

Title	Influence of the Difference in the Size of Cobalt-60 Souce (Wafer Type and Pallet Type) on the Spatial Dose Distribution of Moving Therapy
Author(s)	大竹, 久; 柳沢, 融; 橋口, 喜代治 他
Citation	日本医学放射線学会雑誌. 1969, 29(1), p. 86-88
Version Type	VoR
URL	https://hdl.handle.net/11094/16059
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Influence of the Difference in the Size of Cobalt-60 Source (Wafer Type and Pellet Type) on the Spatial Dose Distribution of Moving Therapy

By

Hisashi Otake, Tohru Yanagisawa* and Kiyoji Higuchi

Dept. of Radiology, School of Medicine, Iwate Medical University, Morioka

(Director: Prof. S. Tarusawa)

Hajime Iida

Dept. of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Morioka

(Director: Prof. Y. Hata)

^{60}Co 線源サイズの相違 (wafer type と pellet type) が運動照射の
空間的線量分布に及ぼす影響について

岩手医科大学医学部放射線医学講座 (主任: 足沢三之介教授)

大竹 久 柳沢 融 樋口喜代治

同産婦人科学講座 (主任: 秦 良麿教授)

飯 田 肇

(昭和43年8月31日受付)

^{60}Co 運動照射装置 (島津製 RT-2,000) の線源を増量する機会に、線源の出射面の大きさを小さくし、すぐれた空間的線量分布がえられるかどうかを検討した。

従来の線源 600 Ci は wafer type で、出射面の大きさは 20mm ϕ であつたものを、pellet type の 2,000 Ci に増量、出射面の大きさは 12.5mm ϕ と小さくした。

断面が略々橢円形の水ファントームの中心を回

転中心として、照射野 4 cm \times 10 cm, 5 cm \times 10 cm, 6 cm \times 10 cm の全回転を行なつてみたところ、各照射野とも回転中心に近いところでは両者に余り差はないが、周辺部では線源の大きさの小さい pellet type の方がすぐれた線量分布を示した。

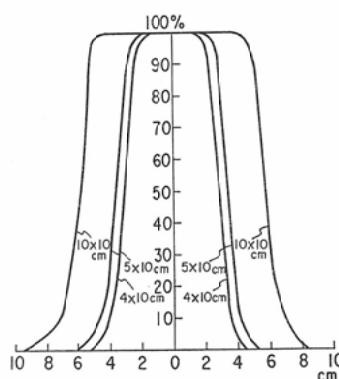
すなわち、線源の大きさを小さくすることにより、健常部の不必要的照射が減じ、従つて容積線量も小さくなつて有利なことがわかつた。

Introduction

When moving irradiation conducted, to make the size of the source and penumbra as small as possible is important for an excellent dose distribution^{1,2)}. With the opportunity of increasing the source of cobalt-60 from 600 Ci (wafer type) to 2000 Ci, the size of the source was therefore made smaller (pellet type) to see if a better spatial dose distribution was obtained.

*Present address: Dept. of Dental Radiology, School of Dentistry, Iwate Medical University, Morioka.

Method of Measurement, Results and Discussion


As the apparatus for irradiation, a Shimadzu double rotation type RT-2000 was used. The conventional source was 600 Ci (as of September 1960) in wafer type with a size of $20 \text{ mm} \phi \times 1 \text{ mm} \times 6$. The new source is 2000 Ci (as of October 1961) in pellet type with a size of $12.5 \text{ mm} \phi \times 18.5 \text{ mm}$. As the instrument for measurement, a Colonial's rate meter (Nihon Hoshisen Bogyo Co. Ltd.) was used.

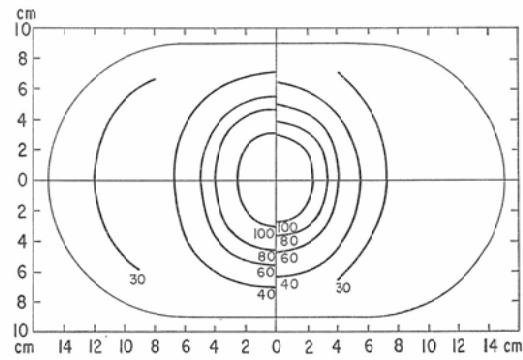
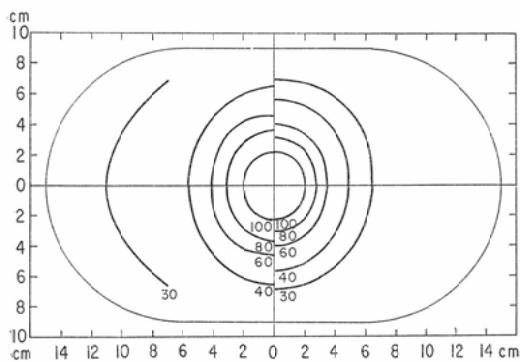
At first the dose distribution in air was measured at 75 cm from the source under stationary irradiation. The penumbra proved to be somewhat smaller in the pellet type (Fig. 1).

Fig. 1. Penumbra at SSD 75 cm (measured in air). Field size of $4 \text{ cm} \times 10 \text{ cm}$, $5 \text{ cm} \times 10 \text{ cm}$ and $10 \text{ cm} \times 10 \text{ cm}$.

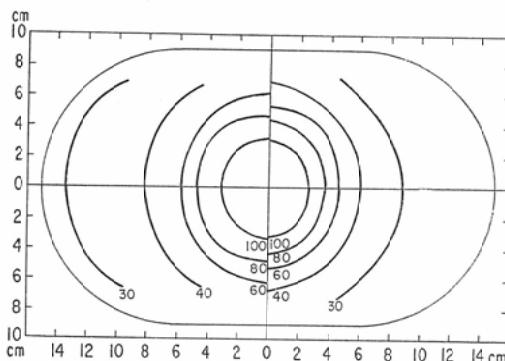
Left side: Wafer type (size of the source $20 \text{ mm} \phi$)

Right side: Pellet type (size of the source $12.5 \text{ mm} \phi$)

A full rotation of 360° was carried out around the center of an oval-shaped phantom, containing water, 30 cm in transverse diameter, 18 cm in longitudinal diameter, and 40 cm in length made of 5 mm thick plastic. Source-center distance was 75 cm. The field size was $4 \text{ cm} \times 10 \text{ cm}$, $5 \text{ cm} \times 10 \text{ cm}$ and $6 \text{ cm} \times 10 \text{ cm}$ at the center of rotation. The method of measurement was as described in our previous report.²⁾ The spatial dose distribution is shown in Fig. 2. A, B and C. In each Fig., the left side represented the



Fig. 2. Isodose chart in water phantom.

Left side: Wafer type (size of the source $20 \text{ mm} \phi$)


Right side: Pellet type (size of the source $12.5 \text{ mm} \phi$)

A: Field size of $4 \text{ cm} \times 10 \text{ cm}$

B: Field size of $5 \text{ cm} \times 10 \text{ cm}$

C: Field size of 6 cm × 10 cm

wafer type (size of the source 20 mm ϕ) and the right side pellet type (size of the source 12.5 mm ϕ). In each instance, a similar dose distribution was seen near the center of rotation, while the pellet type, with a smaller size source, gave better dose distribution in the peripheral portion. In other words, by a smaller size of source the volume dose can be made remarkably smaller.

Summary

With telecobalt moving therapy, good spatial dose distribution was obtained by making the size of the source smaller. Consequently, unnecessary irradiation of normal tissues and the volume dose as well decrease advantageously.

(The guidance and review of this manuscript by Prof. S. Tarusawa and Prof. Y. Hata are appreciated. The outline of the present study was presented at the 21th Annual Meeting of Japan Radiological Society.)

References

- 1) Johns, H.E.: The Physics of Radiology, 2nd ed., 333—334, 419—422, C.C. Thomas, Illinois U.S.A. 1961.
- 2) Ohtake, H. et al: Fundamental studies on dose distribution of telecobalt moving therapy, Nippon Acta Radiol., 24 (1964), 1067—1072.
- 3) Wachsmann, F. & Barth, G.: Moving Field Radiation Therapy, 36—37, The University of Chicago Press, Illinois U.S.A. 1962.