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CHAPTER 1

Prologue

Nonlinear Schrodinger equations describe a number of important physical phe-
nomena. Some nonlinear Schrodinger systems are models for different physical
phenomena (plasma physics, nonlinear optics and others) (see [4], [5] and [41]).
Asymptotic behavior of the nonlinear Schrédinger systems has attracted a lot of
attention.

This thesis is concerned with the asymptotic behavior in time of small solu-
tions for the following system of nonlinear Schrédinger equations with quadratic
nonlinearities in two space dimensions

1
(1.0.1) i0w; + ——Avj = Fj (vg,- - v), in R xR
2mj
for 1 < j <1, where A = 23:1 8?—, 0; = %, v; is a complex valued unknown func-
tion, 7; is the complex conjugate of v;, m; is a mass of a particle and F} (vy,- - -, v;)

is a quadratic term formed from the set
A = [Ulv . ‘,’Ul,’()il, . 71Tl] — [Ulv .. '7vlvvl+la .. '7U21] .

More precisely, we can write

Fj(vi,---v) = Z )\fmkvmvk,

1<m<k<2l

where )\Zn’k € C. This system relates to the Raman amplification in a plasma (see
[4] and [5]). We study the initial and final value problems of System (1.0.1).
This thesis is organized as follows: In Chapter 1, we introduce the overall frame
of this thesis and fix some terminology that will be used throughout this thesis.
In Chapter 2, we consider the initial value problem of System (1.0.1)

(1.0.2) iatvj+ﬁ,jAUj:Fj (vi,- -+ v), inRxR?
- v; (0,2) = ¢, (x), forx € R?,

for 1 < j <1. We prove global existence in time of solutions with small initial data.
Especially, we present a proof of L°°-time decay estimates of small solutions for
System (1.0.2). We show that an L? conservation law is important for obtaining
the time decay estimates of solutions for System (1.0.2). At last using this time
decay results, we show nonexistence of the asymptotically free solutions to a special
case of System (1.0.2). L*°-time decay estimates of small solutions for this system
are our main results of this chapter. These estimates are obtained by showing a
priori estimates of local in time of solutions.
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Chapter 1

In Chapter 3, we consider the asymptotic behavior in time of solutions to
System (1.0.1)

10pv; + iAvj = Fj(vy,---v), inRxR%
2m]‘

We prove existence of wave operators for special support conditions on the final
data. Moreover we describe the approximate solutions to a special form of the
above system to the Cauchy problem. We show a necessary condition of existence
of asymptotically free solutions of System (1.0.1) by using the time decay estimates
obtained in Chapter 2.

In Chapter 4, we consider a special case of System (1.0.1)

10401 + ﬁAvl = \Uq1vg,
i04vs + 5— Avg = pv?,

2mo

(1.0.3)

where A, u € C\{0}, mq,m2 > 0 are the masses of particles. We prove existence
of modified wave operators or wave operators for System (1.0.3) under different
mass conditions. We use approximate solutions of this system to study existence
of modified wave operators and prove the existence of modified wave operators
without any restriction on support condition.

In what follows, we use the same notations both for the vector function spaces
and the scalar ones. For any p with 1 < p < oo, LP denotes the Lebesgue space on
R? and || ||L» denotes the LP? norm of R2. For any m,s € R, weighted Sobolev
space H™* on R? is defined by

!
H™ = ¢ f = (fi,0 ) € L5 | fllggne = D I lggme <00 ¢

j=1
where the Sobolev norm is defined as || f;[|gm.s = [|[(1 — A) 2 (14 |z[*)2 f; ||L2 . Also
we define the homogeneous Sobolev seminorm of R? as || £ gm.. = ||(—A)% |z[* f; HLQ.

We write || f;]lp. = |If;ll, H™ = H™? and H™ = H™O for simplicity. We write
C(1,Y) for the space of continuous functions from an interval I of R to a Banach
space Y. The Fourier transform is defined by

IO =€) = 3= [ 790 (@) da

and the inverse Fourier transform is defined by

Pl = o) = 5 [ @009 de

We write Rev and Imv for the real part and the imaginary part of v respectively. We
denote by the same letter C' various positive constants. Unless otherwise specified,
we assume the space dimension is two all through this thesis.



CHAPTER 2

Time decay estimates of solutions

2.1. Introduction

We consider the initial value problem of a system of nonlinear Schrodinger
equations

(2.1.1) Ly, vj = Fj (v1,- - +,01),

(2.1.2) 0; (0,2) = ¢; (2),
in (t,7) € R x R? for 1 < j <, where
1
Ly, =10 + 7—A,
Qmj
v; is a complex valued unknown function, v; is the complex conjugate of v;, m; is
a mass of a particle and Fj (v1,- - -, v;) is a quadratic term formed from the set
A = [vla t ',’Ul,’Uil, T 71Tl] = [vla UL V41, '7U2l] .
More precisely, we can write

_ § J
Fj (vla t '7Ul) - )\m7kvmvk7
1<m<k<2]

where /\f'n’,C € C. The investigation of the Cauchy problem (2.1.1)-(2.1.2) is impor-
tant, since a system of Schrodinger equations with quadratic nonlinearities describes
some physical models such as a model of particles interacting each other (see [10]).
For simplicity, we shall write F} for F; (vq,- - -, v;) if it does not yield confusion.
We assume that there exist positive constants c; for 1 < j <1 such that
!
(2.1.3) Im ) " ¢; Fyw5 = 0.
j=1
Condition (2.1.3) is a sufficient condition under which System (2.1.1) satisfies an
L2 conservation law. In order to prove the L2 conservation law of solutions, it is
sufficient to assume that there exist positive constants c; for 1 < j <1 such that

l
(2.1.4) Im» /RQ ¢; Fyujdz = 0.
j=1

Therefore Assumption (2.1.3) is a stronger condition from the physical point of
view. Under Condition (2.1.4) we have the L? conservation law

l
(2.1.5) 2 Y cjllvil* = 0.
j=1

3



Chapter 2 2.1. Introduction

Here we need Condition (2.1.3) to prove time decay of solutions by our method.
We also assume the gauge condition such that

(2.1.6) Fj (v, ) = eimﬂ'eFj (e‘imlevl,- e e‘imlevl)

for any @ € R and F} is a quadratic term with respect to variables. This condition
allows us to use the operator J 1 1 =2+ iiﬁk. The operator J_1_ 1), commutes

with L 2= 10y +

2.2.1 Lemma 2.2.3) in the standard energy method.
It is interesting to compare System (2.1.1) with the system of nonlinear Klein-
Gordon equations

2m >=—A and is useful to get time decay of solutlons (see Lemma

1 2 1 m;c?
A J
22m, 01 T g AU

in (t,r) € R x R? for 1 < j < I, under Condition (2.1.6), where ¢ is the speed of
light. If we make a change of variables u; = e—itm; e vj in (2.1.7), then by Condition
(2.1.6) we find that v, satisfies

1 . ) _
502 3 v; — 10V — 2—Avj = —MIOF; (e7mi0yy, .. emmi0y,)
m;
(218) = —Fj (U1,~-,vl)

with @ = tc? for 1 < j < I. Therefore the non relativistic version of System (2.1.7)
can be obtained by letting ¢ — oo in System (2.1.8) formally, which is the system
of equations (2.1.1).

Strauss [36], Klainerman [24] and Shatah [32] studied global existence of small
solutions to nonlinear evolution equations with power nonlinearity including non-
linear Schrodinger equations in the beginning of 80’s. Since their works, there is a
large body of literature discussing the problems of nonlinear Schrodinger equations
and nonlinear Klein-Gordon equations in different space dimensions. We survey the
following Schrodinger equation with the nonlinearity involving no gradient terms

(2.1.7)

uj = —Fj (ur, -, u)

(2.1.9) 10yu + %Au = N(u),

n (t,z) € R x R™, where N (u) is a homogeneous p-th order nonlinear term. Let
S(n) = [n+2+(n®+12n+4)2]/2n be the Strauss exponent. In [36] Strauss showed
if the nonlinear term N (u) satisfies |N” (u)] < C'|u|’”" and p > S(n), then global
small solutions of the nonlinear Schrédinger equation (2.1.9) exist for suitable initial
data. If we focus our attention on the quadratic nonlinearity, the problem on global
existence of solutions becomes harder in the case of low space dimensions since
S(3) =2 and S(2) = 1++/2 ~ 2.414. Let space dimension n = 2. If nonlinear term
N (u) = X|u|u, Hayashi and Naumkin [13] obtained asymptotic formula of small
solutions to the Cauchy problem for the nonlinear Schrédinger equation (2.1.9) in
the case of A € R\{0}. Furthermore they proved sharp time decay estimates of
the small solutions. Shimomura [34] considered the same problem in the case of
A € C and ImA < 0. Moreover he showed the nonlinearity of Equation (2.1.9) is
dissipative in this case.

We are interested in the asymptotic behavior in time of small solutions for
initial value problem of the system of nonlinear Schrédinger equations (2.1.1) in
two space dimensions. Global existence in time of solutions for System (2.1.1) with
small initial data can be obtained by the method of [42] and [30]. The chief purpose
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Chapter 2 2.1. Introduction

in this chapter is to present a proof of L*° -time decay estimates of small solutions
for System (2.1.1) which is the same as those of solutions to linear problems. Main
point in our proof is to derive the following ordinary differential equations un-
der Condition (2.1.6) by using the factorization technique of Schrédinger evolution
group.

2
. 1
10yu; = EFj (ul, ceeuy) 4 D% E R; ;,
J i=1

where
D FU 1 (=t)vj = uj.

1
TYLJ ’an
2 . . . .
Then we show D 1 > 7 | R;; for 1 < j <1 are remainder terms in our function

J
space (see Lemma 2.3.3 in details), where

(Dnd) (2) = —5 (£)

is the dilation operator, F, F~! denote the Fourier and its inverse transform op-
erators, respectively, and Us (t) is the Schrodinger evolution group defined by
Us (t) = F'E°F with E = e~ 2!€I" and § # 0.

We now give some physical examples satisfying Conditions (2.1.3) and (2.1.6).

EXAMPLE 2.1.1. In [5], the system

. 1 —
1001 + mAvl = V9Ts3,

. 1
109 + mAvg = 2u3v1,

. 1 e
1003 + mAUg = U102,

is considered in (t,z) € [0,00) x R%.  Obviously this system satisfies Condition
(2.1.3). If the mass relation of ms = my + mg is satisfied, then this system obeys
Condition (2.1.6). This is a system for interacting fields. This model can be also
found in the field of plasma physics.

EXAMPLE 2.1.2. More general system

101 + ﬁAvl = (V201 T3 + V213,

. 1 .

104v9 + %Avg = —i0; (v1v3) + 20301,
. 1 . —_ —_
10yv3 + mA’U:; = {90177 + T1v2,

in (t,z) € R x R?, under the mass relation of ms = my +ms, is also considered by
our method. Physical meaning of this system is given in [4] and [5]. It is easy to
see that

Re/ V1020103 — U201 (v103) + V3020, 01dx = 0,
R2
which ensures the L? conservation law. Namely we have Condition (2.1.3). Under

the mass relation of ma = my + mg, the system obeys Condition (2.1.6). The
desired ordinary differential equations will be

i0puy = % (1= &) ugms,
i@tug = ? (2 + 61) usu,
’iatU3 = 1 (1 — fl)WUQ7

for & e R.



Chapter 2 2.2. Preliminary estimates

Our method can be applied to a system of nonlinear Schrédinger equations
with cubic nonlinearities in one space dimension

1
i0pv; + Q—Avj =Fj(vi,--v), 1<5<l, 1>3, (t,z)eRxR,
m;
where F} is a cubic nonlinear term satisfying Conditions (2.1.3) and (2.1.6). For
example when [ = 3,

) 2 3
Fy =t1%v3, Fy = |v1|“vg, F3 = vy

satisfy these two conditions under the mass relation of ms = 3m;. We note here
that the Strauss exponent S(1) = % > 3.

The main result in this chapter comes from the author’s paper [25] and is stated
as follows:

THEOREM 2.1.3. We assume that ¢ = (¢1,- -+, ¢;) € H>? and F; satisfies
Conditions (2.1.3) and (2.1.6) for each j € {1,---,1}. Then for some e > 0 there
exists a unique global solution v = (vy,---,v;) to System (2.1.1) such that

v=(v1, --,v)€C (R;H2’2)

and
!
o @)llge = > lvi ()l < C (14 )7
i=1

for any ¢ = (¢y,- - -, ¢;) satisfying

l
I6lszz = 3 Ibillgres < e
=1

From Theorem 2.1.3, we have global existence of solutions to System (2.1.1)
for small initial data. Moreover we find the solutions have the same time decay
rate as that of free solutions for large time. The global existence result in time
of small solutions for System (2.1.1) is not new. For convenience, we will prove
it in more details in the appendix. L°°-time decay of small solutions for System
(2.1.1) is new and will be proved by showing a priori estimates of local in time of
solutions. This kind of idea has been used for construction of H?*? solutions to
nonlinear Schrédinger equations by Hayashi and Naumkin [13]. We extended this
idea to System (2.1.1).

Theorem 2.1.3 shows System (2.1.1) has a unique global strong solution v =
(v1,- ) €C (]R; H2’2). We can construct a unique global solution v = (vq, - - -, v;)
eC (R; H N HO’B) of the integral equations associated with System (2.1.1), where
1 < B, by the similar method to that of Theorem 2.1.3 (See [26]).

2.2. Preliminary estimates

In this section, we give some estimates as preliminaries. Since Us (t) is the
Schrédinger evolution group defined by Us (1) = F'E°F with § # 0 and E =
e~ 3¢ we have

M5 (i6t0;) M5 = Us (t) z;Us (—t) = x; + it0;,

6



Chapter 2 2.2. Preliminary estimates

where M = e~ 3%le” for ¢ # 0.
We first prove Sobolev type inequalities.

LEMMA 2.2.1. Let f € H*2 § #£0. Then
1 1
£l < CIETHUs (=) fllgo2 1117, for t#0.

ProOOF. By the Sobolev inequality || f|/ - < C \|Af||% Hf||%, we obtain

Il = [t s]| < crt|-teea (arkr) | s

for ¢ # 0.
We have the lemma by the identity M3 (16t0;) M3 =Us(t) 2;Us (—t). This com-
pletes the proof of the lemma. i

LEMMA 2.2.2. Let f,g € H*?, a0 # 0. Then

1T5.50) i)l < ClTs (—1) FlEgo [Ta (=) gll o
% Fllfe gl

where J;5 ; = E(z’dtaj) M.

PRrROOF. We have by the Holder inequality

[(J5.5.) (Jak9)ll

H ((mtaj)M%f) ((iatak)Még) H

o (i1)o )|

0; (1), o (31%9)

e SCIAFIZ Il

lad| 2

IN

C |ad| t?

L4 Lt

By the Sobolev inequality
[CYNEN]

we find

1(Js5.5.1) (Jakg)

I INCEE N INCTEn R PR

IN

1 1
3 3 1 1
A2 lgll2

IN

C Ha%% (M%f)

a2 A (Még)

from which we have the lemma. I
LEMMA 2.2.3. Let f,g € H2,§ # 0. Then
_ 1
|7 (M° = 1) F fl oo < CIT2 AL

[(FMF1f) (FMPFg) = fgll g < CHI2 1 f e N9l »
fort #0.



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

PROOF. By the Sobolev inequality || f]|p < C |Af| ||£]?, we obtain
|F (M° = 1) F7Hf |

CllaF (b —1) Fy|F |7 (e - 1) g
Cle[= 3 AR (~A)" £I12

for t # 0, where 0 <~ < 1. This is the first result.
By the identity

(FMOF='f) (FM°F~g) — fg
= (FM*=1)F 1) (FM°Fg) + f (F(M° - 1) F'g)
and the first estimate, we obtain
[F (M =) FH o [[FMOF g
+[|F (M = 1) F gl e 1F e
< ClZAS lgllee + Cle 2 [ Ag] £l

IN

IN

for ¢ # 0.
This is the second one. |

2.3. A priori estimates and proof of Theorem 2.1.3

In this section, we prove Theorem 2.1.3 by using a priori estimates of local
solutions. For any ¢ = (¢y, -+, ¢;) € H>?, we let v = (vy,- -+, v;) be a solution of
System (2.1.1) in the space

Xr=C([0,7];H*?)

with norm

)

HO.2

l
vl = 32 Il = sup S0y o (=t
j=1

0,71 551
where T >0and 0 < 0 < % Existence of local in time of solutions is obtained with
a standard method (see Appendix).

THEOREM 2.3.1. Let T > 1, then there exists a small € > 0 such that for any
¢ = (¢1, - ¢) € H*? with ||¢|lyg22 < &, System (2.1.1) has a unique pair of
solutions v = (v1,- -+, v) € Xt such that ||Jv]| ., < 2e.

In what follows we let v be a solution given by the above theorem. We define

the dilation operator by

1 z

(Dad) () = —o (£), fora#0,

i \a

and _
E=e 27 N =emmlol for ¢ £0.

The evolution operator U, (t) and inverse evolutlon operator U, (—t), for t £ 0, are
written as

(Ua (1)) (z) = M™% Dot (FM™%9) (a)

8



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

and
(Ua (~6)9) () = M (FT'DG M¥6) (2) = M+ (F'E*D, 6) (2)
respectively. Using the notation M, = FM*F 1 we have
U () F~' = M™% Doy M _s

and

These formulas were used in [18] first.
We estimate difference between the free Schrodinger solution and its main term.

LEMMA 2.3.2. Let f € H%2,5 # 0. Then
| £ = 274 Do Us (<) 1| < I 1Us (<) Flagoe
fort #0.
Proor. By the identity

fo= Us(t)Us(—t) f =Us(t) F ' FUs (—t) f
= M DyM_, FUs () f
= M 3DsFUs (—t) f + R,
where
R=M"%Dj, (M_% - 1) FUs (—t) f.

By Lemma 2.2.3

1Bl = ||Da (Mg = 1) FUs (= ]|
< ot |F (- us (-0 4|
< Ot~ 2 ||22Us () f|

for ¢ # 0.
This completes the proof of the lemma. I

Note that if we put g = Us (—t) f, then Lemma 2.3.2 says the estimate of the
difference between Us (t) g and its main term.
We now show that if we multiply both sides of System (2.1.1) by FU 1 (—t),
mj

then we can divide the nonlinear terms into the main terms and the remainder
terms under the gauge condition (2.1.6). By the inverse factorization formula

FU A (—t) = —M,y, E™5 Dy, we have
5 :

1
.FUL (—t) F; = —MijmJ Dy F;.

9



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

Using the identity operator I = —D + Dm; and definition of the dilation operator,
my 7
we can show

DgFj (v1,- - v)

= Dm F ( D Dm1 V1, —D Dml 'Ul)
™y ™y
t m
- F (— "D, Dy Dmswvy,- o, —i29 Dy Do Doy vl)
zmj t my t 3 my
t m m;
= —Fj|-——-2DmDmuvy,- -, ——LDm; Dmy
1M t my t t my

1t m m;
= ZMm]Em7 miF] < tij Dml'l)l, ty ;D%D”’?z'{}l) .
my

my

We now use the identity D, E~° = Efa%Da for a # 0 which is obtained by a direct
computation to get

11 -k
Dy Domivg = Doy E- 75 E™% Doy, = E " Dmy EmkDmk V.
e e t e
By Condition (2.1.6) with §; = —515¢[¢[* and
J
_my i ’"k: 2
E ™ =’ ™ s 1¢] = e~ tmbi
it follows that
FU L (=t) Fj (v1,- -+ v)
J
1t m; ——% 1 m; ——% 1
= iMy,E™ —F;(——LE ™ Dw, E"i Dmvy, -, ——LE m?D Emz Dmi v,
m; t my t t t
m m
— ’LMm]EmJ 7F < Jefzm19JDm 'Ul; . 777Jefzmz«9JDm vl)
m my t my
m; - m; ~
= z./\/lng'" — e~ imif iFj(——2Dm;vy, -+, ——2Dm; ¥y |,
m; t t

1
where v; = E™i Dm; v;. Since Fj is a quadratic nonlinearity, we arrive at
t

FU L (=) Fj(v1, - 0) = iMy L F; (ijil,-~~,Dv»ijZ>.
m

m
N J
m 1 mq

1
We again use the identity FU 1 (—t) = —M,,; E™ D=; on the right hand of the
above identity to get ’

FU L (=) Fj (01, - v)

= z’Mmj%Fj (—ijMmll]:U1 (=t)v1, -, —Dm; M FU 1 (—t) vl) ,
: my mi my

my

10



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

where ./\/lfnli = FM~™i F~1. We now divide the right hand side into the main term
and remainder ones. We define the remainder terms by

Rl’]
. m; — _
= i (M, — 1) TJFj (—D:{Mmll]-‘Un}l (—t) v, - —D%Mm}]—"Uﬁ (—t) vl)
and
R27‘7
L1 _ —
= ZTJFJ. (-D:{M,nifUmll (—t) vy, - —D%Mm}]-‘Um% (—t) U[)
.my
—ZTJF]' <_D:ifU"31 (=t)vq,-- -,—D%Jl‘fUﬁ (=) vl> .
We let
then
FU L (=1) Fj (v1,- -+ vr)
m; 2
= Z'TJFj <—D::J1-]:UT$1 (=t) vy, - .’_D%‘FU% (—t) Ul) +ZRi7j
' i=1
. 2
= iTij (—DZ{Dniul,- - —D%Dmljul> +) Ry
i=1
m; 2
= iTJFj (—iijU1,' SN —iijul) + ZRi’j'
i=1

We multiply both sides of the above by D 1 and use the quadratic property of F)

J

to get
D FU_1 (—t) Fj(v1,---,v)
™5 m;
2 2
m3 1 1
= dp | ——y . - + D E R: .
t J ( m; U, ) m; U[) %7 pat 1]

2
1

Therefore the nonlinear term is divided into two parts such that

. 1
(232) @8tuj = gFj (U1,~-',u1)+D 1 ZRZ’]

11



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

We multiply both sides of (2.3.2) by ¢;4; , take the imaginary parts and use Con-
dition (2.1.3) to obtain

l
o [ Y eilul®
j=1
l

1 _
= 2Im ;¥Cij(U17”.’UZ)Uj

l 2
j=1 T =1
l 2
(2.3.3) = 2Im () ¢ (Dl_ ZRZ-,J) |,
j=1 7 i=1
where ¢; > 0 for 1 < j < I. We prove the second term of the right hand side of

(2.3.2) for each j € {1,---,1}, where [ > 2, is a remainder term.

LEMMA 2.3.3. We have

12 . 2
>3 MRl < R |y (=00,
j=1i=1

for t # 0, where
!
o2 e =Sl 0,

PRrROOF. By the definition of the remainder terms and the first estimate of
Lemma 2.2.3, we have

1R,
< Clt"%||AF; (Dm_ijmlUl (—t) vy, —Dmy FM™™U 1 (—t) vl) H
my my my my
for ¢ # 0.

By the Sobolev inequality

I fllL < ClAFIZ1f12

and the fact that I is quadratic with respect to variables, we obtain

l
2
_3
[Rillp < Cltf ZZHU% (—t)ijHo)2
i=1
3 2
< ol?|v. (—t)v’
m HO,2

12



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

for ¢ # 0.
We again use the first estimate of Lemma 2.2.3 to find
[1R2,j Lo
1
_3
DY HUM%_ (| g U 0]
i,j=1
5 2
< ol v (=t UH
m H0,2

for ¢ # 0.
Therefore we have the result. i

We show the desired a priori estimates of local solutions. We first prove

LEMMA 2.3.4. We have
t 3
G (t) < CG (1) +c/ T2 H (1) dr,
1

for any t € [1,T], where

60 - |7, (o, - 3|0 (o

Lo
PRrROOF. By (2.3.3) and the estimate of Lemma 2.3.3, we have

|7z =01

Loo

vl
-
0N
2
[
U
3

< CH]—'U% (—1)UHLOO +c/1t7—

HO.2
for all ¢ € [1,T], since

[fllLee < ClIDmfllpe -
This completes the proof of the lemma. I

Note that

2 2
U (=7) Flzgo = 112+ 2D NI g FI2 4 D T T I

=1 k=1

where

ia|? —ilz|?

I = Up (8) ;U (—t) = €207 (imtd;) e 2 = M (imtd;) M.

We have commutation relations with
(2.3.4) Imj = Un(t)z;Un(—t) = x; + imtd;
and L,, = i0; + 5 A such that
(L I i] = 0.
We evaluate the derivative of H (t) with respect to ¢.

13



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

LEMMA 2.3.5. We have

%H (<0 (G @+ i)
for any t € [1,T7].

Proor. Multiplying both sides of (2.1.1) by J_1_,, we can obtain

) 1
J#jk <lat + QTI%A) vV = J#jJC (FJ (Ul, . ',’Ul)) .

Since

then

. 1
<Zat + 2m, A) J 1 gvj = Jm%k (Fj (v1,---,0)).

By the same way, we have

(2.3.5) (i@t + 21_A>

m; i.vj:J% (Fj (1)17"'71)1))7

mj
where we have used the multi-index notation

J4 = Jai 1Jai 29
m mj7

m;

¥ -
where |a| = a1 +ag,a; € N, for i = 1,2. We multiply both sides of (2.3.5) by J%_wv;
s
with |a| = 2, integrate in space and take the imaginary parts to obtain
d
dt
By the fact that Fj is a quadratic nonlinearity with respect to variables and the
gauge condition (2.1.6) we find that

£t

m;

% vy

m.;
J

< C’HJ‘”‘le (v1,- - )

m;
J

laf=2
l
< Clollge Y D |70
j=llaj=2! ™
l 1
+ (D> 1Ty SO>I ,
j=1 |a|=1 ™ LPr1 J=1 |a|=1 mj LPr2

with % = P% + p%,pl,pg € [2,00]. We apply Lemma 2.2.2 to the last term of the
right hand side to get

d (0%
|a]=2
l
< Clollge 32 3|15 sl < Cllelle S |50
la|=2 =1 ’ la|=2 )

14



Chapter 2 2.3. A priori estimates and proof of Theorem 2.1.3

By Lemma 2.3.2, we have
lole~ < |M"DLFUL (—t)

Loo

+ Hv M ™D, FU. (—t)vHL

Ui (—t)v’

m

< ot! H]—'U# (—t)vHLoo +Ct 2 HO.2

for all ¢ € [1,T], which we apply the above inequality to get the lemma. I
We are now in a position to prove other a priori estimates of local solutions.

LEMMA 2.3.6. There exists a small € > 0 such that
l
2
L+8) T HO)+G 1) <et,> ||6)]lgen <€
j=1

for any t € [1,T].

PrOOF. From Lemma 2.3.4 and Lemma 2.3.5 we get

(2.3.6) G()<CG)+ c/tT—SH(TVdT,

(2.3.7) %H(t) <C (t‘lG(t) H () + t_%H(t)z)

for all t € [1,T].
From the existence of local solutions stated in the above we obtain G (1) + H (1) <
Ce, hence

Git)<C <s+/tT%H(T)2dT)

1
for all t € [1,T).

We let
(L+¢)°° H(t)=H(t)
Then
t s
(2.3.8) Gt)<C <€ +/ so5+2e3 fy (7)2 dT)
1
and

%Er (t)+eit T H@E) <Ct 3t H@t)? +Ct7'G () H (t)

from which it follows that

H(t) + &3 /t T VH (1) dr

t
(2.3.9) < C’<s+/ Tate
1

for all t € [1,T7].
There exists an € > 0 such that

(2.3.10) H(t)+G(t) <&l
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for any ¢ € [1,T]. Indeed, if we assume that there exists a time ¢; € [1,7T] such that
H (1) + G (t;) < ei, then by (2.3.8)

G(t)<C (e+e%) ,
and by (2.3.9)

th _ £y N

H(t1)+€%/ TﬁlH(T)dTSO(z?-I—E%) —|—C€%/ r H (1) dr.
1 1

Therefore if we choose € > 0 small enough, we see that

H(t) <O (+2t).

Thus we have

NN

PNI(tl)+G(t1)§C’(€+5%) <ei.

This contradicts the assumption that there exists a time ¢; such that f[(tl) +
G (t;) < 7. This completes the proof of the lemma. §

We prove Theorem 2.1.3 by using a priori estimates of local solutions obtained
above.
Proof of Theorem 2.1.3. By the standard continuation argument we have a
unique time global solution such that

H(t) = ’ Ui (_t)UHHo,2 <ei(14¢)°°,
Gty = |[FUs (ool <<t

LOO
for any t > 1. Therefore it is sufficient to prove the time decay estimates of solutions.
By Lemma 2.3.2 and the definition of M~ D _+ we have

J

o 6= 217D FU L (1000

J j Lee
= v, (t) — ezt o I (.FUL (—t) vj) (t, ﬁx) H
1t mg t Lo
< Ct 3| U (—t)vy (t)H
my HO.2

for t > 0. It follows that

vjll;. < Ot H]—'Ui (—t) ij ot 3 HUL (—t) vj‘

Lo HO.2
for t > 0. Namely

l
Wl = D 0illgegey < CEIG () +CE2H (1)

j=1
B q 2 .
< C <sit1 + t3+53> < Ceit?

for t > 1. If t € [0,1), we have ||[v < Ce by ||¢|lma22 <e. If t <0, the theorem
follows by the same method. This completes the proof of the theorem. |

16



Chapter 2 2.4. A system without the L? conservation

2.4. A system without the L? conservation

In this section we show that the L? conservation law is important for obtaining
the time decay estimates of solutions (see [10] and [22]). Let us consider the
following system

m

i@t’Ul + TllAvl = 07
(241) { 10409 + ﬁsz = 1)%7

with the initial conditions
v1 (0) = ¢1,v2 (0) = o,

in (t,7) € RxR?, where A = 23:1 8]2-, 0; = %, m1, mo are the masses of particles.
Since the first equation of this system can be solved explicitly v1 = U_1_ (t) ¢y,
T

we get the following Cauchy problem for vo

2
(2.4.2) { idhv + g Avy = (U (0)61)
v2 (0) = 5.
Equation (2.4.2) is a linear Schrodinger equation and the solution can be represented
explicitly by (¢, ¢5). More precisely, we have

PROPOSITION 2.4.1. Suppose that ¢; € H*2, ¢, € L2. Let vy € C([0,00); L?)
be a global solution of the Cauchy problem for Equation (2.4.2). Then the following
estimate 1s true

2
_ )
oz (@)1 = ma |||, 1ogt = C 61 I
fort>1.

This fact was pointed first in [39] and [40] in the case of Klein-Gordon equations
and in Remark 3 of [22] in the case of Schrédinger equations. Therefore Proposition
2.4.1 is not new. However we give a short proof for the convenience of the readers.

ProoF. Using the factorization properties of the inverse free Schrodinger evo-
lution group we obtain
2 —~\ 2
D FU. (—t) (UL (t)(bl) =ttt (DL¢1> + Rs,
mo mo mq mi

where
2

Ry=t""M_ (Dm%/\/l_mla)Q -t (Dm%gﬁ\l)

mg
As in the previous section, R3 can be easily estimated
- 2
[Rs]| < Ct2 [|¢1 [l 50.2

for t > 1.
Multiplying both sides of Equation (2.4.2) by D 1+ FU 1 (—t) we get
mo mo

i0, (D%]—'Ui (—1) UQ) . (DLEI)Q + R

mo my

Integration with respect to ¢ yields

D1 FU 1 (—t)vs (t)
mo mo
—2 t
= D1 FU1 (=) (1) +imip, (mix)logt — 2/ Rsdr.
mo mo 1

17



Chapter 2 2.5. Nonexistence of the usual scattering states

Since [[oz (1)) < C (léall + 610 ) and

t
/1 |Rall dr < Clln 200+

we find the desired estimate

12
oz ()] = ma |||, 1ot = C 61 I

for t > 1. Proposition 2.4.1 is proved. i

2.5. Nonexistence of the usual scattering states

In this section we state nonexistence of the usual scattering states. This result
(joint with Professor Nakao Hayashi and Professor Pavel I. Naumkin) comes from
[10].

We consider the following system of nonlinear Schrodinger equations

(2.5.1) { 10001 + gy A1 = T

2m 5
10yv9 + mAvg =7,

in (t,7) € R x R?, where A = 2321 8]2, 0; = 0/0x;, and my, my are the masses of
particles.

DEFINITION 2.5.1. A solution to System (2.5.1) is asymptotically free if there
ezists an L? solution (w14, way) to the system of corresponding free equations such

that
2

D () = wi (B)] = 0
j=1
ast — 00.

Since System (2.5.1) for small initial data with 2m; = mq satisfies all condi-
tions of Theorem 2.1.3, we have global existence and time decay estimates of small
solutions to the Cauchy problem for this system. We show nonexistence of the
asymptotically free solutions for System (2.5.1) by using time decay estimates of
small solutions to the system.

THEOREM 2.5.2. Let 2m; = my and (vi,v2) € C([0,00); HZNH"?) be a
global solution of System (2.5.1) obtained in Theorem 2.1.3. Then there does not
exist any nontrivial scattering state (viy,vey) € H2 NHY? such that v1 # 0 and

2
PO IR AN GEN B
j=1 ’
ast — o0.
PRrROOF. By the contrary we assume that there exists the nontrivial final state
(v14,v94) € H> N H"?
such that v14 # 0 and

m;
J

2
Z HU 1 (—t) Vj _Uj+H —0
j=1

18



Chapter 2 2.5. Nonexistence of the usual scattering states

as t — oo.
Let
(v1,v2) € C ([0, 00) ; H> N H*?)

be a global solution obtained in Theorem 2.1.3 which satisfies the time decay esti-
mate

lor ()llpe < C (1487
for ¢ > 0.
Multiplying the second equation of System (2.5.1) by D FU L (—t) and integrat-
ing the result with respect to t we get ’ ’
(252) Do F (Uﬁ (~t)vs = U (~s) W) =—i [ Do FU. (—7) (v2)dr,

S

where 0 < s <t < c0.
We decompose the nonlinear term as follows

Uy (—)0?=U (—t) (ﬁ - (Ui (1) vl+)2> + UL (—t) (Ui (t) UH)Q.

T2 M2 w1 T2 1
By the factorization formulas for the free Schrédinger evolution group
Ui (t)=M""D_+ M_p, F
and
FUL (—t) = —iMmijjEmjD%,
e :

where M, = FM*F~1 and D1 My, Dy, = =M1 for 1 <j <2, we find
w5 ™

J

D FU. (—t) (UL (t) v1+)2

mo mo my

2

= D1 My, Dy, E™ D (M—mlDLM_mlqﬁ:)

o ; i

2
= _tile%QMsznLg (Dm%lM—ml'Ul-&-)
N2 _\2
= "M (DLM_mlvH_) =1 (DLUH_) + R3
o " "
since we assume that 2mq = msg, where

2 2
Ry=t""M_ (DLM_WUTI) _— (Dim) .
mq my

mo
By the similar method of the proof of Lemma 2.3.3 we find
(2.5.3) IRl < Ot~ [|v14 || 0.2

for ¢t > 0.
We have by (2.5.2) and (2.5.3)

t
/ rldr

[0 (~tyes U2 (s 2 H(Dlmf

mo mo my

t
—c/

t
@54) =l + oz ls)? [ 7720
S
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Chapter 2 2.6. Appendix

where 0 < s < t < o0.
By the Cauchy-Schwarz inequality we get

V3 — (Ui (t) v1+>2

my

< O (ol + o) or = U () vrs| | < cot7

for t > 0. )
Here we can choose 6 > 0 such that HDL’EIHL4 —C6>0.
Therefore by (2.5.4) we obtain

mq L4

[Vs <ty —U s (=) > () D), - 06) /:r—ldf > oo,

as t — oo.
This contradicts with our assumption

vz () = Ut (1) v2+H =0

as t — oo. Theorem 2.5.2 is proved. i

2.6. Appendix

This appendix provides a proof of global existence in time of solutions to System
(2.1.1). If we restrict our attention to quadratic nonlinear Schrédinger equations,
our proof is based on the standard Strichartz type estimates for the Schrodinger
equations and the L? conservation law. We introduce the following space-time norm

16l ey = 116 @l g -

where I is a bounded or unbounded time interval.
Define

9ol ()= [ Vs (t=r)g(r)ir

for any T € I, where U1 (t) is the Schrodinger evolution group defined by U1 (t) =

Flemzatlél’ F. The Strichartz type estimates (see [3]) for the case of two spatial
dimensions can be formulated as follows.

LEMMA 2.6.1. Let 2 <r < oo and éJr% = % Then for any time interval 1 the
following estimates are true

IS [g]”L‘Z(I;LT) <cC HQHL;*’ (LL')
and
Jo. 04

/ 1 1 _ 3
where 1 < r §27?+F_§'

<Cllol,

LI{(GL") —

First we consider the local existence of L? solutions to the integral equations

mszﬁ@mrwﬂUlu—wﬂwyuwmww7

my

(26.1) < e
w(t)=Us () =i [yUs (=) Filvr, - u)()dt,

my

20



Chapter 2 2.6. Appendix

where F; € C! ((Cl;(C), Ui (t) = exp (z% ) for 5 = 1,---,1 are the free

m;
Schrédinger evolution group. From the point of the results of the Cauchy prob-
lem for a single nonlinear Schrédinger equation with power nonlinearities, we can
treat the problem in the space L2. The method is similar to that by [42].
For any ¢ = (¢, -+, ¢,) € L? we find a solution v = (v1,---,v;) of System
(2.6.1) in the space

Xo (I) = (CNL{) (I;L*) NL{ (I;L™)

on a small time interval I = [-T,T], where 0 < 2/qo = 1 — 2/r¢. In order to do
that we introduce the norm

1 l
HU”XO(I) = Z ||UjHX0(I) = Z <||Uj||L§c(1;L2) + ij||L§0(1;Lro)> )
j=1 j=1
where 0 < 2/gy =1 — 2/rg. We prove

THEOREM 2.6.2. For any p > 0 there exists T' (p) > 0 such that for any ¢ =
(b1, @) € L2 with ||¢|| < p, System (2.6.1) has a unique pair of solutions
v=(v1, - v) € Xo(I) with I =[-T (p), T (p)].

PrROOF. We denote the right hand sides of System (2.6.1) by ®; (vy, - - -, v;) for
1 <j <. By Lemma 2.6.1, we estimates ®; (vy,---,v;) for 1 <j <[ as

@5 (v1,-- ',”l)”XO(z)
< Cloll+ CIE @)l 0
2
< Cligl+CT2 ol »

where we have used the Hélder inequalities in time and space with 1/rf = 1/2 4+
1/ro,1/q, =1/2+1/qp.
Similarly,

@5 (v, -+ v1) — @ (v], - .,UZ’)HXO(I) < OTV/? ||v||X0(I) lv — UIHXO(I)

holds for 1 < j < I.
Therefore the conclusion follows from a contraction argument by taking T > 0
small in connection with the size of data p. I

Next we consider global existence of L? solutions to the problem. Let v =
(v1,- -+, v;) € Xo (I) be the local solution of System (2.6.1) given by Theorem 2.6.2.
Then we have

oy B2 = ;] + 2Im / (B (1), v; (¢) dt’
0

for all j € {1,---,1}, where the last term of the right hand side is understood to be
a duality between L{° (I; LT{)) x L (I; L") (see [30]).
LEMMA 2.6.3. Let v = (v1,---,v) € Xo(I) be the local solution of System

(2.6.1) given in Theorem 2.6.2. If there exist constants c¢; > 0 for 1 < j <1 such
that

l
(2.6.2) Im ) /]R ¢; Fiujdz <0,
j=1
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then l l
2 2
> eiloil? <> e g
j=1 =1
forallt e I.
PrROOF. The lemma follows from

1 l l t
STl @IF = ¢ ||o;]|” + 2Im Z/O ¢ (Fy (') 05 (') dt!
=1 =1

j=1
THEOREM 2.6.4. Let ¢ = (¢y,- -, ¢;) € L2. If there exist constants c; > 0 for

1 <5 <1 such that
l
ImZ/ ¢; Fyujdz <0,
j=17%

then System (2.6.1) has a unique pair of solutions v = (v1,---,v) € Xo (R), where
Xo (R) = (CNL®) (R;L?) NL{ (R;L™).

Moreover,

l 1
S el <3 g
i=1 =1
for allt € R.

PrOOF. The theorem follows from Theorem 2.6.2 and Lemma 2.6.3 by the
standard continuation argument of local solutions since the existence time depends

only on [[¢[|. &
By Theorem 2.6.2 and Theorem 2.6.4, we have
PROPOSITION 2.6.5. If ¢ = (¢, -, ¢;) € H>? and the nonlinear terms in

System (2.1.1) satisfy Condition (2.6.2), then there exists a unique global solution
v = (v1,v9,- -+, v;) of System (2.1.1) such that
v = (v1,v9, -+, v) € C ([0, 00) ;H2’2) .

PRrOOF. If we take a time derivative of nonlinearities into account, in the same

way as in the proof of Theorem 2.6.2, we have a unique pair of local solutions
(CNLY) (I H?)

and if we note that the existence time of solutions depends on ||¢[lg:. we can
extend this existence time to infinity as in the proof of Theorem 2.6.4. Since
veC ([O,OO);H2) and ¢ € H?>2, we get the desired result. Indeed we multiply

|z|? both sides of equations and apply the energy method to the resulting systems
to have a priori estimates of |||z[?v||. N
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CHAPTER 3
Wave operators and approximate solutions

3.1. Introduction

We consider the following system of nonlinear Schrédinger equations in two
space dimensions

1
(3.1.1) i0w; + ——Avj = Fj (v1,--v;), in R xR
2mj
for 1 <j <1, where A = Z?zl 5‘?, 0; = a%j, v; is a complex valued unknown func-
tion, 7; is the complex conjugate of v;, m; is a mass of a particle and Fj (vy,- - -, v;)
is a quadratic term formed from the set
A = [Uh t '7’Ul7/0717 c ,’ITI] = [Uh UL, V41, '7U21] .
More precisely, we can write
Fj (vla o '7Ul) = Z Aiﬁ7k’l}mvk,
1<m<k<2l

where /\fmk eC.

Let ¢, = (¢4, ¢y ), wherep,;, € L?foreach j € {1,-,1},and U (t)¢, =
(Ui () Y1y, UL () ¢l+)~ Note that Ui (t)y, is a solution of the system

’771.1 VYLl m

of the corresponding free Schrodinger equations. If there exists a unique global
solution v = (v1, - - -, v;) € C([1,00); L?) of System (3.1.1) such that

(EOEN L (Y5l =0,

(.| = Z v () = U

as t — 0o, then the map
W,: ¢, = (¢1+’...,¢l+) = v = (v, ) (1)

is well-defined on L?. We call the map W a wave operator. The given 1 is
called a final state.

We recall some of the results to the following Schrédinger equation with the
nonlinearity involving no gradient terms

(3.1.2) 10yu + %Au = N(u),

in (¢,z) € R x R™, where A/(u) is a nonlinear term. Let the short range exponent
P(n) =1+ 2. We assume nonlinear term A(u) = X lulP~'u with A € Ry. For
p > P(n), existence of asymptotically free solutions was proved by Lin and Strauss
[27] for p > §,n =3 and Y. Tsutsumi and K. Yajima [43] for p > P(n). For 1 <
p < P(n), Strauss [37] and Barab [2] showed nonexistence of asymptotically free
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Chapter 3 3.2. Existence of wave operators

solutions. Since P(2) =1+ % = 2, quadratic nonlinearity in two space dimensions
is critical. Let space dimension n = 2. If nonlinear term N (u) = A|u|u with
A € R\{0}, Ginibre and Ozawa [7] proved existence of modified wave operators in L?
sense. Hayashi, Naumkin [13] and Shimomura [34] studied asymptotic behavior of
small solutions for the initial value problem of Equation (3.1.2) with M (u) = A Ju|u
in different cases for A. If nonlinear term N'(u) = Au? or \u?, where A\ € C\{0},
the existence of modified wave operators are shown in [29], [17] and [35]. If the
nonlinear term N(u) = Au|? with A € C\{0}, the initial value and scattering
problems were considered in [20] and [33].

Our aim is to study final and initial problems of System (3.1.1). We prove exis-
tence of wave operators for special support conditions on the final data. Moreover
we show asymptotic behavior of solutions to the initial value problem for a special
system.

3.2. Existence of wave operators

In this section, we investigate existence of wave operators for System (3.1.1).
First, we give a necessary condition of existence of asymptotically free solutions.

THEOREM 3.2.1. Let ¢ = (¢, -+, ¢;) € H>? and v be global in time of solutions

of System (3.1.1) satisfying a priori estimates
oo 2

/1 2 HU% (—s)vHHO’2 ds < o0,

We assume that the gauge condition (2.1.6) holds for each j € {1,---,1}. If there
exists a IZ_T_ = (J:H . ,m) € L2NL*> such that

FUs (—t)vHLw <cC.

i o) -0 v | =0
Then
(3.2.1) F, (Dm%@,-u,Dm%%:) —0

for every j € {1,-- -1}, where 7,71:_ =F,.

From Theorem 3.2.1, we find that if (3.2.1) does not hold, then the solutions
are not asymptotically free. If the support condition

N} _suppy;, (m;€) is empty,
is satisfied, we have (3.2.1). The support condition means each particle does not
work for any other particles. This effect does not occur in a single nonlinear
Schrédinger equation.
The following theorem says existence of wave operators.

THEOREM 3.2.2. Let 121 = (1/)/1:_, - 12;) € H?? satisfy the so-called support

condition (3.2.1). Assume that F; satisfies the gauge condition (2.1.6) for each j €
{1,---,1}. Then for some e > 0 there exists a unique global solution v = (vy,- -, v;)
of System (3.1.1) such that

v € C([1,00);L?)
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and

Hv(t) G

1
m

1
(t)¢+H <ot S <b<l
for large t and any 7,21 satisfying
[94 |z < e
Theorem 3.2.2 follows from the fact that asymptotic behavior of each particle is

i\w|2m,j

determined by the leading term of U% (t) 1, which is given by e~ 27 %1@1 (Z72).

t

3.3. Proof of theorems

In this section we give the proof of existence of wave operators for System
(3.1.1). First we consider the necessary condition of existence of asymptotically
free solutions.

Proof of Theorem 3.2.1. We assume that (3.2.1) does not hold. Namely there
exist j € {1,---,1} and 5 > 0 such that

I (07500 =

By (2.3.2) we have

2
(3.3.1) +=F (Dﬁm, - ~,Dm+lwz+) + Dﬁj > Rij,
=1
where
Uj = DL}-UL (—t) Ujs
RL]’
. m; _ _
= i(Mp, — 1) TJF]- (—D::i/\/lmll}‘Ungl (=t) vy, -, —D%Mm}}'Um% (—t) vl)
and
R27j
= i=lF, <_D:Z{M,,L1FU1;1 (=t v, =Drs My FU L (=) vz)
—i%Fj <—ij]-'U1 (=t)vr,- -, =Dm; FU 1 (=) Ul) :
my my my my

By the same way to the proof of Lemma 2.3.3, we have

2
1Rl < G2 ||U (<)o

HO.2
1

l
j=

2
1i=
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Chapter 3 3.3. Proof of theorems

for ¢ # 0.
Integrating (3.3.1) in time and taking L? norm, we obtain

HD ]:<Uﬁ] vj)( t) — D ]-'<U”3] v]) (t)H

= (g ) en - (vz2u) o
o[ Lismc [" Loy oo

>
< (v o+ 9 )
- 02/ 12 ()l ds
2t
> nlogZ—C/ HU )v—¢+Hds

2

ds
HO.2

—C/2t 1 HU1 —) ’
t
for t > 1.

From the assumption, we have ‘ Ui (—t)v— z/J+H — 0 as t — o0, so there exists a
time T" > 1 such that

(22 ()

for all ¢ > T. This contradicts {U% (—t) Uj} is a Cauchy sequence in L2. This
completes the proof of the theorem. ’ 1

Proof of Theorem 3.2.2. Let us investigate
Lypv; = Fj(vi,---v) = Fj (Um% &) Y145, Um% (t) 1Pl+)

(3.3.2) +F; ( (t WH, : 'vail (t) wl—&-)

forj=1,---1.
We consider the last term of the right hand side of (3.3.2) to have

i (Us (0 rs U (001
= UL () ]-'*1]-"Um% (—t) F; (Um% ()1 U (t) «m) :

In the same way as in the derivation of (2.3.2) we obtain

FUL (), (Uﬁ (O ¥rps U () wH)
= My, %Fj (—D:ZMmﬁﬁ, o —D:ZMM}J;) ,
where ./\/l:n_lj = FM~—™i F~1. We define
Ry ;=i (M, —1) %Fj (DZ{M,,AJ;,. - D:Z_:Mm}%:)
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Chapter 3 3.3. Proof of theorems

and
T4 -1 -1
R4’j = ZTF] <—D:iMm1¢1+,"‘,_DmMml¢l+>
.m; — —
7ZTJFJ' (D:il/}H, cy D:Z-:ler) .

Finally, we get
Do FUL (O F (Vs 01y, U (0%0)

4
1 —
= SF (Dt D) +D2 Y Ry
=3
We substitute the formula into (3.3.2) to obtain
SNOYON

m.;
J

= Fi(n0) = F (U 010U (0v1)
1 _ _ — —
+¥U"+J (t)./r 1DiFj (D%lw1+>"'aDﬁlwl+)

m;

Ly, (vj -U

4
(3.3.3) +UL () F 'Y Rij
! i=3

since Ly, (Um% (t) 1, +) = 0. We define the following function space

with the norm
2
=3 sw (|l - vy v,
J=1 te(l,00)

where $< b < 1. We also denote the closed ball X, = {f € X;||f||x < p}. The
linearized system of (3.3.3) is written by replacing F; (v1,- - -, v;) by Fj; (w1, - - -, wy)
with w € X,. We get from the linearized system of (3.3.3) and the Strichartz
estimate

+||f-vs vy

Loo ([t,00);L2) L4([t,00); L4)>

Hvi wJFHLw(too L2)+ v-U ()d}*‘m ([£,00)5L4)
T
< Cp2t%72b + Cé‘ptib + OZ Z ||Rz7j |L1([t,oo);L2)
j=11i=3

for t > 1, where b € (3,1), since Condition (3.2.1) means the third term of the
right hand side of System (3.3.3) vanishes.
In the same way as in the proof of Lemma 2.3.3 we find that

l 4
SN Rl < O b |[f < CE%
j=11i=3

for t > 1.
Therefore there exist € > 0 and positive p such that ||v|x < p. In the same way we
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Chapter 3 3.4. Approximate solutions

have for the differences L
lv =7lix < 5 lw—vlx,

where w € X, and v is the corresponding solution of the linearized system of (3.3.3).
This completes the proof of the theorem. 1

REMARK 3.3.1. Asymptotic behavior of solutions to the system Ly, ;v; = F} (v1,
<o) for 1 < j <lis determined by solutions of the ordinary differential equation

1
iatq)j:EFj(q)ly"'vq)l)a ]-SJSZa

where ®; = D 1 Ft,;,. However asymptotic behavior of solutions to the system of

ordinary differential equations is not well known. That is the main reason why we
can not prove asymptotic behavior of solutions to System (3.1.1) without Condition
(3.2.1).

3.4. Approximate solutions

We consider the following special form of System (3.1.1)

. 1 R
{ 1001 + mAfUl = YU1ve,

(3.4.1) )

. _ .2
10yv9 + %Avg =7,

in (t,2) € Rx R?, where y € C, |y| =1, A = 25:1 8]2, 0; = %, m1, mo are the
J
masses of particles.
If we assume that
(3.4.2) N =1,

then we find the L? conservation law

d
= (ol + o)) = 0.
Under Condition (3.4.2) System (3.4.1) becomes

{ iaﬂ)l + ﬁA’Ul = 1}711)2,

(3.4.3) 2

’L'at’UQ + %A’UQ = vy,

The global existence of small solutions for System (3.4.3) is proved in Chapter
2 since System (3.4.3) is included to System (3.1.1) (see Theorem 2.1.3). Here, we
focus our attention on the asymptotic behavior of solutions for System (3.4.3) under
some special conditions. This work is done jointly with Professor Nakao Hayashi
and Professor Pavel I. Naumkin (see [10]).

THEOREM 3.4.1. Let (v1,v2) € C ([0,00); H2 NH?) be a global solution ob-
tained in Theorem 2.1.3. Then there exist initial data ¥4 (§) € L™ and ¥4 () € L™
for the Cauchy problem

8tqzzjl - tildjflw% t> ]-a
(344) ath = _t_1¢%7 t>1,
1/’1 (17§) :\Pl (f)a wZ (17§) :\PQ (g)a

such that the asymptotics for the solution (vy,vy) is true

() = =it TP ) (1) 40 (27340)
777/.]’
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Chapter 3 3.4. Approximate solutions

for 5 =1,2 as t = oo uniformly with respect to x € R?, where 0 € (0, %) .

We note that the asymptotic behavior of solutions to the Cauchy problem
(3.4.4) is defined by the amplitude |¥; (§)| and the angular arg ¥, (£) which depend
on the global solution (v1,v2) (see the proof of Lemma 3.4.2 below). However we
can not find the exact representations of ¥y (§) and ¥y (€) for the Cauchy problem
(3.4.4) and so it is difficult to find an exact asymptotic behavior of solutions to
System (3.4.3) with initial data v;(1) = ¢;(z) for j = 1,2. Below in Section 3.5
we will show that the asymptotic behavior of solutions to the Cauchy problem
(3.4.4) is divided into three cases (asymptotically free, asymptotically free with
a phase modification, and a periodic in time oscillation of the amplitude of the
solution). If we concentrate our attention to the final state problem for System
(3.4.3), it is possible to find an exact asymptotic behavior of solutions to System
(3.4.3) in the neighborhood of a special solution to the Cauchy problem (3.4.4).
It is also interesting to consider System (3.4.1) without Condition (3.4.2). In this
case, it is expected that System (3.4.1) has dissipative property under some angular
conditions. We will discuss these problems in Chapter 4.

Define the norm

lollx = supz(m sl + sl + (1467 )
where |a| =2 and 6 > 0 is small.

By Theorem 2.1.3, there exists a small € > 0 such that System (3.4.3) with
initial data v;(1) = ¢;(x) for j = 1,2 has the form

JiU]
i

=% j=1

4o =t"1P1p, + O (2t717F) £ > 1,
(3.4.5) Loy =t +0 (2 17F) 1t > 1,
¥1 (1) = (I)laSQZ (1> = @2,
for all 23:1 ([l¢;1lex2 + [|¢;]lx0.2) < &, where @; = ~M_L E™iDyvj, 8= 1—6and

0 e (0, %) . We now compare the asymptotic behavior of solutions to the Cauchy
problem (3.4.5) with the large time asymptotics of solutions to the unperturbed
system of the ordinary differential equations depending on ¢ € R? as a parameter

%wl = tilwilw%t > ]-7
(346) %1/12 — *tildﬁ,t > 1’
Yy (1) = V1,9, (1) = Us.

The unperturbed system (3.4.6) will be studied in Section 3.5.
In this section we prove the following result.

LEMMA 3.4.2. Let the initial data for System (3.4.5) be such that

ZH% I~

where € > 0 is small enough. Then there exist initial data U4 (§) and Yo (§) for the
Cauchy problem (8.4.6) such that the asymptotics is true

p; () =1; () +0 (7)), j=12
for large time t — oo uniformly with respect to & € R2.
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Chapter 3 3.4. Approximate solutions

PROOF. Let (¢ (t),¢,(t)) be a given solution of System (3.4.5). Denote
wgo) (t) = ¢; (t) and define 7,/1;") (t) for n > 1 as a solution of the linearized version
of System (3.4.6)

o =t el e,
Rl (A ) VSR

with a final state condition

(3.4.7)

i — ™ —
i 0 0], =
Let us prove by induction that
2
3.4.8 supt? 3 ||, (1) — 0 ]| < ce?
(3.48) w3l )= 0] .

for all n > 0. For n = 0 the estimate (3.4.8) is true. Next by induction we assume
that (3.4.8) is fulfilled for all 0 < n < k and consider System (3.4.7) for n = k + 1.
We already know by Lemma 2.3.6 that

SHPZII% Mg <&
=4 j=1

Therefore also we have Hq/zg-n) (t)HL <(Ceforall 0 <n<k.
By System (3.4.5) and System (3.4.7) we find forn =k+1and ¢t > 1

iuww ‘..
< CEZ/

< CetP

from which the estimate (3.4.8) with n = k + 1 follows. Thus by induction the
estimate (3.4.8) is valid for all n > 0.
In the same way as above we find the estimate

dl 2,08
L + 0 (et77)

; (1) ="V (r )H

sup t? Z Hw " (¢t (n=1) (t)H < Ce?

t>1 Lee

for all n > 1, which imphes by the usual contraction mapping principle that there
exists a unique solution (¢, (t),94 (t)) € C ([1,00);L>®) N C([1,00); L*°) of the
follwing system
{ %1/11 =ty t>1,
Sy = -t (W), t>1
satisfying

2
sup t? Z ||<pj (t) — oy (t)”Loo < Ce2.
1

Lemma 3.4.2 is proved. 1
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Chapter 3 3.5. Appendix

Application of Lemma 3.4.2 to System (3.4.3) yields the result of Theorem 3.4.1.

3.5. Appendix

This is a joint work with Professor Nakao Hayashi and Professor Pavel I.
Naumkin. We consider the following Cauchy problem

%¢1 = t_1¢71¢22a > la
(3.5.1) Lopy = —t71yf, t>1,
1/)1 (1) = \Illv ¢2 (1) = \I’27

(t,z) € R x R%. We change t = et to exclude the explicit dependence on t in
System (3.5.1) (we omit the prime of #'). Then we substitute 1, (t) = r (t) e!*(®)
and v, (t) = p (t) € to get from (3.5.1)

r irg =rpet®=29) >0,
o +iph = —r2ei29=0 >0,
We also denote aw = 6 — 2¢, then

r = rpcosa,

p = —r?cosa,

5.2 .
(8:52) of = "= gina,

¢ = psina.

By the first two equations of System (3.5.2) we have % (r2 + p2) = 0, therefore

r2(8) + 0% (1) = [0 + o

for all t > 0. Then by the first three equations of System (3.5.2) we find % (pr?sina) =
0. Therefore

p ()12 (t) sina (t) = |Wy| [0y [* sin (arg Uy — 2arg ¥y)
for all ¢ > 0. Denote z = r2 — 2p% = 3r2 — 2b, b = |¥;|> + |¥,[°>. Then by
System (3.5.2) we see that 2’ = 6pr? cosa and 2’ = —6r%2 = —2 (2 + 2b) 2. We can

exclude the constant b from the equation if we make a change z (t) = bz (i) , 7 (t) =
Vor (%) L p(t) =VbZ (ﬂ , Vbt = t. Hence we get (we omit the tilde of ¢ and 2)

% =-2(z+2)z,
(3.5.3) 2(0) = 2 (0) — 202 (0),
2 (0) = 6p (0) 72 (0) cos a (0) .

Note that —2 < z(t) < 1. Multiplying (3.5.3) by 92 and integrating we get

dt
dz\? 4

Since p = /152, 7% = 212 and 2’ = 6pr? cosa, wehave C = 3 (1 — z) (z + 2)? cos? a+
422 + %z?’. Therefore we can see that 0 < C < ? for —2 < z < 1. Denote the func-

tion f(2) = C — 422 — %z?’ for —2 < z < 1. Then we have the equation

<f;)2f(2)~
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Consider the function f(z) = C —42% — 323 for =2 < z < 1. It has the local
maximum f (z) = C at z = 0 and the local minimum f(z) = C — 1 at z = -2,
Therefore if 0 < C < ?, then there are three roots 21 < —2 < 20 < 0 < 23 < 1 of
equation f (z) = 0 such that f (z) > 0 for all z; < z < z3. Note that the initial data

satisfies the inequality z; < z (0) < 23 since f (2 (0)) = (2/(0))*> > 0. Therefore the

solution z (t) is always periodic zy < z(t) < 23 with a period T = [** —Z=_ For
( ) ys P 2 = ( ) = <3 1% sz m

the exceptional cases ' = 0 an = % there are two equilibrium points z = —

h ional C=0and C 136 h ilibri i 2

for C =0 (ie. ¢, =¥y =0, ¢, = ¥y in System (3.5.1)) and z = 0 for C = 13

(ie. p, = Wyeva TillosltD) 1y ﬁf‘Pl‘\P%e%wlllog(Ht) in System (3.5.1).
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CHAPTER 4

Modified wave operators and more about wave
operators

4.1. Introduction

This chapter is a joint work with Professor Nakao Hayashi and Professor Pavel
I. Naumkin. We consider the system of nonlinear Schrédinger equations as follows:
{ i0pu1 + 5 Au1 = Yuius,

(4.1.1) O o Aup = u,

in R x R?, where A = ZJ 105 2 is the laplacian, 8; = 8/0x;, m1, mo are the masses

of particles and v € C, |y| = 1. A little bit more general system
101 + 5 Avl = )\vlvz,
{ 1049 —I— T Avy = pw?,
with A, € C\{0} can be easily reduced to System (4.1.1) with v = I>\u| by virtue
of the scaling vy = \/IlAilul and vy = ﬁug. When v = 1, System (4.1.1) obeys
the L? conservation law

2 2
O (I + Jfua *) =
System (4.1.1) can be considered as the non relativistic version of the system
of nonlinear Klein-Gordon equations
2 J—
chml Qv — 5= s Qv + P01 = =010,

2

(92 ;n Avy + 7250y = —vf,

(4.1.2)

2(‘2

in R x R?, where c is the speed of light. Indeed we change v; = e—itm;c® u; to get
the following equations

1 _ itc? (2my —
262m18 up — 10yuq — mAul = —ryette” Qmi—ma) gy,
_ 1 _ ith(m272m1) 2
202m28 Uy — 10Uy — T Auy = —e us.

Under the resonance condition

(413) 2m1 = ma,
we find the system

QCQWf D2uy — i0uy — Au1 —Yurug,
55— 8 Uy — ZatUQ — A'UQ —u?,

which converts into System (4.1.1) in the hmlt ¢ — oo. Equation (4.1.2) is closely
related to a system of nonlinear Klein-Gordon equations studied in [6], [16], [21]
and a system of Dirac-Klein-Gordon equations studied in [1], [9]. In these papers,
the case of three space dimensions was studied. On the other hand, these systems
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Chapter 4 4.1. Introduction

in two space dimensions are critical in general. For example, small solutions of the
nonlinear Schrodinger equation

1
iOpu + 5 Au = lulu, (t,7)€RxR?

do not behave like free solutions as ¢ — oo (see [2]). Furthermore, the exact
asymptotic behavior of small solutions was obtained in [13] for the initial value
problem and in [7] for the final state problem.

Global existence of small solutions to the Cauchy problem for System (4.1.2)
with a non resonance mass condition

(4.1.4) 2my # ma, my # ma,

was proved in [38] for the case of the initial data in a weighted Sobolev space.
Also it was shown in [38] that solutions behave asymptotically like free solutions.
Global existence and time decay estimates were obtained in [23] for the case of
small solutions of the Cauchy problem to System (4.1.2) with the resonance mass
condition (4.1.3), when the data belongs to a Sobolev space and has a compact
support. As far as we know the large time asymptotic behavior of solutions for
System (4.1.1) or System (4.1.2) under Condition (4.1.3) is not known.

In Chapter 2, the time decay of solutions of the Cauchy problem of System
(4.1.1) with v = 1 is studied under the resonance mass condition (4.1.3). In the
case of higher dimensions the small data scattering problem for System (4.1.1) is
considered by Professor Nakao Hayashi, Professor Tohru Ozawa and myself (see
[12]). However, the large time asymptotic behavior of solutions of System (4.1.1)
to the Cauchy problems is not known as stated before.

To study the wave operator for the system of nonlinear Schrodinger equations
(4.1.1) we consider the final state problem

. 1 —
10yur + mAm = ~YUjusz,
. 1 _ 2
10sus + T Aug = ug,

|lur (£) — F1s (t)]| — 0 as t — oo,
llug (t) — Fo 5 ()| = 0 as t — oo,

where the final state (Fy s (t), Fs,s (t)) is defined by some final data (¢, ¢, ).
If the final state (Fi,s (t),F2,s () can be taken in the form (Fi s (t),F2s (1)) =

_it
(UL (t)p14, U1 (t)¢2+), where U1 (t) = e*™i Sforl < j < 2 are free Schrédinger
m T2 ™;
evolution group, and the final state problem has a nontrivial solution, then we say
that there exists a usual wave operator. However, when the nonlinearity is critical

and it is impossible to find a solution in the neighborhood of the free final state
(UL ()14, UL (t)¢2+), then we need to modify the time dependence of the final
my mo

state. Note that the modified wave operator for nonlinear dispersive equation was
first constructed in [31] for the cubic nonlinear Schrédinger equations and then in
[19] for the derivative nonlinear Schriodinger equation, by changing it via a suit-
able transformation (see [8]) to a system of cubic nonlinear Schrédinger equations
without derivatives of unknown function.

In this chapter, we construct the modified wave operators for the final state
problem for System (4.1.1) with v = £1 under the resonance mass condition (4.1.3).
Moreover we will prove existence of the usual wave operators under the non reso-
nance mass condition (4.1.4) and also under the resonance mass condition m; = my.
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The non resonance condition (4.1.4) corresponds to non self-conjugate condition for
the power nonlinearity in a single nonlinear Schrédinger equation (see [14]). We
follow here the method of [14] (for the cubic nonlinear Klein-Gordon equation, see
13)).

We use the following factorization formula (see [18]) for the free Schrodinger
evolution group

(4.1.5) Us(t)=M"DsM_F

1
with M = e~ #1#I°  the dilation operator (D;¢)(x) = L6 (2) and M,, = FM™F .
We also have

(4.1.6) FUL(~t) = ~MEm D,

3=

where E = e~ %1¢€I°, Here we have used the commutation identity
m a1
(D M™9)(z) = (E% Da.6)(x).

Now we state the main results of this chapter. First we consider System (4.1.1)
with 7 = %1 in the case of the resonance mass condition (4.1.3). Consider the
system of ordinary differential equations depending on & € R? as a parameter

. _ _17
(4.1.7) { 0pry =V P1y oy
15&027 =t 01,
It is known from Section 3.4 that the solutions of the system of ordinary differential
equations (4.1.7) define the asymptotic behavior of solutions of System (4.1.1) under
the resonance condition (4.1.3). Indeed if we multiply both sides of (4.1.7) by
(~Ur (0 F Dy ~Us () F "Dy ).
my mo
then we can find that
(“Ur ) F " Do o1 Ut (6) F Do)

my m2
is an approximate solution of System (4.1.1) under the resonance condition (4.1.3).
If we replace the Schrodinger group by the Klein-Gordon group, the wave group,
the Airy group, etc., we could expect that our method is also applicable to other
types of dispersive equations (see Remark 4.1.6 below). By a direct calculation we
can see System (4.1.7) has the following particular solutions

iw () e iw (£) 200

( ) (pl'y(ag) l—i—w(f)logt’ @2'\/(;6) l—l—w(f)logt
for the case of v = —1 and
Pr (L) = w(€) MOt on!
1 2i6(¢)+iv/3w () log t
(4.1.9) o (£:6) = ——=w(©)e 5

V2

for the case of v = 1, where w (§) > 0 and 6 (§) is a real valued given function. Also
we note that the time independent functions

1y (6) = 0,02, (§) =w (9 e
satisfy System (4.1.7) for both cases v = 1. This special solution implies the
necessity of the condition ¢, (§) # 0 in the proof of nonexistence of the usual
scattering states in [10].
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THEOREM 4.1.1. Let 2mq1 = mo and v = 1. Then there exists an € > 0 such
that for any w,0 € H? with norm |wl/y= < €, System (4.1.1) has a unique global
solution

(u1,ug) € C ([l,oo) ;L2) )

Moreover, the following estimate
2
3 Huj (t)+Us (&) F ' Do, (t)H <ot

holds for all t > 1, where l <b<l1.

REMARK 4.1.2. By using the identity U1 (t)=M~""D+ FM™"™ and the esti-
mates of Theorem 4 1.1 we can write the estimate of the above theorem as follows:

Z Huj (t) —iM ™ DM_ 1 ;. (t)H <ot
i=1 ’
REMARK 4.1.3. In the case of 1., (t,§) = 0,0, (t,§) = w (€) ™€) we do not

need any phase modification. For this case the solutions can be found directly from
the integral equations associated to System (4.1.1) without any mass condition.

We now consider System (4.1.1) in the case of the non resonance condition
2my # mg and my # ma.

THEOREM 4.1.4. Let le % mo and my # ma. Then there exists an € > 0 such
that for any ¢, € H2NH?, $oy € H2 with the norm
||¢1+HH0.,20H—217 + ||¢2+||H0,2 <eg,
System (4.1.1) has a unique global solution
(u1,u9) € C([1,00);L7) .

Moreover, the following estimate

[ @ v @on] + [ v | <t

mo

holds for all t > 1, where % <b<l1.

Finally we consider System (4.1.1) in the resonance case m; = mg under the
support conditions on the data.

THEOREM 4.1.5. Let my = my. Assume that ¢, € H*2NH 2, oy € Hz2
and

supp @14 N supp P, is empty.
Then there exists an € > 0 such that for any (¢1+, ¢2+) with the norm

||¢1+||H0,20H—2b + ||¢2+||H0,2 <g

there exists a unique solution
(u1,u2) € C ([1,00); L2)

for System (4.1.1) satisfying the estimate
o ) = U @) 00| + 2 () -

1 3
for allt > 1, where 5 <b< 1.

¢2+H <crt

mo 2
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We will give proofs of these theorems in Section 4.3.

REMARK 4.1.6. We expect that similar results hold for a system of nonlinear
Klein-Gordon equations

(i@t —c(iV),, c) U] = YUius,
where <iV>ij = (m?c2 - A)% ,J = 1,2. We denote Uk g,m,c (t) = e_iCt(iwij,j =

1,2. Note that the solutions of the linear Klein-Gordon equations U c mc (t) ¢ for
7 = 1,2 asymptotically behave as

m; 7itmjczm’\ m;x

—L ¢ i) | —E—
it (1— (2) ) 01— (2)?

inside of the light cone |z| < tc. Therefore from our results the following asymptotic
behavior could be conjectured

o itmic? 1-(&)? . . -1
T -0

tc

L2(|z|<ct)

o itmac? 1-(&) T a2\ "2
M it (17(%)2) el (t’t <1_ <E) ) )

+ llur (Ollzesery T 1wz Ollz(zser < ct?

under the mass condition (4.1.3).

L2(|z|<ct)

4.2. Preliminary estimates

For Theorems 4.1.1, 4.1.4 and 4.1.5 we denote vj, (t) = —U__ (t) F Dy, Py (1),
mj

where ;. are defined by (4.1.8) - (4.1.9), j = 1,2 and v = £1. Multiplying both
sides of System (4.1.7) by

(—Ui (t) F ' Dy, ~U_s_ (t) .7-"1Dm2)

my mo

via the identity U 1 (t)i0; = Ly,, U 1 (t) with L,,, = i0; + %A, we obtain

m;
(421> ['m1v1"/ = va2v + ’VRlv
Emg Voy = ’U%,Y + Ro,
where we denote the remainder terms
R, = —t*lUm%1 (t) F ' Dy, (B1502,) — U702y,
Ry, = —t’lUm% (t) F ' Di, (1,) — 03,

Next we estimate the remainder terms R, and Rs.
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Chapter 4 4.2. Preliminary estimates

LEMMA 4.2.1. Let j = 1,2 and 2m1 = ma. If w,0 € H?, then the following
estimates are true for all t > 1

2 2
1R; Ol < Ct2 (14 il log?t)  llwlife (1 -+ 1615:)

PROOF. By the factorization formula (4.1.5), the identities D, F~! = F 1Dy
and DoM_1 =M _ 2D, we get

t’lUm% (t) F 1Dy, (szw)
= tilMimleLrlM—mlel (TMQOQ’Y)

1
—M~"™ Dy (1592, + Rs,

1 .
= ZMTMDM L (Bree,) = 5

1
mi
where the remainder term

1
Rs= =M ""™D, (M,i - 1) (Pry2y) -

1t my

Also by the factorization formula (4.1.5) we have

vy (1) = _U%j () F = Do, pg, (1) = iM ™™ DM 1oy (1)

m;
J

for j = 1,2 and v = +1. Then since 2m; = my we find

1

EM_mlDt (‘pil"fp%) =-M"™ (Dt‘plv) (Dt‘p%)

= - (M_”“Dt@m) (M™™2 Dy,

= (MfmlDthisplfy> (M_m2DtM,iQ02,y) + Ry
™1 ma

= U142y + R47

where the remainder term

Ry = (M_mlDtM_LQOl,y) (MisztM—L(pZy)
my m2

- (M_mlthl’y) (M_mQDtﬁpzy) .
Thus we obtain the representation

R, = —t*lUﬁ (t) F "Dy, (P1502,) — U702y

Lo _
= _ﬁM 1Dt (@17@27) — V1yVU2y — R3 = —R3 - R4.

Similarly,
-1 —1 2
71U (6) F ' Din (3,)
= tilMiszLM—nngmz (@%'y)

s
1 1
= EM m2DtM7%2 (('va) — EM m2 D, (Spfn,) + Rs,
where the remainder term

1
Rs = — M~ D, (M_i
it

m2

- 1) (gp%) :
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Chapter 4 4.2. Preliminary estimates

Then since 2m; = mg we find

1
LMD, () = M (Dis,)’

(Zw_mlD’fsplw)2

(M’mlDtM_m%@Mf + Re = —v2, + Ry,
where the remainder term
R = (M_mlDt%«,)Q - (M_mlDtM—m%‘pl"Yf'
Thus we get the following representation
Ry = —t*lUm% (t) F ' Dy, (91,) — 03,

]' —m
= 7EM th (gﬂ%,y) — 'U% — R5 = *R5 — Rﬁ.

v

We now are in a position to estimate the remainder terms R; and Rs. By the
definition of the dilation operator D; we have

Dl = (1l

and
10; Dyl < Ct=H[|8;9]] -
Therefore we obtain by the Sobolev imbedding theorem

1R (0]
< ottt H (M,ﬁ - 1) (Tw%w)H

= ot (MR 1) F (e

< G A @)l

< ot? ||<917HH2 H%wHHz

< 07 (14 ol o)l (1+ 10)

for all t > 1.
In the same manner

1Rs ()
< ot (Moen ) (Mo, ) B
—1
< o (Mo =) M gen
£0r (M, = 1) ol
—2
< O |ens g o2y e
—92 2 2 2 2 2 2
< o (14 wlifelog®t) wlfe (1+101%)
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Chapter 4 4.2. Preliminary estimates

for all £ > 1.
Similarly,
| Rs (1)
< oMo 1) ()]
- o[ )|
< ot [|Aa(en)]]
2 2
< Ot 2 (1 + [lw||?p log? t) 1] (1 + IIGIIf{z)
for all t > 1.
Analogously,
[ Rs (1)
< Ot (M 1 )2 — ¢
> —719017 P1y
< ot (Mo =) en | (Mo +lells)
< O [l Igpe
2 2
< O (14 wlfelogt) ol (14 1013:)
for all ¢ > 1.

Therefore we have the result of the lemma. I

We denote vy = U_1 (t) ¢, with some given functions ¢;, for j =1,2. The
following estimates will be used in the proof of Theorem 4.1.4.

LEMMA 4.2.2. Let 2my # ma and my # my. We assume ¢, € H*2 NH2
and ¢o, € H®2, where b € (%, 1) . Then the estimates are true

SYCUN (NN MR o

| v Cn e

my

forallt > 1.

and

< ct® H¢1+HHO’20H’% H(lerHHO’2

mo

| v et

—

PROOF. By the factorization formula (4.1.5) we have v;4 = M~ DijM—mj bt
for 7 = 1,2. Then by the identities DQM,# = Mf%Da and DoDg = —iD,g,
we find
D FU L (1) (V1 v2+)
= AM_LE™ (1) Dy (Vigvzy)

= 7ML gPmmm (M_LDL@) (M_%DL@:)

my

(4.2.2) = t M ETmTme (D%ﬁ;) (D72¢/21> — Ry,

my
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Chapter 4 4.2. Preliminary estimates

where

Ry = t "M E2mom ((D , ¢1+) (D;@:)

my my

- (Mo D) (Mo Do)

mo

Similarly, we obtain
D fU ( t) (’UH_)
= ZMLEmQ( )D% (U1+)
™2 :

—\ 2
_ t_lMLEmZ_%m (MfiDmil(ﬁl-i-)

mo my
_—\2
(4.2.3) = t‘le%EmQ‘Zml (Dm%qﬁpr) — Rs,

where

mo my my my

Ry =t~ " M__E™—2m ((D , ¢1+) ~(M_aD ¢1+)2>.

To study the non resonant nonlinear terms we now compute the commutator of
M and E“ (see [14])

t imt it
MLE™P¢ = %/2e%\n—f\zei(p—mﬂn\%(n) dn
R
= iEm(%—l)M%D#b
for p # 0.
Note that in the resonant case of p =0
MLE™ = %E " TG () dn = ETMD 1 Fo.

R

Hence in the case 2m; — mo # 0 and my; — ms # 0 we get

(4.2.4) Mo EP™m2 — B Mo o Doy g
my m3 my
and
(4.2.5) M E™2=2m — BT Mo, Dml )
mo ?@7

From (4.2.4) and (4.2.5) we obtain
DoLJUL ( t) (Vi va4)

zt_lEm1 e M ma—my Py —

""1
(4.2.6) — it E™ i, — Ry — Ry,

and

Dn FU L ( t) (viy)

_ t_lEm2 2m1 M 2m1 7/)2

m32 3

(4.2.7) = lE "4y — Rio — Rs,

41




Chapter 4

4.2. Preliminary estimates

where we denote

and

O = D (D610) (D).
Py (&) = D% (Dm%gl:)z

Ry = it 'E™ i (1- M
9 = it 2 1 - mo—mj 7n1 ¢1’

m?2 1

2
m3

Ry = t_lEm2 2m1 <]_ — MQ,,L1> 1/12,

y (4.2.6) and (4.2.7) we obtain

(4.2.8) <
and
(4.2.9) < C

C

/t TUL (-7 () dr

oo

U (—=7) (Vi veq) dr

/ D FUL (—71) (v15vey)dr
t m my

/ R7 dr
t

/ Rg dr
t

"

"

mo

Dm FUL (= )(v§+)dr

Rg d’T

/ RlodT

Using the 1dent1ty

o) = (1- % |£|2) B

we integrate by parts

[e4-
t T

Ee o0 (1—a17|£| )E B
| | < O g
1— %t ¢ 7(1—%”|§|2>

for all ¢ > 1, where a #% 0 and b € (l, 1). Hence we can estimate

IN

IN

IN

A

(4.2.10)

oo

t

cr H|£|‘2”w1H

0l Dy (D107 (0,00
A <

O Bre g [P

Ct (|61 g 1924 0.2
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Chapter 4 4.3. Existence of modified wave operators or wave operators

for all ¢ > 1,where b € (% . In the same way we have
a2 %7
< H ma 24 AT |1s]
< ot %H
< o e Do (D irs)’
S T D
(4.2.11) < ct? ||¢1+||H—2b ||¢1+||H0v2

for all t > 1, where b € (1,1).
We can estimate the remainder terms

I1Re) < 0| (Do ony) (Do dr)

mo

~(M_1Dad 71D1¢1+>( D60

my my mo mo

T P o R P
+Ct™! H¢1+HH0 2 ( —ws 1) Di(p”
+Ct1 H¢2+HH0,2 ('A/Li - 1) Do ¢1+H

my my

(4.212) < C?||érg || o |62+ 502

for all ¢t > 1.
Similarly, we have

1851 < Ct72 [[ 11 [l ggoe ([ €14 o2 + 1624 | p0.2)
forall t > 1 and j = 8,9,10.
Therefore

(4.2.13) H/ Rjdr
t

forallt >1and j =7,8,9,10.
Substitution of the estimates (4.2.10), (4.2.11) and (4.2.13) into (4.2.8) and (4.2.9)
yield the result of the lemma. I

IN

< O |01l (1914 llgroe + 1924 [lggo.2)

4.3. Existence of modified wave operators or wave operators

In this section, we give proofs of existence of modified wave operators or wave
operators for System (4.1.1) under different mass conditions as follows:
Proof of Theorem 4.1.1. We define the following function space

X = {(fi. f2) € C([1,00);L%) ; [(f1, f2) I x < o0},
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Chapter 4 4.3. Existence of modified wave operators or wave operators

with the norm

[(f1: fo)llx = Z sup ¢” (Hfj UJ’Y”LOO(too 2y 15— UJ’YHL“([t oo),L4))

j=1 te[l,00

where %< b < 1, vjy (t) are defined in the previous section as a particular solution of
System (4.2.1). We also denote the closed ball X, = {(f1, f2) € X; |(f1, f2)llx < p}-
We now find a solution of System (4.1.1) in the neighborhood of (v1,,v2,). By Sys-
tem (4.1.1) and System (4.2.1) we obtain the following system of integral equations

(4.3.1)

uy () —viy (t) =14 [, ml/1 (t —7) (F1 (u1,u2) —yRy) dr,
uy () — vay (t) =i [ 771 (t —7) (Fs (ug,us) — Re) dr,

where
Fy (u1,ug) = 7 (Wiug — Uiyvay) , Fa (ur,ug) = uj —vf,.

Linearized version of System (4.3.1) is written as

(4.3.2) { u () = viy (1) = th ,il (t —7) (F1 (w1, w2) —vRy)dr,

ug (t) — v2, (t flft UL (t —7) (F2 (w1, w2) — Ra)dr,
where (wq,ws) € X,. Note that

Fy (wy,wz) =y (W01 — U17) (W2 — vay) + Y01y (w2 — vay) + Y02, (W1 — 717) -

Hence by the Strichartz estimate (see Lemma 2.6.1) we find with I = (¢, 00)

Hul - Ul’Y”LgO(I;[ﬂ) + Hul - vl’yHL4 (L;L4)

< O =) (w2 = o)l g 1y + € 175 2 = a0y
t

+C ||'U2"/ (wil - m)HL}(I;Iﬂ) +C ”RIHL}(I;L?) :

Since
ol
< O o, Ol + 07| (Mo = 1) 20 0
< Cet™ 1,
o 1
/t [[w; _UJ’Y||L§’°((t,oo);L2)t_ dt
<l [N < O ()
t
and

o0 2 2
(/t lws =01yl ((,00);22) dt)

1
< mmwmu(/tQ%Q < OO (w1 wa)
t
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Chapter 4 4.3. Existence of modified wave operators or wave operators

for all t > 1, where b € (%, 1), then by the Hélder inequality and Lemma 4.2.1 we
find

s = 1yl ey + llun = vnalles sy

IN

Cllwy — Ul’YHLf(I;LQ) Jwz — UQ’YHL?(I;I})
+Cet™? ||(wy, wg) | x + Ce?t™°
< Ot |(wr,ws) [k + Cet P [ (wr, wa) [ + C*t"

for all t > 1, where b € (3,1).
In the same manner we obtain

||’LL2 - v2’y||Loo 1.L2 + ||U2 - ’U2'y||L4 IL4
£ (LL?) (LL*)

2
< C H(wl — V1y) ‘ L} (xed) + C o1y (w1 = v1y)lpy g2y
+ [ RellL: g2
< C le - Ul‘yan(I;L?) le - leHLg(I;Ul)

+Cept™ " + C*t7?
< CpPtr P 4 Cept™ + Ce2t0
for all t > 1, where b € (1, 1), since (w1, ws) € X,.
Thus we obtain

(4.3.3) (w1, u2)|lx < Cp*t27b 4 Cep + Ce?

for all ¢ > 1, where b € (1,1).
Therefore there exist € and p such that ||(u1,u2)||x < p.
We denote

{ ﬂl(t)—vm —th 1 t—T)(Fl(wh’LAl}Q)—’le)dT,

m

(4.3.4) s (1) _'UZ'y _th 7i (t —7) (Fy (w1, w2) — Re) dr,

where (wy,ws) € X,.
We now consider the difference between System (4.3.1) and System (4.3.4)

(v — ) (t) =i [, W}l (t —7) (F1 (w1, w2) — Fy (w1, ws)) dr,
(uQ—UQ —ZL "} t—T)(FQ(w1,w2)_FZ(@hﬁ}Q))dT'

In the same way as in the proof of (4.3.3) we have

-~ 1 SO
1Cur, uz) = (@, @2)llx < 5 [(wy, w2) = (w1, 02) 1 -

Thus we have the desired result by the contraction mapping principle. |

Proof of Theorem 4.1.4. We now define (v14,v24) = (Ur+1 () P14 U% (t) ¢2+) .

Then the integral equations associated with System (4.1.1) can be written as fol-
lows:

(4.35) uy (1) — vy (¢ Wft U (t=7) ((urus = Oryvay) + 015v24) d7,
uz(t)—v2+ )=i [~ Ti (t—7) ((u? —vi,) + i) dr.
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Chapter 4 4.3. Existence of modified wave operators or wave operators

The linearized version of System (4.3.5) has the form

(4.3.6) ur (1) — vy (t Z’Y I~ n} (t = 7) (Wrwa — V1yv24) + Vigv24) dT,
up (t) — vy (8) =4 [, ’"}2 (t—7) (w}—vi,) +0%,)dr,

where (wi,ws) € X, the functional spaces X and X, are defined similarly to the
proof of Theorem 4.1.1 with the norm

nqhhux—Ejsp%#(w; 07 lae e coynty + 15 = 03 s uooynsy)

= 1 tell

where %< b<1.

By the Strichartz type estimates (Lemma 2.6.1) with I = (¢,00) we get from
System (4.3.6)

||u1 — {U1+||L;>°(I L2) + ||'Ll,1 - v1+||L4 (L;L4)
< C|(wy —v1x -
< (| (w1 — v13) (w2 — vay || 5 (IL )

O[5 (w2 — v s ey

+C [lva+ (W1 = v13) Ly g2y

+CHU1 (t)/ Ui (—7)U5vesdr

my

L (LL2)

+C’HU1 (t)/ U (—7)vi5vesdr
o \

my

L4(I;L4)

Since [[vj4||p < Cet™?,

/ l[w; = Vit g ((rrooymay T HdE < Cp/ t07tdt < Cpt?
t R

t

and

[N

1
t ) t

for all ¢t > 1 and j7 = 1,2, where b € (%,1), then by the Holder inequality and
estimates of Lemma 4.2.2 we find

||’LL1 — 'U1+||Lo<> LL2 + ||U1 - UlJrHL“ L;L4
< (T;L2) ¢t (LLY)

IA

Cllwr = viellpe ey lwe = vallpa gy + Cpet™" + Ce*t™"
Cp2t%_2b + Cept* + Ce*t°
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Chapter 4 4.3. Existence of modified wave operators or wave operators

for all t > 1, where b € (1,1).
In the same way as above we obtain

[uz — vay [|g,0 rL2) T luz — vy [pa I;L4
= (LL2) (L)

< O —un’
- (w1 = viy) L} (I;L%)
+C it (w1 — vi4) Ly e
/ Ui (—7)vipdr
2 L (T;L2)
+c‘ N (t)/ U (—1)o?,dr
7n2 t mo L%(I;L‘l)
< Cllwr = Ul-&-HLg(I;]}) [Jwy — U1+||L;1(1;L4) + Cept™ + C*7°

< CpPtr % 4 Cept™® + Ce20

for all ¢ > 1, where b € (1,1).
Thus we find

_ 1
ot = 03+ e ey + 5 = O3+ gy < O (04370 4 2p+€2)
forallt > 1 and j =1,2, where b € (%,1).
Therefore there exist € and p such that [|(u,u2)||x < p.

We denote

uy () —vig (t) =iy [~ Uﬁ (t—7) ((1’571@2 - mqm) +m712+) dr,
Uy (t) —voy (1) =i [ U (t—7) ((@0F —viy) +07,) dr,

where (wq,w2) € X,,.
In the same way we get for the differences

1
mo

- 1 S
1(ur, uz) = (@, @2)llx < 5 [(wy, w2) = (w1, W2) 1 -

Thus we have the result of Theorem 4.1.4 by the contraction mapping principle.

1
Proof of Theorem 4.1.5. We define (vy4,v21) = (U L (1) b4, U () ¢2+)
i ™3

and write the integral equations (4.3.5) associated with System (4.1.1) and the
linearized version (4.3.6) with (w;,ws) € X,. By (4.2.2) we have for the resonant
case of mi; = mo

D fU ( t) (Uiyvaq)
(4.3.7) - t’le%Eml (D.611) (Do bay) - R,
where

R = M B (D0 ) (D60

- (Mg Dad) (Mg ).

47



Chapter 4 4.3. Existence of modified wave operators or wave operators

Therefore by (4.3.7), (4.2.12) and by support assumption on the data of the theorem
for the resonant case of m; = msy we get

|V (=) (o2

my

= HD L FU L ( t) (U1yv2y) H

< (@) (Do )| + 181

< 0 [T + O oue o s e
(4.3.8) < Cot? H¢1+HH0,2 H¢2+HH0~2
for all t > 1.

Note that the second estimate of Lemma 4.2.2 is true for the resonant case of
mi = my. By the estimate ||.7-"1Dm1R7HL% < Ce2t% which is obtained in the
same way as (4.2.12), we get from (4.3.6)

lur = V14 llpee ey + llua — it llpaps)

S C”(wil_m) (w2—U2+)||L4<IL )

+C [[orx (w2 — voi )l e

+C [va4 (w1 — m)”Ll(I L2)

+C / U ’Ul+’U2+dT
7n1 my

L (I;L2)

+ollua @ / U (—7) T vpsdr
t

mi my

L} (LL4)
Cthl_Qb + Cept™® + Ce?t™?

[ o o

< Cp =20 + Capt_b + 02t

IN

M»—-

+C ||t~ dr

Li(T)

and by the second estimate of Lemma 4.2.2

||u2 — ’U2+||Loo LL2 + ||U2 - UQ-I—HL“ ;L4
e ( ) #( )

IN

2
¢ H(wl — i) ‘ Lt% (I;L%)

+C [Jo14 (w1 — vi4) s e

(o)
+CHU1 (t)/ Ui (—7)vipdr
my t mg

L (TI;L2)

+0|

U () / U (—r)o?,dr
mo ¢ mo

L(LLY)
< Cllwr —vigllz ey lwr = vipllps sy + Cept™® 4+ Ce*t™
< Cp*2 2 4 Cept b + C2t70.

for all t > 1, where b € (3, 2).
Therefore there exist € and p such that [|(ui,u2)||x < p.
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Chapter 4 4.3. Existence of modified wave operators or wave operators

We denote
{ Uy (t) —viy () =iy [U L (t—7) ((171@2 - WU%) +WU2+) dr,

m

Uy (t) —vay (t) =1 [, U (t—7) (@F —viy) +ofy) dr,

where (’&71,’@2) S Xp.
In the same way we have for the differences
- 1 SO
1Cur, uz) = (@, @2)llx < 5 [l(wy, w2) = (w1, W) -

Thus the result of Theorem 4.1.5 follows by the contraction mapping principle.
|
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