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ABSTRACT

In this thesis, some classes of stochastic system modeling are studied,
where system models are described by stochestic differential equations or
stochastic difference equations.

A systematic procedure is firstly derived to model a class of linear
but nonstationary systems. The system dynamics and the observation
mechanism are assumed to be described by linear stochastic differential
equations with time-varying coefficients. The principal line of attack is
to utilize the nonlinear filtering theory for parameter identification. The
unknown system order is also determined by using multiple hypothesis testing
method.

Secondly, the modeling problem is considered for a class of stationary
but nonlineaf systems whose outstanding feature lies in sporadically large
peak values. The system model is assumed to be given by a nonlinear moving
average (NMA) model, where nonlinear terms are described by a set of Hermite
polynomials. Furthermore, in order to handle the data whose autocorrelations
between time intervals longer than a single time step may not be zero, NMA
model is extended to a nonlinear ARMA model consisting of linear AR terms
and nonlinear MA ones.

Finally, the modeling problem for a class of nonstationary nonlinear
system is considered. The system model is assumed to be described by a
class of nonlinear time-varying difference equation. The estimators of
unknown parameters are given from the maximum likelihood concept and their
asymptotic properties are examined mathematically. Restricting the system
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model to the single-input single-output ome, the criterion fumction for the
structure determination is derived by evalusting the upper bound of the
entropy associated with the estimation errors of both input noise and
unknown parameters. Throughout the thesis, asymptotic properties of

estimators are investigated theoretically and numerically.
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CHAPTER 1  INTRODUCITON

In the field of control theory, for example, it has been well known
that the required knowledge to design a control system is seldom available a
priori. Even if the equation representing a system is known in principle,
the knowledge of particular pérameters is often missing, and furthermore it
is often encountered that the analytical'model given by the theoretical
consideration for a system is too complex for the intended use of the model.
The situation mentioned above naturally occurs in other fields such as
statistics, system theory, econometrics, information theory, etc. These are
the reasons why the system modeling and identification problem have been so
widely and intensively investigated in various fields of science and
engineering.

Many physical systems show the following three aspects in common: (i)
they are excited by the inevitable random noise or their environments are
randomly disturbed: (ii) in general they exhibit various kinds of nonlinear

behaviors: (iii) their behaviors depend deeply on the time evolution. Hence,



the properties mentioned above should be reflected in the mathematical
models of almost all physical systems.

In this thesis, the author will establish the modeling method for
nonstationary and nonlinear systems and, asymptotic properties of the
estimated system parameters and the determined system structure will be also

investigated from both numerical and theoretical viewpoints.

1.1 . Historical Background

For better understanding of the present status of studies on stochastic
system modeling, the historical background is outlined in the following two
versions.

1.1.A Psrameter Identification for Nonlinear and Nonstationary Systems

Parameter identification was firstly investigated by K.F. Gauss in
1795 associated with the parameter identification of planetary orbits. In
the last few decades, various identification problems have been studied
based on the output signals (and input signals if they are available). One
of the most important results before 1960 was given by Wald [Wl], who worked
on parametric statistics, 1i.e., parameters in the probability demsity
function related to a family of independent and identically distributed
random data. He obtained a set of estimators which converges to their true
values, and further pointed out the maximum likelihood estimator (Y.L.E.)
belonging to this set of estimators.

Since physical data are secldom statistically independent, the
researchers’ interest after 1960 is turned into problems of parameter
identification with respect to dependent but stationary observation data
with the assumption that systems are described by linear models. Up to the
present time, there is certainly overwhelming literature concerned with
dependent observation data, and for a general survey, the reader may be
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referred to Astrém and Eykhoff [Al], Box and Jenkins [Bl], Eykhoff [El],
Goodwin and Payne [Gl] and Mehra and Lainiotis [L1]. However, as observed
in the geophysical data, many physical data encountered in various fields of
engineering are nonstationary and reflect the honlinearity of the system.
Recently from the viewpoint mentioned above, many authors pay great
attention to the identification problem for mnonstationary or nonlinear
'systemé.

In relation to nonlinear models, Ivakhnenko [I1] has developed a
general approach known as the Group Method of Data Handling (GMDH) for the
identification of comblex nonlinear systems with unknown structure, based on
the pioneering work of Wiener [W2] and Gabor [G5] for nonlinear system
representations and the work of Rosenblatt [R5] for the perceptron concept.
Using stochastic approximation technique [K7],[R6], Netravali and De
Figueiredo [N2] proposed the recursive parameter identification method for a
class of nonlinear time-invariant systems where statistical propertieé. of
the input disturbance were completely known a priori. They also showed that
estimators of wunknown parameters had the consistent pfoperty with
probability one. With | more natural condition that the input disturbance is
not obsefvable, the following works are representative. Ozaki and Oda [01]‘
presented a maximum likelihood estimator for a class of nonlinear AR type
models and gave several numerical results applied to real time series of
actual ship rolling which was known to. exhibit some nonlinearity. Pozﬂyak
[P1] proved the consistency of the least squares estimators of unknown
parameters in a class of nonlinear regression models. For a class of
nonlinear moving average models, Robinson [R7] proposed estimators of
unknown system parameters by using the moment method and mathematically

investigated their asymptotic properties. Sunahara, Ohsumi and the author



[S9] proposed another type of nonlinear moving average models and presented
consistent estimators by using the moment method and the asymptotic
normélity was also shown theoretically. Furthermore they extended the
nonlinear moving average model to a nonlinear ARMA models which had linear
AR terms and nonlinear MA terms [S10] and presented consistent estimators by
using the modified extended Kalman filtering approach [L2].

On the other hand, in relation to nonstationary models, Gran [G3]
proposed a method of parameter identification for a class of time-varying
linear systems represented by a stochastic differential equation. He
assumed that the time-varying unknown parameters in the system model can be
approximated by the finite series of polynomials with unknown constant
parameters, and augmenting unknown parameters to the state vector, the
estimates were obtained by using an approximated nonlinear filtering
technique. Using the same notion as in Gran's paper for the parameteriza-
tion of time-varying coefficients, Lee [L4] and Nakajima and Kozin [N3]
presented cgnsistent estimators by using the maximum likelihood method and
the least squares method respectively for a class of time-varying linear
systems. For nonstationary nonlinear systems, Sunahara and the author
[S11],[S12], established a method of identification, and asymptotic proper-

ties of the estimators were also investigated mathematically and numerically.

1.1.B  Structure Determination

Due to the lack of the complete understanding of the underlying system
or the complexity of available model, we are often enforced to select an
appropriate system structure or order among an admissible class of models

only from the observable output data (and the input data if it is available).



The problem mentioned above is said to be "structure determination” or
"order determination” problem. In this section, we shall survey studies on
the structure determination problem.

The hypothesis testing theory has been wiciely applied after 1960 to the
structure determination of system models by many investigators [Bl],[B2],
[C1],[GL],[M1],[¥2],[T1],[V1],[W2],[S13]. For example, Mehra [Ml] proposed
a method which tests the whiteness of the innovation process of an
enhancement of a méasured product-moment matrix, Woodside [W2] proposed
three procedures for noisy stationary linear systems. With the help of the
minimal realization theory given by Kalman [Kl], Tse and Weinert ([T1]
considered the problem of estimating the system structure of multivariate
stationary linear systems by using the innovation representation for the
output process. Sunshara, Ohsumi and the author [S513] derived av systematic
procedure to identify the system order for & class of nonstationary
continuous systems described by linear time-varying stochastic differential
equations.

Recently, several efforts have been made on the structure determination
that are somewhat different from the references mentioned above. Akaike
[ A2) ,[A3]. proposed the criterion function called AIC, which was based on the
concept of minimization of the distance between estimated distributions and
the true one measured by Kullback-Leibler Information, and the asymptotic
properties of AIC were intensively investigated by Shibata [S1]~[S3].
Although AIC is originally derived for linear stationary models such as AR,
MA, ARMA models, Kozin and Nakajima [K2], end Ozaki and Oda [O1]
respectively applied it to a class of nonstationary models and nonlinear
models. In order to removing the defect of over-fitting possibility of AIC,
Schwarz [S8] aﬁd Akaike [AD] proposed independently a modified criterion
function called BIC for the independently and identical distributed
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observation data, and further improved by Hannan and Quinn [Hl] so as to
over- and under-estimate the system order of AR models with & less
probability. Rissanen [Rl],[R2] proposed a new criterion function based on
the shortest ~date description concept and he showed that the eriterion
function could be derived withoutbassuming the linearity of system models
and that the identified system order is consistent when the system is
described by a AR or ARMA model. Evaluating the upper bound of the entropy
associated with estimation errors of both input noise and unknown parameters
in the system model, Sunahara and -the author [S14],[S515],[S16] proposed a
criterion function for the order determination of nonstationary nonlinear
models. They also showed that the identified system order is consistent for

a class of nonstationary nonlinear systems.

1.2 Problem Statement

Since many physical - data exhibit = nonstationarity and reflect
nonlinearities of real systems, the author considers the problem of modeling
nonstationary, nonlinear, and nonstationary  nonlinear systems.

In building mathematical models from one sample path of observation
data, there are three main problems to be solved, that is,

Problem 1: structure determination of a model

Problem 2: identification of unknown system parameters
and

Problem 3: investigation of the quality of estimators.

In this thesis, structure determination is tried to solve by using
Bayesian decision theory and information theoretic approach where
estimators of unknown parameters are obtained by using nonlinear filtering

technique, the moment method and - the maximum likelihood method, etc.



Asymptotic properties of estimators such as consistency and asymptotic
normality are investigated since it is almost impossible to research into

. their transient properties.

1.3 Summary of Contents

In this thesis, some classes of stochastic system modeling subjected to
random inputs are studied, i.e., (i) modeling of nonstationary systems, (ii)
modeling of nonlinear systems, and (iii) modeling of nonstationary noelinear
systems. |

Chapter 2 is devoted to mathematical prellmlnarles related ‘to the
theory of stochastlc processes which w111 be used in the succeeding
developments.

Based on the assumption that the system is iinear but nonstationary, a
method is presented in Chapter 3 for the nonstationary modeling frem noisy
data. The model with respect to the unknown system is specified by an n-th
order linear stochastic differential equation w1th t1me—vary1ng
ceefficients. The goal of thls chapter is to estimate the system ‘order n and
identify the time-varying coefficients. Decision rule for the system order
is established based on the notion of the multi-hypothesis testing and a
procedure to identify the unknown system order and unknown coefficients is
given within the framework of estimation theory. Asymptotic properties of
estimators are also investigated numerically.

On the other hand, Chapter 4 describes the modeling for stationary but
nonlinear systems. As a mathematical model, a class of nonlinear MA kmoving
average) models is proposed, where nonlinear terms in the system model are
described by a set of Hermite orthogonal functions. The proposed nonlinear

MA model is expected to be a good basic model in case of fitting the data



whose outstanding feature lies in its sporadically large values. A method
for identification of unknown system parameters is given by using the moment
method. Furthermore, the nonlinear MA model is extended to the nonlinear
ARMA (autoregressive moving average) model and a parameter identification
method is given by the modified extended Kalman filtering approach.

In Chapter 5, from practical viewpoints that most of all physical dats
exhibit both nonstationarity and nonlinearity, a method is presented for
modeling nonstationary nonlinear syétems. The system model proposed here is
a type of nonlinear time-varying difference equations. Assuming that the
nonlinear time-varying function in the system model can be expanded into
finite sets of known functions with unknown constant coefficients, unknown
coefficients are identified by using the maximum likelihood concept. The
structure determination problem for nonlinear nonstationary system is
considered in Chapter 6. The objective system is a single-input single-
output system described by a scalar nonlinear time-varying difference
equaﬁiop which is, in some sensé, a particular one in the class of models
proposed in Chapter 5. The key notion for the structure determination is to
minimize the upper bound of the estimstion error entropy associéted with
both input noise and unknown parameters.

The remainder is devoted to discussing a summary of results and some
suggestions for areas of further researches.

Throughout all chapters except Chapters 2, 3 and 7, asymptotic
properties of estimators are investigated from both theoretical and

numerical viewpoints.



CHAPTER 2  MATHEMATICAL PRELIMTNARY

2.1  Basic Definitions and Symbolic Conventions

Before presenting the key aspect of this thesis, several basic defini-
tions and symbolic conventions are presented.

Let R® denotes an n-dimensional Euclidean space. If x is an element
of R® (xeR®), then x' denotes the tranmspose of vector x. Similarly, if M
is a matrix, then M’ and det ¥ denote its transpose and determinant
respectively. As a rule, vector and matrix notations follow the usual
manner, that is, lower case letters a, b, ¢ - denote column vectors with

i-th components a., b., c. Capital letters A, B, C, -+ denote matrices

i i i vee

with (i, j)-th components a e bi 3 ¢y 3o respectively. The mathematical
expectation of & random variasble x is denoted by E{x} and its conditional
one conditioned with respect to C is denoted by E{x | C}.
The following background knowledges are important [L1], [L3].

(1) Stochastic process: A stochastic process {x(t.w)iteT.wefl}, x(tw)
€R" is a family of random variables and defined on a common probability
space ( 0, F.P), where ) is the sample space, ¥ some minimum ¢-~algebra, P
a probability measure defined on ¥ and w a generating point of #. For
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each t, x(t.w) is an F-measurasble function, and for each w, x(tw), tel
is called a sample function or realization of the process.

The stochastic process is said to be continuous if T is a comnected
subset of R1 and said to be discrete if T is a finite set from Rl, i.e.,
{tl.tz.-".tn}. In many applications, we shall think of {tl,tz,-".tn} as
being the points in time at which observations of the process are available,
For economy of deséfiﬁtion, weréﬁit to’write the symEolcu in the following
chapters because no confusion will result, and the discrete stochastic pro-
cess x(tk) (k=0,1,2,-) is usually described by x,. i.e., xk=x(tk).

(2) Stationary process: A stochastic process {x(t), teT} is said to be a
stationary if, for any {tl.tz.-",tn}, i.e., any finite subset of T, the
joint probability distribution of {x(t1+r),x(t2+r),7f,x(tn+r)} does not
depeﬁd upon 7.

(3) Wide-sense statiomary process: A process {x(t), t eT} is said to be
wide-sense stationary or weak stationary if

(a)- Ef{x(t)} =n (p: a finite constant)

v(b) the covariance matrix

P(t.s) QE{(x(£) - p)(x(s) - p)'}
exists, and

{¢) P(t,s) depends on only t-s.

(4) Independent sequemce: A discrete-time stochastic process is said to be
an independent sequence if for any set {tl.tz,-u.tN}c:I, the corresponding
random variables Xpe Xoo . Xy (xk=x(tk)) are independent, i.e.., the joint

distribution F can be factored as follows:

F(xl,xz,-",xN) = Fl(xl)Fz(x2)°"FN(xN).
where Fk(xk) is the marginal distribution function of x,. Further, if Fi»



FZ.'".FN are identical functions, then the sequence is said to be an in-
dependent and identically distributed (i.i.d.) sequence.
(5) Martingale: A stochastic process {Xt' t e T} is said to be a martingale

with respect to a sequence of g-algebras {5{: teTl} if

(a) {5{} is increasing,
(b) Eix | £} = x,.
() E{lx |} < e,

(d) Xg = E{xt | ?s'. s<t}.

1f the property (d) is replaced by

(e) x, S E{xt | ?’s s<t},

then {xt} is said to be a submartingale with respect to {3{} and if the

property (d) is replaced by

(£) x4 & E{x [ £, s<t},

. then {xt} is said to be a supermartingale with respect to {3%}.
For convenience of the present description, the principal symbols used

here are listed below:

t: time variable, particularly present time
k: the variable representing the present time step for a dis-
crete process
x(t), y(t): stochastic processes representing system states and
observations in continuous-time systems, respectively
Xpr Yyt stochastic processes representing system states and
observations in discrete-time systems, respectively

w(t), v(t): Brownian motion processes representing the system noise



Vk:

Do

A(t), B(t),
Ak' Bk’
x| :

hal:

Xp = X W.D. 1:

xk-¥ x in prob.:
law

- H

Xy X

x ~ N (%, %k):

I{+}:
9:

“and the observation noise, respectively

discrete white noise sequence representing the observation

noise

: unknown system parameters to be identified
: matrices whose components depend on time t

: matrices whose components depend on step k

the Euclidean norm of an n-dimensional vector defined by
I 2,172

Ilxl= (2 xi) =x'x (n: dimension of x)
i=] ‘

the matrix norm of a matrix A defined by
- vay11/2
Ial= [, (48)]

where 2 . {*) is the maximum eigenvalue of *

X
X) converges with probability one to x

X} converges in ﬁrobability to x

X) converges in law to x

the probsbility distribution of the random variable x is
Gaussian with mean * and the variance *x

characteristic function

parameter space such that 8 € OcR! where n is the dimen-

sion of @



2.2 Mathematicel Models for Dynamical Systems

The objective of this thesis is to model various kinds of systems re-
- flecting nonlinear or nonstationary features. With the help of Table 2.1,
mathematical models for dynamical systems are classified as follows:

Table 2.1 Features of Dynamical Models

a| ' Physical - Non-physical

b Deterministic Stochastic

c External Internal

d Continuous-time Discrete-time
e Time-invariant Time-variant

f| Linear Nonlinear

(a) Physical and non-physical models: If the structure of the mathe-
matical model is determined by considerations based on well-known physical
properties such as Newtonian mechanics, Kirchhoff's law, etc., the model is
said to be a physical model or a mechanical model. Alternatively, in the
case where regarding the underlying system as a black box, the system model
is obtained by fitting an adequate model to the real data, the obtained
"model is said to be a non-physical model.

(b) Deterministic and stochastic models: The system model is said to be
stochastic if the input process is random or there exists some randomness in
the system elements. Otherwise the system is said to be deterministic. It
should be noted that deterministic models are often inadequate to describe
real systems and we are naturally led to consider the system output as being
a realization of a stochastic process,

(c) Externgl and internal descriptions of system model: When the system is

represented by the input/output relation as

£(y(t), y(t), = ult), alt), =) =0

(y(t): output, u(t): input)



or
f(yk' yk_.l. '"Zuk. uk_lv '") = 0
(ykt output, uy* i§put).

then it is said that the system is represented by the external description.

Alternatively when the system is represented by the state space form as

dx

& - f(x.u,t,xd) (x0= initial state)
or
xk+1,=vf(xk,uk.k,xo) , (x0= initial state)

yk = g(xk. uk' k)'

then, the system is represented by the internal description. It should be
noted that the internal description is convertgd uniquely to the external
description, whereas the inverse is not true, and this fact causes the
difficulty of finding unique estimators in the internal model.

(d) Continuous-time and discrete~time models: If the time variable is a
set of real numbers, then the. system model is said to be a continuous-time
model. Otherwise, if the variable is a set of discontinuous numbers, the
model is said to be discrete. In case of discrete models, the time-variable
is considered as a set of integers without loss of generality.

(e) Time-imvariant and time-variant models: The system model whose all
system parameters are time-independent is said to be time-invariant, whereas
it is said to be time-variant when the several system parameters vary with
time evolution. Time-invariant model is often said to be a stationary
model.



(f) Linear and mnonlinear models: When system parameters are independent
of the input, output and their derivations, the system model is said to be
linear. Alternatively when there exist paraweters which depend on the input,

output or their derivative, the model is said to be nonlinear.
The classification of various kinds of models is depicted in Fig. 2.1.
In this thesis, the author deals with models which are classified as
non-physical stochastic models, especially time-variant or nonlinear and

further time-variant nonlinear ones.

[ Dynamicsl Model |

[ Stochastic Model | [ Deterministic Model |

[ Continuous-time Model | | Discnb.e-tim Yodel |

I Linear BodelJ [ Nonlinear Model ] I Linear Hodel1 I Nonlinear Model ]

e

Time-in- Time- Time-in- Time- Time-in- Time~ Time-in- Time-
variant variant variant variant variant variant variant variant
¥odel Hodel Model Hodel Nodel ¥odel Model Nodel

Fig. 2.1 Classification of various kinds of dynamical models
where the classification for deterministic models
is omitted because of economy of space



2.3 Methods for Parameter Identification

Let YN be a collection of the output process.yk (k=0,1,2, -,N), i.e.,
YNé {YO'yl' ---.yN}. The realization of Yy is called the observation data or
simply the data. With the preassigned model structure, unknown system pa-
rameters must be identified by using a single record of the observation data
YN. Let é be the vector representing unknown parameters, then the estimator
E(YN) is defined as a function of YN. For a given data (a realization of
of YN). 5(YN) is called an estimate. In the followings, a(YN) is usually
abbreviated as EN' Commonly used estimators are as follows [Gl].
RN

[Definition 2.1] Given a function f=RN><Rn - , then a least squares

estimator éN is defined by

(2:1)  BE(tg ) g s TET 68 1

for any other functionm 6§=8*(YN) where ||xllQ=x’Qx with a matrix Q> 0.

Since the least squares estimator minimizes the weighted sum of squares
of vector f(YN,O), the least squares approach is independent of any under-
lying probabilistic description of the data-generating mechanism.
[Definition 2.2] Given & parametric family of {p(+ |8); 6 ¢ 8cR"} of
probability density functions on the same sample space {), then the maximum

likelihood estimator (M.L.E.) 6: Q - © is defined by
2 *
(2.2) p(Yyldy) = p(Yylef)

where Gﬁ is any other function.

The function p(YNI + ) is said to be the likelihood function. The heu-
ristic justification of maximum likelihood estimators is that the like-
lihood function can be interpreted as giving a measure of the plausibility

of the data under different parameters. Thus, the maximum likelihood esti-



mator 5N is the value of 6 which makes the data most plausible as measured
by the likelihood function.
[Definition 2.3] A maximum a posteriori estimator is the mode of the
a posteriori probability density function p(aN IYN).
Since the a posteriori probébility density function p(8 IYN) can be

represented by

p(6 | Y = ‘5‘5‘3})77 p(3y 1 0),

the maximum a posteriori estimator coincides with the maximum likelihood
estimator, provided that a priori distribution of 8 is uniform.
Let statistical moments of the stationary output process {yk} be

defined by

2y, 24 Qp
(2.3)  ¢(05.00 0.8 Elyy vy g vi2p)

and assume that the unknown system parameter 9 is represented by a function
of statistical moments of the output process.
[Definition 2.4] The estimator by the moment method is given as a function
‘of estimators of ¢(20.21.-",2p).
The estimator of ¢(20.21,°".Qp) is usually given by
N 2, ¢ [}
" = 1 0,1 .. ,pP
(2.4) ¢N(20'21’ 'Qp) = N‘_—p' l§:=pyk yk-l yk-p'

Estimators defined above are ususlly used to identify the unknown
parameters in the model of external description. The representative method
for identifying unknown parameters in the state space model (internal de-
scription) is to augment state vectors by unknown parameters and one of

approximated nonlinear filtering techniques is utilized.



Clearly we would like to get "good” estimate of the unknown parameter
é; Hence the meaning of the "good”'estiﬁate has to be exactly defined.
Properties that are commonly used to describe estimators are defined below.
However, it should be noted that holding one or more of these properties does
not necessarily imply that the estimator is "best” for the given purpbse.
[Definition 2.5] An estimator BN for é is said to be unbiased if 5N has

the expected value 8, i.e.,

(2.5) E{by} = 9.

[Definition 2.6] 4n estimator’aN for 6 is said to be a uniformly minimum

mean square if
(2.6)  E{(By - 0)(By - 6)'} = E{(6f - 6)(6y - 6)'}

for all é in the parameter space € and evefy other estimator 0§.
4[Definition 2.7]  An estimator 6N is said to be a minimum variance unbiased
estimator if it has the minimum mean square error‘uniformly in 6 among the
class of unbiased estimator.

[Definition 2.8] An unbiased estimator is seid to be efficient if its co-
variance is equal to the Cramér-Rao lower bound, where the Cramér—Rao‘lower

bound is given by the inverse of Fisher's information matrix defined by

dlog p(Yy 1), 9log pliyl0)

(2.7) M(8)& E{( =8 | 50

Asymptotic versions of definitions 2.5 to 2.8 are also given, i.e.,
asymptotically unbiased estimator, asymptotically minimum variance esti~

mator, etc.



2.4 Stochastic Convergence

In order to investigate theoretically asymptotic properties of esti-

. mators described in the previous section, the stochastic convergence concept
should be investigate in some detail as the mathematical base [L1], [L3].

A stochastic process {xk} is:a sequence of functions xk=xkﬁu) k=1, 2, .
Hence in order to define the convergence of stochastic processes, the exist-
ence of probability measure must be taken into account. Commonly used con-—
cepts of stochastic convergence are given as follows.

[Definition 2.9] The stochastic process {xk} is said to converge to x’with

probability one (w.p. 1) if

(2.8) P{&i_._;nooxk = x} = 1.

[Definition 2.10] The stochastic process {xk} is said to converge to x in

probasbility if for any €>0

(2.9) ii_lrlmP{ka—xl> e} = 0.

[Definition 2.11] A sequence of random variables {xk} is said to converge
in the r-th mean to x if all Xy and x have finite moments of order r>0 and
if

(2.10)  lim E{lx - x17} =0

In case of r=2, the convergence is usually said to be the convergence
in the quadratic mean.

It should be noted that if the estimator EN of 8 converges to its true
value as N— o with probability one or in probability, 5N is said to be a
strong consistent estimator or a weak consistent estimator respectively.

The remaining commonly used concept of stochastic convergence is the



weak convergence of distribution functions, where "weak” means that a se-
quence of distribution functions converges to a limiting function at all
continuity points.
[Definition 2.12] If the sequence of distribution functions {Fk} of {xk}
converges to F at coﬁtinuity points, {xk} is said to converge in law to a
random variable x whose distribution function is given by F.

The mutual relation between concepts of stochastic convergence defined

in this section is shown in Fig. 2.2.

convergence
in s-th mean
convergence
\I/ rss w.p.1

convergence
in r-th mean

convergence

in prob.

convergence

in law

Fig. 2.2 The relation between
concepts of stochastic
convergence



2.5 Convergence of Martingales and Dependent Random Variables

In the remainder of this chapter, theorems of law of large numbers for
martingales and central limit theorems for both martingales and dependent
random variables are presented, which play a key role in the analysis of
properties of estimaﬁors prc;posed in this thesis.

[Theorem 2.1] Let {xk} be a scalar martingale with respect to {?1;} such
that E{xlzt} <o for all k. Then, there exists a random varisble x having

the bounded variance such that
(2.11) X ~ X ‘w.p. 1 as N = oo,

(Proof) See e.g. [N1], [R3]. _
[Theorem 2.2] (Khazminskii) [K6] Assume that {x,} is a scalar martingale

with respect to { 91;} and suppose that E{xlzc} =ck. Then,

*x
(2.12) " 0 w.p. 1 as k - oo,

[Theorem 2.3] (Brown) [B2] For the martingale {xk. .71;} (k=1,2, +) with

x0=0. assume that

2| 7l

‘ k
(2.13) Xké (Z E{(XJ - xj‘l i-1

=1

and
(2.14) wa (E(EH/Z,

Let further following conditions hold:

2
X

(2.15) ——2—k -1 in prob. as k - o
™



and for any s>0.v

k
1 _ 2 _ -
(2.16) —;i%‘_ ‘%_.IE{(XJ- Xj-l) I{ | Xj xj"l I > euk}} 0
in prob. as k - oo,
Then,
X
uk Haw X as k = o,
k
where
x ~ N(0,1).

[Theorem 2.4] (Rosen) [R4] Consider the sum of doubly indexed random

variables {xka} such that

N
(2.17) x¢ = 2 %

N & TkN
(2.18) Efxy y} =0

2y
(2.19) E{XN} =1,

where {XIYN'XZ,N' “.'ngN} and {xqu,xkﬂva '"'xn.N} ‘are independent for

k-s>y. Assume that the following two conditions hold:
. N 2
(2.20) lﬁn_l’s';gp %_,OE{kaN} < oo
. N 2
(2.21) Jim_ kzo fi o 1> %, | 2P(x, ) = 0 for every e>0.

Then the distribution function of Xy converges to N{0,1).



CBAPTER 3 MODELING FOR NONSTATIONARY LINEAR SYSTEKS

3.1 Introductory Remarks

It is often observed that the random data obtained from real systems
exhibit more or less the nonstationarity, i.e., the mean value, the variance
or the covariance of the observed data shows time dependence. Hence in
order to treat the data mentioned above, one has to use an appropriate class
o.f nonstationary models, in which time-varying system parameters are
included. 1In. fhis chapter, the author proposes a method of the system
modeling for a class of nonstationary linear systems from noisy observation
data, where the determination problem of system order is also investigated.

The underlying system is assumed to be adequately modeled by & linear
stochastic differential equation of Ito-type with unknown time-varying
coefficients as described in Section 3.2. Furthermore, since the output
data available to the system modeling is usually corrupted by random noise,
the model of the observation mechanism is also given by a stochastic differ-
ential equation as well as the system dynamics. To formulate the order

determination problem within the framework of Bayesian decision theory,



necessary hypotheses are set in Section 3.3, and the likelihood-ratio
function associated with the multiple-decision theoretic approach for the
order determination is given in Section 3.4. Augmenting state variables of
the system model by unknown system parameters, the identification problem is
formulated as the nonlinear filtering problem and this is described in

Section 3.5. Simulation results are presented in Section 3.6.



3.2 Nonstationary Linear System Hodels

It is of interest to consider whether a sample path of the stochastic
system has a well-defined representation as the solution to the n-dimen-

sional stochastic differential equation of the form,

(3.1) dx(t) = A(t)x(t)dt + G(t)dw(t), x(0) = Xy

where A(t), G(t) are respectively nxXn and nXp matrices and w(t) is the p-
dimensional standard Brownian motion process. We have a continuous record
of a realization of the m-dimensional observation process y(t) through the

dynamics represented by
(3.2) dy(t) = H(t)x(t)dt + R(t)dv(t), y(0) = 0

where H(t), R(t) are respectively mXn and mX q matrices: and v(t) is the q-
dimensional standard Brownian motion process independent of w(t). We refer
to such a set of systems defined by (3.1) and (3.2) as the system :EO'

In the system }50. if we set

(3.3)  Alt) ,

—an(t) -an_l(t) e —az(t) -al(t)

then the mathematical model (3.1) expresses a time-variant linear system
whose output is determined by a solution process of the n-~th order linear
differential equation excited by an appropriate number of white Gaussian

random processes.



The system 20 given by (3.1) and (3.2) may not be completely known.
For instance, the system model given above is specified by the set of un-
known parameters al(t). ---.an(t) which are assumed to be time-variant. In
addition, if we have omly the observation data {y(t), 0=t= T}, it is
natural to consider that the system order n is unknown.

We set the matrix H(t) as

hl(t) .
(3.4a) H(t) = 0 0 nm  if nZm
by(®) |
- WV / —y
m n-m
hl(t)
._.‘. 0
o
(3.4b) H(t) = 0 - if n<m.
*h (t)
m
m-n
| 0 }

The mX q matrix R(t) is known and nXp matrix G(t) has the structure

0 W}n-p
(3.58) G(t) = | Bptt)
.. 0 P if n2p
0 .
L N gl(t)
P
: gp(t)
: 0
(3.5b) G(t) = 0 : 0" n if n<p.
; o gl(t)
\..V._/ AN ~ J
p-n n



In (3.4) and (3.5) the components {hi(t'): i=1, +»»,m} and {gi(t): i=1, e, p}
are assumed to be known a priori for fixed m and p, while {ai(t): i=1, *,n}
of the matrix A(t) are unknown but they are of the form

k-1

N
_ 1 - ves
(36) ai(t) = %:1-(-1(—_-1—)-? aikt ’ i=1,2,°,n

where N is the fixed integer and coefficients {aik} are unknown constants,

When we model the time-variant system, the assumption expressed by (3.6) is
often used in the literature, see e.g. [G3]. Then, our objectives for the
modeling of dynamical systems are twofold: (i) determination of the system
order n, and (ii) identification of unknown parameters, based on the obser-

vation data Ygé {y(t); 0stsT}.

._27..



3.3 Basic Hypotheses

Guided by the decision making concept, the following hypothesis Hj (3=

1,2, . k) is set:

Hjt hypothesis that the order of the system (3.1) is j, i.e., n=j.

Then, with the hypothesis Hj' the system model }E(j) is given by

[ e D) = s PP eree + D wane). o) x§ )
XIS ASL
dy(t) = H(j)(t)x<j><t)dt + R(t)dv(e), y(0) = 0,

where x(J)(t) is the j-dimensional state vector: and matrices A(J)(t),

H(J)(t) and G(J)(t) are respectively jX j, mX j and jXp matrices given by

0 1
.l.. .... 0 .‘
| (3)
(3.8) A ’ () = ,
0 . ... .'.
0 1
—agj)(t) —agéi(t) ...... —a(J>(t)
hl(t) :
. ‘ 0 :
(3.9a) H(J)(t) = P00 m if j2m
0 :
hm(t) .
A v J \ - )
m Jm
hl(t) ]
0
(3.9b) HI(e) = 0 if j<m
h.(t)
0 } n-j
J



' 1
0 }-j"p
(3) gp(t) 0 .
(3.10a) 6V () = P if j=p
----- p
.
gl(t)
P
ggj(t)
. : .., 0
3.100) ¢ Fey=| o i " i if j<p.
(.
: gl(t)
HFTJ A V. d
p-3 3

(3)

Time-varying parameters {81 (t); i=1,2,-+, 3} in (3.8) are given by

. N . :
(3.11)  o{F(e) = EQITE%TTT_agﬂ)tk_I, i=1,2, = J.

Let z(j)(t) be a new (j+jN)-dimensional vector defined by

Z§J>(t)é ng)(t) for i=1,2,+,]j
z(j)(t) é | zr:q —1—"'_ a(j)tk+j-i for i=j+1v A j+N
i kei-j(k+3-1)1 1k
Dya s 1 (ke
i =i-( 3+N) (k+3+N-i)1 2k
(3.12) p . k 1 (J+N)
* for i=j+N+1, .-, j+2N
(3) 4 1 () K+ 3+ (5-1)8-i
z,~'(t) & — - e
1 Ezi—{j+(j-1)N}{k+J+(J-1)N—1}! ® ik
‘ for i=j+(J-1)N, +, j*+iN

With z§j)(t) defined by (3.12), the system model Z(j) is represented by



dz§j)(t) = Zgli{(t)dt * Bjojap(t)duyle) for i=1,2, - 31
(Die) = - 5 g) (3)
de (t) = §12j+(1_1)N+1(t)zi (t)dt + gl(t)dwj(t)
(3.13a) 1
az{I(e) = 2{3)(e)ae for i=jt+1, j+2, =, J+3N
except for i=j+N, j*2N, -+, j+iN
dz§j)(t) =0 for i=j+N, j+2N, -, j+jN

(3.13b) dyi(t) = hi(t)zgj)(t)dt + Zcf] rik(t)dvk(t) for i=1,2, . m

where if j>p, then gi(t)=0 (i=p+1, +, j) and if j<m, hj(t)=0 (i=3+1, >, m).

Furthermore, (3.13) can be rewritten in a vector form as

(423 (e) = FI2 ()220 (¢) + I (e)au(e),

L3 (g) = 2P
(3.14) $3)

L dy(e) = ¥ ()20 (e) + R(Oav(e),  y(0) = 0
where F(j)[z(j)(t)]. C(j)(t) and M(j>(t) are respectively (j+3jN) x (j+3jN)-,

(j+3N) x p- and mX (j+jN)~dimendional matrices whose structures are given in

Appendix 3.A.



3.4 Order Determination of Nonstationary Linear Models

3.4.1 Radon-Nikodym Derivative and Likelihood-Ratio Function

In this section, a method for order determination is presented by adopt-
ing the multiple alternative hypothesis testing [S4], [V2]. Based on the
system model i(j). the hypothesis Hj is

(3.15)  Hy: dy(e) = M ()20 (e)de + RE)av(E),  y(0) = 0

where j=1,2,-,K; and z(j)(t) is the solution process of (3.13a). Our
method is to accept ome of hypotheses {Hj: J=1,2,++,K}. To fix the idea,

introduce the process {;(t)} defined by
(3.16)  Hy: dy(t)e R(t)av(e),  3(0) = 0

and consider the likelihood-ratio function

- (Yt | H.}
(3.17) 2y = 201 H5 (351, 2, . K)

~t ’
p{Y0 | Hot

where

Ygé {y(s); 0 s s s ¢}

?‘5e {y(s)i 0 s s = t}.

Let Pj and Po be the measures induced respectively in the space of con-
tinuous functions by the observation YE under Hj and ?0.
[Lemma 3.1] The measure Pj is absolutely continuous with respect to the
measure PO’ i.e., pj<<P0' and the Radon-Nikodym derivative of Pj with re-

spect to PO is given by



dP. t g R _
(3.18) alr; - 'exp{j; 203 @ 1)1 9 (01 ReOR ()} Lay(e)

-3 fnn‘J e o) 1 de)re (o)1 dth

where
(5.19) 2P er10e B0 145 g

The proof of Lemma 3.1 is straightforward by using results of [S5],
[K3] and [K6].

Defining the vector &' (t | t) and the matrix H_(t) by
(3.200 §9¢ive Ko - eror
= [;§j>(t e) oo Eéj)(t )]
and
(3.21) K (t)& dieg.[h)(t) hy(t) =+ b (t)]

m

respectively, where if j<m, hj(t)=0 for i=j+1, -, m and noting the structure

of (A.3a), we can rewrite (3.18) as

dP. t ./
(3.22) api = exp {j; [E(J)(t It>]’Hm(t){R(t)R‘(t)}'ldy(t)

"'2— f | H J)(t | t) " {R(£)R'( )}'1 dt}.

Recalling the relation between Radon-Nikodym derivative and the likelihood-

ratio function [K3],



aP; plYg I H;)

(3.23)  apd = — = 243y, (3=1,2, . K)
o " piTl | oy} ’

we have

. t ./ -
3.20) 29(0) = exp {j; (83)(s 19)17H () {R(s)R" ()} "Lay(s)

t o
A ALRCEEUCI DT RS

An application of the Itd-stochastic calculus to {3.24) gives that the
likelihood-ratio function A(j)(t) satisfies the following stochastic differ-

ential equation:

at' () = 1) E P e 1 )T B (£)ROR (£)}ay(e)
(3.25) _
21990 =1, =12,k

3.4.2 Decision Making

Consider the following average risk E:

(3.26) =3 > . .1>[H.]_fp{YTIH.}dYI
21 F H g 70T

where cij is the cost associated with choosing hypothesis Hi when the hy-

pothesis Hj is true: P[Hj] is the a priori probability of Hj: end S; is the

family of Yg where Hi is acceptable, Without loss of generality, let the

costs {ci 3 i, 3=1,2,,K} be cij=1 for i# j and cij=0 for i=j. Then (3.26)

3

can be represented by



- X
T T, T T
(3.27) C-= E; P[H, ]{}P1P{Y | 15}y j;ifiYo | H5}dY,

T T, T T
: J;~piY° | HHdYg + v s J;Kp{Yo | H j}av])
1+

"
e
n M?ﬁ
—

T T
P[Hj]j;_s-p{Yo IHj}dYO.
J

where S is the direct sum of S; (i=1,+~,K), i.e., SASIG +®Sy and
}ép{Y% IHj}dY5=1 has been used. Rewriting as

T = T T T T
(3.28) C= P[Hj]J;_S'p{YO | Hjhdyg P[Hi]J;_S piYy | Hy}dYj

1

+
o &Mm

L1 [ p1YG | Bhavg,
#1,] Q

we have

(3.29) C-= J; [PCH, Jp{¥G | B} - PLH,Ip{¥] | B }dvg
j
T T
+PlHg) + pLa [ p{Yg Iy haYg
1 77
K
+ 3 PlH,1 [ plvp | HyHaYD,

2=
e+1,]

In (3.29), if S—SiGS 3 is determined to be fixed, then terms except the
first one are considered to be constants. Then it can be seen that the

average risk C given by (3.27) is minimized by choosing Sj which satisfies



(3.30)  PLH;lp{Y] | H;} > P[H,Ip{Y] | B}

for all i=1,2,--,K except for j=i, Then we have a statement of the decision
making stated as follows: Accept Hj if the inequality (3.30) holds for i=1,2,
«,K (i# j); and reject Hj if otherwise.
We simply assume that the a priori probabilities are uniform, i.e..
P[H J=P[H,J=-~=P[H,J. Hence. invoking the likelihood-ratio function 4‘3(t)
defined by (3.17), we have the following decision rule for system order de-
termination, based on the observed data Y:g:{y(t). 0<tsT}.
[Decision Rule 3.1] Decide that order of the system (3.1) is j which gives
the maximum value of the likelihood-ratio function A(j)(T) for j=1,2,--,K.
From (3.24) or (3.25) we see that, in order to compute likelihood-ratio
function A(j)(t), it is necessary to compute g(j)(t It)=[§§j) “ae ;;j)]'.
In other words, the computation of A(j)(t) requires the state estimation of
the system }:(j)‘ In the foliowing section, the method of parameter identi-

fication together with the state estimation is developed.



3.5 Parameter ldentification

Under the hypothesis I-I:j {j=1,2,+,K), unknown parameters {a§j)(t), i=1,
2,+, j} contained in the system model {3.7) are identified from the obser-
vation data Yg. The system model i(*ﬂ defined by (3.14) is used as the
basic equation for parameter identification.

Although we are free to choose the type of appropriate filter, ﬁe use
here the well known truncated second-order filter [J1]. For Si(j), the

resulting filter equation is

£ e

2o = PP @10 « L 37
1471 1,=1

Xngi (e 1e)3dt + P9 e 1oy 1)1
1°2

x {R(R" (£)} Hay(e) - ¥83(0)2(3) (¢ | )ae),

(3) AN . .
dp*J ét lt) . B(J)[Z(J)(t It)]P(J)(t lt) + P(J)(t | +)

x Bz 107y + Dy e

- P o ()] Re)R (£)) 71

. xu I @p e o), P01 0) = D,

where P(j)(tl't)écmv.{z(j)(t) IYS. Hj}: the vector e 5 eRj+jN is defined
172
by



() a0 o 0 <11 0 )
L4l o S
J J
: . for i =j+(i -1)N+1
(3.32) 4 ) 5 o(d) 2 1
1l 1,
®i,i,8 0 for in# j+(i-1)N+1

and B(j)[;(j)(t I t)] is the (j+jN) X (j+3jN) matrix whose structure is also

given in Appendix 3. A.



3.6 Digitsl Simulaetion Studies

Example 3.1 First the author considers the simplest case, that is, the

observation data Y(T)={y(t). 0=t=T} is determined by

(3.33) dy(t) = hxl(t)dt + rdv(t), y(0) =0

where h and r are constants. The true system output xl(t) is assumed to be
a component of the solution process of the following two-dimensional linear

system modeled by

xl(t) ] 0 1 0
d (e) = dt + du(t)
Xo(t -a -a g
(3.34) 3 2 2 1
xl(o) _ xlo
x9(0) %20

With the help of Fig. 3.1, the procedure to modeling (3.34) is per-
formed by the following steps:
(1) Collection of observation daets. Obtain the observation data up to the
preassigned time T, Yg={y(t), 0stsT}, from the actual physical system at
hand. In digital simulation studies, the observation data is obtained by
simulating (3.33) and (3.34) on a digital computer. A typical sample run of
the observation process y(t) is depicted in Fig. 3.2. »
(2) Assignment of hypotheses and parameter identification. Assign K hy-
potheses Hj (j=1,2,++,K). With the hypothesis Hj’ write the system model

}E(j) by (3.7). The system Eﬁ(j) is written by



[ x§j)(t) [ o . 1., [ 0
xg? () 0
d : - 0 * du(t)
: "0 "1 0
B3 e || e -l el | e
x{P0) = =0 = < - 2P
dy(e) = hx{d(t)de + ravie),  y(0) = 0.

In (3.35), we assume that unknown parameters {a§‘j). i=1,2, -, j} are con-
stants. Since we are free to choose the number of hypotheses K, K is fixed
as K=5 in simulation experiments,

(3) Computation of likelihood-vratio function. Using the observed data YT.

solve the filtering equation (3.31), and compute the likelihood-ratio

function 4¢3 (¢) by (3.24) or (3.25) for j=1.2, K.

For the system model Z(j) described by (3.35), define the vectof

z(j)(t) by

zgj)(t)é xﬁj)(t) for i=1,2, -, j
(3.36) _ . |

i) a am for i=j+1, j+2, =+, 25,

Then the system E(J) can be written by

[ dZ(J)(t) = F(j)[z(‘])(t)]z(j)(t)dt + C(J)dW(t)

(3) - (3
(3.37) | 27(0) =z

_ dy(t) = m(j)z(j)(t) + rdv(t), y(0) =0



where

(3.38a)

(3.38b)

(8. 38¢c)

For the nonlinear system 2:(J '

by

(3.39)

0.. 1.. E N
, 0 g
;0 s
F(J)[z(‘]>(t)] = 0 0 ".1
-zég)(t) —zgf%(t) §
0 oo i} j
N — l:;_v__J
J J
'C(j) = (0 0 g:0 - 0)° {2j-dim. vector)
—_—
J J
m(j) =(h 0 0)’ (2j-dim. vector).

j)

(3) 1
xpilizjdt * 2 P

<

2
[ Do) = FOEE @ 0D e - 1 >

(3) Y= (4
dp'J (e Le) - (I3 (d)

94

the truncated second-order filter is given

old)
i=1 i,=1 Sipl,
(4 ) (tlt [ ] {dy(t) - m(j)i(j)(t | £)dt}
239001 0) = 2{9
(TR e e + PO o)
« (D (e 0y Dy - - Ly P9 ont Ity
P30 0) = pYY



where

0 1
' 0
0
0 )
. 2 ~ 3
(3.408) B3¢ e)1= 0 1
(3) (3 .. (3) (3 ... (3
By By bj b3+1 Boy |
o T
N - \_ v ) d
J 3
(3. 40b) o7 = 2w for 1=1, 2,3
' pld) = ,(3) for i=1,2, -, j
J+1 1 * i3
efd) = (Q e 010w 0)  for ip=i+i
1211 —— — \_V___/ 2 1
(3. 40¢) egj? = j 3
' 1131
0 for izra& j+i1

Using the running estimate E(j)(t | t) obtained by solving (3.39), the like-

lihood-ratio function A(j)(t) is determined by

3.41) @) = B gD jvaye). 190 =1,
r

In simulation experiments, the simple Eular method was used. The increment
of time was set as dt=1x10"%: the true values of 8; and a, were set as g;=
0.8, a2=0.06: and parameters h, r, and g were h=l, r=0.5 and g=0.1 or 0.01.
A set of initial values were as follows: X10=3, Xgq=-0.6; (J)-—O 2 (i=1,2,
“,23): (f)O-S p(J) =1 (i=1,2,+~,23j); and p(J) =0 (i, 3=1,2, ., 23:i# 3).

ii, 0



Figure 3.3 shows values A(j>(T) for two different observation intervals T=
1.5 and 2.0.
(4) Determination of system order. As the order of the system, accept j
for which the likelihood-ratio function A(j)(I) takes its maximum value, and
hence determine the unknown order n to be j. Adopt. then ;(j>(t | t) as
estimates of states and unknown parameters of the system model.

From Figs. 3.3(a) and 3.3(b). we can conclude that the likelihood-ratio
function A(Z)(T) takes the maximum value for both T=1.5 and 2.0, and that
*iz)

the hypothesis H, may be accepted, Sample runs of a;“/(t | t) and QQZ)(t | t)

are given in Fig. 3.4, where dashed lines show true values of a4 and a,.

~(2) (2)

Running estimates of x, (t]t) and Xy (t | t) are alsoc plotted in Fig. 3. 5.



Obtain Data
Yg={y(t). 0stsT}
¥
Assign Hypothesis Hj

with regard to System
Order (j=1,2.+-,K)

J* i+l

N

Parameter Identification and
State Estimation under Hj

N\
Calculation of Likelihood-
Ratio Function A(j)(T)

j=zK

No
Yes

Evaluate
m;x A(j)(T)

v
Accept Hj which gives

max A(j)(T)

v

Decide that the System
Order is j

v

Accept ;(j)(II T) as Estimates
of Unknown Parameters

Fig. 3.1 Schematic illustration of system order
determination and parameter identification
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Fig. 3.3 System order test for two different values of
system noise parameter (Example 3.1)
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and aéj) (g=0.1, Example 3.1)

47 True Run of 1 Run of #t?

2q.
—— A . yAl]
= e
I RTrue Run of 1
B Run of - £

Fig. 3.5 Running estimates of x§2> and x§2) (g=0.1, Example 3.1)



Example 3.2

is given by

xl(t)

(3.42) X A

where az(t) is the time-varying unknown parameter given by

(8.43)

whereas another unknown parameter a; is a constant.

-8

(x1(0) x2<0))' = <X10 xzo)'

ag(t) = ay; + agy t

| dy(t) = hxl(t)dt + rdv(t),

y(0) = 0

(321, 855" unknown constants)

model }E(j) with the hypothesis Hj is given by

X

—
Q.

3.40) 9 1 |x

[ (j)<t)l

~

(t)

0. 1
0
J)(t) -a

(x{Fc0) - x{Y

where agj)(t) is given by

(3.45)

dy{t) = hx§3)(t)dt + rdv(t),

de +

Then the system

O esevesrcee O

—

A slightly complex system is examined where unknown system 2

dw(t)



while other unknown parameters {a§j) vee agéz

Hence by defining the state vector z(J)(t) as

} are assumed to be constants.

%3 (e) ' for i=1,2, -, j
) agé} for i=j+1, -+, 2j-1
(3.48) z{P(v)a ]
agf) + agg) t for i=2j
‘ agg) for i=23+1.

the system }E(J) can be written by the same form as given by (3.37) except

for the structure of F(j)[z(j>(t)] given by

0. 1, \
- 0
0 0 v J
() (3) oo
(3.47) F V[ (e)] = | . Lo
—z{3) U o ) PR
sz (t) ZJ+1(t) ,J
0 0.
. ..... .t 0
: BN L
: 0 . 1
— N 014/
J J+1

The truncated second-order filter and the likelihood-ratio function are also
given by same forms as (3.39) and (3.41) respectively except for



0 1, ]
.0
0 0 > J
0 1
(3.48) B(J)[Z(J)(t | £)] = b§J) b;J) . ng) Ebgi% . bég) 0 )
S 0.0
: OIS 0
0 3 e
: o - -
.. 0
. ) 0 1/
3 31

The same procedure as stated in Example 3.1 was used to identify the
system order n and unknown parameters in the model (3.42). 1In simulation
studies, Runge-Kutta method was used for solving the filter equation (3. 39)
with the time increment dt=0.001: True values of 84+ 89p and 8y, Were set
as a1=1. 821=0.4 and a22=0.2: the system parameter g was set as 2: initial
values of x(t) and ;(j)(t | t) were set as x(0)=(0 0)' and 2§8)=0 for i=
1,+,23-1 and ;§8)=—0.2 for i=2j and 2j+1: the number of hypotheses was set
as K=4: and other situations were set as the same in Example 3.1. A sample
run of the observation process y(t) is depicted in Fig. 3.6 and Fig. 3.7

shows values of A(j)(I) at T=20. From Fig. 3.7, we can conclude that the

likelihood-ratio function A(z)(I) takes the maximum value at T=20 and hence

the Hypothesis H, may be accepted. Sample runs of ;§2)(t | t), ggf)(t | t)
and ;ég)(t | £) are given in Fig. 3.8.

From results of Examples 3.1 and 3.2, we may fairly say that the param—
eter identification is well achieved as well as the determination of the

system order.
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8.7 Discussions

In this chapter, a method of system modeling has been presented for a
class of nonstationary linear systems. The key assumption is that unknown
time-varying parameters in the system are well approximated by polynomials
with respect to time, where coefficients of polynomials are unknown con-
stants.

Regarding unknown system parameters as augmented state variables, the
nonlinear filtering technique has been applied to identify unknown param-
eters. Based on the likelihood-ratio function derived from the multi-
hypothesis testing theory, the unknown system order has been also

determined.



Appendix 3.A Structural Scope of Mstrices

The matrices F(j)[z<j)(t)], C(j)(t) and M(j)(t) have the following

structures:

.
e,
.

_{3) N
Z3+(5-1)N+1 z

F(j)[z(j)(t)] =

J+1:

(j):

AN

r N

(A.2a)

N

:\,.__/

if jep



gj(t) .
0
. 0 : 3
(a.20) ey = : 0 if j<p:
: gy (t)
0 0 }’jN
L . /.
p-J 3
hl(t)
, 0 .
(a.30) 1 3) = P m  if jZm
“hp(e)
— 4 vV
m j+jN-m
h (t) :
1 :
0 :
. : 0 J
(a.30) N () = 0 : if j<m.
h.(t) :
J
0 0 }m—j
— — J ‘\——v——/
3 N

Furthermore, the matrix B(j)[z(j)(t)] in (3.31) is given by



(a.4) I

() 1(3) (Vi) g b ()
by bpd! e BB 0 0; ng. 0« 0

where bgj)=_;

j+

(3)

(

o 3
[
=

(3

i-1)N+1(t | £) and b;j+2=';§‘]>(t | t) for i=1,2, -, j.

¢ JN




CHAPTER 4  PARAMETER IDENTIFICATION OF STATIONARY NONLINEAR MA SYSTEXS

4.1 Introductory Remarks

In this chapter, a class of nonlinear moving average (MA) models is
proposed which 1is expected to be a basic model when the observed data
exhibits sporadic large values. Unknown parameters in the nonlinear MA
model is identified by using the moment method. Furthermore, the basic
nonlinear MA model is extended to the nonlinear ARMA model by adding linear
AR terms to the original nonlinear MA model.

In Section 4.2, a class of nonlinear MA models is proposed whose
nonlinear terms is described by a set of Hermite polynomials. The esti-
mation procedure of unknown model parameters is discussed in Section 4.3,
and asymptotic properties of estimators are investigated in Section 4.4.
In Section 4.5, the nonlinear MA model given in Section 4.2 is extended to
the nonlinear ARMA model, where linear AR terms are added to the original
nonlinear MA model. Finally, in Section 4.6, salient features of proposed
nonlinear MA, nonlinear ARMA models and estimators of unknown parsmeters are

discussed from numerical viewpoints.



4.2 Nonlinear Moving Average (MA) Models
Let {yk:k=1,2.'",N} be the discretely observable scalar stochastic

process, and consider the following nonlinear model described by
- 2 .2
(4.1) Y T Vgt alﬁl(vk—l'a y o+ aZHZ(vk-l'a ),

where the function Hl(- , +) and HZ(- , *+ ) are Hermite polynomials in the

forms of

2y _ Vk-1
(4.23) Hl(Vk_lvO' ) - a
2
2y _ k-1
(4‘2b) Hz(vk_lvd ) = 72_ 1

The input sequence {vk} is the stochastic process satisfying the following
basic condition:

(C-1) Let 9i (k=1,2, -*,N) be the increasing c-algebra generated from {vo,

vl,-n,vk}. Then, for each k, {vk} satisfies
0 for p=1.3 and 5

(4.3) E(VEIZ )= ot for p=2 w.p. 1.
304 for p=4

The nonlinear model (4.1) has the following properties. First, the
interest property lies in its potential to generate large values of Vi
Since as being observed from (4.2), the model (4.1) includes the nonlinear
term Vﬁ—l‘ its contribution to the output Yx is striking when Vi-1 has a
large value, whereas the contribution may be ignored when Vi-1 has relative-
ly a small value. Secondly, in view of (4.1), the proposed model can be

understood as an approximated one from the more general nonlinear model of



the form
(4.4) yp = v + f(vk_l)

with the expansion

m
- 2
(4.5) f(vk-l) = izzlaiﬁi(vk_l.o' ).

For the nonlinear model (4.1), the problem is to find consistent esti-
mators of unknown constant parameters L) and 0’2 from the given obser-

vation data YNé {yl.yz, ""YN}.



4.3 Parameter Identification by Using the Moment Method

Unknown parameters Q. g and 62 are estimated by using the moment

method. For this purpose, define the following three statistical moments:

ad E{kak_l}
(46) bé E{y%yk_l}

céd E{ykyﬁ_l} .
Then, invoking that

(4.7a)  E{H;(vi0®) | £_} = 0 w.p. 1

(4.7b) E{Hi(vk:az)Hj(vk:az) | &1} = 418, w.p. 1

for i=1.2 and j=1,2, it is easily verified that statistical moments &, b and

¢ are evaluated under the basic condition (C-1) as follows:

(4.8) b = dajo0
c = Zozzoz.

Then unknown parameters in the nonlinear model (4.1), 0y Og and 0’2 can be
represented by functions of three statistical moments a, b and ¢ defined in

(4.6), i.e.,

a{(Zac)—lb}l/2

R
-
H

(4.9) oy = (4a)_1b

Zacb_l‘

Q
H



Since the observation data YN={y1,-",yN} is given, it may be reasonable to

estimate statistical moments &, b and c by

A
=T Wl
N
- 2
v(4.10) 3 "N- k2= kyk'l
N
- 1 2
| N T Wk

The consistency of estimators of a, b and c given by (4.10) will be shown
below in Theorem 4.1. Then replacing a, b and ¢ in (4.9) by ;N' BN and EN

respectively, we obtain estimators of unknown model parameters as follows:

oy (N) = ay{(2ayey) )"l }1/2

(4.11)  { ap(N) = (48 Tby

2N = 2ageyby’

It should be noted that we are free to choose statistical moments a, b
and ¢. However the choice of the triplet (a b ¢) may be the best in
the sensebthat ay. &g and 62 can not be expressed uniquely by any other
combinations of statistical moments. In fact, any other combinations of
statistical moments such that E{yiyg_l} limiting the argument to the case
i+j=3 (i20,j=20), do not give us the unique triplet of (al,az.az) as
the function of selected statistical moments. For instance, choose three

statistical moments as a=E{y§}, b=E{ykyk_1} and c=E{y§yk_1}. Then, we have



w-l

a1 =
-l
ay = (4b) ‘e
2o (8270? - s+ Vi(ap?)Tle? - o}? - g2

2

Since 62 has two solutions, the triplet (al, %o, 02) is not represented
uniquely by the function of a, b and ¢, and consequently uniqueness prop-
erties of estimators &I(N). &Z(N) and EZ(N) can not be guaranteed,

In the next sectiom, it will also be shown that &I(N). az(N) and ¢2(N)

are consistent estimators of aye Oy and Uz respectively and their asymptotic

probability distributions are Gaussian.



4.4 Asymptotic Properties of Estimators

4.4.1 Consistent Properties

Since the triplet of estimators (&1(N>' &Z(N), GZ(N)) consists of

estimsators ay bN and ey let us examine first asymptotic properties of ay

bN and EN' Define the two vectors,

§4 (a b ¢)
(4.12)

-~ ~

eNé (aN bN CN)'.

Then, for the convergence of EN to é. we have the following theorem.
[Theorem 4.1] Assume that the basic condition (C-1) holds, and the

following conditions hold:

(C-2)  The sequence { | vy Izp:k=1.2.°"} is uniformly integrable for some p

(5 s p < 10);

(C-3) E{ lvk |2p| 51_1} < ¢ (const.) w.p. 1.

Then, the estimator EN is consistent in probability with the convergent rate

o(Ns/p_l)' ji.e.,
(4.13) EN - ¢ = o(NS/p_l) in prob. as N = oo,

To proVe this theorem, the following lemma is required.
[Lemma 4.1] Let {ek:k=1.2,-"} be a sequence of 3i-measurab1e random varia-

bles., and let {ek} satisfy following conditions:

(c-0) EfeiI g ) =ny< e wp 1

for j=0.1, - .m, where hj=0 for at least one j, and both m and {i(j):j=0.1,

.-.,m} are integers;



(c-5) E{ lek |2p| 5&_1} < e (conét.) wp. 1

for some p such that ima S p < Zimax' where imaxémaxj i(j) (3=0,1,=.m);

X

and
(C-8) The sequence { Iek Izp:k=1,2,'"} is uniformly integrable.

Then, for the random variable defined by

ei(O)ei£%> v eii:)

)

1 &

m+]

it follows that
. 1-p/i
(4.15) E{llep/l“‘“} = o(N p/1““"‘) as N ~ oo,

The proof of this lemma is given in Appendix 4. A.
(Proof of Theorem 4.1) Recalling definitions of ;N' BN and EN given by
(4.10), and using (4.1) and (4.8) it can readily be seen that each of

(aN-a). (bN—b) and (EN—c) is expressed by linear combinations of following

three quantities:

N
(4.16) | 71,(M 8 > (v

where i(0)=0,1,2,3, i(1)=0,1,2,+-,5, i(2)=0,1,2 but, for some j (j=0,1,2),
there exists at least ome i(j) such that i(j)=1,3 or 5: and k(0) and k(1)

take these values either k(0)=1, k(1)=0 or k(0)=0,1,2, k(1)=1.



First, conmsider 71(N) in (4.16). From (C-1), we see that

0 for i(j) = 0,1,3.5
a1 B9 g 1= 4 6P for i(j) =2
30t for i(j) = 4.

where j=0,1,2. This implies that {vk} satisfies the condition (C-4) of

Lemma 4.1. Since we have i . =max, i(j)=5, the conditioms for p, i

J max5p<

Zimax of Lemma 4.1 are also satisfied. Thus, {vk} satisfies automatically

the conditions (C-4), (C-5) and (C-6) of Lemma 4.1. Then, we can conclude

from Lemma 4.1 that

1-p
0) as N = oo,

(6.18)  E{ 17,0 1% = o(x

where p0=p/i It is also easily shown that (vﬁ-oz)k(i) (i=0.1) and

(vﬁ-364) in (4.16) satisfy all conditions of Lemma 4.1. Consequently, we

max’

can prove that the po—th moments of second and third quantities of (4.16)

l_po

are in the order of o(N ) as N goes to infinity.

Recalling the Markov and Holder inequalities, the following estimate is

obtained.

(4.19) P{lag-al >el s -LE{la-al}

= —%— E{ | linear combinations of
quantities in(4.16) | }

s ‘7%- S E{ | one of quantities in (4.16) | }

= —é— > [E{ | one of quantities

in (4.16) | P0}7H/P0,



Since the term in the square bracket in the last ineqaulity in (4.19)

1_p0

are in the order o(N ), it follows that

(1-pa)/ 1/pn-1
(N 07ROy Loy RO

(4.20) ;N -a=o ) in prob. as N - oo,

in probability as N—» <, The replacement of Py by p/5 gives (4.13), which

Similar arguments yield that (BN-b) and (EN-c) are in the order o(N

completes the proof.
Here define

t al I 62)

(4.21) A A ) ~
CNA (al(N) aZ(N) g (N))'.

Then, the following theorem states the consistency of estimator ZN‘
[Theorem 4. 2] Assume that same conditions as those in Theorem 4.1 are
satisfied, and furthermore assume that alazaﬁo in {4.1). Then the estimator

{N of the unknown parameter { converges to its true value in probability

with convergence rate o(Ns/p_l). i.e.,

(4.22) EN -t = o(Ns/p_l) in prob. as N - o,

(Proof of Theorem 4.2) Note that from (4.8), é=(a b ¢)' is given by a
function of the unknown parameter vector 2=(a1 @, 02)', i.e., é=g(%).

Hence, by the mean value theorem, we have
(4.23) §N -{= AN( § -¢ ),

where the Jacobian matrix ANé [Bg(EN)/aﬂ-l is evaluated from (4.8) as

follows:



F(N) 4@, (N)F (V) 0

(4.24) Ay = 0 4@, (N3 (N) 25 (N)2
&, (¥) 25, (N)a,(N) _

% (N) 5 (N) 2, (N)

where ZNé(&l(N) EZ(N) GZ(N))' is evaluated through the relation (4.8)
at ENQ (_aN BN EN)' which satisfies I EN_é Il = | EN—é . Since EN-é*O
in prob. as N—c from Theorem 4.1, we have (EN-é)-’O in prob. as N—= oo,
Now, note that Jacobian matrix AN can also be evaluated in terms of EN
because of AN=[8g(zN)/8§]-1=ag—1(EN)/BE where g_l(' ) is the inverse mapping
of g{ + ). Hence AN converges in probability with the same rate of conver-

gence as that of (EN—é) to the limit

-1
g oo 0]
(4.25) A = 0 foyo 20|
o 00, o
1 172
20 4 2“2

where the existence of A is guaranteed by the the assumption a1a2#=0
Therefore, in view of (4.13), we can conclude that ZN_Z converges in proba-
bility to zero with the same rate as that of EN_é'

Let {ek:k=1,2.-~} be a sequence of independent and identically distri-
buted {i.i.d.) random variables. Then, the following lemma is obtaiﬁed
which is the "almost surely” version of Lemma 4.1.

[Lemma 4.2] Let {ek} be a sequence of i.i.d. random variables, and let

{ek} satisfy the following conditions:



(c-0) Eef P} =ny < e,

. for some j=0.1,-,m, where hj=0 for at least one j, and m and i(j) are

integers:

(C-5)"  E{ley |P} < ¢ (comst.)

for some p such that i =p< Zlmax'

max

Then, for Sy defined by (4.14), we have

i /p-1
(4.26) Sy = o(N max ) w.p. 1 as N - o,

The proof of Lemma 4.2 is given in Appendix 4.B.

Using Lemma 4.2 instead of Lemma 4.1, we have the following two
theorems which are "almost surely” versions of Theorems 4.1 and 4. 2.
[Theorem 4.3] Let {vk} satisfy that

(C-7) {vk:k=0.1.2,'~} is the sequence of i.i.d. random varisbles where

0 for p=1,3 and §
‘ E{VE} = ol for p=2
364 for p=4
and
E{ Ivk |P} < ¢ (const.) for some p (55p<10).
Then,

(4.27) &y - &= o(NO/P71) w.p. 1 as N = o,



[Theorem 4.4] Assume that the same conditions as those in Theorem 4.3

hold, and further assume ozlot2¢ 0. Then

(4.28) ZN -t= o(Ns/p_l) w.p. 1 as N — oo,

Proofs of Theorems 4.3 and 4.4 are almost same as those of Theorems 4.1

and 4.2 and hence omitted to write here.



4.4.2 Asymptotic Normality of Estimators
In this section, we shall show the asymptotic normality of the esti-
* mator 5N of the unknown parameter 6 For this purpose the asymptotic nor-

mality éN will be firstly shown. Define
(4.29) B2 Lin N E{(Ey - H(Ey - H).

[Theorem 4.5] Assume that the condition (C-1) holds and let the sequence

{vk} satisfy the following conditions:

(C-8) E{vﬁi | .?1'(_1} = E{vlz(i} < +o w.p. 1.

for all k=0,1,, where i is an integer such that 3=i=10;
(C-9) There exists a random variable v such that E{;20}<+°°. which satis-

fieé' for all 2 >0,

(4.30) P{lv | > 2} s P{Ivl> 2}

Then

law
- X as N = oo,

(4.31) Ny - &)
where
x ~ N(0,B).
In order to prove Theorem 4.5, we need_ Lemma 4. 3.
[Lemma 4.3] Let {ek:k=1.2. «} be a sequeti;ié of ?l;-measurable random vari-

ables which satisfies (C-4) and the following conditioms:
(c-10)  E{ef¥I | g} = i) < v wp 1

for 0=2,4 and 3j=0.1, - ,m:



(C-11) siy ~ o as N = oo,

where

(4.32) 2. & ZN [ﬁ E{(e ' >Zi(5)}]'
' jN k=1 s=0 k(m+1)+j—s R '

and

- 41
(C-12)  there exists a random varisble e such that E{e max}<:+°°. which

satisfies, for all 10>'0.

(4.33) P{leg|> 2g} = P{lel> 2}

Then, for the random variable S defined by (4.14),

1
(4.3) JNsy > s as N - o,

where

S ~ N(0,NE{SZ}).

The proof of Lemma 4.3 is given in Appendix 4.C.~

{Proof of Theorem 4.5) Express again each component of vector (EN—é) by
linear combinations of quantities in (4.16). Consider first, the first
quantity TI(N) in (4.16). Regarding vy 85 e in Lemma 4.3, it can be shown
all conditions in Lemma 4.3 are satisfied. Indeed, conditiomns (C-4) and (C-
10) are readily.followed from conditions (C-1) and (C-8). Furthermore,
recalling the elementary inequality E{]ly|StsE{|y] r}s/r for 0<s<r
where y is any random variable with E{{y]|T}<+o (see, e.g. [L1.p.34]).

ve see by identifying s=2, r=2i(j) (22) and Y=Vi that

(0.35)  E{1v |23} 2 g1y 1B 2 210) 5



It is obvious that E{ | v Izi(j)}=1 for i(3)=0. Hence, in any case, it
k

follows that
(4.86)  E{lvgy, g 128} 2 ¢ (const.),

and it can be seen by setting m=2 in (4.32) that

N 2 . N
2 . 2i(e) 3 3
(4.37) 8% = 2 [l E{(vey, :p) 112 X c?=Ne? » o as N - o
N jie=g k3L k=1

which verifies the condition (C-11). Finally, from (C-9) in Theorem 4.5, we
see that E{ |V |41max}=E{| v 20}<+«». Then, regarding v as e in Lemma 4.3,
the condition (C-12) is satisfied. Hence, the first quantity in (4.16) sat-
isfies all conditions of Lemma 4.3. For other quantities in (4.16), using
a similar procedure to that for the first quantity, it can be verified that
they also satisfy all conditions in Lemma 4.3. Therefore, it can be
conclude that v@ﬂgN—é) converges in law to the Gaussian random variable
with zero mean and the variance B.

Invoking that AN-*A in prob. as N— o, it is almost obvious that
VQT(ZN-E) converges in law to the Gaussian variable with zero mean and the
‘variance ABA'.
[Theorem 4.6] Assume that the same conditions as those in Theorem 4.5 hold,
and furthermore assume that alazaéo. Then, it follows that

(4.38) JN_(ZN - t) la-!-x as N - o,

where

x ~ N(O0,ABA").



4.5 [Extension to Nonlinear ARMA Models

It is one of the remarkable properties of the proposed nonlinear MA
model that the autocorrelation between the output Vi and Vi+g of the non-
linear model equals completely zero when £22. Hence, in handling the data
whose autocorrelations between the time interval longer than a single time
unit may not be zero, it is insufficient to use the model (4.1) directly.
Two possible methods for improving the original nonlinear MA model are (i)
to add some kinds of MA terms with time lags longer than that of (4.1), and

(ii) to adopt the nonlinear ARMA model such as

m
- 2 2
(4.39) v, + g; 0:Vp—5 = Vi * alHl(Vk-l'a ) + aZHZ(vk_l,a ).

1

If the method (i) is used, we shall encounter the difficulty of finding
estimators of unknown parameters uniquely and explicitly. Hence, it is
appropriate to adopt (4.39) as an extended one of (4.1).

In the followings, for the model (4.39), an identification method of
unknown parameters {éi:i=1,2'-".m}, @y Oy and 02 is proposed and the con-
sistency of estimators is investigated. As a basic assumption, we assume
for simplicity of discussions that the following condition holds:

(c-1)’ The sequence {vk} is of an independent Gaussian random variables
with zero mean and the variance o2,
4.5.1. Parameter Identification Using Extended Kalman Filter Approach

The moment method used for identifying unknown parameters in the non-~
linear MA model is also applicable for those in the nonlinear ARMA model
(4.39). However, it is afraid that a direct application of the moment
method may be the cause of slow convergence rates of estimators to true

values of unknown parameters. Hence, in this section, another method for

the identification is proposed, where the extended Kalman Filtering approach



is used.
First, in order to estimate unknown parameters in the linear AR terms

in (4.39)., it is assumed that the output data {yk:k=1.2. «} are given

through

m ., °
(4.40) vy + Eleiyk'i =ep * 0pi18k-1

where the sequence {ek} is mutually independent of {vk} with the properties
25

E{en}=0 and E{snem}=ae om

; and 6m+1 is the dummy parameter which is deter-
mined so that all autocorrelation functions of the output process of (4.40)
coincide completely with those of (4.39) (see e.g. [D1]). In other words,

(4.40) is adopted as the "model” of (4.39).

For convenience of discussions, we shall represent (4.39) and (4.40) by

the state space forms. Define the state vector Xy by

m , m ., m ° °
(4.41) Xké (- i2=19i‘yk_iv = g;-_zeiyk_i+1' s, = iZ=m_10iyk_1+m. - Omyk) .

Then, the state space representation of (4.39) and (4.40) is

X = A(6)x, + G(6)w
k
(4.42) kel k
Vg = Cxp t vy

and

Xpeq = AB)x, + K(B)ey
(4.43) 1
Y = Cxy *

respectively, where é is defined by



° ° °

(4- 44) eé ( 01 82 vee em 8m+1 )’;

and other matrices appeared in (4.42) and (4.43) are given by

A(B) & : : “\ﬂ (mXm matrix)

b o

(4.45) 4 G(6)& -, 0 (mx 2 matrix)

(m vector)

=
—
o
~
>
—
-]

3

+

—
<

—
<

[+
Po
~

| C& 1 0. 0} (m vector).

Hence, by using the modified extended Kalman filtering approach
proposed by Ljung [L2], the following algorithm for the identification of 6

is obtained:



Ok + Lk<yk - ka)' 00 =0

n

Oy+1

xk+1 = A(Ok)xk + K(Ok)(yk - ka)' XO = xo

_‘—2 rent
Ly =0 (k)Pl(k) C

(4.46) 1 |
Py(k+1) = A(B P (K) + M(B)P,(K) - K(By)Ljgd(k),  Py(0) = 0
Py(k+l) = Pp(k) - LLjgZ(k) - 8P5(K),  Py(0) = eI (e>0)
X)) = a2(1) + (D) H(yy - G2 - EwWY, Z(0) = o2,

-

where 6k and &g(k) are respectively estimators of 6 and 02: Pl(k) is an
mX (m+1) matrix and Pz(k) is an (m+1) x (m+1) positive definite matrix; & is
an arbitrary small positive number;: and M(Ek) is the mX (m+1) matrix given

by

Ve EYg - Cxy

(4.47)  M(By) @ L

vy
In (4.46), the value of 6m+1.k+1 of the estimator 6m+1 is set at an arbitra-
ry point in |6m+1.k+1| <1 if lém+1.k+ll 21,

In order to estimate 0. Og and 62 in the nonlinear MA terms, define

that
(4. 48) ;’kA Yk + 51Yk_1 t e 4 émyk—m'

Then, ;k can be represented from (4.39) by

o 2 .2
(4.49) Ve = Vgt alﬂl(vk-l'a ) + aZHZ(vk_l.a )



which may be regarded as the nonlinear MA model in Section 4.2. Hence

using the same procedure as that in Section 4.3, it follows that

[ - -1, 11/2
@ = nl{(2n1n3) nz}
(4.50) 1 a, = (4n)71n,
0% = 2nngn;!
where

M4 By} = o0

(4.51) 1§ mye E{yZ Yoy} = dajap

Usé E{;’k;’%_l} = 20!20'2.

Since only the observation data YN={y1,-",yN} and the estimator BN and &g(N)
aﬁ the final step N are given. the three statistical moments Ny Mg and n3

are respectively estimated by

[ 7,00 =8, @2)

- N.oog. -« -
(4.52) 4 my(M) = % 522Y§(9N>Yk-1<en>

- N. . ~ -
Mg(N) = - > ilby)viog Gy)

where

(4.53)  yy(0) =y * 0y W1 * " * O Wi



and in deriving the estimator ﬁl(N). an easily verified relation ém+16§=a16
has been used. Then, replacing Ny Mo and ng by nl(N). nz(N) and n3(N) re-

spectively, we can obtain estimators of R and 02 as follows:

r
-~

al(N)

ny (N {(2n; (N74(0) 1, (W)} /2

(4.54)  { ay() = (4n () Iny(0)

o%(N)

2n; (Nag(Mn, L),

As observed in (4.46) and (4.54), unknown parameters in linear AR terms
are estimated recursively while those in nonlinear MA terms are not estimat-
ed recursively. However, replacing BN in ii(N) (i=1, 2,3) by the current es-

timate ék’ oy, Gy and 62 may be estimated recursively.



4.5.2 Asymptotic Properties of Estimators
[Theorem 4. 7] Assume that the condition (C-1)' and the following
conditions hold:

(C-13) The polynomial

1

4 eer 4 ~m

Do
o]

(4.55) G(a™lib) & 1+ 8yq”

has all its zeros inside the unit circle:

-1

.9 6 .q L
(4.56) D(q “:6) & 1 + 6 ..a

1 is the

has its zeros inside the unit circle, i.e., | 0m+1 | <1 where q
backward shift operator: and

(C-14) G(q_l:é) and D(q_l:é) do not have common factors and 6m and ém+1

are not zero.

Then

(4.57) BN - 8 w.p 1 as N —» o

(4.58) (&, (N) ay(N) o2(N)'~ (@; ap ¢ wp 1 s N e

In order to prove Theorem 4.7, the following two lemmas are required.
[Lemma 4.4] (Ljung [L2]) Consider that the observation data is generated
by (4.42) (or (4.39)) and let the model be given by (4.43) (or (4.40)).
Suppose that
(C-15) the algorithm given by (4.46) is complemented with & projection

facility to keep ék in a compact subset of
(4.59) D, & {61 K@) - kKOO s aa® for all k1,2, }

where ¢ is a positive constant and 2 is also a positive constant but A<1.



Then, the estimator (EN GE(N)) converges with probability one to a station-

ary point of the function

(4.60)  V(8.02)

12 =2 2
E{e2(6)}0;2 + log o

where

€ (8) =y, - Cx, (6)
(4.61)
xk+1(e) = A(O)Xk + K(e)ek(O)

for a fixed point @ EDS.

[Lemma 4.5] (Astrém and Séderstrém [A6]) Let 8, be a sequence defined by

the operator form
-1, -1.2 - -1. -1.3
(4.62) D(q ":8)G(q "6)8; = G(q ~:6)D(q ":6)e,.
Assume that conditions (C-13) and (C-14) hold. Then, the evalustion

(4.63) E{62} 2 of

is obtained, where the inequality holds if and only if 61=6i for all i=1,2,
by m+1.
(Proof of Theorem 4.7) From definitions of A(@), K(8) and C in (4.45), we

have

_8m+1(N) E 1..
ot o
0o o,
(4.64) A(eN) - K(ON)C = ..
1
0 .
0 0




and hence eigenvalues of A(EN)-K(EN)C are zeros and —5m+1(N). Siﬁce
|6m+1(N)| <1, the absolute values of all eigenvalues are less than 1 (see
e.g. [K4]). Then, it is concluded from Lemma 4.4 that (5N EE(N)) converges
with probability one to a stationary point of V(O.af) defined by (4.60).

Furthermore, it is easily verified from (4.40), (4.43) and (4.61) that

_1 _1 ¢
(4.65) (g) = 8la_:6)D(g_:6)
*k 6(q T:6)D(q L:6) 1

and from (4.38) and (4.40) that

2 2 2 _ 2 a2
(2 + dl + 2‘!2 - Ue(l + Bm+1)
(4.66) 0
00 =8 .10

2.2

Since it is easily verified that (o2+a2+202)2> sa%s?

>-&x16 , we can always choose
ém+1 such that I6m+1l <1, and, hence, all conditions of Lemma 4.5 are
satisfied by identifying sk(B) as 6k. Then, it is concluded from (4.65) that

E{s%(&)} has only one stationary point at 9=6 and V(O,ag) has also only one

statinoary point at 0=f and 62=E{02(6)}. Then, we have
€ €

5N nd é w.p. 1 as N —» =
(4.67)

"2(. 2

O N) - ¢ wp. 1 as N = oo,

For the-consistency of estimators ai(N) (i=1,2,3), it is easily shown

by using the ergodic property of Y and (4.67) that

;71(N) - Ny = a0 w.p. 1 as N = oo

(4.68) Ny (N) = ny = dojano w.p. 1 as N - o



ng(N) = ng = 20:262 w.p. 1 as N - oo,

Therefore, using the same procedure as that in Theorem 4.2, we have

&1(N> - o w.p. 1 as N - e
(4.69) &z(N) - a, wp. 1 as N - o
a2(N) - o2 w.p. 1 as N = oo,



4.6 Digital Simulation Studies

4.6.1 Comparison of Nonlinear MA Models with Linear MA Models

In this section, the features of the proposed nonlinear MA model is ex-
amined from the numerical point of view. Figure 4.1(a) depicts a typical
sample run of the input sequence {vk:k=1.2,-"} where {vk} is independent
standard Gaussian random variables generated by é digital computer. The
simuléted record of {yk} is depicted in Fig. 4.1(b), which comes through the
input/output relation (4.1) with the use of {vk}. where the parameter values

are set as a1=0.5 and a2=1.0. i.e..
(4.70) gy = vy *+ 0.Bvg_q *+ (VB - 1).

For convenience of discussion, a sample pasth of the linear MA model corre-

sponding to (4.70), i.e.,
, .
(4.71)  yy = v *+ 0.5vpy

is shown in Fig. 4.1(c). Comparing Yx with y;, we know that the nonlinear
term in (4.70) is important in producing sporadically large values of Yo

Next, we shall try to fit the linear MA model of order £, i.e.,
[

to the data obtained by (4.70). Since it is hard to determine the reason-
able order £ a priori, we used AIC proposed by Akaike [A2] and its result
was shown in Fig. 4.2. The determined order 2 based on 2000 observation
data is 4 and estimates of unknown parameters of (4.72) with £=4 were given

by B;=0.2, B,=-0.19. B4=-0.08, 8,=0.2 and 02=3.54, where the Dabidon's



variance algorithm was used [A4]. Figure 4.3 shows a simulated run of

(4.72) by using estimated order and parameters, i.e.,

-

Bive-4

M

(473> yk=Vk+ o)

.1
1

where the input {vk} is the same sequence as that depicted in Fig. 4.1(a).

It may be numerically concluded from Fig. 4.3 that linear models are not ade-
quate for the data whose remarkable feature is its sporadically peak values,
and, hence, it may be fair to say that the proposed nonlinear MA model will

be useful to model such random data as mentioned above.
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Fig. 4.3 A typical sample run of the misfitted linear MA model

whose order is determined as 4 via the AIC approach



4.6.2 Parameter Identification of Nonlinear MA model

Several simulation studies were given in order to investigate esti-
mators of unknown parameters in the nonlinear MA model. The convergence
feature of estimators &I(N). &Z(N) and GZ(N) given by (4.11) is observed by
sample runs shown in Fig.4.4, where the input sequence {vk} is the same as
that depicted in Fig. 4.1(a). To examine detailed aspects of the conver-

gence rate of estimators, consider the following measure:
(4.74) G (N.2) & - S 0 - 2?2
' L ' T Q=1

where z=a;, @,y or 62 and ;(N)=&1(N), &Z(N) or GZ(N): the superposition (£)
denotes the £-th sample run of z(N): and L is the number of sample rumns to
be averaged. Figure 4.5 illustrates a result of Monte Carlo trials for

sample runs of {y,}'s that are simulated by
k

(.75 50 = {0+ osv®) (D2 - 1) 0 =1, 2 -, 100,

(2

where Vi ) is the £-th sample process of input disturbances. Convergences

2 are well achieved as the observation data N

of estimators of oy, g and ¢
increases as shown in Fig. 4.5.

Histograms of the 100 sample runs of estimstors &I(N), &z(N) and EZ(N)
at N=2000 are shown in Fig. 4.6, where fitted normal curves are also plott-
ed. Using histograms shown in Fig. 4.6, cumulative frequency curves are
plotted on normal-probability papers, and they are shown in Fig. 4.7. Fur-
thermore, we make use of Chi-square test with 5 per cent level of signifi-
cance in order to check more precisely the normality of sampling distribu-
tions of estimators. Results of Chi-square test is shown in Table 4.1. It

may be fair to say from Figs. 4.6, 4.7 and Table 4.1 that distributions of

estimators &I(N). &Z(N) and EZ(N) at N=2000 are approximately normal.
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Table 4.1 Chi-square tests for the check of normality (N=2000)

(a) Chi-square test for &I(N)
Observed Theoretical | _r 12

Interval frequency fi frequency Fi (fi Fi) /Fi
Above (.65 8 8.08 0.0008
0.55~0.65 21 22.77 0.1376
0.45~0.55 41 34.69 1.1478
0.35~0.45 20 25. 61 1.2289
Below 0. 35 10 8.85 0.1494

Total 100 100. 00 2.6645

2 -
X3 g5(2) = 5.99 > 2.6645

(b) Chi-square test for &2(N)
Observed Theoretical - 2

Interval frequency fi frequency Fi (fi Fi) /Fi
Above 1. 35 4 4.46 0.0474
1.15~1.35 17 16.73 0.0044
0.95~1.15 30 26. 82 0.3770
0.75~0.95 30 33.58 0. 3816
0.55~0.75 17 14.82 0.3206
Below 0.55 2 3.59 0.7042

Total 100 100. 00 1.8352

2 -
X0.95(3) = 7.81 > 1.8352

(¢) Chi-square test for &Z(N)

Observed Theoretical _r 2

Interval frequency fi frequency Fi (fi Fi) /Fi
Above 1.55 3 3.59 0.0970
1.35~1.55 11 9.98 0.1042
1.15~1.35 21 20. 89 0.0379
0.95~1.15 30 27. 33 0.2608
0.75~0.985 19 23.52 0. 8686
0.55~0.75 12 11.10 0.0730
Below 0.55 4 3.59 0.0468
Total 100 100. 00 1.4883

2 _
x0'95(4) = 0.49 > 1.4883




4.6.3 Simulation Studies for Nonlinear ARMA Models

In this section, our purpose is to study numerically the nonlinear ARMA
model given by (4.39) and estimators given by (4.46) and (4.54). Figure 4.8
(a) shows a sample run of input sequence which was used to generate the
record {yk} of the simple first order nonlinear ARMA model. The simulated

Yk is depicted in Fig. 4.8(b) through the input/output relationm,
: _ .2 2
(4.76) vy + 6vp-1 = Vi * alﬂl(vk_l.a ) + azﬂz(vk_lva )

where parameter values were set as 6=-0.8. a1=0.1, a2=0.2 and 62=0.1.
Figure 4.8(c) shows a sample path of the nonlinear MA model associated with

(4.76), i.e.,
' ok _ .2 2
(4. 77) Yk = Vk + alﬂl(vk"l H g ) + QZHZ(Vk_l ia°).

Comparing Yk with y;*, we know the fact that the existence of the AR term in
(4.76) plays an important role in exhibiting smoothing shapes of the output
process V. although the ability of generating sporadic peak values is
sufficient which is the fundamental property of the nonlinear MA model
(4.1). Hence, it may be concluded that the proposed nonlinear ARMA model
will be useful to model such random data which exhibits sporadic peak values
and seems to have the serial dependency much longer than the single time
unit.

Regarding the model (4.76) as the real input/output relation, the model

of (4.76) is given by
(4. 78) yk + élyk_l = ek + 6281("1'

and identifying 6, A(8). G(8), K(8) and C in (4.45) with



(4.79) 9

respectively, the state space representations of (4.76) and (4.78) are given

by (4.42) and (4.43).

by

r

(4.80) 3

-~ -~

Hence, the algorithm for unknown parameter 8 is given

bpep = 0 * Ly - X)) 8, =6

;k+1 = '61kxk + (EZk - 51k)(yk - ik)

Ly = 0 2(K)P; (k)"

Pl(k+i) = -0 P1(K) + (v vy - X IP(R) = (B - 8L 2(k)
P1(0) = 0

Py(ke1) = Py(k) - LyLio%(k) - 8PE(k), Po(0) = ¢l (e>0)

o2(ke1) = o2(k) + (1) H(yy - 12 - 20 ¥0) = o,

where Pl(k) is the 2~dimensional low vector and Pz(k) is the 2-dimensional

positive definite matrix.

In case of (4.76), the ;k process defined by (4.48) becomes



(4.81) Yr = Yy + elyk‘l
and hence }k(éN) defined by (4.53) is given by
(4.82) yk(ON) = Yy + el,Nyk“l'

Therefore al(N), EZ(N) and ES(N) are given by (4.52), i.e.,

- = ~2
GZ,N"e(N)

- Noo . - -
(4.83) { my(N) = - 552Y§(9N)Yk—1(ﬂn>

3
—
—
-4
~
1

N. . ~9 -
> yk(eN>yk'l(6N>

ng(N) = - >

and then unknown parameters in the nonlinear MA terms of (4.76) are obtained

by

&y () = 1, ({20, (Daz(N)) Tay W)}/

(4.86) | a,(M) = (4, (M) Iy (N)

~2 - - - -1
o“(N) ZUI(N)ﬂ3(N)ﬂ2(N) <

In digital simulation studies, the initial values of ék, ;k and Pz(k)
were set as 50=(-0.5 0)", ;0=0.§hd P2(0)=101. Convergences of estimators
51(N), &l(N). &Z(N) and &2(N) are observed by the typical sample runs shown
in Fig. 4.9. Convergences of estimators 51(N), &I(N). &Z(N) and EZ(N) are

well achieved as the observstion data N increases as shown in Fig. 4.9.
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4.7 Discussions -

In this chapter, a class of nonlinear MA model has been introduced and
using the moment method, estimators of unknown system parameters have been
derived. Proposed estimators are consistent and asymptotically normal.

Using the fact that unknown parameters included in the proposed model
are uniquely described as functions of the second &nd the third moments
of the output process, estimators of unknown parameters have been obtained.
The consistency and the asymptotic normality of estimators have been shown
by using the martingale properties of quantities given by (4.16).

The proposed nonlinear MA model has following properties compared with
the Robinson's model which is another representative ome: (i) since the
proposed model utilizes the orthogonal polynomials, it has a possibility to
extent to more general one: (ii) in the proposed model we can find a set of
statistics (a b c¢) that can uniquely determine the triplet of estimators
(&1(N) &Z(N) #2(N)) as shown in Section 4.3, while, in the Robinson's
model, estimators of unknown paremeters are not uniquely determined: (iii)
the proposed model has been the possibility to produce larger values than
those by Robinson’s model because of the fact that vnvn-ls [max(vn,vn_l)]z.
The distinction between estimators of the two models mentioned above are
listed in Table 4.2.

The autocorrelation of the output process generated by the proposed
nonlinear MA model completely equals to zero when its time lag is longer
than the single time unit. Hence, in the case of autocorrelation between
the observed data Vi and Y +Q( ¢ 22) may not be ignored, it is appropriate

use of the nonlinear ARMA model given in Section 4.5.
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Appendix 4.A Proof of Lemme 4.1

Define

m s/
(A1) a 1 9,
Ty j=0ek 3

then we can rewrite Sy defined by (4.14) as follows:

1 N
(A.Z) SN = —N— Z rk

1 M(m+1)+m M(m+1)+m
= X {2 r -2 r_}

n=m+] 0 p=N+1 n
1 m M m
i PR TE T DR R L TER IR
L Lo n N
i {JZ=0 1<Z=1rk(m+1)+j * jz=1,+1(1<z=1rk(m+1)*i - Ty(me1)s s}
S FL N kRl j

where M=[N/(m+1)], L=N-M(m+1) and the square bracket [ ] demotes the largest
integer not greater than N/(m+l). Letting
1 M
- E‘; Ty (mel)+ for M#0
0 for M=0,

it follows from (A.2) that

L m
(A.4) Sy =2 S. y+ S v
N 50 3. ¥ FL+1 j.¥-1
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Now, letting a(k, j) & k(m+1)+3j (j=0,1, -, m), we have from the condition

(C~4) that

(4.5 Elrg(mer)eg | Fu-1)(me1)+ 5!

= Elrg e ) | (ks )-(me1)!

] i (m) i (m-1)
= El(ey(x, §)n) " E{(ea(k'j)_m_l))l(m

i(0)
XElleyx, 3907 1 Bk, 3911 1t Bk, 5)=(men)?
= hyhy By

= 0.

Furthermore, the uniform integrability of { | ry | 2p0} (p0=p/imax' l1spy< 2)
will be shown in order to evaluate the rate of convergence of S 3o Letting
2> 0, we have
m .
(8.6) {wilr |l 22 ={w: 1] 9 2 1)
3=0 73
L1 i(3) 1/(m+1)

m VN
- U_ {w: Iek-j | 1(J) = 11/(0”‘1)}
3=0
Hence, it follows that
P
(A.7) Ir, | 0 dp
{w: lrk | 2 1}

m i(j)py, m i(e) 1/(m+1)
s [ le il U e, 1 zal D
0 j=0 2=0
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< 2 BT le ;] VR LS ey
REY

XI{ |ek'ﬂ | :

2i(m) Zi(m—l)po

m Py
= QEE'OEE{E{ lek—ml E{ lek-m+1 |

21(0)pg l'

xE{ | e | ORI ARE 4

m -m-

2i(e)
X [fo ‘ ek_Q |

1/2
1Y

Pory leyy | i(0) 5 p1/(m+1)y4pyl/2

m 2i(2)p i
s 2 Qz=o[fo lepog | Or{ | ep_p | 18} > 21/(0Dygpyt/2,

where the condition (C-5) has been used. From (A.7). the uniform integra-

P
bility of the variable { lrk | 0} follows from that of Iek

is guaranteed by the condition (C-6). Hence, we know that { Ira(k j)l

is uniformly integrable.

Recall the following lemma due to Chow [C2].

, which

Po}

[Lemma 4.AJ(Chow [C2]) Let {uk: k=1, 2, -} be a sequence of random variables

and let

- N
(A.8) Sy & 2 uy.
N A 2

Suppose that the sequence { Iuk |Y: k=1,2,} is uniformly integrable for

some 1sSy<2. Then
(4.9) E{léN—ENl”}=o(N) as N - o,

where
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- N
(A.10) uy & 1%-—1E{uk Lugoug, oy o}

Then, regarding NS IR and To(k, 3) as §N and uy in Lemma 4.A respective-

ly, the following evaluation is obtained:

P
E{INSJ.'MI 0}=0(M) as M - oo,
or equivalently

l-po

(A.11) E{ lsj,nlpo} = o(MN_po) = o(N ) as N - o,

The same evaluation as (A.11) holds for Sj M-1- Therefore, using elementary

inequalities
|Zl+22|v52v(|zllv+|zzlv) for y>0
and
N 4+ N
12z 1Y s (1)1 S Jz 1Y for v>0,
i=0 i=0

and (A.4), we have

p P L P m p
(8.12) E{ISyl % s 2 BT S5l O+ 12 Sy 1%
3=0 ¥ j=L+1 ¥

o pp-1 L p
s 2 0ws) 0 E(Z I8, 1 O
=0 ¥

-1
@D R sy 10,

J=L+
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Hence, from (A.11) and (A.12), we have that for 15p;<2

-p
0) as N = o

1
(.13)  E{ISg1 % = ofN

(where i

and it follows (4.15) by replacing Py by p/i Sp<21max)-

max max
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Appendix 4.B  Proof of Lemma 4.2

Since {ek} is the i.1i.d. sequence, we have

(B.1)  Efry} = EAIl et ¥
J:

0

m ./ .
I E{eld))
0 K

= hohy by = 0

m m-

and, for p0=p/imax,

Pq m i(J)pg
(B.2) E{lir, | “} s I E{le,_ .|
{ rk J=0 ek 3
(J)p/i
=1 E{le,_.|I max
o K
i.,/1(3)
= ﬁofE{ ey yl pypmex’ I (const. )
J:

because of the condition (C-5)'.
Recall the following lemma due to Marcinkiewicz (see e.g. [L3, p.255]).
[Lemma 4.B] (Marcinkiewicz) Let {uk: k=1,2,+:} be a sequence of i.i.d.

random variables and let 1=y<2. 1If E{| uy |V} <o, then
N -~ 1/v '

(B.3) X (uk -~ u) - o(N'*) w.p. 1 as N = oo,
k=0

where
u= E{uk}

Then, regarding Ty and Py &8s uy and 1 respectively, we have from S 5
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defined by (A.3) that

_1 1/p 1/py-1 ‘
(B.4) S.y =o(N1ly 0 (N %) w.p. 1 as N - .

Jj. M ) =0

The same evaluation as in (B.4) holds for Sj M-1" Hence, it follows that

1/pa-1
(B.5) Su=oN 0 )

N w.p’. 1 as N - ¢

and replacing p by p/i we have (4.26).

max’
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Appendix 4.C Proof of Lemma 4.3
Noting that Sy defined by (4.14) is expressed as (A.4) in Appendix 4.A,

we have from the definition of Sj M that

m+])+j

1

M
=N & k)3 ! Ry ey e s

¥-1
+ [> E e ) T o1, )b * Bl et 5ysmet | H(e1, )1

where a(k, j)=k(m+1)+j. From the definition of r, and (C-4), we see that

(C.2) E{r (M~1, J)+m+1 I 7 o {M-1, J)}

_ i(0) i(1)
= E{(e o (M1, J)+m+1) (ed(ﬂ‘l{j)+m)1

i(m)
Clegqun, e Fie1, 5}

Hence, we can see from (C.1) and (C.2) that
(C-8)  EfSj ! K1) (me)+3t = Sy

and this means that {SJ e M(m+1)+j} (M=1,2,+) is a martingale.

Since, from the condition (C-10), it is easily verified that the vari-
ance of Sj,M is finite, the proof of Lemma 4.3 will be completed if we can
establish that for each 3. n‘}/zsj‘n converges to & Gaussian random variable
with zero mean and the variance M—IE{Sﬁ'M} as M—> ., For this purpose we
need the help of Theorem 2.3 concerning a central limit theorem for martin-
gales due to Brown [B2]. Identifying S- u (¥=1,2,++) with the variable Xy

(k=1,2, ) in Theorem 2.3, and using 52 defined by (4. 32), we have
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2 1
(C.4) E{S5 y} = B

% M
4 M=

Efry(me1)+ Fa(mr1)+3

1 q=0

OE{(ep(m+1)+j-k)21(k)}

N M
it

1
N pel

1
= s
EL:

[278 - ] ke

M'

which implies that N -2 ZM can be identified as ulz< in Theorem 2.3. Hence, in

order to apply the result of Theorem 2.3, we have to show that

M
12 1 2
(€8) C—g sy ) 2 B 7 S500" ey (me)+ )

-1 in prob. as M - oo,

and for ¢ >0,

I
1 .2 -1 - 2 -
-0 in prob. as M = oo,

Using (A.3) and (A.4), these conditions can be rewritten as follows:

M
-2 2 i - o
(C.7) S ¥ E:lE{(r“(k'j)> | f(k 1. J)} -1 in prob. as M ,

M
-2 -
(C.8) S j¥ E;IE{(ra(k'J I{ Ir (k, 3) | > sst}} 0
in prob. as Y - o,

It is easily derived from the condition (C-10) that

(€9 Bl )2 | Ereer. iy}t = E{TI (e (x, -2 Faen, )
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and hence (C.7) is guaranteed.
Furthermore by a similar procedure to the derivation of (A. 7), it

follows that

(€10)  Ellryq 59 Tl Iryqp 5y | > e3 )
= fa(ra(k,j)) T £y, ) | > s gybep
=/, n B J)_s>21‘5’[2 H L eyx, )= | 1P
> (esjn)l/(mﬂ)}]dp

m m 4.( 1/2
= Eio[ n sn=0 (ea(kvj)°s) t s)dP]
S#p

% [f (e (K, §)- )4i(P)I{ I eot(k,j)-p I i(p) > (esjn)l/(m+1)}dP]1/2.

Using the notation eOA (e (k, J)—p) i(p) and eoé (est)l/(mﬂ) for simplicity

and lettmg F(2)AP( | e, | >2), it can be obtained that

(C, 11) ) ,£<ea(k,j)—p)4i(p)1{ I ea(k'j)—p I i(P) > (est)l/(m*'l)}dP

4 |
fo efiiley| > eghap

—fmz“l{ 1 > eghdF(2)
0

4 ®3
- lim AP > egh + 4f PRI > egiar
1~ oo 0

- 1in 2% FQ1) + 4f Bpleyl > Dar.
A=+ oo €0 :
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- 4imax -
Since E{ | e | }< o, it follows from the condition (C-12) that
(c.12)  lim R = lin Mp(legl > 1)
- oo - oo
s lim (el > 1)
- O
= 0.

Hence (C.11) can be represented by

(C.13) ‘{; (em(k'j)_p)41 Pi{je (k. 3)- |1(p) > (es, )1/(m+1)}dP
-4f 1/(m+1 lP(Ie kJ)pli(P)>1)d1

and it is obvious from (C.10) and (C.13) that

s 2 z [ H (ea(k,j)—s)4i(5)dpjl/2

p=0 s=0
sS#p
xtf ey Pl egp gys 12 > a1t/
-0 as M - =,

because sy~ as M— = by the condition (C.11).
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CHAPTER PARAMETER IDENTIFICATION OF NONSTATIONARY NONLINEAR SYSTEMS

5.1 Introductory Remarks

Based on the assumption that the system is linear whose model was given
by a linear stochastic differential equation with time-varying coefficients,
the nonstationary statistics of the data was taken into account in Chapter
3. In Chapter 4, although the data was assumed to be stationary, a class of
nonlinear models was adopted. In this chapter, from more practical
viewpoints, the author proposes a class of nonstationary nonlinear model
where a type of difference equations derived directly from stochastic
differential equations is adopted. The principal line of attack is to assume
that the nonlinear time varying function in the system model can be expanded
into M known functions with unknown constant coefficients.

The mathematical model is given in Section 5.2 including the problem
statement. Based on the maximum likelihood principle, the identification
procedure is derived in Section 5.3. Sections 5.4 and 5.5 are devoted to
investigating asymptotic properties of estimators. In the final section,
experiments are presented to demonstrate asymptotic proéerties of proposed
estimators.
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5.2 Nonstationary Nonlinear System Models

Let {yk:k=0.1.2."-} be the observed n-dimensional discrete output data
and assume that {yk} comes actually from the following nonstationary non-

linear input/output relation:

Ype1 ~ Yk T ¢k(ka6) * Bri1Viel
(5.1)
Yo §

where Bk+1 is the nXm known matrix whose structure is assumed to be

{ 0 }n-m
(520 By = | B tm
—
m

and Ek+1 is the bounded square matrix such that rank Bk+1=m for k=0,1, .
The input sequence {vk+1} is an m-dimensional unobservable random variables
wﬁich satisfy the following basic condition:

(C-1) Let 5i (k=1,2,+~,N) be the increasing g-algebra genefated from {Vl’

v2.v3.-".vk}. Then, for each k, {vk} satisfies

E{ vkl 5@_1} =0 w.p. 1
(5.3) E{ vivyi |5§_1} = ¢%1 w.p 1
E{(vkvi)zl 5&_1} S cl w.p. 1,

where 621 is the unknown variance of {vk}.

The nonlinear time-varying function ¢k(yk.é) in (5.1) may be expanded

into
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" .
(5.4) ¢k(ka6) = ¢0k(yk) +Zléi¢ik(yk>'
i=

" where { ¢ik(' ):i=0,1,++,M } are known time-varying functions and éi is the

unknown constant parameter such that
(5.5) 84 (8,85 .8y1".

The problem in this chapter is to find consistent estimators of unknown
parameters § and 62 from the given observed data, and investigate asymp-

totic properties of estimators from both theoretical and numerical view-

points.
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5.3 Parameter ldentification by Using the M.L.E. Approach

2

In order to estimate the unknown parameter § and ¢° from the observed

data YNé {yl. ---.yN}. the following criterion function is adopted:

(5.6) y(0.0%) & Nm log o2 +-;é-

™Mz

k=0{yk+1 4" ¢k(yk'e)}'

xﬁ%.*l{yk*_l' = Yk - ¢k(yk ve)}

where

0 0 }n-m

(5.7) §k+14 172 | tm (nXn matrix)

0 (ByyyBiep)

S’ - J
n-m m

The above criterion function is derived from the maximum likelihood
identification method when the input sequence {vk} are independent and

jdentically distributed Gaussian random variables.

By setting BQN(B,GZ)/862=0, it is easily verified that the minimiza-
tion of QN(O,UZ) is achieved by minimizing
" ) N v~2 X

2 is given by

and the estimate of ¢

N ~
(5.9) 52(N) = ﬁﬁ—a:_o{ykﬂ - ¥y - b B BE, {yq = Vi~ Bplyp BN}

where §(N) is the estimate of §, which is obtained by minimizing (5.8). and

this is also easily obtained by setting aEN(e)/ae=0. From (5.4) and (5.8),
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we have

2(N) _ =4 d
(5.10) 5 =2 S Wiy = vy U OVEE B Wit = YT e )
and

(5.11) —g'es {Yk+1 - yk - ¢(Yk,0)} == ¢Jk(yk)

respectively. Hence, it follows that

day(0) N -5

(5.12) —5-6;——— = -2 kZ_O{yk,,l - yk - ¢k<yk'3>}'Bk+1¢jk<yk)
N =2

= -2 %O{Ykﬂ = Yk - ¢0k(yk'e)},Bk+l¢jk(yk)
N M ) ~2

N )
=2 E£0¢jk(yk)3§+1{yk+1 " Vi T Pl

+ 2

7 M=

| -

Then by setting BEN(Q)/88j=0 (j=1,2,+-,M4), we have
YY)
No¥
= 1%—'0 {12=1 ¢ik(yk)Bk+1¢jk(yk)}ei’

Hence defining Fk(yk)’ s(N) and Q(N) by

(5.14) Fk<Yk)é[¢1k(yk) ¢2k(yk) Lo ¢Mk(yk)]'§k+1 (Mxn matrix)
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N -

(5.15) S(N)é’kz_opk(yk)Bk-Fl(yk"'l = yk - ¢0k(yk)> (¥-dim. vector)
N

(5.16) Q(N) é%oFk(yk>Ff<(yk) (MX M matrix)

respectively, (5.13) can be rewritten by
(6.17)  Q(N)§(N) = s(N).
In order to avoid numerical difficulties due to the singularity of Q(N), we

introduce the matrix T'(N) defined by

(5.18)  T(N)&(QN) + o1)
where p is an arbitrary small positive constant given a priori. Using I'(N)
for Q(N)., the unknown parameter § is uniquely estimated by
(6.19)  4(N) =T(N)s(N).

Invoking the matrix inversion lemme [S7]., we have the recursive version

of {5.19) as follows:

(5.20a)  §(N) = §(N-1) + T(K-1)Fy(y{ I + Fylyy) T(N-DEy(y)} !
X {§N+1(YN+1 T Yy T ¢0N(YN)) - Fﬁ(yN)é(N-l)}. g(0) =" (0)s(0)
(5.20) T(N) = T(N-1) = T(N-1)Fy(yy){ I + Fylyy) TO-DFy(y)} !

X Fy(yy) T(N-1), r(0) = (0) + o)7L,

Furthermore, replacing ¢k(yk.§(N)) in (5.9) by ¢k(yk.5(k)). the recursive

2

estimate of ¢“ is. given by

(5.200)  G2(N) = a2(N-1) + % {1 (v - vy - Bylog BN BE,,

X(YN.,.l ¢N va ))) - 0' (N 1)}

Q)
S
—~
o
=
"

=y -y - ¢0<y0,5<o)>>'§%<y1 - vg = $(vg.6(00)).
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5.4 Asymptotic Properties of Estimators

5.4.1 Consistency of Estimators
First, define the estimation errorVE(N) by
(5.21) B(N)& § - §(N).
Then, from (5.19), it follows that
(5.22) B(N) = 4§ - T(M)s(N).

Since, from (5.1), (5.4), (5.14), (5.16) and (5.18), s{N) defined by (5.15)

is represented by

(5.23) s(N)

N oL X
2 FrpBt 2 0385000 * BV}
- 1:

N N .
Z FrdFindd + 2 FeiB B Vi

N ~
QN + 2 Fy(0ByaBrerviey

" N .
(T () = P16+ 2 FrlyidByey B Vi

the estimation error §(N) can be rewritten by
) N .
(5.24) §(N) = pT(N)§ - T(N) E,OFk(yk)BkﬂBkﬂvkﬂ.

In the followings, we prove that §(N) converges to zero with probabil-
ity one in two cases.
(A) Single-Perameter Case. In the case when § is scalar, ¢k(yk'6 ) Fk(yk)

and T(N) defined respectively by (5.4), (5.14) and (5.18) can be given by
(5.25) ¢k(yk.6) = ¢0k(yk) + é¢1k(yk) (n-dim. column vector)

(5.26) Fk(yk) = ¢ik(yk)§k+1 (n-dim. row vector)
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N ~ -
(5.27) TH(N) = { E_o¢ik(yk)B12<+1¢1k(yk) + 0} (scalar).

Then the following theorem is obtained.
[Theorem 5.1] Assume that the condition (C-1) and the following condition
hold:

(C-2) the quantity defined by (5.27) converges to zero w.p. 1, i.e.,

(5.28) T(N) = 0 w.p. 1 as N = e

Then,
(5.29) @(N) - § w.p. 1 as N = o,

In order to prove the theorem, we need the following lemmas.
[Lemma 5.1] (Toeplitz Lemma) Let {ank} (k=1,2,+,n) be a sequence of

numbers such that, for every fixed k,
(5.30) ay = 0 as n = o

and for all n,

n
(5.31) kZzllankl S ¢ < +o0;

let {;(n} be the sequence as

Then, ika—> 0 as k = oo,

(5.33) x_ - 0 as n = o,

The proof of Lemma 5.1 is given in ref. [L3] and hence omitted here.
[Lemma 5.2] Let the conditions (C-1) and (C-2) hold. Then, the following

scalar quantity h(N) defined by
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"
o
-
—
-

N ) .

(5.34) h(K) =

0 for N

it
i
P
-
[
0N
-

converges with probability one to a certain random variable h with the prop-
erty E{hz} < +oo,

The proof of Lemma 5.2 is given in Appendix 5. A.
(Proof of Theorem 5.1) Using the random variable h whose existence is
guaranteed by Lemma 5.2, the second term in the R.H.S. of (5.24) may be

rewritten as

N -

N -
-2 rmrT Lok (a(k) - n(x-1))

N -
s rmr L) {(h(k) - b) - (h(k-1) - b)}

1

N - N -
S TOOT Lk)(h(k) - b) - 3 TN T “(k)(h(k-1) - b)
k=0 k=1

« T T H0)n

N -1 N -1
2 (NI (k)(h(k) -h) -2 T(N(T (k1)
k=0 k=1

* FFjn) (B(k-1) = )+ T r o

N
> TMRIF)® - kD) + (BO) - b)

« T T H0)h.
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Hence. substituting (5.35) into (5.24), it follows that

N
(5.86) 8y =pT(N)6 - kz_l T (NF (v )F (v ) (B - h(k-1))

- (&(N) - B) - T(OT (O)h,

In the sequel, let us examine each term of (5.38). First we shall show the

second term of (5.36) converges to zero. For this purpose, define p(N) by
N
(5.37)  p(N) = 3 TF(yF(y)(h - B(k-1)).

We have from (5.26) and (5.27) that

N N
(5.38) Z_ I F(N)Fk(yk)Fl'((yk) | = Z_
k=1 “‘IEQOFk<Yk>Fg<Yk> +p

and also

(5.39) F(N)Fk(yk)Fl'((yk) -0 w.p. 1 as N - oo,

if T(N)-=0 w.p. 1 as N- o, which is guaranteed by (C-2). Hence identify-
ingI‘(N)Fk(yk)Fi(yk), h-h(k-1), p(N) and N with 8y Xpo ;n and n respec-

tively in Lemma 5.1, we may conclude from Lemmas 5.1 and 5.2 that
{(5.40) p(N) - 0 w.p. 1 as N - o,

It is also clear that the first and fourth terms in (5. 36) converge to zero
and from Lemma 5.2 the third term in (5.36) tends to zero. Hence, §(N)

converges to zero with probability one as N—> .
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(B) Multi-parameter Case. Define first

(5.41)  $,(z.0)8 z + $,(2.0).

Then, following conditions are sufficient to prove the consistency of the

estimator §(N) in the multi-parameter case:

(C-3) 5k(z,6) satisfies
(5.42) l ak(z,é) l = ¢y lzll + ¢ (Cl < 1) for all zeR®

(C-4) The functioms {¢ik( ¢ )3i=0,1,2,-,M} satisfy

(5.43) 1650(z.8) 1 s eCllzl +1) for all z ¢R"

and

N
(C-5) 1lim inf —%r kZ;OE{Fk(yk)Fl;(yk.) | 91;_1} >cl >0 w.p. 1.

im
N~ o ]
(Theorem 5.2] Let the conditions (C-1), (C-3), (C-4) and (C-5) hold. Then

(5.44) @§(N) = § w.p. 1 as N - o,

In order to prove Theorem 5.2, we need the following lemma.

[Lemme 5. 3] Assume that the same conditions as in Theorem 5.2 hold. Then

(5.45) E{ly 1% s c  for ke1,2, .

The proof of Lemma 5.3 is given in Appendix 5.B.
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(Proof of Theorem 5.2) Define a random variable q(N) by
N -
(5.46) q(N) = %__Ox Fr (Y1) Bya Bre Viee1

where x is an arbitrary vector such as x#0. Using the martingale con-
vergence of Theorem 2.2, we shall show that q(N) converges to zero with
probability one as N—+~o. First, since

N-1 .
E{ EZOX'Fk(Yk)Bk+1Bk+1Vk+1

(5.47) E{a(M) | £}

+ X Fy(y)Byy By Vier | %

N-1 -
E;OX Fk(yk)Bk+1Bk+1Vk+1

]

q(N_IL

{q(N),ﬁﬁ} is a martingale. For the second moment of gq(N), the following

evaluation is obtained:

1}

N N N | N
x'Ef 520 320F1<yi>Bi+1Bi+1vi+1Vj+15j+13j+1Fj<Yj>}*

(5.48) E{qz(N)}

N ot -~

N - -
+ 2X% (E{ %;jFi(yi)Bi+1Bi+lvi+1vj+lBj+1Bj+1Fj(yj)})x

N
2., ~ P
0%x (EQOE{Fi(Yi)Bi+1Bi+1Bi+1Bi+1Fi(Yi)}>X

N
s o?Ix12 3 E{IF (v 1%
i=0
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For the (£,m)-th component ¢Qi(yi)§§+1 ¢|;1i(yi) of the matrix F(yi)F'(yi).

we have

(5.49)  E{18,,(y;)BS,; 6:(v;) 1}
S UByyq IZECN S5 (v ) I 1y (yy) I}

= 1B,y D 2LECN 8,50y I 2IEL I ¢4 (v;) 1 2112,
where Schwarz inequality has been used.

Since from the condition (C-4) and Lemma 5.3, it follows that
(5.50) E{lgy;(v) 1% s ZE{Cly; Il + 1)?)
s 2c2(E{lIy; 1%} + 1)
s 2%(E{ Iy 14172+ 1)
= 2c2(c1/2 + 1) < +o0,
and this implies that
(5.51) E{IFy(y;) 1% < e
Substituting (5.51) into (5.48), we have

(5.52) E{¢®(N)} s oN.
Hence identifying q(N) with Xj in Theorem 2.2, we can see that {q(N), ?Ii} is
the martingale which satisfies the conditions in Theorem 2.2, and then it

follows that
(5.53) —%I— q{N) = 0 w.p. 1 as N = o,

or equivalently

N -
(5.54) —%r E__OFk(yk)BkﬂBkﬂvkﬂ - 0 w.p. 1 as N = o,
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Next, we shall show that r(N) defined by
N
(5.55) r(N)é kz_ox'[Fk(yk)Fl;(yp - E{F (v )Fply) £y} 0x

converges to zero with probability one. The procedure to perform this is

almost same as that of (5.54)., First, since

N
(5.56) Br(0) | §y) = B2 ¥ ROWEROY - EROPFOY | o x| 5y

N-1
E;ox'[Fk(yk)Fi(yk) - E{F(y) | 5i_l}lx

r(N-1),

it can be concluded that {r(N).ﬁﬁ_l} is a martingale. For the second moment

rz(N) is evaluated as follows:

(5.57) E{ré(M)}

N
. . . 2

N
’ ' ' 2
i2=0E{(x F (y;)F;(yy) - E{F,;(y;)Fi(y;) | % _,11x) }

N .
+ 2 2%.E{X'[F1(Y1>Fi<yi) - E{F;(y;)Fi(y;) | 1 ]x
1]

N
= 2 B0 Ry (v Fiyy) - ARy (7)Fi(yy) | %_ 1 10%
N . . 2
< 22 (E{(x'Fy(y;)Fi (v )0
+ E{EAF (v F;(vp) | £ 10%)
N
s 20x]| 4iz=0(s{ IE(r) 1% + EQECIFylrp) 1 21 % D)

N
s alxl? > Iy | 4
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where Jensen's inequality has been used in the derivation of the last in-
equality. By using the same procedure as that in (5.51), we have from the

condition (C-4) and Lemma 5.3

(5.58) E{IF,(y) 1% < e

Consequently, it follows from (5.57) and (5.58) that
(5.59) E{r’(N)} S oN.

and by using Theorem 2.2, we can conclude that
(5.60) Eﬁﬂl -0 w.p. 1 as N = o

or equivalently
1 N |
(5.61) — x'{ l}(:_OFk(yk)Fl'((yg - E{F (v )F (yg) | F_ Hix = 0 w.p. 1

as N = o,

Recalling the elementary inequality

(562 38§ %0 7 a3 Po ® A5 (o B

we have from (5.61) that

1
. 1 <. .
- ngﬁ T kZ=0x E{Fk(yk)Fk(yk) [ ?1;-1}1()
2 }-l»noo nl;f (% Z X Fk yk)Fk(yk)

n
-L 3 ER () | Gy )

N N
lﬁtlglf<—§—1§-0X'Fk<Yk>Fi<(Yk)x - —t% x'E{Fk(yk)FI,((yk) ‘ %_l}x)

= 0,
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where the last equality came from (5.61). Hence from the condition (C-5),

it follows that

N
(5.64)  Lim inf —Ilrgj_ox'l’k(yk)l-"l'((yk)x

N
2 1%@’2’& —%I—IEOX’E{Fk(yk)fI'((yk) | 91;_1})( 2 cl w.p 1.
Hence T'(N) defined by (5.18) can be evaluated as
(5.65)  lin inf ¢ r i -sl) >l wp 1.
which implies
(5.66) 1§1§1p NT(N) < el < +o w.p. 1.

For the first and second terms of (5.24), they are evaluated from (5.54) and

(5.66) as

(5.67) p,pT(N)§ = _%T_ p(NT(N))§ = 0 w.p. 1 as N — oo,

and
N - 1 N .
(5.68) r(N) E:_oFk(yk)BkﬂBkﬂvkﬂ = NT‘(N)—N— kZ_OFk(yk)BkﬂBkﬂvkﬂ
-0 w.p. 1 as N = o,

which complete the proof.

We note that if the nonlinear function ak(z.é) can be represented by
(5.69) $,(z,8) = A (z.8)z,
the condition (C-3) is replaced by the following condition:

(C-3)' For any z eR",

(5.70) max | 2,{A(z.8)} | < 1,
i

where li{*} denotes the eigenvalue of *.
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For the consistency of the estimator &Z(N) of ¢

, the following theorem
is obtained.
| [Theorem 5.3] Assume that same conditions as those of Theorem 5.2 hold.

Then,
(5.71) &%(N) —» g2 w.p. 1 as N ~ oo,

(Proof of Theorem 5.3) Define

(5.72) | §5(k) B (N)F (v ) BBy,

g
aln—- al.—- gl.—n
@

§5(k) 2 (NF (v )FL (73 )8 (XD,

then &2(N) defined by (5.9) can be rewritten by

N N N
(5.73) &2(M) = L 3 e.(x) + 4 T £,(k) €.(K).
¢ T 2,1 T2k 2 gy

0
It is easily shown by using the same procedure as that for the convergence

of q(N) defined by (5.46) that

N
(5.74) -1 3 &.(k) - ¢2 w.p. 1 as N - o
N k=0 1

N
(5.75) 1 > €4(k) = 0 w.p. 1 as N = o,
X o 2

For the last term of (5.73), from (5.18), (5.19) and (5.24), we have

N
(5.76) o 2 €5k) = ¢ 1" ONT M) - % pINT(NI(N)

S e N T ) 2N + 2y o2 (T () ()

- —%3 p38 (NT(N))28 + —;2 P28 NT(N)§]
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where
1 N -
Hence from (5.54) and (5.66), it follows that
1 N
—N_l(zoeS(k) -0 w.p. 1 as N = oo,

and with (5.74) and (5.75), we can conclude (5.71).
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5.4,2 Asymptotic Normality of Estimators
In this section, in order to evaluate the asymptotic accuracy of
- estimators, we shall show the asymptotic normality of the estimator §(N).

For this purpose, we define first that

(5.77) P(N)& - T7HN)

2 N
[ ,
Then, the following theorem is obtained.
[Theorem 5.4] Assume that the conditions (C-1) and (C-5) hold. Further-

more assume that the following conditions hold:

(c-3)"" ak(zl,é) satisfies the uniform Lipschtz condition and it is uniform-

ly bounded, i.e., for any 2 and zzeRn.

-~ -~

” ¢k(Z196) - ¢k(22'6> " = Cl " Z]. - 22 “ (Cl < 1)
(5.79) i
I §,0.601 s o

(C-4)'  The functions {;ik( + ):i=0,1,2, *, M} satisfy the uniform Lipschitz

condition and they are unformly bounded, i.e., for any z; and zy eR",

l x(z1) - Brlzo) I = ey | zy =zl (e < 1)

(5.80)
I 854001 s ¢ for i=0,1,-, M.
Then,
(5.81) v V20PN - 800) W 2 as N - w,
where

(5.82) =z ~ N(0,I).
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In order to prove the sbove theorem, we need the following lemmas,
[Lemma 5.4](Anderson [A7]) Let

(5.83) xy = gyy * byy 2.N=1,2,
such thst

(5.84) E{bZ} s dp Jlin 4 =0
(5.85) P{aQN < a} = Dyyla)

(5.85)  Aim_Dpy(a) = Dy(e)

(5.87)  }im_Dy(a) = D(a).

Then
(5. 88) gji_l;ncoP{xN s a} = D(a).

[Lemma 5.5] (Knopp [K5]) 1If a sequence {ak} has a limit a, then

N
(5.'89) Jim_, 1 kz:oak =a = lin_ep.
[Lemma 5.6] Assume that the same conditions as those in Theorem 5.4 ‘hold.
Then

(5.90) E{||Yk - yk(k-ﬁ)||2} < ¢ cg (c1<]) for 2=0.1,2, *-,

where yk(k—Q) is the sequence which is generated by

Yi+1(k’2) - yi(k-ﬂ) = ¢i(yi(k—a)'é) + Bi+1vi+1

for i=k-2,k-0+1, -, k-
(5.91) or 1 1 1

yk_e(k—Q) =_0.
(Proof of Lemma 5.6) From (5.1), (5.41) and (5.91), we have

e

Hence, by using the condition (C-3)'', we can evaluate (5.91) as
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(5.93) Dy =~ vplk-2) | S ¢y lyp g - yp (k-0

2 - -
s Cl I yk_z Yk_z(k Q) "

2 - -
S o lypp = yyp(k-0) |
_ [}
= c]. " Yk_Q " .

Therefore, by using Lemma 5.3, the following evaluation is given:
(5.94) E{ly, - v (0) 1% s Z2E{ Iy, , 1%

= BE{ Iy, 141112 5 o &8,
where c% is re-defined as ¢y

(Proof of Theorem 5.4) Define the following quantities:

N
(5.95) Q(e.N)& %OFka(k‘“)Fk(yk(k‘“)

(5.96) T(e,N)& [Q(2,N) + pI]_1

(5.97) P(L.N)& ‘Ilr r e

(5.98) z(N)a vEU X 2 mPnE(N)
(5.99)  a(e.N)& /R 2(0)P(2, N)E (2, N)

(5.100)  B(2.N)& vRU ENIPMNEN) - P2 N)F(2.1)]
where

(5.101) §(e,N)& § -T(e,N)s(2,N)

(5.102) 4(e.N)& §(2,N) - pT(2.N)§ (N2¢e)

N -
(6.103) s(e,N)& kZ_OFk(yk(k—!Z))Bk+1[yk+1(k—a) = v (k) = o (v (k-2))]

(N=2).
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By using (5.99) and (5.100)., z(N) can be represented by
(5.104) z(N) = «(2.N) + B(2,N).

Define further

(5.105) R(e,N)& E{a(2,N)a'(2,N)},

then it follows that

(5.106) z(N) = R 2. Ma(e.8) + (1 - B Y20, N)al.N) + B2 N).

We apply Lemma 5.4 to prove the asymptotic normality of z(N). This will be
done by showing that the first term of (5.106) is asymptotically normal
according to Theorem 2.4 and two other terms of (5.106) have the vanishing
second moments as £ tends to infinity. First, we shall show that the asymp-

totic normality of R-I/Z(Q.N)a(Q,N). From (5.91),(5.4) and (5.103), we have

(6.107) s(e.N)

N - M
kZOFk(Yk(k"Q ) )Bk+1{21éi¢ik<yk(k‘2 )) o+ Bk+1vk+1}
= 1:

N N -
%OFk(yk(k-‘l))Fl'{(yk(k-Q))5 + ELOFk(Yk(k-Q))Bk+1Bk+1Vk+1

N -
Q(2.,N)§ + kZ=0Fk(yk(k-tz ))Byy1Bra1Viel

-1 N -
(T "(2,N) - pI)§ + l%:zoFk(yk(k—tz))131&1131&1\,1(,(1.

Substituting (5.107) and (5.401).into (5.102), it follows that
(5.108) 6(e.N) =4 - r(e.N)s(e,N) - pT(2,N)§

- T.M{(T NN - )8

z= Fi(yi (k2B 1By Viag} = ¢ T(2. 108

N -
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Hence, we have from (5.97) and (5.108) that

- N ~
(5100 o) = - A VA0 Bl (00 By v

Define

(5.110)  x(kN) & = o B 200U 20N (73, (k0B 1By Vi

then it follows that

-I/Z(Q.N

N
(5.111) R Ja(2,N) = E;ox(k.N).

For the quantity x(k,N) defined above, it is easily shown that

(5.112)  E{x(kN)} = = 2RV 200, MUV 2NEF (v, (k-0))By, By, By, )
= 0
N N
(5.113)  E{(Z x(k.M))(X =x(k,N))'}
=0 &0

R 200, MEfa (e, Ma (0. 001R Y220 1)

= I'

which means that

E{ x'x(k,N) } =0
x|
N
x' (X x(k,N))
k=0
x|

(5.114)

E{( )2} =1

where x is an arbitrary vector such that x# 0. It is easily verified that
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(5.115) E{(l”—"(k"—m )2}
_1

-1/2
= 'R
Ix|

% x (2. MU (N)E{Fk(yk(k 2))By,1By.y

- -1/2 -1/2
X Efvis Vg | E1Bps B P (- 00 200R 200 00

2 -1/2 -1/2 ~
-1 . ae° . -
TN x'R | (2,N)U (N)E{F) (v} (k=2))By 1By iy

1/2
ka+1Bk+1Fk(yk 'Q )}U N)R (Q,N)X

2 -
= "}1(" 5 —‘l’q— xR Ee.mu” (N)E{Fk(yk(k 2))F (v (k-2))}

xU-l/Z( 'R —1/2(2 N)x

Therefore, we have

(5.116) 1lim sup }E E{( x'x(k,N))Z}
N— k=0 x|

1§m sup

N - -
3 By (k) Fy g (k)10 Y20 30, m0x

s 1ﬁm sup GZE{||Fk(yk(k—2))llz}x'R_l/z(Q,N)
Ix 12
<U R Y (0. %)
s 1km sup x'R 1/2(2 N)U (N)R—I/Z(Q,N)x

IIxII

where (5.51) has been used. From Fatou-Lebesgue Theorem (see e.g. [L3]) and

the condition (C-5). the quantity U(N) defined by (5.78) is evaluated as
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o2 X
(5.117) . 1im inf U(N) = 1j f T E{F, (¥4 )Fy(y,)}
ﬁligl ﬁm in kZ=0 k Yk k Yk
o2

=

lﬁm inf E{ Z E{Fk yk)Fk(yk) | k"'l}}

k=0
02 N
= E{lgjlg.%glf - kZ_OE{Fk(Yk)Fk(Yk) | & 1}}
2 c 0'21

or, equivalently, for the sufficiently large N
-1

(5.118) U (N) s eI.

Simular procedure yields that for the sufficiently large N,
-1/2

(5.119) B X0.N) s o

Therefore, from (5.116), (5.118) and (5.119), the following evaluation is

obtained:

(5.120) 1lim sup Z E{( _L}g(k._N))Z} < +oo,
N— k=0 fx |

We have for OsﬁsN that

(5.121) {o:XXKN) o
x|

—1/2 ~
e I x (W (N)Fk(yk(k-e))Bk+1Bk+1vk+1 ! > ¢}
YN Ix|
xR Y20, myu? ’2%)F (v, (k=2))B, . By, vy ., |
c{w: ]],I:Hk k+1"k+1"k+1 > \/Es}.
Then by defining
1 —1/2 2 ~

it follows that
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(5.123) Z},I p{(Xx(kN) y2 7| xx(BN) |5 oy
k=0 x| x|

N
< _}r kz:oE{ 2N 7(kN) 1> e VE)}.

Furthermore, it is easily shown from (5.51), (5.118) and (5.119) that

2 | -1/2 -1/2
2 =9 . -0))F; -
(5.124)  E{r"(kN)} = - x'R (2. MU 7 T (NE{F (y (k-2))Fy (73, (k-2))}

«U Y20 2 00x s e

Hence, we have

(5.125) E{r2(kMI(I7(kN)[> ev/B)} = 0 as k » o

and, by identifying Tz(k.N) with ay in Lemma 5.5, it follows that

(5.126) z: ELC EWFL%TEl )21¢

x'x(k,N)i > e)l - 0 as N - oo,
x|

Since it is easily verified that {x(1,N),--.x(s,N)} and {x(k,N),:,x(p.N)}
are independent for | k-s | 2, we see from (5.114), (5.120) and (5.126) that
all conditions of Theorem 2.4 are satisfied by regarding x'R-l/z(Q,N)a(Q.N)/

lxlland x' x(k,N)/ | x| as xy and Xpy respectively. Therefore, we can con-

clude that

(5.127) R V20, N)ale.N) 18 z (z~N(0,1)) as N - o,
Next, we shall show that second moments of the last two terms of (5.
106) convergé to zero. For the second term of (5.106), we find that

(5.128) E{x'(I - R V2. 0)e(e. Mo’ (2. N1 - B 202, 8)x}

—I/Z(Q,N -1/2

x'(I -R ))E{a(2.N)a' (2, N)}(1 - R (¢,N))x

(1 - R Y20 R0 - B Y20.0)x

(1 - R 2. %
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Let li be the 1i-th eigenvalue of Rl/z(Q,N). then li is non-negative since

1/

2 . . . L. . . .
R (£,N) is a semi-positive definite matrix. Hence, the i-th eigenvalue

~

Zi of

(5.129) (1 - (&M% - (1 - B2 = REe W) - RN + 22N

can be represented by

- 4 2
(5.130) Ry =2y - 8y + 2y

22 - 1)2(1i +2) 20 for i=1,2, -, M,

and this implies that

(5.131) (I - R(&.N)2 = (1 - &V %2.m))2

Then, the following evaluation holds:

Y e M (LT - B Y 20.3))x}

(5.132) E{x'(I - R
s x'(I - R(2.N))%
s I1-ROMIZIx]2
Using (5.78), (5.105) and (5.109), we have

(5.133) 102w - vt 2 |

N ~
I U(N) - - E{( 2 Bl (kB By viey)
N ~
X2 g (k) By By viny) '}

62 N
Il U(N) - . E;

OE{Fk(yk(k—Q))Bk+1Bk+1Bﬁ+1Bk+1Fg(yk(k-a))}|

2 N
o - % Z E{F g (B0 )Py (ke2))} |

2 N
= 2 EUIF O )F () = Py (R0)Fi (s (k) | ).
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Furthermore, we obtain
(5.134) I F v )Fp(yy) = Fp(y (k=2))Fp (yy (k-2)) |
s E{IFu(y) | 1 F(yy) - Fylyp(k-2)) 1}
+ E{ I F(yp (k-2)) | 1 Fylyy) - F(yy (k=0)) 11}

s B0 Fylr) | 1Y 2RO (5y) - Bty (ko)) 1 21112

o (B IRy () 1 Y 2B E, () - Bl k00 1 211Y2,

and, from (C-1), (C-4) and Lemma 5.3, it is easily verified that
E{IF,(v) 1% s ¢

(5.135) )
E{IF (v, (k) 12} s e

and, from the condition (C-4) and Lemma 5.8, we have
(5.136) E{IF(y) - Fly (k2 1% s e cd (e <1).

Then, it follows that

(5.187)  E{ Il Fy(y )Fpyy) = Fy(y (k-))Fp(y (k-2)) 1} < c &

and the following evaluation for (5.133) is obtained:

1/2 U1/2

.13 1020 - R AN s dPe o v 0 s g e,

Since, from (5.118), U(N) is evaluated for a sufficiently large N as

(5.139) U 3w s oI

it can be concluded that

(5.140) 1 - R(Q.N)II=I|U-1/2(N)U1/2(N)(I - R(Q,N))Ul/z(N)U_l/z(N)I

1/2
U /

s 103w FrvZma - reanu2an |

-0 as L —- oo,
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which implies that

-1/2

(5.141)  E{(T - R Y20 0)e(0. Ma (2. N)(T - R Y20.N)} - 0 as 2 — oo,

Finally, we shall show that the third term of (5.106) converges to zero
as £ tends to infinity. From (5.24) and (5.77), it follows that

(5.142) R Y 200PONE(N)

1 172 8 N ~ )

Then B(2.N) defined by (5.100) can be represented by

T V2 N =
(5.143) B(Q,N) —\/T U (N)( Pé - l%:O{Fk(yk) - Fk(yk(k'a))}Bk+lBk+1Vk+1)'

where (5.99) and (5.109) have been used. Then., we have

(5.144) E{x'B8(2.N)8 (¢,N)x}

- N ~
™ALL o6 - 2 (ELr) - Rl B v

N - -
XL o = 3 (Flvy) = o) B B vien ) 00 Y2 0x

2 - -
= gxU Y2¢wss 0 200

e, -172, N
+ . x'U (N)I(Z—OE{[Fk(yk) = Fk(yk(k-ﬂ))][Fk(yk) - Fk(Yk(k—tl))]'}

XU-I/Z(N)X

2. -1/2
s 1w 2ig 1212

2 -1/2
o 1y

2 2 & 2
.+ 5 M 120x12 2 By - Fily (k) 12

where ¢ <N has been used to derive the last inequality. -Hence, it is

concluded from (5.136) and (5.139) that
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(5.145) E{x'B(2,N)8 (2.N)x}

2
s £ 2IgN%x1%+ o2 P Ix1%t 0 as 2 - o,

or equivalently
(5.146) E{g(e,.N)8 (2, N)} = 0 as £ - oo,

Consequently from (5.127); (5.141), (5.146) and Lemma 5.4, we can see
that z(N) defined by (5.98) converges to a Gaussian random variable with

zero mean and the unit variance, which means

(5.147) JTIU_l/z(N)P(N)(é - 6(N)) lay z as N = oo,

where

z ~ N(0,1).
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5.5 Digitel Simulation Studies

Consider

(5.148) %(e) + o x(t) + B(1 + yx2(£))x(t) = §(¢)

x(0) = Xg x(0) = Xg
where €(t) is a white Gaussian noise process. The model (5.148) is well

foil

known as a model of rolling motion of ships By setting xl(t)=x(t),

xz(t)=i1(t), we have

xl(t) 0 1 xl(t)
, = 2 dt + dw(t)
xz(t) - B(1 + 7x1(t)) - o x2(t)
(5.149)
xl(O)] i Xg
xz(O) Xq

where the white Gaussien noise process £(t) was identified with the Brownian
motion process w(t) as £(t)dt=dw(t). Furthermore, the following discrete
form of (5.149) is obtained by setting the sampling time t (k=0,1, ) and

‘sampling time interval 6=tk+1-tk=

-

0 1
- B(1 + TY%k) —a | Yk T PVie

Viep ~ Vg 7 O
(5.150) 1
X0
)

Yo

where
[ Ve = Dygp vgpl @ [xl(tk) x5(t )]
(5.151) < balo 1]

Vk+1A W(tk"'].) - w(tk)

In simulation studies, the parameter ¢ is assumed as 7> 0.

—141-



(A) Case 1 (Single-unknown-parameter case). First we consider the case

where the coefficient B is unknown, while the coefficient o is known. Set

as

(6 =-8
By 8) = $olyy) + 64, (vy)
oy
(5.152) 1 $4lyp) = | mggk

]
$1lvy) = [ 8(1 + TY%k)Ylk] '
then, the system model (5.150) can be rewritten by

Vouy = Vi = Balyy) + 88, (y,) + bv
(5.153) k+1 k . 0\'k 1Yk k+1
vo = bxg %ol

Then. the estimator of § is given by (5.20), i.e..

5(1 + ry2g)y yF(N-1)
1+ 82T (N-1)(1 + 7y5p)°

(5.154a) §(N) = §(N-1) + 5
YN

- _ 2 o
X (y2.N+1 y2N * aaYZN o(1 + TY1N>Y1N9(N 1))

521 + 1y %2, TE(N-1)

N
L+ 82T (-1 (1 + 1y &y

(5.154b) T(N) =T(N-1) -

Since {vk} is an independent Gaussian noise sequence, the basic condition
(C-1) is satisfied. Hence, if the condition (C-2) is satisfied, the esti-

mator §(N) given by (5.154) is a consistent one. For the system model

(5.153), the matrix By, defined by (5.7) is given by
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(5.155) By,y =

|
. .
 Then the condition (C-2) can be rewritten as

N . _
{ 5;0¢ik<yk>sg+1¢1k<yk> + p}7L (scalar)

(5.156) T'(N)

(3 $nbpdsy) « o7t

N -
{2 (1+rydvd + a7t
k=0
-0 w.p. 1 as N = oo,

where (5.27) and (5.152) have been used. For the output process Yig' it can

be easily verified that
(5.157) Vik = fl(vl,vz,-",vk_z) * bvy
where

B Vv Vi ) By g * 8V g+ OE (Vg v )
(5.158) .

2
f2<V1,V2,""Vk_1)é (1 + 562)}’2,1(_1 + 616(1 + Tyl'k_2>y1'k_2

Hence by using the simular procedure as that of Theorem 5.3, it can be

easily verified that

- OO

(5.159)  liminf -1 }‘f‘(1+ 2292 > Yiminf —k zN 2
' e N &, ik’ Y1k T £ 1k

N—»_oo
2'5&2> 0 w.p. 1
and this implies that
N 2 \2.2
1{2_1(1 YR w.p. 1 as N = oo,

and hence the condition (C-2) is satisfied.
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In digital simulation studies, the true value of the unknown parameter

was set as §=-8.0: other known parameters were o=4.0, 02=0.433, r=5.0 and
p=0.001: and the sampling interval and the initial state ¥ were respec-
tively set as §=0.01 and y0=[0 0]°. With these true values, the output
sequence of Yik and Yop Were obtained by simulating (5.154) on a digital
computer. Figure 5.1{(a) shows.a typical sample run of the input sequence
{vk:k=1.2,-"} of independent Gaussian random variables generated by a
digital computer. The vy process is depicted in Fig. 5.1(b) and 5.1{(c). A
typical sample run of the estimator §(N) is shown in Fig.5.2. By using the

same measure as that defined by (4.74) in the previous chapter, i.e.,

L
(5.160) ¢80 = 4 2 @0 - b

the convergence of @(N) was examined numerically. Figure 5.3 illustrates a

result of Monte Carlo experiments for 100 sample runs of {yk}.

(B) Case 2 (Multi-unknown-parameter case). Next we consider the case where
the coefficients o and B are both unknown. In this case, the system model

can be represented by

Vs = Yi = 8(yp.8) + bvy
(s.161) | KR TUETT R
v = [xg %ol

where

bald, 8,0 =[-8 1
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[ $re8) = Bolyy) + 8,8,(5) * 88505

y k ' 0
Bolvy) =8 | 2 $(y,) =8
(5.162) A 0 8{y p)¥ix
¢2(Yk) =8 0
L Yok

In (5.162), in order to satisfy the condition (C-3)' and (C-4), (1+Ty%k) was
replaced by the function g(ylk) defined by

2
1+ ¢ for Vg = F

(5.163) g(yqy) =
1k 1+ TY%k for y%k < p,

where K is a preassigned constant with a sufficient large value, and 7 is
assumed to be a positive constant. From (5.162), it is easily shown that

-~

¢K(yK) given by (5.69) can be represented by
(5.164)  $,(z.8) = Alz.f)z
where .
1 8
(5.165) A(z.8) =
élag(zl) 1+ 662

Hence, if two eigenvalues li(i=1'2) of A(z,§) are llﬂ <1, the condition (C-

3)' is satisfied. Since the characteristic equation of (5.165) is given by
2 _ _ 52 -
(5.166) 2 (2 + 885)2 + {1 - 6%(z;)§; + 86,} = 0,

it is easily verified that Ilil <1 (i=1,2), if

61 < 0
(5.167) 268,+ 4 > 6261g(z1) for all z,
63(21)61 > éz for all Zl.
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It is almost obvious that the system model (5.163) satisfies the conditions
(C-1) and (C-4). Hence, all conditions of Theorems 5.2, 5.3 satisfied
except for the condition (C-5). We shall show below that the system model
(5.161) satisfies the condition (C-5). From (5.155) and (5.162), Fk(yk)

defined by (5.14) can be rewritten by

0 g(Ylk)Ylk

(5.168) Fy(y,) = &
KK [ 0 Yok

Then, it follows that

2 2
5 g (Ylk)ylk g(ylk)ylkYZk
(5.169) Fk(yk)Fi(yk) =4

2
By )Y 1Y ok Yok

By the same procedure as that for (5.157), we have

(5.170) Yig = f3(v1.v2,~".vk_2) + 0V

(5171) ka = f4(V1‘9V20 "‘.Vk_1> + Vk

where

(5.172) f3(vlyV2' ."'vk_z)équk-l + ayZ'k_z + 6f4(V1,V2v "'vvk_z)

(5.173) f4(V1,V2v'"ka_1)é (1 + 562)y2'k_1 + élag(yl,k—l)yl,k-l‘

Hence, it follows that

b

(5.174) . > EFROVFY | 5]

LS g2y 05 LS gy vy (Ve vy
T &8 Tk T 2B ik Y1k eV T Vil
2
=5

LS gy vy i) 2 vy + o2
LA aibA S SEAV 0 St RN S5 RN (I - o A6 SRS O
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and

=

(5.175)  x'{-}- 2 B Fy(ny) | G b

N
2 1 - 2 222
T Z,B0mvey ¢ vy v )%} ¢ 8% %
where x4 (xl,xz)' is an arbitrary vector suéh that x#0. By using the same

procedure as that of (5.159), we have

(5.176)  1i fIZN 2 2z 8%2% > 9 1
. ﬁm in Tk-o ylk g w.Dp.

Hence, it follows that

N
(5.177)  lim inf x'{- 2 EF R () | £y

622§ if x, * 0

11}1m inf 62—N—Z g (ylk)ylkx z 8252 2

if x, =0,
which implies that the condition (C-5) is satisfied.

In digital simulation studies, the parameter p was set as p=10, and
other parameters were set as the same values as in Case 1. Typical sample
runs of the estimator §(N)=[ 51(N) 62(N)]' and &Z(N) are shown in Fig.5. 4,
gonte—Carlo experiments for 100 sample runs of {yk}’s is illustrated in
Fig. 5.5. Histograms of 100 sample runs of estimators él(N), §2(N) and

&z(N) at N=3000 are shown in Fig. 5.6, where fitted normal curves are also

depicted. By using Fig. 5.6, cumulative frequency curves for each 100
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sample runs of estimators are plotted on the normal-probability papers, and
they are depicted in Fig. 5.7. Furthermore we make use of Chi-square test
with the 5 percent level of significance in order to check more precisely
the normality of sample distributions of estimators. Results of Chi-square
test are shown in Table 5.1,

Throughout boﬁh cases of Case 1 and Case 2. we may conclude that esti-
mators of unknown parameters well converge to their true values, and that,
in Case 2, sample distributions of the estimators at N=3000 are approxi-

mately Gaussian.
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{c) A sample rum of Yok

Fig 5.1 Typical sample runs of the input noise Vi
and the output sequence Vi
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Fig 5.2 A typical sample run of the estimaste §(N)

= L
= - _ 1 (0) oy _ 212
= / 4 CL(N-B(N)) =1 2;1(9 (N) 8)
= 1=100
5 30
2014
10}
0 1000 2000 3000

Fig 5.3 Convergence of §(N) obtained by 100 Monte-Carlo trisls
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Fig. 5.4 Typical sample runs of estimates of EI(N). EZ(N) and EZ(N)
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Fig. 5.5 Convergence behaviours of GI(N). EZ(N) and oz(N)
obtained by 100 Monte-Carlo trials
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Table 5.1 Chi-square test for the check of normality

{a) Chi-square test for élN(N) (N=3000)

Observed Theoretical 2
Interval frequency f i frequency Fi (fi Fi) / 1:‘i
Above -6.5 1 1.92 0. 441
-6.8 ~ -6.5 3 2.54 0.083
-7.1 ~ -6.8 5 4.72 0.017
-7.4 ~ -7.1 6 7.67 0. 364
-7.7 ~ -7.4 14 10.91 0.875
-8.0 ~ -7.7 17 13.83 0.890
-8.3 ~ -8.0 15 14.67 0.007
-8.6 ~ -8.3 11 13.89 0.601
-8.9 ~ -8.6 8 11.48 1.055
-9.2 ~ -8.9 9 8.11 0.098
-9.5 ~ -9.2 4 5. 40 0. 363
-9.8 ~ -9.5 4 2. 88 0.436
Below~ -9.8 3 2.28 0.227
Total 100 100. 00 5. 457
2 -

(b) Chi-square test for §on(N) (N=3000)

Observed Theoretical R IRY

Interval frequency £ i frequency F i (fi I:.i) / Fi
Above -3.4 12 13.14 0. 099
-3.7 ~ -3.4 21 17.14 0.936
-4.0 ~ -3.7 28 23.14 1.068
-4.3 ~ -4.0 12 21.98 4.531
-4.6 ~ -4.3 16 14.80 0.097
-4.9 ~ -4.6 9 7.02 0.558
Below -4.9 2 3.01 0.339
Total 100 100.23 7.628

2 -
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(¢) Chi-square test for &Z(N) (N=3000)

Observed Theoretical o 2

Interval frequency fi frequency Fi (fi Fi) /Fi
Above 0. 460 2 2.12 0. 0068
0.452 ~ 0. 460 6 6.75 0.0833
0.444 ~ 0.452 15 16. 61 0.1561
0.436 ~ 0.444 i 25.74 1.0749
0.428 ~ 0.436 23 25, 22 0.1954
0.420 ~ 0.428 15 15.50 0.0160
0.412 ~ 0.420 6 6.25 0.0100
Below 0.412 2 1.83" 0.0158
Total 100 100. 02 1.5583

2 _
10.95(5) = 11.07 > 1.5583

where theoretical frequency Fi denotes the area under the normal
curve in the interval while the observed frequency fi is the
actual number of observations which fall in the interval.
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5.6 Discussions

In this chapter, the identification procedure for a class of non-
" stationary nonlinear systems has been derived. It has been also proved
mathematically that proposed estimators of unknown system parameters have
salient features such as the consistency and the asymptotic normality.

The key assumption is that the system model is, in this chapter, linear
with respect to unknown parameters. Estimators of unknown parameters are
obtained by using the meximum likelihood concept. Using the martingale
convergence theorem and the central limit theorem for the sum of dependent
random variables, the consistency of estimators and their asymptotic normal-
ity have been proved respectively. It should be emphasized that in case of
the single unknown parameter, the consistency of the estimator holds without
stable conditions in the sense that the second moment of the output process

is bounded,which is usually required to prove the consistency of estimators.
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Appendix 5.A Proof of Lemmas 5.2

Since both Fk(yk) and (k) are 5i—measurab1e.

N-1 .
(A.1)  E{a(N) | &} = E{ kz-o T (R)Fy (¥ 0By Byeq Vel

+ T(NFy(yBye By Vyeg | K

N-1 )
Z o TR B By Vien

h(N-1).

Then {h(N).ﬁﬁ} is a martingale. We shall prove that h(N) is bounded in

2

L“. From (A.1), we obtain

N
> E{h2(3) - b%¥(5-1)}
30

(a.2)  E{n%(N)}

N 92, . 2, .
> E{E{h“(j) - h(j-1) | %}}
o

N
2 BEGA) - 13D | ) + Eb0)
J:

N
- ; 72 2
= JZzlE{E{( T(3F 4y )BS41B 31V ier)
: %2 : 2
+ 2( T(JIF 5(y 0B, qB 4V 541 (31D | FH} + E{RE(0))

N -
= 3 BLE DOy BBV e 2 | 1+ B0,
J:

Here, from the condition (C-1), it follows that

(4.3)  E{Z(0)} = E{( T(0)F(yy)B;Bv))?

2 bt -
< ¢ (const.)
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and

. = 2
(4.4)  E{(T(DFy BBy v 2] %)

= r(j)Fj(yj)Bj+1Bj+1E{Vj+1Vj+1’ 53}B3+1Bj+1Fj(yj) F(j)

2 . ot - , .

o T (3)F (v )F (v ) T(3)

2T ) - TG,

where the condition (C-1), (5.27) and

(A.5) Fj(yj>Bj+1ijlBj+1Bj+lF3<yj) = Fj(Y')Fz(y

have been used.

JJJ)

Since

(4.6) 0 ST “(5-1)(T() -T(1)2 =I(5-1) - ()

it follows that

(A.7)  T2G)(r

- (T(j) -T2 rG-1),

T -r ) = TG -T2 G

= (T(j3-1) -T(3)

- G (PG - T2
s T(j1) -T(3).

Hence, from (A.2) to (A.7), it can be concluded that
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N
(4.8) E{b2(M)} s o2 3 E(M(D T} v e
J:

= ¢2(T(0) - E{T(N)}) + ¢

s ¢2T(0) + c.

Therefore, from Theorem 2.1, h(N) converges to the random variable h with

probability one.
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Appendix 5.B Proof of Lemma 5.3

From the condition (C-1), we have
(B.1) Iy 8) s ¢/ lly I +e

Then, using (B.1) and (5.1), vy can be evaluated as follows:

(B.2)  lypl s I8 (1 801 + 1B 1 Ny |

S ey I+ e +lv 1)

S {8 o 8) I+ el +hv_ 1D} + o1 +lv )

K k-1
s Fllyghe etk vy 1+ v oy lvg 1+ vyl
+ c¥_1 toetgg + 1)

k R
k 1 k-1
= Cl l YO I+ e I_—cl + jélcl I vy ).

where the relation

k
>
i=

i« i
OOCISECI——I-:C—I (0<C1<1)

has been used. Hence, from (B.2) and the elementary inequality (a+b+c)4s

27(a4+b4+c4), we have

k .
(B.3) E{ly 1% s El(c¥ly I + o —Il—q *2 v Y
k .
s 270eff lyg 14+ ( 5% + ¢ 2 el vy DAL

¢1
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Furthermore, using the condition (C-1), it follows that
| S k' k k k  4k-i,-igmiL-i

B.4) E(Z Flivit=3 ¥ ¥ ¥ ¢ 17127137y
i=1 11=1 izzl i3=1 14-_-1

XE{lv, I hvy I lvy Ilvy I}
11 12 13 14

k k k k 4k-i,-i,~i,-1 4
ST 3 S % o ' EAAMEEIIv 141 N/t
11=1 12=1 13=1 14=1 J=1 ] J

1 )4 < 400,

Hence. we can conclude (5.45) from (B.3) and {(B.4).
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CHAPTER §  STRUCTURE DETERMINATION OF NONSTATIONART NONLINEAR SYSTEMS

6.1 Introductory Remarks

In this chapter, motivated by the requirement of establishing & math-
ematical model reflecting nonlinear and nonstationary properties of geo-
physical data, & method is presented for modeling a class of nonstationary
nonlinear systems with unknown system structures. The underlying system is
assumed to be described by & nonlinear time-varying stochastic difference
equation.

The principal line of attack to determine the system structure is to
minimize the upper bound of the entropy associated with errors of both input
noises and unknown parameters, where unknown system paramcters are estimated
by using the maximum likelihood concept.

In Sectoin 6.2, a model for nonlinear time-varying systems is presented
and the criterion functions for the structure determination and parameter
identification are introduced. For the system model given in Section 6.3,
which is linear with respect to unknown parameters, asymptotic properties of
the determined system structure and estimated unknoviﬁ parameters are

investigated theoretically in Section 6.4 and numerically in Section 6.5.
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In Section 6.6, the proposed method for the structure determination and
parameter identification is also tried to apply to several real earthquake

data.
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6.2 Criterion Function for Structure Determinstion

It is of interest to consider that obseved discrete data is obtained

as the solution of the following stochastic difference equation:

Vi = E (Vg Yiepr ™ Vi 1Hi0) + By
(6.1)
Yo =Yg =T Yopey 70

where {bk} is the known positive coefficient with the bounded value for k=
1,2,+,N: § is the vector representing the unknown parameters whose dimen-
sion is dependent on both the system order n and the structure of fs(6 )i

the input {vk} is the sequence of scalar unobservable random variables and

satisfies the following condition:

(C-1) The sequence of random variables {Vk} satisfies
E{Vk | %_1} =0 w.p. 1
E{v% lﬁi_l} = g2 w.p. 1
E{vﬁlfl;_l} = c w.p 1

where 5&_1 is the minimum o-algebra generated by {v1,°".vk_1}.
The purpose of this chapter is to determine the structure of fs(° ) and

to estimate the unknown parameters § and 62

from the observation data YNA
{yl.-".yN}. Naturally, it is impossible to find a pair of (fs,é) only from
the information included in the observation data YN' Therefore, the class of

(£.8(f)), where (fs,é) is being looked for, is restricted within a certain’

range of £ and 8(f). We denote this set of pairs (f,8(f)) by M, i.e.

(6.2) M = {(£,6(f)) |feF. 6(f)eDg}  (DgcR™ m = dim. 6(f))

where F and Df are, respectively, the finite set of functions and the bounded
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domain of parameters associated with f which satisfies IOi(f) | =c for i=l,
w..m. An element (£,6(f)) of M represents that the output data {yk} is

assumed to be described by

¥y = £(Vpaqr e Vot ki0(E)) by vy (£.0(£))

(6.3)
yo = y_l = eee = y_p+1 = (0,

where p is the model order and vk(f,e(f)) is the modeling error due to the
form of the function f and the parameter 0(£). In the following, we use the

notation
(6.4) D c D
£,7 78
whose meaning is that, by setting some elements of O(fz) are zero, we obtain

fl(zl,-u.zpl:k:e(fl)) = fz(zl.-",zpzzk:ﬂ(fz)) for any zi(i=1,-",p2:p15p?),

k and O(fl) ( eDfl).
We introduce the criterion function for determining the structure fs'
derived from evaluating the upper bound of the entropy associated with the

errors Ek(f.ﬂ(f)) and {(£f,6(f)) defined below. Gk(f,o(f)) is given by
(6.5) Gk(f.ﬂ(f)) & vy - vk(f.O(f)L
The i-th element of Z(£f,0(f)) is defined by

when there exists 6j corresponding to Oi(f). and

when there exists no éj corresponding to ei(f).-
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The entropy associated with {Sk(f,ﬂ(f)):k=1.°".N} and $(f.8(f)) is given by

Ny

(6.7)  H{(Ey .8 2 ¢) & -E{log p(E,, .6
1 N m 1 N m

where p( + : » ) is the joint probability density function: N is the number of
the observation data: m is the dimension of Z(£f,0(f)); and Gk(f.O(f)) and
Z(f,8(f)) are abbreviated as fk and { respectively. Since the number of
{Gk} is N whereas that of { is m, contributions of {Ek} and { to the entropy
H are evaluated as the order of O(N) end 0(m) respectively. Hence, in order
to equalize their contributions to the entropy, ¢ is multiplied by N/m.
Using Bayes' rule, (6.7) can be represented by

(6.8) (& -.-e-Nm-zNu( | e 8 N oy v n X gy
68 H 1- * N'_ 'i=1 El lefzy * : | Bamsan T

m i-1" ' m

where H( + | *) is the conditional entropy defined by using the conditional

probability density function p( -+ | %), i.e.,

(69) H(Ei 'Elvszv '"vei_lv"g’ ;) é - E{log p(ei Ielv ‘"'Ei—l

N
VT ;)}.
Using the properties of entropy (see e.g. [G4]), we obtain

(6.10a) H(Si IEI.EZ,-".Ei_l, —%— ) s —%—1og 2re + —%— log [var.{éi}],

(6.10b) H(—%— ) = -—%— m log 2ze + —%— m log [(—g—)zdet.(var.{§})].

We assume that {Ei} defined by (6.5) is the weak stéﬁionary process with

E{Gi}=0 for i=1,2,.,N. Then, it follows that

(8.11) var.{Ei} = az(f,B(f)) - 62,

where az(f,e(f))éE{V§(f,0(f))}. Therefore, since var. {{} =cl because of

—-167 -



| Oil Sc (i=1,+-,m), the entropy H given by (6.7) can be evaluated as

(6.12) H(&y. &y X 2) s X 1og 62(£,6(£)) + m log N
1 N "m Z
+ —%— {(N + m) log 2re + m? log ¢ - 2m log m},
where the inequality log {U (£,0(£))- 2} < log oz(f 0(f)) has been used.

For a fixed N, the minimization of the R.H.S. of (6.12) coincides with that

of
—-2--10 a(fe(f))+mlo N+—2—mlo C+Tm1° 2re - m log m
g ’ g g g g'

and the last three terms are negligible for a large value of N. Hence, the

minimization of the R.H.S. of (6.12) is equivalent to minimizing

X 1og ¢2(£,6(£)) + m log N.

Furthermore, since az(f.ﬂ(f)) is unknown, we have to replace oz(f,O(f)) with
its estimate &ﬁ(f,éN(f)). Hence, the following criterion function for the

structure determination is introduced:

(6.13) 2 (N.£.8y(£)) & B log 63(£,8y(£)) + m log N,

The unknown parameter 8(f) and the variance of vk(f.o(f)) are identi-

fied here by minimizing the following criterion function,

N
(6.14) Qp(f,e,az)é N log 02 + 2_1—2 g = £y (Fpye ™ Ty 1K :8)}2.

1f vk(f.G(f)) is independent and identically distributed Gaussian sequence,

the criterion function (6.14) coincides with the maximum likelihood identi-
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2

fication method. Differentiating (6.14) wgth respect to ¢“ and setting

an/602=0. we have

(6.15) 6N<f> = arg. { 5‘%2) 0 L(N.f,6(£))}
€
f

(6.16)  GA(£,8y(f)) = L(N.£,dy(£))

where

N
(6.17)  LINES(E) & o 3 = {1y = £l gy k0 ())2.

1 by

In order to obtain the estimate &ﬁ(f.éN(f)) and EN(f) concretely, we have to
use some nonlinear optimization technique because of the nonlinearity of
L(N,£,8(f)) with respect to 8(f). For the detailed aspect of nonlinear
optimization techniques, see, e.g. [P2].

Then, the system structure is estimated as f giving the minimum value of
(6.13}). In the sequel, the estimated structure is represented by %N'
Closely related criterion functions were derived by the Bayesian argument in
Refs. [A5], [S8] and the shortest data description concept in Ref. [R1]. It
should be emphasized that the proposed criterion function could be derived
without assuming the stationary or ergodic properties of the output process
{yk} and without assuming the linearity of the system. The representative

criterion functions for structure determination are listed in Table 6.1.
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6.3 Structure Determination for Linear Models in Parameters

First, for convenience of discussion, consider the nonlinear function

'fs(- ) in (6.1) as

n .
. sR) = (i) . s
(618) fs(yk"l‘ yk_zw vyk__n'k'é) - iz=1fs (Yk_l' ,Yk_i,kvé).

For instance, if fs(- ) is given by
fs(yk,l."-,yk_n?k:é) = gl(yk"l;é) + gz(yk-l'yk-S;é)
+ 83(yk-2’yk-n;6)'

then f;i)(- } can be given by

[ gl(yk-1:6> for i=1
Vg Y _s K3 = <
s e kot 83(Yp_p Vi) for i=n
L 0 otherwise.

(4

In the case where fs(° ) is not decomposed in any sense, fsl)(- ) is given

by

(1) 0 for i=1,2, --,n-1
£ (Tpopr o Vpey k38D = . . ~
s(yk—1'°"’yk—n'é) for i=n,

Furthermore, we assume that each nonlinear function fél)(° ) can be expanded

into
e,
(6.19) £9) (g ey ikif) = S B of . lgrgrory s ik)
: s k-1 VE-1 7 2 Yidte 15T T YRR
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where éij is the unknown constant parameter, which is the component of

(620) éé[ 611 oo 61Q1: e d é ¢ é 0 J'-

al” .

Substituting (6.18) and (6.19) into (6.1), it follows that

2

(6.21) v = 121 leélst U(yk 1 Ve ) * by

For the true system (fs,é) described by (6.21), the model set M is assumed

to be {(£f.8(f)) | feF, 8(£) eDf} where F is given by

(6.22) F = {£] £z, w2z 0(E)) = 3 3 0; (D), 5 s(zp. 2y 1K)
i=1 j=1

and Gij(f) is the element of

(6.23) 6(f)al 6,,(£) -~ elql(f): R epl(f) epqp(f)]

Hence, the criterion function Qs(° ) for the structure determination of the

system (6.21) is given by

0 (N.£.8y(£)) & - log 62(£,8,(F)) + m log N.

s
where

(6.24) }m = ql + q2 + eee o+ qp.
In the case where the set of functions F is given by (6.22), the func-

tion f eF is linear with respect to 6(f). Hence, estimates of 6(f) and

az(f.O(f)) are respectively given by

(6.25)  By(£) = Qg (D)ey(£)
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N .
~2/c 2 I | 1 _ . LB 2
(6.26) O'N(f'BN(f)) =X %_‘ —gz {Yk f(yk-l' .yk_pvk'eN(f))}
where
N o

N
(6.28) Qu(f)a kz_le_l(ﬂFl;_l(f)

1 k) e k)
(629) Fk-l(f)é Tk [fpyu(yk_l'k) fp,1q1<yk_1'k>'

f

N ;fp,pl(yk"l' "‘.yk_p:k) eoe p'qu(yk_lv"'vyk_p;k)]’.

In order to avoid numerical difficulties, we set éN(f) at an arbitrary
point in Df. if EN(f) EDf or (6.25) is not well defined because of the

singularity of QN(f).
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6.4 Asymptotic Properties of Estimators for Linear Models in Parameters

We restrict our discussion to nonlinear system models whose unknown
parameters are included linearly in fs( « ), First, we present the theorem
concerned with the consistency of EN(f) and &ﬁ(f.éN(f)).

[Theorem 6.1] Assume- that in addition to the condition (C-1), the follow-

ing conditions hold:

(C-2) (fs.é) is stable in the sense that the output process {yk} satisfies
E{yﬁ} =c (const.) for k=1,2,

(C-3) (f,.8)eM and Dfsc Dy

(c-4) {f (Zl' -~.zi:k)} satisfies the growth condition, i.e,, for any

p.ij

real number z_ (m=1,2, .1,

i
| (zl,"-.zi:k) | = e leﬁ)l/2 + ¢ (i=1,--,pij=l, -, q:);
m:

£ i i

and

N
, . 1 .
(C—S) lﬁﬁglf T%zoE{Fk-l(f)Fk-l(f) | fk—z} 2cl >0 w.p. 1.

Then,
(6.30) éN(f) - §(f) w.p. 1 as N = o
(6.31) GHEGE) ~ o wp 1 s N> =,
where
(6.32) 4(f) = [611---61Q10 e 03 e ‘5n1"'5mzn° «e 03 0 - 0],
L\ ~ — “ ~— J ;w__/
94 qn qn+1+ e +qp

The proof is given in Appendix 6.A. Setting f( -+ ) as fs( + ) in Theorem

6.1, we have immediately Corollary 6.1.
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[Corollary 6.1] Assume that (C-1), {C-2) hold and that, instead of (C-3),
(C-4) and (C-5) in Theorem 6.1, the following conditions hold:
(C-3)" (£f,.6) eM:

(c-4) {f --,zi:k)} satisfies the growth condition, i.e.., for any

s,ij(zl"

real number z, (m=1, 2, =, 1),

0

vezk) | S of z 22 H1/2 4 o (4=1, e, nij=l, o0

£, 1502y 0240 PR i

and
(C-5)" 11m mf —N-Z E{F ( )Fﬁ-l(fs) | 91"{_2} 2 cl > 0 w.p. 1.

Then,
(6.33) EN(fs) - § w.p. 1 as N = o

(6.34) &%(fs.éN(fs)) > g? w.p. 1 as N = oo,

Regarding the asymptotic property of the criteron function for the
structure determination, we have the following theorem.
[Theorem 6.2] Assume that (C-1), (C-2), (C-3)', (C-4) and (C-5)' hold.

Then., for a sufficiently large N, we have

(6.35) o_(N.f_,8y(£)) s ¢_(N.£,§(£)) w.p. 1

where f is any element of F given by (6.22).
The proof of Theorem 6.2 is given in Appendix 6.B. Theorem 6.2 suggests

that the determined system structure fN becomes asymptotically an element of

(6.36) G, = {f[1lim Ias<N,f,§N(f)) e_(N.£_, eN Y1=0, w.p. 1}.

N— o
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Note that the number of elements of Gs consists not necessarily of one
but usually of more than 2 elements. Restricting domains of unknown param-
eters Df and Dfs as Df c Dfsor Dfsc: Df. the following two theorems are
obtained.

[Theorem 6.3] Assume that the same conditions as those in Theorem 6.2 hold
except for (C-3)'. Instead of (C-3)’, assume that
(C-3)" (fs.é)eM and D¢ < Dfs.

Then, for a sufficiently large N, the following inequality holds:

(6.37) o (N.f_.By(E)) < 0_(N.£y(f)  wp. L

where f is any element of F given by (6.22) except for fs'
[Theorem 6.4] Assume that the same conditions as those in Theorem 6.1

hold. Then, for eny element of F given by (B.22) except for fs' we have

-~

{6.38) QS(N,fS,éN(fS)) < QS(N,f,eN(f)) in prob.

fof a sufficiently large N.

Proofs of Theorems 6.3 and 6.4 are given in Appendices 6.C and 6.D
respectively. From Theorems 6.3 and 6.4, the following corollary is
immediately obtained.

[Corollary 6.2] Assume that the same conditions as those in Theorem 6.1
hold except for (C-3). Further assume that
(C-6) (f,.8)eM and Dfsc D¢ or Dp < Dfs.

Then, for any element of F given by (6.22) except for fs' we have

(6. 39) QS(N,fs.éN(fs)) < QS(N,f,éN(f)) in prob.

for a sufficiently large N.

Corollary 6.2 suggests that if the model set M is given by
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(6.40) M = {(£,0(£)) | fe{fy, . £}, G(fi)EDfi: Dflc Dg = = @ DfK}.
the determined system structure EN is weakly consistent, i.e.,

(6.41) %N - fs in prob. as N = oo,

Furthermore, setting the model set M the same as (6.40), and selecting £;
when Dfic ij and QS<N,fi,§N(fi))=QS(N,fJ-,§N(fj)). then Theorems 6.2 and

6.3 suggest

(6.42) ‘%N - fs w.p. 1 as N = oo,

We note that if the nonlinear function fs( + ) can be represented by

(6.43) fs(zl,---,zn:k:é) = as(zl,---,zn:k:é)(zn zl)'

+ $olzg, oz ki),

(as( + )t n-dim. row vector)
the condition (C-2) is replaced by

m;xx | ,li{AS(zl,...,zn;k;é)} | <1 (i=1,2, =, n)

(c-2)"
|¢s(zl.---,zn:k:6) | < e,

where li{*} is the i-th eigenvalue of "*" and As( + ) is the n-dimensional

square matrix defined by

0. 1.

(6.44) A(z. .2z ikif) = 0
ag(zy, .z ikif)

The derivation of (C-2)' from (C-2) is shown in Appendix 6.E.
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6.5 Digital Simulation Studies

In simulation studies, we use

Y T f (Yk_ + Y- ig) + ka
(6. 45) s k12
Yo = Y1 7 0

where {vk} is the independent Gaussian noise of N(O,az). and fs(~ ) is

given by
(6.46) fs(yk_l'yk_2=6) = éllyk‘l + 521g(yk_2>yk-2

and

1+ 7y§_2 for y%_z S M

1+ (>0 for y12<_2 > K.

From (6.46), it follows that

(6.48)  £.(yp 1 Ypogi8) = ag(yp 0. 8) vy Yyp)'
where

(6.49) a (y, o 8)& (85,8(yy_p) by,

Hence, if all eigenvalues 2 (i=1,2) of A defined by

0 1

(6.50) A (v, o 6)4
B 82180rp) By

are Ilil <1, the condition (C-2)' is satisfied. Since the characteristic

equation of (6.50) is given by
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2 =
(651) e - 6111 - 521g<yk_2) = 0,

it is easily verified that Ili | <1 (i=1,2), if

éZlg(z) > -1 for all z
(6.52) 611 + émg(z) <1 for all z
611 - 6215(2) > -1 for all z .

It is obvious that the input noise sequence {vk} satisfies the condition
(C-1).

For the system model (6. 45), Fk-l(fs) defined by (6.29) is given by
_ 1 .
(6.53) Fk"'l(fs) il [Yk_l g(yk_z)yk_2] .

Then, it follows that

Yk_zfs(yk_z' Yk_3 :6 )g(yk_z)
2 2
g (yk-z)yk—z

Hence, for an arbitrary vector xé& [xl x2]' (#0), we have

(6.55)

>
2
" M

: a2, 22
ko Yiegi8)xy * 8yy pdyypxp}” + 0%xy.



it follows that

=

(6.57) i inf x'{ 4 > Bl (£)FL (£) | £_phx

azx% if x; # 0

N
L. 1 1 2 2 2 2.2 . =
Yo inf 7 7 2 8 02lip¥e B 07 1 X7 0

which implies that the condition (C-5)" is satisfied.

Along the procedure shown in Fig.6.1, the system structure deter-
mination is performed by the following steps:
(1) Collection of observed data. Obtain the observed data YNé {yl.yz.
yN} up to the preassigned step N from the true system at hand. In digital
simulation studies, the true values of unknown parameters were set as é11=

2=1.0. and known coefficients were b=0.1, v=0.5 and u=

1.0, §5y=-0.2 end ¢
4.0. With these values of coefficients, the condition given by (6.52) is
satisfied. The observation data YN is obtained by simulating (6.45) on a
digital computer. A typical sample run of the observation process {yk} is
depicted in Fig. 6. 2.

(2) Assignment of model set M. In digital simulation studies, we conéen—

trate our attention on the order determination only for simplicity of dis-

cussion. Therefore, the model set M is restricted to
(6.58) M = {(£,.8(p)) | 6(p) €Dy p=1.2, -, K}
where

(6.59)  £(z). .z 0(p) if;leil(mfﬂ(zi)

(6.60) fil(zi)é z (i=1, 2, *=,p~1)

i
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(6.61) fpl(zp)é g(zp)zp.
(6.62) 6(p)a [ 8;;(p) - Opl(p)]'.

Since we are free to choose the maximum order of K, throughout simulation
experiments, K was set as 5. From (6.46), (6.59), (6.60) and (6.61), condi-
tions (C-3)', (C-4) and (C-4)' are clearly satisfied when the set Dp (p=1,
2,+,K) is taken to be sufficiently large. Hence, all conditions of
Corollary 6.1 and Theorem 6.2 are satisfied.

(3) Comparison qfﬂo (N,p). Using the observed data YN, compute (6.25) and
(6.26) for p=1,2,-,K. For the system model given by (6.58), the estimated

6(p) and 02(p) 2 az(fp,ﬂ(p)) are given by

(6.63)  By(p) = O (p)sy(p)

(6.68) 2(p) = 1 3 L fy < £ (3 ey d(p))}2
: N N 2 Yk T e k-1 Ye-piOR'P
where
f 5N<P)é[ 511(13) e épl(P)]'
;X
sy(P) &g 2 Py )y
(6.65) 1 N
Qy(p) & kZ_le_l(p)Fl'(_l(p).
| Fre1 (@)@ § [£),(0) £9(p) = £, (p)]".

Using the estimate &ﬁ(p) obtained by (6.64), the criterion function for

order determination is given by
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(6.66) 0, (N.p)& & (N.£,.fy(p))

= —g— log &ﬁ(p) + p log N.
Figure 6.3 plots QO(N,p)-function at every 500 steps.
(4) Determination of system order. Accept p as the system order for which
the criterion function QO(N,p) takes its minimum value, and determine the
system order to be p. Then, adopt éN(p) as estimates of unknown system para-
meters. From Fig. 6.3, we can conclude that QO(N.Z) takes its minimum
value for N2 1000, and that the system order is determined to be p=2.
Values of {éil(p):i=1.-",p}. &ﬁ(p) and QO(N.p) at N=3000 are listed for p=
1,2, -,5 in Table 6.2. From Table 6.2 and Fig. 6.3, we may fairly say that
the parameter identification is well achieved as well as the determination

of the system order.
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Obtain data {yl,"',yN}
Assign the maximum
order to be assumed

Parameter identification
with the assumed order p

Calculation of QO(N,p)

No ptl+p

Yes

Adopt p as the system order
m which minimizes QO(N,p)

Adopt éN(p) as the estimate

of the unknown parameter

Fig. 6.1 1Illustration of the procedure for system order
determination and parameter identification
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Fig. 6.2 A typical sample run of the observation process {yk}

A
tzo(N,p)

Fig. 6.3 QO(N.p)—function at every 500 steps.

Table 6.2 Numerical comparisons of the estimsted parameters
with the assumed order p (1sSp=5) at N=3000.

ordex 6, | 8,,® | 8,0 | 8, | 8, | A | & 9,p)
1 0.793 —_— —_ - —_— 1.021 40.04
2 0.992 -0.183 —_— —_— —_— 0.982 | -10.65
3 0.990 -0.175 | -0.185 —_— — 0.981 ~4.67
4 0.990 -0.174 | -0.020 | -0.001 —_ 0.981 3.24
5 0.990 -0.174 | -0.021 0.004 | -0.005 | 0.981 11.21

—184—



6.6 Application to Geophysical Data

In this section, an important aspect of the application of the present
method to real earthquake data is described. As a typical example, a sample
path of the earthquake data depicted in Fig.6.4 was taken into account which
was alreadybpresented in Ref. [T2]. According to Ref. [T2], Fig. 6.4 is the
acceleration record (accelerogram) of the earthquake at San Fernando, Cali-
fornia, U.S.A. in 1971 which was observed at the Pacoima Dam near the epi-
center, The outstanding features of the earthquake data are that (i) the
data exhibits a rise to the maximum level and then a fall to the background
noise level in a short period of time, and (ii) it also exhibits sporadi-
cally large peak values. The feature (i) mentioned above shows that the
data may be a sample run of a nonstationary stochastic process and the
feature (ii) shows the nonlinearity of the mechanism which generates the
earthquake. Therefore, we assume that the acceleration record of the earth-

quake shown in Fig. 6.4 was generated by the following input/output

relation:
n-1
g = 2 0iyVi-g * Bl i8) + by
(6. 67) =1
yo = y_l = e = y_n+1 = (.

The nonlinear function g(yk_n:é) in (6.67) is assumed to be expanded into

the following orthogonal series:

» [
(8.68)  glyygd) = 2 by ity (gg)eml- - vE_}

where {Hj(° }:3=0,1, »+,2-1} are the Hermite polynomials, and {6ilzi=1,2,°".

n-1} and {énj:j=1,-",2} are constants and need to be identified. Consider-
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ing that the envelope of the data loosely represents the values of {bk}, the
values of bk in (6.67) are preassigned by fitting the cubic spline curve to
several representative points of { lyk | +k=1, +-,N}. A result of the cubic
spline fitting is shown in Fig. 6. 5.

Since the number of terms £ of the series (6.68) can not be pre-

assigned, we decide £ as well as the system order n from the observation

data. Hence as the model set, we use M={(f,8(p.q)) | feF.0(p,q) eDf}, where
(6.69) F={f If(zl,zz,-",zp:ﬂ(f))

X 3 1 2
= i%'::l eil(f)zi+‘§\;10pj(f)ﬂj_1(zp)exp{- _sz}v

p=1,2,+,K and g=1,2,,L}
and the maximum system order to be assumed and the maximum number of expan-

sion were set as K=7 and L=7, respectively.

The criterion function for the determination n and £ is given by

(6.70) ¢ (N.p.q)a ¢ (N.£f.6y(p.q))

= —%— log Eﬁ(p.q) +(p+q-1) log N

where &ﬁ(p,q) is the estimated variance of modeling error with the assump-

tion that the system order is p and the terms of series expansion of g( « )

is q. &g(p.q) and the estimate GN(p,q) are given respectively by

_2 U L 2
(6.71) dy(p.a) = E;O{yk £(yp_1r " Vion Ox(pra))}
(6.72) dy(p.q) = Q&l(p'q)sN(p,q)

where
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bypra) = [ fyy(pea) = 8,y 4 (poa):

bp1(pra) B,o(pea) = 8 (p.a)]"

p2 1o}

N
Qylp.q) E;le_l(p.q)Fi_l(p.q)

N
sy(pa) = 2 _%i Fr-1(p-a)yy

-1
(6.73) 3 f(Yk_lv"’va_n;éN(PsQ)) = Z 6i1(p’q)fi1(yk"i)
q
Ei 3P @) sy o)

=1 - :
Fk_].(p'Q) = Ek [f11<Yk_1) fp_l,l(yk_p+1>'
£o1Thcp) ™ Epq(Tiep)]

f = f i= vy "t PT
i1Vt = Vet or i=1,2,,p-1

| fpi0k-p) = Hyoy (rpplexpi- —%— yﬁ_p} for j=1,2,-, q.
A similar procedure to that in Section 6.5 is applicable to decide n and ¢
in the system model (6.82). Figure 6.6 shows results of the computation
of the criterion function QS(N,p.q) at N=1700. From Fig. 6.6, we may con-
clude that n=3 and €=2. The identified values of the unknown paremeter § are
[1.31 -0.42 0.02 -0.24]". The modeled system with the identified param-
eter values was simulated on a digital computer to examine the success of
the system modeling and its result is depicted in Fig. 6.7.

Using the same system model structure as given by (6.69), we tried to
model two other real earthquake data. One of the real data used here is
the acceleration record of the earthquake observed at El Centro, which

occurred at Imperial Valley, California, U.S.A. in 1940 and the another one
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is of the San Francisco Earthquake in 1957, which was observed at Oakland.
They are depicted respectively Figs. 6.8(a) and (b). The system structure
and unknown parameters are identified by using the same procedure as that
for the San Fernando Earthquake. Figures 6.9 and 6.10 show respectively the
fitted spline curve of bk and the values of the criterion function QS(N.p,q)
at N=1800. The simulated output data with identified system models are

shown in Fig. 6.11.
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Fig. 6.4 Typical earthquake data-Accelerogram of the San Fernando
Earthquake recorded at Pacoima dam, California, U.S.A. on
Feb. 9, 1971 (given in Ref, [T2])
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Fig. 6.6 Comparison of QS(N,p.q) at N=1700 (San Fernando Earthquake)
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Fig 6.7 Accelerogram simulation of San Fernando Earthquake'from
the modeled system with identified parameters
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Fig 6.8 Accelerograms of the Imperial Valley Earthquake at El Centro,

U.S.A. in 1940 and San Francisco Earthquake at Oakland, U.S.A.
in 1957
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Fig. 6.11 Accelerogram simulations from the modeled systems
with identified paremeters
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6.7 Discussions

The method for modeling a class of nonstationary nonlinear systems has
been presented, where the underlying system model shows a high possibility
of fitting real data, such as given in Section 6.6.

The criterion function for the structure &etermination of the system
has been derived from evaluating the upper bound of the error entropy
associated with both the input noise and unknown parameﬁers. It has also
been shown theoretically that, for a class of nonstationary nonlinear models
like those given in Section 6.3, the determined system structure has salient
asymptotic features and the estimated unknown parameters have the consist-
ency in some stochastic sense.

The proposed criterion function for structure determination of system
models has been applied to the modeling of the real data, and good perform-

ance has been achieved.

—195—



Appendix 6.A Proof of Theorem 6.1

First, we shall show the consistency property of EN(f). The estimation

error EN(f) is defined by

(a.1)  By(£) & B(E) - By(o).

Then, from (6.25). it follows that

(a.2)  Bylf) = 6(E) - O (E)ey(E).

Furthermore, noting that

(A.3) f ., Z:3k)

s 13z iR =y
because of D < D¢, we have from (6.21) and (8.27) that
s

N
Hence, substituting (A.4) into (A.2), we have
. -1 N
Define

N
(8.6)  ayb 2 x'Fyy(D)y
and

N
(4.7) ryé kzzlx'[1-"k_1(f)171'<_1(f) - E{F}_(E)F} () | §_o}]x

-(zl,-".zi=k) for i=1,2,+,n: j=1,2,

where x is an arbitrary vector such that x#0. It is easily verified that,

with conditions (C-1), (C-2) end (C-4), {qN,ﬁﬁ_l} and {rN,ﬁﬁ_z} are martin-
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gales satisfying

(a.8)  E{ed} s oN,

(4.9)  E{rf} s oN.

Therefore, from Theorem 2.2, it follows that

(A.10) _IIT Fk—l(f>vk - 0 w.p. 1 as N - o

i Mo

1

1

7 Mz

1
as N =+ oo,

Using the elementary inequality
inf - = i -1 b,
355 (en ") = dfen - g by
and (C-5), we have from (A.11) ‘that
. -1
(A.12) lﬁn_x)ggp [‘}}i‘ QN(f)] < cl w.p. 1.
Hence, combining (A.10) with (A.12), the R.H.S. of (A.5) can be evaluated by

-1 N 1 -1 1

T Mz

1Fk_l(f)vk -0 wp 1

as N = oo,

which implies (6.30).
Next, we shall show the consistency property of &ﬁ(f,éN(f )). Using

(6.21), (6.22), (6.26), (6.29) and (A.3), we have

—197~



N
(A.14)  B(£.84() = By(E) {4~ 2 Fueg (F 1 (£)Hy(6)

B T F (v b 2 2
2y Pl T 2 e

1

The first term of the R.H.S. of (A.14) can be rewritten by using

(6.28) and (A.5) as

N .
(A.15)  By(f) {4 3. Fioq (DFf (D)1ay(6)
ik SR (v 3 R ()
= 2 P (Evid Ny () g 2 By (Bivyd
Hence, it can be shown from (A.10) and (A.12) that

N
(8.16) By 3 Ry (OF (O1F(H) = 0 wp 1 as N = .

1

From (A.5), (A.10) and (A.12), the second term of the R.H.S. of (A.14) is
-, 1 N

(A.17) BN(f){—N— E;le-l(f>vk} - 0 w.p. 1 as N - o=,

Furthermore, it is easily shown by using Theorem 2.3, that

N
(A.18) —%—Elvﬁ > ¢ w.p. 1

as N = oo,

Hence, from (A.16), (A.17) and (A.18), we can conclude (6.31).
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Appendix 6.B Proof of Theorem 6.2

Define AN(f,fs) by

(B.1)  ag(f.f)) & ¢ (N.£,8y(f)) - 2 (N.£_,8y(£))

~2/c =
N oy(£.8y(£))
= log — = + (me - m_) log N,
k2 GE(f,.By(E))  f S

where mg&dim. fy(f) end m & dim. §y(f.). From (6.1) and the definition of

&ﬁ(f.aN(f)) given by (6.26), it follows that

N
~2/c 2 | 1 -
(B.Z) UN(fveN(f)) - T kz=1'—bz {fS(Yk_lv"'va_n'k'é)

- £y o Yy kil (£))2

1 1.
'"5'1: {fs(yk-l' T yk-n’k'é)

= f(Yk_lv ""Yk_p;k;EN<f) )}Vk

Since fg( + ) and f( + ) can be represented by

fs(yk—l'm'yk—n;k:é) = é,Fk‘l(fs)
(3.3) ) )
f(yk—l' ---.yk__p:k:eN(f)) = Gﬁ(f)Fk_l(f),

it is easily verified by Theorem 2.2 that
1 2? Lof ( - ikig)v, = 0 1 N - oo
_N_ k=1 —Fk s yk_l, ,yk_ny ' Vk W. P. as
L £ - ki (£))vy, = 0 w.p. 1 N - oo
—Ei V-1 " Vp' iy Vi W.D. as .
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Hence, from (A.18) and (B.4) and for a sufficiently large N,

(B.5) Gﬁ(f,éN(f)) z o2 ~ w.p. L

Recalling that 8§(fs,§N(fs))-’02 w.p. 1 from Corollary 6.1, (B.5) suggests

ag(£.£.) F2(£, B (£))
(3.8 S s g dee — gy v (o m) R
N'"s'YN'"s

= 0 w.p. 1

for a sufficiently large N, which implies (6. 35).
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Appendix 6.C Proof of Theorem 6.3

From the condition (C-3)", we have

(C.l) fp'ij(zly”'ozi:k) = fs'ij(zlv'"vzi;k)

for i=1,2,+-.p and j=1.2."-.qi because of ch: Df .  Hence
S
(C.2)  G2(£,8(F)) = By(f_,£){-L zN Fy_ (£ )F_ (£} (E_, £)
: ONTE Ot s P /P (B TN E g

2
vk!

M

N
= . 1 1
" BpEe D P vt + 3 2

(C.3)  By(f..£) & [By) y(f . £) -~ Elal,N(fs,f):

By N(Ege£) o 51tzn.N(fs'f>]'

and

855~ 855 N (i=1,2, -, pi3=1,2, ., q )
(C.4) G.. (f . £)&
1JvN S (i=1'2' ...,p;j=qi+1' ”"Qi and

i=p+l, seomi J=1, e, 0,).

ij
The first term of the R.H.S. of (C.2) can be evaluated as
e, 1 & , .

q.
2 ¢ lim inf {3 6. o(£..£)2)
N> iy %y PiaNte

Q. Q.

i n i
+§ > 6%‘*2 S 62, >0 wop 1.
i=1 J=qi+1
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where the inequality (A.12) has been used. Using the same procedure as that

in (B.4). we have

N
. 1 . .
(C.6) GN(fs,f)—N— E;le-l(fs>vk 0 w.p. 1 as N o

Therefore, from (C.5), (C.6) and (A.18), for a sufficiently large N, we can

conclude that

.7y GE(£.ay(E) > 0% wp 1

and

AN(p.n)

for a sufficiently large N, which gives (6.37).
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Appendix 6.D Proof of Theorem 6.4

Since

(D.1) f£ (z1.°"'zi:k) = f (zl,-".zi:k) for i=1, «,nij=1, «, Q.

p.1ij s,1j i

because of Df < Df. using the Taylor series expansion, we have
s
(D.2) GR(£_.By(E)) = G2(£,8y(£)) + —dar[62(£, 8y (£))]" (Bg(E £) - fg(E))
v N'‘ s"YN'"sg’’ N*“'UN 00 (f) ““N'‘-"UN N'*s’ N
s L (Ge(FL £) = Bg(F)) oy (s G2(£, By (£)))
2 Gyitg oy —387E) 59TE) ON‘E Oy
; 2 - s 2
><(BN(fs,f) ON(f)) + o(||0N(fs,f) ON(f)" ¥
where EN(fs.f) is defined by

(D.S) éN(fS'f)é [Léll,N(fs) b alai'N(f ) 0 b 0; oo

g N(Fs) + Bng (Eg) 0+ 05 0 - 0 T

$
% Iper* e

P

Using (6.25) and (6.28), the derivatives of &ﬁ(f.éﬁ(f)) can be calculated as

(D.4) gy ORUEB(E)) = - = [sy(£) - Qu(E)6()],

(D.5) gy (popy GE(E.0(6) = & Qu(f),
(D. 6) 0% G2(£.0(£)) = 0 for m = 3.4,
. N ’ i i 3
96 (£)™

Hence, substituting (D.4), (D.5) and (D.6) into (D.2), it follows that
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(0.7)  GR(E.By(£,)) = GE(E.8y(£)
+ g (Bylfg £) = Bg(£)) Qu(E) (By(£,. ) = By(E)).

Then, substituting (D.7) into (B.1), the following equation is obtained:

(D. 8 (F_.£) = - 1 by + (mp - m_) log N + of 1 hy)
b B age) N f s T TR e N

where
(0.9)  hyd (Bl ) - By(£)) QuE)(By(Es. ) - B(£)).

and log (1+x)= x+o(x) has been used. Setting as f=fs in (6.25) and (A.4),

we have

(D.10)  By(£,) = 6 + Oy (£,)

s Fk_l(fs)vk.

N
2
k=1

Hence, substituting (6.25) and (D.10) into (D.9), it follows that

N -1 N

N -1 N
- ( E:le‘l(fs)vk) QN (fs)( %:le’l(fS)vk)

Then, we have

-1 ;&
(D.12)  Ihyl sINQ (D)} I~ Z
k=

2
Vi Fk—l(f>vk|

1

-1 1 & 2
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From (C-1), (C-2), (C-4) and (6.29), since

N
L S B Ov 1% s e

(D.13) E{| Jﬁf-k=1

and

1 2
(D.14) E{| N Z; Fk_l(fs)vk 4} = ¢

we obtain

by
log N

(D.15) - 0 in prob. as N = oo,

From Theorem 6.1, &ﬁ(f,EN(f))—wz w.p. 1 as N+e. Then

(D.16) &I%(f’aN(f)) - ¢ in prob. as N - o,

Thus, we can conclude from {D.8), (D.15) and (D.16) that

ay( ) _
(D.17) ——=— > m_-mn > 0 in prob. as N = o,

log N f s
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Appendix 6.E  Replacement of (C-2) by (C-2)’

Let define the state vector xké [xlk xnk]' as
(E.1) xiké Yk-n+i for i=1,2,-.m.

Then, the state space representation of (6.1) is given by

(E. 2) Xy = As(xk__l:k;é)xk_1 +,¢S(xk__1) + vy

where
‘)bs(xk_l) = [0 0 ¢S(xk'1)]’
n-1
(E.3)

T]k - [0 e (0 bk]'

n-1
Hence, from (E.3), it follows that
(E. 4) 1 Xy = As(xk—l:k:é) 1 Xp-1 |+ M)s(xk—l) o+ 1 bk Pl Vi | .

Since the condition (C-2)’ implies that

k+1
(E. 5) le'I=1 la(x;_31:8) I s ¢ ck+l (e; < 1)

(E.6) N (x )l s e

we have from (E.4) and (E.6) that

k+1
CUBNENED NTNCWE SN
i=

+
[N
1§ M’\"

X flzlll A (xy g ki 1i8) 1) 18 () |
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k H .
"2 1 J A eio1:8) 1) Doy g1 Ly

s eck x| +c? s f+e? Tl v
Fl =1 )

k+1 czc1
= e ”"-—1"*1_——5;*°Z°1|"k3'
where the inequalities | bk | <c and 213=1c}<c1/(1—cl) have been used.
Hence, from (E.7) and the elementary inequality (a+b+c+d)4s 64(a4+b4+c4+d4).

it follows that
4 k+1 cfe, 2 & 4
(E.8) E{lx "} = E{le e]" " x| + T=¢ * ¢ Zlcflvk—j I 17}
J'—'

4 4 _4(k+1) c2‘:1 4
SG4c”X Hcl +(1—_—5'1-)

-

8 Rj 4
+c( 2 e lv_s1)%
j=11 k-

Furthermore, by using the condition (C-1), it follows that

k.
(E.9)  EUZ of lv ;D = E(( za ck‘J lv; DY
J=1

k-1 k-1 k-1 k-1 41<—il—1‘.2—:13—i‘4
=3 2 2 % e ECLvg |lvy 1wy 1 lv, I}
11=1 12=1 13=1 14=1 1 2 3 4
k-1 k-1 k-1 k-1 d4k- 1 ~-i
=2 X 3 3 o 37 [TI EECTy; 141 _1}}11/4
11=1 12=1 13=1 14=1 J
k-1
s e X clf_l)4
i=0
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Therefore, from (E.8) and (E.9), we can conclude that

(£.10) Ellx 1% < e

which implies E{yl'i} <ec.

—208-



CHAPTER 7 CONCLUSIONS

7.1 Concluding Remarks

The modeling problem for nonstationary and nonlinear systems has been
considered, where system models are described by stochastic differential
equations or stochastic difference equations driven by the white noise.

The key assumption on the whole aspect of this dissertation is that
time-varying functions and nonlinear functions in system models are well
approximated by finite series of known functions with unknown constant
coefficients.

In Chapter 3, augmenting the state variables by unknown parameters and
using an approximated nonlinear filter, unknown parameters of a non-
stationary system model has been identified. The unknown system order has
been also determined by using the likelihood-ratio function associated with
Bayesian hypothesis test.

In Chapter 4, the parameter identification method has been developed
for a class of stationary but nonlinear models. The system model in this

chapter was given by the nonlinear MA model whose nonlinear MA terms are
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described by a set of Hermite polynomials. Using the fact that unknown
parameters in the nonlinear MA model are uniquely described as functions of
second and third moments of the output process, the estimators of unknown
parameters have been obtained by the moment method. The proposed nonlinear
MA model has extended to a nonlinear ARMA model in order to handle the data
whose serial dependence is much longer than the single time unit.

From more practical viewpoints that the most of all physical systems
has both some nonlinearities and nonstationarity, the parameter
identification for a class of nonstationary nonlinear system has been
considered in Chapter 5, where the system was assumed to be described by a
nonlinear difference equation with time-varying coefficients. Unknown
parameters were estimated by the maximum likelihood concept. It should be
emphasized that if there exists only one system parameter to be identified,
the consistency of the estimator has proved without the assumption of
bounded-input bounded-output stability which are usually required.

Restricting the system model to the single-input single-output one, the
structure determination problem for & nonstationary nonlinear model has been
considered in Chapter 6. The key notion for deriving a criterion function
for structure determination is to evaluate the upper bounded of the entropy
associated with the estimation errors of input noise and unknown parameters,
where the contributions of the input noise and unknown parameters to the
values of the entropy are adjusted to be equal. The proposed criterion

function has been applied for modeling actual earthquake data.
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7.2 Discussions

The proposed models in this dissertation are essentially linear with
respect to unknown constant parameters, whereas the system models are
themselves nonlinear or nonstationary. Hence the estimators of unknown
parameters are rather easily obtained and it has become possible to
investigate mathematically their asymptotic properties. In case of non-
lineer models with respect to unknown parameters, the identification probiem
usually becomes a nonlinear optimization problem. Although there are many
numerical techniques which can exploit for the identification of nonlinear-
in-the-parameters models, it is usually very hard to guarantee theoretically
the asymptotic properties such as consistency, asymptotic normality, etc.
However, for some classes of stationary nonlinear models, the difficulty
mentioned above may be overcomed by utilizing the information from
statistical moments higher than third order, since one of the outstanding
feature of nonlinear system lies in the non-Gaussian statistics of the
output process.

Structure determination for a general class of nonstationary nonlinear
systems is another very difficult problem which is still unsolved. For
instanée, the system structure may be changed with time evolution when the
dominant time-varying system parameters vary between some non-zero values to
zeros, and this fact leads to the structure determination method based on
the large number of observation data meaningless. Since the structure
determination problem is closely related with the stochastic realization of
systems, we should investigate the fundamental properties of nonstationary

nonlinear systems by using the system theoretic approach.
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