

Title	T(d, n) Reaction Neutron Generator for Biological Studies
Author(s)	吉永, 春馬; 安徳, 重敏; 沢田, 昭三 他
Citation	日本医学放射線学会雑誌. 1963, 23(1), p. 85-89
Version Type	VoR
URL	https://hdl.handle.net/11094/16043
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

**T (d,n) REACTION NEUTRON GENERATOR
FOR BIOLOGICAL STUDIES**

Haruma Yoshinaga, Shigetoshi Antoku, Shōzō Sawada
and Osamu Yamamoto

Department of Radiation Biology,

(Prof: H. Yoshinaga)

Research Institute for Nuclear Medicine and Biology

Hiroshima University,

Hiroshima, JAPAN

生物学的研究のための T(d,n) 反応中性子発生装置

吉永春馬 安徳重敏

沢田昭三 山本修

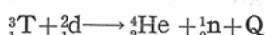
(昭和38年2月16日受付)

1961年にT (d,n) 反応中性子発生装置を設置し、以来この装置を用いて中性子の生物学的作用の研究を行つて來た。この装置で我々は $10^{10}n/sec$ 以上の中性子束を発生させることができた。このときの中性子は、ターゲットを中心とした 4π 方向に対してほとんど均等な線束密度の分布をするので、 4π の全空間を実験のために使用することができる。小動物照射に際しては、回転照射法を用いることにより、 $4 \sim 8 \text{ rad/min}$ の線量率で致

死線量の照射を行うことができた。しかしターゲットの消耗がはげしく、致死線量前後の線量率を発生させると約1時間の照射でその出力は半減した。又、ターゲット個々の出力の差が大きい。生物学的研究の目的では、1枚のターゲットからは総量 $10^{13} \sim 14^{14}$ 個の中性子を取り出すことはできたが、 10^{13} 個以上を取り出したあとの線量率は一般に $3 \times 10^9 n/sec$ 以下の出力しか得られなかつた。

Introduction

In X-ray irradiation or gamma-ray irradiation the ionizing particles are electrons, and in fast neutron irradiation on biological subjects the ionizing particles are mainly recoil protons. If there are some differences between the biological reactions caused by X- or gamma-irradiation and by neutron irradiation, it can be presumed that the differences are caused by the difference in the type of ionizing particles. To emphasize that these differences in reactions are not caused by the difference of dosage but are caused by the difference in the type of energy transfer to biological object, the transmitted radiation doses of both must be determined exactly.


The absorption doses of fast neutrons generated by T (d,n) reaction can be estimated easily on mammal, because such neutron has a monochromatic energy of 14.1 MeV and the reaction is not accompanied by gamma-ray.

Our department procured a neutron generator of T (d,n) reaction type for biological studies in March, 1961¹⁾. The authors are studying the biological actions of neutron by means of this apparatus. In this paper the performance of this apparatus will be outlined.

Mechanism of the apparatus and the capabilities

Nuclear reaction²⁾

When the target of tritium-3 nucleus(³T) are bombarded by accelerated deuterium, T (d,n) reaction is produced to yield a helium nucleus and a neutron, and releases nuclear energy (Q) of 17.6 MeV, as shown in the following nuclear reaction formula.

In this reaction, the neutron obtains 14.1 MeV, while the helium nucleus gets the balance of Q. This nuclear reaction resonates at 108 keV of deuterium energy, and the maximum value of the cross section is 5 barns ($5 \times 10^{-24} \text{ cm}^2$). When the deuterium energy is 200 kV or less the differential cross section is almost uniform in all 4π directions. Therefore, the distribution of neutron flux in 4π directions is equal, and we can utilize at the same time all 4π spaces around the target for biological studies.

Composition and operation of the apparatus

This apparatus is composed of a controller desk, a high-tension generator, an ion source unit, an accelerating tube and a vacuum system.

The high-tension generator is Cockcroft-Walton type with a two stage selenium rectifier. The 100 kV to 200 kV positive potential, generated by this high-tension generator, is connected to an ion source unit by a high tension cable. This potential is fed into ten accelerating poles.

On the other hand, the deuterium gas (²D₂) produced by electrolysis of heavy water diffuses into the ion source tube through the heated palladium foil. In the ion source tube D₂ gas is ionized by high frequency of 16~19 megacycles (R-F ion source³⁾), and the ionized particles or deuterons are pushed into the accelerating tube through the canal by 2~4 kV positive potential probe, and they are accelerated while passing through the 50 cm tube. In the early phase of the acceleration, the deuterium beam is squeezed as desired by an electric field lens. The accelerated deuterium particles run through the guide pipe of about 1 meter length, and bombard the tritium target which is mounted at the end of the guide pipe.

The heating current of palladium foil is regulated at the surface of the ion source unit panel before giving it a high potential, but the probe potential, the lens potential and the accelerating potential are remote controlled at the controller desk on this side of the shielded wall.

Target

The target tritium is purchased from Harwell (United Kingdom). Tritium (³T) is

a radioactive isotope, emitting beta ray with the maximum energy of 18 keV and having a half-life of 12.4 years. The following description is given of the target in the catalogue. Titanium is evaporated approximately $200 \mu\text{g}/\text{cm}^2$ in thickness onto the copper disc 2.85 cm in diameter and 0.025 cm in thickness, and tritium gas $^3\text{T}_2$ of around 6 curies is absorbed in the titanium layer (6 curie thin type). In 1962 the cost is about ¥60,000 per disc in Japan.

The life of the target greatly differs with the bombarding technique employed. According to the catalogue one disc can yield 10^{15} neutrons, but as flux densities smaller than 10^9n/sec are not suitable for our biological experiments, the disc was replaced after a yield of $10^{13} \sim 10^{14} \text{n}$. If the apparatus is run at a smaller current of deuteron beam, the decrease in yield is not very great over a long period. If the target is bombarded with a large current to obtain a dense yield of neutron flux, the target emaciates rapidly. There is about 50% in variation between the yield of each disc at the initial bombardment.

Figure 1 shows three examples of reduction curve of yield of the target used for

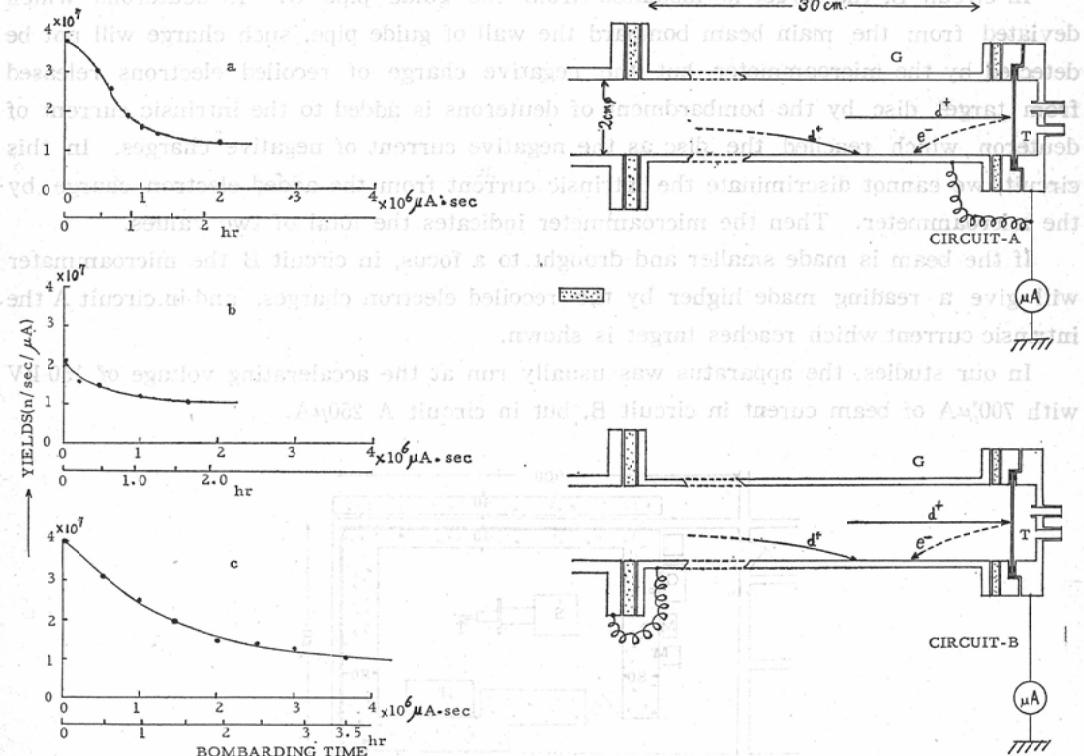


Fig. 1 Reduction curves of neutron yield of $^3\text{H-Ti}$ thin target
Accelerating voltage of deuteron: 150 kV
Deuteron beam: (a) 200-280 μA , (b) 250 μA , (c) 275 μA

Fig. 2 Circuits to detect the deuteron current
(A): Target T is insulated from the earth and connected with ammeter
(μA)
(B): Target T is insulated from guide pipe (G)

the irradiation of experimental animals. In these examples the running voltage was 150 kV, and the beam current was from $200 \mu\text{A}$ to $300 \mu\text{A}$. In each bombardment, neutron flux of from $5 \times 10^9 \text{n/sec}$ to $2 \times 10^{10} \text{n/sec}$ was obtained at first, but after an hour of operation the flux decreased to one-half of the initial value. The reduction in yield was thereafter slight and therefore we could continuously irradiate with $1 \sim 2 \times 10^7 \text{n/sec/cm}^2$ a group of ten mice placed 5 cm from the target. These flux densities correspond to about 4~8 rad/min of absorption doses in these mice.

Deuteron beam. The current of the deuteron beam is measured by means of circuit A or B of Fig. 2. In circuit A, guide pipe G is insulated from earth and it together with the target unit is connected to the microammeter. Therefore, if the recoiled electrons released from the target disc by the bombardment of deuteron are captured by the guide pipe, the negative current will not register on the microammeter. However, the positive charge of deuterons which bombarded the inner wall of the guide pipe is added on to the intrinsic current of the deuterons which bombarded the disc.

In circuit B, the target is insulated from the guide pipe G. If deuterons which deviated from the main beam bombard the wall of guide pipe, such charge will not be detected by the microammeter, but the negative charge of recoiled electrons released from target disc by the bombardment of deuterons is added to the intrinsic current of deuteron which reached the disc as the negative current of negative charges. In this circuit, we cannot discriminate the intrinsic current from the added electron charge by the microammeter. Then the microammeter indicates the total of two values.

If the beam is made smaller and drought to a focus, in circuit B the microammater will give a reading made higher by the recoiled electron charges, and in circuit A the intrinsic current which reaches target is shown.

In our studies, the apparatus was usually run at the accalerating voltage of 150 kV with $700 \mu\text{A}$ of beam current in circuit B, but in circuit A $250 \mu\text{A}$.

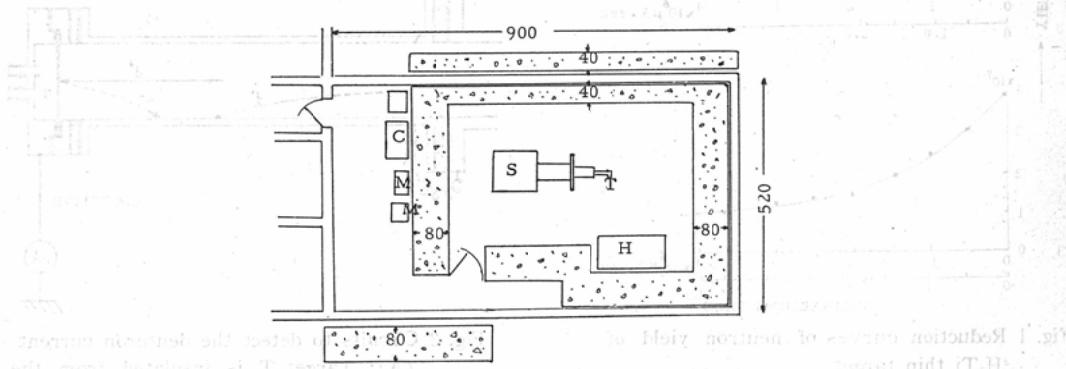


Fig. 3 Schematic diagram of concrete shielding of neutron room

T: Target, S: Ion source unit, M: Flux monitor and flux measuring equipment
 H: High-tension generator, C: Controller desk

Shielding construction

This apparatus should be mainly shielded against 14.1 MeV fast neutrons, but the shielding against slow neutrons, gamma-rays caused by (n,γ) reactions, and ionizing radiations emitted from activated isotopes must be given the same consideration.

Our neutron source room is shielded by a concrete wall of 80 cm thickness, and the relaxation length of 14 MeV neutron was estimated to be 11 cm in concrete by reference¹⁾⁴⁾⁵⁾. The floor plan of the room with the shielding walls is shown in Fig. 3.

Summary

In this paper, some of the capabilities of $T(d,n)$ reaction apparatus used in our department for neutron irradiation in biological studies are described.

This apparatus can produce more than 10^{10} n/sec of flux of 14.1 MeV monochromatic energy, but in our biological experiments the ^{3}H -Ti thin target emaciated rapidly under the accelerating voltage of 150 kV and the deuteron current of from 200 μ A to 300 μ A.

We were able to irradiate continuously groups of mice by $1 \sim 2 \times 10^7$ n/sec/cm² of flux density (about 4~8 rad/min) at a distance of 5 cm from the target.

References

- 1) Nishibori, K., et al.: The neutron source generator, Toshiba Review, 16, 1167, (1961). —2) Marion, J.B. and J.L. Fowler: Fast neutron physics, Interscience Monographs and Texts in Physics and Astronomy, Vol. 4, Interscience Pub. Inc., New York, (1960). —3) Ryu, N., et al.: High frequency ion source, Memoirs of the Faculty of Science, Kyusyu Univ., Ser. B, 1, 186, (1955). —4) Jaeger, T.: Abschwächung schneller Neutronenstrahlung durch Beton in Abhängigkeit von seinen Wasserstoffgehalt, Die Bautechnik, 10, 405, (1958). —5) Glasstone, S.: Principles of Neutron Reactor Engineering, D. Van Nostrand, (1955).