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ABSTRACT

We have investigated the evolution of the density fluctuations in the expanding
universe, especially in the non-linear regime. First, we have investigated the scale-invariant
solutions of the cosmological BBGKY equations in the strongly nonlinear regime. We
have derived the solutions and obtained the relation between the power-law index of the
two-point spatial correlation function and the other statistical quantities, such as skewness
of the velocity field, three-point correlation function, and the velocity parameter. We have
also derived the index of the two-point spatial correlation function as a function of the
index of the initial power spectrum and the velocity parameter h = —(v)/az (mean relative
peculiar velocity divided by the Hubble expansion velocity) when the self-similar evolution

by connecting the non-linear solution to the well known linear solution is satisfied.

Second, we have investigated the stability of the scale-invariant solutions of the
BBGKY equations in the non-linear regime because whether the solutions are suitable in
the real world or not is not clear. We have found that there is no unstable mode when the
skewness of the velocity field is equal to zero. The solutions have proved to be marginally
stable. This means that there is no special value of the index of the two-point spatial

correlation function from the viewpoint of stability of the solutions.

Finally, we have investigated self-similarity of the two-point spatial correlation function
(power spectrum) in an one-dimensional system because if the self-similarity is satisfied,
the two-point spatial correlation function in the non-linear regime can be expressed as
a function of the index of the initial power spectrum. We have verified the self-similar
evolution when the initial power spectrum is scale free. We have also investigated the
evolution of the power spectrum when the initial power spectrum obeys the power-law with
a cutoff. In this case, the self-similarity of the two-point spatial correlation function (power

spectrum) is broken.
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1. INTRODUCTION
1.1. General Introduction

In our universe, there are many kinds of structures, such as galaxies, clusters of galaxies
and super-clusters of galaxies. It is not known clearly even today how galaxies and the
large-scale structures were formed after the birth of the universe. This is one of the most
important problems in cosmology. In the standard scenario of the large-scale structure
formation, it is proposed that small density fluctuations at early times grow with time

owing to the gravitational instability.

When the amplitude of density fluctuations is much smaller than unity at ea,ﬂy times,
their temporal evolution can be analyzed by making use of the linear theory. In this regime,
we can understand analytically how the small fluctuations grow(Peebles 1980, 1993). When
the amplitude of these small fluctuations becomes as large as unity, that is, when the
fluctuations reach the quasi-linear stage, we cannot make use of linear theory. In this
regime, higher order perturbative methods (Jain & Bertschinger 1996) and the Zel’dovich

approximation (Zel’dovich 1970) are often used for the analysis.

Moreover the density fluctuations continue to grow with time, and then their amplitude
becomes much larger than unity. At last, caustics of the density fields appear at every
spatial field. The nonlinear phenomena of the self-gravity are not only very interesting and
important for the large-scale structure formation, but also of academic interest in nonlinear
dynamics. In this strongly nonlinear regime, however, analytical approach is difficult. It is
necessary to understand clearly the nonlinear behavior of the density fluctuations in spite of
its difficulty. For example, we are interested in the two-point spatial correlation functions in
the strongly nonlinear regime, that is one of the statistical quantities for the estimation of

the pattern of the distribution of dark mater. It is found from the N-body simulations that
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the two-point spatial correlation functions obey the power law. This result is reasonable
because the self-gravity is scale-free. Then the power-law index of the two-point spatial
correlation function is a good indicator, representing the nonlinear dynamics of self-gravity
in this regime. In addition, the power-law index is related to the clustering pattern of
collisionless matter. Hence it is very important to study what physical processes determine
the power-index of the two-point spatial correlation in the strongly nonlinear regime.
Moreover it is interesting to analyze whether the power-law index in this regime depends

on the initial conditions or not.

These problems have usually been analyzed by N-body simulations (Frenk, White,
& Davis 1983; Davis et.al. 1985; Suto 1993 and references therein). The method is
straightforward for tracking the evolution of the density fluctuations in the nonlinear
regime. In the simulations, high spatial resolution is necessary to estimate the correlation
functions and the mean relative peculiar velocity on very small scales in the strongly
nonlinear regime with good accuracy (Jain 1995). At the present time, however, the
computational ability to achieve high enough resolution is lacking. Hence the dynamics in

the strongly nonlinear regime has not been completely verified by N-body simulations.

There are other methods for the analysis of the nonlinear density fluctuations. One is
analysis by BBGKY equations, pioneered in the work of Davis & Peebles (1977; hereafter
DP). They showed the existence of self-similar solutions for correlation functions under some
assumptions, where self-similarity means that the two-point spatial correlation function
has a same scaling relation in all the regimes, that is, both in the linear regime and in the
non-linear regime. It can then be shown that the power-law index v of the two-point spatial
correlation function € in the strongly nonlinear regime is related to the power-law index of

the initial power spectrum n as follows:



) (e 1 sy = 2ot 0

One of the assumptions that DP adopted is called the stability condition, which states
that the mean relative physical velocity vanishes in the strongly nonlinear regime. This
condition has been tested by N-body simulations (Efstathiou et al. 1988; Jain 1996) but
has not been completely verified in the strongly nonlinear regime ( ¢ > 10%), again because

current computational ability does not allow high enough resolution.

As for physical processes determining the power-law index in the strongly nonlinear
regime, there are other analyses besides that proposed by DP. One is given by Saslaw(1980),
who concluded that the power-law index 4 approaches to 2 by using the cosmic energy
equation under some assumptions although numerical simulations do not support this

result(Frenk, White & Davis 1983; Davis et al. 1985; Fry & Melott 1985).

There is another idea as follows: when the initial power spectrum has a sharp cutoff
or is scale-free with negative and small initial power-law index, then caustics of the
density fields appear everywhere. In these cases, the power-law index is independent of the
detailed initial conditions after the first appearance of caustics on small scales, around the
typical size of the thickness of caustics(in two-dimensional systems, they correspond to the
filamentaly structures of highly clustered matter). The power-law index is determined by
the type of the singularity, which is classified in accord with catastrophe theory. This idea
has been verified in one-dimensional systems (Kotok & Shandarin 1988; Gouda & Nakamura
1988, 1989), spherically symmetric systems (Gouda 1989), two-dimensional systems (Gouda
1996), and also three-dimensional systems (Gouda 1998). In these cases, it is suggested

that v ~ 0 on small scales.

As can be seen from the above arguments, there are uncertainties about the physical

processes that determine the value of the power-law index of the two-point spatial
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correlation function in the non-linear regime.

Whether the evolutions of the two-point spatial correlation function satisfy self-
similarity or not is especially important. If the self-similarity is satisfied, the power-law
index of the two-point spatial correlation function is expressed as a function of the index
of the initial power spectrum n and the mean relative peculiar velocity. Furthermore we
can describe completely the time evolution of the two-point spatial correlation function
without numerical simulations because we can estimate the growth rate of the two-point
spatial correlation function on all scales. Many authors have investigated the self-similarity
of the two-point spatial correlation function (or the power spectrum). As mentioned
above, DP investigated self-similarity of the two-point correlation function by using the
BBGKY equations. It is well known that we can represent BBGKY equations by using a
scaled variable s = x/t* (where « is a constant) because the gravity is scale-free. They
showed the existence of the self-similarity by integrating this scaled BBGKY equations
numerically under the assumptions shown below. The BBGKY equations have hierarchical
structure, that is, the time evolution of the N-th order correlation function includes
the (N 4 1)-th order correlation function. So, the cutoff of the hierarchy is needed in
order to close these equations. DP assumed that the three-point correlation function can
be expressed by the product of the two-point spatial correlation functions and that the
skewness of the velocity field is equal to zero. Thus the existence of the self-similarity is still
uncertain because we do not know whether these assumptions are correct or not. On the
other hand, by using N-body simulations, time evolutions of the power spectrum can be
calculated directly in principle. Recent works ( e.g., Colombi,Bouchet & Hernquist (1996);
Couchman & Peebles (1998); Jain, Mo, & White (1995); and others) have shown that the
self-similar evolution of the power spectrum is satisfied when the initial power spectrum is
scale-free. In the simulations, wide range of the scales, that is, high resolution is needed

for investigating the self-similarity of the two-point correlation function. At present time,
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however, the computational ability does not allow high enough resolution. Therefore there
are still uncertainties also about the self-similarity of the two-point spatial correlation
function. Furthermore the relation between the index of the power spectrum and the mean
relative peculiar velocity is still uncertain quantitatively, and only the scale-free cases are
investigated. As can be seen from the above arguments, there are uncertainties also about
the self-similarity of the evolution of the two-point correlation function of the density

fluctuations in the expanding universe.

1.2. Organization of this Thesis

In this thesis, we investigate the non-linear density fluctuations in the expanding
universe, especially the power-law index of the two-point spatial correlation function from
the various points of view. First, we examine the conditions that determine the power-law
index by analysing the scale-invariant éolutions of the cosmological BBGKY equations.
The analysis of nonlinear clustering in the strongly nonlinear regime with the BBGKY
equations has an advantage over that of the N-body simulations. This is because the
BBGKY equations deal directly with the statistical quantities such as correlation functions
and because this analysis is free from the artificial collisionality due to finite numbers of
particles that might appear on small scales in the N-body simulations. However, it is
technically difficult to solve the BBGKY equations; in our analysis the BBGKY equations
are translated to the moment equations by integrating them over velocity because we are
interested in the statistical quantities such as the two-point correlation function ¢, mean
relative peculiar velocity (v) and so on. These moment equations for time evolution of the
N-point spatial correlation function include terms including N + 1-point spatial correlation
functions. Fufthermore, N-th moment equation involves terms include the N + 1-th

moment. In general, these equations form an infinite hierarchy and cannot be closed at the
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lower order spatial correlation and moment. Hence, one must close the equations by making
some assumptions. For example, DP assumed that the three-point spatial correlation
function ¢ can be represented by the products of the two-point spatial correlation functions

¢ as follows:

G2z = Q(&12€as + Easlar + Ea1baz),

e = &z, zr), G = (=i, ¢, 7r),

where @) is a constant. Some observations suggest that this relation with @@ ~ 1 holds at
& ~ 1. DP furthermore assumed that the skewness of the velocity fields vanishes. Adding
one more assumption, DP closed the BBGKY equations: as mentioned above, DP used
the stability condition in deriving the power-law index v given by eq.(1). In this thesis, we
reexamine the scale-invariant solutions of the BBGKY equations and estimate the value of
the power-law index and its dependence of the initial power-law index n when the above
assumptions and stability condition are changed. Furthermore we analyze whether the
stability condition is satisfied and how the mean relative peculiar velocity would behave
in a real system. Indeed, Jain(1995) claimed that the stability condition has not yet been

verified by N-body simulations.

Furthermore we investigate whether there is a possibility that the power-law index
in the strongly nonlinear regime does not depend on the initial power index n even if the
self-similarity of the solutions is satisfied. Recently Padmanabhan(1996) suggested the
possibility that the power-law index is independent of n on the basis of the pair conservation

equations.

Although we find the various scale-invariant solutions in §2, whether these are stable or
not is another interesting problem. As a matter of fact, the values of the power-law index
leading to unstable solutions do not appear in the real world. Ruamswan & Fry (1992)

investigated the stability of the DP solutions with the help of the linear perturbation. They
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showed in this way that the perturbations of the solutions prove to be only marginally
stable. Yet they did not investigate other solutions that we obtain in §2 (Yano & Gouda
(1997): hereafter YG). Furthermore, Ruamswan & Fry misunderstood the way to perturb
the skewness, and consider inapplicable perturbations which diverges on small or large
scales. So, in this thesis, we investigate the stability of the general solutions that we
obtain in §2 by applying an accurate method of perturbation. We derive the perturbation
equation by perturbed BBGKY equation from the background scale-invariant solutions
in the strongly nonlinear regime. And we show the solution to the linear perturbation

equations when we assume a well-defined appropriate form of perturbation.

As shown in §3, the index of the two-point spatial correlation function cannot be
determined from the viewpoint of stability of the solutions. This means that the index
of the two-point spatial correlation function in the non-linear regime is related to the
evolution of the density fluctuations in the linear and the quasi-linear regime. Furthermore,
if the self-similarity of the two-point spatial correlation function is satisfied, the two-point
spatial correlation function in the non-linear regime is related to the index of the initial
power-law index n and the velocity parameter h as we comment in §2. Therefore whether
self-similarity is satisfied or not is a very important problem. Therefore, we investigate the

self-similarity of the two-point spatial correlation function in the expanding universe finally.

We would like to investigate not only the scale-free cases but also the cases that the
initial power spectrum obeys the power-law with a cutoff. Hereafter we call this case the
cutoff-case. In the cutoff-case, the power spectrum obeys the power law even on scales
smaller than the cutoff scale after the first appearance of caustics. For example, in an
one-dimensional system, the value of the power-law index is —1 which can be derived
according to the catastrophe theory (Gouda & Nakamura (1988,1989)). Kotok & Shandarin
(1988) also studied the nonlinear spectra in the cutoff case and showed that the value of

the power index is -1. Of course, the power spectrum does not evolve in the self-similar
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form before the first appearance of caustics. However it has not been certain whether the
time evolution is self-similar or not after the first appearance of caustics. Therefore we
investigate the self-similarity not only in the case of the scale-free case but also in the
cutoff-case. Then we have to investigate in detail the evolutions of the power spectrum
on scales smaller than the initial cutoff scale and also those on larger scales. Thus we
need a wide dynamic range in the wave number space. However, we cannot get such a
wide dynamical range in the numerical simulation of three-dimensional systems due to the
limit of the resolution. Then, as a first step, we consider one-dimensional sheet systems in
order to investigate the self-similarity of the two-point spatial correlation function. and
the physical process which determine the power-law index of the power spectrum or the
two-point spatial correlation function. In the one-dimensional system we can get a wide
range of resolution for calculating time evolutions of the power spectrum. Furthermore
we can have the numerical method for the evolution of the power spectrum with a good

accuracy in the one-dimensional sheet systems as shown later.

In §2 we will investigate the evolution of the density fluctuations in the expanding
universe, especially in the non-linear regime. First, we derive the scale-invariant solutions
by using the cosmological BBGKY equations in the strongly nonlinear regime. Whether all
the solutions derived in §2 are suitable in the real situation or not is not clear, because we
do not know whether these solutions are stable or not. Then we will investigate the stability
of the scale-invariant solutions of the BBGKY equations in the non-linear regime in §3.
Last, we will investigate the self-similarity of the two-point spatial correlation function
(power spectrum) in §4. In this section, we will consider an one-dimensional system because
we need the wide dynamical range in the wave number space. In §5, we will summarize the
points of this thesis. In Appendix A, we will show the derivation of the BBGKY equations

in detail.
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2. SCALE-INVARIANT SOLUTION

In this section, we investigate the statistical quantities of the density fluctuations
in the expanding universe such as the two-point spatial correlation function, the mean
relative peculiar velocity, relative peculiar velocity dispersion, and so on. We derive the
scale-invariant solutions in the strongly nonlinear regime by using the BBGKY equations.
Furthermore we investigate the relation between the index of the two-point spatial
correlation function and some other statistical quantities, such as mean relative peculiar

velocity, skewness of the velocity field, and so on.

2.1. Basic Equations

DP and Ruamsuwan & Fry(1992) derived the cosmological BBGKY equations. In
this subsection, we briefly review the derivation of the cosmological BBGKY equations

according to DP and Ruamsuwan & Fry(1992) except for the notation.

2.1.1. Cosmological BBGKY Equations

Here we derive the BBGKY equations from the ensemble mean of the Vlasov equation
in the expanding homogeneous and isotropic background universe. In this thesis, we
consider only Einstein-de Sitter universe because we are interested in the scale-invariant
solutions of the correlation functions and the self-similarity of the solutions and so it is
necessary that the background universe is scale-free. The N-body correlation function is the
statistical quantity which is given by the ensemble mean of the N-products of the one-body
distribution functions. Then the BBGKY equations can be derived by the ensemble mean

of the Vlasov equation (we show the detailed derivation in Appendix A).
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The first and the second BBGKY equations are written as follows:

ob(l) Gm? 9 [z% 3., B,
ot T4 Opf /acg:l c(1,2)dz2d’p, =0 (first BBGKY) 2)
0c(1,2) 7 9e(1,2)  Gm?Ob(1) ragy o o
ot * ma? Ozf * a Jpf /37_%1C(2’3)d e
2
Ik $3ld(1 2,3)dz3dps + (1+2) =0 (second BBGKY) (3)
a apl

where m is a mass of a particle, G is a gravitational constant, « is a scale factor, and

(1) = (f(=.,p.)) = (f(1)),
«(1,2) = (f(1)f(2)) - b(1)b(2),

d1,2,3) = (FOFFB) - b1)e(23) — H2)e(3,1) - b3)e(1,2) — (1)H2H3),
o= S )

2.1.2. Velocity Moment

We are interested in the power-law index of the two-point spatial correlation function
in the strongly non-linear regime. Hence the equation which we use in our analysis is the
second BBGKY equation. Moreover we use the velocity moment equations which are given
by multiplying the second BBGKY equation by a power of moment and integrate them
over all moment arguments, because we are interested in the statistical quantities such as

the two-point spatial correlation fucntion, the mean relative peculiar velocity and so on.

The time evolution of the N-th moment depends on the N + 1-th moment. So we
should take assumptions in order to close these equations. DP used thg assumption that the
skewness of the velocity is equal to 0. In this thesis, we do not assume that the skewness of
the velocity fields is equal to 0 in order to study the relation between the skewness and the

two-point spatial correlation function.
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Here we define the two-point spatial correlation function £, the mean relative peculiar
velocity (v*), the relative peculiar velocity dispersion I, ¥ and the mean third moment

(v®vPv7) as follows:

it = [e2)dndn, (5)
2a%(1 + H)mal(v®) = /c(2,1)p21d p1d>ps, (6)
na®(1+ &)(ma)’ B+ SPY) = [ @ 1)pirhdmd’m, (7)
(ma 1 1 d P1d3P2
(v*¥Pv) =
/P2d p1d’°p;

/ c(2a 1 )P% Pgl Pg1 d3P1 d3p2

BT e )

where 7 is the mean density of the universe, and

z%zP of of zozh
Pll - T2 P =8"— 22
¥ = xp =23 -7y, P2 = ps —pi- (9)

In eq.(7), IT and ¥ are the parallel and transverse correlated parts of the relative

peculiar velocity dispersion of correlated particles, respectively.

We define the skewness as follows:

s = ((v = (0))*(v = (v))°(v = (v)"). (10)

From the symmetry of the universe(homogeneity and isotropy), we can write

(v*) = (v)a*/x. Hence,

&g g o 8 ¥
vavﬁv’)’ = —92(v 37T + (v SC_. ,Uﬁ,v"/ + x_ Yo% + :E_ ,Ua,vﬁ + Saﬂ'y' 11
x3 T
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Furthermore, the skewness can be written by the symmetry of the universe as follows:

s = s P + 51 Pot,

(12)

where the subscripts p and ¢ denote the parallel and transverse components of the two

particles, respectively. We have

Py = xaz?w, Pt = —a6"” + i—ﬁéﬁa + %504’ - 3‘”25"’7
Pt and Py vanish because of the symmetry of the universe.
From eqgs.(8) and (11), we can obtain the following equation:
z xﬁxW

[ 2 s d ' = (1 + é)(ma)?’{[i%(v)(ﬂ — ) - 2(v)’]

2
2<Ul> )( 6/8fy_l_ 6va+_6aﬁ)+8aﬁ'y.}
X

+{v)(X + 30+ &)

Then the moment equations are as follows.

_, (06 n%a®(ma)
2 696
Y + ma?

wo‘[(l +£)(v™)] =0, (Oth moment)
| n?a%(ma)? 9
ma? Oz
2 B
m ﬁa3/c(2,3)£§1—d3w3d3p3d3p2

Gm? _

it (L + Ema(v?)] + [+ &mPE? + 5P

/ (3 1) 32d3$3d3p3d3pl

(13)

(14)

8
N Gm? =3 9/( 5”31 _ $32)d3m3 =0, (Ist moment) (16)
a
W' 5 (ma)( + A + 7]
a g8 oy
el D (1 4 eypato) (11— ) — 20))

ma z3
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+"2a§fga)saia(1 +E)o)(E + “(21%%)( L ﬁ‘““ + -“'52—«5“")
+G;n2 / o(2,3)[p%, ; +p 21x31]d3m3d3p3d3pz
_G;nZ /c(3 1)[1,21 2122]4 z3d>p3d®p;

Gm z? :cﬁ xza .
/d[ P ( ﬂ — ﬁ) Phy ﬁ — _:12)] Prad’psd®pid®p; = 0,
32

(2nd moment) (17)
where ( is the three-point correlation function defined by

n2a’( = /dd3p1d3p2d3p3. (18)

2.1.3. Contraction of the Equation

The zeroth and first moment equations are the time evolution equations of the ¢ and
(v), respectively. The second moment equation is the time evolution equation of the I, ¥.
For convenience, we transform these equations by taking the divergence of the first moment

equation and by applying the following two operators to the second moment equation,

J 9 ﬁ_l P 2Bz
e A= -0 (19)

Hence we get two equations from the second moment equation. We call them
contraction 1 and contraction 2 equations hereafter, shown below as eqs.(23) and (24) ,

respectively. Here we assume the following relation,

Cr23 = Q(€12823 + 23631 + € i) (20)

Finally we obtain the following four equations:

72q008 L W) 1 8y L) =0, (0th moment) (21)

ot ma? 220z



- 19 —

2601 9,
0 o — o1+ €)(ma)(o)] +

n*a®(ma)® 1 0 0

ma? 220z 'Oz

2
Gm n>a®8wé

o-(2*(1 + OII) — 22(1 + £}

+
0

O earqu L D oy =,

(1st moment) (22)

+ 2

2 6.0 (ma)? D [ 9

S e gm -2+ 03

2a®(ma)®* 1 & |, 3
s [+ O3 - B) — 2(0)*)]
Falmal'3 910 [, 01 20
+ ma? 2?0z Oz {x amx(1+€)<”>{2+3(1+§)}
2a®(ma)® 1 &
+ ma?  z20z3 [=°(1+ E)s]
167Gm?*> _ 5 , o1 0
+ e’ — o o1+ €)(ma) o)
m? 9 0 =5 2z (va1) (vas)
e (ma)n’a’Q” 0Py / z3, { T Gz + |z — |£31}€23d =
sz _3 g yx 82 xg] Pl (’031> (’023> 3 —
+4 a (majna’q OxBdzY / z3, { 2 Jr— z|}£23€3ld #s =0,
(2nd moment : contraction 1) (23)
5, 60 n?a®(ma)® 1 0 2(v})
2 60 2 R 1
o lmap(ren) + B L b e+ 20y
nta®(ma)®*1 1 0,
t o g (L s
Gim? ﬁ
+ T a” [ I+ o ety
Gm? ﬁ
- ;n ﬁa3Aﬂw/C(3a1)[P21 22, +p 21:0 2]d3x3d3p3d3p1
2 Y
+ 4Gm (ma)n a9Q Aﬂ’Y/m—gl:v’y{ <’021>£ 12 + ( > 631}623(1 I3
a Z31 z |z — 2|

4Gm

B
(ma)n a9Q*Aﬁ’Y/$_§1Z’Y{ <v31> _ <U23> }623531d3373 — 0,

x5, z lz — 2|

(2nd moment : contraction 2) (24)
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where M is defined as

B
2Pe(2)PM = / %Z;—l{gm + €31} Eandas, = 1. (25)

This definition is well defined for the vector component of & and @3; because of the

symmetry of the universe.

And, where

Q

In general this relation (eq.[26]) is not satisfied. But DP showed the existence of d that

na’(malvy) = /dpg‘ldgp (26)

satisfies this relation. Hansel et.al. (1986) have investigated whether this relation is suitable
or not. And they showed its consistency domain. This relation is suitable in the strongly
nonlinear regime. Furthermore, in the strongly nonlinear regime, which we are interested

in, we find from the dimensional analysis that this relation is correct in general.

We are interested in the strongly nonlinear regime in which the solutions of the
above equations are expected to obey the power law because self-gravity is scale-free (we
investigate the solutions that are not the power law in §5.). We assume that ¢ is represented
by the power-law form

€ = £oal, 27)

where &, 8, and v are constants.

Then we obtain from the dimensional analysis in eq.(21) in the strongly nonlinear
regime that
(v) = —haxz, (28)

where h is a constant.

Finally we obtain the following four equations.

o 11 o
a2

5 + —— 5;[&(1 + ¢){(v)] =0, (0th moment) (29)
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11

Y I

0, 0

+ 8nGmnaé

+ 2GmnaQM

{5-(e* (1 + 1) — 22(1 + £)T}

[w3€2]

(1st moment)

19,1010
5% 5 [8 [2*(1 + U] - 22(1 + )% ]
11 o
=5 [ (LT 3()(I1 - ) - 2(v)°)]
130101 ,01 2(vi)
‘ﬁaz;;ax[ ozl TOW >{E+3(1+§)}]
11 0
+ gjﬁ[wz(l + &)(s) — 3s.)]
13010 01
E:T??ﬂ;ax[ 890:1:(1-'_5) ]
+ 167erna—12—aia: (14 &)(v)
— 4GmnaQ* (ah)%aa—l e ME) =0,
(2nd moment : contraction 1)
19 1197, 2(v2)
FHEAON + T O + )
1190
+ o (L s]
+ J=0,
(2nd moment : contraction 2)
J= Gim ﬁGBAﬁW/CQ 3)[pa mgl +P21 31]d3:t:3d3p3d3p2
a Z31

Gm?

3’53

B 2
» naBAﬁ”/ ¢(3,1)[pa: §2 +p 21x3 2| d*z3d°psd®py

32

(30)

(31)

(32)
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This term is negligible in the strongly nonlinear regime. In deriving the above equations,
we have made use of the symmetry of the background universe and assumed that the
three-point correlation function can be written as the products of the two-point spatial
correlation functions. In addition, ¢ is assumed to be given by eq.(27) which is expected to
be correct in the strongly nonlinear region (We also consider the the case that the two-point

spatial correlation function does not have the power law in §5.).

2.2. Scale-Invariant Solutions in the Strongly Non-Linear Regime

In this subsection, we discuss how the BBGKY equations are approximated in the
strongly nonlinear limit, and we discuss how the power-law index of the two-point spatial
correlation function is related to the skewness, three-point correlation function, and the
mean relative peculiar velocity. We also investigate whether the stability condition is

correct.

2.2.1. BBGKY Equations in the Nonlinear Limit

In the strongly nonlinear regime, the two-point spatial correlation function is much

greater than unity, £ > 1 at £ < 1. In this limit, the BBGKY equations are as follows.

% 41 ;2 ai 2 (p)] = (0th moment) (33)
%%%{%wm) — 22€8} + 2GmﬁaQM513%[x3£2] =0,  (Ist moment) (34).
ai?%“ 3312 66:6 [ai[ e - 2‘“”52]
+%%ai§ (€ {3(0)(I1 = £) + (s — 351)}

(13010 [ améﬂ >E+SJ.}]

az?20zxz 0z
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1 02
—4GmﬁaQ*(ah)FW[x4M§2] =0,
(2nd moment : contraction 1) (35)
19, 119, ~
508+ ——a [t {()E +s1}] =0,

(2nd moment : contraction 2) (36)

These equations are equivalent to eqgs.(39) ~ (42) in Ruamsuwan & Fry(1992) with
some differences in notation. The zeroth moment equation (33) is derived without any
assumptions. Here it must be noted, however, that there is an assumption about the
three-point correlation function involved in deriving the first moment equation (34). In
addition, the second moment equations ( (35) and (36)), involve terms of the skewness,
so one usually requires the higher moment equations in order to solve eqs.(35) and (36),

although we do not need them in our analysis.

2.2.2.  Scale-Invariant Solutions in the Strongly Nonlinear Limit

We investigate the power law solutions for ¢, (v),Il, and ¥ in this paragraph. Then we

assume that the two-point spatial correlation function ¢ is given by ¢ = £a’z™7.

We can see from eq.(33) that the mean relative peculiar velocity (v) is given by the

dimensional analysis as follows:

(v) = —haz, (37)

B=@3-7)kh (38)

The stability condition means that A = 1 because (F) = az + (az) = az + (v) = 0.

Hereafter we call this parameter h, relative velocity parameter. We obtain the power law
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solutions for the other quantities from eqs.(34) and (35) as follows:

I = Hoaﬂ"1x2_"’,
Y = Yoanflz*
S| = S”()daﬁ_l:v?’_'y,
S = smdaﬁ“lx?’_”.

Here Ily, ¥, 5|0 and s1¢ are constants.

With the above results, we obtain the next relation from eq.(36).
(1+28) — (T—29)(h — A) =0, (39)

where A is defined by A = s19/5,.

We find from eqgs.(38) and (39) that
h=1+(7-2y)A. (40)

Here it must be noted that eq.(40) is determined based on the assumption that the
three-point correlation function can be written as the products of the two-point spatial
correlation functions(see eq.[20]). If this assumption is correct and the skewness also
vanishes, which means that A = 0, we can see from eq.(40) that the relative velocity
parameter h is equal to unity. This fact means that the stability condition h = 1 is not an
assumption, but should be satisfied in the strongly nonlinear regime when the three-point
correlation function can be represented by the products of the two-point spatial correlation

functions and the skewness vanishes.

Indeed, Bouchet & Pellat(1984) have noted that the skewness must be zero under the
same assumption regarding the three-point correlation function and the stability condition

as DP. However they investigated the skewness only under the stability condition when the
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assumption of the three-point correlation function was satisfied. They did not investigate
the case in which the stability condition or the assumption of the three-point correlation
function was not satisfied. On the other hand, we derived analytically the explicit relation
of the parameter h, skewness A, three-point correlation function, and the two-point spatial

correlation function by using the analysis of the scale-invariant solution.

It may be physically natural that the skewness does not vanish in the nonlinear regime
while the skewness equals zero in the linear regime. Then & should not be equal to 1. This
means that the stability condition is satisfied for the unique case in which the skewness
vanishes. Furthermore h varies when the assumption about the three-point correlation
function ¢ changes. For example, if we assume that ¢ o £2(149) where § is a constant, then

we can find from eqs.(33) ~ (35) that

é = éoaﬁw_’ya
(v) = —haz,
I = Moaf(+20)-152-7(1+26)
Y = Xaf0t29)-1,2-101425)
s = 8y aaP02)153-1(1426)

s, = slodaﬁ(1+25)'1w3"7(1+25).

From eq.(36), it is found that
26(1+6)+ 1~ {7—2(1 +6)}(h— A) = 0, (a1)

and so
_ 14+ {7—-2v(1 4+ 8)}A

h 1—-66

(42)

Thus we can see that the value of the relative velocity parameter h also depends on the
assumption about the three-point correlation function. It must be noted here that a small

change in ¢ results in a large change in h because of the factor of 1 — 66 in eq.(42).
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2.2.8. Self-Similar Solutions

DP demonstrated the existence of the self-similar solutions under the stability
condition and the assumptions about the three-point correlation function and the skewness
by integrating the BBGKY equations numerically. In the self-similar solutions, the
power-law index of the two-point spatial correlation function in the strongly nonlinear
regime is related to the power-law index n of the initial power spectrum, where n is defined
by

P(k) o k" (43)

In the linear regime, the two-point spatial correlation function is given by

§ o aa ) oc (=)= (44)
where
2
= (45)

(Peebles 1980,1993). On the other hand, in the strongly nonlinear regime, the two-point

spatial correlation function obeys the following evolution equation (0th moment, eq.[33]),

%
8a

where we have used the relation (v) = —has.

b 2% = (46)

This equation can be rewritten by transforming the variables x and a to the scaling

variable, s = z/a®,
d¢ 3h ¢
ok S 2 4

ds o+ hs (47)

If the self-similarity is satisfied for the scaling variable s, o' should be equal to

a=2/(3+n).
Then it is found from eq.(47) that

€ x s = 577, (48)
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and the power-law index 7 is given by

3k 3h(3+4n)
T a+h 2+ h(n+3)

g (49)
If the relative velocity parameter h = 1 is satisfied, v = 3(3 4+ n)/(5 + n), which is the

result shown by DP. And if we can find the value of the parameter h, we obtain the value

of the power-law index ~.

2.3. Results and Discussion

In this section, we have investigated the scale-invariant solutions of the cosmological
BBGKY equations in the strongly nonlinear regime. The mean relative peculiar velocity
depends on the skewness and the three-point correlation function. The stability condition
used by DP is satisfied for the unique case that the skewness vanishes and the three-point
correlation function can be represented by the products of the two-point correlation
functions. In general the power-law index of the two-point spatial correlation function in
the strongly nonlinear regime depends on h, the skewness, and the three-point correlation

function(see eqs.[40] and [42]).

In the hierarchical clustering, there are two extreme situations in the manner of the

~ clustering. In one situation, the collapsed object can not be broken and clustered together
to form the larger cluster. In this situation, the mean separation of the particles does
not change as time increases and h = 1. This corresponds to the stability condition. At
the other extreme case, the smaller objects have clustered and merged together and the
completely virialized object is newly formed. In this case, the mean separation of the
particles is expanding with the Hubble velocity and then A = 0 (comoving clustering). So,
the parameter h becomes the indicator of the merger rate of the clusters. In the case of

the collisional system, in which the two-body encounter occur, such as the core collapse
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of a globular star cluster, the mean interparticle spacing shrinks and the parameter h can
become a little larger than 1. But when we consider the special case of collisionless systems,
in which the time scale of two-body encounters is much longer than the Hubble time ( e.g.
in a dark matters-dominated system), the parameter h takes a value between 0 and 1. So,

the parameter h has a value of order 1.

This condition constrains the skewness A and the three-point correlation function (.
Eq.(42) suggests that § < £(6 ~ 0) because h has a value of order 1. This means that
the relation ¢ o £2 is almost correct even in the strongly nonlinear regime. This result is
consistent with numerical results by Jain(1997). In general, the skewness does not vanish
in the nonlinear regime and so it might be impossible for the stability condition(h = 1) to

be satisfied.

The self-similar solution is shown by DP under some assumptions and the stability
condition. If there exist self-similar solutions under other conditions, then the power-law

index « is given by eq(49).

In general we may expect that the power-law index v does not depend on n because the
systems forget the initial conditions in the nonlinear regions as a result of the nonlinearity
of gravity. As can be seen from eq.(49), if A = ¢/(n + 3), then ~ is independent of n and is
given by 3¢/(2 + ¢) (Padmanabhan(1996)). However h should have the value of order 1 for
any probable value of n (n > —3). Then ¢ should be zero, that is, A = 0. In this case, as
mentioned before, the collapsed objects are hierarchically absorbed into larger objects and
the substructures in the cluster cannot survive. Then the initial memories are erased. Thus

it is physically reasonable that v does not depend on the initial condition n in this case.

In general, the systems have substructure in some clusters and no subcluster in others,
and so v depends on n. However the relation between v and n may not be given by the

result shown by DP, because the skewness does not generally vanish in the nonlinear
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regions, and so h should not be equal to 1. Here we comment that v = 0 is expected from
the catastrophe theory. We can also see that if the solutions of the correlation function

possess self-similarity, the power-law index v = 2, predicted by Saslaw(1980), is not realized
in the strongly nonlinear regime, irrespectively of the initial power-law index n, because in

this case ¢ should be eqaul to 4, and then 2 > 1 for n < 1.

Ruamsuwan & Fry tested the stability of the scale-invariant solutions derived by DP
and found that they prove to be marginally stable. We intend to analyze the stability
of the scale-invariant solutions shown in this section under assumptions other than those
taken in DP in §3. Furthermore, it is still uncertain that whether self-similarity is satisfied
or not. We will investigate whether there exist the self-similarity. We also investigate if
the two-point spatial correlation function with the index v = 0 evolves self-similarly in §4
because after the first caustic appeared, the two-point spatial correlation function in the

non-linear regime have the index with v = 0.
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3. STABILITY OF THE SCALE-INVARIANT SOLUTION

We have investigated the scale-invariant solutions of the cosmological BBGKY
equations in §2. Then, we obtain the various solutions in addition to the DP’s solution.
We have obtained the index of the two-point spatial correlation function as a function of
the index of the initial power spectrum n and the velocity parameter A when we assume
the self-similarity, and constrained the possible value of the index from the physical point
of view in §2. However, whether these solutions are suitable in the real world or not is
unclear. If there is a solution that is unstable, this solution can not be realized in the real
situation. We investigate the power-law index of the two-point spatial correlation function
from the viewpoint of the stability of the scale-invariant solution in this section. That is,
we investigate the stability of the scale-invariant solutions of the BBGKY equations in the

non-linear regime.

3.1. Basic Equations

In this subsection, we derive the equations of the linear perturbations in order to
investigate the stability of them. We have considered two-point spatial correlation function
in the non-linear regime. Then we use the four BBGKY equations in the non-linear limit

shown bellow (see also eqs.(33)-(36) in §2):

o 119 , _
5 + s z?¢(v)] = 0, (0Oth moment) (50)
) 2{2
ax2 Ox (:C L ax

+ 26miraQ - / ””31{5 2) 4 E(2) ) E (2 — ) s = 0,

(1st moment) (51)
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%g[ 2611) + 1 aﬁ[ 2£{3<v)ﬂ+s”}] - %{(v)Z-I-SJ_}

a:ﬁ
o | SHEE €N — s = 0,

(2nd moment : contraction 1) (52)

CI?

+ 4GmnaQ

0
20w+ L et ym 4] =0,

a

(2nd moment : contraction 2) (53)

where we assumed that the three-point correlation function has the following form that is

the same assumption with the one in §2.

s = Q&6 + &G + &7 67). (54)

With this aim in view, the two-point spatial correlation function in the scale-invariant

solution is perturbed as follows;

¢ =¢E(1+Ay), (55)
where ¢ is the scale-invariant solution, ¢’ the perturbed one and A < 1. We also perturb

the other variables such as the mean relative peculiar velocity (v), the relative peculiar

velocity dispersions II, ¥ and the skewness s), s, in the same way.

The equations of the linear perturbations are the following;

oA 1 9

Pt — a0 {Ac+ A} =0, (0th moment) (56)

2$£ Y

0
—5;[:172511{& + An}] {A¢ + Ax}
+ 2Gmna6256~’§2(1+5)(1 + 6) M 115),,8¢ = 0,

(1st moment) (57)
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10
5555[61251]{13& + An}
19
az? 0z
4
_ﬁ{@)E{A{ +Apy+As} +s1{As¢ + A5, 1}

[x2£{3(v)H{A5 + Awy +An} + s{Ae + A, }}]

+4GmﬁaQ*m(v)§2(1+5)[(1 + 6) ';(1+5),qu + My146 8] =0,

(2nd moment : contraction 1) (58)
1.0
5102 {A + As}]
1 0
t 1o [$4§[(U>E{Aé +Aw +Ast+ s {Ac+ Asl}]] =0,
(2nd moment : contraction 2) (59)

where 2Q&2(M + M'A;) is the integral of the three-point spatial correlation function.
Here it should be noted that in deriving the above equations (56)-(59) we neglect some
terms; high order terms in the strongly non-linear limit, and higher order ones in the limit
of small perturbations (larger than the first order perturbation). The ordering parameters
in both limits are generally independent of each other. However we consider that higher

order terms in the strongly non-linear limit are much smaller than the first order terms of

the perturbation.

RF considered the following power law perturbation:

Ag = ega”xq. (60)

In this case, My(14s) and M5, are given by

My11s) = / :_ZS_W(IM)U +y )Py, (61)
A'Y(Hs)’q / :—z[sq—w(1+6)(1 + y—v(1+6)) + 5-7(1+5)(1 + yq“"(”&))]d:*y, (62)



xz
, s=—= 14y’ —2ym)"/. (63)

T21

The integrals should not diverge. Then, 2 — (1 + §) > 0 must be satisfied for y — 0
and y(1 + &) > 0 for y — oo in the M. Furthermore, 2 + ¢ — ¥(1 4 6) > 0 must be satisfied
fory — 0 and ¢ — (1 +6) < 0 for y — oo in the M'. As a result, the following relations

must be satisfied:
0<y(l+6)<2, 1+ —-2<qg<y(l+6). (64)

The four perturbation equations (56)-(59) are a little different from the RF’s equations.
This is because in perturbing the three-body correlation term, RF divide artificially the
(vg1) into (vq3) + (vsy) and perturbed (ves) and (vsy) independently, which is an incorrect
treatment. Furthermore, although they obtained the ¢g-dependence of M’ they used the

value of M’ at only ¢ = 0.

3.2. Solutions of the Perturbations

We consider the following form of perturbations. We have to consider perturbations
that diverge neither at the strongly non-linear limit (z — 0) nor at the linear limit (z — o0).

The following perturbations of the two-point spatial correlation function are generated:

A¢ = €eafz?, (65)
q = lqli, (66)
where |¢| is a real number ( ¢ is a pure imaginary number while RF adopted the real
number). In this case, the perturbations do not diverge in the strongly non-linear limit,

nor in the linear limit. If ¢ is a real number, as RF adopted, the perturbations diverge on

either limiting scales. When ¢ is negative, the perturbation diverges in the non-linear limit
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(z — 0). On the other hand, when ¢ is positive, the perturbation diverges in the linear
limit (z — o00). The perturbations of the other variables can also be written in the same
form. From the dimensional analysis, all perturbations must have the same power (¢ and p)
as those of the two-point spatial correlation function. When ¢ is a pure imaginary number,

|s?] =1 and |y?| = 1. And the following relations are satisfied:
|M',y(l+6),q| < M';(1+5),q=0 = 2Mw(1+5)' (67)

When 0 < 9(1 +§) < 2, both M,145) and M, 5, , are finite for any value of the pure

imaginary number q.

These perturbed BBGKY equations are not closed by themselves in general and higher
moment equations are needed. But if the coefficients of the perturbation of the skewness
(Ayy and A, ) are equal to 0, the perturbation equations for the other variables have no
relation with the perturbation of it. In this case we can solve these perturbation equations
independently from the higher moment equations. As we can see from egs.(58) and (59),
when the skewness of the background velocity field is equal to 0, the coefficient of the
perturbation of the skewness becomes 0. Here we consider only this particular case. Then

we can neglect the higher moment equations. In this case, the above equations can be

rewritten by using the power law perturbations given by eqs.(65) and (66);

(p—hg)A¢ — (3 — 7+ q)Aw) =0, (68)

[2{7(1 +8) — 2+ 0} (L + 28) + ¢ + 2(1 + 6)Dhg)A¢

+ {4-29(1+6) + q}An — 2045 =0, (69)

[1 —15h + (6 + 47)h(1 + 6) + 4ho + p — 3hg
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Q*
Q
+[—3h{5 — 2y(1 + &8) + q} + 4ho — 4h6{'y(1 +6) =2+ a}]A

8K +6) = 2+ 0} (1 + ) 40 (1 +6) Dl

+[1 — 158 + (6 + 4v)h(1 + 6) + p — 3hq]An + 4hoAx = 0, (70)

(1 —h+6h6+p— hq)Ag — h{7— 2"}’(1 -+ 5) +q}A(U) + (1 —h+6hé+p— hq)AE =0, (71)

where

(72)

X
D=~(146)-2+o, 0=

It is difficult to treat exactly M’ as a function of ¢. So, we approximate M’ by a linear
function of g. When ¢ = 0, M'/M is equal to 2. Then we use the following approximation
of M'/M in the above equations (57) and (58);

!

M

where
J &ls7 01 4y ) log s + 5710+ y 114D Jog y]d%y

k= fy%s_y(pra)(l i y—'y(1+5))d3y

(74)

The integral f(p/y?)s™ 70 (1 4y~ +8) @3 is dominated around s and y ~ 1. Around

s and y ~ 1, log s and log y have values of the order of 1. Therefore, & ~ 1.

Furthermore we use the following relation that can be derived from the first moment

equation [eq.(51)];

1426

4—-29(146) — 20 + 2Gmﬁa2Q:1:2§ i M 145y = 0. (75)
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The four equations (68)-(71) can be rewritten by using the matrix notation.

N,’ju]' = 0, (76)

u; = (Ag,A(v),AH,AE). (77)

If there exists a non trivial solution, the determinant of the matrix NV;; should be equal
to 0. Now we consider the zero skewness case. The relation between the three-point spatial

correlation function and the mean relative peculiar velocity eq.(42) becomes

h-1
6= (78)

By using this relation, we can eliminate é in egs.(69)-(71). Furthermore, from the first
moment equation(51) and the second moment (contraction 1) equation (52), we obtain the

following relation:

4
.3“ - & — 4Gmﬁa2:1:2Mry(1+6)h(Q* -Q)=0. (79)

ar ar

(—h + 1+ 6L+ {5 — 2y(1 + 6)}

As we can see, when the skewness is equal to 0, Q* — ) must be 0, that is, @*/@Q is equal
to 1.

Then the determinant of IN is given by
det N = 2(p  ha)* (0,7, b, kD), (50)

where

f(g,7 b0, kD) = {9h+ kED(Th — 1)}¢*
+ (4 —29"4+29h — 107'h — 20 + 8ho)q

+ kD(—=3+421h —69'h)q + 12 — 64’ — 60, (81)
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and

v =7(1+6). (82)

Here f is a quadratic equation of g. Now we investigate whether the equation f = 0 has
real solutions or not. Since we do not know the value 4/, h, o, and kD in the strongly
non-linear regime, we treat these values as parameters. Here we consider the allowed range
for these parameter. As we can see from eq.(64), the parameter ' must satisfy 0 < 7' < 2.
Since we have considered ¢ >> ¢ in the strongly non-linear regime, 219 should be of an
order higher than ¢, so that 2(1 + ) > 1 must be satisfied. In this case, A >  must be
satisfied from eq.(78). YG showed the probabIe range of the mean relative peculiar velocity
and obtained that the mean relative physical peculiar velocity must lies between 0 and the
Hubble expansion velocity. This means that the parameter h(relative velocity parameter)
has a value between 0 and 1 (§2). So in this case, the parameter h should be in the range
i < h < 1. We do not know the range of the parameters o and kD. But the parameter o
should have a value around 1. Hence, we investigate o in the range I < 0 < 2. The value
of the parameters D and k also must be around 1 as seen from the eqs. (72) and (74),

respectively. So we investigate kD in the range —1 < kD < 1.

In the above probable value of the parameters, we can easily ascertain that f = 0 has
real solutions. In other words, the solutions of f = 0 are not complex. Since we consider
the case that ¢ is an imaginary number, f = 0 can not be satisfied. Therefore, p — hq is
equal to 0 to allow the determinant of the matrix N to be null. In this case, p has the

following value

p = hq = hlqls. (83)
This means that the perturbations do not grow. And the solutions are stable.

Furthermore we consider the strict condition which determines the stability of the

two-point spatial correlation function. In the strongly non-linear regime, the mean relative
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peculiar velocity takes the value (v) = —hax depending on the process of clustering. In this
case, the scale of a”z for the two particles whose mean comoving distance is x does not

change as we can see from the following relation:

—(a*z) = " '(ai + haz)
= a"((v) + haz)

= 0. | (84)

Then we should determine the stability of the two-point spatial correlation function at the

fixed scale a®z. The solutions of the pertufba,tions are rewritten as

A¢ = eatz)?

= geetlaltos(as), (85)

These perturbations do not grow, nor (io they decay. At the fixed scale of a”z, the
perturbation never even oscillates. This means that the perturbations prove to be
marginally stable. RF used the real number ¢ in investigating the behavior of the
perturbations. As we can see from eq.(85), the perturbation in the p — hg = 0 mode works
well even when ¢ is a real number. That is, the perturbation proves to be marginally stable
in this mode. However there also exist a 'strange’ growing mode for the real number of ¢
because f = 0 is satisfied in this case. RF did not comment sufficiently about this ’strange’

growing mode.

3.3. Results and Discussion

In this section, we have investigated the stability of the scale-invariant solutions of

the cosmological BBGKY equations in the strongly nonlinear regime with the skewness of
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the velocity field being equal to zero. The reason we have considered only the case is that
perturbed BBGKY equations for £, (v), II and ¥ can be closed independently of the higher
moment perturbations. When power law perturbations have been put in the solutions as
investigated by RF, in other words, when ¢ is a real number, the perturbations in the
linear limit or the non-linear limit diverges. As a matter of fact, when ¢ is negative, the
perturbations diverge and do not work in the non-linear limit. When ¢ is positive, the
perturbations behave well in the non-linear regime. However in the linear regime, those
perturbations may diverge if the power law form of the perturbations are retained, and so
the form of the perturbations should be changed in order to avoid the divergence in the
linear limit. In this case, it is insufficient to solve the non-linear approximated equations,
because we do not have information about the evolutions on large scales. Thus, we have
investigated only the local stability of the non-linear regime. In investigating the local
stability of the two-point spatial correlation function in the strongly non-linear regime, we
should put perturbations only on the scales in which we are going to investigate. That is,
we should put the wave packet-like perturbation. In order to put such a wave packet-like
perturbation, the number ¢ must be imaginary. In this case, we have found that there is no
unstable mode. It seems stable for any value of the power-law index of the two-point spatial
correlation function. However we do not know whether a global instability exists because
we consider only the local stability. It is certain that there is no local instability. So, in the
strongly non-linear regime, the solutions have proved to be marginally stable, and it does
not seem that the power-law index of the two-point spatial correlation function approaches
to some stable point values. The power-law index of the two-point spatial correlation
function that was derived by DP, v = 3(3 + n)/(5 + n), is not the special one also from the
viewpoint of stability of the solution. As a result, the argument of the stability does not

determine the power index of the two-point spatial correlation function.

The power-law index of the two-point spatial correlation function is determined only
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by the clustering process, that is, the parameter h, if self-similar solutions exist. Hence
it is very important to estimate the parameter A and investigate whether the self-similar
solutions exist or not in the general scale-invariant solutions obtained by YG. In the
following section, we investigate the self-similarity of the two-point spatial correlation

function or the power spectrum by using the one-dimensional system.
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4. SELF-SIMILARITY OF THE TWO-POINT SPATIAL CORRELATION
FUNCTION

We have investigated the scale-invariant solutions of the cosmological BBGKY
equations in §2. Then we obtained the power-law index of the two-point correlation function
as a function of the index of the initial power spectrum n and the velocity parameter A
when we assume self-similarity of the two-point spatial correlation function. In §3, we
investigated the stability of the scale-invariant solutions in the non-linear regime. The index
of the two-point spatial correlation function cannot be determined from the viewpoint of
stability of the solutions. This means that the index of the two-point spatial correlation
function in the non-linear regime is related to the evolution of the density fluctuations in
the linear and the quasi-linear regime. Furthermore, if the self-similarity of the two-point
spatial correlation function is satisfied, the two-point spatial correlation function in the
non-linear regime is related to the index of the initial power-law index n and the velocity
parameter h as we commented above. Therefore whether self-similarity is satisfied or not
is a very important problem. Then, we investigate self-similarity of the two-point spatial
correlation function (power spectrum) in this section. Here, we note that Fourier transform
of the two-point spatial correlation function is the power spectrum. So, we investigate
the evolution of the power spectrum instead of the two-point correlation function in this
section. In order to investigate self-similarity of the power spectrum, we need a high spatial
resolution. Therefore in this section, we consider one-dimensional systems. We have shown
the possibility that there exist a self-similar solution with the index of the two-point spatial
correlation function being 0. On the other hand, when the initial power spectrum has a
sharp cutoff (the cutoff case), there appear caustics of the density field everywhere. In
this case the power-law index is independent of the initial condition, and the index of the
two-point spatial correlation function becomes 0. Then, when the cutoff case, there exist

the possibility of the self-similarity of the two-point spatial correlation function which have
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the power-law index with v = 0. Therefore, we will investigate not only the scale-free case

but also the cutoff case.

4.1. Numerical method

We investigate time evolutions of the power spectrum and its self-similarity by using
a numerical method. In this section we consider the one-dimensional system in which
many plane parallel sheets move only in a perpendicular direction to the surface of these
sheets. When two sheets cross, they are allowed to pass through each other freely. In this
sheet system, there is an exact solution until two sheets cross over as follows (Sunyaev &

Zel’dovich(1972), Doroshkevich et.al.(1973)):

z = g+ Bi()Si(g) + Bs(t)Sa(9),
v = Bi(t)Si(q) + Ba(1)Sa(9), (86)

where ¢ and z are the Lagrangian and the Eulerian coordinates, respectively. Here,
S1(g) and Si(g) are arbitrary functions of q. By(¢), and B;(¢) are the growing mode and
the decaying mode of linear perturbation solutions, respectively. Since we consider the
Einstein-de Sitter universe, By(t) = a and By(t) = a~2, where a is the scale factor of the
universe. We can compute the crossing times of all neighboring pairs of sheets. We use the
shortest of these crossing times as a time step. Then, we can compute the new positions
and velocities for all sheets at this crossing time. After two sheets cross, we exchange the
velocities of the two sheets that have just crossed. Then we again obtain Si(g), S2(¢), and

therefore exact solutions as follows:

3 2. _
Si(q) = ga—l(w —q)+ =a v,

5
2. . s
Sa(q) = !

(z—q) — 5a azv. (87)

]I

a

(S
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These new exact solutions can be used until two sheets cross over. In this way we obtain
the exact loci of the sheets by coupling these solutions. This numerical method has high
accuracy because we connect the exact solutions. Throughout this section, we use 22
sheets for numerical calculations. A periodic boundary condition is used and unit of period

is fixed by a length of 27. Therefore, the smallest wave number is 1.

4.2. Scale-free spectrum case

In Figs.1(a) and 1(b), we show the time evolutions of the power spectrum with the

scale-free initial power spectrum given by
P(k‘, t,'m') X kn, (88)

where n is the power-law index of the initial spectrum.

It is found that the following results are satisfied for —1 < n < 4 . The condition of
n > —1 means the hierarchical clustering in the one-dimensional system. We are interested
in this case ( n > —1 ) for “scale-free” case. One of the reasons that we consider this case
is that the hierarchical clustering picture is expe.cted in the real world. Another reason is
that the results for n < —1 is similar to those in the case of the single wave case. See also
eq.(99). Then the results for n < —1 can be inferred from the results shown in the regimes
4 and 5 in the “cutoff case”(see §4.3). The condition n < 4 is required because we consider
the situation in which the non-linear mode coupling from higher k to smaller k can be
neglected and so linear perturbation theory can hold on smaller k than k,; ( Peebles (1980),
Shandarin & Melott (1990), Gouda (1995)). In the following, we show the cases of n =1
and 2 as examples. Fig.1(a) and(b) are the n = 1 case and the n = 2 case, respectively. We
can obtain the same results qualitatively in the cases of the other indexes. Here t;,; is the

initial time, and the initial scale factors of these two cases are 0.1 and 0.01, respectively.
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Fig.1(a)
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Fig.1.-(a) The time evolution of the power spectrum. The solid and dotted lines are used
mutually in order to distinguish easily each line. The curves shown are (bottom to top)
at ¢ = 0.1,1,2,4,8,16,32,64,128. The initial power spectrum is scale-free with the power
index n = 1(Dotted-dashed line).
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Fig.1(b)
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Fig.1.-(b) The same as (a) but for the initial power-law index n ='2 and the power spectra

are shown at the scale factor a = 0.01,1,2,4,8,16, 32,64, 128.
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We normalize the scale factor as follows: @ = 1 when the first caustic has appeared. The
phases of the initial Fourier spectrum are given at random. We have averaged 50 samples.

Here, we scale the wave number and power spectrum as follows:

k P(k,1t)

k., = ,  Pukit)= —=, 89

knl(t) ( ) Pscale (t) ( )
where k,; is defined by

L= o k=1 90

= [ Pk =1. (90)

In the regime of k < k,;, the power spectrum grows according to the solution of linear
perturbation, that is, the power spectrum satisfies the relation P(k,t) oc a®. Therefore, ky

is proportional to a= ™+, P, ..(t) is defined by
Picate(t) = P(ku(t),t). (91)

Then Piseqc(t) is proportional to a?k™ o a*("+1). This scaled power spectrum Pi(k,) is
shown in Fig.2(a) for the case of n = 1 . The same power spectrum for the case of n =2 is

shown in Fig.2(b).

We can see the coincidence of each power spectrum at each time for both cases
with good accuracy. This means that the self-similarity is achieved in the scale-free case.
Furthermore we can see the three different power-law indexes in three regimes: the linear -
regime (k < ky : regime 1), the single-caustic regime (ky < k < kg @ regime 2), and
the multi-caustics regime (k > kg : regime 3). Fig.3 shows a schematic general power

spectrum at a time in the scale-free case.

The value of the power-law index in the linear regime, of course, remains unchanged.
We explain the power-law index of the power spectrum in the other two regimes: the

single-caustic regime and the multi-caustics regime in the following paragraphs.
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= n=1

-3 scale—free

Fig.2.-(a) The scaled power spectrum P.(k.). The initial power spectrum is scale-free with

the power-law index n = 1. Three solid straight line shows the power law with the power-law

index of 1,-1,-0.75. p
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Fig.2(b)
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Fig.2.-(b) The same as (a) but for the initial power-law index n = 2. Three solid straight

line shows the power law with the power-law index of 2,-1,-0.65.
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Fig.3.- The schematic of the power spectrum in the scale-free case at a certain time.
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4.2.1.  Single-caustic regime (regime 2)

In the single-caustic regime (ky < k < kg @ regime 2) we can see that the power-law
index value becomes —1. The reason is as follows: The density perturbation with the scale
that just entered the non-linear regime at a given time, that is, k,;, makes “caustics”.
Strictly speaking, the caustics would appear if the initial spectrum was smoothed bellow
the scales just entered the non-linear regime. Therefore, we must notice that the real
caustics cannot be observed in the scale-free case because of smearing by the small scale
fluctuations. However, we call these scale on k,; < k < kg, ”single-caustics regime” in this
thesis. After the first appearance of ”caustics”, the value of the power-law index of the
power spectrum on the scales smaller than that scale is —1 (Gouda & Nakamura (1989),
Kotok & Shandarin (1988)): Here we briefly show why the value of the power-law index is

—1 after the first appearance of caustics.

The Fourier spectrum &, of the density fluctuations is given by

8, = / 8(z)e**dz. (92)
Then the density is given by
p
p(:l?) = Td’%l) (93)
dq

where po is the mean density of the universe. At the Lagrangian singular point go, the

following relation is satisfied.

dz

(%—)qo = 0. (94)

At the singular point qo, the density p(z) diverges. Therefore, the Eulerian coordinate x

can be written

z=x0+ B'(qg— )"+ O((g — 9)°)- (95)

For simplicity, we can put zo = go = 0 without losing generality. Therefore we can express
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x = B¢ around the caustic. The density around the caustic is expressed by

p(e) = ol g1 ox (B1a) (96)
This density profile determines the proper index of the power spectrum. This type
of singularity is called A2 type according to catastrophe theory (Gouda & Nakamura
(1988,1989)). Egs.(95), and (96) can be generally satisfied around the singular points in
the multi-stream flow regimes where the Zel’dovich solution cannot hold. The A2 type of
singularity is the only stable type in the one-dimensional system and eqs.(95) and (96)
remain in the multi-stream flow regions after the first appearance of caustics. Here it must
be noted that Lagrange coordinate g in the above argument is not the initial position of the
sheet. See Roytvarf (1987) and Gouda & Nakamura (1989) for a detailed explanation. On
the other hand, it is found that p(z) is proportional to =2/3 around the singular points at
the first appearance of caustics (Zel’dovich (1970), Arnold et.al.(1982), Gouda & Nakamura
(1988)). This type of singularity is called type A3. The A3 Type is not structurally stable
in the one-dimensional system and so the A3 type of singularities appears only for an

172 singularity.

instant. It disappears and quickly evolves into the A2 type, i.e. p x 2~
Hence the contribution from the A3 type of singularity in estimating the power spectrum is

negligible. The Fourier spectrum of the density is given by

o = /5(3:)6””(1:1:

= ﬁeikwdw
Po
x /(ﬂ'x)_%eik”d:c
= gipsE / =¥ eitdt, (97)
where t = kz. Then, we obtain
P(k) o (k). | (98)

From eq.(98), we find the value of the power-law index is —1. Here we notice that the small

value of B’ contributes to the large amplitude of the power spectrum. Furthermore, the
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coefficient 3’ is very small when the caustics have just appeared. We can see this fact by
the evolution of the “single-wave perturbation”. Here, the single-wave perturbation means

the density fluctuations whose initial condition is given by
z(g) = ¢ + Xsin(q), (99)

where X is a constant value. Hereafter we call this case the single-wave case. The first
caustics have just appeared at a center of the x axis (z = 0) in Fig.4(a). After the first
appearance of this caustic, more caustics appear in the collapse regime by phase mixing

(Fig.4(b)-(d)) (Doroshkevich et.al(1980), Melott (1983), Gouda & Nakamura (1989)).

A caustic (singularity of the density field) is located at the point at which the derivative
of v with respect to z is infinity. The absolute value of the derivative of v with respect z
around the singular points is proportional to #'~!. Then as the phase mixing continues and
so more caustics appear, it is found from Fig.4(a)-4(d) that 8’ increase because |%| around
the singular points decreases. Hereafter we call the structure in the phase space shown in
Fig.4(a)-4(b) “the whirlpool”. Just after the multi-caustics appear, the coefficient factor
of this wavelength is very small and the effect of the amplitude of the power spectrum in
these waves dominates. As a result, the index of —1 that is predicted by the catastrophe

theory appears. Therefore we call this regime, single-caustic regime.

Here, we comment that real singularities do not occur in the real world. Of course,
the arguments on caustics in this section cannot be applied to barionic gas because shocks
appeared and they prohibited density divergence. Furthermore the maximum density is
surprisingly low even in the neutrino-dominated model owing to the velocity dispersion of
the neutrino (Zel’dovich & Shandarin (1982),Kotok & Shandarin (1987)). In this thesis,
we consider the cold collisionless matter whose velocity dispersion is much small compared

with the scales under consideration.
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Fig.4
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Fig.4.-(a) The distribution of plane parallel sheets in the phase space for the single-wave case
at the first appearance of caustics. A horizontal axis and a vertical axis are the Eulerian
coordinate x and the velocity, respectively. Scale factor a is normalized at this time (a = 1).
(b) The same as (a) but at a = 4.

(c) The same as (a) but at a = 16.

(d) The same as (a) but at a = 32.
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4.2.2.  Multi-caustics regime (regime 3)

In the multi-caustics regime (k > ksni), we can see the power law spectrum. The
power-law index of these regimes is different from —1 predicted by the catastrophe theory.
In this regime, various small scale fluctuations (k > ksu) have already collapsed and
made singularities. Every singularity makes “the whirlpool” in phase space as shown in
the single-wave case (Fig.4). Various size of “whirlpools” are made of the various scales
of fluctuations. The distribution of the whirlpools determines the value of the power-law
index. This distribution depends on the initial power-law index n. That is, the power-law
index g in this. regime depends on n. Indeed, the value p depends on the initial power
spectrum as shown in Fig.2(a) and 2(b). Therefore we call this regime the multi-caustics
regime. When self-similarity is satisfied, there is a relation between the power-law index of
the two-point spatial correlation function, the initial power spectrum index, and the mean
relative peculiar velocity. Here, we briefly show this relation in the w dimensional system.
In the linear regime of the w dimensional system, the two-point correlation function is given

by(Peebles 1980,1993, eq.(44) ),

€ o« alz~ W) (i)_(m’n), (100)
aa
where
2

On the other hand, in the strongly nonlinear regime, the two-point spatial correlation
function obeys the following evolution equation (0th moment equation of the 2nd BBGKY

eq. (DP,YG):

5 10, .
o e+ 1)) = 0. (102)

In the strongly non-linear limit, we can assume a power law solution for the two-point

spatial correlation function (YG).
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£ xatz™. (103)
In this case, we obtain
(v) = —haz, (e—h(w—7)=0) (104)
and then,
£ x aMv g™ = (i,)—v, (105)
aOl
where & is the constant and
o = M=) (106)
Y

As defined in §2, we call the parameter h the relative velocity parameter. If self-similarity

‘is satisfied, o/ must be equal to a. Then the power-law index « is given by

wh(n + w)

Y= T4 h(n+w) (107)

If the relative velocity parameter h is 1 (stability condition) as DP assumed, we obtain
the v = (n + 1)/(3 4+ n) in the one-dimensional case (w = 1). In this case, the power-law
index p of the power spectrum is given by y = v —w = —2/(3 4+ n). However the power-law
index g which is given by the numerical results of the power spectrum is different from
—~2/(3 + n). Therefore, the stability condition (h = 1) is not satisfied. We can estimate the

velocity parameter h from the power-law index by using eq.(107).

Threw—1)  mreu @+l
We show the results in the Table 1. YG discussed. the fact that the velocity parameter A

B 2 __Autw) _ 2Apetl) (108)

has a value between 0 and 1 (§2). Indeed the value of h stays in this range. We show the

numerical result of h not only for the n = 1, and 2 cases but also for the n = 0, and 3 cases.
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Table 1. n dependence of y and h

n w h

0 -0.88 0.29
1 -0.75 0.33
2 -0.65 0.36
3 -0.58 0.37

4.3. Cutoff-case

We consider the following initial spectrum, that is, the cutoff-case.

p X k (k < kcut)
(k) . (109)
= 0 (k‘ > kcut)

The time evolution of the power spectrum for the cutoff-case is shown in Fig.5.

It is shown only for the n = 1 case. However, we obtain essentially the same result
for other cases (n = 2,3, and 0). As can be seen from Fig.5, until the first appearance of
caustics (lowest solid line of the power spectrum except for initial spectrum in Fig.5), the
amplitude of the power spectrum grows even on scales smaller than the cutoff scale. The
power-law index of these regime is predicted to be —1. This is because the wave number
k = k., makes the caustic and this caustic results in the predicted value of power-law index
as shown in §4.2.1. Indeed, we find that the value of the index in these regimes is nearly

equal to —1. The scaled power spectrum is also shown in Fig.6.

The definition of the scaling is the same as that in the scale-free case. As we see from
Fig.6, the power spectra at the different times do not coincide. Therefore self-similarity is

not satisfied.

The characteristic scale of separation of the caustics becomes smaller and smaller as
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Fig.5
o L I LILELEBL I e LI L I LU L l L L] I L)
.
g -
o -
(=
K] 4
—6— o ]
- |—r'f"r.i ot ba g byl |': Lo b b vy by g
0 5 1 1.5 2 25 3 3.5 4
log k

Fig.5.- The time evolution of the power spectrum. The solid and dotted lines are used
mutually in order to distinguish easily each line. The curves shown are (bottom to top) at
a = 0.05,1,2,4,8,16,32,64,128. The initial power spectrum obeys the power-law with the
index n = 1 and it has a cutoff at k., = 127(Dotted-dashed line).
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Fig.6.- The scaled power spectrum Py (k.). The initial power spectrum obeys the power-law

with the index n = 1 and it has a cutoff scale at k., = 127.
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time increases (refer to the case of the single-wave: See Fig.4 (a)-4 (d)). Here, k.s is defined
as the wave number of the characteristic scale. On scales smaller than the characteristic
scale k > k. (regime 5: see Fig.10), the power-law index of the power spectrum becomes
—1. This is because on scales smaller than the characteristic scale, the density profile
around one singular point determines the power spectrum. Therefore we call this regime
the smallest single-caustic regime. On the other hand, in the regime k., < k < k., (regime
4), the power-law index of the power spectrum is different from —1. The index has a certain
value v. This is because on the scales larger than the characteristic scale, smoothed density
profile with the smoothing scale (ke < k < kes) determines the power spectrum. We call
this regime the virialized regime. We show the schematic of the density distribution in

Fig.7.

We notice that the wave number ks which represents the characteristic separation of
caustics, becomes larger and larger as time increases. On the contrary, the non-linear scale
wave number k,; and kg, become smaller and smaller as time increases. Thus, the power
spectra of the different times cannot coincide on all scales. Therefore self-similar evolution

in all the regimes including the scales smaller than the cutoff scale cannot be satisfied.

We compare the time evolutions of the power spectrum for the cutoff-case with those

for the scale-free case in Fig.8.

Of course, the power spectrum for these two cases does not coincide with each other
on all scales. On the other hand, on the scales larger than the cutoff scale, we can see the
coincidence of power spectra for these two cases. This means that the power spectrum on
the wave numbers larger than the cutoff scale k.,; does not affect the growth rate on wave
numbers smaller than k.,;. We show the scaled power spectrum for the cutoff-case only on
the wave numbers smaller than the cutoff scale k.,; in Fig.9. This means that even in the

cutoff-case, the self-similar evolution can be satisfied on scales larger than the cutoff scale.
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Fig.7.- The schematic of the density distribution in the single-wave case. This figure shows
that the density profile around one caustic and the distribution of caustics, which determine

the smoothed density profile on scales larger than the characteristic separation of caustics.
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Fig.8.- Comparison of the evolution of the power spectrum between the scale-free case (solid
line) and the cutoff-case (dashed line). Both the solid curves and dashed curves shown are
(bottom to top) at a = 0.05,1,2,4,8,16,32,64. The initial power spectrum obeys the power
law with the power-law index n = 1 both for the scale-free case and for the cutoff-case. For

the cutoff-case, the initial power spectrum has a cutoff at k.., = 127.
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Fig.9

lIl.IIIIIIIIIIIIIIIIIII'IIIIIIIIIITll_

- , cutoff (k<keq)
-3 —
i1 1 I I | l | | I I - | I L1 1 | I 11 1 1 I | I | I L1

-3 -2.5 -2 -1.5 -1 -5 0 5 1

log k.

Fig.9.- The scaled power spectrum at a=1,2,4,8,16,32,64 on scales larger than the cutoff
scale. The initial power spectrum obeys the power law with the power-law index n=1 and

it has a cutoff scale at k., = 127.
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4.4. Conclusions and Discussion

We have calculated the time evolution of the powér spectrum for two cases of initial
conditions. One is the scale-free case and the other is the cutoff case. In the case of the
scale-free case, we can see self-similar evolution of the power spectrum. The scaled power
spectrum P, (k,) at each time coincides. We can roughly separate the power‘ spectrum into
three regimes. One is the linear regime (k < ky; : regime 1). The value of the power-law
index in this regime remains the initial power-law index, n. The second regime is the
single-caustic regime (k,; < k < kg : regime 2). In this regime, the power-law index
becomes —1 and is independent of the initial conditions. This result is caused by the
appearance of caustics at this scale, and these caustics determine the power-law index of
the power spectrum in this regime. The third regime is the multi-caustics regime (k > ks
: regime 3). The distribution of the “whirlpool” in phase space determine the value of the
power-law index. Therefore in this scale the power-law index p has the value that depends
on the initial condition. We can estimate the velocity parameter & from the power-law
index in the multi-caustics regime, which is around 0.5. YG discussed the probable value
of h from the physical point of view and obtained that A takes a value between 0 and 1
(§2). Estimated values of h are consistent with this argument. Indeed, the index u and
the velocity parameter h depend on the initial power-law index n. The stability condition

(h =1) is not satisfied in this case.

In the cutoff-case, we find that there is no self-similarity on all scales. The scaled
power spectrum do not coincide with each other in all regimes. However, the spectrum
coincides on scales larger than the cutoff scale. After the appearance of the first caustics,
the power-law index in the regime of the scale smaller than the cutoff scale becomes —1.
This value is, as mentioned above, caused by the appearance of caustics as shown in Fig.3.

More and more caustics appear one after another, and so the separation of caustics becomes
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smaller and smaller. Even after the appearance of many caustics, on scales smaller than
the characteristic separation of the caustics (k > k. : regime 5), the power-law index of
the power spectrum is obtained by the density profile around the singular point. Therefore
the power-law index of these scales becomes —1, which can be derived according to the
catastrophe theory. On the other hand, on scales larger than the characteristic separation
of the caustics (kewt < k < kes @ regime 4), the distribution of the singular points determines
the power-law index on these scales instead of the density profile around one singularity.
This is because in this regime, the smoothed density profile with the smoothing scale
(kewt < k < kcs) determine the power-law index. On these scales, the distribution of the
singularity occurring in the evolution of the single-wave is important. Then, the power-law
index on these scales is determined by this distribution of the singularity. Therefore, we
can roughly separate two regimes on the scales smaller than the cutoff scale k. One is
the virialized regime (keut < k < kes : regime 4), and the power-law index has the value v
. Another is the smallest single-caustic regime (k > k., : regime 5) and the index has the

value of —1. Both indexes are independent of the initial conditions.

In a real situation concerning the evolution of the power spectrum, the initial power
spectrum has a cutoff on a certain scale. Therefore, in the case of a real situation, we can
consider the evolution of the cutoff-case. We notice that even if the initial power spectrum
does not have a cutoff, it decreases with the power-law index n < —1 on certain scales
(k > kgec). Therefore the time evolution of the power spectrum is the same with that in the
cutoff-case after the appearance of caustics. Then, we can separate roughly five regimes.
We show a schematic of the power spectrum at a time after the first appearance of caustics

in Fig.10.

First regime is the linear regime (k < ky; : regime 1). The index of the power spectrum
in this regime is n. The second regime is the single-caustic regime (kn; < ksn; : regime 2).

The index in this regime is —1 and independent of the initial conditions. The third regime
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Fig.10.- The schematic of the power spectrum with a general initial power spectrum at a

certain time after the first appearance of caustics.
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is the multi-caustics regime (kg < keyr : regime 3). The power-law index is g, which
depends on the initial power-law index n. The fourth regime is virialized regime (ke < kes
: regime 4). The value of the power-law index is v, which is independent of the initial
power-law index. The fifth regime is the smallest single-caustic regime (k > k., : regime
5). The value of the power-law index is —1. The self-similarity is satisfied only when we
consider the evolution of the power spectrum on scales larger than the cutoff scale (i.e. the

first, second, and third regimes).



— 67 —
5. CONCLUDING REMARKS
5.1. Summary

In this thesis, we have investigated the evolution of ’the density fluctuations in the
expanding universe, especially in the non-linear regime. First, we have investigated the
scale-invariant solutions of the cosmological BBGKY equations in the strongly nonlinear
regime in §2. We have derived the solutions and then, we obtained the relation among the
power-law index of the two-point spatial correlation function, the skewness of the velocity
field, three-point correlation function, and the velocity parameter. We have also derived the
index of the two-point spatial correlation function as a function of the index of the initial
power spectrum n and the velocity parameter A when we assume that self-similar evolution

of the two-point spatial correlation function is satisfied.

Next, it is not clear whether all the solutions derived in §2 are suitable in the real
situation. We do not know whether these solutions are stable or not, and then we have
investigated the stability of the scale-invariant solutions of the BBGKY equations in the
non-linear regime in §3. We have found that there is no unstable mode in the case that the
skewness of the velocity field is equal to zero. The solutions have proved to be marginally
stable. This means that there is no special value of the index of the two-point spatial

correlation function from the viewpoint of stability of the solutions.

Last, we have investigated whether the self-similarity of the two-point spatial correlation
function (power spectrum) is satisfied in §4. In §4, we have considered the one-dimensional
system because we can obtain a dynamic range as wide as possible. We have verified that
the self-similar evolution is satisfied when the initial power spectrum is scale free. We have
also investigated the evolution of the power spectrum when the initial power spectrum

obeys the power-law with a cutoff. In this case, self-similarity of the power spectrum is not
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satisfied.
In the following, we summarize the above results again in detail.

First, in §2, we have investigated the scale-invariant solutions of the cosmological
BBGKY equations in the strongly nonlinear regime. The mean relative peculiar velocity
depends on the skewness and the three-point correlation function. The stability condition
which DP used is satisfied for the unique case that the skewness vanishes and the three-point
correlation function can be represented by the products of the two-point spatial correlation
functions. In general the power-law index of the two-point spatial correlation function in
the strongly nonlinear regime depends on h, the skewness and the three-point correlation

function.

In general, the systems have substructures in some clusters and no subclusters in other
clusters and so v depends on n. If self-similar solutions of the two-point spatial correlation
function exist, the power-law index + is given as a function of the index of the initial power
spectrum n and the velocity parameter h (eq.(49) in §2). However the relation between v
and n may not be given by the result shown by DP because the skewness does not vanish

in general in the nonlinear regions and so k should not be equal to 1.

In §3, we have investigated the stability of the scale-invariant solutions of the
cosmological BBGKY equations in the strongly nonlinear regime with the skewness of the
velocity field being equal to zero. The reason we have considered only this case is that
perturbed BBGKY equations for ¢, (v), I and ¥ can be closed independently of the higher
moment perturbations. We have investigated the local stability of the non-linear regime. In
investigating the local stability of the two-point spatial correlation function in the strongly
non-linear regime, we should put perturbations only on these scales in which we are going
to investigate. That is, we should put the wave packet-like perturbation. We have found

that there is no unstable mode. It seems stable for any value of the power-law index of
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the two-point spatial correlation function. It is certain that there is no local instability.
However we do not know whether a global instability exist or not because we consider
only the local stability. In the strongly non-linear regime, the solutions have proved to be
marginally stable, and it does not seem that the power-law index of the two-point spatial
correlation function approaches to some stable point values. The power-law index of the
two-point spatial correlation function that was derived by DP, v = 3(3 + n)/(5 + n), is
not the special one also from the viewpoint of stability of the solution. As a result, the
argument of the stability does not determine the power index of the two-point spatial
correlation function. The power-law index of the two-point spatial correlation function is
determined only by the clustering process, that is the parameter A, if self-similar solutions

exist.

In §4, we have calculated the time evolution of the power spectrum for two cases of
initial conditions in the one-dimensional system in order to investigate the self-similarity of
the two-point spatial correlation function (power spectrum). One is the scale-free case and
the other one is the cutoff-case. In the scale-free case, we can see the self-similar evolution
of the power spectrum. The scaled power spectrum P, (k.) at each time coincides with each
other. We can separate roughly the power spectrum into three regimes. One is the linear
regime (k < ky; : regime 1). The value of the power-law index in this regime remains the
initial power-law index, n. The second regime is the single-caustic regime (kn < k < kgpi
: regime 2). In this regime, the power-law index becomes —1 and is independent of the
initial conditions. This result is caused by the appearance of caustics at this scale, and
these caustics determine the power-law index of the power spectrum in this regime. The
third regime is the multi-caustics regime (k > kg : regime 3). The distribution of the
“whirlpool” in phase space determines the value of the power-law index. Therefore in this
scale the power-law index p has the value which depends on the initial condition. We can

estimate the velocity parameter A from the power-law index in the multi-caustics regime,
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which is around 0.5. As we discussed in §2, the velocity parameter h takes a value between
0 and 1. Estimated values of & in the one-dimensional systems are consistent with this
argument. Indeed, the index y and the velocity parameter h depend on the initial power-law

index n. The stability condition (k = 1) is not satisfied in this case.

In the cutoff-case, we find that there is no self-similarity on all scales. The scaled
power spectrum does not coincide with each other in all regimes. However, the spectrum
coincides on the scales larger than the cutoff scale. After the appearance of the first
caustics, the power-law index in the regime of the scale smaller than the cutoff scale
becomes —1. This value is, as mentioned above, caused by the appearance of caustics as
shown in Fig.3. More and more caustics appear one after another and so the separation
of caustics becomes smaller and smaller. Even after the appearance of many caustics,
on scales smaller than the characteristic separation of the caustics (k£ > k.; : regime 5),
the power-law index of the power spectrum is obtained by the density profile around the
singular point. Therefore the power-law index of these scales becomes —1 which can be
derived according to the catastrophe theory. On the other hand, on the scales larger than
the characteristic separation of the caustics (kewt < k < kes : regime 4), the distribution of
the singular points determines the power-law index on these scales instead of the density
profile around one singularity. Because in this regime, the smoothed density profile with
the smoothing scale (k.x < k < k.;) determines the power-law index. On these scales, the
distribution of the singularity occurring in the evolution of the single-wave is important.
The power-law index on these scales is determined by this distribution of the singularity.
Therefore, we can roughly separate two regimes on the scales smaller than the cutoff scale
keyi. One is the virialized regime (kg < k < kes : regime 4), and the power-law index has
the value v . Another is the smallest single-caustic regime (k > k.s : regime 5) and the

index have the value of —1. Both indexes are independent of the initial conditions.

In the above argument, we can make it clear the difference between the power-law
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index that is produced by DP or derived by BBGKY equations in §2 and the index which
is determined by the type of the singularity after the appearance of the caustics. The index
which is proposed by DP or derived by BBGKY equation corresponds to the regime 3, that
is, the self-similar evolution is satisfied. On the other hand, the index which is determined
by the type of the singularity corresponds to the regime 5. This regime moves to the

smaller scale because the more and more caustics appear and the characteristic scale of the
separation of caustics becomes smaller and smaller. Thus, the self-similar evolution cannot

be satisfied in the cutoff case.

In a real situation concerning the evolution of the power spectrum, the initial power
spectrum has a cutoff at a certain scale. We notice that even if the initial power spectrum
does not have a cutoff, there is a scales k (k > k4e.) in which the power-law index of
the power spectrum with n < —1. Furthermore caustics appear in the scale kg, at first.
Therefore the time evolution of the power spectrum is the same with the one in the
cutoff-case after the appearance of caustics. And then, we can separate roughly five regimes.
We show a schematic of the power spectrum at a time after the first appearance of caustics
in Fig.10. First regime is the linear regime (k < k,; : regime 1). The index of the power
spectrum in this regime is n. The second regime is the single-caustic regime (kn < ksp :
regime 2). The index in this regime is —1, and independent of the initial conditions. The
third regime is the multi-caustics regime (ksn; < key: : regime 3). The power-law index is
¢ which depends on the initial power-law index n. The fourth regime is virialized regime
(kewt < kes @ tegime 4). The value of the power-law index is v which is independent of the
initial power-law index. The fifth regime is the smallest single-caustic regime (k > ks :
regime 5). The value of the power-law index is —1. Only when we consider the evolution of
the power spectrum on scales larger than the cutoff scale (i.e. the first, second, and third

regime), the self-similarity is satisfied.

In §4, we investigated the evolution of the two-point spatial correlation function (power
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spectrum) in the one dimensional system. We believe, however, that the same physical
process are realized even in the three-dimensional systems although the quantitative values
of the index of the power spectrum in the three-dimensional systems are different from one

in the one-dimensional systems.

5.2. Future Works

We have investigated the evolution of the density fluctuations in the expanding universe,
especially in the non-linear regime in this thesis, and have derived the scale-invariant
solutions. We have investigated the stability of the solutions of the BBGKY equations
in the non-linear regime in §3, and have found that there is no unstable mode when the
skewness of the velocity field is equal to zero. We would like to investigate the stability of
the solutions in general case in the future. In §4, we have investigated the evolution of the
power spectrum in an one-dimensional system. We have found that the power spectrum
can be separated roughly into five regimes according to the shape of the power spectrum
when the initial power spectrum obeys the power-law with a cutoff. We have shown the
values of the power-law index of the power spectrum in the regimes 1, 2, and 5. Each index
of the power spectrum is n, —1, and —1, respectively. In the near future, we would like
to investigate how to determine the values of the power-law index in the regimes 3 and 4.
Furthermore, we would like to verify the self-similarity of the two-point spatial correlation

function (power spectrum) in three-dimensional systems.
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APPENDIX

A. BBGKY EQUATIONS

In Appendix A, we show the detail of the derivation of the BBGKY equations that we

used in this thesis.

Derivation of the BBGKY equation The BBGKY equations can be derived by the
ensemble mean of the Vlasov equation. The Vlasov equation for the one-body distribution
function f(x,p) is given by

of = p* 9f 9¢ Of

htl — = Al

ot + ma? dze | Ozo Op® 0, (A1)

G 2 2
¢(m1) - m f(fl? ' P )d3$2d3p2, (AQ)

a e, — x,]

where m is the mass of a particle, a is the scale factor and G is the gravitational constant.

The ensemble mean of the Vlasov equation is

o(f) | pt 9(/f) d¢ of \ _
ot + ma? dz¢ m<8$? 8p§"> =0. (A3)

We define the statistical functions which are given by the ensemble mean as follows:

b(1) = <f(wnp1)>a (A4)
P2(1>2) = <f(w1,p1)f(wzap2)>a (A5)
ps(1,2,3) = <f(w19p1)f(‘”zapz)f(w39p3)>a (A6)

where b(1) is a function of only the momentum because of the homogeneity in the

background universe. The ensemble mean of the Vlasov equation (A3) is rewritten by using
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above functions(eqs.[A4] ~ [A5]) as follows:

sz 3}
a Opf

2 — 41

This is the first BBGKY equation. As can be seen from eq.(9), the time evolution of the

one-body distribution function depends on the two-body correlation function.

The following is the second BBGKY equation for the two-body correlation function:

WD = (s p) f(@ara)
- e~ g | 2 1 02, (49
e —-—-—f —_flf" (A9)
We can obtain the N-body correlation function by the same way as follows:
0023 D f(as, ) f(20sB) (0 2)
= 20 oy ) + ()L pisy + <0 2) 21
- (A10)
WALBIN L[, p.) /(s 2) (005 ) (@1 20)
= (2 po) ) ) + (10 2 p3) 1y
@2 pay + e e 2
_ (A11)

In our analysis, however, we use the only second BBGKY equation.

The second BBGKY equation is the time evolution equation of the two-body correlation
function. In this equation, the three-body correlation function is involved. In general, the
time evolution of the N-body correlation function depends on the N + 1-body correlation

function.
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We define the following irreducible correlation functions, ¢ and d:

p2(1,2) b(1)b(2) + ¢(1,2), (A12)

p3(1,2,3) = b(1)b(2)b(3) + b(1)e(2,3) + b(2)<(3,1) + b(3)e(1,2) + d(1,2,3). (A13)

Here b, c and d mean

b(z) = b(p:), (A14)
C(i,j) = C(wz’9pi,mj9pj)) (A15)
d(i,j,k) = d(wi’piawj,pjawk,pk>' (Alﬁ)

The first and the second BBGKY equations are rewritten by using the above functions,

respectively, as follows:

ab(l) Gm? 9 [z% s B
R / e, epy =0 (first BBGKY) (A7)
dc(1,2) py 0¢(1,2)  Gm20b(1) [z% s
ot + ma? Oz¢ + a Op¢ /xg’lc(273)d zad'ps

Gm? 9 L3 3. 13
——/ ~=d(1,2,3)d z3d’ps + (1 & 2) =0 (second BBGKY)A18)
a OpfJ z3

Velocity Moment In this thesis, we use the second BBGKY equation. Then we show the
derivation of the velocity moment equation of the second BBGKY equation that are given
by multiplying the equation by a power of moment and integrate them over all moment

arguments.

The zeroth moment equation is given by

9 /—lgpg‘lc(l,Z)d3p1d3p2 =0, (0th moment) (A19)
ma

8 3 3
E/C(l,z)d pld P2 -+ axa

¥ = a5 = 75 — 7, Po1 = p5 — by (A20)
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As we can see, the time evolution of the zeroth moment depends on the first moment

in the BBGKY equation.

The first moment equation is given by

0 0
5 / o(1,2)phdpd®pr + o

2 B
b [ O 0(1)e(2,3) + &Y B o pod iy
31

Gm? B
- / i {6(2)¢(3,1) + d}%d%gd?’pgd?’pld?’pg = 0.
32

a

1 o
/ m?ml’glc(l,?)d?’md%z

(1st moment) (A21)

This equation includes the second moment and then we need the second moment

equation as follows:

0 0 1
5;/6(172)1’/2611’;#3?1(’13?2 + aza/nglpglp%c(l,?)fmfm

Gm? 22 T
[T b1)e(2,3) + dHER L - o S} nad pad e

31 31

Gm? 8 2
= [T 02)e(3,1) + dHp 2 — o 2 nad pad s = 0.

32 32

(2nd moment) (A22)

As we can see above, the time evolution of the N-th moment depends on the N + 1-th
moment. So we should take assumptions in order to close these equations. DP used the
assumption that the skewness of the velocity is equal to 0. In this thesis, we do not assume
about the skewness of the velocity fields in order to study the relation between the skewness

and the two-point correlation function.

We defined in §2 the two-point correlation function ¢, the mean relative peculiar
velocity (v®), the relative peculiar velocity dispersion II, ¥ and the mean third moment

{(v*vPv7) as follows:

RSt = / o(2,1)d°p1dps, (A23)
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A2 (L + Oma(v) = [ o2, Dp5dndp, (A24)
a®(1+ ) (mal’[IB" + 5P = [ o2 Dpsurhdmdp, (A25)
(1—)3 / paps PP d°p1d’py

/p2d3p1d3p2

/ (2, 1)1931?511731 d3P1 d3p2

(vo‘vﬂvw) =

, A26
(ma)?) 2 6(1 + f) ( )
where, 72 is the mean density of the universe, and
2P 3 zozh
af _ caf
P” = P7 =467 — e (A27)

The £ which is defined in eq.(A23) is equivalent to the two-point correlation function

& (z) which is defined by another familiar definition as follows:

éa2()

(1) +2)) . ||
- ﬁ (((r) = (D6 +2) = (D), 1]
— n1a6 [(p(r)p(r + @) — (p){p)]

= s [ (2(0,2) = )

1
= n2ab /C(l,Q)d pld P2

= {(zn). (A28)

where (p) is the mean density of the universe.

In eq.(A24), (v®) is the mean relative peculiar velocity given by

/P2(2 1 P21d Pld P2
/P2(2, 1)d P1d3P2

/ C(2>1)Pg1d3pld3pz A
T #af(ma)(1+¢) 29

(v%)




- 78 —

In eq.(A25), I and X are the parallel and transverse correlated parts of the relative

peculiar velocity dispersion of correlated particles, respectively.

As shown in §2, the skewness is written as follows:

s = (v = ()N (v = ) )(v — (o)) (A30)

From the symmetry of the universe (homogeneity and isotropy), we can write

(v*) = (v)z*/z. Hence,

3 z z z

o) = <2001 T ) {2 )+ Ty + gt s (g

Furthermore the skewness can be written by the symmetry of the universe as follows:

By = 5“ P ﬁ’y+8_|_ Pozﬁ'y (A32)

s ppp ptt >

where the subscripts p and ¢ represent the parallel and transverse component of the two

particles, respectively. We have

2P z” xzl
= , Pa= -—5ﬁ"f +Z ma + =5 -3
T

afy
P o -

ppp

(A33)

23
Pyt and Py, vanish because of the symmetry of the universe.

From eqs.(A26) and (A31), we can obtain the following equations:

xﬁw7

[ @, Dpsharhdndp: = 2%a°(1 + €)(ma)*([3 <v><n = %) = 2(0)3)°

v 2< 1> z® By Yo ﬂ af Plat
+{oy (X + (1+£))( T g 6 —|—$6 )+ } (A34)

Then moment equations are following:

6(ma)

Ot ma’ )(v*)] = (0th moment) (A35)
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(2nd moment) (A37)

As shown in §2, ( is the three-point correlation function defined by

34% = / dd®p1 & pyd®ps. (A38)

Contraction of the Equation We transform these equations by taking divergence of the
first moment equation and by operating the following two operators to the second moment

equation:
el

9 9
OzB Oz’

AP = %(tsf’W _Te (A39)

22
Hence we obtain two equations from the second moment equation. We call them

contraction land contraction 2 equations hereafter, shown later in eqs.(A48) and (A49) ,
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respectively. Furthermore, we assume the following relation,

(123 = Q(€1262s + E23€1 + Ea112). (A40)

Then the fifth term of the first moment equation (A36) is rewritten by

Gm 7340 f_:g _5?32_ 83, — Gm 7302 5”31
a Ba:ﬁ/c T3, :c32)d B a dxP /C :1:31
= p agQa / $31 d3$3 E12€23 + Easéar + Ea1aa)
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= T agQ /w—?d?’ws(ém + &31)&as
_ Gm 9 P
= a a Qa ﬂ[x T]
- GZ’ agQ[—:c + 7]
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- a naQ 28:1:[:3511]
_ 2Gzz 73 9QM [ 3¢%), (Adl)
where
— .8 20f — wgl 3 _
T 6(:(}) M= / xT{é.m +§31}€23d T3, T = Iy1. (A42)
31

This definition is well defined for the vector component of ® and ®3; because of the

symmetry of the universe.

The seventh term in eq.(A37) is rewritten by

v

Gm? _ 7y s 7h Lo 3
a axﬁaxv/ d[p ( ) le(xgl 22, NdPwad’pyd’ p1d’ps

Gm z?
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Gm2 9 * mﬂ z7 < > ( )
= 4 - (ma)n’a®Q 830/@3337/ S| §12+| |531}523d T3
2 g Y31 2
e T ™
where
%* 7509 Cmavy) / dp, d®p (A44)

In general this relation (eq.[A44]) is not satisfied. But DP showed the existence of d
which satisfies this relation. Furthermore, in the strongly nonlinear regime, which we are

interested in, we find from the dimensional analysis that this relation is correct in general.

We can see from eqs.(A37) and (A43) that the seventh term of the second moment

equation is transformed by operator A?” as follows,

s 5
[ T A} @ — 22| Py P podpr p
T3 *'”32 "3

Gm /d Y 31d3:1:3d3p3d3p1d3p2
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m zf 3 V23
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Finally we obtain the following four equations:

5 606  n%a®(ma) 1 0, _
n’a ym + —maz—ﬁb—w[w (14 ¢&){v)] =0. (0th moment) (A46)
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ﬁ2a6%(fr;czl)2% l%[ﬁ(l + O] — 22(1 + 5)2]
ma;(ga)aéaa; [#2(1 + §){3(v) (Il — B) ~ 2(v)*}]

L Wa(ma)®3 910 [ ;’_ml(l + )N + %?‘5}]

ma? 20z z 0z
n?a%(ma)® 1

ma? 2 Jx3
167Gm? 1
6rGm a3 2ab

—+

[2*(1 + €)3y]

9 2
+ L L2014 €)ma) o)
sz 9 82 xgl 'y < > < >
+ 4 a (ma)r’a®Q” 8wﬁax7 / 72 { 512 + o — |§31}§23d z3
Gm? 9% w5 P <U3l> (vas) 3. _
T4 a (ma)i*a’Q :vﬁaaﬂ / z3, { z |z —z| Yaslard'zs =0
(2nd moment : contraction 1) (A48)
. 50 n?a®(ma)® 1 0 2(v})
2 6 Y 2 . 4 _oNT
v dimar 498 + DO Lo + i)
n?a%(ma)®* 1 1 0
+ ma?  z2 g 0:1:[ (1 sl
Gm? =5
+ e ﬁasAﬁ’y/ (2, 3)[1’21 -3 L4 gl $3 ]d z3d’psd®pa
a T31 Z31
G 2 ﬁ Y
- iT—LasAm/ (3, 1)[Pgl =3 2 4 phy wg |d®z3d®psd’py
a T39 T32
G'm? ~ . zh (va1) (vas)
+ 4 (ma)n’a®Q Am/ ;gfx“y{—;i—gm + . i3z|§31}§23d3x3

2 B
n 4G7an (ma) 9Q*Aﬁ7/w3l v{<U31> _ (U23L|}§23§31d3$3:0.

8 z |z —
(2nd moment : contraction 2) (A49)

The sixth term of the second moment equation{contraction 1, eq.A48), is rewritten by

.'Eﬁ V23 3
4Gzz (ma)n agQ*axgaww/ 31[ 7{< >§12 + |< >|€31}€23]d 3
G 9?2 8
Zz (ma)n a’Q* (—a )0:cﬁ6:1:7 / 231 ww{ﬁlz + 531}52301 T3
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Gm? 0?
= 4 (ma)n2a®Q*(— ah)a e ,Y[m"wﬁT]
Gm? 9
= 47 (ma)wa'Q (- ah)—%m[m“T]
m2 0*
= 49 ma)taQ M(—ih) & late?]. (A50)

The seventh term of the second moment equation(contraction 1, eq.A48) is rewritten

Gm? 9% "Bgl y (’031) (1)23> _
i’ Bxﬁ&m / 23 { e Z'}523€31d r3=0. (A51)

The sixth term of the second moment equation(contraction 2, eq.A49) is rewritten by

4Gm (ma)n %a°Q” Am/ 5531[ 7{0}21)512 + |< >|531}§23]d Z3.
m2 ;Eﬁ
= 4Ga (ma)ﬁ?’agQ*(——dh)Am/ $31 7{512 ‘|‘f31}523d s
= 4GZ& (ma)ia®Q*(—ah) AP 272" T
= 0. (A52)

The seventh term of the second moment equation (contraction 2, eq.A49) is rewritten

4Gm2
a

B
(ma)n a9Q Aﬁ’y/$31 ’y{(v31> _ <U23)Zl}£23£31d3$3:0_ (A53)

3 lz —
Finally we obtain the following four equations:

?}f + = Lzb%[x?(l + &){v)] = 0, (0th moment) (A54)

119 0

o S @1+ Eafvl] +
+ 8rGmnaé
+

a0t 22 0z

342
2GmnaQMac2 838[ €% =
(1st moment) (A55)



—84 —

2 |+ om - o1+ 0]

; i.izj— [22(1 + ) {3(0)(II - £) — 2(0)°}]

13910 [,01 2(v})
A [ 5. oL TO@E+ m}]

az? 0z z Oz

11 88
+ ——‘55—5[952(1 +&)(s) — 3s1)]
13 010

+ az?dzzdz [ Oz w(l +&)s }
+ 167erna———:v (14 &)(v)

+ 4Gmna@* (ah) 1 86—[ *ME =0,

(2nd moment : contraction 1)

110 |, 2(vi)
[a (1+6%] + iyl b (L+HHE + 301 -I—f)}
b 210 1)

azt 0z

+ J=0

26t

(2nd moment : contraction 2)

where,

Gm? ﬁ
Tt AP [ o(2,3)lpl 2t + gligl}d 2od*pad®ps
1

a 3 31

B Gm?

.
il

ﬁ
7_1“3Aﬁ7/c(3>1)[1921 5 TP 21:5 2]d3x3d3p3d3p1
T32 32

This term is negligible in the strongly nonlinear regime.

(A56)

(A57)

(A58)



_ 85—
REFERENCES
Arnol’d, V.I., Shandarin, S.F. & Zel’dovich, Ya.B. 1982, Geophys. Astrophys. Fluid
Dynamics 20, 111
Bouchet, F.R., & Pellat, R. 1984, A&A, 141, 77
Colombi, S., Bouchet, F.R. & Hernquist,L. 1996, ApJ, 465, 14
Couchman, H.M.P. & Peebles, P.J.E. 1998, ApJ, 497, 499
Davis, M., Efstathiou, G., Frenk, C.S.,& White, S.D.M. 1985, AplJ, 292, 371
Davis, M., & Peebles, P.J.E. 1977, ApJS, 34, 425 (DP)
Doroshkevich, A.G., Ryaben’kii, V.S. & Shandarin, S.F. 1973, Astrophysics, 9, 144

Doroshkevich, A.G., Kotok, E.V., Novikov, I.D., Polyudov, A.N., Shandarin, S.F.& Sigov,
Yu.S. 1980, MNRAS, 192, 321

Efstathiou, G., Frenk, C.S., White, S.D.M., & Davis, M. 1988, MNRAS, 235, 715
Frenk, C.S., White, S.D.M., & Davis, M. 1983, ApJ, 271, 417

Fry, J.N. & Melott, A.L. 1985, ApJ, 292, 395

Gouda, N. 1989, Prog.Theor.Phys., 81, 648

Gouda, N. 1995, Prog.Theor.Phys., 94, 33

Gouda, N.1996a, ApJ, 469, 455

Gouda, N., 1998, Prog. Theor. Phys., 99, 55

Gouda, N., & Nakamura, T. 1988, Prog.Theor.Phys., 79, 765

Gouda, N., & Nakamura, T. 1989, Prog.Theof.Phys., 81, 633

Hansel, D., Bouchet, F.R., Pellat, R., & Rmani, A. 1986, ApJ, 310, 23

Jain, B. 1995, in Proc. 30th Rencontre de Moriond, Clustering in the Universe, ed. S.
Maurogordato (Gif-sur-Yvette: Ed. Frontieres),161



~ 86 —

Jain, B. 1997, MNRAS, 287, 687

Jain, B., & Bertschinger, E., 1996, ApJ, 456, 43

Jain, B.,Mo, H.J. & White, S.D.M., 1995, MNRAS, 276, L.25
Kotok, E.V. & Shandarin, S.F. 1987, Soviet Astr., 31, 600
Kotok, E.V. & Shandarin, S.F. 1988, Soviet Astr., 32, 351
Melott, A.L. 1983, ApJ, 264, 59

Padmanabhan, T. 1996, MNRAS, 278, 1.29

Peebles, P.J.E. 1980, The Large-Scale Structure of the Universe (Princeton:Princeton

Univ.Press)

Peebles, P.J.E. 1993, The Principles of Physical Cosmology (Princeton:Princeton

Univ.Press)

Roytvarf, A. 1987, Vestnik. Moscow University. Ser.1, No.1, 65
Roytvarf, A. 1987, Vestnik. Moscow University. Ser.1, No.3, 41
Ruamsuwan, L. & Fry, J.N. 1992, ApJ, 396, 416 (RF)

Saslaw, W.C. 1980, ApJ, 235, 299

Shandarin, S.F. & Melott, A.L. 1990, ApJ364, 396

Sunyaev, R.A. & Zel’dovich, Ya.B. 1972, A&A, 20,189

Suto, Y. 1993, Prog.Theor.Phys., 90, 1173

White, S.D.M. 1996 private communication

Yano, T., & Gouda, N. 1997, ApJ, 487, 473 (YQ)

Yano, T., & Gouda, N. 1998, ApJ, 495, 533

Yano, T., & Gouda, N. 1998, ApJS, 118, 267



_87 -

Zel'dovich, Ya.B. 1970, A&A, 5, 84

Zel’dovich, Ya.B. & Shandarin, S.F. 1982 Sov. Astron. Lett., 8, 139

This manuscript was prepared with the AAS IATEX macros v4.0.



— 88 —

Published Papers

. Limitations of the Press-Schechter Formalism
Taihei Yano, Masahiro Nagashima & Naoteru Gouda
The Astrophysical Journal, 1996, vol. 446, pp. 1-12

Scale-Invariant Correlation Functions of Cosmological Density
Fluctuations in the Strong-Clustering Regime

Taihei Yano & Naoteru Gouda

The Astrophysical Journal, 1997, vol. 487, pp. 473-481

Stability of Scale-Invariant Cosmological Correlation Functions
in the Strongly Nonlinear Clustering Regime

Taihei Yano & Naoteru Gouda

The Astrophysical Journal, 1998, vol. 495, pp. 533-538

Evolution of the Power Spectrum and Self-Similarity
in the Expanding One-Dimensional Universe
Taihei Yano & Naoteru Gouda
The Astrophysical Journal Supplement Series, 1998, vol. 118, pp.267-274



	00001.tif
	00002.tif
	00003.tif
	00004.tif
	00005.tif
	00006.tif
	00007.tif
	00008.tif
	00009.tif
	00010.tif
	00011.tif
	00012.tif
	00013.tif
	00014.tif
	00015.tif
	00016.tif
	00017.tif
	00018.tif
	00019.tif
	00020.tif
	00021.tif
	00022.tif
	00023.tif
	00024.tif
	00025.tif
	00026.tif
	00027.tif
	00028.tif
	00029.tif
	00030.tif
	00031.tif
	00032.tif
	00033.tif
	00034.tif
	00035.tif
	00036.tif
	00037.tif
	00038.tif
	00039.tif
	00040.tif
	00041.tif
	00042.tif
	00043.tif
	00044.tif
	00045.tif
	00046.tif
	00047.tif
	00048.tif
	00049.tif
	00050.tif
	00051.tif
	00052.tif
	00053.tif
	00054.tif
	00055.tif
	00056.tif
	00057.tif
	00058.tif
	00059.tif
	00060.tif
	00061.tif
	00062.tif
	00063.tif
	00064.tif
	00065.tif
	00066.tif
	00067.tif
	00068.tif
	00069.tif
	00070.tif
	00071.tif
	00072.tif
	00073.tif
	00074.tif
	00075.tif
	00076.tif
	00077.tif
	00078.tif
	00079.tif
	00080.tif
	00081.tif
	00082.tif
	00083.tif
	00084.tif
	00085.tif
	00086.tif
	00087.tif
	00088.tif

