1 - F(kx)]I[l - F(x)) > k-a /2 > 0 for all finite x > X0. 

 Moreover 

             [1 - F(kx)ll[l - F(x)] > 1 - F(kx) 

                                 > I - F(kxo) > 0 for all x < x ,. 

Thus, let 6 = minfk-a /2 , 1 - F(kx,)} > 0, then 

             [1 - F(kx)]I[l - F(x)] ~~ 6 for all finite x. 

Hence, by Theorem 1.3 (d) , we have F c IROP). Q.E.D. 

     EXAMPLE 4.1. For a > 0 and c > 0 , let F be a distribution function 

such that 1 - F(x) %, cx-a for x > 1 . Then, by Theorem 4.1 we have 

F c IROPI. 

    THEOREM 4.2. If F E D(A) , then F e IRORI. 

     PROOF. Suppose F c D(A) , then it is well-known that F is relative 

stable (Gnedenko [8]) , i.e., F satisfies the condition (b) in Theorem 1 .3. 

Thus we have the conclusion . Q.E.D. 
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     EXAMPLE 4.2. For a > 0 , c > 0, a > 0 and b E R, let f be a density 

such that f(x) ~, ax b e-Cx and the corresponding distribution function i
s 

F. Then by Theorem 3.8 in Section 1 .3, it holds that F E D(A). Thus we 

have F c IRORJ. 

     By Theorem 1.4 it is easy to see that F belongs to the class I if 

a > 1, and to the class III if a < 1.
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CHAPTER 4 

ORDER STATISTICS IN SEQUENTIAL LIFE TESTING AND NON-REGULAR ESTIMATION 

4.1. Introduction 

      In this chapter we deal with the applications of the order statistics 

in life testing problem and non-regular estimation problem . 

     Padgett and wei [18] considered the following life testing problem 

where the test is terminated by time t,. Let n independent items be put on 

test at the outset, and when an item fails, it is not replaced . Suppose 

that the distribution function of the life time of each item is F 
6 (t) and 

the corresponding density is f
, (t). Also, it is assumed that F (t) is 

stochastically nondecreasing in 0, i.e., F (t) > F (t), if 61 < e 21 t > 0'                                                            e I - e2 

The hypotheses which were considered are 

                 HO: 6 > eo versus HI: 6 < 61 

where 6, < 00. 

     Padgett and Wei [18] proposed and analyzed a one-sided sequential 

procedure for testing (1.1) based on the random function X 
n (t), which 

represents the number of failures among the n items before or at time 

t < t'. They explained several advantages of using X 
n (t) as the test 

statistic. Their procedure allows a quick rejection of H. when H, is 

true. 

     In Section 4.2 we improve Lemma 1 and Theorem 1 of Padgett and Wei 

[18], and derive the average sampling time. In Section 4.3 we propose 

and analyze a sequential procedure which allows a quick acceptance of H
. 

when H. is true. In Appendix we prove the lemmas in Section 4 .3. 
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      Weiss and Wolfowitz [31] developed the following estimation theory . 

 For each positive integer n let X(n) denote the (finite) vector of random 

 variables of which the estimator is to be a function . ( X(n) need not 

 have n components, nor need its components be independently or identically 

 distributed.) Let K 
n (xj 6) be -the density of X(n) at the point x with 

respect to a a-finite measure p 
n when e is the value of the parameter. 

 The latter is a point of the known open set 0 . An estimator (of 6) is a 

 Borel measurable function of X(n) with values in G. We assume, for the 

 sake of simplicity, that 0 is a subset of the real line . 

      For each n let k(n) be a normalizing factor for the family K 
n 

Let R be a bounded, Borel measurable subset of the real line . A maximum 

probability estimator (m.p.e.) with respect to R is one which maximizes , 

with respect to d, 

          f K n (X(n)le)de 
the integral being over the set Id - R/k(n)) . (For simplicity we assume 

that there is a unique maximum.) 

     Let h > 0 be any number. We shall say that a sequence 18 
n I is in H(h) 

(for a special point which below will always be e,), if Ik(n)(6 
n - 601 < h 

for n = 1, 2, 

     Weiss and Wolfowitz [31] proved the following theorem . 

     THEOREM I.I. Let M be an m.p.e. with respect to R such that: n 

For any h > 0 and any sequence 10 
n I in H(h) we have 

              lim P fk(n)(M - e ) c RI = a(60) J, say .                      6 n n 
                n-w n 

Let c and 6 be arbitrary but positive . For h sufficientLy targe we have, 

for any sequence 10 n I in H(h), 

            lim P flk(n)(M - 0 )1 < 6hi > 1 - c 
                    0 n n 

                      n-co n 

                                      - 60



Let" T 
n be any (competing) estimator such that for any h > 0 and any sequence 

16 n } in H(h) we have 

             lim [P . fk(n)(T 
n 6 n ) E R1 - P eo fk(n)(T n R}] = 0.                              n-+co n 

Then 

              lim P 6
0 fk(n)(T n 60) E R} < a(e,). 

                             n-+co 

     Weiss and Wolfowitz [311 also showed that a function of extreme order 

statistic is a m.p.e. in some non-regular case where distributions 
are 

concentrated on finite intervals . 

      In Section 4.4 in order to compare two sequences of m.p.e.'s more 

precisely, we introduce a notion of the second order efficiency which 

we apply to some non-regular estimation problems .
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 4.2. A sequential test in time truncated life testing
, I 

      To test the hypotheses (1.1) Padgett and Wei [18] defined the following 

 stopping rule: Let T = infit > 0: X 
n (t) > at + b } and given stop 

 testing at time min(t,,T) and reject HO if and only if T < t,. We consider 

 the same stopping rule. The following lemma is an extension of Lemma 1 of 

Padgett and Wei [18]. 

     LEMMA 2.1. Let n items be put on test at the outset . ALso, Let the 

distribution function of the life times of these n items be F(t) and the 

corresponding density be f(t). Then the probability that the path X 
n (t) Lies 

entirely below the line y at+ b (a > 0, b > 0) for all t < u , say 

P( X n (t) < at + b, for all t < u), is 

n 

              Z (,!)( n (u)-(T(u)) n-I 
             Z=O I h I 

where T(u) 1- F(u), ho
o (u) = 1, h = -bla, for u > IT + h 

                     1+1 
+1 1+1 

              h 01 (u) = Z h C. hpi (u), and 0 otherwise, 

                                            i-k                    = (F( F(kT + h)) 1(j -k)! , < k < j, T= 1/a,              hpk 

                C-7 C < r < j-1,             h r h r 

                       j-2 
                C-7 F C-1 - (j-l)T + h), j < 1+1 ,                  h 'h 1, h P 

              h C 1 and the empty summation is zero. 

     REMARK 2.1. If b = 0 then we have the same result of Lemma 1 of Padgett 

and Wei [18]. This lemma is more useful to prove Theorems 2 .1 and 2.2 than 

Lemma 1 of [18) is. 
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      REMARK 2.2. The proof is the same as that of Lemma 1 of Padgett and 

 Wei [18] with jT replaced by jT + h , so we omit it. 

      Using this result, we have the following theorem for the distributi
on 

of T. 

     THEOREM 2.1. 

               H (S) P (T < s) = 1 - P 
6 (T > s) 

                      1 P a (X 
n (t) < at + b, for all t < s) 

                               n n-L 
n 

                          I )-(I!) h 0 L (s)(F 6 (s))                                Z=0 

for 0 < s, where 

             F 1 F 

h 0 1 (s) is defined as h 0 L in Lemma 2.1 except F(-) is replaced by F 

     REMARK 2.3. This expression for H 
6 is simpler than that of Theorem I 

of Padgett and Wei [18]. Although both expressions are identical
, it is 

difficult to derive directly the one from the other by simple manipulati
on. 

    As in Padgett and Wei [181, the derivative h 
0 (s) of H 6 (s) at s(< t,) 

exists except for those points t such that at + b is integer . However the 

probability of having failures exactly at those points is zero . Therefore, 

we represent the average sampling time of the test procedure as 

                 t' 0 
            f sh 6 Wds + t~P e (T > t") ft sH 6 Idsl + t.[l - H 6 (t')).              0 0 

    Then we have the following theorem . 
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     THEOREM 2.2. The average sampZing time of the test procedure 

given by 
                        o 0 

           f sH 0 Ids} + t,P 6 (T > to) f [1 - H 6 (s)]ds 
             0 0 

                                  n to n-1 
                    Z (,!)( n (s)(T (s)) ds                  L=O I f 0 h L 

     PROOF. It is well-known that 

                 t 0 + to 

            f sH 0 Ids} = -to[l - H 6(to)] + [1 - H e (s)]ds 
             0 0 

(see for example Feller [4] (p.150)). Then , by using Theorem 2.1 we 

obtain the result. Q.E.D.

is

can
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,a

4.3. A sequential test in time truncated life testing, II 

     To test the hypotheses (1.1) we define the following stopping rule: 

For t, > 0, let T* = infIt: X (t) > n* or X (t) < at + b}, where a > o , b < o, 

n* is a positive integer (< n) and at,, + b n*- 1. Stop testing a*t time 

min(t,,T*), and reject H, if and only if X 
n (t) = n*. Following lemmas are 

needed to derive the distribution of T*. Proofs of those lemmas are shown 

in Appendix. 

     LEMKA 3.1. Let the distribution function of the life time be F(t) and 

the corresponding density be f(t). We put for i = 1, 2, ---, n , 

                    h T+h (i-2)T+h (i-l)T+h -
                                                          71 

           f J f 11 f(t )dt dt. 
                      0 t 1 t i -2 t i-l k=l k l- 71 

where T > 0 and h > 0. Then we have 

               i -
                      Z CS P 71 (0)               i 

k=O k k 

where 
                                                i-k 

                     IF((i-l-k)T + h) F(-)l 
                                                0 < k < < i,              k 

(i - U! 

              P k k 

           C~ C 0 < k < 
           k k 

                        -2 

               C-7 C-.7 P-'((i-j)T + h), 
              J k=O k k 

0             C 
0 1, 

and the empty summation is zero. 
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     LEMMA 3.2. Let n independent items be put on test at the outset . 

Also Let the distribution function of the Life times of these n items be 

F,(t) and the corresponding density be f 
6 (t). Then it holds that 

              P X (4-) > at + b, for aLL t < u 

n 

                 [au+bl 
               1 Z (1 - F (iT+h)) n-i P.-O. for u such that [au+b] < n ,                      i =0 e n i i 

where a > 03 b < 0, h = -bla, T = 1/a, 
n P 0 = 1, 00 = 1, 

                    n P k n(n-1) ... (n-k+l), k = 13 2.,---., n, 

   is defined as in Lemma 3.1 except that F and f are replaced by F and 

f.3 re.spectively3 is the greatest integer function3 and the empty 

summation is zero. 

     IEMMA 3.3. Under the same assumptions of Lemma 3 .23 for u < t, we have 

             P 6 (at + b < X n W < n*, for all t < u 

                 n*-l 
n n-j i Z-1 j-i              Z ( 
i )(F W) fFe(u) - Z (F (u) Fe (iT+h)) P i'Oi 11                j =Z i=O 

where I = [au+bl+l and 1 - F 
e(.). 

     By using these lemmas, we have the following theorems . 

    THEOREM 3.1. 

              H*(s) P (T* < s) = 1 - P (T* > s) 

                                n*-i n n-j                           Z ( . )(F 6(s)) 
                      j=[as+b]+l 

                    j [as+b] j-i 
                 x(F (s) - Z (F (s) - F (iT+h)) - -P.-O for s < t. 

                             i=O j 

      and H*(s) for s > t, 

    PROOF. It is trivial from Lemma 3 .3. 
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     THEOREM 3.2. The O.C. function, L*(e), of this sequential procedure 

              L*(e) 1 - P X > at + b, for all t < to 

n 

                             n*-l n-i 
                       Z (1 F (i-r+h)) - 

n P i*~i                           i =O 

     PROOF. By using Lemma 3.2 it is easy to show. 

     Note that the derivative h*(s) of H*(s) at s(< to) exists except for 

those points t such that at+ b is an integer. However the probability of 

having failures exactly at those points is zero. Therefore the average 

sampling time of the test procedure is given by 

                 t 0 0 

            fo she(s)ds + toPe (T* > to) = fo 11 - H,(s)lds 
See Section 4.2. 

     Then we have the following theorem. 

    THEOREM 3.3. The average sampling time of the test procedure is 

                   to 

                    11 H*(s)lds              .10 6 
                 to n*-l n-j j [as+b] 

             f )(F e(s)) IF 6 (s) - Z (F e(s) 

0 

                 j=[as+bl+i i=O 

                                           j-i 
                             F (iT+h)) - P--~ Ids                                  e i 

11 i 

     PROOF. By using Theorem 3.1 we can obtain the result. 
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 4.4. Non-regular estimation problem 

      if 1z (1) 1 and U (2) } are two sequences of m.p.e.'s, then the asymptotic             n n 

risks of them are equivalent. To evaluate the relative performance of them 

for finite observations, we define second order efficiency . 

     DEFINITION 4.1. Suppose, 1Z (1) 1 and 1Z (2) 1 are sequences of m.p.e.'s 
                                      n n 

(of a parameter space) with risks 1B (1)(e)] and (2) W} , respec-
                                                n n 

tiveZy. If there exists 

n 

                                       (2) 

              SE(1,2;6) = lim SE 
n (1,2;6) = lim n                         n-oo n-- ~B(1)(e) 

                                                                

~ n 

                       > 1 for aLZ 6 c 0, 

and there exists at Zeast one ele 0, such that 

              SE(1,2;el) > 1, 

then we say U(l) I is more efficient than U (2) 1 in the sense of second 
               n n 

order. 

    REMARK 4.1. If SE(1,2;e) > 1 , then 6(l) (6) < ~ (2) (6) for sufficiently 
                                                n n 

large n. 

     Now we consider a non-regular estimation problem as follows . 

     Suppose X1,X 2'...' X 
n are independent real-valued random variables 

with a common distribution function F(xl6) whose density is f(xle) , where 

e is a real parameter. Suppose also that for any 6, e < A(6) (a known 

function of e), A'(6) = dA(e)lde is positive , 

              f(xle) = 0, X < 0 or x > AW 

           f(ele) = g(e) > 0, f(AWle) = h(e) > o 

and there exist g'(0) = f'(616), h'(e) = f'(A(e)16) and A"(e) . For detail 
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see Weiss and Wolfowitz [31] (pp. 46-48). In this case, by Corollary 2 .2 

in Section 1.2 n(min X i - 6) and n(6 - A-1 (max X are asymptotically 

exponentially distributed. 

     THEOREM 4.1. Suppose r is a positive constant and C(e) = g(e)-HOAI(e) 

          (1) (2) -1   0 . Then Z 
n = min X r1n and Z n = A (max X + r/n are m.p.e.'s 

with respect to R defined by 

(4.1) R = (-r, r) 

(see Weiss and Wolfowitz [31] (p.48)), and we have 

(4.2) SE(1,2;e) = expi 2r 2 [g'(e)+h(e)A 2( e)+h(0)A"(e)]}. 

     PROOF. From Taylor expansion, we have 

t 

                                  1 2 2 
            f(xle)dx g(e)(t-6) + -~*Wt-e) + o(l)(t-e)    f + 

6 as t - e+O. By 

             0 (i) (e) P 1n(Z 0 (-r, r)} 1, 2,                  n e 
n 

we have 

              0 (1) (e) = P In(min X. - r/n - 6) ~ (-r, r)l 
                 n e 71 

                       = P e Imin X - 6 > 2r/n} 

                       = P nf X - 0 > 2r/nl 
6 

                      = [1 - P 
e f X - 6 < 2r/n} ]n 

                   = [1 - 2rg(e)ln - f2r 2 9'(e)+o(1)1/ n 2] n 

                                         2r 2 91(6)+o(l)                       = fl - 2rg(e)/nl' 1 - 2 + I                                     n (1-2rg(e)ln)]. 
Similarly, we have 
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        (2) 2rh(e)A'(6) n 2r 2 [h'(6)A 2( e)+h(e)A';(6) 
         n n 

n 2 (1-2rh(6)AI(e)/n) 

Taking the ratio of the last two expressions and noting that C(e) = 0, 

we obtain (4.2). Q.E.D. 

     COROLLARY 4.2. Consider a simpLe case, 

            f(xI0) = f(x-e), 

              f(X) > 0 if a < x < b 

                       = 0 if x < a or x > b, 

where a and b are known constants and we assume that there exist f'(a) and 

f'(b). Suppose f(a) = f(b) = c > 0, then Z(1) = min X. - a - r1n and 

n 

 (2) z 
n = max X i- b + r1n are m.p.e.'s with respect to R defined in (4.1), 

and we have 

            SE(1,2;e) = exp {2r 2 (f'(a) + f(b))l 

independentLy of 6.
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Appendix 

      Proof of Lemma 3.1. For fixed i, define 

                               (i-,I*)T+h (i-l)T+h i 
                                       11 f(t )dt               i-j) f f k=i-j+1 k i-j+l 

                                      t. t 

where t 0 = 0. Then we have 

                            Z C-1 P,7 (t (A.1) ~~(t                  71 i-j k=O k k i-i 

The result of Lemma 3.1 is the special case of (A.1), i.e., 

             ~j (0) = z C,P,(O). 
                           k=O k k 

The proof of (A.1) is same as that of Lemma 1 of Padgett and Wei 

is omitted. Q.E.D. 

     Proof of Lemma 3.2. Let T 1 < T2 < ... < T 
n be the failure 

 Define 

              Q(U) P X n (t) > at + b, for all t < u 

                       P T. < T(i-l)+h, i = 1, 2, Rip 

where Z [au+b]+l. Then we have 

                     h T+h (1-1)T+h 
n-I Z           R, f f f jt(l-F~(tj)) H f e (t i )dt 1*** dt I 

                     0 t tz -1 i=l 
                                                    n-(1-1) 

                  R F 6 ((1-1)T+h) 
n P 1-1 

Therefore 

                                      Z-1 n-i 
            R, Q(u) Z (1-F 6 (iT+h)) - 

n P                                    i =O 

Q.E.D.

3
-dt -

   71

i,3

[ 18] and

times.

- 71 -



     Proof of Lemma 3.3. Suppose that there are exactly j (> L=[au+bl+l) 

failures before or at time u. Let T 1 < T 2 < ... < T 
J - be the failure times, 

where L < i < n*-1. Then, the conditional joint density of (TVT 2 ---,T 
J .) 

is j!nq= f (t )I(F (u))O. For fixed j,         Z' 1 e 6 

               at + b < X (t) < n*, for all t < u 

if and only if 

                T i < -r(i-1)+h, i = 1, L, T Z+1 < < T J - < u, 

and the probability of this event is 

                       j! h T+h (Z-1)T+h u U             (U) f 11 f (t )dt dt          mo f f f J                     F 0 t 1 t 

                        P h T+h (Z-1)T+h j-1 z 

                      f f f (F 0 W-F 6 (t 1 11 fe(ti)dt, ... dt                    F O(U) 0 t t 

Define S F (u)o (u), Then we have 

             S S 1-1 (F 6 W - F a M-1)T+h)) P 

so 

                                 1-1 j-i 
               S F Mo - Z (F W - F (i-r+h)) P.-O..                          6 

i=0 6 6 '7 -1, 7, 

Therefore, the probability of at+b < X n (t) < n*, for all t < u is give by 

                n*_1 
                 E ( n ) P ( T. < T(i-l)+h, i T < ... < T. < u 

               j=1 e 71 L+l 
                                 lexactly j failures before or at time u) 

                     X P 6 (exactly j failures before or at time u) 

             n*_1 n-j i 1-1 i-i 
                    )(F W) IF (u) - Z (F W-F (iT+h))-.P.-o I. 

             j=1 s=0 

Q.E.D. 
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