<table>
<thead>
<tr>
<th>Title</th>
<th>“Brain Attack”時代のMRI-MRIによる超急性期脳梗塞, 内頸動脈狭帯の評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>青木, 茂樹</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 59(5) P.163-P.169</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-04-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/15932</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Current Techniques in MR Imaging of Cerebral Infarction

Shigeki Acki

The imaging of cerebral infarction is a current topic now that the usefulness of both thrombolysis for hyperacute infarction and carotid endarterectomy has been established. Diffusion-weighted imaging (DWI) by EPI is a highly sensitive method of detecting hyperacute infarction. Further, the combination of DWI and perfusion MR makes it possible to detect hyperacute infarction as well as predict the final size of infarction. Contrast-enhanced MRA can demonstrate carotid bifurcation without flow-related signal loss within 30 seconds and can visualize major cervical arteries from the aortic arch to the circle of Willis.

<table>
<thead>
<tr>
<th>Research Code No.</th>
<th>703</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key words</td>
<td>Brain, infarction; Magnetic resonance (MR), diffusion study; Magnetic resonance (MR), vascula: studies</td>
</tr>
</tbody>
</table>

Received Jan. 25, 1999
Department of Radiology, Yamanashi Medical University

脳血管障害は死因のトップの座を築き上げて久しい間であり、未だにその全発生に至る経緯の分析が必要である。2）特に、その研究では、高血圧のコントロールなどが不可欠である。2）また、高齢者に多発し、死に至らなくても患者のQOLを著しく低下させることから、高齢化社会に向けて予防・診断・治療のさらなる進歩が望まれている。

近年、脳血管塞栓の病態的治療法の有効性が確認され、脳梗塞の治療法は大きく変わってきている。1）1つに、発症3時間以内の、急性期に仮性の血栓溶解（tPA使用）により血栓のriskが増えるが、3ヶ月後には予後が良いことが示されたことがある。1）これにより、Heart attackになって、「Brain attack」として社会的認知を募り、医療関係者のみならず、一般に、脳梗塞の早発治療を受けるべきだという知識を広げようと言う提案がなされている。2）もう1つには、内頸動脈破裂部の狭窄に対する内頸動脈切除術が推奨される。70％以上の症候性の狭窄が、内頸動脈術施行群と対照群との改善率の差が示され、さらに低い狭窄率で高頻度性の狭窄における有用性も明らかにされつつある。

一方、MRIでは、EPIを用いた拡散強調画像の臨床応用への導入により、T2強調像を含めた他の画像診断法では困難な急性期の脳梗塞の早期に検出可能となってきた4）～6）。拡散強調画像と造影効を用いて得られる灌流画像の組み合わせで、血栓崩壊の適応をさらに検討し治療成績を上げようという多くの試みがなされている。また、造影MR angiographyの導入により従来のMRAではdepshingなどにより正確な検出が困難であった内頸動脈破裂部の検出が可能となってきている8）～11）。内頸動脈術の術前評価に等動脈性のX線DSAで行われていたが、そのriskは未発で、出来るだけ予防的でなく、かつ施行による差が少なく再現性のよい評価法が望まれており、造影MRAはCTA9）、US10）11）とともにその役割が期待されている。

このような、最近有用性の確立してきた脳梗塞の治療法の適応を決定する上で、MRIの役割は大きい。ここでは、日常のMRIでもっとも多く検査されるcommon diseaseである
が、比較的放射線科では注目されなかった脳梗塞につい
て、紙面の関係上、拡散強調画像を中心とした脳梗塞の
存在・広がり診断を述べ、簡単にMRI/MRAによる脳動静の
評価についてまとめる。

超急性期脳梗塞の存在・広がり診断

1. 存在診断

従来から脳梗塞の診断では、動脈のEoivoidの消失、
動脈内腔の造影効果の出現などが直接からの脳動脈、
脳静脈の腫脹、白質性白質のコントラストの消失が8時以内に、
T2高信号像やFLAIRでの高信号、脇脳の造影効果、
mass effectが2時以内から24時間以内に認められるとされる。
しかし、拡散強調および灌流画像の臨床応用により、容易
に血管部位が直接診断することができるようになった。

2. 拡散強調画像

拡散強調画像は1980年代後半から報告があったが④−
⑨, 動きによるアーチファクトが出やすく、またEPIと
の組み合わせが可能となって普及するようになった画像法
である⑩−⑮。現在では、通常の嚢よくプロトン(通常
は水)のランダムな動き(つまり拡散、またはブラウン運動)
が早い場合に信号が低下することを加えた画像である。
つまり、拡散が低下している部分が高信号となる。
脳梗塞早期では細胞が膨大し(cytotoxic edema), 相対
的に細胞内のプロトンが増加し、細胞内は細胞外に比べ複
雑な内部構造によりプロトンの動きの制限が大きいため、
voxel内のプロトンの動きが全体として低下し、梗塞部が相
対的に高信号として突出される。
拡散強調画像を導入するために加えた探査磁場をmotion prob-
ing gradient (MFG) と言う、その強さをb-factorと呼ぶ。拡散
強調画像の一つではMPGを加える元の探査法(通常T2強調像)
の影響が残ることがある。元のT2強調像の高信号の影響が
拡散強調像に残り、拡散が低下していないのに拡散強調画像
で高信号を呈することをT2 shine throughという。白質脳
図の走行と加えた傾斜磁場の方向が平行の場合、拡散強調画像でその線維の信号が低下し、他の線維が高信号に見られる。T2、白質線維の方向による影響を除くためには、実際には元のT2強調画像や傾斜磁場の方向を変えた拡散強調画像を参照しつつ、観察することになる(拡散係数を計算する方法もあるが、b-factorが高い画像が容易に導かれるようにになり、必要性は少なくなってきた)。ここでは、b-factor 1000 sec/mm²程度の、拡散の方向性を排した計測画像であるisotropic imageを中心に提示する。

3. 拡散強調画像ではいつか、どの辺縁も高信号となるか
実験では脳血管から拡散係数の低下が見られるが、臨床ではいつか観察できるかはまず疑問となるところである。結論から言うと、臨床でMRIが施行される時期(つまり発症30分以上)ではほとんどの“脳梗塞”がある程度以上の高信号として描出されると考えてよい(図1, 2)。ただし、ここでいう脳梗塞は不可逆性の変化を起こした部分をさす。
実際には脳虚血から脳梗塞に至る過程は複雑で、血流の程度と時間が関与している(Fig. 3, 4)[20-22]。また、神経症状を表す脳虚血の限界と、脳梗塞を表す脳血流の閾値にも差がある[22]。その複雑な過程で一時期の画像の意味付けはいくつかあるが、拡散強調画像(b-factor 1000 sec/mm²程度)で明らかに高信号を呈するのは、虚血性疾患に関しては不可逆性変化を示したと考えるがわかる。たとえば、神経症状をきたし、拡散強調画像を行ったがはっきりとした高信号がみられず、後に脳梗塞と判断された場合、拡散強調画像で脳梗塞を描出できなかったのではなく、拡散強調画像を施行した時点では、まだ不可逆性変化(脳梗塞)に至らなかったが、一定以上の虚血がさらに続いたための脳梗塞となったと考えられる。MGHのGonzalezによれば、神経症状が締め最終的に脳梗
塗装した582例中25例(4.2%)で拡散強調画像で病変が示されなかったという。それらは、ラクナ梗塞、早期の虚血、画質不良で描出されない原因と考えられ、あわせても5%以下と報告している。また、不可逆かどうかの点では、2700例以上の拡散強調画像の検討では拡散強調画像の高信号が回復したのは4例(0.15%)、その中で虚血による拡散強調画像の高信号は1例(0.05%)という。他の報告でも、24時間以内の脳梗塞の拡散能は非常に高く、Lovbladら5)はsensitivity 88%，specificity 95% (N = 151)，Burdetteら6)は100% (N = 15) と報告している。

4. 脳梗塞は拡散強調画像でいつまで高信号か
拡散強調画像の高信号がいつまで続くかが臨床的に重要である。多くの施設では発症後時間内にMRIを撮る方針が基盤であるが、数日後に高信号が多いし、脳卒中を繰り返した場合には前回の梗塞病と今回の梗塞病との鑑定に必要な知識となる。

通常の拡散強調画像(b-factor 100 sec/mm²程度)では、10日まではある程度以上の高信号が示されと考えてよいようである(Fig. 5)3)。脳梗塞脳梗塞の断層撮影による拡散低下は数週までに遅れ、1週間ほどで正常脳と同程度の値メディアトーノルまたはメディアトーノルや媒体光が残り10日前後まではほとんどのものがある程度以上の高信号となるようである。Burdetteら6)は1日以内100% (N = 13)，1～4日96% (N = 48)，5～9日94% (N = 17)，
Table 1 High signal intensity lesions on diffusion-weighted imaging other than acute hematoma

- Seizure focus
- Encephalitis
- T2 shine-through
- Cell death except infarction
- Subacute hematoma
- Abscess
- Soorgiform encephalopathy

Fig. 6 A 78-year-old man with left ICA stenosis. First-pass (first phase) contrast-enhanced MRA (A) with original coronal plane shows overview of the cervical arteries. Targeting MIP of the first (B) and second (C) phase CE MRA and IA DSA (D) in the lateral view show irregular plaque and stenosis. MRA of first phase shows burning artifact mainly due to low sagittal spatial resolution. Axial image of the second phase (E) shows eccentric irregular plaque.
10〜14日60%(N=5), 14日以上4人(0%N=10)と報告している。
5. 拡散強調画像における高信号の鑑別
拡散強調画像における高信号が急性期脳梗塞に特異的と言わなければ、異常によりTable 1のようにしたもののが挙げられるが、臓器中頚症例を来し、筋質横以内に撮像した場合、特に注意を要するものはてんかんがほとんどと思われる。
また、拡散強調画像の高密度が向上するに従い、値度の信号上昇が認知できるようになり、常に高信号でなく、程度の高信号と著明な高信号（過去の報告の高信号：不適当な"脳梗塞"を区別する必要が生じるであろう。
6. 広がり診断：流れ画像
上述のことと、ある時点の急性変化においても部分の出血は拡散強調画像で可能と考えられるが、それがまでに超急性期の脳梗塞の診断には十分できない。超急性期では撮像時より脳梗塞がさらに広がることから、つまり超急性期においては、最終的な変化の広がりを予測するためが必要である。脳梗塞は、脳の一部と異なる leptomesenchymal anastomosisや Willis' ringなどの側副血行路により、ある程度の血流が残っている。0数ml/100g/min程度の血流が低下した状態では、脳梗塞の不全変性が起こり、解剖学的観察では、従来の病態解剖学によく一致しているが、また内頚動脈や脳動脈の変化が、従来の病理学的観察によく一致している。
MRAを用いた流れ画像は、Gd-キレート剤の通過を追跡的に観察して診断するもの。撮像時間を変えて血流を評価し、血行障害の程度を診断する。MRAの利点は、無侵襲で、安全性が高いことである。MRAの応用は、脳梗塞の診断や、術前診断に用いられる。

引用文献
1. 秋山 眞名, 他: 脳梗塞のMRI診断, 産経医 classics(2011)
4. 田中 信, 他: 脳梗塞のMRI診断, 平成17年(2005)

頸動脈分岐部のMRA
内頸動脈分岐部の変異に対する内頸動脈造影の有用性が確立し、血管造影が手術目的に欠く大きなリスクであることが指摘されている。非侵襲的評価法の確立が必要である。造影剤のMRAで全体像をみて、分岐部自体はUSで評価する方法が普及しつつあったが、造影MRAの進歩により、それらの方法の可能であることが指摘されている。
造影MRAでは、造影剤の注入を用いる前に画像を取得する方法、または、造影剤の注入後に画像を取得する方法を用いる。造影剤の注入後、画像を取得する方法は、画像の鮮明さとスムーズに画像を取得できる。
性を抑えるようにしたが従来多く行われていた方法と異なるので，注意を要する。ヨーロッパでのECST39)は
分母に予想される正常の太さを用いる。狭窄率を表記す
る場合にはどの方法でのものかを明記する必要があり，
われわれは70% stenosis (NASCET)などと記載してい
る。

まとめ
脳梗塞の新たに確立された治療法に伴い必要とされる画像診断の知識として，超急性期脳梗塞における拡散強調画像,
動脈狭窄の評価における造影MRAの2点について簡
単にまとめた。

文献
1) The National Institute of Neurological Disorders and Stroke rt-
PA Stroke Study: Tissue plasminogen activator for acute ischemic
2) Baringa M: Finding new drugs to treat stroke. Science 272: 664-
6, 1996
3) North America Symptomatic Carotid Endarterectomy Trial
Collaborators: Beneficial effect of carotid endarterectomy in
symptomatic patients with high-grade carotid stenosis. N Engl
4) Baresi GD, Soresen AG, Gonzalez RG: Magnetic resonance
imaging of cerebral infarction. Top Magn Reson Imaging 9: 199-
207, 1998
5) Lovblad KO, Laubach HJ, Baird A, et al: Clinical experience
with diffusion-weighted MR in patients with acute stroke. AJNR
19: 1061-6, 1998
course of signa intensity changes on diffus on-weighted MR
images. AJR 171: 791-5, 1998
MR DSA of the carotid artery bifurcation. Preliminary study of
comparison with enhanced 2D and 3D time-of-flight MR
8) Remosada L, Heid O, Schoth G; Carotid artery stenosis, occlu-
sion, and pseudo-occlusion: First-pass Gadolinium-enhanced
9) Cnat M, Lane CT, Flan M, et al: Heical CT angiography in the
28: 290-300, 1998
10) Carpenter JP, Lema RJ, Davis JT: Determination of duplex Doppler
ultrasound criteria appropriate to the North American Symptom-
From NASCET results to clinical practice. Stroke 26: 1325-8, 1995
12) Vanninen RL, Manninen HI, Pararame P, et al: How should we
estimate carotid stenosis using magnetic resonance angiography?
13) Fam SH, Mohamed FB, Chen CY, et al: Carotid artery bifurcation:
Multiple view-angle, three-dimensional, time-of-flight MR
angiographic technique. Radiology 206: 555-9, 1998
14) Le Bihan D, Breton E, Lallemand D, et al: MR imaging of
intravoxel incoherent motions: Application to diffusion and
perfusion in neurologic disease. Radiology 161: 401-7, 1986
of regional cerebral ischemia in cats: Comparison of diffusion-
and T2-weighted MRI and spectroscopy. Magn Reson Med 14:
310-6, 1990
Clinical applications. JMRI 15: 551-6, 1992
17) Sorensen AG, Buonanno FS, Gonzalez RG, et al: Hypoanomaly
stroke: Evaluation with combined multiplanar diffusion-weighted
and hemodynamically weighted echo-planar MR imaging. Radiol-
ogy 196: 391-401, 1996
18) Warach S, Dashe FF, Edelman RR: Clinical outcomes in ischemic
stroke predicted by early diffusion-weighted and perfusion
magnetic resonance imaging: A preliminary analysis. J Cereb
Blood Flow Metab 16: 53-9, 1996
19) Fisher M, Prichard JW, Warach S: New magnetic resonance
imaging techniques for acute ischemic stroke. JAMA 274: 908-11, 1995
20) 常 慶志: 腦血管障害における循環図書。山口県、他
編：臨床中風、2-25, 1998, 医書院, 東京
21) Sunt T, Grant WC, Garcia JH: Restoration of middle cerebral
artery flow in experimental infarction. J Neurosurg 31: 312-
322, 1969
22) Jenes TH, Morawetz RB, Crowell RM, et al: Thresholds of focal
cerebral ischemia in awake monkeys. J Neurosurg 54: 773-
782, 1981
23) Gonzalez RG: Cerebral infarction: Current status of imaging and
future directions. JMRI 209 (suppl): 120, 1998
24) Abers GW: Diffusion-weighted MRI for evaluation of acute
25) Perez-Tiepichlo AD, Xue N, Ng TC, et al: Sensitivity of mag-
netic resonance diffusion-weighted imaging and regional
relationship between the apparent diffusion coefficients for cerebral
26) Kim JK, Farb RI, Wright GA: Test bolus examination in the
carotid artery at dynamic gadolinium-enhanced MR angiography.
Radiology 206: 283-9, 1998
External validity of the North American Symptomatic Carotid
Endarterectomy Trial measurement method. Radiology 204: 229-
35, 1997
6: 931-8, 1996
29) Randomised trial of endarterectomy for recently symptomatic
carotid stenosis: Final results of the MRC European Carotid

平成11年4月25日