
Title AN INTELLIGENT CAI SYSTEM BASED ON LOGIC
PROGRAMMING

Author(s) 河合, 和久

Citation 大阪大学, 1986, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1582

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



AN INTELLIGENT

        LOGIC

CAI SYSTEM

PROGRAMMING

BASED ON

KAZUHISAKAWAI

February 1986

Graduate School

  Osaka

of Engineering

 UnÅ}versity

Science



                       ACKNOWLEDGEMENTS

     First and foremost, the author would like to express his

sincerest gratitude to Professor Jun'ichi Toyoda, this thesis

supervisor. Prof. Toyoda has had a great influence on what the

author accomplished in these yearsr and what he knows today. He

has been a constant source of invaluable advÅ}ce and encouragement

throughout the course of the research for this thesis.

     Special thanks are also due to Prof. T. Fujisawat Prof. T.

Kasami, Prof. K. Takashima, Prof. N. 1]okura and Prof. K. [Vorii

for their invaluable guidance through the course of author's

undergraduate and graduate studies.

     The author wishes to thank Prof. O. Kakusho of the InstÅ}tute

of Scientific and Industrial Research for his invaluable
suggestions and encouragements.

     The author wishes to acknowledge valuable discussions with

Assistant Prof. K. Uehara. He also escorted the author's first

steps in Prolog.

     The author is also gratefu! to Assistant Prof. R. Mizoguchi,

Assistant Prof. M. Yanagida, Assistant Prof. T. Yamaguchi and the

colleagues of ProC. Toyoda's laboratory and Prof. Kakusho's

laboratory, in particular, Mr. M. Ganke, Mr. H. Kinoh and Mr. Y.

Nakamura.

ii



                           ABSTRACT

       Kazuhisa Kawai, Graduate School of Osaka University

       February 1986
                  '       DoctoralThesis:l!Lt!tlx9giLl.lggp!tll entCAIESLsEggtmBasedg!tL
                '                       !t62atg tL!9glmpag

     The problems studied in this thesis are concerned wÅ}th

educational applications of the computer technology and, in

particular, centered on ICAI systems based on logic programming.

Educational applications of the computer technology are
classified into two categories according to the role of the

computer. First, a computer instructs the students as a human

teacher. ICAI systems are included in thÅ}s category. Second,

the student uses a computer as learning tools. One of the
typical systems of this category is LOGO which provides an
environment for learning the skills of problem-solving. The main

components of an ICAI system are the expertise, the student model

and tutoring strategies. The student model manages what the

student does and does not understand, and the performance of an

ICAI system depends largely on how well the student model
approximates the human student. We propose a new framework for

ICAI systems which uses inductive inference for constructing the

student model from the student's behavior. In the framework,

both the expertise and the student model are represented as
Prolog programs, which enables to express rneta-knowledge that is

the student's knowledge of how to use his knowledge. The
framework is also implemented in Prolog. SÅ}nce the constructÅ}on

of the student model is performed independently of the expertise,

                              iii



the framework is domain-independent. Therefore, ICAI systems for

any subject area can be built with the framework. Two actual

ICAI systems, for programming Å}n Prolog and for chemical reaction

equations, are constructed with the framework.

     For the purpose of acquiring programming skills, the
following two learning schemes are needed; to give the knowledge

for the syntax and basic techniques of the language and to let

the students practise programming in the language. These two

schemes correspond to two categories of educational applications

of the computer technology. From this point of view, we develop

a new ICAr system for programming in Prolog that has both
teaching aids and the learning environment. Teaching aids are

constructed with the framework for ICAI systems together wÅ}th the

domain-specific knowledge for the expertise of programming in

Prolog and for tutoring strategies. The learning environment has

a parser to diagnose the student's program and a visual Prolog

interpreter.

iv



                           CONTENTS

CHAPTER 1. INTRODUCTION ................................

CHAP[DER 2. A FRAMEWORK FOR ICAI SYSTEMS ................

  2.1 Outline of the Framework ..........................

  2.2 Knowledge Representation Based on Logic Programming

  2.3 Student Modelling Based on Inductive Inference ...

    2.3.1 Related Works ................................

    2.3.2 Student ModeUing by MIS .........•.••..••••••

    2.3.3 Pedagogical Validity of Student ModeÅ}ling ....

    2.3.4 Meta-Knowledge ModellÅ}ng .....................

  2.4 Extraction of Misconception by PDS ...............

  2.5 Expertise Module .................................

  2.6 Tutoring Module and Tutoring Strategies ..........

  2.7 Interface Module ...............•.................

CHAPrliER 3. SPECIFIC SYSTEDvlS CONSTRUC[I]ED

          WITH THE FRAMEWORK ..........................

  3.1 An ICAI Systern for Programming in Prolog .........

    3.1.1 Basic Design ..........................e....e.

    3.1.2 Curriculum of Programming in Prolog ..........

      3.1.2.1 The Goal of Instruction ..................

      3.1.2.2 Curriculum of Programming in Prolog ......

    3.1.3 System Implernentation ...............e........

      3.1.3.1 Expertise for Programming in Prolog ......

      3.1.3.2 VPI for Learning Environment .............

      3.1.3.3 Tutoring Strategies ......................

      3.1.3.4 Interface Module .........................

                              v

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

'

.

.

.

.

.

.

.

e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

4

4

6

 9

 9

12

13

17

17

18

20

21

23

23

23

25

25

26

28

28

34

36

38



    3.1.4 Experiments .

  3.2 An ICAI Systern for

CHAPTER 4. CONCLUSIONS

APPENDIX: ExpertÅ}se for

BIBLIOGRAPHY ..........

ee--eeeeeeeeeeee-eeeeeeeee•ee--ee
 Chemical Reaction Equations ...

-eeeeeee-eeete-eeeeeeeee--eeeeee

Programming in Prolog (Listings)

eee-ee--eeeee-ee-eeeeeee---e-ee-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

41

47

53

55

72

vi



Fig.1O

Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

Fig.17

Fig.1

Fig.2

Fig.3

FÅ}g.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.11

                 LIST OF FIGURES

Diagram of the framework for ICAI systems .

Schematic representation of knowledge

for reaction of acid and salt ...........e.

Block Diagram of general ICAI systems .....

Examples of queries set to student ........

Illustration of expertise module ..........

Block diagram of the ICAI system for

programming in Prolog ...............e.....

The portion of proof tree displayed by VPI

Screen design ..••.e•.....•................

Example of a training session on unÅ}fication

Knowledge for unification in Prolog .......

Query examples by MIS .....................

Example of a training session

on programming technÅ}ques .................

Exarnple of VPI's output ...................

Diagram of knowledge hierarchy ............

Example of a training trace ...............

Contents of expertise .....................

Constructed student model .................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

e

e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

e

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

vii

 5

 8

11

16

19

24

35

40

42

43

44

45

46

48

49

50

51



Table

Table

.

.

1

2

Curriculum of

Commands and

  LIST OF TABLES

 the ICA! system

their functions .

.

.

.

.

.

e

.

.

.

.

.

.

.

.

.

.

e

.

.

e

.

.

.

.

e

.

.

.

.

.

e

.

e

.

e

.

.

.

.

.

27

39

Vl11



                           CHAPTER 1

                          INTRODUCTION

     Educational applications of the computer technology are

classified into two categories according to the role of the

computer. Firstr a computer instructs the students as a human

teacher. Electronic page-turners, frame-oriented CAI (Computer-

Assisted InstructÅ}on) systems and ICAI (Intelligent CAI) systems

are included in this category [1][2]. Second, the student uses a

computer as learning tools. One of the typical systems of this

category is LOGO [3] which provides an environment for learning

the skills of problem-solving. Systems using games and
simulations as learning tools are also classified into this
category [1].

     The main components of an ICAI system are the expertise, the

student model and tutoring strategies. The student model manages

what the student does and does not understand, and the
performance of an ICAI system depends largely on how well the

student model approximates the human student. We propose a new

framework for ICAI systems which uses inductive inference for

constructing the student model from the student's behavior. In

the framework, both the expertise and the student model are

represented as Prolog programs, which enables to express meta-

knowledge that is the student's knowledge of how to use his

knowledge. The framework is also implemented in Prolog. Since

the construction of the student model is performed independently

of the expertise, the framework is domain-independent.
Therefore, ICAI systems for any subject area can be built with

the framework. Two actual ICAI systems, for programming in

                                1



Prolog and for chemical reaction equations, are constructed with

the framework.

     For the purpose of acquiring programming skills, the
following two learning schemes are needed; to give the knowledge

for the syntax and basic techniques of the language and to let

the students practÅ}se programmÅ}ng in the language. These two

schemes correspond to two categories of educational applications

of the computer technology. In this thesÅ}s, they are called the

interactive teaching system and the environmental learning system

respectively. From this point of view, we develop a new ICAI

system for programming in Prolog that has both teaching aids and

the learning environment. Teaching aids are constructed with the

framework for ICAI systems together with the domaÅ}n-specific

knowledge for the expertise of programming in Prolog and for

tutoring strategies. The learning environment has a parser to

diagnose the student's program and a visual Prolog interpreter.

     In chapter 2 we describe a framework for ICAI systems based

on logic programming. In the framework, student modelling can be

considered as a process of inducing the whole understandings frorn

the student's behavior. Hence, it is possible to model any kind

of the student's understandings using a general inductive
inference on the model representatÅ}on language Prolog.

     In chapter 3 we present two specific ICAI systems, for

programming in Prolog and for chemical reaction equations,
constructed with the framework. These applications demonstrate

the domain-independency of the framework. In order to construct

an specific ICAI system on the framework, three kinds of the

domain-specific knowledge are needed; the expertiser tutoring

                                2



strategÅ}es, and the knowledge for interface. In the chapter,

three kinds of the knowledge for each ICAI system are described

and experiments of them are mentioned.

     Chapter 4 is the closing chapter, in which we summarize the

content of this thesis and point out the way to future research.

3



                            CHAPTER 2
                                              '                           '                                    .t                  A FRAMEWORK FOR ICAI SYSTEMS
                       '                                 '                   tt tt tt
2.1 Outline of the Framework

     The overall configuration of the framework for ICAI systems

is .shown in Fig.1. The expertise module gives problems and

comments to the student one by one. The student's responses are

evaluated by the expertise and used to construct the student
model. Shapiro's inductive inference algorithm called MIS (Model

Inference System) [4], which synthesÅ}zes a Prolog program from

the given facts, is applied to build the student model from the

student's behavior. In modelling stage, the tutoring module

chooses the next problem or comment to be presented. When the

model construction is completed, the student's misconceptions are

extracted from the student model using PDS {Program Diagnosis

System) which is also developed by Shapiro [4]. The student's

misconceptions are identified as bugs in the Prolog program

representing the student model. The identified misconceptions

are sent to the tutoring rnodule. The tutoring module chooses the

next problem or rernedial comment suited for the misconceptions

and indicates it to the expertise module.

     The framework is quite independent of the subject area. Any

specific ICAI system can be built based on the framework with the

specific expertise, tutoring strategies and the knowledge for

interface.

     Both the framework and its application systems are
implemented on the super mini-computer MV18000U in MV-Prolog.

The programming language MV-Prolog is an extended version of C-

Prolog on the VAX systems [5]. It has the useful interface

                                4



STUDENT'S
MISCONCEPTIONS

P D s

s'l'vbENT
MCjDEL EXPERTISE tql-- TUTORlNG

MOPULE

M I s

REFlNEMEN'f
OPERATOR-

lN'l'ERFA(LIE

STUOENT

DATAFLew

(rONTRt)L FLOW

Fig.1 Diagram of the framework for ICAI systems

5



including windows, menus and graphics.

2.2 Knowledge Representation Based on Logic Programming

     Prolog has the following distinctive features as a knowledge

representation language [6].

     1) Deductions on the representation are guaranteed correct.

     2) The derivation of'new facts from old ones are mechanized.

Therefore, Prolog is one of the most practical language for the

knowledge inforrnation processing. In particular, we look upon as

important that Prolog has an ability to represeRt the procedural

knowledge. Both the expertise and the student model are not

simple data-bases of course material, but include procedural

knowledge concerning causal or relational reasoningr deduction

and problem-solving. Prolog has a capability to represent both

data and procedure as a program. Prolog is also suitable for

inductive inference. Thexefore, we employ Prolog for
representing the expertise and the student rnodel.

     Some students can solve the basic problems but cannot solve

the applied problems. They have the specific knowledge but

cannot use it correctly. In order to model this type of
miseonceptions, the model (knowledge) representation must be

possible to manage the meta-knowledge which is the knowledge of

how to use the knowledge. For example, we consider a chemical

reaction of an acid and a salt.

     <1) soluble salt + acid

          -> precipitated salt + acid

     (2) salt with volatile acid + unvolatile acid

          -> salt with unvolatile acid + volatile acid

                               6



     Each of the above equations represents the basÅ}c knowledge.

Equation (1) represents that when a soluble salt reacts with an

acid, it forms a precipitated salt and an acid. Equation (2)

also represents that a salt with an unvolatile acid and a

volatile acid are formed by the reaction of a salt wÅ}th a
volatile acid and an unvolatile acid.

     Solving the applied problem of a chemical reaction of an

acid and a salt, the above basic knowledge must be used in
correct manner. An expert solves the applied problem using the

above basÅ}c knowledge as follows:

     i} if a precipitated salt Å}s formed, then apply the
        equation (1).

    ii} if a reactant is a precipitated salt and a product is a

        soluble salt, then apply the equation (1) in the opposite

        direction.

   Å}ii) if conditions of the equation (2) are satisfied, then

        equation (2) is applied.

This expertise is the meta-knowledge of the knowledge for
chemical reactions of salt precipitation (equation (1)) and for

chemical reactions of acid volatility (equation (2)).

     The frarnework incorporates a hierarchical structure in model

representation, so that the meta-knowledge is represented in the

meta-level world. Figure 2 illustrates the hierarchy of the

above exarnple. A meta-level world narned reaction of acid and

salt represents the meta-knowledge of the basic knowledge that is

represented a's two worlds named reaction of salt precipitation

and reaction of acid volatility. Figure 2-(b} shows the model of

a student who cannot solve applied problems. The student's

                               7



REACTIONOFACIDANDSALT

REACTION:-•REACTIONI.

REACTION:-
•not(inve.rt,ed-REA(IT1ON1).

REACTlON2.

REACTlONOFSALTPREClPITATION REACTlONOFAClDVOLATlLlTY

(REACT1ON1)

SeLUBLESALT+ACID
->PRECIPITATEDSALT+ACID

(REACT1ON2)

SALTWITHVOLATILEACID+UNVOLATtLEACID
->SALTWITHUNVOLATILEACID+VOLATILEACID

(a> Expert,ise

REACTIONOFACIDANDSALT

REAC.TlON:-REACTlON1.
REACITION:-•REACITION2.

REACTIONOFSALTPRECIPITATION REACTlONOFAC1DN,'OLATll,ITY

(REACTlON1)

SOLUBLESALT+•ACID
d• >PRECIPITATEDSALT+ACID

(REACITION2)

SALTWITHVOLATILEACIb+UNN•'CLATILEACID
->SALTWITHUNVOLATILEACID+VC)LATILEACiD

(b) Student model

Fig.2 Schematic representation

for reactÅ}on of acid and

of knowledge

salt

8



misconception of the incorrect use of knowledge is modelled as

the bug in the meta-level world.

     The hierarchical structure of the expertise contributes to

forming the hierarchy of the expertise that is usually
represented as chapters and sections. This hierarchical
structure gives the formalism of the expertise a modularity.

Moreover, restricting the range of student modelling within one

world makes the modelling efficient. The hierarchical structuxe

Å}s implemented by giving each predicate an extra argument
indicating the world which includes the predicate.

     A teacher can organize course material according to its

hierarchical structure, because no restriction on the
identification of the hierarchÅ}cal structure is imposed in the

framework. The important point is that the framework has a
facility of representing hierarchical material and that a teacher

can use it very easily.

2.3 Student Modelling Based on Inductive Inference

2.3.1 Related Works

     The major components of an ICAI system are following three

modules [2]:

     1) Expertise module; this module has the knowledge of the

subject matter, and use it to generate problems, to evaluate
student's replies and to reply to questions from the student.

     2) Student model module; this module generates the student

mode! which manages what each student does or does not
understand, and how he obtains the solution.

     3) Tutoring module; according to the student model, this

                               9



module chooses the next problem or the remedial comment, and

instructs them to the expertise rnodule. Alsor this module

controls overall system behavior.

     Figure 3 illustrates the three components and the mutual

relations. Since the system performance depends on how closely

the student model approximates the student's status, the student

model is considered to be the most irnportant one. In partÅ}cular,

what kind of student's misconceptions the student model can

manage determines the educational effect. Although a student's

mistake Å}s either a wrong solution or a missing solutionr the

student's misconceptions that are the sources of the mistake are

dÅ}vided into three categories:

     1) A lack of knowledge; a student does not have a specific

knowledge of course material. He, for example, does not know the

capital of Brazil.

     2) The incorrect knowledge; a student has the incorrect

knowledge. For example, he believes that the capital of Brazil

is Rio de Janeiro.

     3) The incorrect use of knowledge; a student has the

specific knowledge, nevertheless, he cannot use it or uses it

incorrectly.

     Most traditional ICAI systems have employed either the

overlay or bug approach to modelling. In the overlay approach

[7], the student's understanding is represented as a subset of

the expertise. ThÅ}s modelling marks each knowledge according to

whether a piece of evidence indicates the student has it or not.

In this approachr only one category of misconceptions, a lack of

knowledget can be modelled, and the others, the incorrect

                               10



,STI.lbENT MgDEL

TUi T[ Rl 'N. '(; S:l"RATECI, l ES

EXPER.TlS:E

um

lNTERFAt:IE

STIi[)EN?

 gLt.wh.....

qgg-

b;NT;X F'LlllW

C,ONI"R()L FLOL"

Fig.3 Block diagram of

11

general ICAI systems



knowledge and the incorrect use of knowledger cannot be done. In

the bug approach [8], the studentis knowledge is represented as a

perturbation of or derivation frorn the expertise. The bug model

has a good representability and can manage all of three
categories of rnisconceptions. The modelling, however, depends so

heavily on the expertise contents that it is difficult to make

the modelling process Å}ndependent of course material.

     We develop a new framework for ICAI systems based on logic

programming and inductive inference. The student model is
constructed by a general inductive inference to model all of
three categories of student's misconceptions.

2.3.2 Student Modelling by MIS

     Since the model representation language of the framework is

Prolog, the model inference algorithm MIS can be used as model-

constructor. MIS induces the Prolog program which satisfies all

of the given facts. In modelling of the frarnework, facts are

obtained from problems and student's replies. The induction

process is a repetition of making hypothesis and verifying it

until obtaining a complete program. When MIS generates a clauser

MIS gives the oracle [4], who knows everything on the target

program, the following three kinds of queries concerned with the

clause.

     (1) What predicates are used in the body of the clause.

     (2) The argument type of each predicate.

     (3) The validity of each predicate.

The refÅ}nement operator [4] of MIS generates a new clause as a

hypothesis using the oracle replies to these queries. In the

                               12



framework, the most general refinement operator is employed so as

to synthesize all of the program that is indicated by the oracle.

A hypothesis for the target program is set up, and then it is

verified whether all of the given facts are satisfied by the

hypothesized program. If there is an unsatisfied fact, PDS
identifies the bug of the hypothesized program. It also gives

the oracle a type of queries as follow:

     (4) The validity of each goal that Å}s executed.

A clause identified as a bug is removed, and a new hypothesis is

set up. In student modelling the oracle is the student, because

he is the one who knows everything about hÅ}mself. Thusr the

oracle queries are raised to the student.

2.3.3 Pedagogical Validity of Student ModeUing

     In this section, we descrÅ}be the student modelling by MIS in

detail, and show the pedagogical validity of the modelling.

     First, we consider the range of the model that can be
constructed. The range of the program MIS can synthesize is

determined by a refinement operator. Since the most general

refinement operator is employed in the framework, every clause

indicated by the oracle can be synthesÅ}zed. Nevertheless, the

predicate that is not provided in the system is not useful as the

oracle reply for the query (1) described in the previous section.

For exampler let us consider that the system provides only a
predÅ}cate "precipitated" and that the student use the predicate

"deposited" as a reply for the oracle query (1). In this caser

MTS constructs the student model that use the predicate
"deposited". Howeverr the system does not identify "deposited"

                               13



wÅ}th "precipitated". Thus, the clause that has the predicate

"deposited" is identified as a bug i.e. a misconception. As this

exarnple, MIS can synthesize any clause that is indicated by the

oracle, nevertheless, the clause with the predicate not provided

in the system is not effective pedagogically. Therefore, MIS

synthesizes the program that uses only predicates provided in

advance. Though the oracle query {1) does not have to be raised

in this synthesizing, the system raises it to the student for the

modelling efficiency and the pedagogÅ}cal effectiveness of the

query as described below. This modelling approach has a same

representability as the bug approach. Furthermore, this approach

can synthesize any clause that can be obtained the combination of

provided predicates, although the bug approach must provide all

pieces of knowledge that is used in modelling.

     Secondr let us consider the efficiency of the student

modelling. The efficiency of program synthesis by MIS depends on

both the given facts and the refinernent operator. The most

effective fact Å}s of the difference between the synthesizing

program and the target program. In the student modellingr the

target program is the human student understandings. Since the

human student understandings are almost same as the expertise,

the most effective fact is of the difference between the
constructing student model and the expertise. Thereforer in

order to model efficiently, we give the priority to the problem

that is answered contrary when it is solved with the expertise

and the student model. Though the framework has a general
refinement operator, the student modellÅ}ng can be performed more

efficÅ}ently using the specific refinement operator. When the

                               14



actual ZCAI system is built with the framework, it Å}s useful to

employ the domain-specific refinement operator.

     The third problern Å}s the termination of the modellÅ}ng.

Usually it is impossible to determine the exact termination of

the student modelling. However, it is also impossible for a

human teacher to do so. In the framework, it is regarded as the

termination that the student model is not changed during a
certain number of problems. The number is decided by a teacher.

     The fourth problem is the pedagogical validity of the oracle

queries. SÅ}nce the query (2) descrÅ}bed in the previous section

must be needed to the transformation of the external form and the

internal form, the reply to the query is provided in the system

and the query need not be raised to the student. The query (4)

is inherently same as the query (3). Thus, we consider the

remaining two queries i.e. query (1) and query (3). We
demonstrate that they are pedagogically valid using the chemical

reaction equations teaching.

     query (1): queried predicates represent the inference

process or reason for the concept that is yepresented as the head

predicate of the hypothesized clause. Hence, the query can be

transformed to the question about the reason as FÅ}g.4-(A). The

query is raised when the predicates are neededr that isr a

student uses a new concept and the system raodels it. Thus, the

query is raised exactly after the student uses the new concept.

     query (3): this query is about the subconcept of currently

teaching concept. Thusr it is a simple basic problem as
Å}11ustrated in Fig.4-(B).

     Finally, we consider the change of student's status. In

                              15



(1) Pb(NH(3))(2) +
l: no.

Tell the reason why
I: Pb<NH 3)) 2) is

H(2)CO(3) ->

 v.ou answered

not, a salt.

PbCe(3)

 'no'?-

+ 2HNH(3)

------  (A)

l: ***

ls

l:

PbCO(3>
v.tes .

precipitated`?
-----  (B)

Fig.4 Examples of queries set to student

l6



order to synthesize the complete program by MISr all of the given

facts and the oracle replies must be consistent. This means that

the student may not change his understandings during modelling.

Howeverr it often happens that the student finds his
misconception and changes his replies. Therefore, the modelling

of the framework makes the student indicate his change of
understandings. When a student finds his misconceptions, he

indicates his change of understandings to the system and replÅ}es

the correct answer. Thenr the framework removes all of the
student's replies related to the indicated change and resumes the

modelling with new xeplies.

2.3.4 Meta-Knowledge Modelling

     The student model forms the hierarchy as well as the
expertise. Since construction of the student model is done in

bottom up way and the modelling in the worlds which are lower

than the current world is already completed, the student model

for the lower knowledge can be assumed to have almost the same

structure as the expertise. Therefore, we can restrict the range

of student modelling within the current world so as to improve

the modelling efficiency. When the meta-level world is taught,

if the student has a misconception categorized in incorrect use

of knowledge then MIS synthesizes a Prolog program that has a bug
                                                       'corresponding to the misconception.

2.4 Extraction of Misconception by PDS

     PDS can identify bugs in a Prolog program that behaves

incorrect!y. In extracting misconceptions, the program given to

                               17



PDS is the student model and the bug identified by PDS is the

student's misconception. The oracle is the expertise, so the

oracle querÅ}es are never raised to the student. The Å}dentÅ}fÅ}ed

bug is either a missing clause or a false clause. The forrner

and the latter correspond toa lack of knowledge and the
Å}ncorrect knowledger respectively. The bug in a program of the

meta-level world corresponds to the incorrect use of knowledge.

Hence, all of three categories of student's misconceptions

described in sectÅ}on 2.3.1 can be extracted using PDS.

2.5 Expertise Moduie

     The expertise module uses the expertise to generate
problems, to evaluate student's replies and to reply to questions

from the student. Figure 5 illustrates these functions. A part

enclosed with bold lines is the domaÅ}n-specific knowledge.

     A student's reply is evaluated by executing the Prolog goal
that'  represents the pair of the problem and the student's reply.

     There are two types of questions from students, "yeslno" and

"what/how". "Is AgCl a precipitated salt?" is an example of the

"yes!no" questÅ}on. This type of questions is transformed Å}nto a

Prolog goal and the goal is executed. If the execution succeedst

the module answers "Yes, it is". If not, the module answers "Nor

it isn't". "What is the precipitation?" is an example of the

"whatlhow" question. This type of questions is answered by

displaying the contents of the fUe for answering.

     The expertise of the framework is articulate, that isr the

expertise can solve the problem in the same manner as the expert

does [2]. Hence, the simple explanatton by the expertise is

                               18



PROBLEM

EXPLANATION

PROBLEM

FlLE

PROBLEM

CONSTRUCT'ION

EXPLANATlON

FACILITY

ANSWERlNG

FlLE

EXPERTISE

EXPLANATlON

FILE
EXECUTl0N

EXECUTlON

ANSWERING

ENiALUATlON

Fig.5 Illustration of expertise module

19



useful and understandable to students. In addition to this

explanation facility, •the expertise module can display the

contents of the file for explanation. The file is provided for

each Prolog clause of the expertise.

     The problems for students are classified into two
categories. FÅ}rst of them is the problem that is provided by the

teacher as the file. Problems in this category are displayed as

well as the explanation and answering. Second of them is the

problem that is made by the problem-construction facility of the

expertise module. The problem is constructed by the Prolog
retrieval in the expertise.

2.6 Tutoring Module and Tutoring Strategies

     The tutoring module controls the whole system based on two

kinds of tutoring strategies. One is the modelling strategy, and

the other is the retraining strategy. In this sectionr we
explain the function of tutoring module along the ICAI system

execution. First of allt the systern gives explanations and

problems to the student and constructs the student model using

MIS. In this stage, the tutoring module instructs to the
expertise module which explanation or problem is given to the

student according to the modelling strategy. The modelling

strategy is represented as a list. Each element of the list is

an instruction to give an explanation, to set a problem and

activate MIS, or to extract the misconception using PDS. When

problems are set to a student, problems are solved by both the

expertise and the student model, and then the problem which is

differently answered is given to the student prior to other

                               20



problems. This is aimed at efficient modelling and at finding

misconceptions by the student. When the student rnodelling

reaches a certain extent and the model is not changed during a

certain number of problems, the student modelling is regarded to

terminate and then the student's misconceptions are extracted by

PDS. The tutoring module receives the extracted misconceptions

and instructs to the expertise module that the remedial problems

and comments for retraining are given to the student. The way

how to retrain the student is indicated by the retraining
strategy. The retraining strategy controls the retraining method

based on the type of the student's rnisconception and a piece of

the expertise corresponding to the misconception. The retraining

methods employed Å}n the framework are as follows;

     i) Correction: A piece of the expertise which corresponds to

        the student's misconception is displayed.

    ii) Remedial exercises: Problems which will be answered

        incorrectly because of the misconception are given to the

        student in order to make him aware of the misconception

        by himself.

   iiD Socratic tutoring [2].

2.7 lnterface Module

     The interface module rnutually transforms an internal form

and an external form that is suitable to students. Though the

natural language Å}nterface is the most favourite one and has been

studied by raany researchers [2][9][10], many complicated problerns

stUl remains unsolved. In the framework, the interface module

only performs the transforrnation between a Prolog form and a

                               21



simple sentence (natural language). For exampler

     precipitated(Ag,Cl) <=> AgCl is precipitated.

     precipitated(Ag,Cl) <=> AgCl is deposited.

     precipitated(Ag,Cl) <=> AgCl is settled.

The dictionary for these transformations is provided as

clauses and it is changeable for each ICAI system.

Prolog

22



                           CHAPTER 3

         SPECIFIC SYSTEMS CONSTRUCTED WITH THE FRAMEWORK

     We develop two specific ICAI systems constructed with the

framework for the purpose of demonstrating the domain-
independency of the frarnework. One of them is an ICAI system for

programming in Prolog, and the other is an ICAI system for

chemical reaction equations.

3.1 An ICAI System for Programming in Prolog

3.1.1 Basic Design

     As described in chapter 1r educational applications of the

computer are classified into two categories according to the role

of the computer. They are the interactive teaching system and

the environmental learning system. These two systems have the

suitable course materials and the suitable teaching periods. The

interactive teaching system is appropriate to the subject whÅ}ch

can be taught by instruction. The environmental learning system

suits the subject that must be learned by the student himself.

In teaching of the course material, the game or simulation

learning is used to let the student have an interest in the

subject at the early stage of the learning period, and then the

interactive teaching system instructs him the knowledge for the

subject. In the final periodr his understanding is made deeper

using the environmental learning system. This is the one of the

most effective teaching courses. In teaching of programrnÅ}ng

languager the same course is also effective. At first the
student tries to execute samp!e programs in a textbookr and then

he is taught the syntax and basic programming techniques of the

                               23



Student's
M'isconceptions Tutorin.gModL/le Tutoring

Strategies

StudentModel PDS Expertise VPI&Parser

MIS Knowledgefor
lnterface Expert,iseModule

lnterfaceModule

Student

e DAT4 FLow

e CONTROL FLOW

Fig.6 Block diagram of the ICAI

programming in Prolog

system for

24



language, and finally he makes many programs and learns the

prograrnming paradigm through programming. This section is

concerned with an ICAI system for programming in Prolog [11]

constructed on the basis of the above observations. It teaches

the know!edge for programming in Prolog by instruction and

provides the environment where the student can learn the
programming using his knowledge. The interactive teaching (sub>

system of the ICAI system is built on the framework for rCAI

systems described in chapter 2 by embedding the knowledge for

programming in Prolog in it. The environmental learning (sub)

system has a visual Prolog interpreter called VPI and a parser.

VPI interprets the program and displays the execution process in

the form of a computation tree. The parser analyzes the program

to detect and indicate its error if any. The major modules
(boxes) and the knowledge (ellipses) of the ICAI system are shown

in Fig.6.

3.1.2 Curriculum of Programming in Prolog

3.1.2.1 The Goal of rnstruction

     The ICAI system assumes that the target students are
undergraduates (seniors) who have experiences of programming in

procedural languages, e.g., FOR[DRANr Pascal and C. The goal of

tutoring is to enable them to understand and write Prolog

programs. For this purpose the followings must be taught and

learned.

     1) Syntax and execution mechanism of Prolog

     2) Functions of built-in predicates

     3) Useful programming techniques

                               25



     4) Logic programming paradigm

3.1.2.2 Curriculum of Programming in Prolog

     The curriculum of the ICAI system is summarized in Table 1.

Each itern consÅ}sts of more than ten explanations and problems.

Each of items from 1) to 6) is taught by the interactive teaching

system, and the item 7} is learned in the environmental learning

system.

1) Program examples

     Prolog is a programming language whÅ}ch can manage objects

and relationships between them. The ICAI system shows sample

programs and gives the students a feeling for programming in

Prolog.

2) Syntax

     The ICAI system teaches the Prolog syntax and data-
structures. Many different Prolog systems are available
recently, and each of them has the different syntax. The ICAI

system teaches the syntax of MV-Prolog.

3) Unification

     A variable is either instantiated or unÅ}nstantiated. A

variable whÅ}ch is instantiated to an object never changes. This

property, called single assignment, of the variable is one of the

most important and distinguished properties of Prolog. Moreover,

the matching between constants, the substitution of variables and

the shared variables are taught in this item.

4) Interpreter

     The behavior of a Prolog interpreter is taught in this item.

The interpreter searches a unifiable clause in the depth first

                               26



Table.1 Curriculum of the ICAI system

lterns Contents.

1) Programexamples sarnpleprograms

2) Sv.ntax sv.ntaxanddata-st,ruct,ure

3) Unification singleassignment,rnatching,subst,itut,ion,sharedvariables

4) lnterpreter depthfirst,search.backtracking

5) Built-inpredicates functionsandusageofbui1t-inpredicates

6) Programmingtechnjques 1i$trecursion.numericalrecursion.differencelist

7) Logicprogrammingparadigm relation.1ogic,non-deterrninacx.'

27



way and unifies the goal and the head of the clause. If a
unifiable clause cannot be found, a backtracking occurs. These

processes of the interpreter are referred to as the non-
determinacy of Prolog. Moreoverr the ICAI system uses VPI for

displaying the interpretation process.

5) Built-in predicates

     In this item, functions of and how to use built-in
predicates are taught.

6) Programming techniques [12]

     More than ten basÅ}c programming techniques are taught in

this item, e.g., the list recursionr the numerical recursion and

the cut-fail combination. The instruction is made through
programming and error correcting practice.

7) Logic programming paradigm

     This item is taught in the environmental learning system.

The student makes many programs in the learning environment and

learns the logic programming paradigm. Problems for programs are

set by the ICAI system or prepared by the student himself.

3.1.3 System Implementation

3.1.3.1 Expertise for Programming in Prolog

     In this section, we describe the expertise and the student

modelling for each item mentioned in section 3.1.2.2.

1) Program examples

     In teaching this item, the ICAI system only gives the
explanations to the student and does not construct the student

model from his behavior. Explanations are stored in the files

and are given to the student one by one according to the tutoring

                               28



strategy.

2) Syntax

     The expertise of the syntax is represented as a set of the

Prolog clauses. The following is an example of a clause;

          variable(i-model,syntax--atomicr12,XrZ) :-

               capital-letter<i-model,-,-,XrY)r

               character-list(i-model,-r-rYrZ).

This clause means that the string represented by the fourth

argument and the fifth argument as a difference list is the

syntactic element represented by the predicate name. The
knowledge is organized in a hierarchical structure in order to

deal with the rneta-knowledge and to obtain the modularity. The

expertise for each item consists of from several to more than ten

worlds. The second argument of the head indicates the world name

in which the clause is Å}ncluded. The third argument of the head

means ID number of the clause in the world. The first argument

indicates that the clause is a piece of the expertise
"deal model).

     The student model is constructed by MIS which synthesizes a

Prolog program from given facts. The facts are obtaÅ}ned from

pairs of a problem and a student's reply. We describe how to

obtain the facts from problem-reply pairs in the ICAI system.

All of the pToblems in the ICAI system are represented in the

following form:

          (Q) Choose the correct variables.

               1. var 2. Var 3. .xyz 4. 345 5. --

The problem is prepared in the file and the fact for each choice

Å}s also prepared. For exampler the fact

                              29



          variable(s-model,syntax-.atomic,-,[v,a,r],[])

is prepared for the element 1. var. The truth value is
determSned according to the student's replies. IE he chdoses an

element as the correct one, the fact prepared for the element is

determined as true. If not, the prepared fact is decided as

false. A set of pairs of prepared facts and their truth values

is sent to MIS.

     The oracle queries raised by MIS in the student modelling
                                                           'takes one of the following forms:

     * Tell the reason why var is a variable.

     * Is var a string?

They are transformed from the oracle queries in Prolog
representation to the questions in natural language by the
interface module.

3) Unification

     The expertise for unification of two elements is represented

as follows using a substitution list.

     i) Fetch the value of the first element out of the
        substitutÅ}on list.

    ii) Fetch the vaÅ}ue of the second element out of the

        substitution list. •
   iii) case (fetched value of the first element,

              fetched value of the second element)

        iii.1) (var, var) shared variable

        iÅ}i.2) (var, non-var) substitution

        iii.3) (const, const) equality
                                            '
        iii.4) (compound term, compound term)

               functor = functor

                               30



               arity = arity

               unification of each argument pair.

     A substitution list is a list of pairs each of which is a

pair of variable and its value. Both the variable and its value

are represented as difference lists. The Prolog program
representing the above knowledge is shown in Fig.10-a). The
clauses whose head predÅ}cates are "unification" correspond to

cases of the knowledge. (Figure 10 lists the first and second

clauses.) Roles of the firstr second, and third arguments of the

clauses are the same as those of clauses for the item 2) syntax.

The elements to be unified are represented as difference lists

that are expressed by the pairs of fourth and fifth arguments and

of sixth and seventh arguments. The rest arguments stand for

substitution lists. The eighth argument stands for the current

substitution list. The unification is performed with the
substitution list repyesented as the eighth argument, and then

the resulting substitution list is returned as the ninth
argument. Examples of the problems and queries are shown in

Fig.9 and Fig.11.

4) Interpreter

     The expertise for the Prolog interpreter is constructed with

four elements, that is, a sequence of goals, a sequence of
clauses. a substÅ}tution list and the environment. A sequence of

goals is the conjunction of Prolog goals which will have to be

satisfied. A program is represented as a sequence of clauses.

The order of the sequence is same as the order in which the

prograrnmer inputs the clauses. A substitution list is used for

maintaining the values of variables in the program. The Prolog

                               31



interpreter realizes the non-determinacy by a depth first search

for the unifiable clause and a backtracking mechanism. The
status of the interpreter must be preserved for the backtracking.

preserved items are a sequence of goals, an unified clause and a

substitutÅ}on list. They are ealled the environment and preserved

using a push down stack. Using the above four elements, the

expertise for the Prolog interpreterr i.e., how the Prolog
interpreter behaves, is summarized as follows:

     i) Choose the first goal from a sequence of goals as the

        current goal.

    ii} Choose a clause unifiable with the current goal from a

        sequence of clauses.

        If there is not a unifiable clausei goto vi).

   iii) Push down the environment into the stack.

    iv} Create a new sequence of goals.

     v) Goto i).

    vi) Pop up the environment from the stack.

   vÅ}i) Choose an alternative c}ause unifiable with the goal.

        If there is not an alternative clause, goto vi).

  viii) goto iii).

5) Built-in predicates

     Functions of and how to use buÅ}lt-in predicates are taught

in this item. SÅ}nce the unified knowledge representation for

functions of built-in predicates is not completed in the current

ICAI system, the expertise represented in Prolog is not provided

and the student model is not constructed. Functions are taught

using explanations prepared in files and some easy exercises.

Some usages of built-in predicates are taught in the next item 6>

                               32



programming techniques. The expertise for them is represented in

Prolog. Neverthelessr the expertise for most of usages are not

represented in Prolog as well as that for functions, and they are
also taught using canned explanations and simp!e exe' rcÅ}ses. It

requires further investigation to represent the expertÅ}se for

this item in Prolog and to construct the student model.

6) Programming techniques

     The list recursion, the numerical recursion, the cut-fail

combination and so on are taught in this item. Here, we describe

the expertise and the student mode!ling for the list recursion.

The program using this technique has the following seven
characterÅ}stics.

     D One of the arguments of the head predicate is a dotted
        pair of variables, i.e., [VariablelIVariable2].

    ii) One of the goals of the body has the same predicate as

        the head.

   iii) The arity of the goal is same as the arity of the head.

    iv) The goal has an argument Variable2 at the same position

        as the argument of the characteristic O.

     v) There is a fact that has the same predicate as the goal

        of the characteristic ii).

    vi) The arity of the fact is same as that of the goal of the

        characteristic ii).

   vii) The fact has an empty listt i.e., [], as an argument at

        the same position of the characteristic iv).

     The expertise for this technÅ}que is expressed as the

conjunction of Prolog goals corresponding to the above
characteristÅ}cs. The student model is constructed based on the

                               33



student's program using the technique. The student's program is

analyzed to examine whether each characteristic is used. Since

all of the characteristics can be detected by the syntactic

analysis, the program is parsed using DCG [13] rules in the

expertise. If a characteristic is detected in the program, a

fact corresponding to the characteristic is sent to MIS. MIS

constructs the student model as the conjunction of goals that are

generalized expressions of the facts.

7) Logic programrning paradÅ}gm

     In this item the student makes programs in the environmental

learning system. Problems for programming are prepared in files.

And, the student can exercise the programmÅ}ng for the problem

prepared by himself. Executions of programs are performed by

VPI.

     Before the execution of the student's program, the program

is parsed based on the expertise for Prolog syntax and the syntax

error is diagnosed if any. If a syntax error is detected in the

program, the error is displayed and the explanation for it is

given. In this case the program is not interpreted by VPI. The

details of VPI are described in the next section.

3.1.3.2 VPI for Learning Environment

     The ICAI system provides the student with an environment

where he can learn the logic programming paradÅ}gm through

programming in Prolog and executing the program on the visual

Prolog interpreter named VPI. VPI is a new Prolog interpreter

which displays an execution process of a program as the growing

and reducing of a computation tree. Some other visual Prolog

                               34



{e-)

re v ( [2, 3] . -.64N9)

'I'ev < [i ' 2' 3 ,]lf"stiit1 }4. il.klS4} : -37"48]

i        . -3749. ) :-rev (-.3748. -3
appeiid (-.64N9. [1] . -.14)

{b>

Fig.7 The portion of proof tree displayed by VPI

35



interpreters are proposed in [14] and [15].

     The most complicated processes of a Prolog execution are a

backtracking and an instantiation of a variable by unification.

In particular, the backtracking over many goals at a time is the

most complicated. Andr the case where one of the shared
variables is instantiated to a constant is rather difficult to

understand. In this caser other shared variables are also
instantÅ}ated to the constant. VPI has facilities for displaying

these processes in a clearly understandable way.

     A procedure call and a backtracking are visualized by a
                 'dynamically changÅ}ng cornputation tree. When a goal is executed,

the clauses which have the same head predicate as the goal are

displayed under the goalt and then the unÅ}fiable clauses are

rnarked (Fig.7(a)). New goals which are derived from the unified

clause are displayed as children nodes of the computation tree

(Fig.7(b)). If a backtracking occurs, the backtracked goals are

eliminatedr i.e.r the computation tree is reduced. In the case

of shallow-backtrackingr that isr there is an alternative clause,
                                               '
the alternative clause is marked and then new goals are displayed

as children nodes.

     When a variable is instantiated, the display of the variable

is changed to the instantiated value. If the varÅ}able Å}s shared

with other variables, the display of them are also changed to the

instantiated value.

3.1.3.3 Tutoring Strategies

     The tutoring module controls the whole of system behaviors

as described in section 2.6. The modellÅ}ng strategy is prepared

                               36



for each item.

     [ee-t

      explanation(file,syntax-terml)r

      problem(file,syntax-terml),

      pds(fÅ}le,syntax-terml>,

      retraining,•

      eee]

The above is a part of the modelling strategy for the item 2)

syntax. "explanatÅ}on(filersyntax-terml)" instructs the expertise

module to display an explanation in the file named
syntax-terml.epl. "problem(fÅ}le,syntaxmterml)" also Å}nstructs it

to display a problera in the file named syntax-terml.prb and sends

MIS a set of facts representing the student's replies. The

tutoring module has no relation to the queries raised by MIS.

They are presented to the student directly.
"pds(file,syntax-terml)" indicates the detectÅ}on of the student's

misconceptions. The goals prepared in the file named
syntax-terml.pds are executed wÅ}th the expertise and the student

model. If the solution of a goal by the expertÅ}se is different

from that of the goal by the student model, then the goal is sent

to PDS and bugs of the student model are detected. "retraining"

indicates that the tutoring module instructs the expertise module

to give the student remedial comments and problems for his
misconception.

     Moreover, the tutoring module activates VPI and the parser

in teaching item 7) logic programming paradigm.

37



3.1.3.4 Interface Module

     The interface rnodule transforms an Å}nternal form into

external form and vice versa as described in section 2.7.
Moxeover, The interface module enables a friendly interaction

between the student and the ICAI system using extended facilities

of MV-Prolog such as rnenus and windows. Table 2 summarizes

commands and their functions. A student can input any command at

any time when the ICAI system is in input mode. Commands are

displayed at the bottom of the screen as a menu and selected by

the cursor. Explanations, problems, hints and so on are
displayed in the different windows. Figure 8 shows the layout of

the windows.

38



Table.2 Commands and their functions

Cc>mt"a'Rds FuRc'tioftf$

nera't advanÅëetothene.xtproblemorexplanation

QA typewrii,e.al')arlsweroraquestion

sklp skipt•c>thenext"worl{S

back backt()theworMbeforct

beed baÅëktothepreviouswor"kl'

raenu selecti•hene,x'tworldoiiSoftjherneni.i

hint di$playahi#"!t,fes'theg}rcblem

dc)ttait displayamoredetaileijexplanatiion

an$ iljspia.vananswerf)fthlj,preblem

help help-mess.age.forcoramatids

prolog ex'ecutionofaPrologtt,"at

end te,rrainat,ethet•utori"gstststem

39



WiBdowArea
trlaii3Screen

tt

(Ex`pl anations,PrQb1ems)
SubScreen2..t

(Menu.
Systern..Use)

SubScreenl
-
(Hinbs.Details

'
Answerf)

Typescript.Area

'MenuArea'

Fig.8 Screen design

40



3.1.4 Experiments

     In Fig.9, the student requests hints on a problem of the

itern 3) unification. The problem is displayed in the "ICAI"

window placed at the upper left hand of the screen, and hints are

also displayed in the "HINT" window placed at the middle. The

hint Å}n Fig.9 are concerned wÅ}th an explanation for the
unification process. When the student answers No.1 and 2 as

unifiable terms (the correct answer is No.1 and 3), the student

model is constructed as shown in Fig.10-b) after raising the

queries for reasons to the student {Fig.11). Considering the

student's replies for these queries, it can be thought that he

does not know that if the fetched value of a variable Å}s another

variable then the latter variable's value must be fetched,

because he replies that "The value of Y is X." and that "[Phe

value of X is 1." Comparing the constructed student model shown

in Fig.10-b) with the expertise shown in FÅ}g.10-a), this
misconception is modelled as a lack of the goal "fetch value"

(indicated by (A) in Fig.10).

     Figure 12 shows a screen when the student's program is

analyzed and its error is detected in teaching the list recursion

of the item 6) programming techniques. The ICAI system analyzes

the program based on the syntax rules for the list recursion and

then detects and indicates that an empty list ([]) is replaced

with a variable (X) in the head of the second clause.

     Figure 13 shows an example of VPI's output. It is the

terminal screen when the goal rev([1,2r3],X) is executed and a

solution is obtained.

                               41



Fig.9 Example of a training session on unification

42



u tl if ica t• io n( i- va odet,unif:•. !. Å~! ,Å~ '-r.7.Yl.N' 2,S. Se) :-

        feit•ch"ie`alue(i.-model.L.. .Å~1.Å~2.S,XV1.XVt")>,
        fe tc h- x,'alue< i -mode 1 . -. " . N"1 . Xg2,S,YN; 1 .YX•' 2) .

        variab}p..(i mcdel. , .XW.XV'2>>.
        ietariable(i maedel. , ,YVI,YVS"i.),
        shared(i-mede.1,-,.,XVI.Xtt2.YVI.YV2.S,SO>.
unification<i-modei,unif>•,2.Å~1.Å~2.Y1,Y2.S,S, O]> :-
        fe tch.value( i- raQde1. -, ..,Å~1.Å~2,S,XV'1.XV2),
        f e t c h - xk' a l u e ( i . m o d e l , m , . , Y 1 , Y S") . S` , Y V 1 , Y tt 2 ) .

        variab}e(i model, , ,XVI,Å~i,i2>,
        nonuvariable<i-moeiei,-.-.\N'1.yv2),
        $'l.l S)Sti tu te( i -moci ,t. I . + , ,- ,XV1 .XV2 , 'vS Xi l , k):' kv'2,s, se).

fe.tch

fetch

fet,ch

+\"alue.<j-model,unif>J,11,Å~.1,
   non.H vuri able( i .. model ,- , ..
nt Nsa1ue( i. iliodel,tinif: ,l2.Xl,
   variable(i mf,>tlel. , ,t•ll,
   net•(member(((xl,x2>-$ )
.. va1u e(i"mgdel,uni fy',13,',x' 1.

   variable" modet, . ,Xl,
   memher• (((Å~1.'x.?.) $ <Yl,i{,rLt
   fe t• (:' I} . Nia lue( i " mo(ie l , .n , ,

Å~2, .Xl,Å~2) :-
,X1,X2).
Å~2,S,Xl,Å~2) :-
Å~2),

.s)).
>X?...,l)',ttl.Z2,> :'
Xt.2>.

>),g>,
x/1 , N•' "V .S,Z1 ,Z2) . -----  <,A)

t't > El;:.p•erti g. tt}.

tmifica{',ion(s.mcdel,"nif:',1.
        f'e't'l'•Åëh vak.ie(s mo(ie1.
        fe t•ch va ki e<$ m;'.}de l .
        xi'arlabks<s' me{Sel, ,
        varial.3le(s model, .
        fs h, arf,, (.l ($ mod el , , , '."'

unificat,ion(s mo(iel,unifNs.2,
        fetch xialue(s mc)ijel.
        fe t•ch .. Niaiue(s . mode 1 ,
        Ni tt ri able<smmode1 ,. , ..
        non Niari ab le(s mocl "-. l
        substit,ut,e(s megdeI,

Å~1,x.Lt,ii'l,y2t,ss,so) :-
 . .X:, ,X2,S,X'V'S,XV2>.
 . ,v1 , '}fzs. xJ i,• 1,vAei Lt),
,/'"i X. 'V2),

, Ni x}• } ,vwa .> ,

M'1 , >i( A""2L' , 'Y X`" 1. mtsF' XS" 2a S] , S• ICJI >"

Å~1 ,>< 2, }f !.xt` :?,s, s"gs) :-

. .Xl,'X:),S,)(i,•1.XV2),,
 , ,Y1,N•':2,!..YVl.YV-2>,
. >< Ni'l , N"• !.li > ,

, , ,\ {iv 1.Y Ni2 ),

, .Å~vl ,x'v 2t , siri x.••' f. , 'N•E vL? ,l . so) ,.

fe t,ch

fe t,ch

'fetch

Tvalue(s-model,unif:v..1i,
   kovi xiariabie(s rnede},
m v a l u e ( s H m o d. e 1 , u n i' f y , l V.. ,

   variable(s-model,..-,
   not(member((<Å~1.X2> $
-vaIue(s"mode.1,unify,l3,
   variable(s modet, . ,
   me.mber(((Xl,Å~2> $ (\l

Å~1,Å~2. ,Å~1,
 . ,Å~1,XL)>.
Å~1.Å~2,S,>(l,
Å~.1,Å~2>s

  )•S))e
X1,Å~2,S,Z1,
X1,Å~2>,
.V2)>,S>.

X2) :-

X: ) :s

Z2) :-

-----  (A)

b) Student. model

Fig.1O Knowledge for unification in Prolog

43



Tel1 t.he

>>> The

>>>
>>> 1 is i

>>>

 reason
fe t;c e

why
ta {

 1 and Å~ are

le l .

u n i f i a bl e ?•

twiststauau.eet-x--j
enti al Nai

.

Tel1

>>>
>>> The
>>> X is
>>> ***

.utLIL

 t;he

The
 reason
fe tt h

why 2
  L
v

and Y are
'S 7.

uRifiable`?

fe'tched va 1 t,i e of Y is Å~.

substitut,e it, 7.

Fig.11 Query examples by MIS

44



,

Fig.12 Example of a training session on programmlng techniques

45



e

Fig.13 Example of VPI ' s output

46



3.2 An ICAI System for Chemical Reaction Equations

     We also build an ICAI system for chemical reaction equations

on the framework with the domain-specific knowledge. The ICAI

system teaches a chemical reaction of an acid and a salt. The

expertise of the ICAI system is formalized with eight worlds as

illustrated in Fig.14. The most top level world named reaction

of acid and salt consists of the meta-knowledge for the two

lower level worlds as described in section 2.2. The rest five

worlds are constructed based on course materÅ}a! hierarchy.

     FÅ}gure 15 is an example of teaching the meta-knowledge in

the world named reaction of acid and salt. A part of the
expertise is shown in Fig.16. The sequence of problems frorn (1)

to (6} is for the modelling. After yeplyÅ}ng to the problem (6),

the constructed model that is a corresponding part of Fig.16 is

shown in Fig.17. The first, s6cond and third argurnents of a

predicate in the expertise and the student model represent,

respectively, the flag for distinction of the expeytÅ}se and the

student model, the name of the world in which the predicate is

included, and the index to the fi!e for explanation. Predicates

"rule", "rulel" and "rule2" represent the knowledge in the top

three level worlds. The forthr fifth and sixth arguments of them

characterized as "X"r "Y" and "Z" mean the following chemical

reaction equation.

          XY +HZ -> XZ +HY                XX
In the above equation, "XY" is the reactant saltr "HxZ" is the

reactant acid, "XZ" is the product salt and "HxY" is the product

acid. The student does not consider the use of inverted reaction

as described in section 2.2, and then he makes a wrong answer to
                          '
                               47



REACTION OF ACID AND SALT

REACTION OF SALTPRECIP1TATION REACTlONOF AClD VOLAT1LlTY

PREC1PlTAT1ON SALT NiOLAT1L1TY

AClD BASE

Fig.14 Diagram of knowledge hierarchy

48



Are. t,he. following. Åëheraical reac,t{on equations Åëorrect

lf correct,, answer 't'es.' lf Bot,, anss-Ter 'no.'

(1) K(2)(iO(3) + H(2>SO(4) -•> K(2)SCi(4) + H(2)CO(3)
l:.N....-,.tes.

1'ell the reason why you answered 'ye$'?

l: K2 SO 4 is not reci)itated•
H 2)(/10(3' is a vo1at,ile acit]•

   ***
(2) Na(2)SO(4> + 2HCI -> 2Na(11 + H<2,>SO(•4)

   no.
(3) Pb(NC(3)I<:ltL) + ItLRC,l -•> Ph(-IK2.)) {- :tL,ljNO<3>

  ..v:.,,,.:.es

(•;I) Ba(JO(:S) -ih 2'2H(:l -> Ba(Jl(L)) + tl("lp..]>{:10(3>

   t}o.
  > iXg(2>Stl';(4> "e- L7HC/l -r> LtAgtLll -l- H(.:•l}>S{l(4)

   v. es.
(6) 2sX tgC l + H( 1,tL I SO tL il ) -> iX f,,<2) i. il [f ( •-g > + LHCI

  .y.gs:.
(7) {>b(11(:.l•> -e- ff<2>Sg(4) -> F)hS,(i(4.> •S- i/l}ll{lil

   yes.
( 8. ) de Cl < tt) > -}- ll <2) S. C} (4> -• > Ci.i SO(4 1> -}u :2 sc (r, l

  :.ILac.

   fio.
Te l l t, he rea ss"n why yo i] ans t,e e. rfp.d ' no '?

   CuCl<2) is prec;ipt tatted.

or nQt?

l

t

l

i

t

(

l

l

i

l

{

l

l

l

l

:

:

:

:

:

•=
•)

:

:

:

:

:

:

:

:

:

IRv'erte.d r".act,ion takes lace"

(9 ).

***
 Ag(2>t]10(3> + H(2>S(1)(4)

no.

-> •gtt(?,)so(g>' + H(2 >(-O(3)

Fig.15 Example of a training trace

49



rule(i mode1,'ROAS',l,Å~,Y,Z) :-
        rulel(i-model,'RCiSP'.-,Å~,Y,Z>.
ruie(i medel.'ROAS'.2.X,Y.Z) :•-
        not-rule1(i-mode1,'ROA.S',".)•(•Z,Y),

        rule2(i model,'ROA\". ,Å~,Y.Z).
not rulel(i model,'ROsSS',3,X,Y,Z> :-
        not(ruiel(i rnodel,'ROSP', ,X,Y.Z)).

rulel(Lmodel,'ROSP',1.Å~,Y,Z) :-
        salt(immodel.'SALT',-,Å~,Y).
        precipitated(i.rmodel,'PRE(.rIPlTATlON

rule2(i-modeI,'RGAXi',1,X,Y,Z) :-
        salt(i model,'SALT', ,Å~,Y),
        volati1ed(l model,'VOLATlLITY', ,Y)
        unvolati1ed(i-model,'V'eLATILlTY'."

'. ,Å~,Z).

,

Z>.

Fig.16 Contents of

      50

expertise



ri.A e(s

ru1e(s

model.'ROAS`'.1,
 r{i 1e1(s mo {i el ,

mQdeI,'ROAS',2,
 ruge2($ model,

x

'

x

'

,Y.Z>' : --

R(SP', ,Å~,Y,Z).
,Y.Z>. :

RiDAv',-,x,y,z).

ruiel(s mo ciel , 'R(i}E:P' , 1

sa1t(s rnodei.'
p r' ec i p j tfa t, ed (s

• ' eN' •Y• Z,' )

SALT'. ,
 mcdel,'

:-

Å~ty>s

?' st e],a pt T .;Sl fi' I lll N ' . .tX,Z ih).

rul e2(s m(>de.I,'ROAV',l,>(.Y,

sa1t($ model,'SALT'
volat,iled(s model.'
urtv"oiatHetKs m(;de1

Z) :-
. .Å~,y>,
V' OL,}N 'l' l L l 1"Y' .

. ' VC} ki,T i L lTNS '

s

.

xi )

 .

t

7}
ts .s e

Fig.17 Constructed student model

51



the problem (6). The ICAI system constructs the student model

which has an incorrect meta-knowledge as shown in Fig.17. Based

on this mÅ}sconception, the ICAI system gives the remedial
problems from (7) to (9) that must use the correct meta-knowledge

concerned to the inverted reaction. The student finds his
misconceptionr instructs the change of his understanding to the

ICA! system (replying ''k*' to problem (8)), and then he makes the

correct answer.

52



                           CHAPTER 4

                          CONCLUSIONS

     The problems studied in this thesis are concerned with

educational applications of the computer techno!ogyr and arer in

particular, centered mainly on ICAI systems based on logic

programmmg.
     The first problem studied in the thesis is to develop the

framework for ICAI systems based on logic programrning. On the

basis of the observation on the disadvantages of the modelling

approaches used in the traditional ICAI systems, we have proposed

a new frarnework Eor ICAI systems with a powerful rRodelling

scheme. The frarnework is summarized as follows:

     1} Model representation in logic program.

     2) Student modelling based on inductive inference.

     3) Domain-independence.

The framework will be extended as the general tool for ICAI

system building. The problems for this extension are
generalizing the tutoring strategies, fulfilling interface
facilities and developing the utilities for the teachers.

     Further, we described two ICAI systems, for programming in

Prolog and for chemical reaction equations, constructed with the

framework. The development of them demonstrates the domain-

independency of the framework. The ICAI system for programming

in Prolog has both the interactive teaching system and the
environrnental learning system. Both of them are quite important

to learn a programming language. The interactive teaching
system is constructed with the framework for !CAI systems.

The environmental learning system uses a vÅ}sual Prolog

                               53



interpreter VPI. The friendly interface is implemented using

windows, menus and graphics. The ICAI system is currently used

for educating the undergraduates (seniors) of our laboratories.

The evaluation of the systern performance through the practical

use still remains as the future work.

54



APPENDIX

ExpertÅ}se for Programming in Prolog (Listings)

This appendix contains listings of the expertise for

prograrnmlng in Prolog described in section 3.1 .3.1 .

/)IololotoK)IoK>toK)totoloK)totolol<)K)fc)plc>loK>loloww>tofotwwJtvtc.)r"lorJrJt,L:ILI.

1* Expertise for syntax-primitive *1
1 1

              [ , ,,*,, !, \,, , <,, >, ,
               ,?,,,@,•,,tt,J,$,),&,]),
number(i.model,syntax-primitive,6,[XiXs],Xs) :-
       integer(X).
underline(i-modeI,synttix-primitive,7,[X{Xs],Xs) :-
       Member(x,['-•j),
singIe-quote(i-model,syntax-primitive,8,[Å~lXs],Xs) :-
       n)etnber(Å~,[JJ,)]),

.sma1l.Ietter(i-;nodel,syntax-primitiue,1,[X:Xs],Xs) :-
       member(Å~,
              [a,b,c,d,c,f,g,t),i,j,k,l,m,ri,o,p,q,r,s,t,u,v,w,Å~,y,z])
capital-Ietter(idmgde1,syntax-primitive,2,[Å~IXs],Xs) :-
       mernber(X,
              ['A),'B','C','DJ,'EJ,'F','G','HJ,'I','J','}<',JL','M',
               'N','O','P','O','R','S','I','U','V','UI','X','Y','Z'])
numeral(i-model,syntax-primitive,3,[Å~IXs],Xs) :-
       nÅínlber(Å~,[O,1,2,3,4,5,6,1,8,9]),
builtin-predica'te(i-mode1,syntax-primjtive,4,tXlXs],Xs) :-
       buiItin(Å~).
symbol(i-mode1,syntax-primitiue,5,[Å~lXs],Xs) :-
       mmber(X,
               )+l "-J" )SJ IASJ J1t=1 Jll JN) t.tt)
                                                '                                                   t.}-)

!*ww**"ok*wwww*wwnmKww11* Expertise for syntax-character *1
1**Xookww**)Kww**Jk"cwwwwww**wwXoKmeok**xx1

symboI."1ist(i"mode1,synt'ax-character,11,Å~,Y> :-
       g. ymbol ( i -model , ny..,-,Å~,Y) ,

symbol-.Iist(i-model,syr}tax-()haracter,12,Å~,Z) :-
       symbol(irmodel,m,-,Å~,Y),
       symbol-list(i.-model,-,-,Y,Z),
sn}al1-character(imiodel,syntax-character,21,Å~,Y) :-
       svnal1-1etter(i-mode1,-,-,X,Y).
small.charac;ter(irmode1,syntax.character,2?..,Å~,Y) :-
       nurnc)raI(i-fnodel,-,-,Å~,Y).
sma1I-character(iAodel,syntax-character,23,Å~,Y) :-
       underlirie(i-mede1,-,-,X,Y).
small-character-list(i-fnodeI,syntax-character,31,Å~,Y) :-
       smal1-character(i-mode1,-.,-,Å~,Y).
snial1-.character-list(imiodel,syntax-character,32,Å~,Z) :-
       smali-character(i.model,-.,-,Å~,Y),
       small.charac'ter-list(imiodel,-,-,Y,Z),
character(i-modol,syntax-character,itl,Å~,Y) :-
       smal1-1etter(i.model,-,.,Å~,Y),
character(i-fnodel,synttax-.character,42,Å~,Y) :-
       capitalnvIetter(irmodel,-,-,Å~,Y),
character(i-modeI,syntax-character,43,Å~,Y) :-
       numeral(ibmodel,-.,-,X,Y).

55



character(imodel,syntax-character,44,Å~,Y) :-
       underline(i-modet,-,-,X,Y).
character-list(i-medeI,syntaxNcharacter,51,Å~,Y) :-
       character(i-model,.-,-,X,Y).
character-Hst(i--modet,syntax.-character,52,Å~,Z) :-
       character(i-fnodel,--,L,Å~,Y),
       character-list(imode1,-,-,Y,Z).
character-symbol(i-.model,syntax.-character,61,Å~,Y> :-
       character(i-fnodeI,-,-,Å~,Y),
character-symbel(i-model,syntax--character,62,Å~,Y) :-
       syrnbol(irmodel,-.,-.,Å~,Y),
charac'ter-symbol-lis't(i-modeI,syntax.-character,71,Å~,Y) :-
       character-symbol(i-model,-,-,Å~,Y).
character-symbol-tist(i.-model,syntax-character,72,X,Z) :-
       character-symboI(i-rnodel,-,-,Å~,Y),
       character.-.g. ymboI-list(inyrnOdel,.k,-,Y,Z),

/)K**

1*
f

Expertise for syntax-atomic
1

*!
>K)K*1

variable(i"model,syntax.-atomic,11,Å~,Y) :-
       capital-letter(i-modeI,-,.-,Å~,Y),
variable(i-medet,syntax-atomic,12,X,Z) :-
       capital-letter(ianedel,.,-,Å~,Y),
       character-list(i-model,.",-,Y,Z).
var i ab le( i -msde t , syn tax-atom ic, 13 , Å~, Z) : t•-•

       underline(i-ipodel,-,--,X,Y),
       character-list(i-rnodel,-.,-,Y,Z).
variable(i-model,syntax.-a'tomic,14,Å~,Y) :---
       underline(irmodeI,-.,-,X,Y),
atom(i-medel,syntax-atomic,21,Å~,Y) :-
       small-Ietter(i-fnodel,-,.-,Å~,Y).
atom(i.-modet,syntax-.atomic,22,Å~,Z) :•-
       smalI.-letter(l-medeI,-,.-,X,Y),
       character- l ist( i Aode I ,-, ... ,Y, Z) .
atom"-medeI,syntax-atemic,23,Å~,Y) :--
       symbot-list(i-medel,...,-,Å~,Y),
atom(i-fnedel,syntax.-atomic,24,X,W) :-
       single-quote(i.modeI,-,-,Å~,Y),
       character.-symbol-Iist<imodel,.m,m,Y,Z),
       singIe.-quote(i-modet,.,-,7-,W).
constant(i-model,syntaxd.atemic,31,Å~,Y) :-
       atom(i-medeI,-.,-,Å~,Y).
censtant"anodeI,syntax-atomic,32,Å~,Y) :--
       number(i-model,.-,-,X,Y).

/ •1f* Expertise for syntax-term *1
!*wwwwOkwwwwwwknmXnvwwwwOKrmKwwOkl
functor(i-model,syntax-term,1,X,Y> :-
       atom(i-medeI,-,-,Å~,Y),
csmpound-term(i..model,syntax.-term,2,Å~,Z) ,:-
       functor(i-model,-,-,Å~,['('lY]),
       argument.-list<i-.model,-,-,Y,[')'IZ]).
Iist(i-rrtodel,syntax-term,3,[XlXs],Xs)
       rneff}ber(i-model,.,--,Å~,[[]]),
list<i-model,syntax-term,4,['['IÅ~],Y) --•
       argument...Iist(i-model,.-,--,Å~,[']'lY]).

56



l[s t. ( `! mbmodet,syr}tax-term,5, ['•- [' lX] ,Z) •:
       argument-list(i-.model,.-,...,Å~,['i
       argument<irmodeI,-,-,Y,[']'lZ])
argutner}t(i-modeI,syntax-term,6,Å~,Y) :-
       constarit(i-.mode1,-,-,Å~,Y).
argument<i-model,syntax-.term,7,Å~,Y) :-
       variabIe(i-.medet,..,-,X,Y).
argument(i-model,syntax-term,8,Å~,Y) :--
        Iist(ianodel,.-,-..,Å~,Y).
argument(imiodel,syntax-term,9,X,Y) :-
       compound.-term(i.medel,.-,-,Å~,Y).
argumen t- " st(i-modeI,syn tax- term,1O,Å~,
       argument(i-.model,.-,-,X,Y).
argumenLlist(i-mode1,syntax--term,11,Å~,
       argument(i.-mode1,.-,-,Å~,[','lY])
       argument-iist(i-model,.-,.,Y,Z),
term(i-modeI,syBtax-term,12,X,Y) :-
       constant(i-model,--,-,Å~,Y).
term(i-model,syntax--term,13,X,Y) :-
       variable(ianodel,-,.,Å~,Y),
term(it.model,syntax-term,14,Å~,Y) :-
        list(i-.mgdet,-,.-,Å~,Y),
term(iAmodeI,syntax-term,15,X,Y) :---
       builtin--predicate(i-model,-.,-.,Å~
term(i..modei,syntax-term,16,X,Y) :-
       compound-term(i-model,.,-,Å~,Y),

.

lit' Ji ),

Y) :-

Z) :-
'

,Y),

f>k>K>K)I(>K)K>K>l(>l(>K>}(>K>K)IOIOK>l<)IOK>k>)C)K>IOk>K)l(>K>K)iOl(ma*f>K)l(l

1* Expertise for syntax.program */
!"OKwwOKwwwwwwrmKwwwwwwmarmK/
predicate(i.-model,syntax.-pregrsm,1,Å~,Y) :-
       cempound-term(irmodel,.-,.-,X,Y>,
predicate(i-medel,fyntax-.program,2,Å~,Y) :--
        functor(i."model,.-,--,Å~,Y>,
predicate(i-model,syw}taxt`program,3,Å~,Y) :-
       bu H tin"predica te(iewmodei,-.,--,Å~,Y).
procedure(i-medel,syntax-.prqgram,4,X,Y> :--
       predicate(i-mode1,nt,.,Å~,Y),
procedure(i-medeI,syn'tax-mprogran},5,Å~,Z> :-
       pred ica te(i"fnedel, ..,-,Å~, [ U 'l\] ),
       prec.edure(i-.modet," -.,Y, Z).
cofvrrriand(i-fnodeI,syrttax-program,6,[";--"lX],Y) :-
       procedure(i-model,.-,N-,X,['.'lY]).
rule(i-model,syntax-program,7,X,Z) :-
       predicate(i-model,-.,.-,X,[":--h":y]),
       procedure(i-medeI,",--,Y,[','IZ]),
fact(i-.model,syntax--program,8,Å~,Y) :-
       pred ica te(iMedel,-, .-,X, [' ,'{y]),
clause(i-mBdeI,syntax.hprogram,9,X,Y) :--
       ruIe(i-inodeI,.-,"X,Y),
clause(immodel,syntax-prggram,IO,Å~,Y) :-•-
        fac't(i-model,-.,-,X,Y),

1wwwwwwwwwwwwmmma!l* Exvertise for unification *1
l**>IOIOK>K>l/f>K>l(*>K)k)K)IOK)K>K)k>K>K>K>K>K>k)Ie)i<XOK>K*f>K>K>K>K>iOX)IOK)IOKf>K)IOK>K>l(1

unification(i...model,unify, ,1,Xl,Å~2,Yl,Y2,S,SO) :--

57



        fetch-value(i-model,..',-,Xl,X2,S,XVI,XV2),
        fetch.vaIue(i"medel,-,-,Yl,Y2,S,YVI,YV2),
        variable(i-model,-,.-,XV1,XV2),
        var i ab ie" .tnode 1 , ., .p , YVI , YV2) ,

        shared(i-model,-,-,XVI,XV2,YVI,YV2,S,SO).
unification(irmodeI,unify,2,Å~1,Å~2,Yl,Y2,S,SO) :--
        fetch-vaIue(i-mgdel,-,-,Xl,Å~2,S,XVI,XV2),
        fetch-value(i"rfiodel,...,-,Y1,Y2,S,YVI,YV2),
        uariable(i.mmodel,.,-.,XVI,XV2),
        non.-.variable(i-model,-,-,YVI,YV2),
        substitute(iNmodel,-,-,XVI,XV2,YVI,YV2,S,
unification"pmodel,unify,3,Xl,X2}Yl,Y2,S,SO> :-
        fetch-.vaIue(imodel,-,-,Å~1,X2,S,XVI,XV2),
        fetch-value(i-model,-,-,Yl,Y2,S,YV1,YV2),
        constant(i-model,-.,.-,XV1,XV2),
        constant(i.fnodel,.-,-,YV1,YV2),
        XVI = YVI,
        XV2 = YV2,
unification(i.-.model,unify,4,Å~1,Å~2,Yl,Y2,S,Se) :-
        fetch-value(imlnodeI,-.,-,Å~1,X2,S,XVI,XV2),
        fetch-.uaiue(i-modeI,-.,-.,Yl,Y2,S,YWI,YV2>,
       compound-term(i.modeI,-,-,XVI,XV2),
       compound--term(i-model,-,",YV1,YV2),
        functer(iny.model,-,-.,XVI,['('lXVO]),
        f'unctor(i..model,--,-..,YVI,['('lYVO]>,
       argument-Iist(i-rrledel,-,-,XVe,[')'IXV2]>,
       argument-list(i-modei,-,.--,YVO,[')'lYV2]),
       unification<i-model,-.,-,XVI,['<'IXVO],YVI
       arg-.Iist-unification " -model,-,-,XVe, [')'

so).

,['('lYVO],S,Sl),
Ixv2ri,yvo,[')'Iw2],sl,se).

fetch.-value(i.-model,unify,11,Å~1,Å~2,-.,Å~1,Å~2) :--
       non-variabIe(i-modeI,-.,"-,Å~1,Å~2).
fetch.-value(i..model,ur}ify,12,Xl,Å~2,S,Å~il,X2) :-
       variabIe(i--model,-,-.,Å~1,Å~2),
       not(mmber(((Å~1,X2) $ -),S)).
fetch.value(i-model,unify,13,Å~1,Å~2,S,Z1,Z2) :-
       variabIe(i-.model,".,-,Xi,X2),
       fwefnber((<Xl,Å~2) $ (Yi,Y2)),S),
       fetch.-value(i-modeI,".,-,Y1,Y2,S,Zl,72).

shared(i-.modei,unify,21,
        append([(<Xl,Å~2)

Å~1,Å~2,Yl,Y2,S,SO) :-
 $ <Yl,Y2))],S,SO).

substitute(i...modeI,unify,
        append([((Xi,Å~2)

31,xx,Å~2,Yl,Y2,S,SO) :-
$ (Yl,Y2))],S,SO),

arg-Iist-"unification(ithmodel,unify,41,Å~.1,Å~2,Yl,Y2,S,SO) :--
        argument<iMmedel,-.,M,Å~1,Å~2),
        argument(i"modeI,ny,-,Yl,Y2),
        unification(irmedel,-,-,xx,X2,Yl,Y2,S,Se),
arg-..Iist-unification(i--modeS,urtify,42,Xl,Å~2,Yl,Y2,S,SO) :--
        arguinent(i-model,-.,-,Å~1, [.','lXO]),
       argurnent.-list(i-model,.-,-,XO,Å~2),
        argurnent(irmodel,-,-,Yl,[','lYe]),
        argument-..Iis. t(irmodel,-,.,Ye,Y2),
        unification<imiode1,-.,.-,Å~1,[','lXO],Yl,[','lYO],S,Sl),
       arg-Iist.-unification(i-model,...,.-,XO,X2,YO,Y2,Sl,SO).

IX(***wwwwXOKnoKww*ww**moKww1

58



fx ttxptt.ir`Lise-.- for ip'iorprstger *./
f>IOK>K>IOK>K>IOK>l(>K)tOK>K>}OIOIOIO}(>IOiOIOiOK)K>K>K)X>Kwwnt>K)K>k)IO}OtOK>}<1

interpreter(i.-model,i{)terpreter,1,{-(;oalslPrev...goals],Clauses,S,SO> :--
       sear( h."geal(i-.modeI,n.,-,Goal,GoaIs),
       s. earchmct ause(i-medel,-,--,Goal, [HevddlBedy.] ,Clauses,S,Sl.'),
       env i ronment( i ..jnode l , ... , -,

               [GoalslPrev-goais] , [HeadlBody] , .S,New.mprev"goals),
       t'}Exv-geaIs(im-model,.-,.-,Goa1s,Body,NewnygoaIs),
       i rl terpreter " ke.mode l , .. , -,
               [Neuj-negoa l s l Newm-prev-goa l s] , CI auses , Sl , SO) ,
interpreter(i-modei,interpreter,2,[GaalsIPrevd-geaIs],Clauses,S,Se) :-
       search-goaI(i-model,-,.-,Goal,Goals),
       net(searchthcjause(ianodel,-,.-,
              GGal,[MeadlBody],Clauses,S,Sl)),
       backtrack(l-model,m,N,Prev-goaIs,Clauses,SO),

backtrack(i--model,interpre'ter,ll.,[(GoaIs,Clause,fi'1)lPrevMgoals],Clauses,Se) :-
       search-.goal(i-nymedeI,-,.-,Goal,Goals),
       search-.c l ause..- i nmba()ktrack( i --mode I , mu , .M ,

               Geal,Cla{jse,[HeadIBody],Clauses,5"1,S2),
       environmer}t(i"modet,.-,M,
               [GoaIslPrevMgoals],[HeadlBody],S1,New-.preu-goals),
       s'}esv-goa i s " .-mBde l , L- , pa , Goa l s , Body , Ne","gea l s> ,

        i n terpreter ( i -mode l , M, ,-. , [Ncxsj-.gua I s l New...prev.-goa l s] , C l auses , S2 , SO ) ,

backtrsc;k(i-model,interpreter,12,[(GoaIs,Clausf:,,Sl>lPreu-goals],Clauses,SO) :-
       search-goal G .-mgdel,..,.m,Goal,koals),
       nc} t (searc.hymc l ause.-. i n.-backtrack ( i mmode l , .- , .-- ,

               Goal,Clause,[HeadlBody],Clauses,Sl,S2)>,
       backtrack( i -modet , ... , pt, Prev-.goa l s, Cl allses , SO) ,

searc.hmgoa I ( i .-.mgde l ,interpret.er,21,Geal,[Goall."])•

search...c l ause ( i -modff l , i nter'pre'ter , 31 ,

               Goal,[HeadlBcidy],[[HeadlBod,y]lCIausesl,S,SO) :-
       unifi()ation(i-medeI,ti,k,Coal,Head,S,Sg).
searc;hmc; IatJise( i "mode l , i nterpreter, 32,
               Goal,tHeadlBody],[[.}leadlBody]lClauses],S,(>'e) :-
       net<unificatiot'l(i-model,ny,.-,Gc}aI,Head,S,ge)),
       sear(;h-.c l ause" -.mode l , .- , nt , Goa l , [Head I Body] , {[) l auses , S, E O) ,

environment(i.-.model,interpreter,41,
               [GoaIslPrev-tgoals],(;Iause,S,[(GoaIs, Cl ause, S) lPrev"ttgoa l s] ) .

nc xv.-goals(i.MmodeI,interpreter,51,
               [GoallGoals],Bcdy,Netv.goals) :-
       app(>'rid(Body,Goals,Netv--geaIs>,

searc;h-clausce"..inwbacktrack(i-model,interpreter,61,
               Goai,Ctause,Ciausel,[(;lauseICIauses],S,Se) :--
       search-clause " .Hmodel,-, -.,Goal,Clatjsel,Clauses,S, so).
searchAc l ause- i ri".backtrack< i -.mede I , i r} terpreter , 62 ,

               Goal,Clause,Clausel,[Clau,c,e2lClauses],S,SO) :--
       net(CIause = Clause2),
       searc,hnyclause-in-.bac.ktrack(i-model,M,N,
               (liloat ,Ci at-ise, (l l ausel ,Cl auses,S,l O) ,

1*)i<***>tOt<**Mex*N<)iOl<***xx(>IC"K>K>l(>K*****>}OtOK>K>IOI *****X<***!

!* [)CG rtiles for Iisl re(;urglon ([]) *1

59



1 1

prog (-.948B , -.9481 , .-9482 , -.9483 ) -->

        s(-9480,n-9481,-9482,-9483),
        f (...9480 , d9482 , -9483) .

s(-9736,-9781,..95lO,-.95i1)-->
        h(-9736 , .-.9781 , -951O, -9511> ,
        [J:2])
        [J-l])
        b(-9736,-9781,-.951O,.-95l1),
        [J-1]-
h(-d9736,-9781,-951e,-9511)----->
        pred(-9736),
        [,(,],
        argl(-9510),
        [J[J]t
       varO,
        rl'],
       varl(.-9781>,
        [J]J]e
       arg2(-.9511),
        r>'].
b(.-9736,.9781,-951O,-9511)--->
       conj1,
       pred(-9736),
        [, (J],
       argl(-951e),
       varl(-9781),
       arg2(-.9511) ,
        r)'],
       con.j 2 .
f(--1O188,-1O094,...1e095)->
       pred(-le188),
        r<'],
       argl(-10094),
        [J [J],
        [J]1]t
       arg2(-.ie095) ,
        [•s ))]t
       end.

1wwnmK*wwOKwwKwwwwww*wwww1
1* DCG rules for list rocursion ([XIX]) *1
f*>K>K)K>K)K>tobOiOK)IOIOi(>K)"OIOK)l()K)k>K>K)}OK>K)K)IOIOIOIOK>K>K)IOK>K)K>K)k>K>K>K)K>}OKI

preg ( --9307 , -9308 , .-9309 , -.931O) ---->

        f(-9307,-9309,-931O),
       s ( -.9307 , .ny9308 , -9309 , ...93 3. 0) .

f(-9323,--9398,-9399)-->
        pred(-9323),
        [J(--]1
        argl(-939g),
        [1 [J])
        varO,
        [,l,],
        varO,
        ll,]J],
        arg2<-9399),

                                    60



        F,X,'I        L1 Jt
        end.
s (-9675 , ..9720 , ...9823 , .9824 ) --->

        h ( -.9675 , -.9720 , -9823 , -9824 ) ,

        [1:J]s
        [e.--J])
        b (-9675 , --9720 , m9823, -.9824 ) ,

        [J-J]-
h(.-96'I5,.-9720,-9823,-9824)-->
        pred (ww96-r5) ,
        [,(,],
        argj(.N9823),
        [, [J],
        varO,
        [•t Ip]}
        varl ( or.9720 > ,
        [I •' ]'],
        arg2 ( nv9824> ,
        [,),],
b(m9675,-9720,-9823,ww9824)-->
        conj L
        pred(-9675),
        [,(,],
        ,argl (#-9823),
        varl (.-9726) ,
        arg'2(-9824),
        {I ,t )t]t
        conj 2.

1>K>KroKww)K>Kww<ww(wwwwOKXOK>K***X(*)K*X(.X(**noKl
1* DCC rules for numerical generate-test */
!>K)K)K>K***wa(X(X(***XptouXC**wwf)l(ww*******Xon>K>K**X<**/

prog (wMl 28'7 , .pa7288 , -72g9 , ".729e > --•->

        f ( -.7287 , -?289 , ..- l290) ,
        s ( M.7287 , m-7288 , -'Jt 289 , ." '{290) .

f (-7303 , w7 l/;48 , .. 'r 349) ----->

        pred<-73e3),
        f'<' LL
        arg'1' (...7348•') ,

        fiy,
        arg2(.-7349) ,
        [))s]!
       end,
s (M754 9 , ,in,7572 , ...7 rrI 09 , ny.. l-i 1 O) -'-">

        h(ny7549,-7572,m.77e9,-.7718),
        [J:J]}
        [•--•l]t
       b(.-7549,-7572,..7709,..77iO),
        ['t - 'I]-
h ( -.7549 , .-7572 , --7709 , .-771O) -->

       pred(.7549),
        [•T (s]1
       argl(.7709),
       varl (-.7572) ,
       arg2(.ny771e) ,
        [.i ),],
b(.d7549,-7572,-7709,.771O)-->
       cor}j1,

61



pred(-7549)
r('],
argl(-7709)

'var2<ny-r636)
arg2(-7710)
[J)J])
conj 3,
varl (--7572)
equal,
var2(-7680>
eperatorO,
fig,
conj2,

,

'

'

'

'

'

/>K>K>K>K>rf)IC>K)K>K)k>K>l(>K>K>K)K>K>K>K)K)K>K>IOK)K>Kww>K>K)K**>K)t(*>K>K>}<**f

/* BCG rules fer Iist recursion O */
/wwwwwokww*soKwwwwXOKnv*wwww**wwseK*/
prog ( --5398 , -5399 , --54- OO , --54Ol ) ->

       cla,
       s <-5398 , rk.5399 , .-5400 , -5401) ,

       cla,

s (-5443, -5488 , ...559l , -5592) -•-->
       h(-5443, ..5488, -5591 , .-5592) ,
       [J:J]l
       [J-J]t
       b(-5443, -.5488, -.5591 , --55'92> ,
       [p-p]-
h (-5443 , -5488 , -5591 , -.5592 ) --->

       pred(-5443>,
       [,(,],
       argl(-5591),
       [, [,],
       vare,
       [,I,],
       varl<-5488),
       [•,]p]t
       arg2<-5592),
       [,),].
b(-5443,-.5488,-5591,-5592)-->
       conj1,
       pred(-5443),
       [•t (s -] ?

       argl(-5591),
       varl(-5488),
       arg2(-.5592) ,
       [•- )J]3
       conj2,

1***>K)K>K>K)K*>}Oi<>l(>K>t(>K>l<>k>l<>IOIOk**>K>K*>K>K>K)}OI(*M()iOIOK>K>IO}OI(**>K>kN*/

l* DCG rules for write all of answers */
!***ww>KxxnoK*wwKwwww**"(Xorex*wwwwmx(wwww*/

prog (-4021 , -4022 , --4023 , .-4e24 ) -->

       s(.4e21,.4022,-4023,.d4024),
       cIa(-4021).

s(-4e49,-4391,-4l52,-4392)-->
       h(.4049,-4391,-.4152,-4392),

62



        [7: ,T])
        [ -. .-J])
        b< ...4049 , ...4 39l , -4l52 , .,.4392) ,

        f"'']'
h (-4049 , -M4391 , .-4152 , .m4392) --->

        pred("i+049),
        [-- ()]!
        argl(-4152),
        varO,
       arg2(-4]52>,
        [,) ,i ],
b (-4{}49 , -r-44391 , -4 l 5' 2 , -Ii t-:'92 > -->

       c:on,j 1 ,
       write,
        [J(,],
        term,
        [)) -I ]?
       colt}j 3 ,
        fail,

/*>K>i<***rvN**XC**>}(:>}(N(X(*N("(**"<S<"<>G<*.M<***>K>K>"<>l('h}<X("('a<>K"C)i,<t>"exX(>I(1

!* DC(; rt.iles for d{.tfm}y b"uccess >}</
!-**>IOK>K>K***)iO}(*>}OK>K>K>K***X***X<>KNOKA<**>K****X<******X(*f

pro.g ( ... 3•)g36 , m383Jl , "6,8[38 , m3839 ) -->

        f, (-3836, .-3837, .-3g3e , -.3839) ,
        f (---58 56 , -..3838 , --3839) ,

       C• l a( H..3836) ,

s (-409F , -4e96 , pt409'g , "4•e98) --•>

        h< pt.4095 , .-.4096 , -4097, an4098) ,
        f,: •T JI ,

        [,-,],
       b(.A095,.ma4e96,-4e97,-4e9B),
        ff `']'
h(.-.4- C)9.F} , ny4e96 , .-.409H( , ....40981 -->

        pred < -- Q3S64 ) ,

        IJ.'('],
        Largl <"3933) .,
        ter' il1 ,

        nrg2 ( Hny3934 > ,
        l'')'l} .
b ( m.4e95 , r,4e96 , rw4e9 l , ed4e98) -->
       (). t7. }. It}j 1 )

        fail,
f ( dv43 57 , ny.4• 2e2 , im4203>-->

        pr`ed (-/# 57) ,
        [,(,],
        argl ( .r42e2) ,
        vare,
        arg2(w4203),
        [1-) )] f
       end,

!*>K)K>K>KX<*>K)K**>K>K*>K>K>KN(X<>K>K>K>K>K*>KN(**"(********ww***>I(*1

!* DCG rules for cut--faH combinatior} */
IX(*>IOK.>K>K>l(>K***********>K)IL,****>k>K**X<thf*****>K>K**Y.****f

prog(--3060,-3e61,,.-[3062,ma3063)--e->
       cla,

                                    63



s<.N3329

h(-3329

b(-3329

 s (.-3060 , d-3061 , -3e62 , .N3063) ,

 cla.

, -3330 , -3331 , -3332> ---->

 h<-3329,-333e,-3331,-3332),
 [ •t :J])

 [s-1]}
 b (--3329 , --3330 , --3331 , --3332) ,

 [J-J]-
,-3330,-3331,-3332)--->
 pred (ny3093) ,
 [)(J]t
 argufnent-Iist(-3110),
 [,),].
,-3330,-3331,-3332)-->
conj1,

 r!'],
 [Jt)])
 fail.

/wwwwnv**ww***wwwwwwwwwwww!
/* DC(; rules for tree rectirsion *1
1maOKXOKww*rmKwwwwwwowwOKww***ww/
prog(-.7866,-7867,-7868,.-7869,-.7870,-787D---->
        f (.-7866 , .-786g , .-7869 , .-7870 , -7871 ) ,
        s ( .-7866 , -7867 , -7868 , ri.7869 , ...7870 , -787l ) ,

        cla(-7866),

f ( --7884 , ...7957 , -7958 , J9e7 , -7924) ---->

        pred ( .-7884 ) ,
        [,(,],
        argl(-7957),
       predl (..7907) ,
        [)(s])
       argument-.. I i st (-7924) ,
        r)'],
       arg2<-7958),
        [])•t]}
       end,
s (-8247 , -8296 , .-84e2 , in84e3 , .-82'10, -8723) --->

       h (-8247 , ..8296 , pt84e2 , .m8401S , ny82YO , .v8723) ,

        [J:1]t
        [)inJ])
       b(-8247,-8296,-8402,ri8403,ny8270,-"g723),
        [S- ,1 ] -
h(.-8247,-8296,-8402,-.84e3,-8270,-8723)-->
       pred ( --8247> ,
        [1(J]r
       argl ("-8402) ,
       predl(-8270),
        [)<)])
       al (.-8287) ,
       varl (.-8296) ,
       a2<-83e5),
        [•t )p]}
       arg2(-8403),
        [J>s])
        {-8723 is -8287+t.8305+1>,
b ( -.8247 , "8296 , pa8i+ 02 , .-84, 03 , -.8270 , -.8723 ) --->

                                   64



       c.or}j 1 ,
       pred("g247),
        [,(,],
        argl(-84e2),
       varl (-8290 ,
       arg2 < -.8403) ,
        [,)J LI •

1**>K>Kww>K>K)K>k)K*>KXOK>K)K*>K)K>K>K>K>K>K*"Ok)K>K**>KN(X(*Y,(*xu(*)K>K>kl

1* DCG rules for cenjur}ctive rectirsion */
l>k>K.***>k>k>K)K>K>lo}o}(****)}oK)K>K*)K>K****>K>K*xu<**N(*>K>K>K***>K>Kl

preg ( ti7866 , ny7867 , --7868 , ...'i869) -->

       cla,
       s (-7866 , "-7867 , .-7868, -7869) ,
       cla.

s(th.7911,v.7942,.-81e4,-g105)-->
       h<-7911 , -.7942, -.al04 , --8•1 05) ,
        r-': '],
        [1-)]s
       b(-791 1. , -7942, -.81 04 , m8 11 0E > ,

        [7iJ]-
h( .t.79 1. I , ...7942 , .H8104 , nvg105 ) --->

       pred(d7911),
        r' ( -' ],

       argl(-8104),
        [)(•t])
       varl(-7942>,
        Il •i ,,],
       var2 < ..7959 ) •
        [,T )J])
        arg2<.-8105),
        li'')•].
b(n791{,ua7942,hS104,-g105)-->
       pred (-791 D ,
        [• } (1] l
       argl (-81 e4- ) ,
        varl(-7942),
       arg2(-81,05),
        [,),],
        t'''']'
        pred (m8e50 ,
        ['('ll,
        argl ( .ri81e4 ) ,
       var2 ( .th8079) ,
        arg2 ( e-81 05) ,
        [,),].

1*f>IOK)IOK>"OK)}(**)K)t(>K>}(*>IOK>}(*>IOK>K>K>l(**>K>K>K*>K>l<*>K>}<***>}Ot(**>K)K*f

1* DC)G rtiles for nuinerical recursion *1
!*>K>k>K)k>k>Kww>K)K>K******Xou**ex***>K)Kww>K>K>K>K>K*>K>K*>k>kl

Pr09 ( --7374' , --7375 , -e-73 -(6 • -•- 'l 3?7 ) -->

        f("7374,--7376,-7377),
       s<-73]' 4- , va'l IS' -i5, M73-r6, .-.73'i'7 >• .

f (-7 [S90 , ww7455 , mMt4.36) ---->

       pred < -.739e) ,
        [,<,],

65



        argl (.-7435) ,
        fig,
        arg2(ot7436),
        [l>J]t
        end.
s ( -.7636 , -7659 , -.7796 , --7797 ) -->

        h(..7636,-7659,-7796,-7797),
        [J:,],
        [J-1]?
        b(-7636,-7659,m7796,-7797),
        [s- .t ]+
h ( -t-7636 , -m -l659 , -•7796 , -7 797 ) '-->

        pred(.7636),
        [-1 ()]J
        argl(-7796),
        varl(-7659),
        arg2(-7797),
        [,>,].
b( ..7636 , --7659 , ..7796 , p7797) --->

       conj1,
        var2(-.7700) ,
       equal,
        varl(m7659),
        operatorO,
        fig,
       conj3,
        pred(-7636),
        [J(,],
        arg2(-7796>,
       var2 (.-7765) ,
        arg2 ( .-7797) ,
        [•, )p])
       cenj2,

f)K>K)IOK>l()tOIOK>k***X<***>k>K*>IOpt*X(>K>K***>K)K>}OK>K>K>K>I(>K>K*)X>K>k)l(>K*/

!* DCG rules for catch all *1
1*>K>ioK>l(>K)t(>Kn(ww>K)loK>K*)loK>K>K)loK*>foloioK>K>K>I()K>K>K)toK)K)IoX>K*>K)K*f

prog ( =1 805 , ..1806 , -H18e7 , .-1808) ---->

        f-cla(--1805),
        f(-l805,-l807,-1808).

f (--1832 , ve1898 , -.I899) ----->

        pred(.1832),
        [J()])
        argl(-IS9g),
       varl(-1855),
        'a rg3 ( ..1864) ,

       var2(-1873>,
        arg2 ( mu /t 899) ,

        [•-)•1]!
       end,

1*>KXOK>wwK*>K>K*>K)K>K>K)X>K)k>K>K>K)K>K>k*>K)K>K>K**"Ok.**>K>K*>K>K>KX(*!

1* DCCi rules for subconcept *1
/***>K)K>K>K*>K>kOK>K>k****ww**>K>K**>K>K*>K)K>K>K*>K>kX(*wwww*1

smalI- letter---->
  [Å~],
 <member(Å~, [a,b,c,d,e, t' ,g,h,i,j,k, I,m,n,

66



                ('j , p,,q, r'
capitaI.Ietter--->
        [Å~] ,
       {gxxnber(X', l''A','
        •' tvl' , 'N' , •' O-' , 'P' ,

digit---->
        [Å~],
       {mell)bc>Nr' (X, llO, 1, , 2

builtn.in---•>

       builtin.
symbol-->
        [X -1 ,
       {membe- r(Å~, [' +','-
                 '$' , 'A -'
fig--->
        [x],
       {intege)r(Å~)}.

operaterO-->
        [,+J],
operatore-->
        tl"-"]`
end-->
        [J-)]-
end--•>
        ['1'],
       Ii ' "'-" ' .J} ,

        [ J ! ,l ] •.•

       [1 '].
%
char---->

       smaIl.-letter,
char-->
       digit,
anychar--->
       smalI.-Ietter,
anyc,har-->
       capitalanletter,
anychar----->

        digiL
an.vct}ai•L--->

       symboI,
charrv. I i st-•->

       char,
c.harptiifst--->

       char,
        [ .t ny.. .t :l )

       char-list,
char.-. H s t--->

       char,
       c.harthlist,
symbfilwhlist-->
       symbol,
symbg l ... I i gt--->

       symbel,
       symboi-.Iist,
anyc.har.... I ist--->

       an.ychar.
any, c.har-.,I igt---•>

       anyc.har ,

,s,t

%i,

,3, 4.

'

'

"u-

()

'R'

,5,.

e) *s
i&. }7

,

'v'

,

(>

, ktl , X, 3;, , Ll :I, > >

O ,'[','F','G','}l
'S','T','U','V,'

,7,8,9]>},

'l ,'<",'>',
tvl JJ '- j 1  ) tee

67

J\J
?ss

))

w'
} ,JJ
1Å~1))

r -f @• ) 7 J # 1

J ) 11JJ   '

'

Y

'

])>•

,J K''
',' z'

"t""'

])}•



    - anychar-list,
anychar. l i st--->

       anychar,
        [)--)]1
       anychar- li st.
varO--->
       cap i ta l '-. I et ter .

uarO--->
        [J-J])
       char-tist.
varO---->

        [1-}]-
varo--->
       capitalNletter,
       char.. I ist,
uarl(V,Å~,Y) :-
       varO(X,Y),
       eqdifset(X,Y,V),
var2(V,Å~,Y) :--
       vare(Å~,Y),
       eqdifset(X,Y,V),
atom--->
       sma H -- l et ter ,
atOITI-->

       smalI-Ietter,
       char... I i st .

atom-->
       symbol .- l ist.
atom-->
       [JJ•T"]}
       anychar-list,
       [,1J#1]-
atom-->
       [P('t]7
       anychar".Iist,
       [,),1,
constant---->
       atBm,
constant-->
       fig,
%
%
pred<P,Å~,Y) :-
       atem(Å~,Y),
       eqdifset(Å~,Y,P),
predl(P,Å~,Y) :-
       atom(Å~,Y),
       eqdifse't(Å~,Y,P).
strtjcture(P)--->
       pred(P),
       [J(J]l
       argument-nlist(-.),
       [,),],
list-->
       [J[•l]t
       [,]•,].
Iist-->
       [, [,],
       argument-list(.-),
       [,],].

68



list-->
       il' -' [•],
       argument-. I i st(...) ,
       EI •' I' Il ,

       argument,
       [J]s 1] .
argument--->
       varO.
argufnent•--->

       list'
argunent-->
       corl.g. tat"1t,
argumer}t---->

       structure(P).
arguBient.-. I i st < 1 ) ---->

       argument.
argtjme.nt-. I i st (A)--->

       argument,
       [•1 •. p])
       arg.mmentT-. I ist(B> ,
       {A is B+'l>,
a1(bl -->
       arg '1 (A) ,
a2(A)--->
       arg2(A),
argl ( e ) --)>

       [-],
arg l, (A)-->
       argumen t. ny.I ist(A) ,
       [ .1 -. " ] -

arg2(O)--->
       t] '
arg2(A)->
       {1)1,]t
       argument--list(A)
arg3(O)--->
       f')e '- ]+
arg3<A)-->
       [•1)?])
       ar{ ument-.Iist(A),
       [Jtt]-

terrn-->
       cpnstanL
term--->
       varO.
term-->
       lisst,
term--->
       built--in.
term-->
       structlj re (P> .
%
%
goal-->
       structure(P).
goal---->

       byed(--) ,
geal--->
       v!'].

69



goai-->
       varO,
        [n,
        [s],
       varO,
       operatorO,
        fig,
goal-•->
       vare,
        [ 'l ],
        [s],
       vare,
       operatorO,
       varO.
conj unct i en--->

       goal.
ccnj unct i en------>

       goal,
        [•tes]p
       conjunction,
conj i --->

       []•
conj1-->
       conjunction,
        [1)2]-
cenj 2->
       []•
conj2-->
       [)7s]i
       conjunction.
conj 3-->
       [J1p]-
conj 3--->

       [peJ]}
       conjunction,
       [Jtl]-
ruIe(P)-->
       structure(P),
       [J:J]s
       [J.J]t
       conjunction,
       [)-J]-
fact(P)->
       structure(P),
        [-t -s]+
clauseO(P)---->
       ruIe(P),
cIauseO(P)->
       fact(P),
program(P)--->
       clauseO<P).
program(P>--->
       cIauseO(P),
       program(P),
cla(.-)--->
       []•
cia(P)-->
       program(P).
f.cla(P)-•-->
       fact(P).

70



f--ct a(P )' --->

       fact (P),
       f-.cIa(P),

'fait'---->
       [f Il ,
       [a],
       [i l. l. ,

       [l .] ,
k,rite--->
       [W] ,
       [r],
       [i]'
       ft]'
       [e],
nl-->
       [n],
       [l] ,
equaI-->
       li],
       [s],
eqdifget(A,A,fllD :-
       i,
eqd ffset(llf'>lÅ~],Y,{sAlZ]) :•-
       eqdifset(Å~,Y,Z),

71



[1]

[2]

[3]

[4]

[5]

{6]

[7]

[8]

[9]

[10]

                    BIBLIOGRAPHY

Carbonell, J. R.: AI in CAI: An artificial intelligence

approach to computer-aided instruction, IEEE Trans. Man-

MaChe SYSt.r VOI.MMS-11r NO.4, PPel90-202 (1970}.

Barr, A. and Feigenbaum, E. A.: The Handbook of Artificial

Intelligence, Vol.II, PITb4AN, London, pp.225-235 "983).

Papert, S.: MINDSTORMS - Children, Computersr and Powerful

Ideas, Basic Books, New York (1980).

ShapÅ}ro, E. Y.: Algorithmic Program DGbugging, MIT Pressr

London (1982).

Fujii, K. et al.: A Conversion of C-Prolog into the Super

Mini-Computer MVI8000II, Proc. of 28th National Conference

of Information Processing Society of Japan, 2G-7r Tokyo, [Å}n

Japanese] (1984).

Barr, A. and Feigenbaum, E. A.: The Handbook of Artificial

InteUigence, Vol.I, PITMAN, London, pp.141-222 (1981).

Goldstein, D.: The genetic graph: a representation for the

evolution of procedural knowledger in Sleeman, D. et al.

(ed.), Intelligent Tutoring Systems, Academic Pressr London,

pp.51-77 (1982).

Brown, J. S. and Burton, R. R.: Diagnostic models for
procedural bugs in basic mathematical skills, Cognitive

Science 2, pp.155-192 <1978}.

Sleeman, D. and Hendley, R. J.: ACE: A system which Analyses

Complex Explanations, in Sleeman, D. et al. (ed.)r
InteUigent Tutoring Systems, Academic Pressr London, pp.99-

118 (1982).

Clancey, W. J.: Tutoring rules for guiding a case method

                         72



[11]

[12]

[13]

[14]

[15]

[16]

[17]

dialogue, in Sleeman,D. et al. (ed.), Intelligent Tutoring

Systems, Academic Press, London, pp.201-225 (1982).

Clocksinr W. F. and Mellish, C. S.: Programming in Prolog,

Springer-Verlag, New York (1981).

Nakarnura, Y. et al.: An Interface of the Tutoring System for

Programming in Prolog, Proc. of 30th National Conference of

InformatÅ}on ProcessÅ}ng Society of Japan, 4L-3, Tokyor [in

Japanese] (1985).

Pereira, F. C. N. and Warren, D. H. D.: Definite Clause

Grammars for Language Analysis, Artificial Intelligence 13,

pp.231-278 (1980).

Gotor S.: A Geornetrical Displaying Method for the Prolog

Execution, Proc. of WG/SYM of IPSJ, Vol.27, No.6r [in

Japanese] (1984).

Nurnaor M.: Visual Debugging Tools for Prologr Proc. of
WGISYM of IPSJ, Vol.32, No.1, [in Japanese] (1985}.

Kawai, K., Ganke, M. and Toyoda, J.: FLOGS: An Extended

PROLOG System for Procedural processing, Trans. of
Information Processing Society of Japanr Vol.26r No.lr
pp.112-120r [in Japanese] (1985).

Kawai, K., Mizoguchi, R., Kinoh, H.r Ganker M., Kakusho, O.

and Toyoda, J.: A Framework for Intelligent CAI Systems

based on Logic Programming and Inductive Inference, Trans.

of Information Processing Society of Japan, Vol.26, No.6,

pp.1089-1096, [in Japanese] {1985).

73


