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Fig. 1-1. C¢ fullerene.
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Fig. 1-4. (a) Carbon nanocapusule and (b) carbon nanocage.
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Fig. 1-5. (a) Single-walled carbon nanotube and (b) triple-walled carbon nanotube.
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Fig. 1-6. Chirality of nanotubes.

Table 1-1. Chirality and electronic property of carbon nanotube.

CNT type m, n Electronic property

(n, 0)

a Metal, Semiconductor
m=0

Zigzag

Chiral (n, m) Metal, Semiconductor
n>m>1

. (n, n)
Armchair h=m (#0) Metal

[15]
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13.1

(B) N)
1842

(©)
BN
BN

BN

BN(r-BN)

BN(w-BN)

BN Table 1-2
h-BN ¢-BN 2
Table 1-3 h-BN  ¢-BN

h-BN
2200°C
h-BN
h-BN

(BN)
BN
BN(h-BN)
BN(c-BN)
[16] BN
h-BN
h-BN
900°C

Table 1-2. Structure data of BN [16].

Space group Lattice parameter (nm)
h-BN P6;/mmc a=0.2504,c=6.661
r-BN R3m a=0.252,¢c=0.1002 (as hexagonal)
w-BN P6smce a=0.2553,c=0.4228
c-BN F43m a=0.3615+0.0001




Table 1-3. Property of hexagonal and cubic BN.

h-BN [16]

c-BN [17, 18]

Color

White Pearl white

Yellow Orange Black

Crystal structure

Hexagonal, graphite

Cubic, zincblende

Lattice parameter (nm) 2 : 8222‘1‘ 0.3615
Density (g/cm’) 2.27 3.48
Melting point ("C) 3000 (with pressure) 3200 (at 10.5GPa)
L e 1550 1600
Sublimation point (') 3000 (Phase transition to h-BN)
Mohs hardness 1 2 9 10
Modulus elasticity (GPa) 40* 350 370
Flexural strength (MPa) 50*
Compressive strength (MPa) 50%* 4150 5330
Resistivity (2 cm) 10" 10"
Dielectric constant 3.6 4.2 (1MHz) 4.5
Coefficient of thermal 4% 1300(Calculation)
conductivity (W/m K) 250 600(Experimental)
Thermal expansion coefficient 1x10° 48 58x10°

(9]

Oxidation resistance

Oxidation begins from 900°C in air. Little reactivity with acid.

Chemical resistance

Reactions with KOH or NaOH begin from 300°C.

Reactivity with metals

Poor wettability with Cu, Ag, Au, Ga, In, Ge, Sn at 1100°C in

vacuo [1.3x107Pa].

Poor wettability with B at 2200°C.
Reaction with Al around 1000°C.

Reactions with liquid metals (Fe, Co and Ni) above 1350°C.
Reactions with Ti, V, Zr and Cr above 1700°C.

*Value of vertical direction for press axis on h-BN sintered compact by hot press.

Table 1-4. Comparison of c-BN properties with diamond [19].

c-BN Diamond
Density (g/cm’) 3.48 3.52
Vickers hardness (GPa) 47 100
Young’s modulus (GPa) 710 1070
Coefficient of thermal
conductivity (W/m K) 1300 2000
Stability In air 1300°C (Stable) 600°C (Oxidized)
In vacuo 1500°C (Stable) 1400°C (Stable)
. . Non-reaction with Fe, Ni, Co Graphitization begins from
Reactivity with metals by 1300°C. 700°C by Fe, Ni, Co.




c-BN

h-BN
h-BN h-BN
Table 1-4  ¢c-BN
c-BN
1.3.2 BN BN
h-BN c¢-BN Table 1-5 h-BN SisN,  AIN
( ) ( )
1000 1500°C
BN(t-BN) t-BN
h-BN
h-BN 1800 2000°C c-BN
1500 2500°C 5 8GPa h-BN



Table 1-5. Synthesis method of hexagonal and cubic BN [19].

Raw materials Synthesis process
Boron
source H:BOs, B;03, Na;B4O, ete. Mixing of raw materials — Sintering
Nitrogen (1000~2000°C) — Comminution
h-BN source NH, (NH;),CO, CN5(NH)s ete. (Sizing) — Purification (Acid
Ca3(PO,), [Carrier of B,0s], CaO treatment) — Drying
Others 7
B,0; [catalyst for crystallization] etc.
Boron and
nitrogen h-BN Mixing of raw materials — High
source temperature and high pressure
c-BN Li3N, Mg;N,, CazN,, Liz;BN,, treatment (1500~2500°C, 5~8GPa) —
Others Mg;BN;3, Ca;B,N, [Boride or nitride | Comminution (Sizing) — Purification
of alkali and alkali earth metals (as (Acid treatment) — Drying
catalyst)
1.4
14.1
(BN) ©)
Fig. 1-7 BN [20,21] C
BN B-B N-N
3 5
BN 6 4 8
B-N BN Ceo
B3N3s  B24Nog [22]
BN
BN BN BN
BN C
80%
[23] BN BN
h-BN (Eg= 5¢eV)
Table 1-6 BN C

10



BN

(d)

Fig. 1-7. (a)B3sN3s, (b) Fe@B;3eNs6, (¢) multi-walled BN nanotube and (d) BN nanocapsule.

Table 1-6. Comparison of properties of C with BN cage materials.

Properties -
C BN Comparison
. . Semiconductor or metal Insulator
Electrical resistance (E,=0 1.7eV) E,=  5eV) BN>C
Thermgl re.s1stance 600 °C 900 °C BN>C
(in air)
Thermal 6000 W/m K BN = C
conductivity (Value of nanotube)

Chemical stability | Poor oxidation resistance | Good oxidation resistance BN >C

C: 45 GPa ~
Strength (Value of nanotube) BN~C

H, gas storage o o N
(10MPa) 3 wt% 2.6 wt% BN=C
Field emission 2 uA 2.5 pA BN>C

( No data )
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1.4.2

C CVD
BN BN
BN
BN BN BN BN
1995 Chopra BN W@BN
Chopra BN h-BN
[24] Terrones
BN Ta BN
[25] BN HfB  ZrB, BN
[26, 27]
h-BN c-BN BN C
BN [22, 28-33] Table 1-7 BN
BN

Table 1-7 Typical synthesis method of BN nanocapsules (BNNCs) and BN nanotubes (BNNTs).

Synthesis method Products
Arc discharge (h-BN packed W / Cu electrode) [24] Mmt\;-lwa}l;;?NBCI\SINTs
Arc discharge (h-BN powder packed Ta / Cu electrode) [25] MU1E1{;lwa]131'§1N13CI\SINTs
Arc discharge (HfB,/ HfB, electrode, in N, gas) [26] Mulgtyv@ag%%fNTs
Arc discharge (ZrB, / ZrB, electrode, in N, gas) [27] Ml;;;zallgﬁgjﬂs

Laser ablation (Target h-BN) [28, 29]

Single-walled BNNTs

H.P. compression of ¢c-BN microcrystal (5-15GPa, in a diamond
anvil cell induced by laser heating) [30]

Short multi-walled BNNTs

Heating of B with Li (1200°C, in a BN crucible, in N,
atmosphere) [31]

Spiral short
Multi-walled BNNTs

Li@BNNCs
Heating of ball-milled B (1000°C, in ammonia) [32] Bamboo BNNTs
Reaction of B,Hs  ZrB,  NH; gas (1100°C) [33] Bamb;‘EIf’NNTS
2
Bundled BNNT:
Reaction of B,O; C nanotube N, gas [22] ug © Mo orSV

12
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Fe, Co, Ni, La, Ce C Ti, Zr, Hf, Ta
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BN BN
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1.5
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Fig. 1-8. (a) Schematic illustration of JEM-3000F and (b) photograph of JEM-3000F.
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Svynthesis, structure analysis and magnetic
properties on BN cage materials

Creation of original nanosience and
nanotechnology by using BN cage materials

“New products from new nanomaterials”

ﬁ Synthesis Magnetic materials desi@\

Synthesis of BN cage materials Magnetic materials design by
using BN cage materials
Ch.2 | Arc melting > Metal powders | || ch.4 |Keeping of magnetization of
(Al/B,TiB,,VB,,Ga/B, metal magnet >
YBg, YBg/Ni, NbB,, MgB,) Oxidation/wear-resistances,
. . Decrease of eddy current loss
Ch.4 | Reduction of nitiride Fe,N y
Ch.4 | Heating of Ammine complex Z
with alkali borohydride BN layers>insulator SeV
L Fe@BN nanotubes
Thermodynamics calculation Co@BN nanocapsules
Development of synthesis process VSM measurement
Study of catalysis metals Soft nanomagnetic materials design
\\Formation mechanism \ /
/ (_ Structure analysis - \

Nano structure analysis of BN cage materials

ch.2 | Multi-walled BNNTs, BNNCs, BN

nanocages, Bundled BNNTs HREM observation
<= | EDX analysis

Image processing
HREM Simulation

ch.3 | Direct observation of chirality of
BN nanotubes
zigzag/armchair type

\ Ch.4 | Bamboo BN nanotubes

Imaging of atomic

arrangement /

Fig. 1-9. Schematic illustration of the present research.
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2.1

©
[1-6] C (BN)
BN BN HfB, ZrB,
[7,8] C (E,
BN (E, 5 eV)
[5, 9-11]
BN
(B) N, Ar
BN [5, 11-14]
BN
BN
1) 2)BN

3) BN

BN

BN BN
BN

Al/B TiB,
NbB, YB; YB¢/Ni
Y Y/Ni C
[15] BN
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2.2

Fig. 2-1(a) (NEV-AD03, )
Fig. 2-1(b)
Al (0.6 g, 99 %) /B (2.4 g, 99 %) 1.0x10" Pa
Ar N, 0.025 MPa
30 ( 200 V) TiB, (4.0 g 99 %) VB, (4.0 g, 99 %)

Ga (4.0 g,99.99 %) /B (4.0 2,99 %) NbB, (4.0g, 99 %) YBs (4.0 g, 99.6%) YBs (4.0 g, 99.6 %)
/ Ni (0.8 g, 99.9 %)

(HREM)
HREM
JEM-3000F( 300 kV) BN
X (EDX)

I=125A

Tungsten electrode t=30s

Ar gas
N, gas

U=y

Cu mold
Water cooling

Boride or
metal/boron powder

Fig. 2-1. (a) Schematic illustration of arc melting furnace and (b) photograph of arc melting furnace.
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2.3

BN Table 2-1
BN EDX
BN B N B:N=1.0:1.0
Al/B AlB;; BN HREM Fig. 2-2(a) AlBy,
h-BN {002} 0.34 nm AlBy
BN 5 20nm 5 15
AlBy, {113} AlBy;y BN EDX
Fig. 2-2(b) TiB, HREM
h-BN 5 30nm 2 10 BN
TiB {102}
Fig. 2-2(¢) VB, BN HREM
10 50 nm BN 5 10 V;B,
{201}
Table 2-1. Produced BN nanomaterials in the present work.
Material Structure Encapsulgted Size Number of
nanoparticles (nm) BN layers
Al/B Metal@BN nanocapsules AlBy 5-20 5-15
Metal@BN nanocapsules TiB 5-30 2-10
TiB,
BN nanocages 20-50 5-10
VB, Metal@BN nanocapsules V3B, 10-50 5-10
Ga/B BN nanocages 5-25 5-10
Length: 80-120nm,
NbB, A few of BN nanotubes Width: 12-15nm 5-15
Length: 4-6pum,
YBsg A large of BN nanotubes Width: 5-20nm 5-15
Vary large of BN Length: 4-6um, 515
. nanotubes Width: 10-20nm
YB/Ni Length: 4-6um
Bundled BN nanotubes Width: 20-50nm

21



Fig. 2-2. HREM images of BN nanocapsules with (a) AlB,o, (b) TiN and (¢) VN nanoparticles.

Fig. 2-3
HREM

5 10nm

BN

Fig. 2-3(c)
AlIB;y, BN

BN
B/Al

Fig. 2-3(a)
Fig. 2-3(b)

AlBy t-BN AlBy
AlB;y, BN
BN AlB,
AlBy 10 20 nm t-BN
BN
B/Al
Fig. 2-3(c)
AlBy, {113} h-BN {002}
BN
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[16]

Ga/B BN (TEM) HREM Fig. 2-4
Ga/B Ga BN
BN BN 5 25nm 5 10
NbB, BN TEM HREM Fig. 2-5
BN 80 120nm 12 15nm Fig. 2-5(b)
HREM BN 10
YBs¢ TEM Fig. 2-6(a) Fig. 2-6(a)
BN 4 6 um 5 20 nm BN
HREM Fig. 2-6(b) BN
BN h-BN {002} 0.34nm
0.34 0.70 nm Fig. 2-6(¢c)
BN YB; {002} Fig.
2-6(c) BN
EDX BN YB, (Fig. 2-6(d) and (e)) Fig.
2-6(d) BN YB, {002} {200}
Fig. 2-6(¢e) B N Y Cu
HREM EDX BN
B:N=1.1:1.0 Fig. 2-7(a)
BN BN 4 10
1.6nm 4.0 nm BN
B (Fig. 2-7(b)) BN BN
(Fig. 2-7(c))
YB¢/Ni BN BN
BN BN
TEM Fig. 2-8(a) Fig. 2-8(a) BN
BN 4 6pum 20 50 nm
BN EDX BNNi Y (Fig. 2-8(b))
Cu HREM EDX B N
B:N=1.0: 1.0 Fig. 2-8(c) (d) BN TEM
BN BN 10
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20nm 5 15 Fig. 2-8(e) 4 BN BN
HREM BN 25 nm

Fig. 2-3. HREM images of (a) amorphous B with A1B, nanoparticles, (b) turbostratic-BN with A1B,

nanoparticles and (c) vertex of BN nanocapsule, produced from B/Al powders by arc melting.
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Fig. 2-4. (a) Low magnification and (b) HREM images of BN nanocages produced from Ga/B

powders.
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Fig. 2-5. (a) Low magnification and (b) HREM images of BN nanotubes produced from NbB,

powders.
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002 YB,

f

002 YB,

Intensity (Arb. unit.)

1.|0 1.|5 20 25
Energy (keV)

Fig. 2-6. (a) Low magnification and (b) HREM images of BN nanotubes produced from YB4 powders.

(c) BN nanotubes with YB, compound. (d) Electron diffraction pattern of BN nanotubes with YBy

nanoparticles. (¢) EDX spectrum of BN nanotubes with YB, nanopaticles.
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Fig. 2-7. HREM images of (a) four-layered BN nanotube, (b) amorphous B with open-tip BN
nanotube and (c) a wavy BN nanolayers in BN nanotube.
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Intensity (Arb. unit.)

0 05 10 15 20 25
Energy (keV)

Fig. 2-8. (a) Low magnification and (b) EDX spectrum of BN nanotubes produced from YBg/Ni
powders. An asterisk indicates noise from the EDX detector. (c) Low magnification image of bundled
BN nanotubes. (d) Enlarged image of bundled BN nanotubes and (e) bundled structure with four BN

nanotubes.
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2.4

Nb Y BN
BN Zr Hf Ta W La
[5,7,8,11, 14, 16-19]

BN Table 2-2
Table 2-2 BN
35
BN
AG° 4G°
HSC Chemistry (Outokumpu research, Finland) Fig. 2-9
4G°
BN

(Y, Zr, Nb, Hf, Ta, W, La )

Table 2-2. Catalysis metal for BN cage materials confirmed by experiments on arc-method

(e: BN nanocapsule, o: BN nanocage, : BN nanotube).
1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N 0 F Ne
[}
3 Na Mg Al Si P S Cl Ar
oce=| @ [ J ([ J [ J [ J O [ J

4 K Ca Sc Ti \4 Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
= | 0=| @= [ J

5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te 1 Xe
La ([ @=| @=| @= [}

6 Cs Ba | ~Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Ac

7 Fr Ra ~Lr Rf Db Sg Bh Hs Mt

|La Ce Pr Nd|Pm|Sm|Eu Gd|Tb|Dy|Ho Er|Tm|Yb|Lu|
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AG° (kcal/mol)

-100[

-120 | \ ! ! l
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Fig. 2-9. Ellingham diagram of nitrides for a N, molecule.
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Fig. 2-10(a) BN
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Fig. 2-10. Schematic illustration of the formation mechanism of (a) BN nanocapsule, (b) BN

nanocages and (¢) BN nanotubes.
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Fig. 3-1. Low magnification image of BNnanotubes.
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Fig. 3-9. (a) Propose structure model of double-walled BN nanotubes. (b) Calculated HREM images

of (a) as a function of defocus values.
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Fig. 4-1. Ellingham diagram of Fe, Ni and Co nitrides for a N, molecule.
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Fig. 4-2. (a) Schematic illustration of furnace and (b) photograph of furnace.
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Fig. 4-3. Structure model of [Co(NH;)s]Cls.
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Fe HREM 5
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Fig. 4-4. X-ray diffraction patterns of the annealed samples of Fe4N, which are (a) WR of Fe,N: B = 5:
5 annealed at 1000 °C for 1h, (b) WR of Fe;N: B = 5: 5 annealed at 1000 °C for 5h, and (¢c) WR of
FesN: B =9: 1 annealed at 1000 °C for 1h, respectively.

Table. 4-1. Averaged particle size of a-Fe.

Composition of  Annealing time at 20 Half bandwidth Averaged particle
Fe,N: B 1000 (°C) (rad) size (nm)
5:5 lh 44.760 0.006 24
5:5 5h 44.760 0.005 28
9:1 1h 44.060 0.005 30
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Fig. 4-5. (a) Low magnification image of the BN nanotubes with bamboo-structures. (b) BN
nanocapsules encaging o-Fe nanoparticles. (c) Low magnification image of the end of BN nanotubes
with bamboo-structures. (d) Enlarged image of (c). (¢) Low magnification image of a cap-stacked type
BN nanotubes with bamboo-structures. (f) Enlarged image of (¢). (a-d) WR of Fe,N: B = 5: 5. (e, f)
WR of Fe,N: B =09: 1. Samples were annealed at 1000 °C for (a, b, e, f) 1h and (¢, d) Sh.
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Fig. 4-5. Hysteresis loop of Fe,N: B =9: 1 annealed at 1000 °C for 1h with flowing 100 sccm N, gas.
The values of M, and H,. are 174.9 emu/g and 19.0 Oe, respectively.

Table. 4-2. VSM measurement of Fe@BN cage nanomaterials at room temperature.

Composition of  Annealing time at

FesN: B 1000 (°C) M, (emu/g) H, (Oe) Particle size (nm)
5:5 1h 95.0 24.4 24
5:5 5h 92.6 225 28
7:3 l1h 134.2 20.9 .
9:1 l1h 174.9 19.0 30

Table. 4-3. Saturation magnetization (M,*) and coercivity (H.*) values of Fe@BN cage nanomaterials
after a PC test (120 °C %12 h, humidity 100 %, 1 atm). Values of degauss coefficient were calculated
according to the following equation: (M;* M;)/M; x 100 %.

Composition of  Annealing time at M* H.* Degauss
FesN: B 1000 (°C) (emu/g) (Oe) coefficient (%)
5:5 l1h 78.3 42.5 17.6
5:5 5h 78.9 39.8 14.8
7:3 l1h 117.4 33.8 12.5
9:1 lh 149.9 37.5 14.3
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Fig. 4-7. DTA curve on the reaction of Fe,N and B (WR = 5: 5). The rates of temperature rising and

flowing N, gas were 10 °C/min and 20 sccm, respectively.

62



et

/ F W\

BN covering >> Sift BN covering << Sift

<20 nm /

BN nanocapusle

>100 nm

I®

Bamboo BN nanotube
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BN nanotubes encaging Fe nanoparticles.

63



4.4 Co@BN

Flg 4-9 [CO(NH3)6]C13
4-9(a) 700 °C
9(c) 1000 °C

fce-Co (111)

X
B N
h-BN fce-Co

Fig.
Fig. 4-9(b)

Table 4-4
o O fce-Co
v a-Co
M CoB
A B.Co,,
(c) o
~—~ | hexagonal BN ©
3|0 K
< N L ¢
N—’ )
=
n
c
(O]
—
c
- o
(b)
BN o
S h
N, N .....J\..
(a) 0
BN A % o é
— man Ta am m% I
prossant- b n IS | Jrap—
20 30 40 50 60 70 80 90

20 (degrees)

Fig. 4-9. X-ray diffraction pattern of the annealed samples of [Co(NHj3)¢]Cl; at (a) 700 °C, 2 h, 100
scem of N, gas, (b) 1000 °C, 2 h, 100 sccm of N gas, (¢) 1000 °C, 2 h, 200 sccm of N, gas.

Table. 4-4. Averaged particle size of fcc-Co.

Temperature (‘C)  Flow rate (sccm) 260 Half té?;(;i)Wldth Avers?fz((ifnigtlde
700 100 44.196 0.006 27
1000 100 44211 0.004 40
1000 200 44.216 0.004 37
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[20-23]

6[C0(NH3)6]C13 > 6COC12 + N2 + 6NH4C1 +28NH3
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Fig. 4-10. (a) Low magnification image of BN nanocapsules encaging fcc-Co nanoparticles. HREM

images of (b) BN nanocapsules encaging fcc-Co nanoparticles and (c) empty BN nanocapsules.
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Fig. 4-11. Hysteresis loop of [Co(NH;)s]Cl; with KBH,4 annealed at 1000 °C for 2 h with flowing 100
sccm N, gas. The values of M, and H, are 74.5 emu/g and 88.0 Oe, respectively.

Table. 4-5. VSM measurement of Co@BN cage nanomaterials at room temperature.

Temperature ("C)  Flow rate (sccm) M, (emu/g) H.(Oe) Particle size (nm)
700 100 48.6 3429 27
1000 100 74.5 88.0 40
1000 200 72.3 134.1 37

Table. 4-6. Saturation magnetization (M;*) and coercivity (H.*) values of Co@BN cage nanomaterials
after a PC test (120 °C %12 h, humidity 100 %, 1 atm). Values of degauss coefficient were calculated
according to the following equation: (M* M;)/M; x 100 %.

Temperature (°C)  Flow rate (sccm) M* (emu/g) H.* (Oe) Coe%(i?;is(% )
700 100 22.1 396.1 54.6
1000 100 54.0 106.9 27.5
1000 200 61.7 143.2 14.7
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KBH,; NH,CI BN Fig. 4-12(b)

200 °C [24] Fig. 4-13(a) 13(b) 500 °C 700 °C
Co@BN HREM 500 °C BN
h-BN 700 °C
Fig. 4-14 Co@BN BN
[Co(NH;)6]Cls CoCl, N, NH,Cl NH; KBH,4
Fig. 4-12(b) 200 °C [Co(NH;)]Cls B-N
Co BN Co
KCl1 BN KCl1
Fig. 4-13 h-BN 700 °C KCl1
776 °C KCl1 BN
Co@BN BN
Co@BN
3KBH,4 + Co(NH;)Cls

— 3H3;B NH; + Co + 3KC1+ 3NH;1 + 1.5H,1
— 3BN + Co + 3KCl + 3NH;31 + 10.5H,1
AH,"= 82 kcal, AG,"= 354 kcal (at 25 °C)
AH," =43 kcal, AG,” = 1331 kcal (at 1000 °C)

(4H.°) 4G, HSC Chemistry 4.0
(Outokumpu Research, Finland) 4G,° 0°C 1000 °C

68



120 50

(a) 10°C/min, 20 sccm N, gas
100 -
—
80 | i
—
X =
N
<
Oe60 | =
— o
40
20 | -200

0 ‘ - ‘ ‘ — ‘ -250
100 200 300 400 500 600 700 800 900 1000

Temperature ('C)

20
(b) 5'C/min, 20 sccm N, gas

KBH, + [CO(NH,)ICl,

<
>
< -20( —
5 KBH, + NH,CI

- ~—[Co(NHy)Cl,

-60 ‘ ‘ ‘ ‘ ‘ ‘ ‘
100 200 300 400 500
Temperature ('C)

Fig. 4-12. (a) DTA-TGA curve on the reaction of [Co(NH;)s]Cl; and KBH,. The rates of temperature
rising and flowing N, gas were 10 °C/min and 20 sccm, respectively. (b) DTA curves on the reaction of
[Co(NH;)]Cl3, KBH,4, NH4CI. The rates of temperature rising and flowing N, gas were 5 °C/min and

20 sccm, respectively.
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Fig. 4-13. HREM image of samples annealed at (a) 500 °C and (b) 700 °C for 2 h with flowing 100

sccm N, gas.
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Fig. 4-14. A model for the growth of BN nanocapsules encaging Co nanoparticles.
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