膀胱瘻深遠度判定の研究
—CT（オリーブ油注入法）による検討—

大阪大学医学部放射線医学教室

塚 信 一

（昭和57年11月11日受付）
（昭和57年12月21日最終原稿受付）

CT Staging of Urinary Bladder Carcinoma Using the Olive Oil Filtration Method

Shinichi Hori
Department of Radiology, Osaka University Medical School

Research Code No.: 512.1

Key Words: CT, Bladder cancer, Staging, Contrast material

The preoperative staging of urinary bladder carcinoma is extremely important for the choice of treatment modalities. It is generally accepted that the staging of bladder neoplasms using the current methods of investigation remains unsatisfactory. Invasive radiological techniques such as arteriography and lymphography have not widespread acceptance. Urinary bladder CT using the olive oil filled method had an excellent property to delineate both vesical wall and tumors. A total of 126 patients with urinary bladder carcinoma were examined by CT using this method. Comparison between CT images and histopathological stage was done in the series of 104 patients. Criteria of CT staging were proposed as follows,

T2 or less: intravesical tumor with normal vesical wall
T3a: intravesical tumor with smooth vesical wall thickening around tumor.
T3b: intravesical tumor with irregularity of bladder wall or tumor invasion into the perivesical fat tissue
T4: tumor continuity with perivesical organs.

The accuracy of CT staging by these criteria was found to be 91%. CT investigation of urinary bladder tumor permits a reliable evaluation of clinical stage.

緒 言
膀胱瘻の治療に際し、その深遠度の判定は適切な治療法の選択に不可欠であり、またこの正確度が患者の予後を深く関与を持つと考えられる。深遠度判定の方法として従来、麻酔下の双手法、膀胱造影、排泄性尿路造影、膀胱二重造影、生検などの検査法が用いられてきたが、これらの検査法では、膀胱壁を膀胱外への腫瘍の浸潤の程度を直接的に知ることができず深遠度判定に困難を伴ってきた。血管造影はかなりの診断精度を持つものと考えられているが、侵襲が大きいことや、判定に際し多くの経験が要求されることなどから、必須の検査法として普及するまでには至っておらず、一方、超音波断層法、CT scanでは、原理的に膀胱内腫瘍、膀胱壁、膀胱周囲組織を同一平面上に観察でき、膀胱
療の深達度判定に有用であることが報告されています。しかし、いずれも単純なscの進行だけでは、病変診断能に限界があり、sc 上の工夫が必要である。そこで先づ、CT sc では、病変の形成として膀胱周囲脂肪層とほぼ同じ X 線光密度値を持つオーリーブ油を用いることにより、適切な病変構造が得られ、深達度判定に要求される詳細な変化を観察できることを明らかにした。次に、本研究では、この方法を用いた膀胱 CT sc 症例の中から、病理組織学的深達度が明らかとなった126例について、CT の病変診断能の精査、及び病理組織学的深達度と CT 像の比検討を行い、CT による膀胱癌深達度判定基準を設定した。この判定基準に基づく膀胱癌深達度診断、その後の観察およびその客観性により、臨床上最も意義あるものと考える。

対象
1978年7月より1981年12月までに大阪府立成人病センター、大阪大学医学部附属病院にて施行した膀胱癌 CT sc 症例は142例であり、これらのうち手術を行い病理組織学的検査のされた126例について検討を行った（Table 1）。55例に開腹術、71例に経尿道的腫瘍切開術（TUR と略す）を行った。TUR を行った症例のうち筋層を浸潤を認めなかった82例については便宜上 p T 以下に分類したが、筋層内浸潤を認めた9例については、筋層および膀胱外への浸潤の程度を病理組織学的に正確に評価できないことから、深達度判定の検討から除外した。腫瘍が多発した症例は、深達度の最も進んだ部分を検討に用いた。病理組織学的深達度は、1980年日本泌尿器科学会及び日本病理学会編、膀胱癌取扱い規約に従い以下の分類を用いた。

p T 以下：癌組織が非乳頭状で、粘膜上皮内にとまって深部浸潤を示さないもの。

p T 1 ：粘膜内有層に癌浸潤の及んだもの。

p T 2 ：浸潤が筋層に及ぶが筋層外以上に及んでいないもの。

p T 3 ：深在筋層への癌浸潤または膀胱周囲組織への癌浸潤を示すもの。

p T 3 a ：深在筋層に浸潤するもの。

Table : Cases of urinary bladder carcinoma examined by CT using olive oil filled method

<table>
<thead>
<tr>
<th>Pathological stages</th>
<th>Open Surgery</th>
<th>TUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>p T 1 s</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>p T 1</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>p T 2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>p T 3 s</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>p T 3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>p T 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>11</td>
</tr>
</tbody>
</table>

p T 3 b ：膀胱周囲組織への浸潤を示すもの。

p T 4 ：前立腺またはその他の膀胱外壁組織、骨盤壁および腹壁に浸潤が見られるもの。

方 法
膀胱 CT sc は次の手順で行った。

1）検査直前にNitrogen catheter ないしは、balloon catheterを膀胱内に挿入し、できるだけ膀胱内の尿を排出する。

2）空気の混入を避けるながら、滅菌オーリープ油100mlから200mlを注入し、直ちにカテーテルを抜去する。

3）膀胱にて、結石結合上縁から膀胱上縁まで sc を行う。

4）腫瘍の位置に応じて体位変換を行い、再び同様に sc し、腫瘍の可動性、壁の伸展性を観察する。

使用した scanner は、EMI 5005型及びGE CT/ T 8800型であり、EMI 5005型では、スライス厚13 mm、7 mm 移動重複 sc を行い、CT/T 8800型では、スライス厚5 mm、5 mm 移動 sc を行った。

検討項目
1）膀胱拡張能の検討
　まず、深達度判定に先立ち、本法を用いた膀胱 CT sc の信頼性を知るために、126例について膀胱鏡所見に基づき膀胱拡張能の検討を行った。a）腫瘍発生部位、b）腫瘍の内腔への突出形式（大阪膀胱癌研究会の分類）の2項目について検討した。

2）深達度判定の検討
病理組織学的深達度の判明した117例について,

1025—(49)
Table 2 Comparison between cystoscopic and CT examination for tumor site in 126 cases

<table>
<thead>
<tr>
<th>CT cystoscope</th>
<th>lateral</th>
<th>posterior</th>
<th>anterior</th>
<th>done</th>
<th>base</th>
<th>unclassifiable</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>lateral</td>
<td>47</td>
<td>7</td>
<td>1</td>
<td>12</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>posterior</td>
<td>6</td>
<td>24</td>
<td>1</td>
<td>3</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anterior</td>
<td></td>
<td>5</td>
<td></td>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>done</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>2</td>
<td>4</td>
<td></td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>56</td>
<td>36</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>125</td>
</tr>
</tbody>
</table>

a）腫瘍の形状と深速度との関係
b）腫瘍発生部の壁、膀胱周囲組織の形状と病理組織学的深速度との相関を求めるが、CT像を3型に分類し検討した。

1型：膀胱鏡にて腫瘍が側壁、前後壁にあることが確認されているが、CT上腫瘍を認めず、壁の肥厚・不整を認めないもの。

2型：膀胱内腫瘍は認めるが、腫瘍周囲の壁肥厚なく、外側面に不整・膨隆を認めないもの。

3型：腫瘍周囲に壁肥厚があるが、壁外側面に平坦な膨隆を認めるもの。

4型：腫瘍周囲の壁肥厚あるが、壁外側面に不整、膨隆を認めないもの。

5型：腫瘍周囲の壁肥厚あり、壁外側面に平滑な膨隆を認めるもの。

6型：腫瘍周囲の壁の肥厚、壁外側面の膨隆の有無にかかわらず、壁外側面が明らかに不整なもの。

7型：膀胱内腫瘍と膀胱外周囲組織を透視性を認めるもの。

8型：膀胱内腫瘍と発生した壁との関係が明らかでないもの。

また、膀胱の腫瘍の体位変換による腫瘍の形態の変化、壁の伸展性についても検討した。

結果

1）膀胱内腫瘍像の抽出能

a）腫瘍発生部位との関係

膀胱鏡所見の腫瘍部位と、CT により抽出され

た腫瘍の位置の関係を Table 2 に示す。抽出率は126例中109例86％であり、好発部位である側壁、後壁はそれぞれ82％、91％であった。腫瘍像が不明であった17例は、主として腫瘍径が小さいものであった。

b）腫瘍の内腔への突出様式との関係

膀胱鏡所見と CT 所見の相関を Table 3 に示す。膀胱鏡にて腫瘍が壁を持つか、基底部にかぶれて示す E-1 では96％、基底部かぶれて示さないこと E-2 では92％、腫瘍がなだらかな隆起を示す E-3 では75％、腫瘍が平圧状である E-4 では60％に CT にて腫瘍が抽出され、隆起が明らかに認められた。

Table 3 Comparison between cystoscopic and CT examination for the shape of tumor in 126 cases

<table>
<thead>
<tr>
<th>CT type</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>unclassifiable</th>
<th>visible</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>37</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td>E-2</td>
<td>10</td>
<td>17</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>E-3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>E-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>27</td>
<td>16</td>
<td>4</td>
<td>12</td>
<td>17</td>
<td>126</td>
</tr>
</tbody>
</table>

* cases of which tumors located in dome and base.
** cases of which tumors could not be identified in CT.
かな程経過が良好であった。膀胱鏡所見と同様の基準をもつう CT 像からも突出検査の分類を行っ
tた。両者の一致率は 55% であったが、膀胱鏡で E ー 2、E ー 3 と判定され、CT で E ー 1 型であった症例が 13 例あり、これらの症例は、腫瘍径が大き
いことなどから膀胱鏡では基の存在や基底部確認
できないかった症例であった。

腫瘍像が描出できなかった症例は 17 例であったが、
このうち 10 例は TUR のみを行い、腫瘍像が客
観的に明らかでなかったため、CT で描出しうる
腫瘍の最小径を評価できなかった。しかし、膀胱
全摘術を行った症例の検証では約 5 mm が描出
の限界であった。

2) CT 像と病理組織学的深達度との相関
a) 腫瘍の形状と深達度との関係
CT で観察された腫瘍の形状と病理組織学的深
達度との関係を Table 4 に示す。表在性腫瘍であ
る pT1a ー pT3 の症例 93 例中 40 例 (43%) が E ー 1、
20 例 (22%) E ー 2 に分類され、表在性腫瘍では
明らかに後方に突出傾向にあった。腫瘍が描出さ
れなかった 16 例は、全例 pT1a ー pT3 の深達度で
あった。pT3b、pT4 の症例は特に腫瘍の形状と相
関を示さなかった。

Table 4 Comparison between tumor shape
identified by CT and histopathological stage in
117 cases

<table>
<thead>
<tr>
<th>Pathological stage</th>
<th>pT1a</th>
<th>pT1b</th>
<th>pT2</th>
<th>pT3a</th>
<th>pT3b</th>
<th>pT4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>15</td>
<td>22</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>E-2</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>E-3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>E-4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>unclassifiable</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>nonvisible</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>81</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td></td>
<td>117</td>
</tr>
</tbody>
</table>

Table 5 Correlation between shape of tumor and
vesical wall identified by CT and histopathological stages in 117 cases

<table>
<thead>
<tr>
<th>Pathological stage</th>
<th>pT1a</th>
<th>pT1b</th>
<th>pT2</th>
<th>pT3a</th>
<th>pT3b</th>
<th>pT4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT pattern</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>81</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td></td>
<td>117</td>
</tr>
</tbody>
</table>
Table 6 Correlation between criteria of C7 staging and histopathological stage in 104 cases

<table>
<thead>
<tr>
<th>Pathological stage</th>
<th>pT1S - pT2</th>
<th>pT3a</th>
<th>pT3b</th>
<th>pT4</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT pattern A</td>
<td>77</td>
<td>1</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>104</td>
</tr>
</tbody>
</table>

であり、C型D型の全例がpT3b, pT4であった．一方，pT2以下の82例中77例（94％）がA型，5例（6％）がB型を示し，pT3a 9例中8例（89％）がB型，1例（11％）がC型，pT3b 10例中3例（30％）がB型，7例（70％）がC型，pT4全例がD型を示した．このことから，A型，C型，D型とpT2以下，pT3b, pT4とは強い相関関係にあることがわかるが，B型と分類された16例の半数のみがpT3aであり，B型とpT3aとの明らかな相関を指摘できなかった．pT2以下でB型を示した5例のうち2例は，腫瘍が隣接して多発していたため腫瘍周辺の壁肥厚ありと判定したものの，及び腫瘍周囲に凝血塊が付着していたために判定を誤ったものであった．pT3bでB型を示した3例は，摘出標本の肉眼所見ではT3aであったが浸潤様式がINF γ型19）をとっている2例と，腫瘍が頂部近くにあったため判定を誤った1例であった．以上の検討からpT2以下－A型，pT3a－B型，pT3b－C型，pT4－D型の対応を仮定すると，全体の一致率は91％であった．

体位変換を行い，CT上で腫瘍の可動性が観察された症例は14例であったが，14例中13例がpT1，1例がpT2であった．同様に腫瘍発生部の壁が体位変換により，隆出，膨隆を示す場合，壁の伸展性良好としたが，これら10例中9例がpT1，1例がpT2であった．
症例

分類した CT 像のそれぞれについて代表的な症例を示す。

症例 1. 66歳、男性。

膀胱鏡にて左側壁に乳頭状、有基性（E－1）の比較的大きさの腫瘍を認めた。CT（Fig. 1）にて、左側壁に直径4 cm の腫瘍基底部がくびれを示す腫瘍を認める。腫瘍周囲には全く壁肥厚を認めず、壁外側面も平滑である（CT-A型）。体位変換を行い腫瘍の可動性を観察でき、側臥位、腹臥位では腫瘍発生部の腫瘍は、背臥位のそれに顕著に膨張を示す。TUR を行い病理組織学的に筋層へ浸潤がないことが確認され、pT1 と分類した。

症例 2. 56歳、男性。

膀胱鏡にて左側壁に非乳頭状、広基性腫瘍（E－2）を認めた。CT（Fig. 2）にて、径3 cm の腫瘍を左側壁に認める。CT-A型と分類される。背臥位下では基底部にくびれを示し、有基性であることが示唆される。膀胱全摘術後の病理組織所見（Fig. 2-C）により、pT1 を確認した。

症例 3. 60歳、男性。

膀胱鏡にて右後壁に巨大な乳頭状広基性腫瘍（E－2）を認めた。CT（Fig. 3）にて右後壁に径4.5 cm の腫瘍を認める。基底部は明らかにくびれを示し有基性腫瘍と判定される。CT-A型に分類され、腫瘍は可動性を有し、壁の伸展性は良好と考えられる。膀胱全摘術を行い有基性腫瘍、深達度は pT2 を確認した。

症例 4. 57歳、男性。

膀胱鏡にて左側壁に非乳頭状広基性腫瘍（E－3）を認めた。CT（Fig. 4）にて、左側壁に径3 × 3 cm の広基性の腫瘍を認め、腫瘍周囲の壁肥厚と壁外側面の平滑な膨隆が指摘され、CT-B型に分類される。腫瘍の可動性はなく、壁の伸展性は不良と考えられる。膀胱全摘術を行い深達度 pT2 と分類した。

症例 5. 56歳、男性。

膀胱鏡にて前壁から頂部にかけて、非乳頭状広基性（E－2）の腫瘍を認めた。CT（Fig. 5）にて広基性の腫瘍を前壁を中心に認め、腫瘍周囲に壁肥厚あり、壁外側面は平滑な膨隆がみられる。CT-
Fig. 3-a Prone position. A large pedunculated tumor without thickening of wall is demonstrated.

Fig. 3-b Prone and right anterior oblique position. Mobility of tumor and extensibility of wall around the tumor is preserved.

Fig. 3-c Corresponding pathological specimen shows invasion of superficial muscle layer.

Fig. 3 - pT2 pedunculated urinary bladder carcinoma arising from right posterior wall.

B型に分類される。膀胱全摘術を行い、深部pT3aを確認した。

症例6, 68歳, 男性。

膀胱鏡にて左側壁から後壁にかけて非乳頭状広基性（E-2）の腫瘍の多発を認めた。右側壁、前壁にも多数の非乳頭性の小腫瘍を認める。CT scan（Fig. 6）にて左側壁から後壁にかけて広基性の腫瘍をみとめる。周囲の壁肥厚は明らかでない。
Fig. 4-a Supine position. Though urine obscures the vesical wall and tumor, bulge of vesical in the tumor portion is demonstrated.

Fig. 4-b Right decubitus position. No stalk is visible. The extensibility of the wall in the tumor position is not preserved.

Fig. 4-c Corresponding pathological specimen shows invasion of the deep muscle layer.

Fig. 4 pT3a sessile urinary bladder carcinoma arising from left lateral wall.

Case 7. 74-year-old woman.

At retrograde cystography, left-side filling defect compared with the right side, identified non-muscle invasive bladder tumor (pT2a, T1) posteriorly. CT scan (Fig. 1) showed abnormal thickening of the bladder wall consistent with neoplasm. Transurethral resection revealed a polypoid mass. Intravenous pyelography demonstrated bladder neoplasm extending to the posterior wall as well as to the left lateral wall. Under microscopic examination, an invasive bladder carcinoma was confirmed. Final diagnosis was pT3a R0, G2-bladder wall invasion, stage T3b N0 M0.
Fig. 5 pT3a sessile urinary bladder carcinoma arising from anterior wall. Thickening of lateral wall around tumor is apparent. The bladder wall on which the tumor is attached shows some bulging but smooth in contour.

Fig. 6 pT3b sessile urinary bladder carcinoma arising from left lateral wall. All other multiple small tumors are less than pT2. The external aspect in the main tumor is speculated.

Fig. 7 pT4 sessile urinary bladder tumor arising from left lateral and posterior wall invades the corpus of uterus.

考 案

1) 他の検査法について

膀胱癌の術前深達度判定は、治療上の極めて重要なることはいうまでもなく、現在まで種々の検査法が用いられて来た。膀胱内面からの検査法として膀胱鏡、排泄性尿路造影、膀胱二重造影がある。しかしこの検査法は、腫瘍の存在診断に優れているが、深達度の判定法としては充分な信頼性を持っていない。17) 17) 11) 11) 12) 18) このため血管造影による診断精度の向上が図られ、その有用性を示す数多くの報告がある。Bojisen9)，Lang9)，Taylor9)，は病理組織所見との対比を行い、それぞれ95％，91％，93％の一一致を見たと報告し、本邦では御厨10) は22例中全例に血管造影所見と病理組織所見に一致を認めており、さらに大石9)，小野11) は詳細な検討を行い、70％から80％の一一致率を報告している。しかし各深達度における血管像の特徴は、注意深く読影を行っても明確に把握するのは困難なことがある、また侵襲の大きな検査法であることからも、術前の一一致検査にとくみ入れられることは問題点が多い。10) 11) 12) 17) 超音波検査法は、近年の超音波装置の改良に伴い膀胱癌の深達度判定法として重要視されるはじめてている。体腔内超音波深部写真子の開発は直腸上昇手を可能にし、これを用いる方法は膀胱部深部において87％の組織所見の一一致率を報告している。また中村12) は、直腸一貫的走査法を用い94％に深達度の診断がなされたと報告している。問題点としては経尿道的走査の場合、腫瘍を必要とするたとえば倒戸が大きく深部因子の小形化が望まれている。しかし、将来膀胱鏡検査時に同時に行い得るようになれば、最も有用な検査法の1つとなるよう。

2) CT 検査法について

超音波検査法と同様に CT scan を膀胱癌の検査に用いる目的は、膀胱鏡検査等では得られない所見、すなわち膀胱内壁癌、膀胱巣、膀胱局局組織を同一平面上にとらえ、腫瘍の浸潤像を直接的に観察することである。最近の CT scanner の改良と普及に伴い、手軽に CT 検査が行える様にな
り、これを用いた膀胱癌深達度判定の試みがなされている9-19。最近のCT scannerは、適当なX線吸収値の差を持つ物質間では高い空間分解能を持つに至り、膀胱においても深達度判定の基となる微細な変化を描出することが期待されるが、通常尿に渇たされた膀胱では、尿と膀胱壁および腫瘍を分離してとらえるだけの密度分解能はなく、鮮明な膀胱壁や腫瘍を描出することはできない。そこで深達度判定を行うためには、CT と適した造影剤により膀胱を満充し、CT の病変検出能を高める必要がある。Seidemann20 は膀胱造影剤として空気 (CO2) が優れていると報告し、深達度判定を行っている。本邦では内田21 が高圧に空気を用い、腫瘍の形態から深達度判定を検討し空気を用いた膀胱 CT scan の有用性を説いている。しかし、著者らが行った実験は、空気を用いた場合、partial volume effect が強く働き、診断上用いる window level では腫瘍の形、大きさと正確にとらえ難く正常膀胱壁は、window level を変えるも描出されないことを示唆10 した。また、臨床的に用いた場合も、空気そのものから出る artfact やわずかな体動が強く画像に影響し、膀胱壁は一定の厚さを持った壁構造として描出されない14-15。一方、-80～-120 Hounsfield Unit のオーリズ油16-18、ビーナズ油19 は、-1000 Hounsfield Unit の空気には劣る。臨床的に優れていることが報告されており、膀胱腫瘍の形状、膀胱壁、膀胱周囲組織の CT 画面上に比較的正確に描出することが可能である。しかしながら、一定の体位のみの scan では不充分なことが多く、腫瘍の位置に応じて体位変換をくり返して scan を行ったり、gantory を傾斜させて scan を行うなど、より正確な腫瘍の形態をとりえる努力が必要である21-22。

3) CT の病変描出能について

深達度判定に先立ち、病変部を CT で定着する事が必要不可欠である19。本法による腫瘍の描出能は、全体例で36％であった。腫瘍が描出されていない症例では、腫瘍径が小さい事が原因であり、5mm が描出の限界であった。

腫瘍の腔内突出様式については、膀胱鏡所見と CT 像に多数の相違が見られ全体では55％の一致しか認めなかった。膀胱鏡で E-1 の症例は、56％に CT で描出可能であり高い描出率であったが、E-4 は60％と低く、腫瘍の盤在部分が高い腫 CT で描出され易い傾向にある。膀胱鏡では無茎性と判定されたが、CT、手術により茎の確認された症例を10例認めており、本法による CT は、腫瘍の有無を判定するための補助的診断法として重要と考えられた。腫瘍の腔内突出様式と深達度は、従来の報告20 にある様に高い関係を示すものであり、CT でも腫瘍の形状を正確に描出する事が要求される。内田21 は W/H 比を検討し、W/H ≒ 1.2である事が T3a 以上と判定する基準の1つに上げている。本検討でも CT で E-1 型と診断された症例の85％は、pT1以下の深達度であり、深達度判定の間接所見として重要と考えられた。しかし、pT3 以上では CT 上 E-1 型を示した7例のうち6例は腫瘍周囲の壁肥厚、壁側面の不整を認め、腫瘍の腔内突出様式のみを持って CT 深達度判定を行う事は不可能である。しかしながら、腫瘍が巨大な場合、膀胱鏡、膀胱二重造影では腫瘍の形状を正確に把握できないことが多く、腫瘍の有無、基底部の広さ、発生部位を知る上で CT の有用性は高く評価される。

CT による病変描出の問題点として、膀胱三角部、頭部、頂部では膀胱壁を横断方向に scan してしまうことから、これらの部に発生した腫瘍は、腫瘍像を CT 上にとらえ難く、腫瘍の形状を正確に描出することが困難であり、深達度判定を行うには充分な情報を得られないことが上げられる。また、E-3、E-4 型の腫瘍では、膀胱鏡所見を参考にして注意深く scan と読影が必要である。

4) CT 深達度判定基準について

CT を膀胱癌の深達度判定に用いるとする試みは最初に Seidemann10 が行い、CT 像と組織学的所見との対比により81％に一致をみたと報告している。同様に Hodson10、Kellett12 らもそれぞれ90％、86％の一一致率を報告し、Bonney13、Frödin14 らもその有用性を説き、他の検査法と共に推奨された深達度判定の手段であると強調している。しかし、これらの報告では明確な診断基準を
示されておらず、CT が手術手技の選択に充分貢献しうるものと認められるべくなかった。本邦では内田らが W/H 比を中心とした診断基準を設け78%に一致をみもと、特に深部浸潤がんでは高い一致率を得た報告している。しかしながら、従来の報告では、肺膵内注物質として空気や植葉性造影剤を用いていることから、脳膵壁、腫瘍を正確に抽出できていないと考えられ、これらの像を深部浸潤判別を客観性を欠くという欠点があった。一方、我々は注物質としてオリーブ油を用いたことにより、従来の造影剤を用いた場合に較べ抽出能の向上を達成できたと考えている。このことを基礎にして行った検討から Table 6 の相関を得たが、それぞれの CT 像と pT2 以下、pT3a, pT3b, pT1 とは91%の一一致率を示し、これらの CT 像の分類は、充分に深部浸潤判別基準として用いることができると考えられる。これらの判定基準を用いる際、CT-A、CT-C、CT-D 型については高い一致率を上げていることから問題はないとCT-B 型については31%に over staging、19%に under staging が認められ、肺膵への浸潤を CT のみで判定するには未だ問題があると考えられる。over staging した原因としては、肺膵周 閉の高血圧の付着、多発肺膵の隔膜、肺膵炎の合併などが上げられる。これらのが見難い肺膵障得あらかじめ指導された場合、これらを念頭におい て判定する必要がある、under staging した原因として、浸潤様式が INF γ 型をとることや周囲脂 肪層内に微細浸潤を示すことが上げられる。これらが技術的な要因を CT で抽出することは新時点では CT の限界と考えられるが、pT3a, pT3b は両者とも陥陥部の適応となることから、臨床に問題は少ないと考えている。

肺膵頂部、三角部、頂部の肺膵は、以上の判定基準では判定が極めて困難であったが、将来の CT の改良によりこの欠点がある程度補われる可能性もある。

体位変換を行うことによる腫瘍の位置が変化し、観察的な指標に乏しいため病理組織学的深浸潤度との関係は検討できなかったが腫瘍が可動性を示すことは腫瘍が比較的細い基質を持つことを示すものであり、基が CT でまちくでなくとも有基性と判定する根拠となる。また肺膵発生部位の壁が、体位変換により膨隆、陥凹を示すことは、腫の伸展性が保たれていることを示していると考えられ、pT2 以下の比較的大きな腫瘍の場合はこの傾向が強く、これも深部浸潤判定の補助所見として有用であろう。

以上の検討により、オリーブ油注注入法を用いた肺膵癌 CT 深部浸潤判定は、高い客観性と信頼性を持ち、治療手技の決定に貢献しうるものであると考えられる。

結論

肺膵癌126例についてオリーブ油注入法を用いた肺膵 CT scan 行い、手術により病理組織所見を明らかにし、本法の肺膵癌病理診断の精度を検討、深部浸潤判定基準の設定を試みた。本法による肺膵癌の深部浸潤判定率86%であり、腫瘍径5 mm 以下の小病変は抽出困難であった。腫瘍は隔膜が明らかで細密、抽出されやすく、肺膵類選択では基底部の性状が明らかでない症例においても、基底部の大きさ基の有無の判定に用いた CT により腫瘍と壁との関係を明らかにすることができ、病理組織学的深浸潤の判明した104例について、CT 像と病理組織学的深浸潤の相関を検討し、以下の CT 深部浸潤判定基準を設定した。

T1s～T2：肺膵内肺膵は認めても、肺膵周閉に肺膵厚、肺膵部の肺膵側面に不整を認めない。

T3a：肺膵周閉に肺膵厚を認めるが、肺膵部の肺膵側面は平滑である。

T3b：肺膵部の肺膵側面に不整や、周囲脂肪層に肺膵像を認める。

T4：肺膵と肺膵周閉隔膜に着性を認める。以上の判定基準を用いた診断率91%であった、体位変換を行い腫瘍の位置を正確に抽中することが重要であるが、これに伴う腫瘍の可動性、腫の伸展性が観察された症例は全例 pT2 以下であり、これらは間接所見として重要と考えられた。

本研究は文部省科学研究補助金、奨励研究（A）、課題番号56770539の援助を受けた。

緒を終えるにあたり、御指導、御校閲を賜った重松隆教授ならびに御協力、御指導下さった大阪府立成人病セン
タイル尿器科、吉田光良先生、吉武敬彦部長に深く感謝します。

主略
4) 御厨修一、中野敬助、松本憲一：尿器器科領域の悪性腫瘍に対する血管造影の意義一膀胱癌の進展分類について一、臨臨, 10: 275-284, 1965
5) 大石元、西崎康雄、可見敏紀、細木健弘、井上健次郎、尾崎元彦、庄司佳子、岡島義郎：血管造影による膀胱癌浸潤度診断に関する検討、日本医会会誌, 36: 309-315, 1976
6) 小野頌、仁平寛己、白石雅雄：膀胱癌の浸潤度診断と予後判定に関する血管造影の有用性、日泌尿会誌, 70: 342-350, 1979
7) 渡辺義：超音波検査法の意義、臨泌, 30: 911-922, 1976