|

) <

The University of Osaka
Institutional Knowledge Archive

Tale AN INTELLIGENT CAI SYSTEM BASED ON LOGIC
PROGRAMMING

Author(s) |[Aa&, A

Citation |KFRKZ, 1986, EHIHwX

Version Type|VoR

URL https://hdl. handle.net/11094/1582

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

AN INTELLIGENT CAI SYSTEM BASED ON

LOGIC PROGRAMMING

KAZUHISA KAWAT

February 1986

Graduate School of Engineering Science

Osaka University

ACKNOWLEDGEMENTS

First and foremost, the author would like to express his
sincerest gratitude to Professor Jun'ichi Toyoda, this thesis
supervisor. Prof. Toyoda has had a great influence on what the
author accomplished in these years, and what he knows today. He
has been a constant source of invaluable advice and encouragement
throughout the course of the research for this thesis.

Special thanks are also due to Prof. T. Fujisawa, Prof. T.
Kasami, Prof. K. Takashima, Prof. N. Tokura and Prof. K. Torii
for their invaluable guidance through the course of author's
undergraduate and graduate studies.

The author wishes to thank Prof. O. Kakusho of the Institute
of Scientific and Industrial Research for his invaluable
suggestions and encouragements.

The author wishes to acknowledge valuable discussions with
Assistant Prof. K. Uehara. He also escorted the author's first
steps in Prolog.

The author is also grateful to Assistant Prof. R. Mizoguchi,
Assistant Prof. M. Yanagida, Assistant Prof. T. Yamaguchi and the
colleagues of Prof. Toyoda's laboratory and Prof. Kakusho's
laboratory, in particular, Mr. M. Ganke, Mr. H. Kinoh and Mr. Y.

Nakamura.

ii

ABSTRACT

Kazuhisa Kawai, Graduate School of Osaka University
February 1986

Doctoral Thesis: An Intelligent CAI System Based on

Logic Programming

The problems studied in this thesis are concerned with
educational applications of the computer technology and, in
particular, centered on ICAI systems based on logic programming.
Educational applications of the computer technology are

classified 1into two <categories according to the role of the

computer. First, a computer instructs the students as a human
teacher. ICAI systems are included in this category. Second,
the student wuses a computer as learning tools. One of the

typical systems of this category is LOGO which provides an
environment for learning the skills of problem-solving. The main
components of an ICAI system are the expertise, the student model
and tutoring strategies. The student model manages what the
student does and does not understand, and the performance of an
ICAI system depends largely on how well the student model
approximates the human student. We propose a new framework for
ICAI systems which uses inductive inference for constructing the
student model from the student's behavior. In the framework,
both the expertise and the student model are represented as
Prolog programs, which enables to express meta-knowledge that is
the student's knowledge of how to use his knowledge. The
framework is also implemented in Prolog. Since the construction

of the student model is performed independently of the expertise,

iii

the framework is domain-independent. Therefore, ICAI systems for
any subject area can be built with the framework. Two actual
ICAI systems, for programming in Prolog and for chemical reaction
equations, are constructed with the framework.

For the purpose of acquiring programming skills, the
following two learning schemes are needed; to give the knowledge
for the syntax and basic techniques of the language and to let
the students practise programming in the language. These two
schemes correspond to two categories of educational applications
of the computer technology. From this point of view, we develop
a new ICAT system for programming in Prolog that has both
teaching aids and the learning environment. Teaching aids are
constructed with the framework for ICAT systems together with the
domain-specific knowledge for the expertise of programming in
Prolog and for tutoring strategies. The learning environment has
a parser to diagnose the student's program and a visual Prolog

interpreter.

iv

CONTENTS

CHAPTER 1. INTRODUCTION ..e.... cescscssrecassnne cecssccsaa cone

CHAPTER 2. A FRAMEWORK FOR ICAT SYSTEMS O
2.1 Outline of the Framework seeccecsccona cecacensacs
2.2 Knowledge Representation Based on Logic Programming ..
2.3 Student Modelling Based on Inductive Inference

2.3.1 Related WOrKS ceciecesencacossnesnsosscsnssnnsssnsas
2.3.2 Student Modelling by MIS ..cervceescess cetescsecena

2.3.3 Pedagogical Validity of Student Modelling

2.3.4 Meta-Knowledge Modelling ..eeesescessccescccsse cesa
2.4 Extraction of Misconception by PDS .. eeeeecensss ceansaa
2.5 Expertise ModuUle tuiieeececccceacsanccsanssnaassansanscnscs
2.6 Tutoring Module and Tutoring Strategies .eceeeees. cessee
2.7 Interface Module ...iicienvesocncs ceeecseesuseasessenanas

CHAPTER 3. SPECIFIC SYSTEMS CONSTRUCTED

WITH THE FRAMEWORKcccececcsnss

3.7 An ICAI System for Programming in Prolog
3.7.7 BasiC DeSignN ceececescssccccscoscscsssnsnscssa
3.17.2 Curriculum of Programming in Prolog
3.17.2.1 The Goal of Instruction

3.17.2.2 Curriculum of Programming in Prolog

3.17.3 System Implementation

3.17.3.17 Expertise for Programming in Prolog
3.17.3.2 VPI for Learning Environment
3.17.3.3 Tutoring Strategies

3.1.3.4 Interface Module

23

23

23

25

25

26

28

28

34

36

38

3.1.4 Experiments

3.2 An ICAI System for Chemical Reaction Equations

CHAPTER 4. CONCLUSIONS

APPENDIX: Expertise for Programming in Prolog (Listings)

BIBLIOGRAPHY

vi

41

47

53

55

Fig.1

Fig.2

Fig.3
Fig.4
Fig.5

Fig.6

Fig.7
Fig.8
Fig.9
Fig.10
Fig.11

Fig.12

Fig.13
Fig.14
Fig.i5
Fig.16

Fig.17

LIST OF FIGURES

Diagram of the framework for ICAI systems

Schematic representation of knowledge

for reaction of acid and salt cecscescsseccsesseea cnee

Block Diagram of general ICAI systems

Examples of queries set to student

Illustration of expertise moduleceece-n

Block diagram of the ICAI system for

programming in Prolog ... cecececcrascaceccccsconcceca .o

The portion of proof tree displayed by VPI

Screen desSign .. ceiensccaccccncnn creeesessee ceecasen

Example of a training session on unification

Knowledge for unification in Prolog .e.eeeececececes

Query examples by MIS ..ceeiececccscccnannnse

Example of a training session

on programming techniques .eececeecee ceces
Example of VPI's output secaasene
Diagram of knowledge hierarchy .ecececees
Example of a training trace ...ceeeces e
Contents of expertise ..ieecnecncncens e
Constructed student model cecraes

vii

e 0 00 0000

11

16

19

24

35

40

42

43

44

45

46

48

49

50

51

LIST OF TABLES

Table.1 Curriculum of the ICAI sSystemM .ceceveececccccacnascss 27

Table.?2 Commands and their functioNS .ceeceecseccccccscscccssse 39

viii

CHAPTER 1

INTRODUCTION

Educational applications of the computer technology are
classified into two categories according to the role of the
computer. First, a computer instructs the students as a human
teacher. Electronic page-turners, frame-oriented CAI (Computer-
Assisted Instruction) systems and ICAI (Intelligent CAI) systems
are included in this category [11[2]. Second, the student uses a
computer as learning tools. One of the typical systems of this
category is LOGO [3] which provides an environment for learning
the skills of problem-sclving. Systems using games and
simulations as 1learning tools are also classified into this
category [11].

The main components of an ICAI system are the expertise, the
student model and tutoring strategies. The student model manages
what the student does and does not wunderstand, and the
performance of an ICAI system depends largely on how well the
student model approximates the human student. We propose a new
framework for ICAI systems which uses inductive inference for
constructing the student model from the student's behavior. In
the framework, both the expertise and the student model are
represented as Prolog programs, which enables to express meta-
knowledge that is the student's knowledge of how to wuse his
knowledge. The framework is also implemented in Prolog. Since
the construction of the student model is performed independently
of the expertise, the framework is domain-independent.
Therefore, ICAI systems for any subject area can be built with

the framework. Two actual ICAI systems, for programming in

Prolog and for chemical reaction equations, are constructed with
the framework.

For the purpose of acquiring programming skills, the
following two learning schemes are needed; to give the knowledge
for the syntax and basic techniques of the language and to let
the students practise programming in the language. These two
schemes correspond to two categories of educational applications
of the computer technology. In this thesis, they are called the
interactive teaching system and the environmental learning system
respectively. From this point of view, we develop a new ICAI
system for programming in Prolog that has both teaching aids and
the learning environment. Teaching aids are constructed with the
framework for ICAI systems together with the domain-specific
knowledge for the expertise of programming in Prolog and for
tutoring strategies. The learning environment has a parser to
diagnose the student's program and a visual Prolog interpreter.

In chapter 2 we describe a framework for ICAT systems based
on logic programming. In the framework, student modelling can be
considered as a process of inducing the whole understandings from
the student's behavior. Hence, it is possible to model any kind
of the student's wunderstandings wusing a general inductive
inference on the model representation language Prolog.

In chapter 3 we present two specific ICAI systems, for
programming in Prolog and for chemical reaction equations,
constructed with the framework. These applications demonstrate
the domain-independency of the framework. In order to construct
an specific ICAI system on the framework, three kinds of the

domain-specific knowledge are needed; the expertise, tutoring

strategies, and the knowledge for interface. In the chapter,
three kinds of the knowledge for each ICAI system are described
and experiments of them are mentioned.

Chapter 4 is the closing chapter, in which we summarize the

content of this thesis and point out the way to future research.

CHAPTER 2

A FRAMEWORK FOR ICAI SYSTEMS

2.1 Outline of the Framework

The overall configuration of the framework for ICAI systems
is shown in Fig.l. The expertise module gives problems and
comments to the student one by one. The student's responses are
evaluated Dby the expertise and used to construct the student
model. Shapiro's inductive inference algorithm called MIS (Model
Inference System) [4], which synthesizes a Prolog program from
the given facts, 1s applied to build the student model from the
student's behavior. In modelling stage, the tutoring module
chooses the next problem or comment to be presented. When the
model construction is completed, the student's misconceptions are
extracted from the student model using PDS (Program Diagnosis
System) which is also developed by Shapiro [4]. The student's
misconceptions are identified as bugs in the Prolog program
representing the student model. The identified misconceptions
are sent to the tutoring module. The tutoring module chooses the
next problem or remedial comment suited for the misconceptions
and indicates it to the expertise module.

The framework is quite independent of the subject area. Any
specific ICAI system can be built based on the framework with the
specific expertise, tutoring strategies and the knowledge for
interface.

Both the framework and its application systems are
implemented on the super mini-computer MV/8000II in MV-Prolog.
The programming language MV-Prolog is an extended version of C-

Prolog on the VAX systems ([5]. It has the wuseful interface

STUDENT’S
MISCONCEPTIONS

STUDENT
MODEL

EXPERTISE |ammem| — TLTORING

REF I NEMENT
OPERATOR

AN 4
M 1 S

N

N

4

INTERFACE

T

STUDENT

DATA FLOW

e CONTROL FLOW

Fig.1 Diagram of the framework for ICAI systems

including windows, menus and graphics.

2.2 Knowledge Representation Based on Logic Programming

Prolog has the following distinctive features as a knowledge
representation language [6].

1) Deductions on the representation are guaranteed correct.

2) The derivation of new facts from old ones are mechanized.
Therefore, Prolog is one of the most practical language for the
knowledge information processing. 1In particular, we look upon as
important that Prolog has an ability to represent the procedural
knowledge. Both the expertise and the student model are not
simple data-bases of course material, but include procedural

knowledge concerning causal or relational reasoning, deduction

and problem-solving. Prolog has a capability to represent both
data and procedure as a program. Prolog is also suitable for
inductive inference. Therefore, we employ Prolog for

representing the expertise and the student model.

Some students can solve the basic problems but cannot solve
the applied problems. They have the specific knowledge but
cannot use it correctly. In order to model this type of
misconceptions, the model (knowledge) representation must be
possible to manage the meta-knowledge which is the knowledge of
how to use the knowledge. For example, we consider a chemical
reaction of an acid and a salt.

(1) soluble salt + acid

-> precipitated salt + acid
(2) salt with volatile acid + unvolatile acid

-> salt with unvolatile acid + volatile acid

Each of the above equations represents the basic knowledge.
Equation (1) represents that when a soluble salt reacts with an
acid, it forms a precipitated salt and an acid. Equation (2)
also represents that a salt with an unvolatile acid and a
volatile acid are formed by the reaction of a salt with a
volatile acid and an unvolatile acid.

Solving the applied problem of a chemical reaction of an
acid and a salt, the above basic knowledge must be wused in
correct manner. An expert solves the applied problem using the
above basic knowledge as follows:

i) if a precipitated salt is formed, then apply the

equation (1).

ii) if a reactant is a precipitated salt and a product is a
soluble salt, then apply the equation (1) in the opposite
direction.

iii) if conditions of the equation (2) are satisfied, then
equation (2) is applied.
This expertise 1is the meta-knowledge of the knowledge for
chemical reactions of salt precipitation (equation (1)) and for
chemical reactions of acid volatility (equation (2)).

The framework incorporates a hierarchical structure in model
representation, so that the meta-knowledge is represented in the
meta-level worild. Figure 2 illustrates the hierarchy of the
above example. A meta-level world named reaction of acid and
salt represents the meta-knowledge of the basic knowledge that is
represented as two worlds named reaction of salt precipitation
and reaction of acid volatility. Figure 2-(b) shows the model of

a student who cannot solve applied problems. The student's

REACTION OF ACID AND SALT

REACTION

.- REACTIONT.

REACTION
notCinverted-REACTIONL).
REACTI0ONZ.

/

Z

N

AN

REACTION OF SALT PRECIPITATION

REACTION OF ACID VOLATILITY

(REACTIOND)
SOLUBLE SALT + ACID
-> PRECIPITATED SALT + ACHD

(REACTION2) :
SALT WITH VOLATILE ACID + UNVOLATILE ACID
-> SALT WITH UNVOLATILE ACID + VOLATILE ACID

(a) Expertise

REACTION OF ACID AND SALT

REACTION
REACTION

I~ REACTIONI.
+- REACTIONZ.

/

N\

REACTION OF ACID VOLATILITY

REACTION OF SALT PRECIPITATION

(REACTIONT)
SOLUBLE SALT + ACID
-> PRECIPITATED SALT + ACID

(REACTION2)
SALT WITH VOLATILE ACID + UNVOLATILE ACID
-> SALT WITH UNVOLATILE ACID + VOLATILE ACID

(b) Student model

Fig.2 Schematic representation of knowledge

for reaction of acid and salt

misconception of the incorrect use of knowledge is modelled as
the bug in the meta-level world.

The hierarchical structure of the expertise contributes to
forming the hierarchy of the expertise that is usually
represented as chapters and sections. This hierarchical
structure gives the formalism of the expertise a modularity.
Moreover, restricting the range of student modelling within one
world makes the modelling efficient. The hierarchical structure
is implemented by giving each predicate an extra argument
indicating the world which includes the predicate.

A teacher can organize course material according to 1its
hierarchical structure, because no restriction on the
identification of the hierarchical structure is imposed in the
framework. The important point is that the framework has a
facility of representing hierarchical material and that a teacher

can use it very easily.

2.3 Student Modelling Based on Inductive Inference
2.3.17 Related Works

The major components of an ICATI system are following three
modules [2]:

1) Expertise module; this module has the knowledge of the
subject matter, and use it to generate problems, to evaluate
student's replies and to reply to questions from the student.

2) Student model module; this module generates the student
model which manages what each student does or does not
understand, and how he obtains the solution.

3) Tutoring module; according to the student model, this

module chooses the next problem or the remedial comment, and
instructs them to the expertise module. Also, this module
controls overall system behavior.

Figure 3 illustrates the three components and the mutual
relations. Since the system performance depends on how closely
the student model approximates the student's status, the student
model is considered to be the most important one. In particular,
what kind of student's misconceptions the student model can
manage determines the educational effect. Although a student's
mistake 1s either a wrong solution or a missing solution, the
student's misconceptions that are the sources of the mistake are
divided into three categories:

1) A lack of knowledge; a student does not have a specific
knowledge of course material. He, for example, does not know the
capital of Brazil.

2) The incorrect knowledge; a student has the incorrect
knowledge. For example, he believes that the capital of Brazil
is Rio de Janeiro.

3) The incorrect use of knowledge; a student has the
specific knowledge, nevertheless, he cannot use it or uses it
incorrectly.

Most traditional ICAI systems have employed either the
overlay or bug approach to modelling. In the overlay approach
[7], the student's understanding is represented as a subset of
the expertise. This modelling marks each knowledge according to
whether a piece of evidence indicates the student has it or not.
In this approach, only one category of misconceptions, a lack of

knowledge, can be modelled, and the others, the incorrect

10

STUDENT MODEL \
/]/ \[\ / TUTORING STRATEGIES

EXPERTISE

T
L

INTERFACE

I

STUDENT

A
(DATA FLOW

e CONTROL FLOW

Fig.3 Block diagram of general ICAI systems

11

knowledge and the incorrect use of knowledge, cannot be done. 1In
the bug approach [8], the student's knowledge is represented as a
perturbation of or derivation from the expertise. The bug model
has a good representability and can manage all of three
categories of misconceptions. The modelling, however, depends so
heavily on the expertise contents that it is difficult to make
the modelling process independent of course material.

We devélop a new framework for ICAI systems based on logic
programming and inductive inference. The student model is
constructed by a general inductive inference to model all of

three categories of student's misconceptions.

2.3.2 Student Modelling by MIS
Since the model representation language of the framework is

Prolog, the model inference algorithm MIS can be used as model-

constructor. MIS induces the Prolog program which satisfies all
of the given facts. In modelling of the framework, facts are
obtained from problems and student's replies. The induction

process 1is a repetition of making hypothesis and verifying it
until obtaining a complete program. When MIS generates a clause,
MIS gives the oracle [4], who knows everything on the target
program, the following three kinds of queries concerned with the
clause.

(1) What predicates are used in the body of the clause.

(2) The argument type of each predicate.

(3) The validity of each predicate.
The refinement operator [4] of MIS generates a new clause as a

hypothesis using the oracle replies to these queries. In the

12

framework, the most general refinement operator is employed so as
to synthesize all of the program that is indicated by the oracle.
A hypothesis for the target program is set up, and then it is
verified whether all of the given facts are satisfied by the
hypothesized program. If there is an wunsatisfied fact, PDS
identifies the bug of the hypothesized program. It also gives
the oracle a type of queries as follow:
(4) The validity of each goal that is executed.

A clause identified as a bug is removed, and a new hypothesis is
set up. In student modelling the oracle is the student, because
he 1s the one who knows everything about himself. Thus, the

oracle gueries are raised to the student.

2.3.3 Pedagogical Validity of Student Modelling
In this section, we describe the student modelling by MIS in

detail, and show the pedagogical validity of the modelling.

First, we consider the range of the model that can be
constructed. The range of the program MIS can synthesize is
determined by a refinement operator. Since the most general

refinement operator is employed in the framework, every clause
indicated by the oracle can be synthesized. Nevertheless, the
predicate that is not provided in the system is not useful as the
oracle reply for the guery (1) described in the previous section.
For example, 1let wus consider that the system provides only a
predicate 'precipitated" and that the student use the predicate
"deposited" as a reply for the oracle query (1). In this case,
MIS constructs the student model that wuse the predicate

"deposited". However, the system does not identify "deposited"

13

with ‘'"precipitated". Thus, the clause that has the predicate
"deposited" is identified as a bug i.e. a misconception. As this
example, MIS can synthesize any clause that is indicated by the
oracle, nevertheless, the clause with the predicate not provided
in the system is not effective pedagogically. Therefore, MIS
synthesizes the program that uses only predicates provided in
advance. Though the oracle query (1) does not have to be raised
in this synthesizing, the system raises it to the student for the
modelling efficiency and the pedagogical effectiveness of the
query as described below. This modelling approach has a same
representability as the bug approach. Furthermore, this approach
can synthesize any clause that can be obtained the combination of
provided predicates, although the bug approach must provide all
pieces of knowledge that is used in modelling.

Second, let wus consider the efficiency of the student
modelling. The efficiency of program synthesis by MIS depends on
both the given facts and the refinement operator. The most
effective fact is of the difference between the synthesizing
program and the target program. In the student modelling, the
target program 1is the human student understandings. Since the
human student understandings are almost same as the expertise,
the most effective fact is of the difference between the
constructing student model and the expertise. Therefore, in
order to model efficiently, we give the priority to the problem
that is answered contrary when it is solved with the expertise
and the student model. Though the framework has a general
refinement operator, the student modelling can be performed more

efficiently using the specific refinement operator. When the

14

actual ICAI system is built with the framework, it is useful to
employ the domain-specific refinement operator.

The third problem is the termination of the modelling.
Usually it is impossible to determine the exact termination of
the student modelling. However, it is also impossible for a
human teacher to do so. In the framework, it is regarded as the
termination that the student model is not changed during a
certain number of problems. The number is decided by a teacher.

The fourth problem is the pedagogical validity of the oracle
queries. Since the query (2) described in the previous section
must be needed to the transformation of the external form and the
internal form, the reply to the query is provided in the system
and the query need not be raised to the student. The guery (4)
is 1inherently same as the query (3). Thus, we consider the
remaining two queries 1i.e. guery (1) and query (3). We
demonstrate that they are pedagogically valid using the chemical
reaction equations teaching.

guery (1}): gueried predicates represent the inference
process or reason for the concept that is represented as the head
predicate of the hypothesized clause. Hence, the query can be
transformed to the question about the reason as Fig.4-(A). The
gquery 1s raised when the predicates are needed, that is, a
student uses a new concept and the system models it. Thus, the
query 1s raised exactly after the student uses the new concept.

query (3): this query is about the subconcept of currently
teaching concept. Thus, it is a simple basic problem as
illustrated in Fig.4-(B).

Finally, we consider the change of student's status. In

15

(1) Ph(NH(3))(2) + H(2)CO(3) -> PhCO(3) + Z2HNH(3)
1 no.

Tell the reason why you answered ’no’?

|1 POONHGID(2) is not a salt. W
{35

Is PhCO(3) precipitated?
1t ves. T (8

Fig.4 Examples of queries set to student

16

order to synthesize the complete program by MIS, all of the given
facts and the oracle replies must be consistent. This means that
the student may not change his understandings during modelling.
However, it often happens that the student finds his
misconception and changes his replies. Therefore, the modelling
of the framework makes the student indicate his change of
understandings. When a student finds his misconceptions, he
indicates his change of understandings to the system and replies
the correct answer. Then, the framework removes all of the
student's replies related to the indicated change and resumes the

modelling with new replies.

2.3.4 Meta-Knowledge Modelling

The student model forms the hierarchy as well as the
expertise. Since construction of the student model is done in
bottom up way and the modelling in the worlds which are lower
than the current world is already completed, the student model
for the lower knowledge can be assumed to have almost the same
structure as the expertise. Therefore, we can restrict the range
of student modelling within the current world so as to improve
the modelling efficiency. When the meta-level world is taught,
if the student has a misconception categorized in incorrect use
of knowledge then MIS synthesizes a Prolog program that has a bug

corresponding to the misconception.

2.4 Extraction of Misconception by PDS
PDS can identify bugs in a Prolog program that behaves

incorrectly. In extracting misconceptions, the program given to

17

PDS is the student model and the bug identified by PDS 1is the
student's misconception. The oracle is the expertise, so the
oracle queries are never raised to the student. The identified
bug is either a missing clause or a false clause. The former
and the 1latter correspond to a lack of knowledge and the
incorrect knowledge, respectively. The bug in a program of the
meta-level world corresponds to the incorrect use of knowledge.
Hence, all of three categories of student's misconceptions

described in section 2.3.7 can be extracted using PDS.

2.5 Expertise Module

The expertise module wuses the expertise to generate
problems, to evaluate student's replies and to reply to questions
from the student. Figure 5 illustrates these functions. A part
enclosed with bold lines is the domain-specific knowledge.

A student's reply is evaluated by executing the Prolog goal
thatrrepresents the pair of the problem and the student's reply.

There are two types of questions from students, "yes/no" and
"what/how". "Is AgCl a precipitated salt?" is an example of the
"yves/no" question. This type of questions is transformed into a
Prolog goal and the goal is executed. If the execution succeeds,
the module answers "Yes, it is". If not, the module answers '"No,
it disn't". "What is the precipitation?" is an example of the
"what/how" question. This type of qguestions is answered by
displaying the contents of the file for answering.

The expertise of the framework is articulate, that is, the
expertise can solve the problem in the same manner as the expert

does [2]. Hence, the simple explanation by the expertise 1is

18

EXPLANATION

PROBLEM

PROBLEM PROBLEM
FILE CONSTRUCT LON
EXPLANATION ANSWER ING
FACILITY FILE
EXPERTISE
EXPLANATION
EXECUTION
FILE
EXECUT ION
EVALUATION

Fig.5 TIllustration of expertise module

19

ANSWERING

useful and understandable to students. In addition to this
explanation facility, -the expertise module can display the
contents of the file for explanation. The file is provided for
each Prolog clause of the expertise.

The problems for students are classified into two
categories. First of them is the problem that is provided by the
teacher as the file. Problems in this category are displayed as
well as the explanation and answering. Second of them is the
problem that is made by the problem-construction facility of the
expertise module. The problem is constructed by the Prolog

retrieval in the expertise.

2.6 Tutoring Module and Tutoring Strategies

The tutoring module controls the whole system based on two
kinds of tutoring strategies. One is the modelling strategy, and
the other is the retraining strategy. In this section, we
explain the function of tutoring module along the ICAI system
execution. First of all, the system gives explanations and
problems to the student and constructs the student model using
MIS. In this stage, the tutoring module instructs to the
expertise module which explanation or problem is given to the
student according to the modelling strategy. The modelling
strategy is represented as a list. Each element of the list is
an instruction to give an explanation, to set a problem and
activate MIS, or to extract the misconception using PDS. When
problems are set to a student, problems are solved by both the
expertise and the student model, and then the problem which is

differently answered 1is given to the student prior to other

20

problems. This is aimed at efficient modelling and at finding
misconceptions by the student. When the student modelling
reaches a certain extent and the model is not changed during a
certain number of problems, the student modelling is regarded to
terminate and then the student's misconceptions are extracted by
PDS. The tutoring module receives the extracted misconceptions
and instructs to the expertise module that the remedial problems
and comments for retraining are given to the student. The way
how to retrain the student is indicated by the retraining
strategy. The retraining strategy controls the retraining method
based on the type of the student's misconception and a piece of
the expertise corresponding to the misconception. The retraining

methods employed in the framework are as follows;
i) Correction: A piece of the expertise which corresponds to

the student's misconception is displayed.

ii) Remedial exercises: Problems which will be answered
incorrectly because of the misconception are given to the
student in order to make him aware of the misconception
by himself.

iii) Socratic tutoring [2].

2.7 Interface Module

The interface module mutually transforms an internal form
and an external form that is suitable to students. Though the
natural language interface is the most favourite one and has been
studied by many researchers [2]1[9]1[10], many complicated problems
still remains unsolved. In the framework, the interface module

only performs the transformation between a Prolog form and a

21

simple sentence (natural language). For example,
precipitated(Ag,Cl) <=> AgCl is precipitated.
precipitated(Ag,Cl) <=> AgCl is deposited.
precipitated(Ag,Cl) <=> AgCl is settled.

The dictionary for these transformations is provided as

clauses and it is changeable for each ICAI system.

22

Prolog

CHAPTER 3

SPECIFIC SYSTEMS CONSTRUCTED WITH THE FRAMEWORK

We develop two specific ICAI systems constructed with the
framework for the purpose of demonstrating the domain-
independency of the framework. One of them is an ICAI system for
programming in Prolog, and the other is an ICAI system for

chemical reaction equations.

3.1 An ICAI System for Programming in Prolog
3.1.1 Basic Design

As described in chapter 1, educational applications of the
computer are classified into two categories according to the role
of the computer. They are the interactive teaching system and
the environmental learning system. These two systems have the
suitable course materials and the suitable teaching periods. The
interactive teaching system is appropriate to the subject which
can be taught by instruction. The environmental learning system
suits the subject that must be learned by the student himself.
In teaching of the course material, the game or simulation
learning is used to let the student have an interest in the
subject at the early stage of the learning period, and then the
interactive teaching system instructs him the knowledge for the
subject. In the final period, his understanding is made deeper
using the environmental learning system. This is the one of the
most effective teaching courses. In teaching of programming
language, the same course is also effective. At first the
student tries to execute sample programs in a textbook, and then

he 1s taught the syntax and basic programming techniques of the

23

Student’s Y
Misconceptions

Tutoring

Z
PDS —® > VP 1& Parser

N v, y
=
=4
[=}
-3
-

R
=
2
s
I

Student Model

/ / M
MIS K“?ﬁ{g?%gczor Expertise Module
N N4

Interface Module

Student

< DATA FLOW

e CONTROL FLOW

Fig.6 Block diagram of the ICAI system for

programming in Prolog

24

language, and finally he makes many programs and learns the
programming paradigm through programming. This section 1is
concerned with an ICAI system for programming in Prolog [11]
constructed on the basis of the above observations. It teaches
the knowledge for programming in Prolog by instruction and
provides the environment where the student can learn the
programming using his knowledge. The interactive teaching (sub)
system of the ICAI system is built on the framework for ICAI
systems described in chapter 2 by embedding the knowledge for
programming in Prolog in it. The environmental learning (sub)
system has a visual Prolog interpreter called VPI and a parser.
VPI interprets the program and displays the execution process in
the form of a computation tree. The parser analyzes the program
to detect and indicate its error if any. The major modules
(boxes) and the knowledge (ellipses) of the ICATI system are shown

in Fig.6.

3.1.2 Curriculum of Programming in Prolog
3.17.2.1 The Goal of Instruction

The ICAI system assumes that the target students are
undergraduates (seniors) who have experiences of programming in
procedural languages, e.g., FORTRAN, Pascal and C. The goal of
tutoring 1is to enable them to understand and write Prolog
programs. For this purpose the followings must be taught and
learned.

1) Syntax and execution mechanism of Prolog

2) Functions of built-in predicates

3) Useful programming techniques

25

4) Logic programming paradigm

3.17.2.2 Curriculum of Programming in Prolog

The curriculum of the ICAI system is summarized in Table 1.
Each item consists of more than ten explanations and problems.
Each of items from 1) to 6) is taught by the interactive teaching
system, and the item 7) is learned in the environmental learning
system.
1) Program examples

Prolog 1is a programming language which can manage objects
and relationships between them. The ICAI system shows sample
programs and gives the students a feeling for programming in
Prolog.
2) Syntax

The ICAI system teaches the Prolog syntax and data-
structures. Many different Prolog systems are available
recently, and each of them has the different syntax. The ICATI
system teaches the syntax of MV-Prolog.
3) Unification

A wvariable 1is either instantiated or uninstantiated. A
variable which is instantiated to an object never changes. This
property, called single assignment, of the variable is one of the
most important and distinguished properties of Prolog. Moreover,
the matching between constants, the substitution of variables and
the shared variables are taught in this item.
4) Interpreter

The behavior of a Prolog interpreter is taught in this item.

The interpreter searches a unifiable clause in the depth first

26

Table.l1 Curriculum of the ICAI system

ftems Contents
1) Program examples sample programs
2) Syntax syntax and data-structure
3) Unification single assignment, matching., substitution. shared variables
4) Interpreter depth first search. backtracking
5) Built-in predicates functions and usage of built-in predicates
6) Programming techniques list recursion. numerical recursion. difference list
7) Logic programming paradigm relation, logic, non-determinacy

27

way and unifies the goal and the head of the clause. If a
unifiable clause cannot be found, a backtracking occurs. These
processes of the interpreter are referred +to as the non-
determinacy of Prolog. Moreover, the ICATI system uses VPI for
displaying the interpretation process.

5) Built-in predicates

In this item, functions of and how to wuse built-in
predicates are taught.

6) Programming techniques [12]

More than ten basic programming techniques are taught in
this item, e.g., the list recursion, the numerical recursion and
the cut-fail combination. The instruction is made through
programming and error correcting practice,

7) Logic programming paradigm

This item is taught in the environmental learning system.
The student makes many programs in the learning environment and
learns the logic programming paradigm. Problems for programs are

set by the ICAI system or prepared by the student himself.

3.1.3 System Implementation
3.1.3.17 Expertise for Programming in Prolog

In this section, we describe the expertise and the student
modelling for each item mentioned in section 3.1.2.2.
1) Program examples

In teaching this item, the ICAI system only gives the
explanations to the student and does not construct the student
model from his behavior. Explanations are stored in the files

and are given to the student one by one according to the tutoring

28

strategy.
2) Syntax
The expertise of the syntax is represented as a set of the
Prolog clauses. The following is an example of a clause;
variable(i_model,syntax_atomic,12,X,2) :-

capital letter(i_model, , ,X,Y},

character list(i_model,_,_,Y,Z).
This clause means that the string represented by the fourth
argument and the fifth argument as a difference 1list is the
syntactic element represented by the predicate name. The
knowledge 1s organized in a hierarchical structure in order to
deal with the meta-knowledge and to obtain the modularity. The
expertise for each item consists of from several to more than ten

worlds. The second argument of the head indicates the world name

in which the clause is included. The third argument of the head
means ID number of the clause in the world. The first argument
indicates that the clause is a piece of the expertise

(ideal model).

The student model is constructed by MIS which synthesizes a
Prolog program from given facts. The facts are obtained from
pairs of a problem and a student's reply. We describe how to
obtain the facts from problem-reply pairs in the ICAI system.
All of the problems in the ICAI system are represented 1in the
following form:

(Q) Choose the correct variables.
1. var 2. Var 3. _xyz 4. 345 5.
The problem is prepared in the file and the fact for each choice

is also prepared. For example, the fact

29

variable(s_model,syntax_atomic,_,[v,a,r],[])

is prepared for the element 1.

determined according to the student's replies.

element as the correct one,

determined as true. If not,

false. A set of pairs of prepared
is sent to MIS.

The oracle queries raised by
takes one of the following forms:

* Tell the reason why var is a

* Is var a string?
transformed from the

They are

representation to the questions

interface module.

3) Unification

the fact prepared for the element

the prepared fact is decided

var. The truth value 1is

If he chooses an
is
as

facts and their truth values

MIS in the student modelling

variable.

oracle (dueries in Prolog

in natural language by the

The expertise for unification of two elements is represented

as follows using a substitution list.

i) Fetch the wvalue of the
substitution list.
ii) Fetch the wvalue of the
substitution 1list.
iii)

first element out of the

element out the

second of

case (fetched value of the first element,

fetched value of the second element)

iii.1) (var, var) shared variable
iii.2) (var, non-var) substitution
iii.3) (const, const) equality
iii.4) (compound term,

functor = functor

30

compound term)

arity = arity
unification of each argument pair.

A substitution list is a list of pairs each of which 1is a
pair of variable and its value. Both the variable and its value
are represented as difference 1lists. The Prolog program
representing the above knowledge is shown 1in Fig.10-a). The
clauses whose head predicates are "unification" correspond to
cases of the knowledge. (Figure 10 lists the first and second
clauses.) Roles of the first, second, and third arguments of the
clauses are the same as those of clauses for the item 2) syntax.
The elements to be unified are represented as difference lists

that are expressed by the pairs of fourth and fifth arguments and

of sixth and seventh arguments. The rest arguments stand for
substitution 1lists. The eighth argument stands for the current
substitution 1list. The wunification is performed with the

substitution 1list represented as the eighth argument, and then
the resulting substitution 1list is returned as the ninth
argument. Examples of the problems and queries are shown in
Fig.9 and Fig.11.
4) Interpreter

The expertise for the Prolog interpreter is constructed with
four elements, that is, a sequence of goals, a sequence of
clauses, a substitution list and the environment. A seguence of
goals 1is the conjunction of Prolog goals which will have to be
satisfied. A program is represented as a sequence of clauses.
The order of the sequence is same as the order in which the
programmer inputs the clauses. A substitution list is used for

maintaining the values of variables in the program. The Prolog

31

interpreter realizes the non-determinacy by a depth first search
for the wunifiable c¢lause and a backtracking mechanism. The
status of the interpreter must be preserved for the backtracking.
Preserved items are a sequence of goals, an unified clause and a
substitution list. They are called the environment and preserved
using a push down stack. Using the above four elements, the
expertise for the Prolog interpreter, i.e., how the Prolog
interpreter behaves, is summarized as follows:
i) Choose the first goal from a sequence of goals as the
current goal.
ii) Choose a clause unifiable with the current goal from a
sequence of clauses.
If there is not a unifiable clause, goto vi).
iii) Push down the environment into the stack.
iv) Create a new sequence of goals.
v) Goto i).
vi) Pop up the environment from the stack.
vii) Choose an alternative clause unifiable with the goal.
If there is not an alternative clause, goto vi).
viii) goto iii).
5) Built-in predicates
Functions of and how to use built-in predicates are taught
in this item. Since the unified knowledge representation for
functions of built-in predicates is not completed in the current
ICAT system, the expertise represented in Prolog is not provided
and the student model is not constructed. Functions are taught
using explanations prepared in files and some easy exercises.

Some usages of built-in predicates are taught in the next item 6)

32

programming techniques. The expertise for them is represented in
Prolog. Nevertheless, the expertise for most of usages are not
represented in Prolog as well as that for functions, and they are
also taught using canned explanations and simple exercises. It
requires further investigation to represent the expertise for
this item in Prolog and to construct the student model.
6) Programming techniques
The list recursion, the numerical recursion, the cut-fail
combination and so on are taught in this item. Here, we describe
the expertise and the student modelling for the list recursion.
The program using this technigque has the following seven
characteristics.
i) One of the arguments of the head predicate is a dotted
pair of variables, i.e., [Variablel|variable2] .
ii) One of the goals of the body has the same predicate as
the head.
iii) The arity of the goal is same as the arity of the head.
iv) The goal has an argument Variable2 at the same position
as the argument of the characteristic i).
v) There is a fact that has the same predicate as the goal
of the characteristic ii).
vi) The arity of the fact is same as that of the goal of the
characteristic ii).
vii) The fact has an empty list, i.e., [], as an argument at
the same position of the characteristic iv).
The expertise for this technique 1is expressed as the
conjunction of Prolog goals corresponding to the above

characteristics., The student model is constructed based on the

33

student's program using the technique. The student's program is
analyzed to examine whether each characteristic is used. Since

all of the characteristics can be detected by the syntactic

analysis, the program 1is parsed using DCG [13] rules in the
expertise. If a characteristic is detected in the program, a
fact corresponding to the characteristic is sent to MIS. MIS

constructs the student model as the conjunction of goals that are
generalized expressions of the facts.
7) Logic programming paradigm

In this item the student makes programs in the environmental
learning system. Problems for programming are prepared in files.
And, the student can exercise the programming for the problem
prepared by himself. Executions of programs are performed by
VPI.

Before the execution of the student's program, the program

is parsed based on the expertise for Prolog syntax and the syntax

error is diagnosed if any. If a syntax error is detected in the
program, the error is displayed and the explanation for it is
given. In this case the program is not interpreted by VPI. The

details of VPI are described in the next section.

3.7.3.2 VPI for Learning Environment

The ICAI system provides the student with an environment
where he can learn the 1logic programming paradigm through
programming in Prolog and executing the program on the visual
Prolog interpreter named VPI. VPI is a new Prolog interpreter
which displays an execution process of a program as the growing

and reducing of a computation tree. Some other wvisual Prolog

34

(a)

rev (i, 2, 3] ~’p"vl _‘}(] 1
ovev (D abkd: _s7481, _3749) t—rev (3748, _3

append (_6489, [11, _14)

ﬂaz’/’/////////i

rev{[2, 3], _6489)

Fig.7 The portion of proof tree displayed by VPI

35

interpreters are proposed in [14] and [15].

The most complicated processes of a Prolog execution are a
backtracking and an instantiation of a variable by wunification.
In particular, the backtracking over many goals at a time is the
most complicated. And, the case where one of the shared
variables is instantiated to a constant is rather difficult to
understand. In this case, other shared variables are also
instantiated to the constant. VPI has facilities for displaying
these processes in a clearly understandable way.

A procedure call and a backtracking are visualized by a
dynamically changing computation tree. When a goal is executed,
the clauses which have the same head predicate as the goal are
displayed under the goal, and then the unifiable clauses are
marked (Fig.7(a)). New goals which are derived from the unified
clause are displayed as children nodes of the computation tree
(Fig.7(b)). If a backtracking occurs, the backtracked goals are
eliminated, i.e., the computation tree is reduced. In the case
of shallow-backtracking, that is, there is an a}ternative clause,
the alternative clause is marked and then new goals are displayed
as children nodes.

When a variable is instantiated, the display of the variable
is changed to the instantiated value. If the variable is shared
with other variables, the display of them are also changed to the

instantiated value.

3.17.3.3 Tutoring Strategies
The tutoring module controls the whole of system behaviors

as described in section 2.6. The modelling strategy is prepared

36

for each item.

[eees
explanation(file,syntax_term?),
problem(file,syntax_terml),
pds(file,syntax_terml),
retraining,

ool

The above is a part of the modelling strategy for the item 2)

syntax. "explanation(file,syntax_terml1)" instructs the expertise
module to display an explanation in the file named
syntax_terml.epl. '"problem(file,syntax_terml)" also instructs it

to display a problem in the file named syntax_terml.prb and sends
MIS a set of facts representing the student's replies. The

tutoring module has no relation to the gueries raised by MIS.

They are presented to the student directly.
"pds(file,syntax_terml)" indicates the detection of the student's
misconceptions. The goals prepared 1in the file named

syntax_terml.pds are executed with the expertise and the student
model. If the solution of a goal by the expertise is different
from that of the goal by the student model, then the goal is sent
to PDS and bugs of the student model are detected. "retraining"
indicates that the tutoring module instructs the expertise module
to give the student remedial comments and problems for his
misconception.

Moreover, the tutoring module activates VPI and the parser

in teaching item 7) logic programming paradigm.

37

3.1.3.4 Interface Module

The interface module transforms an internal form into
external form and vice versa as described in section 2.7.
Moreover, The 1interface module enables a friendly interaction
between the student and the ICAI system using extended facilities
of MV-Prolog such as menus and windows. Table 2 summarizes
commands and their functions. A student can input any command at
any time when the ICAI system is in input mode. Commands are
displayed at the bottom of the screen as a menu and selected by
the cursor. Explanations, problems, hints and so on are
displayed in the different windows. Figure 8 shows the layout of

the windows.

38

Table.Z Commands and their functions

Commands Functions
next advance to the next problem or explanation
QA typewrite an answer or a guestion
skip skip to the nexi world
back back to the world before
bend back to the previous world
menu select the next world out of the menu
hint display a hint for the problem
detail display a more detailed explanation
ans display an answer of the problem
help help-message for commands
prolog execution of a Prolog goal
end terminate the tutoring system

39

R
Window Area
Main Screen

(Explanations.Problems) “Sub_Screen2

(Menu,
System Use)

Sub_Screenl
(Hints.Details,Answers)

Typescript Area

Menu Area

Fig.8 Screen design

40

3.1.4 Experiments

In Fig.9, the student requests hints on a problem of the
item 3) wunification. The problem is displayed in the "ICAI"
window placed at the upper left hand of the screen, and hints are
also displayed in the "HINT" window placed at the middle. The
hint in Fig.9 are concerned with an explanation for the
unification process. When the student answers No.1 and 2 as
unifiable terms (the correct answer is No.1 and 3), the student
model 1is constructed as shown in Fig.10-b) after raising the
queries for reasons to the student (Fig.11). Considering the
student's replies for these queries, it can be thought that he
does not know that if the fetched value of a variable is another
variable then the latter variable's wvalue must be fetched,
because he replies that "The value of Y is X." and that '"The
value of X is 1." Comparing the constructed student model shown
in Fig.10-b) with the expertise shown in Fig.10-a), this
misconception is modelled as a lack of the goal '"fetch value"
(indicated by (A) in Fig.10).

Figure 12 shows a screen when the student's program is
analyzed and its error is detected in teaching the list recursion
of the item 6) programming techniques. The ICAI system analyzes
the program based on the syntax rules for the list recursion and
then detects and indicates that an empty list ([1) is replaced
with a variable (X) in the head of the second clause.

Figure 13 shows an example of VPI's output. It is the
terminal screen when the goal rev([1,2,3],X) is executed and a

solution is obtained.

41

() Owese the wifiable torm wder
the st it Tist (L1, 171, V/fother(ye)

l“_”“;!llfurm

the second eloment frou the wetitutin (int
of Iot eloment, fotched wiue of d olommnt)

v ity ity
wification of sach argusent pairy

Fig.9 Example of a training session on unification

42

unification(i_model ., unify.1.X1,X2.¥1.¥2,5.50) :-
fetch_value(i_model. . X1.X2.S5.XV1,XV2),
fetch_value(i model. ., .Y1.Y2.S.¥YV1,YV2).
variable(i model. , XV1.%XV2).
variable(i model. , ,YV1,YV2),
shared(i model, . ,XV1.XVZ2.YV1.YV2.5,50).

unification(i_model.unify,2.X1.X2.Y1.Y2,5,580) -
fetch value(i model, , ,X1.X2,S.XV1.XV2),
fetch value(i model, , ,Y1.V2,S,YV1,VV2),
variable(i model. , XVI LXW2),
non_variab!e(i_model,_._ YV1.YV2),
substitute(i model, , XVI.XV2,YV1,¥V2.5.S0).

fetch value(i_model,unify,11,X1,X2, .X1.X2) :-
non_variable(i model, , .X1,X2).

fetch value(i model,unify.12.X1.X2,5,X1.X2) :
variable(i model. , .X1,¥2),
notCmember (C(X1.X2) $).S)).

fetch value(i model.unify,13.X1.%2.$,21.22) -
variable(i model, . .X1,X2),
member(COX1X2) 4 (V1L¥2)).52,
fetch value(i wmodel, . ,¥1,¥2,5.72V.Z22). =-----

2) Expertise

unification(s model,unify.1.X1.%2,¥1.¥2,$.50) -

feteh value(s model. . X1 XZ.5.XVI.XVZ),

fptch value(s model, Y1.Y2,S.VV1,VW2),
ariable(s model. . JXV1.XV2).
variable(s,mndeit LYVLLYYVZY,

shared{(s model . . JXVI . XVZ2.¥¥1.¥V2,5.80)

unsferatton(b model,unify.2.X1.%X2.¥1.¥2,5,50) -

fetch value(s model. X1.X2.S.X¥1.XV2),

fetch value(s model, . .Y1,V2,5.¥YV1.YV2),

variahle(s_mndel%N,N.inyki“}
non_variable(s model, , .¥YV1.YVZ),
substitute(s model. , XV, XVZ,¥YV1,YV2,5.50).

fetch value(s model,unify.11.X1,X2._.X1,X2) -
non variable(s model, , X1,X2).
fetch_value(s model,unify,12.X1,%2.5.X1.X2) :-
variable(s model. . ,X1,X2),
not(member(((X1.X2> $).S)).
fetch_value(s model,unify,13,X1,%X2.S5,721,22) -
variable(s model,_, ,X1,X2),
member (((X1,X2) ¢ (Y1.¥2)»».%>. e--s-

h) Student model

Fig.10 ZKnowledge for unification in Prolog

43

Tell the reason why 1 and X are unifiahle?
>»>> The fetfched value of 1 is 1.

>>> The fetched value of X is 1.

>>> 1 is identical with 1.

>>> ffk

Tell the reason why 2 and Y are unifiabte?
>>> The fetched value of 2 s 2.

>>> The feiched vaiue of Y is X.

>>> X _is substituted with 2.

>>> F%

Fig.11 OQuery examples by MIS

44

@ Wit o progrm in ghich the guo! row(l.Y) sucoaede i the raeylt of
<. rorsing the order of elemmnts o Ligt X o It
amle . ro(lb.2).0 &

Fig.12 Example of a training session on programming techniques

45

Fig.13 Example of VPI's output

46

3.2 An ICAI System for Chemical Reaction Equations

We also build an ICAI system for chemical reaction equations
on the framework with the domain-specific knowledge. The ICAT
system teaches a chemical reaction of an acid and a salt. The

expertise of the ICAI system is formalized with eight worlds as

illustrated in Fig.14. The most top level world named reaction
of acid and salt consists of the meta-knowledge for the two
lower 1level worlds as described in section 2.2. The rest five

worlds are constructed based on course material hierarchy.

Figure 15 1is an example of teaching the meta-knowledge in
the world named reaction of acid and salt. A part of the
expertise is shown in Fig.16. The sequence of problems from (1)
to (6) is for the modelling. After replying to the problem (6),
the constructed model that is a corresponding part of Fig.16 is
shown in Fig.17. The first, second and third arguments of a
predicate 1in the expertise and the student model represent,
respectively, the flag for distinction of the expertise and the
student model, the name of the world in which the predicate 1is
included, and the index to the file for explanation. Predicates
"rule", "rulel" and "rule2" represent the knowledge in the top
three level worlds. The forth, fifth and sixth arguments of them
characterized as "X", "Y" and "Z" mean the following chemical
reaction equation.

XY + HXZ -> XZ + HXY
In the above equation, "XY" is the reactant salt, "HXZ" is the
reactant acid, "XZ" is the product salt and "HXY" is the product
acid. The student does not consider the use of inverted reaction

as described in section 2.2, and then he makes a wrong answer to

47

REACTION OF ACID AND SALT

AN

REACTION OF SALT PRECIPITATION

N

REACTION OF ACID VOLATILITY

RN

SALT

PRECIPITATION

ACID

VOLATILITY

BASE

Fig.14 Diagram of knowledge hierarchy

48

Are the following chemical reaction equations correct or not?
If correct, answer ’ves.’ |f not, answer ’no.’

(1) K(2XCO(3) + H(DSOA) -> K(2XS0(4) + H(2)CD(3)

It yes.

Tell the reason why you answered ’yes’?

b: K(2)S0(4) is not precipitated.

P: HE2OCO(3) is a volatile acid.

17 k%
(2) Na(2)S0(4) + 2HCI -> 2NaCl + H{2>S0(4)
I+ no.

(3) PBONO(3YI(Z) + 2HCL -> PhCI(2) + ZHNO(3)
I yes.

(4) BaCD(3) + ZHCT -»= BaCl1(2) + H(ZHXCO(3)

{: no.

(5) Ag(2)SGC4y + ZHCT -> 2AgCT + H(Z)S0(4)
. ves.

(6) 24gCH + H(2)S0{4) -> Az(2)S0(4) + 2HCI

Il yes.

(7) PBCI(Z) + H(2)S0(4) -> PhSO{4y + 2H(|

I: yes.

(R) CuCl{2) + HL2DHSOAy -> CuSOd)y + 2HCH

I ¢ S8

I no.

Tell the reascen why you answered “no’?

1o CuCli{2) is precipitated.

I. Inverted reaction takes place.

bo k%%

(9) Ag(2HCO(3) + H(2S0(4) -> Az(2X80(4) + H(2XC0(3)
1. no.

Fig.15 Example of a training trace

49

rule(i_model,’ROAS’,1.X,Y,2) -
rutel(i model,’ROSP’. ,X.,Y.Z).
ruie(i_model,’RDAS’.2,X,Y.Z) :-
not _rulel(i_model,’ ROAS™,_.X.Z,VY).
ruie2(i_model,’ROAV’, _.X,Y.Z).

not_rutel(i_model,’ROAS’,3.X.Y.Z) :-
not(rulel(i_model,’ROSP’, .X.Y.Z)).

rulel(i _model,’ROSP’,1.X,Y.Z) :-
salt(i _model.’SALT’, ,X,Y).
precipitated(i model ,”PRECIPITATION’ ., ,X.2).

rule2(i_model, ROAV’,1,X,Y.Z) -
salt(i model,’SALT’, .X,Y),

volatiled(i_model, VOLATILITY?, ,Y),
unvolatiled(i _model,’VOLATILITY’, ,Z).

Fig.16 Contents of expertise

50

rule(s model .”ROAS’ . 1.X.¥,2) ©-
rultel(s_model .’ROSP’, _,X,Y.Z).

rule(s_model,’ROAS’,2,X. Y. Z) :-
rule2(s_model, RDOAV’, X,Y.Z).

rulel(s_model,’ROSP’,1.X.¥Y. Z) I~
salt(s model .’SALT . .X,Y),
precipitated(s model ,”PRECIPITATION, .X,Z).

rule2(s model, ROAY' . 1.X.V.Z) -
salt(s model, SALT . .X.Y).

volatiled(s model . VOLATILITY ., .Y).
unvolatiled(s model "VOLATILITY, .Z).

Fig.17 Constructed student model

51

the problem (6). The ICAI system constructs the student model
which has an incorrect meta-knowledge as shown in Fig.17. Based
on this misconception, the ICAI system gives the remedial
problems from (7) to (9) that must use the correct meta-knowledge
concerned to the inverted reaction. The student finds his
misconception, instructs the change of his understanding to the
ICAI system (replying '**' to problem (8)), and then he makes the

correct answer.

52

CHAPTER 4

CONCLUSIONS

The problems studied in this thesis are concerned with
educational applications of the computer technology, and are, in
particular, centered mainly on ICAI systems based on logic
programming.

The first problem studied in the thesis is to develép the
framework for ICAI systems based on logic programming. On the
basis of the observation on the disadvantages of the modelling
approaches used in the traditional ICAI systems, we have proposed
a new framework for ICAI systems with a powerful modelling
scheme. The framework is summarized as follows:

1) Model representation in logic program.

2) Student modelling based on inductive inference.

3) Domain-independence.

The framework will be extended as the general tool for ICAI
system building. The problems for this extension are
generalizing the tutoring strategies, fulfilling interface
facilities and developing the utilities for the teachers.

Further, we described two ICAI systems, for programming in
Prolog and for chemical reaction equations, constructed with the
framework. The development of them demonstrates the domain-
independency of the framework. The ICAI system for programming
in Prolog has both the interactive teaching system and the
environmental learning system. Both of them are quite important
to 1learn a programming language. The interactive teaching
system 1is constructed with the framework for ICAI systems.

The environmental learning system uses a visual Prolog

53

interpreter VPI. The friendly interface is implemented wusing
windows, menus and graphics. The ICAI system is currently used
for educating the undergraduates (seniors) of our laboratories.
The evaluation of the system performance through the practical

use still remains as the future work.

54

APPENDIX

Expertise for Programming in Prolog (Listings)

This appendix contains 1listings of the expertise for

programming in Prolog described in section 3.1.3.1%1.

7 AKAOKKAK KA A AR AKR A KNI AR AN AN /
/% Expertise for syntax_primitive X/
/ FORKAKACKIOKIHIKAAKIKAHIAIOIKASIIRIAIACIOIKAIAKANCKK /

small_letter Ci_model,syntax_primitive,1, [XI1Xs].Xs) :—
member (X,
fa,b,c.d,c. f,g.h,i,j, k. I, mm.0,p.q,r,s, t.u,v,w, X, y,21).
capital_letter(i_model,syntax_primitive, 2, IXiXs],Xs) -
member (X,
A ,'B,’C D E S F G H T K T M,
‘NP0, P Q7RIS T ULV WL XL YL D
numeral Ci_model,syntax_primitive, 3, [XiXs],Xs) i~
member(X, [(0,1,2,3.4,5,6,7,8,91),
builtin_predicateCi_model,syntax_primitive,4, [XiXs1.Xs) -
builtin(X).
symbol (i_model,syntax_primitive,5, [X1Xs],Xs) :—
member (X, i
| MPRESLS SN ANS SR TRE GRS TS~ LN I L IR A
AR CHIVEE PR I A b 1N
number Ci_model,syntax_primitive, 6, [XiXs]1,Xs) :—
integer (XJ. »
underlinedi_model,syntax_primitive, 7, [XIXs],Xs) -
member (X, L' 1).
singte_quoteCi_model ,syntax_primitive,8, [XiXs],Xs) -
member (XL, 07771,

7 HOOIKAAIIACKACKIIAACKACIORAIORAOK AR AAIKAAHKAAAANOK /
/% Expertise for syntax_character x/
7 AOKACKAAIOKKAACKAORAAAKAKAKIAAAIAAATAHAIKAAKAHAAKANK /

symbol_listCi_model,syntax_character,11,X,Y) :—
symbol Ci_model, _,_, X,Y).

symbol_listCi_model, syntax_character,12,.X,2) -
symbol Ci_model, ., .. X,Y),
symbol_listCi_model,_._,Y,Z).

smal l _character (i_model, syntax_character,21,X,Y) -
smal l_letter Gi_model, ., _,X,Y).

smal | _character(i_model, syntax_character,22,X,Y) :—
numeral Ci_model ., . X, Y).

smal l_character (i _model, syntax_character,23,X,Y) -
undertineCi_model, ., X, Y).

smali_character_list(i_model,syntax_character,31,X,Y) -
smal |l _character(imodel, _, . X, Y).

smal |l _character_listCi_model, syntax_character.32,.X,2) -
smal l_character Ci_model,_, _,X,Y),
smal |l _character_listCi_model,_._,Y, 7).

character (i_model . syntax_character,41.X,Y) -
small_letterCi_model,_._,X,Y).

character (i_modcl,syntax_character,42.X,Y) -
capital_letterCi_mode!,_,_,X,Y).

character (i_model,syntax_character,43.X,Y) -
numeral (i_madel, _, _,X,Y).

55

character (i_mode!,syntax_character,44.X,Y) -
underlineCi_model,_._,X,Y).

character.list(i_model,syntax_character,51.X,Y) :

character(i_model._,_.X,Y).

character_list(i_model,syntax_character,52.X,2) :

character(i_model._,_,X,YJ,
character_listCi_model,_,_.Y,Z).

character_symbol (i_model . syntax_character,61.X,Y) :

character(i_model,_,_,X,Y),

character_symbol (i _model,syntax_character,62,X,Y) :

symbol Ci_model,_. .. X,Y).

character_symbol_l ist(i_model.syntax_character,71,.X,Y) :

character_symbol Ci_model,_, .. X,Y).

character_symboi_1 ist(i_model,syntax.character,72,X.2)

character_symbol (i_model.,_._,X,Y).,
character_symbol_tistCi_model._,_.Y,Z).

7 RCKAKACKAKIIKIAIOIIRKACKACKAKIOIRACKAKAHOIAKAIKACICICKACK /
/X Expertise for syntax_atomic X/
7 HAOKACIIIAKAKAIOICIOKAOKHIIKKACK KKK KACICKIAIRAKAKK /

variable(i_model,syntax_atomic,11,.X.Y)

capi tal_letterCi_model._, ., X,Y).
variable(i.model,syntax_atomic,12,X,7) -
capital._letter(i_model,_,_,X,Y),
character_list(i_model,_.._..Y,Z).
variable(i_model,syntax_atomic,13,X.72) :~-
underline(i_model._,_.X,Y),
character_.list(i_model,_,_,Y,ZJ).
variable(i_model , syntax_atomic,14,X,Y) -
underlinei_model,...,..X,Y),
atom(i_model,syntax_.atomic,21,X,Y) :—
smal li_letter(i_model,_,_.X,Y).
atom(i_model,syntax_atomic,22,X,7) -
smal t_letterCi_model, ., _.X,Y),
character.list(i_model._,_.Y,.Z),
atom(i_mode!l,syntax_atomic,23,.X,Y) :~
symboi_tist(i_model,_._,.X,Y),
atom(i_model,syntax_atomic,24,X,4) -
single_quoteli_model,_, . X,Y),
character_symbol_tist{i_model._.._.Y,Z),
single..quotedi_model,._,_.7,W).
constant(i_model, syntax_atomic, 31, X,Y) -
atomCi_madel,_,_.X,Y).
constant(i_model,syntax_atomic,32.X,Y) -
number (i_model, .., X,Y).

7 AOKARAIANOKAKAHRACKACKAIAKAKACKAKIICKAHANCKAKIAAAK /
/X Expertise for syntax_term x/
£ HAOKAACIACKAKAAOIIKIACKKAACKAOKIOKAIIIACKAKAACKKAACKINOK /

functor (i_model.syntax_term,1,.X,Y) :-

atomCi_model,_,_.X,Y).
compound_term(i_model ,syntax_term.2,X,2) :— .
functorCGi_model,_, . X, "¢ 1Y1),
argument_list(i_model,_,_,Y, ") 1721,
FistCimodel,syntax_term, 3, [XiXs],Xs) -
member Ci_model, _, _, X, [[11).
fistdiomodel,syntax_term, 4,0 [’ 1X1,Y) -
argument_listCi_model, _,_. X, ["171¥1).

56

FistCimodel,syntax_term,5, ["["iX3,20) -
argument_listCi_model,_, . X, L7 {71Yi),
argumentCi_model . _, . Y. [U’1°VZ1).

argument (imodel . syntax.term,.6,X,Y) -
constantCi_model, ., _.X,Y).

argument Ci_model ., syntax_term, 7,X,Y) :—
variableCi.model._, . X, Y).

argument (i_model,syntax_term,8.X,Y) -
istCimodel, ... X,Y),

argument (imodel .syntax_.term. 9,X,Y) -
compound_term(i.model._._.X,Y).

argument_iistCi_model,syntax_term,10,X,Y) 1~
argument Ci_model, ... X, Y).

argument_list(imodel, syntax_term,11,X,72) -
argument (imodel,._,.. X, 7, 7 iYD,
argument.list(i_model,_._.Y,Z).
term(i_model ,syntax_.term,12,X,Y) -
constant(imodel._,_,X.Y).
term(i_model,syntax_term, 13.X,Y) =
variableCimodel,_,_.X,Y).
term(i_model ., syntax_term. 14,X,Y) -
tistli_model. ., ., X, Y.

termCi_model, syntax_term. 15,X,Y) -

‘ builtin.predicateCi_model .., _,X,Y).
ferm(i_model syntax._term,16,X,Y) -
compound_term(i_model, _, ., X,Y),

7 AKAGAOIOKACKACICIAKIICKKACKICIORACKACIOICIKOKICKICKKAAKACKACIOK /
/X Expertise for syntax_program x/
7 KKACKAKAICKACKAKAIAARAAIAIOKIOIKAKHIIAKAIIAIANORAK /

predicate(imodel, syntax_program.1.X,Y) -

compound_term{i_model,._,_, X, Y.
predicatedimodel , syntaX_program,?2,X,Y) -
functorGi_model._,_, X, Y).

predicate(i_model, syntax.program, 3, X,Y) 1~
buittin_predicate(i.model,..._,X,YJ.
procedure(i_model, syntax_program, 4.X.Y) :~

predicate(i_model, ., . X, Y).
procedure(i_model,syntaX_program,5,X,7Z) -
predicatei_model, _, . X, ", "iYl),
proceduredimodel, ., .Y, Z).
command (i _model , syntax_program,6, [":=-"1X1,Y) -

procedurei_model X, L" . " iY1).
ruie(i_model,syntax_program, (,X,Z) —
predicateCi_model . ., . X, [":="1¥1),

procedure(i_mode!,_,_,Y, " . {Z1).
tact(i_model, syntax_program.8,X,Y) -
predicate(i_model,_,_, X, 7. 1Y1).

clause(i_model . syntax_program,.9,X,Y) -
ruteCimodel, ., ., X, Y.

clause(i_model , syntax_program, 10, X,Y) :~
fact(i_model, ... X,Y).

/FHACKAAORIKAAARACKAHKAAKKAAIACKAOKIOIICKAOKAIAKINAIACIOK /

/X Expertise for unification X/
£ AORAOKAKAIKAHOIOK A AAKAAHOKAKAIACKAAAAIIAAOIORK /

{

unificationCi_model,unify,1,X1,X2,Y1,Y2,5,50)

57

fetch_value(i.model ., .,X1,X2,5,XV1,Xv2),
fetch_value(i_mode!._,-.Y1,Y2,S,¥YV1,YV2),
variable(i_model,_,_,XV1,XV2),
variableli_mode!,_, .. YV1, YV,
shared(i_model,_, _, XV1,XV2,YV1,YV2,5,50),
unificationCi_model.unify,2,X1,X2,Y1,Y2,5,S0) =
fetch_value(i_model,_,_>X1,X2,5,XV1,XV2),
fetch_valueCi_model, .,_.Y1,Y2,S,YV1,YV2),
variable(i_model,_,_,XV1,XV2,
non_variabie(i_model,_.,_,YV1,YV2),
substitute(i_madel,_,_, XV1,XV2,YV1,YV2,5,50).
unification(i_model.unify,3,X1,X2,Y1,Y2,5,50) :-
fetch_valueCi_model._,_,X1,X2,5,XV1,XV2),
fetch_value(i_model,_,_,Y¥1,Y2,S,YV1,YV2),
constant(i_model,_, .. XV1,XV2),
constant(i_model, _,_,YV1,YV2),
XV1 = Yvi,
XV2 = yV2,
unificationCi_model,unify,.4,X1,X2,¥1.Y2,S5,50) -
fetch_value(i_model,_, _,X1,X2,S,XV1,XV2),
fetch_value(i_model, -, _,Y1,Y2,S,YV1,YV2),
compound_term(i_model,_, ., XV1,XV2),
compound_term(i_model,_,_,YV1,YV2),
functor(i_model._, ., XV1, L7 (7 ixXV01),
functor(i_model,..,_,YV1, [’ CiYV0OD),
argument_listCi_model,_,_,XV0, ") 1XV21y,

argument_list(iumodel,_,_,YV0, [’) 1YV21),
unificationCimodel,_, ., XV1, L7 ¢ iXV0I,YVt, [’ (' 1YV01,S.517,
arg_list_unificationCimodel, _, ., XV0, L") " 1XV21,YV0, [7)’ 1YV21,51,50),

fetch_valueCi_model ,unify,11,X1,.X2, . X1,X2) -
non.variable(i_model,_, .. X1,X2).

fetch_valueCi_model ,unify,12,X1,X2,5,X1,X2) -
variable(i_model ., _,X1,X2),
not{member(({(X1,X2> $ _),S5)).

fetch_value(i_mode!l ,unify,13,X1,X2,5,71,72) -
variable(i_model,..,_.X1,X2), '
member (((X1,X2) $ (Y1,Y2)),S),
fetch_value(i_model, _._,Y¥1,Y2,5,71,72).

shared(i_model.,unify.21,X1,X2,Y1,Y¥2,5,50) -
append (L({X1.X2) ¢ (Y1.Y2)21,S,S0).

substituteCi_model . .unify,31,X1,X2,¥1,Y2,5,50) :-
append(L((X1,.X2) % (Y1,Y2))1,S.S0).

arg_list.unificationCi_model ,unify,41,X1.X2,¥1,¥2,S5,50) -

argumenti_model._,_,X1,X2),
argument(i_model._._,Y¥1.Y2),
unificationCi_model, ., _,X1,X2,Y1,Y2,5,50).

arg_list_unification(i_model . unify,42,X1,X2,Y1.¥2,5,50) -
argument(i_model,_, _,X1,L[’, iX01),
argument_listCi_mode!, .., ., X0,X2),
argument(i_model,.,_, Y1, [’ ., 1Y0D),
argument_tist¢i_model,.._.Y0,Y2),
unification{i_model,_,..X1.[", 1X0l,YL, (", 1Y01,S,S1),

arg_list_unificationCi_model,._,_,X0,X2,Y0,Y2,51.507.

/ AAACKKAIKACKACKACKOKACKAACKACKKAKARIAIIIRICKACKAKAIOKACK /

58

7K Expertise for interpretier X/
/*x*x**m****x*******xm***x******x**xxm********/

interpreter (imodei, interpreter, 1, {GoalsiPrev_goalsl,Clauses,S.S0) :—
search.gaal (i_model, ., ...Goal,Goals?,
search_clausedi_model,_,__.Goal, [HeadiBodyl.Clauses.S,S1) .,
enviranment (i model, -,
[GoalsiPrev_goaisl, [HeadiBodyl, S, New_prev_goals),
new_goals(i_model. -, _,Goals,Bady, New_goals),
interpreterdimodel, —. -,
[New_goalsiNew_prev_goalsl,Clauses, 51,500 .
interpreter Ci_model ., interpreter.?2. [GoalsiPrev_goalsl,Clauses.S,S0) -
search_goa! (i_model ., ., -, Goal ,Goals),
not(search._clause(i_model._, .,
Goal, [HeadiBodyl,Clauses,S,S13),
backtrack(i_model._._.Prev_goals,Clauses, S0J .

backtrack(i_model ., interpreter. 11, [(Goals, Clause, 51) iPrev._goals],Clauses,S0) -
search.goal (i _model,_, ., Goal ,Goals),
search.clause_in_backtrack(i_model, ...,

Goal,Clause, [HeadiBodyl,Clauses. 51,522,
ervironment Ci_model . _, -,

[GoalsiPrev._goalsl, [HeadiBodyl,S1,New_prev_goals),
new_goals(imodel._,_..Goals,Body.New _goalsy,
interpreter(i_model, [New_goalsiNew_prev_goalsl],Ciauses,S2,50) .,

hacktrack(i_madel, interpreter. 12, [(Goals,Clause, S1) 1Prev_goals],Clauses,S0) -
search_goal (i .model, -, ., Goal,Goals),
not(search_clause_in-backtrack(i_model._, ..

Goal,Clause, [HeadBodyl,Clauses.S1,S2)).
backtrack{i_model ..., _..Prev._goais.Clauses.S0).

search..goal (i_model ., interpreter.21,Goal, [Goal i 1.

search..clause(i_model . interpreter, 31,
Goal, [HeadiBodyl, L[Head!Baodyl iClausesi,S,S0) -
unificationCi_model,._,_,Goal . Head,S,50).
search.clause(i.model, interpreter. 32,
Goal, lHeadiBodyl, [[HeadiBodyliClausesl, 5,500 -
notclunificationCi-model, . _,.Goal,Head,S,.507) .,
search.clause(i_model, -, ., Goal ., [HeadiBodyl, Clauses, 5,502,

environment (i._madel ., interpreter, 41,
[Goais!Prev_goalsl,Clause, S, [(Goals,Clause,S) tPrev.goalsl).

new_goals(i..model . interpreter, b1,
{GoaliGoalsl,Body.New_goals) -
append(Body, Goals, New_.goals) .

search_clause_in_backtrack(i_model, interpreter, 61,
Goai,Clause, Clausel, [ClauseiClauses),S,S0) -
search_clause(i_mode!l ... Goal,Clausel, Clauses, S,S0) .
search_clause_in.backtrack(i_model, interpreter, 62,
Goal,Clause,Clausel, [Clause?iClausesl,S,50) -~
not(Clause = Clause?),
search_clause_in_backtrack(i_model._,__;
Goal.,Clause. Clausel, Clauses, S,S50) .

/A RHAAIACK KA ARG AIAIAIHAAAAKACKAAKK /
/¥ DCG rules for tist recursion (L) X/

59

/ SCIKAAIOKIACKACKIAOKNOKACKACKAOKAICKAIOIAKAIIOIICKACKIIAOKACKK /

prog(_9480,_9481,_9482,_9483)—>
$(_.9480,_9481,_9482, _9483),
f(_9480,_9482,_9483).

$(_9736,-9781,.9510, _9511)—>
h(_9736,_9781,_9510,_9511),

[’:"1,
[’—,]:
b(_9736,..9781,_.9510,.9511),
.1,

h(._9136,.9781,_9510, _.9511—>
pred(_9(36),
¢,
argl1 (95107,
(I A 9
varg,
['i'17,
vari(_9781>,
’1’1,
arg2(_9511>,
[>1.
b(_9736,_9781,_9510, 95113}—>
conji,
pred(.9736>,
['¢1,
aral(_9510),
varl1(_ 2781,
arg2(_9511>,
['3°7,
conj?.
£(_10188,..100%94,..10095)—>
pred(.10188) .,
[’¢17,
arg1(_.10094),
i,
11,
arg2(.1009%),
£'y'1,
end.

/ FHACKIICKRAAIORAKAKKKIIACKAIAACIACIACKACKAORACKACIIOIKK /
/X OCG rules for list recursion ([XiX1) X/
£ AOKACKACKAKICKAOIK AR ACKIAIRAIIORACKIACKIKICIAIOICKIICIOK /

prog(_92307,_.9308,_9309,92310)—>
f(.9307,_9309,_93107,
s(.9307,..9308, 9309, 9310) .

f(.9323,.9398,_9399)—>

pred(.9323),
['c¢1,
arg1(_92398).
L'c’'i,

varg,

['i1,

varo,

[’31°1,
arg2(_939%,

60

HED R

end.
S(_9675,.9720, 9823, _9824)—>

h(.9615,.9720,.9823,..9824),

'3,

-1,

b(_.9675,_.9720,..9823,_9824),

£.71.
h(.9675,..9720, 9823, .9824)—>

pred(_92675),

oi,

argl(.9823.,

r'el,

varo,

i3,

var1(. 9720,

0117,

arg2(_9824),

'],
b(.92675,.9720,_9823,_9824)—>

conjt,

pred(_9675),

L¢3,

argl (L9823,

yarl(_ 9726,

araZ2(._98245,

['y1,

cong?.

7 ARIKACKACKACKAKAACICIKACKAACIACKAIIOICIIOIAIACICIKACIAIAOIK /

/X DCC rules for numerical generate—-test %/
/ORI AR AACKRAACIOK KA KKK ACKAOKIACHKRAAOK /

prog(_1287,..1288,_1289, .71290)—>
(7287, 1289, 12907,
SCT281, 1288, 1289, (2903

(7303, _7348,..1349)—>

pred{(_7303>,

<1,

argi (73487,

fig,

arg2(_1349,

£['>'1,

end.
S(_1549, 0572, 7709, __{710)—>

h{(_1549, 7572, 7709, 77107,

=1,

-1,

b(_7549, _1572,_7709, .7710) .

.7,
h(_7549,_75712,_7709, _7710)—>

pred(_71549) .

G

argl(_7709;,

varl(_1572y,

arg2(_7710y,

£'5’1.
b(_7549, 7572, 7709, _7710)—>

conjl.

61

pred(_7549),
['¢1,

argl (7709,
var2(_7636,
arg2(_77107,
[’)'1,
conj3,
varl(_7572>,
equal,
var2(_i7680>,
operatorQ,
fig,

conj2.

7 HOCKAKACKARAACIKICICICICKIOR K KAKAKAACKAOIIIIOKIIIOIIGICICICICK /
/X DCG rules for list recursion (O x/
/AR IKAK AR KACKAKACKAHAAKK /

prog(_5398,_5399.,_5400,_5401)—>
cla,
$(_5398,_5399..5400,_5401),
cla.

S(.5443,_5488,_5591,.5592)—>
h{(_5443,_.5488,_5591,_5592),

£,
-1,
b(_5443,_5488, 5591, _5592),
.1

h(_5443,_5488,_5591,_5592)—>

pred(_5443),

L'¢d,

argl1¢_5591>,

['eL’7,

varQ,

i1,

var1(.5488>,

11,

arg2(_5592),

[’y1,

b(_5443,_5488,_5591,_5592)—>

conji,

pred(_5443),

"1,

argl (5591,
vari1(.5488),
arg2(_5592>,

['°1,

conj?2.

£ AR IKAKAIAAHIACIOIKACIIOKAIOIIOK /

/X DCG rules for write all of answers X/
7 A ICKKIOIOIRIKACKACKIOKIAKKAOKACKACKAIOKIGIIOK /

prog(_4021,_4022, 4023, _4024)—>
s(_4021,_.4022,_4023,_4024),

clal_4021).

S(_4049,_4391,_ 4152, _4392)—>
h(_4049,_4391, 4152, _4392),

62

£l

[_"'"J])

b{_ 4049, _4391.,._4152._4392),

[*.71.
h(_4049, 4391, _4152,_4392)~>

pred(__4049),

£ ¢1,

argl (_4152),

vara,

arg2(..4152>,

[’y 1.
b(. 4049, _4391, 4152, _4392)—>

conjyl,

write,

el

term,

37,

conj3,

fail.

£ KA KNI ACOICIRICIIICINOIAKIOICIONTK /
/K DCG rules for dummy success K/
£ AAIAHAKIACK KKK AR AICIACHKIGIACKAKACKCK /

prog(_3836,..3837...3838, _3839)—>
$(_3836,.3837,..3838, 3839,
$(..3836,..3838, ..3839) ,
clac 3836 .

S (4095, _4096,_4097...4098)—>
h{.4095, .4096, _4097._4098>.
{1,
-3,
b(__4095,_4096,_4097,__4098) .
L7 1.
h(_.4095, 4096, _4097...4098)—>
pred(..3864),
L7¢ 171,
argl¢.3933»,
term,
arg2(_3934).
7.
b(_4095, _4096, 4097, _4098)~->
congl,
fail.
fOCA157, 4207, _4203)—>
pred(_4157),
[’¢3,
argl(_ 4202,
varQ,
arg2(4203,
[y1,
end.
/ HOKAKAAIOKAAOKAKAACOIHKIIOKAOKAKACIIICIIOIIIACKICICIOR /
/X DCG rules for cut—fail combination X/
/ AOACIOKAHCAOKIAAAKAA IR AAAIAARAHKIAAIKAKIAAIOK /

prog (3060, _3061. 3062, _3063)—>
cla,

63

$(.3060,_3061,_3062, 3063,

cla.

$(.3329,_3330,_3331,_3332)—>
h(_3329, 3330, 3331, 3332,

£':"71,
[’—,]:
b(_3329,_3330, 3331, _3332),
£.’1,

h(_3329,_3330, 3331, _3332)—>
pred(_.3093),
['¢1,
argument_tist(.3110),
['>'1.
bh(_3329,_3330,_.3331,_3332)—>
conjl,
Lel,
.1,
fail,

/ FHAIIKACKAHOIIAKIIHIAKICKACKIIICIISIOKICKRACIIKACKKICKRIOK /

/X DCG rules for tree recursion

X/

£ AIACKAKACKRACKAKAACKIIOKIAOKAIIICIAOICIAIOOICIICKICIIOK /

prog(_7866,_1867,_1868,_7869,_1870,_T1871)—>
f(_1866,_7868,._1869,.1870,_7871>,
S(-1866,.7867,_1868,_1869,_1870._7871),

cla(_7866> .

f(_1884,_7957,_7958,_7907,_1924)—>
pred(_7884),
¢l,
argl (_7957),
pred1 (_7907),
0¢1,
argument_list(_7924),
[’y 1,
arg2(_7958),
1,
end.

S(_8247,_8296,..8402, 8403, 8270, _8723)—>
h(_8247,_8296, 8402,_.8403,_.8270,_8123),

:'1,
-1,

bh(_8247,_8296,_8402,_8403, _8270,_8723),

[*."3

h(_8247,_8é96:_8402,_8403,_8270,_8723)—~>

pred(. 8241,
ey,
argl1(_8402>,
pred1(_82707,
| I
al1(.82817),
var1(._8296>,
a2(_8305),
£'y'1,
arg2(.8403),
[’)'1,

{8723 is _8287+_8305+1}.

b(.8247,_8296,.8402,_8403,_8270,_8723)—>

64

conjl,
pred(_ 82417,
Lrea,
argl(_8402,
var1(_8296>,
arg2(.8403>,
L'’ 1.

RACKRACKIOIAOK AR AAOIIKACOICKICIOIRICIACIIIIORAKAOIK /
/X DCG rules for conjunctive recursion X/
/ACKACKIACKACKKASKAKIOKAIAIOIIICKACHCIICKACICIACIORAKAICIIICK /

prog(_7866, 71867, _1868,..1869) >
cla,
S(_7866,_7867,..71868,_1869),
cla.

S(7911,..7942,..8104, _8105)—>
h{_7911, 7942, _8104, _8105>.
[,:’]’

["="'3,
b(_1911,_7942,_8104,_8105>,
.1,

h(_7911,_7942,.8104, _8105)—>

pred(_7911>,

1,

arg1(.81042,

"1,

varl(_1942>.

[,

uar2(_1959;.

"1,

arg2¢_8105>,

['y73.

b(_7911,.7942, 8104, 8105 —>
pred(_7911),

R
arg1(.8104).
vari(_7942>,
arg2(_8105).
01,
.1,
pred(_8056) .
¢,
argl (81047,
var2(_8079).,
arg2(.810%,
[’>'1.

/ FACIIRAOIAKAOIIACKAIACIOIIKAHIICKACKRAKAIIACKAIHCKAACKAIOK K /

/X DCG rules for numerical recursion X/
7 FRAKIACKIACKAOKKACKKAHAAKAAAIKAAAAKAICKACKAAKACKIORACK /

prog{_(374,. 7375, 1376...1371)—>
(7374, 1376,_1317),
S{1374,_1315, 1376, 713772

(7390, 7435, _1436)—>

pred(_71390),
{ I G I

65

argl(.74353,

fig’

arg2(_7436>,

['>»1,

end.
s(_7636,_7659, 1796, _1191)—>

h¢_ 1636, _1659, 77196, _17191),

|
-1,
b(_7636,_7659,_1796,_17191),
.1,

h(_T636,.7659, 779, 179(3—>
pred{_71636>,
['¢1,
argl(_7796),
vari(_7659),
arg2¢_7791>,
[’’1.

h(_7636,_T7659,_7796, 1197)—>
conji,
var2(_7700),
equai ,
varl1 (_7659),
operatorQ,
fig,
conj3.
pred(_76367,
¢,
argl (_{196,
var2(_7765),
arg2(_7797,
['>'1,
conj?.

£ RAKAHAAIKAIAIOKAAOKICIRIHHOIIAIRAKKACKAIIIIOIICIK /

/X DCG rules for catch all X/
7 HIAKRIKIIACKACKAAOKAKACIKIOKKAIHOIICKACKAIIRACKIACIOIIOIK /

prog(_1805, _1806,..1807,..1808)—>
f_cla(.1805),
f(_1805,_.1807..1808) .

£(.1832,..1898,.1899)—>

pred(_1832),
['¢1,
argl1(_1898>,
vari(_1855),
arg3(_1864),
var2(_1873>,
arg2(_1899,
>,

end,

7 KHACKAAKAHAKAKACKIAKAACKAKACKKACKACKAKKAKIAIOKAKACIOROK /

/X DCG rules for subconcept X/
7 ACKACKAKACKAIACKAIIACKIIIORAIACKACKACKACIICIIOIKAAKICIOIIOIK /

smal l_letter—>
X1,
{m"ber(x, [a»b,C)d:eaf:g’h) | s_j ’k’ l sMsns

66

P N p
O:0:G,75%, Laii"\)a'\k!ax’y’z}:‘)'

capital_letter—>
X1,

{member (X, ["A".’B",°C",'D",’E",F LG, H L T UL KL L,
MTLONTLCGTL, TP QLRSS T U, T

digit—>

[X1,

{member (X, 10,1,2.3,4.5.6,7.8,91) %,
built_in—>

builtin.
symbo | —>

[X] 2

member X, [+, 7=, 7% .7 /7,7, ¥

s » » : » » ' B 3 > ’ »
$ b A ? 8(? E M b 3 b4 (.? b

fig—>

X1,

{integerdX>?.
operatorQ—

['+1.
gperatorQ—>

fr="1.
end-——>

[.1
end——>

{1,

[-1,

£,

| R I
%
char——>

smatl_letter.
char——>

digit.
anyChar--—>

small. letter.
anychar—>

capital_letter.
anychar—>

digit.
anychar-—>

symbol .,
char_list—>

char.
char_list-—>

char,

I'..’1,

char_list.
char_list—>
char,
char_list,
symbol_}ist——>
symbo! .
symbol _tist—>
symbol .,
symbol_.tist.
anyChar_list—>
anychar.
anychar_1ist—>
anychar.

67

@”,n’.)
A D

(USRS SN ARV AR DR 3

anychar_list.
anychar_list—>

anychar,

.1,

anychar_list.
varQ—>

capital_tetter.
varg—

.7,

char_list.
varQ-—

['_’1.
varQ-——

capital_letter,

char_list.
vari(V.X,y) :—

varog(x,YJ,

eqdifset(X,Y,V),
var2v,X.y) -

varg(x.yYy,

eadifset(X,Y,\V).
atom—>

smali_letter.
atom—>

small_letter,

char_list.
atom—>

symbol_.list.
atom—>

[’ 7)] b

anychar_list,

[1.
atom—>

['¢1,

anychar__list,

DR
constant—>

atom.
constant——>

fig.
4
%
pred<P;X9Y) -

atom(X,YJ,

eqdi fset(X,Y,P),
pl"edl(P,X,Y) =

atom(X,Y>,

eadi fset(X,Y,P).
structure(P)—>

pred(P),

e,

argument_list(),

>’1.
bist—>

I

’1'1.
bist—>

I TR

argument_list(.),

[’1°1.

68

%23
Lanad
i
H
~

[
argument_list(.),
A
argument .,
11,
argument-—>
varg,
argument—>
list.
argument—>
constant.
argument——>
structuredP).
argument.listl)—>
argument.
araument_list(A)—>
argument,
.1,
argument_list(B),
& is B+lr.
al) ——>
argl {a’.
azny—>
argz2(Al,
argl(0—>
[i.
argl (py—>
argument..list{A),
.1
arg2<Q)—>
tl1.
arg2(A)—>
.1,
argument._lista.
arg3)—>
£, 1.
argy3{a)—>
.1,
argument_lista),
r,'1.

term—>

constant.
term—>

varQ,
term—>

list,

term—>

built_in.
term—>

structure(P).
%
%

goal—>

structure(P).
goal—>

byed(_).
goal—>

L'1°1.

69

goal—>
vargQ,
Cil,
Is1,
varg,
operatoros,
fig,
goal—>
varg,
Lils
(sl,
varg,
operator0,
varg,
conjunhction—>
goal .
conjunction—>
goal,
.1,
conjunction.
conjli-—>
1.
conjl—>
conjunction,
.1,
conjz—>
1.
cunjz——>
.1,
conjunction.
conj3—>
[”J]c
conj3—>
£,°1,
conjunction,
[’,’1.
ruledP)—,
structure(P).
[":71,
[,_’]:
conjunction,
[’.’1.
fact(P)—>
structuredP),
£.71.
clause0P)—>
rule(P).
clauseQ(P)—>
fact(pP>,
program(P)——>
clauseQ(P).
program(P)——>
clause0(P),

program(P) .
cla(_)—>

I1.
cia(P)y—>

program(P) .
f_clta(P)—>

fact(P).

f_cialP)—>
fact (P>,
f_clta(Py.

fail’—>

[1l1,

fal,

Lil.,

[,
write—>

[wl,

Irl,

Lil,

[tl,

fel.
ni—>

inl,

L.
equal—>

il

£s].
eadifset(A AT o~

i
eadi fset(INIXT, Y. TAIZ7D

eqdi fset(X,Y.Z).

71

(1]

(2]

[3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]1

BIBLIOGRAPHY

Carbonell, J. R.: AI in CAI: An artificial intelligence
approach to computer-aided instruction, IEEE Trans. Man-
Mach. Syst., Vol.MMS-11, No.4, pp.190-202 (1970).

Barr, A. and Feigenbaum, E. A.: The Handbook of Artificial
Intelligence, Vol.II, PITMAN, London, pp.225-235 (1983).
Papert, S.: MINDSTORMS - Children, Computers, and Powerful
Ideas, Basic Books, New York (1980).

Shapiro, E. Y.: Algorithmic Program Debugging, MIT Press,
London (1982).

Fujii, K. et al.: A Conversion of C-Prolog into the Super
Mini-Computer MV/8000II, Proc. of 28th National Conference
of Information Processing Society of Japan, 2G-7, Tokyo, [in
Japanese] (1984).

Barr, A. and Feigenbaum, E. A.: The Handbook of Artificial
Intelligence, Vol.I, PITMAN, London, pp.141-222 (1981).
Goldstein, D.: The genetic graph: a representation for the
evolution of procedural knowledge, in Sleeman, D. et al.
(ed.), Intelligent Tutoring Systems, Academic Press, London,
pp.51-77 (1982).

Brown, J. S. and Burton, R. R.: Diagnostic models for
procedural bugs 1in basic mathematical skills, Cognitive
Science 2, pp.155-192 (1978).

Sleeman, D. and Hendley, R. J.: ACE: A system which Analyses
Complex Explanations, in Sleeman, D. et al. (ed.),
Intelligent Tutoring Systems, Academic Press, London, pp.99-
118 (1982).

Clancey, W. J.: Tutoring rules for guiding a case method

72

(111

(121

[13]

[14]

[16]

(171

dialogue, in Sleeman,D. et al. (ed.), Intelligent Tutoring
Systems, Academic Press, London, pp.201-225 (1982).
Clocksin, W. F. and Mellish, C. S.: Programming in Prolog,
Springer-Verlag, New York (1981).

Nakamura, Y. et al.: An Interface of the Tutoring System for
Programming in Prolog, Proc. of 30th National Conference of
Information Processing Society of Japan, 4L-3, Tokyo, [in
Japanese] (1985).

Pereira, F. C. N. and Warren, D. H. D.: Definite Clause
Grammars for Language Analysis, Artificial Intelligence 13,
Pp.231-278 (1980).

Goto, S.: A Geometrical Displaying Method for the Prolog

Execution, Proc. of WG/SYM of IPSJ, Vol.27, No.6, [in

Japanese] (1984).
Numao, M.: Visual Debugging Tools for Prolog, Proc. of
WG/SYM of IPSJ, Vol.32, No.l, [in Japanesel (1985).

Kawai, K., Ganke, M. and Toyoda, J.: FLOGS: An Extended
PROLOG System for Procedural processing, Trans. of
Information Processing Society of Japan, Vol.26, No.t,
pp.112-120, [in Japanese] (1985).

Kawai, K., Mizoguchi, R., Kinoh, H., Ganke, M., Kakusho, O.
and Toyoda, J.: A Framework for Intelligent CAI Systems
based on Logic Programming and Inductive Inference, Trans.
of Information Processing Society of Japan, Vol.26, No.6,

pp.1089-1096, [in Japanese] (1985).

73

