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要  旨 

 
 
 
 本論文は、まず急変断面開水路におけるサージの特性を検討するとともに、

湾入部水域内の水面擾乱および湾口からの散逸波の性状について論じている。

さらに無限長沿岸の前面にある距離を隔てた半無限長大防波堤に長周期波を侵

入せしめたとき沿岸水域および大防波堤遮へい水域内での水位上昇を数値計算

し入射波長（λ)が防波堤と沿岸地帯間の距離（ ）に比して小になる程、遮へ

い水域内の波高は減少し、

d2
/2d 0.15～0.5 の程度の波長であれば遮へい水域

全体にわたって防波堤効果が現れることを示した。 
 次に阪神都市圏の総合開発計画の一環として計画されている堺港と神戸港を

結ぶ延長約 20km のいわゆる大阪湾大防波堤について、台風高潮や津波のよう

な長周期波が来襲した場合の遮へい水域水面の擾乱問題について詳細な模型実

験を行い、防波堤設置によってその遮へい部分では流れに関して極めて静穏な

状態が得られるが、堺側の防波堤開口部の影響は遮へい水域のかなりの部分に

および、必ずしも全沿岸の異常潮位を減少せしめうるとは限らず、遮へい水域

両端部では副次的な横式 Seiche のためかえって悪い結果が出ている。また、大

防波堤内水域を水深が沿岸境界に向かって放物線的に変化する平面状の半円形

とみなして、水域の自由振動の周期と振幅分布を求め、堺、神戸での異常潮位

が Seiche 運動によるものであることを確かめた。 
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第 1 章 
 

緒 言 
 

 近年、わが国経済の急速な進展に伴って、産業の中枢をなす重工業地帯が海

岸へ移り、いわゆる臨海工業地帯の造成が叫ばれ、港湾規模の拡大や海岸の開

発が着々と進められている。このように工場敷地を海岸特に湾の奥の海岸に求

めると高潮や波浪による海岸災害の危険を考えねばならないし、こうした積極

的な海岸への進出は見方を変えれば海岸災害を誘発させる機会を増大せしめて

いるとも考えられるわけであって、われわれはこの問題を災害防止の立場から

真剣に考えてみなければならない。特に最近、湾口あるいは湾奥に大防波堤を

設置して外港を作り、沿岸地域の高潮の被害を防止軽減するとともに臨海工業

地帯を造成する計画があり、また一部実現しつつある状態にある。従ってこの

付近の水域における海象は著しく変わることが予想される。こういった大計画

に対応して技術的には、大防波堤の存在、その延長および平面線形、湾内での

各港湾の位置、断面、浚渫又は埋立計画の影響といったことを含めて、このよ

うな港湾の静的境界条件の大きな変更によって波の反射、回折、屈折および減

衰がどのように変化するかといった海岸工学上の諸問題を解決する必要がある。 
 ところが、かなり線形をもつ港湾の場合でもこれを解析的な方法で遮へい水

域内外の波高分布や流れの状態を明らかにすることは非常に困難であって、防

波堤や護岸、岸壁などの反射特性なども加わって一般的には不可能であるとい

っても過言ではない。そこでこれら諸問題の内、特に長周期波に対する防波堤

の諸性能を考察し、港湾計画の一資料に供したい目的で、第 2 章以下の研究を

行った次第である。 
 一般に港水域は不連続面の結合として考えられるので、その基礎的考察とし

て第 2 章において急変断面水路でのサージの変形を採り上げている。断面急変

部を有する開水路に任意波形の入射波が侵入したとき反射係数を求める問題を

まず正弦素波の反射係数を求め、次に任意波形を連続的に異なる周期を有する

正弦素波の集まりとみなし各素波の成分に関し反射係数を重ね合わせることに

よって解く方法を示し、周期波と非周期波の反射波の形状に及ぼす差異につい

て述べている。次に、上述の断面変化部分での二次波の発生が拡巾部分への流

入、流出の状況によってどのような挙動を示すものか検討を試み、併せて拡巾

部分での出口を閉じた閉水域内での擾乱波についても考察を加えている。 
 第 3 章では、まず最初に防波堤を設置しない単純な矩形状の湾入部に対して

考えることにし、入射波が正弦波形と一般波形の場合について湾入部水域内の

水面擾乱を解く方法を示し、また港口からの散逸波の特性にも手を加えている。

次に防波堤を設置した場合の湾水域内の波動を明らかにするための手段を紹介

し、これら問題点に言及している。 
 第 4 章では、防波堤の長周期波に対する効果に関して、基礎的考察を加え、

この種の問題の解答を見出す意味で単純な境界を有する一つの model 水域につ
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いて考察を加えてみた。この計算を進めるにあたって Schwinger の解法を適用

し、特別な境界を有する回折問題を Wiener-Hopf 型積分方程式として式化し厳

密に解くことができた。 
 第 5 章では、大防波堤の長周期波に対する効果に関する実験例として、現在、

計画されている大阪湾大防波堤を採り、実験的検討を加えている。 
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第 2 章 
 

急変断面水路におけるサージの変形 
 
 
 

1 節 急変断面開水路のサージの通過および反射･･････（5） 
 
 
2 節 断面急拡部における振動現象･･････････････････（8） 
 
 
3 節 サージの侵入による閉水域内の擾乱････････････（12） 
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1 節 急変断面開水路のサージの通過および反射 1） 
 

 開水路に断面急変部を有するときのサージの反射、通過の割合は、波が正弦

的である場合には、急変部分での境界条件を適当に当てはめることによって求

められる。ところが入射サージが正弦的波形を有せず、任意の波形の場合には、

これを各々の elementary 波に分解すると反射波の形状が違ったものになるも

のと思われる。そこでこの入射波形を、Fourier 積分で表し、入射波の波長と急

拡部断面部分の長さによって反射波の受ける影響がどのように変わるか検討を

試みたものである。 
 図-2.1 のごとく、部分的に三つの断面急変部があるとき、Ⅰ断面を進行して

きたサージがⅡ断面を通過してⅢ断面へと進行する場合について考える。この

際、各断面での波は正弦的な波形で示されるものとする。 

 
)(

11
1)( c

x
tj

i ea





       （2.1） 

が、断面Ⅰ、Ⅱの境界面に到達するとエネルギーの一部は反射され、残りのも

のはⅡ断面へと移行していく。断面Ⅱを通過すると、この通過波の一部は 

Lxx  1 で反射され、 に戻され、再びここでも部分的に反射が生じ、以下

断面Ⅱではこの波の往復運動が行われる。この過程が繰り返され断面Ⅱでの移

り変わりが充分行われた後には状態は定常に達する。その際、断面Ⅰへ反射さ

れてきたエネルギーと断面Ⅲへ移行するエネルギーとの和が入射波のエネルギ

ーに等しいわけである。このとき、Ⅰ断面へ反射される波は 

1xx 

 
)(

11
1)( c

x
tj

r eb





       （2.2） 

 また断面Ⅱでの通過波および反射波はそれぞれ 

 
)(

22
2

1

)( c

xx
tj

t ea







       （2.3） 
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2

1

)( c

xx
tj

r eb







       （2.4） 

 Ⅲ断面へ移行してゆく波は 

 
)(

33
3

1

)( c

Lxx
tj

t ea







        (2.5) 

で表されるものとする。 

 この場合、 と の二つの境界面において次の二つの条件から入射

波

1xx  Lxx  1

1)( i と反射波 1)( r 及び通過波 3)( t の関係が得られる。 

 （1）境界面の両側での圧力が等しい。 
 （2）断面急変部で、質量保存則が成立する。 
 条件式（1）と（2）を適用して、入射波と反射波との関係式は次のようにな
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る。 
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            （2.6） jsR 

   ただし、R,S はそれぞれ実数部分及び虚数部分を示す。 
  
Ⅰ断面から、いろいろの波長の正弦波が入射した場合における反射波の振幅

は、

 c2

  においてにいろいろの値を代入したとき、式（2.6）の右辺を計

算すれば求まる。一例として、図-2.1 で幅 15cm、長さ 40m の直線斉正水路の

途中に幅 35cm、長さ 104cm の急拡部断面を設置した場合についての R,S を計

算すると図-2.2 のようになる。 
ところが、入射波が正弦的なものではなく、衝撃的な波形を有する場合には、

式（2.6）の に1b
)(

1

 f
を乗じた上で とで Fourier の積分を行えばよいから、

一般的に入射波の波形を 

)()(
1

1 c

x
tfi   とおくと、Fourier の定理により 

  
 




0
1

)(cos)(
1 


 d
c

x
tfd     （2.7） 

となるから、
)(

11
1)( c

x
tj

i ea





  の実数部分を式（2.7）で表される積分の各々

の elementary の )(cos
1

 
c

x
t  に相当せしめる。従って、Ⅰ断面での反射の

elementary 正弦波の振幅 は（2.6）の右辺、即ち1B jsR
a

b


1

1 を乗じたものとな

る。従って、これらの反射 elementary 正弦波を合成すると、反射波高は 

  
 




0

)(
1 )()(

1 


 defdjsRB j     （2.8） 
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となる。ただし、
1c

x
t  で はその右にある量の実数部分を示す。入射

波形 )(f が前後対称形を有する場合、即ち、 )(f が偶関数である時は(2.8)式は

更に簡単化され、次のごとくになる。 

  
 




01 cos)()(
1 


 dfdejsRB j    （2.9） 

 

なお、上式からいろいろの波長を有する入射波形 )(f をⅠ断面へ入射させた

時、式（2.9）で示される反射率と、波長と拡幅部分の長さの比―

L
―との関係、

(2.6)式中の実数部分 R、虚数部分 S と

L
との関係等についても求められるはず

である。 )(f として次の形をとったときを考えてみる。 

   )0()( 


  ab ebea
ba

H
 

 )(f =       )0(  ba

   )0()( 


 ab ebea
ba

H
 

         （2.10） 

これを )()(
1

1 c

x
tfi  と比較すると入射波は 0t において 0x に最大振幅の

位相が到着している前後に対称な波であることがわかる。この最大振幅は H で

ある。次に、 11,,
2

bbLaaL
c



 とおき反射波 1xx  において観測するも

のとすると 
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0
22

1
22

1

11111 












 L
cd

Lc
b

Lc
a

L

L

c
S

L

L

c
R

Hbabaxx 










 






 


  （2.11） 

R,S は図-2.2 により

L
の関数として与えられているからいろいろの

L


に対し

てこの積分を数値的に計算し反射波の最大振幅を求めることができる。入射波

の波形を変えずに波長だけを L に対して変えるには a : b を一定に保ちながらそ

の値をいろいろ変えればよい。ここでは、a : b = a1 : b1 = 1 : 0.5 として(反射波
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の最大振幅) ： (入射波の最大振幅＝H)を求めた。計算する際の波長としては

振幅が
10

H
なる 2 点の長さをとってある。図-2.3 には二三の比を採って正弦波形

の場合と非周期的波形の場合について計算を実施した結果が示されている。こ

れによると衝撃性の波を正弦波形の式で求めた場合、本計算例の場合において

およそ 1 割～2 割以内の誤差で算定し得ることになる。 
図-2.4 は図-2.1 のⅠ断面へ孤立的波形を送った場合の各断面内での波形を示

す。この際の静水深は 15.7cm、孤立波形の波高は 3.75cm、波長λ=138cm、伝

播速度 c1=138cm/sec である。（2.9）式の積分を可能ならしめるために、 )(f を

上記の場合に対して近似的に定めると次のごとくになる。 

 )(f =   05002550 903.3653.7   ee

  
2 節 断面急拡部における振動現象 2） 

 
 水路幅が急変する開水路にサージを送ったとき、流積急変部でかなり複雑

な波動が観察される。例えば、前節での図-2.1 に示すような斉正直線水路の途

中に水路幅の急拡部を設け実験を行った際の観測例を示せば図-2.5 のごとくで

ある。このような複雑な波動は、入射サージ（Pulse）に対する拡幅部分の水域

内の応答(Response)として表されているわけである。 
従って本節においては、このような断面変化による二次波の発生が拡幅部分

への流出、流入の状況によってどのような挙動を示すものか検討したものであ

る。 
流出入のある急拡部水域内の運動に対して、次の運動方程式を用いることが

できる。 

 


















 

)(
)(

1
2

2

xa
xxBx

g
t

      （2.12） 

ただし、は任意断面の単位面積を通じて tt  なる時刻までに流れた水量、B

及び A はそれぞれ任意断面での幅及び面積、ｇは重力加速度を表す。急拡部分

の両端における流出入量を次のように規定する。 

  において 0x )(1 tF    

 LX   において )(2 tF           （2.13） 

 
ここで次のような変数変換 
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)()(

)(

)(

0

xBxAv

xA

dx

xAq
x











          （2.14） 

を行うと、式（2.12）と式（2.13）は 

 



















q

v
g

t

q

)(

1
2

2

     （2.15） 

0  に )() 1 txおいて 0()(1 AtFq      


L

xAdx
0

)(/  において                  （2.16） 

)()()( 22 txLAtFq          

上式中の 及び はそれぞれ tなる時刻までに1x 2x 0 なる断面から流入する水

量及び  の断面から流出する水量に相当している。 
 
（2.15）を解くために 

 0)(
)(

)(

1









 





 n
nn X

gd

dX

vd

d
    （2.17） 

なる Sturm-Liouville の方程式と 

 0)(,0)0(  nn XX      （2.18） 

なる境界条件を満足する )(nX を求める。 

（2.15）の解 は q

       （2.19） 





1

)()(
n

nn XtAq 

の形に展開されるものとする。従って 

      （2.20）  


0
)()()(  dXqtA nn

同様にして 

 















q

v )(

1 





1

)(
n

nX   














0
)(

)(

1 


dX
q

v n  
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   





1

)(
n

nX 








 n
n

n A
g

t


 )(    （2.21） 

ただし、 

 )(
)(

1
)()0(

)0(

1
)()( 21 


nnn X

v
tX

v
tt    

（2.19）、（2.20）、（2.21）式を（2.15）式へ代入すると次の微分方程式を得る。 

 )(
2

2

tgA
dt

Ad
nnn

n         （2.22） 

（2.22）の式の一般解として 

 


 dt
g

ttA nn

n

nnnnn )(sin)(sincos    （2.23） 

すなわち 

)()(sin)(sincos
1




 n
n

nn

n

nnnn dt
g

ttq 











  





                             （2.24） 

ただし、 n 及び n を係数とする二つの項は急拡部水域の seiche を示すものであ

り、係数の n 、 n は初期条件で決定される。最後の項は拡幅部分における流入、

流出によって惹き起こされる運動を包蔵している。 

 水位上昇 は、次の関係式によって求められる。 

  











q

v
xA

xxB )(

1
)(

)(

1
    （2.25） 

 初期条件が において満足されていると、（2.23）の最後の項の積分の下限

に

0t
0 を用いることができるから 

  
t

nn

n

n dt
g

A
0

)(sin)( 


    （2.26） 

ただし、 

 )('
)(

1
)()0('

)0(

1
)()( 21 


nnn X

v
tX

v
tt    

さて、流入量と流出量が等しく時間的に変化のない場合を考える。つまり か0x
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ら毎単位時間にQなる水量が流入し、 Lx  から同量のものが流出するものとす

ると、 

 Qt 21         （2.27） 

とおけるから 

 



)(' nX




Qt 

)(

1
)0('

)0(

1
)(


nn v

X
v

t     （2.28） 

となり、一般には 

  )0('
)0(

1
)('n 

)(

1
nX

v
X

v 
0)('

)(

1



 vd

d
00





  





dX

g
dX n

n
n



 

が成り立つ。（2.28）式を（2.26）式へ代入すると 
                                 

 







 '

)

1


nX )(

(
)0('

)0(

1
' nn v

X
v

QA 
n

g

  
t

n dt
0

)(sin   

 













n )('   t

t
X

v
X

g
Q n

nn

n

n




sin
1

)(

1
)0('

)0(

1





v

  （2.29） 

（2.29）式を（2.24）式へ代入すると 

   )('cos  nnnnn ttQtq  sin
1n





   （2.30） 

が得られる。従って水位上昇 は 

  )('sin'cos 
1




 n
n

nnnn tt  


)(

1

v
   （2.31） 

なる関係で求められる。 

 n 、 n を初期条件で定めれば（2.31）式には、Qが含まれてこない。つまり

拡幅部分の自由振動には、流出、流入による定常流は影響しないことがわかる。 
 次に、 

    （2.32）  )sin(, 0201 sin   ptpt

のごとく、流入量と流出量が周期的に変化する場合について考えてみる。 

 11



 )sin()('
)(

sin)0('
)0(

)( 00 


  ptX
v

ptX
v

t nn 


 

         （2.33） )'sin(   ptn

これを、(2.26)式に代入すると 
 

)(
)'sin()'sin(

)'sin(
11

2

1
' n

n

n

n

n

nn

n

n

n p
p

t

p

t
pt

pp

g
A 






















































                             （2.34） 

もし、 np  とすると 

)()'cossin(
2

1
)'cos(

2

1
' nn

n

nn

n

n pttt
g

A 















   （2.35） 

 流出入の周期が拡幅部分の固有周期と合致しないときは、ただ、それぞれの

周期を持った有限な強制振動と一般には、拡幅部分の固有振動を励起するに過

ぎず、両者の周期が一致するときは、共振の現象が起こることが知れる。 
 

3 節 サージの侵入による閉水域内の擾乱 3） 
 

 直線水路の途中に水路幅の急拡閉水域を設け、水域の入口から入射する任意

波形のサージによって励起される閉水域の擾乱波について考察し、入口にもた

らされる波が水域規模に比べ、波長が長い場合と、ごく短い場合とでは、散逸

波や閉水域内部における擾乱波の性質に著しい相違があるはずであり、この点

について若干の解析を行ったものである。 
 一般に、一端の開いている閉水域を一つの振動系とみなして、外力である入

射波が作用して、なお入射波効果が残存している、所謂、過渡状態について考

えることにする。 

 図-2.6 に示すような単純な矩形状の水域内において を拡幅水域の主軸に

取り、 を入口とする。 は静止水面上垂直方向に取るものとする。 

軸x

0x 軸z

 今、水域の縦振動のみについて考え、しかも水平方向水粒子速度に比例した

抵抗が水路床に働くものとすれば運動方程式は次のごとくである。 

 
t

k
x

g
t 









 

2
2

2

      （2.36） 
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ただし、 は x 方向への水粒子の変位、 k は抵抗係数とする。連続方程式は 

 dz
t

xA
xxHxBt H 
























)(
)()(

1 0
    （2.37） 

と、(2.36)式より減衰効果を考慮した水面上昇に関する波動方程式が次のように

導かれる。 

 
t

k
x

xA
xxB

g

t 




















 

2)(
)(2

2

    （2.38） 

 これを所謂 Stokes の方法で解くことを考える。(2.38)式の空間変数に関する

Sturm-Liouville 型の特性方程式： 

 0)()(
)(

)(
2








  xVxB

gdx

xdV
xA

dx

d
n

nn 
    （2.39） 

を満足し、両端の境界で与えられた境界条件を満たし、且つ正規直交性の条件： 

       （2.40）  


0
)(xB 1)(2 dxxVn

によって定められる と)(xVn n を求める。 

（2.38）式の解は 

       （2.41） )()(),(
1

xVtAtx n
n

n  






の形に展開されるものとし、境界条件は次のごとくである。 

水域入口：  で、 0x   0),(  xtx  

水域奥 ：  で、 x
x


 ≒ 
H

k
 

とする。ただし、k は水域壁と水との摩擦抵抗係数に相当し、この水域奥条件は

水位上昇加速度と単位質量当たりの摩擦力との釣合条件から与えられる。 
 初期条件は、 

  0t  で、 0,0 




t

  

 いま、(2.38)式において、 

 )()(
1

2

2

xVtE
t n

n
n 


 






      （2.42） 
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 )()(
1

xVtG
t n

n
n 


 






      （2.43） 

 
















x

xHxB
xxB


)()(

)(

1
)()(

1

xVtF n
n

n 




   （2.44） 

の形に展開しうるものとすれば、 は、（2.39）、（2.40）及

び（2.41）式によって次のごとく定まる。 

)(),(),( tFtGtE nnn 及び

 )()()()(
0 2

2

tAdxxV
t

xBtE nnn





 


            

 )()()()(
0

tAdxxV
t

xBtG nnn





 


 

dxxV
x

xHxB
x

tF nn )()()()(
0

















 
 

          （2.45） 

   )0(')()0()0()( 0 nxxn VHBkBV           

したがって、 に対する表示式は、簡単のために)(tAn 0k とすれば 

   （2.46） )0(')()0()0()()(2)( 0
2

nxnnnn VHBgtAtkAtA  

ただし、 はそれぞれ水域入口における値を示す。 )0(')0(),0( nVHB 及び

 ここで入口 へ入射してくる波形は一般には、)0( x )/( cxtf  の形である

が以後の数値計算の便宜上、aを波高、 を周期とし、前後対称な Single hump

の波形を考え、次のようにおくものとする。 

02t

     )(
2

sin
0 c

x
t

t
a 


 ： 0≦t≦2t0 

 ),( tx   )2(
2

sin)(
2

sin 0
00 c

x
tt

t
a

c

x
t

t
a 


 

         ：    （2.47） 02tt 

（2.46）、（2.47）式より が求められるが、Laplace 変換により用意に算出)(tAn
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できる。 

 さて、 での（2.47）式中の 2 式右辺の第 2 項は、第 1 項の位相がずれた

ものとなっているので、L を Laplace 変換記号とすると、 

02tt 

  
2

0

2
22

2

0 )
2

(

1

)(

1
)1(

2
)0(')0()0( 0

t
sqks

e
t

VHBgAL
n

st
nn 







   

ただし、        （2.48） 222 kq nn  

このとき、 

 























 

2

0

2
22

1
1
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次に、入射波の周期が閉水域の基本振動の固有周期に等しい場合、即ち、 

0
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 ここで、抵抗がないと考えた 0k のときには、上述の諸結果は、それぞれ次

のようになる。 
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02tt≧ に対しては」、 
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上の各式より、種々の波長の入射波形   を閉水域に入射させた時の閉水域規模

と入射波エネルギーの関係、擾乱周期との関連などが求められるはずである。 
 図-2.7 は幅 15ｃｍの直線水路の末端に閉水路幅 35ｃｍ、長さ 130ｃｍの矩形

basin を設け、その入口から single hump 状の波を入射せしめた時の各点での

水面変動実測値の一例である。ただし、 

 cmLcmccmH 280sec,/156,19  波長  

 図によれば水域内水面振動の減衰はかなり大きい。その減衰係数を求める際

の周期 'T  として便宜上、相次ぐ正の   の極値間をもって 'T  とすれば、そ

の振幅の相次ぐ極値を ),2,1( ･･･nn とし、減衰係数 は次のごとくである。 k

'2/1
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n e
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 図-2.7 に示す実験値で 'T をほぼ一定とし、その平均値を用いて減衰係数を求

めれば、 

  )(sec389.0 1k

であり、整正直線水路の途中に矩形急拡 basin を設置した場合 (即ち、入口と

出口がある場合) の実験 4）で 

  )(sec71.0 1k

となるのと比較してその約半分であることは興味深い。 
 前述したごとく、入射波の進行性が閉水域中に残存している過渡状態、即ち 

020 tt≦≦

2tt 

の範囲内では、式（2.49）、式（2.50）よりわかるがごとく、擾乱波

形周期は入射波の周期と閉塞水域内の固有振動周期との相互干渉に依存してい

るが、 では閉塞水域の固有振動に対応する各種素波が合成されている。ま

た実験的観察によると入射直後では縦振動が卓越しており、しばらくしてから

0
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横振動が励起されるようであるが、この横振動を分離してみると波高は過渡状

態の場合のそれに比しかなり小さい。 
 図-2.8 は観測波形記録と式（2.49）、（2.50）による計算値の比較であり、閉塞

水域内で入射波効果が残存している、所謂過渡状態で最大振幅を生じ、その解

析値と実測値はほぼ一致している。なお、disturbance の中で第二波に位相のず

れが見られるのは、おそらく入射波が閉水域内へ入りこんだときの入口での急

激な断面変化のために外海での Single hump の波形がくずれ、副次的な波が現

れたものと思われる。水位の算定には、第三モードまでを考慮に入れて計算を

行ったが定常的振動の際には、第二モードによる水位変動は基本モードのそれ

のおよそ 1/10 位で殆ど基本モードで定まってしまう。ところが過渡期において

は、収束の度合いが小さいので、かなりの高次モードまで考慮に入れる必要が

ある。次に、入射波周期を (sec)0.3,0.12 0 t の二つの場合に分け、おのおのの

場合の波形を図-2.9 に、縦軸に、
a


 (水位上昇量／入射波波高)、横軸に時間を

とって図示してある。併せて抵抗を無視した 0k

91.1

の場合も示されている。この

模型水域の固有振動周期(基本モード)の (sec)2 0 t を基準にとって考察して

みると、入射波周期が閉水域の固有振動周期に比し小さい場合にはかなり複雑

な disturbance の様相がみられ、ここで周期を少し変えただけでも、波形構造

に敏感な変化があるものと思われる。これに反し、入射波周期の大なる場合、

即ち 

(sec)0.32 0 t の場合には、擾乱波高が入射波高の 1.6 倍にまで増幅されることが

わかる。過渡期における擾乱周期は、入射波のそれと殆ど変化が無く、それか

ら徐々に定常振動周期に移行していくようである。 の範囲で、擾乱波

形は入射波形と水域内固有振動各素波の相互干渉に依存しあっているが、計算

結果によると、擾乱波高に及ぼす入射波高の比率はおよそ 70～80％位であって、

従ってこの時には、入射波の影響が強く響いていることがわかる。 

020 tt≦≦
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第 3 章 
 

湾入部水域の擾乱波についての基礎的考察 
 
 
 

1 節 防波堤を設置しない湾入部水域の擾乱･････････（21） 
 A. 湾入部入口からの散逸波を考慮しない場合 
 B.  湾入部入口からの散逸波を考慮した場合 
 
 
2 節 防波堤をもった湾入部水域内の擾乱･･･････････（27） 
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一般に、図-3.1 に示すように港口(あるいは湾口)に防波堤を設置して、外海か

らの侵入波を防ぐという方法も、風波に対してはある程度までその有効性を保

持しているけれども、もし、入射波の波長が長ければ防波堤による遮へい水域

内外の水位は殆ど同じになる傾向があり、あまりその効果は期待できなく、ま

たたとえ波長の大小に関わらず、一旦港内へ入り込んだ入射波のエネルギーに

よって seiching が惹起された場合、港口幅を狭くすればする程、防波堤開口部

からの振動エネルギーの散逸の問題と絡んで、港内波高が減少するとは限らず

むしろ増大する場合が考えられる。 
 そこで本章では、これらの諸問題に対して、まず、最初に防波堤を設置し

ない単純な矩形状の湾入部に対して考えることにし、入射波の波長の大なる場

合と小なる場合とで湾入部水域内の水面擾乱及び入口からの散逸波の性質にど

のような特性が現れるかを見出そうとしたものである。 
 次に防波堤を設置した場合、湾口からの入射波によって惹き起こされる湾

水域内での擾乱波の性状を明らかにするための手段を二、三紹介し、これらの

問題点に言及する。 
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1 節 防波堤を設置しない湾入部水域の擾乱 5） 
 

A) 湾入部入口からの散逸波を考慮しない場合 
 
図-3.1 に示すような一様水深の矩形状の湾入部水域において、幅、長さ、深

さをそれぞれ、 とし、さらに湾入部入口に面する外海の一様水深を 

とする。 

2,,2 hLB

1h

 湾口に原点をとり、ｘ軸は外海へむかうものとする。この際、各断面での波

は正弦的な波形で示されるものとする。 
 外海での入射波及び反射波は、 
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また湾入部水域内での通過波及び反射波は、 
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 ここで次の三つの条件を考慮すれば、湾入部水域内での水面擾乱の様相を求

めることができる。 

 （1）湾入部入口 での境界面で圧力が等しい。 )0( x

 （2） での断面で、質量保存則が成立する。 )0( x

 （3）湾奥 )( Lx  で水平方向の水粒子の変位が 0 となる。 

 したがって、 
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 外海からの正弦的な入射波形に対する湾入部水域内の擾乱波高は 
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 いま、入射波が正弦的なものではなく、任意な波形を有するものとする。す
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 となるから、従って（3.5）式で表わされる湾入部水域内波高 elementary 正

弦波を合成すると、湾水域内波高は、 
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 (3.8)式は、図-4.2 のごとき前後に対称な波であり、その最大振幅は H である。

この関数形の特徴としてその波形が明確でないので、ここでは波長として、 
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で定義することにする。 
（3.8）式を（3.7）式へ代入すると、 
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 この積分は、留数の定理によって、単極の周囲の積分として計算できる。 
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B） 湾入部入口からの散逸波を考慮した場合 
 
 湾入部入口から外海への散逸波に対する表示式を次の形に置くことができる。 
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但し、  及び   は、垂直方向の変位および動径方向の流速を表す。ここで

前項での種々の境界条件の上に更に coast line  での近似的な条件

 を考慮する。湾入部入口での境界条件により、 
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しかるに 
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上式で、 mcos の各々の係数を 0 とおいて、次式を得る。 
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上式の各係数を（3.16）式へ代入すると次の関係式を得る事ができる。 
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 従って、この場合の湾入部水域内の波高は、 
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即ち、上式をいろいろの波長を有する入射波に対して、数値計算することに

よって、湾入部入口からの散逸エネルギーを考慮した場合の湾入部水域内波高

を近似的に推定できる。また、上述の諸計算から、 
(Ⅰ)湾口からの散逸波エネルギーの伝播方向の分布 
(Ⅱ)湾入部入口に面する外海の深さによるエネルギー減衰の様相 
(Ⅲ)湾口からの任意半径距離における散逸波の水位上昇が求められる。 
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2 節 防波堤をもった湾入部水域内の擾乱 
 
 本節では前節と同様な理想化された矩形の港湾を例として防波堤によって湾

口を狭くすることは港内振動を増大させる危険性もあることを述べ、更に若干

の検討を加えたものである。港湾内の seiche は、もし港外で広い周波数範囲を

持ったスペクトル波が存在するならば港の共振周波数に対応する特別な周波数

が内部の共振を励起させて起こるものと考えられる。港口幅を狭くすれば、港

湾内のサージングが減少するとは限らず逆に増大する結果に導くこともありう

る。以下この減少を港湾のパラドックスと称することにする。 
 港口から入射してくる波によってひき起こされる港湾内水域の擾乱波の性状

を明らかにするための一般的手段として 
 （1）速度 potential 関数の計算 
 （2）複素数計算方法 
 （3）Kirchhoff の公式の適用 
などがある。このうち、（1）の方法は、J. McNoun 及び Kravtchenko6）, Apte7）, 
Biesel8）の人々によって使われてきた。これは港湾水域における自由表面、底部

及び境界条件を満足する potential 関数を見出し、これと外海での potential 

関数を結合させることにあった。ところが、このような potential 関数は境界

に特異点が存在するような時には、このような計算方法によれば非常に複雑な

ものとなってしまう。そこで M haute, B(1960,1961)9）は（2）の方法を採用し、

港湾を不連続面の結合として考え、複素数を用いた 2 次元的な解析を単純な港

の形状について行い、港の奥行、幅、深さ及び港口遮へい幅によって港内水域

での波の擾乱がどのように増大するかを検討した。併せて港内における共振現

象時の水面変動についても吟味を加えている。 

'

e

 外海からの入射波が港口を通して湾内へ侵入したとき、外海及び湾内には図

-3.3 に示すような通過波、反射波が存在する。ここで各波動を電気の交流計算

の際と類似な方法でベクトルによって表示した。例えば通過率、反射率を複素

数 、 (その絶対値が 、 、偏角が )で表わし、入射波の位相及び振幅が

複素数

 ˆˆ 、

Ai によって表示される時には通過及び反射波は、それぞれ AA  , で表示

できるものとする。(図-3.4 参照)。図-3.3 に示される水域を図-3.5 のごとき二

つの水域に分割し、外海からの入射波 )ˆ( 1111 AAAA 、偏角＝ が不連続面に到達し

たとき、通過、反射波をそれぞれ ))ˆˆ(,( 11111111 AAAA   位相は 、 
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))ˆˆ(,( 11111111 AAAA   位相は として表す。また逆に港奥から不連続面に到

達する波を 1D とすると、この際、港水域内に一部の 2 1D が反射され、外海へ残

りの 2 1D が移行する。これら諸量の間には、 

 1111112111 , ADDAC      （3.20） 

の関係式が成立する。（3.20）式で水域内での摩擦と港奥での反射を考慮し、さ

らに港口の不連続面で質量保存則及びエネルギー保存が保たれる条件より入射

波、反射波及び通過波の関係が得られる。しかし港奥における擾乱値を入射波

の振幅と周期の関数として計算し、次式が得られた。 
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 及び は、それぞれ湾入部奥における水位変動及び侵入波の波高、gA 1A r は湾

水域内の摩擦による減衰係数、 r̂ は湾口における波と湾奥の波との間の位相差、

P は湾奥における反射率、 1 は外海から湾入部水域内へ移行する通過率、

は、それぞれ湾奥で反射して帰ってきた波がふたたび湾口の突堤によ

って反射するときの反射率及び位相の変化である。これらの解析結果を図-3.6
に示すような湾水域の場合について実験的に検証した。この実験結果から港内

波高を論ずるには、港の奥行長さ と湾水域内での波の波長 との比が重要な因

子となり、この比がある値に達すると共振現象を起こして擾乱波高が非常に増

大する。共振時での最大擾乱波高および共振発生条件式を 

22 及び̂

2L

 
2

2
1

1

max

1

)1(2




pr

Pr

A

Ag




       （3.22） 

 

 
2

2 ˆ2

4






n

L         （3.23） 

で与えている。上述の理論的結果が一般的に実験値によく一致し摩擦の影響が

小さいならば共振の周期及び振幅を計算するのに適用可能であることを示して

いる。共振の生起は、外海と湾内水域での深さ、幅の変化が大であればあるほ

ど増大し、共振時の擾乱の値は  の値が大なるにつれbhhLL /,/,/,/ 2212121 
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て増大する。このことから湾口に防波堤を設置して外海からの侵入波を防ぐと

いう方法も港口幅を狭くすればする程、湾内波高が減少するとは限らずむしろ

増大する場合があることを示した。 
 他方、Miles, J. 及び Munk, W.(1961)10）は、港内の擾乱が港口からの入射エ

ネルギーによって引き起こされる物として、長さｄ、幅ｂ、港口幅 a の矩形状

の港に対して共振周波数及び共振の鋭さ“Q”を求めている。 

 単一共振系において外力の周波数を 、共振周波数を とすれば増幅係数は

次式により与えられている。 

f 0f

 
2
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2

22
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22
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11
)(




































f

f
Q

f

fZ
fA     （3.24） 

ただし、Z :インピーダンス、 :共振周波数であり、（3.24）式の示す様相は図

-3.7 に示されている。次に を励起のパワースペクトル密度とすると、湾入

部水域内のパワースペクトル密度は、 で与えられる。従っ

て自乗平均湾内振動は である。 が の近辺で緩やかに変化する

ものとすれば、 の形状は のそれに近似してくる。つまり湾水域の自

乗平均応答は近似的に次式で与えられる。 

0f

)f

)df

2A

(1S

2 ( f

)()()( 1
2

2 fSfAfS 

)(1 fS 0f


0
S

()(2 fS )f

 


0 2 )( dffS )( 01 fS )(
2

1
)( 0100

2 fSQfdffA 


    （3.25） 

 上式から湾水域内のセイシュ振幅のルートミーンスクエアが 2

1

Q に正比例し

ていることがわかる。究極的に湾内のセイシュを減ずるのには、（1）湾水域内

の増幅係数と外海でのスペクトルとの組み合わせをくいちがいにする。（2）湾

水域内での“共振の鋭さ”Qを減少させることである。 

 図-3.8 のごとき平面境界 での開口 M を通して外海と通じている面積 S
の湾入部水域について考え、一様水深hの長波を考え、自由表面からの変位を

0x
 

  tjeyxtyxz   ),(Re),,(      （3.26） 

 ただし、  /2/,  ckghc この時  はヘルムホルツの方程式
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022   k を満足し、粒子速度は次式により与えられる。 

  tjeyxig   ),()/(      （3.27） q  Re

 外海からの入射擾乱を とすると湾外での擾乱は入射

及び反射擾乱と湾口からの散逸擾乱を重ね合わせたものになる。すなわち、

に対して 

)sincos( 00),(  yxjk
i Aeyx 

0x

 )0(),()(
2

1
),(),()  （3.28） 2

0   xdokRHjyxyx xMri 



,( yx

ただし、  2

1
22 )(  yx  は港内点（0, ）と外海  の点間の距離、 ),( yxR

は第二種の Hankel 関数である。 )2(
0H

 ここで湾水域を矩形状に限ると、湾内の擾乱については、Green 関数 ),,( yxG

を湾内での Helmholtz の方程式と 

0,0),(
2

10 



by

ydxxxx GGyG   

を満足せしめる。この G がわかると湾水域内の擾乱は内部散逸を無視して 

      （3.29）  doyxGyx xM
),(),,(),(  

 湾口で変位が連続であることから次の積分方程式を得る。 

      （3.30） ),(3.2),(),( yodoyK ixM
 

ただし、 )(
2

1
),,(),( )2(

0   ykjHyoGyK  

（ 3.30 ）式を厳密に解くことは厄介なので近似解法の手段により、

)()( yFyfx   とする。 )(y は の分布、 はその振幅を表す。そして )(yf F

),()(),( oodyyyo iM i   により、 )(y を正規化するならば、 

 


 dyxG
kD

oo
yx

M

i )(),,(
)(

),(
2),(       （3.31） 

 ただし、  の形で遮へい水域内の擾乱波高

を計算できることを示した。 

dydyykkD
M M

    )()(),()(
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 湾の共振は明らかに の場合と関連しており、共振周波数は の実

部が 0 となる周波数であって、この時の も、また の 0 に関して をテ

イラー級数に展開することによって得られる。従って、共振周波数 、及び“共

振の鋭さ” を求めると次のごとくになった。 

0)( kD )(kD

)(kDQ )(kD

0k

Q

  )2/csc(/8log/)cot( 000 baakbkdk      （3.32） 

     （3.33） /1)(csc//)cot( 0
2

00  dkbdbkdkQ

 図-3.9 は二つのモードに対する（3.32）、（3.33）式を図示したもので、実線

をパラメータとして共鳴波長

bd /

0 を与え、点線はそれに対応する の等値線を示

している。Q a 小さくなるにつれて増加することがわかり、従って湾口幅

を狭くすれば湾内をセイシュからの防護の度合いが減少することがわかる。 

Q

は がb/

 以上の結果、“港湾パラドックス”が立証されたわけであるが、これは摩擦の

影響が小さい時にのみ成り立つこと 11）であって、必ずしも真ではない。究極的

に、湾内の擾乱を失くすためには、低周波振動に対して湾外へ用意に内部エネ

ルギーが散逸できるような防波堤の位置や構造が問題となってくる。また一方、

港口から侵入する波のエネルギーを小さくする方策として、防波堤のほかジグ

ザグ壁、波浪吸収域の設置なども考えられる。今後こうした場合の波エネルギ

ーの消耗作用の実態を究明するとともに、特殊な消波装置を開発する必要があ

ると思われる。 
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第 4 章 
 

半無限長防波堤で遮へいされた水域の擾乱についての解析 
 
 
 
 1 節 緒言  ･････････････････････････････（33） 
  
 

2 節 基本方程式 ･････････････････････････････（34） 
 
 

   3 節 積分方程式の解･････････････････････････････（35） 
 
 
 4 節 数値計算結果 ･････････････････････････････（39） 
  
 

5 節 構造物群による波の擾乱･････････････････････（40） 
 
 
 

 32



1 節 緒言 
 
 近頃、湾口あるいは湾奥に大防波堤を設置して外港を作り、沿岸地域の高潮

の被害を防止軽減するとともに、この大防波堤の内側の海面を埋め立てて、臨

海工業地帯を造成しようとする計画がある。このような臨海工業地帯の造成や

港湾規模が拡大する傾向は、今後ますます著しくなってゆくものと思われ、こ

の付近の水域における海象は大きく変わることが予想される。この際、当然、

防波堤の適切な配置が問題となり、その配置いかんにより、擾乱波の状態を軽

減することができないばかりか、逆に強めるような結果になることも考えられ

る。従って、その計画設計の際には、来襲する波浪の諸性質(進行方向、波高、

波形、波速)により、防波堤遮へい水域内の静穏さの限度を知る必要が生じてく

る。 
 この大防波堤の風波に対する効果は、港口より侵入する風波の回析現象と防

波堤遮へい水域内面積の広さによる湾内発生風波から決定される。しかし、こ

の大防波堤の高潮潮位に対する効果は、高潮波長が長ければ、遮へい水域内外

の水位は同じになり効果は余り期待できないが、入射波長が短かければ防波堤

からの侵入に対して回析減少が起こり、遮へい水域の水位は外海水位よりやや

低くなるであろう。そこで本文においては、この種の問題の解答を見出す意味

で、単純な境界を有する一つの model 水域について考察を加えてみる。即ち無

限長沿岸の前面に、ある距離を隔てた半無限長大防波堤に、波高を一定にして

種々の入射角、波長を有する長周期波を侵入せしめたとき、沿岸水域及び大防

波堤遮へい水域内での水位上昇を数値計算し検討を加えたものである。 
 先に、A. E. Heins13）は音響回析理論において、本文と同じ境界問題に対する

解を見出しており、最近、J. Crease14）は同じ方法で回転体系における半無限水

路内へ伝播する波の特性を研究している。従って本文において利用されるのは、

Wiener-Hopf 法に基づいた彼の解法である。電磁波や音波の特別な境界を有す

る回析問題が、Wiener-Hopf 型積分方程式として式化でき、従って厳密に解く

事ができることを示したのは、J. Schwinger15）であった。Schwinger の発見に

先立って、厳密に解かれた回析問題といえば、Sommerfeld による半無限平面に

よる波の回析理論であって、Sommerfeld の解 16）は数理物理学において、決定

的な一里塚として長い間みなされてきた。複雑な境界を有する回析問題を巧妙

に解くことに成功した Schwinger の貢献は実際、はなはだ重要なものとしてみ

なければならない。 

 即ち、J. Schwinger15）は の方程式に関連する電磁波理論や音響

学の境界値問題を、Wiener-Hopf 型積分方程式として式化するのに、Green の

定理をいかに有用化できるかを示した。 

022  uku

Wiener-Hopf 型の方程式 

  



0 000 0)()()( xdxxxKxgxf
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は、変換変数の Argand 平面での関数論的考察とともに、Fourier 変換を適用す

ることによって解かれる。 
 

2 節 基本方程式 
 
 本節においては、多くの長波理論と同じように、垂直方向の運動は水平方向

のそれに対し省略でき、また水平速度成分の自乗及び相乗積も省略できるもの

と仮定すれば、運動方程式は、 
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,      （4.1） 

 ただし、 は水面上昇、 は水平面 における速度成分であり、vu, ),( yx tyx ,, の

みの関数である。 
 連続方程式は、 
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      （4.2） 

 ただし、海の深さ は一様であり、h  に比して大きいものと仮定する。式(4.1)、

（4.2）、から に対する微分方程式は、 
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 もし、運動が時間に関して調和的であるならば、 
 )exp(),(),,( tjyxtyx    
によって、式（4.3）は次のようになる。 

        （4.4） 0)( 22  k

 ただし、 
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 防波堤及び沿岸地帯に対する境界条件は、流速の垂直成分が 0 にならなけれ

ばならないことから、 

 0


y


  

dyx

dyx




,

,0
    （4.5） 

 式（4.4）中の は、小さい正の虚数部分を有するものとし、問題の解が得らk
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れたとき 0 とおくことにする。 
 

3 節 積分方程式の解 
 

 沿岸地域が dyx  , に、防波堤が、 dyx  ,0 にあるものとし

よう(図-4.1 参照)。 

Contour c の内部における水位上昇 ),( yx は Green 関数、 及び n /

（ は、境界面に垂直でかつ外側にむかう微分を表す）の境界値の項で表

わされる。従って、 
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（4.6） 

 ただし、最後の積分の は、図-4.1 に示された半円を示し、 1c

    ),(),(lim 0000
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yxyx  

を表わすものとする。 
式（4.4） 

  )()()( 00
22 yyxxk  

の自由空間の Green 関数は 
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yxyxG      （4.7） 

で表わされる。ただし、 )(x は Dirac の delta 関数であり、 は 0 次の第 1

種 Hankel 関数である。 

)1(
0H

 式（4.7）の積分表示は、 
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 上式において 
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になるように、 を選ぶものとする。 ),;,( 001 yxyxG

 すると、式（4.6）は 
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（4.10） 

dyx  ,0 で定義されている式（4.10）に y / を operate すると、 )( ,0 dx  に

対する Wiener-Hopf 型非同次積分方程式が得られる。すなわち 
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ただし、積分方程式の核 )( 0xxK  は、 
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 0)( x         ： 0x  

    ),( 0 dx          ： 0  x

         ： 0    （4.13） 0)( xg x

         ：0)( xh 0x  

   )sincos(exp)sin2sin(sin2 0000  dxjkdkk   ：  0x

 に対する は式（4.11）で定義されている。式（4.11）は、方程式の両

辺の Fourier 変換をとることによって解く事ができる。17,18) 
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 ただし、 ),,(),(),(),( 0yyGhg  はそれぞれ Gxxhxg ),(),(,)(  の

Fourier 変換である。 
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00

0

2

 QyyG
yy dyy 



  

とおき、 )(Q を 2 つの )(/)(   QQ すなわち 1 つは、複素変数 の上半平面

で正則、他のものは下半平面において正則なものに因数分解できるものとする

と、 

 
)(

)()(
)(








Q

Qh
 

すると、式（4.2）は次のような Fourier 変換の項で、表すことができる。 

 

 00

00
0

sin)2(cosexp

)sincos(exp)(
2

1
),(

0











dyxjk

yxjkd
y

G
yx

i

i
dy













 






 （4.15） 

 ただし、 0)(  km  

 沿岸近辺及び防波堤による遮へい水域内の擾乱波高は、式（4.15）の極にお

ける留数を計算すれば算出できる。 
 以上の計算は、入射波が正弦的なものとして計算してきたが、いま入射波が

正弦的なものではなく、任意な波形－例えば single hump 状の波形－を有する

ものとする。これを Fourier 積分で表して、いろいろの波長の正弦波型の集合

とみなして、各 elementary の正弦波の擾乱量が式（4.15）から求められるので、

これを Fourier 積分的に寄せ集めれば得られるはずである。すなわち、 

 )(),,( tyxftyxi        （4.16） 

 ただし、 cc /sin,/cos 00    

とおくと、Fourier の定理により 

  








  


  defdetyx tyxjj
i

)()(
2

1
),,(    （4.17） 

となる。個々では波形の として、 f
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       )( 11
11

11

 ab ebea
ba

H  


 )0(   

 )(f           )0(  ba  （4.18） 

   )( 11
11

11

 ab ebea
ba

H



 )0(   

 式（4.18）は図-4.2 のような前後に対称な波であり、その最大振幅は H であ

る。この関数形の特徴として、その波形が明確でないので、ここでは波長とし

て、振幅が H/10 なる 2 点の長さをとってある。 
 従って、式（4.15）で表わされる沿岸近辺及び遮へい水域内の擾乱波高

elementry 正弦波を合成すると、 

（Ⅰ） 、  0x dyd 
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        （4.20） 

(Ⅲ)  、 
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    tdyxatdyxbtyxatyxb ebeaebea
ba

tyx  
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11

1111
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       )2(  dyt    
         （4.21） 

 
4 節  数値計算結果 

 
 無限長沿岸地帯と半無限長防波堤間の距離を kmd 0.32  とし、これに外海から

波高を一定にし、種々の入射角、波長を有する長周期波を入射せしめたとき、

沿岸水域及び防波堤遮へい水域内での水位上昇を計算した。初期水深  mh 10
にとっており、入射波高 とする。入射波の特性は、表-4.1 のようである。 mH 1
 

表-4.1 
 
入射角 
° 

入射波長 
)(km  

  a  1 1   b

11

1

ba

a


 

11

1

ba

b


 

0° 30 0.033165 0.0322155 3.3333 2.3333 
30° 20 0.034749 0.0333243  〃  〃 
60° 10 0.039490 0.036643  〃  〃 
90°   6 0.0015800 0.0011060  〃  〃 
 

また、入射波波長と防波堤と沿岸地帯間の距離 との間には、d2
2

1
/2 d の関

係が保持されることを仮定する。 

 図-4.2 は、入射角 9000 ～ °に対する大防波堤遮へい水域内で起こり得る

最大振幅比 (exp を、長周期入射波長)1jkx km30,20,10,6 、の 4 つの場合の

計算値である。これによると、長周期入射波が沿岸と防波堤面に平行に侵入し

てきたときは、遮へい水域内の擾乱波高が 2倍にまで励起されることがわかり、

入射波長 km30,20 の時には、入射角が沿岸及び防波堤面に直角なときでさえ

も、振幅比の値は 1 を越しており、波長が大なる場合には、防波堤による遮へ

い効果があまり期待できないことを示している。 
 上記表-4.1 の特性を有する入射波による沿岸及び防波堤付近での擾乱波の最

大振幅比の値を図示する図表を作成したが、その一部が図-4.3、4.4、4.5 に示

される。 
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 これらの図表から、大防波堤遮へい水域各地点での水位上昇率、防波堤前面

での反射状況及び防波堤に無関係に波浪の直進する部分での擾乱状態が一見し

てわかる。これによると、入射角が小さいときには防波堤前面と裏面との間に

水位差は認められないが、入射角が防波堤に直角になるにしたがってこの面に

おける水位差が顕著になっている。 

 図-4.6、4.7、4.8 は入射角（  90,60,300 ）を一定にして、波長をいろい

ろ変化させたときの沿岸地域での最大振幅比の値を示している。これらの図で、 

0x の沿岸は、大防波堤遮へい水域内にある地域である。また、図-4.9、4.10、

4.11、4.12 は入射波長を一定にして入射角をいろいろ変化させた場合の沿岸地

域での擾乱状態を示している。 

 先述のごとく課せられた条件
2

1
/2 d のもとで、入射角が防波堤面に直角に

近づく程、また入射波長が防波堤と沿岸地帯間の距離に比して小になる程、遮

へい水域内の波高は減少し、 5.015.0/2 ～d の程度の波長の波であれば、防波

堤遮へい効果が の全水域にわたって現れ、0x 15.0/2 d の時には、いかなる

条件の下においても振幅比の値は 1 を越す。 
 

5 節  構造物群による波の擾乱 19） 
 
 外海からの平面波が等間隔におかれた無限の組からなっている、周期的に配

置された構造物群に入射してくるものとする。これら構造物の配置は、図-4.13
のように配置されており、次式によって与えられる。 

 ,2,1,0,0  mxmdy      （4.22） 

 構造物群へ入射してくる波は、 

 )exp()sincos(exp),,( 00 tjyxjktyx      （4.23） 

また、入射角 0 、入射波長と構造物の配置間隔ｄとの間に、次のような仮

定を設ける。 

 
2

1
0,

22 0 


 d
      （4.24） 

 ここでは、式（4.3）なる基本方程式で x において、式（4.23）になり 

 
,.......)1,0(0,,0/  mxmdyy

   （4.25） 
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なる境界条件を満足する解を見出すことである。もし、運動が時間に関して調

和的であるならば、式（4.4）なる Helmholtz の方程式を式（4.25）の境界条件

で解けばよいことになる。 

),( yx は、明らかに入射波 )sincos(exp),( 00  yxjkyxi  に構造物群による擾

乱波 )y,(xs を加えたものから成り立っている。 ),( yxs は、二次元の Green の

定理により与えられる。 

 0
0

00

0
00

),;,(
),;,(),( ds

y

yxyxG

y
yxyxGyx

c s
s

s 















 


   （4.26） 

 上式の Green 関数は、式(4.7)を満足するものとする。 )( 0xm を構造物群の 2

つの面での の間の差とすると、 

  ),(),(lim 00
0







mdxmdx   0)( 00  xxm ：  

      00 0 x：     （4.27） 

 このとき、全体の は、 

   0
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)1(
0

0 0
)sincos(

0
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)(
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4

),( dx
y

kRH
xm

j
eyx

mdym
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


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   









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    （4.28） 

 いま、構造物が周期的に配置されていることから、 

    jmxxm exp)()( 0        （4.29） 

 ただし、 0sin kd         

 そして  から 2
0

2
0

2 )()( yyxxR 
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H

y

H



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0
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 したがって、式（4.28）は次のようになる。 

  

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 

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jmyxjk xe
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eyx

0 00
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4
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  0
2

0
2)1(

0 )()( dxxxmdykH      （4.30）   
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)( 00 x を決定するための積分方程式は、 ndy  における境界条件によって求めら

れる。 nmp  とおき、 )0sinexp( jknd で割れば、 

   （4.31） 0)()(sin0 0000 0
cos

0
0  


xdxxxxkejk jkx  
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m
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e
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xxk 22
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)1(
02

2

0 )()(
4

)(   （4.32） 

 式（4.31）は、非同次型 Wiener-Hopt 型積分方程式であって、その解を求め

ると、 

    
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1
222

1
22

000
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 ただし、F は 

 )(F 00 0
0)( dxex xj


      （4.34） 

 によって定義された 0 の Fourier 変換である。 

 変換 )(F の項で、水位上昇 ),( yx は、 
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で表わされる。 
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1 節 概説 
 
 神戸から堺にいたる阪神間には、神戸、芦屋、西宮、尼崎、大阪、堺の各都

市とその上に大阪府、兵庫県という分割された行政区域がある結果、これらを

阪神都市圏としてみた場合、社会生活、土地利用計画、公共施設の計画等が寸

断され、行き詰まりをきたしている状態にある。これらに対処するため、阪神

都市圏を総合的に計画し、また阪神地区の諸港を一本化して考えるべき時が来

ている。このような施策の一環として、神戸港から堺港に向かって延長約 20ｋ
ｍに及ぶ防波堤を作り、この内側の海面を一部埋め立てて臨海地域を造成した

り、この防波堤を利用して阪神諸都市間の短絡を目的とする高速道路を築いた

り、また防災上から台風時における安全な泊地を持つと共に阪神都市地域を異

常高潮から守ろうとするいわゆる大防波堤計画がある。この計画が実施される

と大阪港周辺の海況は大きく変わることが予想される。こういった大計画に対

応して、技術的には、大防波堤の存在、その延長及び平面線形、湾内での各港

湾の位置、断面、浚渫、または埋立計画の影響といったことを含めて、このよ

うな港湾の境界条件の大きな変更によって波の反射、回析、屈析及び減衰がど

のように変化するかといった海岸工学上の諸問題を解決する必要がある。しか

しながら、これらの局所的な波動現象は複雑であって一般に解析的方法によっ

て、この種の問題を解明することは殆ど不可能であるので、水理模型実験によ

って明らかにする以外に適当な方法がない。 
 一般的にいって、湾口又は港口に防波堤を設置して外界からの侵入波を防ぐ

という方法も波動エネルギーの小さい風波に対してはある程度までその効果を

期待できるけれども、高潮、津波のような長周期大エネルギーの入射波が侵入

して港内でセイシュが惹起された場合、港内波高は防波堤によって必ずしも減

少するとは限らず第 3 章で予想したようにむしろ増大する場合もありうる。そ

こで本水理実験においては、まず種々の波高、周期の入射波によって大防波堤

設置前の状況について詳細な実験を行い、次に計画されている大防波堤を設け、

その遮へい水域内において、各沿岸地域、及び遮へい水域内での水位上昇およ

び水粒子の水平方向の移動等を比較検討し、大防波堤の効果について実験的検

討を加えたものである。 
 

2 節 大阪湾沿岸の気象潮と模型屈折図による予測 
  
 記録によれば阪神地方(東経 134°～136°、北緯 34°～36°)を通過し、また

は大阪湾一帯に高潮を生じた主な台風は、1892 年(明治 24 年)から 1950 年(昭和

25 年)に至る 60 年間に 77 に達し平均すれば 1 年間に 1.3 回の割合で来襲したこ

とになる。これは日本付近に近接した台風全体の約 10％にもあたっている。大

阪湾付近を襲う台風の主要経路について佃氏および宇田氏は明治35年以降の台

風 36 例について次のように分類している。 
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・ 最も多くかつ強勢なものは阪神地方の南より西へ 40°～50°の室戸岬から

紀伊水道に向かって北東する経路をとり、同じく 70°～80°の方向から九州の

西海大分方面を経て内海の中軸に沿い進行する経路の台風がありこれは前者の

役 1/3 程度である。 
 図-5.1 に阪神地方を中心として南から西へ測った角度別の経路の頻度を示す。

このうち上述の前者の経路はだいたい大阪湾の主軸と一致するため湾内沿岸に

高潮を発生する原因の一つとなっている。 
 図-5.2 は、過去に阪神地方を襲った猛台風について、室戸台風、ジェーン台

風及び第二室戸台風の経路図を表わしている。また上記三つの大台風の際の沿

岸での最大偏差が図-5.3 に示されている。 
 図-5.4、5.5 はそれぞれ、ジェーン台風時の高潮波形、第二室戸台風時の各地

点での検潮記録を示している。 
 大阪港、神戸港における台風の比較を表示すると次表のごとくになる。 
 
大阪港における台風の比較          

 室戸台風 ジェーン台風 第二室戸台風 
観測年月日 S.9.9.21 S.25.9.3 S.369.16 
心気圧 954.4 mb 970.3 937.3 
進行速度 60 km/h 58 50 

 

最大風速(10 分間

平均) 
S 42.0 m/s S 28.1 SSE 33.3 

瞬間最大風速 S 60.0 m/s S 44.7 SSE 50.6 
最高潮位 o.p. 4.20 m o.p. 3.55 o.p. 4.12 

 

最大偏差 3.00 m 2.05 2.41 
 
神戸港での台風の比較          

 室戸台風 ジェーン台風 第二室戸台風 
観測年月日 S.9.9.21 S.25.9.3 S.369.16 
心気圧 954.6 mb 964.3 946.2 
進行速度 60 km/h 58 50 

 

最大風速(10 分間

平均) 
SE 22 m/s NE 33.0 NE 27.0 

瞬間最大風速 SE 33 m/s NE 33.0 NE 27.0 
最高潮位 3.49 m 2.91 3.20 

 

最大偏差 2.20 m 1.67 1.90 
 
・ 模型屈折図による予測 
 入射長波の峰線と走時を求めるために、屈折図を作図し長周期波エネルギー

の集中、発散及び長周期波の伝播、沿岸における最高潮位の起時等をあらかじ
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め計算する。 
 ここでは Arthur・Munk・Isaacs の修正直交線法(AMI 法)を用い、大阪湾内

の長波の屈折図を作成し、図-5.6 に示すごとき結果を得た。なおこの際、長周

期波の初期峰線を図-5.6 の A～A 断面とし、直線状峰線を初期値として湾奥に向

かって作図を行う。 
 この際、初期峰線の走向と位置の選択に問題があるが、壺井氏及び運輸技術

研究所の試算の例に見られるように、初期峰線を友ケ島水道から始めても、終

局的には、波の峰線が大阪湾の長軸と直行するようになることから本文の場合

において波の襲来方向を SW 方向にとっても結果的には大差ないものと思われ

る。得られた結果は次の通りである。大阪湾沿岸の主要地域の走時を示すと表

-5.1 のごとくになるが、和田岬を走時の起点にとると、まず神戸に到達し、約

20 分後には西宮、大阪、堺付近にその正面から襲来するような傾向がある。 
 また、大阪港口の方向と長周期波高が一致する傾向が見られ、特に大阪港内

から港界沖およそ 11km までの地点を結ぶ区間に海底を浚渫して、約 0.3km の

幅を持つ航路を設置するため、外海から来襲してくる長周期波エネルギーがこ

の航路に収束されてかなり早い伝播速度で港内に誘導されてくることが予想さ

れる。 
 

表-5.1 各地点の最高潮位の起時 
(和田岬を起時とする) 

神戸 芦屋 西宮 尼崎 大阪築港 堺港 泉北港 
3.33 分 16.7 分 21.0 分 23.0 分 23.3 分 23.5 分 16.7 分 
 
 淀川に対しても長周期波が真正面から入射してくる傾向が見られ、現実の顕

著な高潮の遡上の問題を是認している。 
 

3 節 相似性と実験模型 
  
 ここでは、長周期の波の変形を主体として考えるので、相似則は Froude 則に

よるものとし原型と模型との相似関係は、 
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r
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C   

 ： ただし、 流速、V T ：時間、H ：垂直距離、X ： ：

 

した。これは、図-5.7 に示すようなもので水槽軸線を大阪湾の長軸方向（

水平距離、 fC 水底の

摩擦係数で suffix のｒは原型と模型の諸量の比を表わす。一方実験を行う敷地

の大きさと対象範囲から、本模型の縮尺として水平方向に 1/3.000、鉛直方向に

は 1/100 を採用し歪ませた模型とする。その結果、時間縮尺は、1/300 となった。 

実験は大阪大学工学部水理実験場に新設した屋外海岸実験水槽で行うことに 
湾形
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を楕円と仮定する）に一致せしめ造波装置の先端の 2ｍ幅の所から漸次その幅を

拡大していって、助走区間距離 28ｍの地点で最大幅となるがごとき扇形の平面

形をとり、その幅は神戸市駒ケ林付近と岸和田市外の津田川河口地点を結ぶ 10
ｍである。この線上の奥に大阪湾模型を水平縮尺 1/3.000、鉛直縮尺 1/100 の割

合で縮小し海底地形、及び海岸線ともコンクリートで正しく作成した。この模

型に含まれる範囲は東から泉大津、泉北、堺、大阪、尼崎、西宮、神戸の 7 つ

の港と大阪港界沖合約 20ｋｍまでの海面である。 
 なお、水槽側壁は 20×20×40cm の建築用コンクリートブロック 2 段積み直

4 節 実験方法 
  

周期波は、押込み式造波装置により任意波形のものを発生せしめる。即ち、

置しない場合につき考察することにする。

うな簡便な最

ため、水面に直径約 1.5cm、厚さ 1.5mm

線壁とし内側はモルタル仕上げとした。模型製作にあたり、必要な資料である

埋立地の造成と各港の防波堤、及び防潮堤の嵩上げについては各地方行政庁で

独自の計画があるが、一応のメドとして昭和 40 年を基準にしてそれまでに完成

予定のものにつき模型を製作した。使用した海図は海上保安上水路部発行によ

る第 150 号大阪湾(縮尺 1/50,000)であり、これにより水平、鉛直両縮尺に応じ

た厳密な海底地形を製作した。図-5.7 には大阪湾の等深線が示されており、水

深は基本水準面（D.L）を基準にとってある。次に模型における各港の防波堤及

び大阪湾大防波堤はプラスチック板を加工して製作した。大防波堤には大小四

つの開口部があり東より 300m、350m、1,400m、400m で堺側で末端が開いて

いる。  
 

 長

水槽中、大阪湾模型の反対側に鉛直に置かれた造波鉄板を水槽の軸線方向に所

定の移動速度で運転させて起こすことができる。このような造波機構のもとに

おいて造波板の移動速度を連続的に変えうるよう無段変速器を使用している。

長波形式の長周期を造るためには、変速比を大にして造波板の移動速度を変え

る必要があり、このためには、二対の 1：6 の変速比の変速プーリーを互いに反

対に組み合わせて、変速比が 1：36 を生ぜしめるように設計してある。使用し

た造波機の概要を図-5.8 に示す。 
 最初の実験として、大防波堤を設

大阪湾の潮位をいろいろと変えて、造波機により造られたいろいろの周期、振

幅を有する長周期波を大阪湾内に進入せしめた時、図-5.7 に示されている湾内

の①～⑧の各点における水位を電気抵抗式水位計で計測する。 
 次に細部にわたる湾内各地点の最大波高を知るために、次のよ

高水位計を多数設ける。即ち、各地点に立てられた径約 3mm のガラス棒にフェ

ノーフタレン溶液を塗っておくと水面以下の部分が白色から赤色に変色するの

で最高潮位が記録できる。その変色効果を大ならしめるために水中に苛性ソー

ダ溶液をあらかじめ溶解させておく。 
 また、湾内の水粒子の移動軌跡を知る

の白く塗ったコルク板を多数浮かべ、観測塔から 16mm、及び 8mm カメラで
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連続的に追跡撮影する。 
 以下、大防波堤を設置した場合も同様である。 

5 節 測定結果 
  

験は、沖波波高 0.8～2.63m、周期 30 分～58 分、波長 26km～45km の範

実例は、大防波堤を設置しない時に、11 個、大防波堤を

Ⅰ）沖波波形 
とく外海から入射してくる長周期波を波高 0.8～2.63m、周期

後 150 分

20 分

Ⅱ）内海左の波形 
場合には、入射波が到着直後、防波堤開口部から湾内へ

Ⅲ）内海右の波形 
場合、防波堤によって完璧に遮へいされたこの測定地点

Ⅳ）神戸港の波形 
および第一防波堤と第二防波堤との間から長周期波が入

 

 実

囲に含まれる各種の長周期波を発生せしめ、これを模型水槽の軸線方向、即ち

大阪湾奥 SW 方向から入射させ各沿岸での波高分布、並びに水粒子の水平方向

の移動を測定した。 
 実験に使用した波の

設置した場合に、15 個あるが、それらの内からそれぞれ代表的なもの二つづつ

例示する。(図-5.9、5.10、5.11、5.12 参照)それぞれの値は実物の場合になおし

てある。すなわち実験によって得られた測定値に振幅に関しては 100 倍、時間

については 300 倍したものを示す。 
 
（

 表-5.2 に示すご

30～58 分、波長 26～45km の合計 26 種類に分けて発生せしめた。 
 大防波堤を設置していない時、①の測定点の反射波は最高波高通過

で 0.25～0.30m 程度が認められる。 
 大防波堤を設置した場合においては、入射波の最高波高が通過した後、

後に大防波堤からの反射波が到達し、更に、70 分後にはかなり孤立波型式反射

波が認められる。これは開口部から湾内に侵入した入射波が遮へい水域での振

動エネルギーの散逸の形で再び湾外へ押し出されたものと考えられる。 
 
（

 大防波堤を設置した

の流れ込みのため、0.5～1.0m 程度の負の波高をもつ波が生じ、それはまた直ち

に入射エネルギーの補給によって負の波が消失する。開口部であるこの地点の

流れの激しさを物語っている。上述のごとく、防波堤開口部の流積急変部に、

波が入射した際、開口部付近と他の周りの水域との間にかなりの水面差が生じ

たとしても、波長が大なるため、すぐ水面差が消失してしまう。 
 
（

 大防波堤を設置した

付近においては、非常に静穏な水域となり、水位上昇も小さくなっている。 
 
（

 和田岬と第一防波堤

りこんで来るが、防波堤の切れ目からの入射エネルギーの量は、たいしたこと
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は無く港内波高はあまり大とならない。ただし、大防波堤を設置した時、その

存在のため、A－B 開口部（図-5.7 参照）からの入射波によって第四防波堤背後

の地区の擾乱程度がやや高いように思われる。 
 なお、測定地点での第一波襲来後、主動周期が 50～60 分程度の seiche が観

Ⅴ）西宮港の波形 
い場合 

は、0.8m/min 位で長周期入射波による水面上昇

(a)の場合に比して緩慢で、0.4m/min 位で水位上昇

Ⅵ）大阪港の波形 
場合においては、第一波の後、平均水面以下 0.5m に下が

Ⅶ）堺港の波形 
地により囲まれた一端より出入りする閉塞水域を作ってい

乱波水位がいつまでたっても平均水面上にあり減衰する模様はみ

測される。この振動状態は長時間持続し、2 時間も経た後にもかなりの波高に達

している。これは後述のごとく、内海右、内海左の地点を節とし、神戸と堺を

結ぶ横振動によるものと思われ、興味深い現象である。 
 
（

(a) 防波堤を設置しな

 水位時間曲線の水位上昇速度

は 35 分位続き、次に平均水面以下 1m 半位にまで水位が下降し、このような主

要振動の後、およそ 30 分周期の規則的な振動が生じている。長周期入射波によ

る最高波高走時の神戸と西宮との時差は 20 分位で、先の屈折図による計算結果

とよく一致する。また西宮港は三方の細長い水路で外海と直接連絡しているた

め、ちょっとした風波によっても同港内での擾乱が顕著であるように思われる。 
(b) 防波堤を設置した場合 
 この時の水位上昇速度は、

の速度は半減するが、港内波高は平均水面上およそ 50 分位も持続し、それから

平均水面下 1m に下がり、次に小さい変動を加えながら、2m 程度の水位上昇を

保って 3 時間以上も継続している。このことは、防波堤存在のため、一旦入り

込んだ入射エネルギーが港口幅が狭いためになかなか逃げられないことを示す

ものと思われる。しかしながら、顕著な振動は認められない。 
 
（

 防波堤を設置しない

り得るのに、大防波堤を設置すると、入射波による過渡期以後においても、な

かなか平均水面以下にならずほぼ 25 分周期の振動を行い、なかなか水位の下が

る傾向はない。 
 
（

 同港は、埋立造成

るので、長周期入射波により励起されて堺港自身の副振動も生じているものと

思われる。 
 従って、擾

られない。防波堤を設置した場合の方が波高の点から見てその度合いが強い。 
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6 節 結果の検討 
  

) 各測定点における最高波高 
ら各測定点における最大振幅値を読み取り、

そ

大防波堤を設置した場合には、内海左、右共、前とほぼ同じ値をとり、

神

  b) 長周期波の波長と防波堤効果との関係 

をとる。ここに は大防波堤がな

い場合の測定点 P は同じ測

定地点で大防波堤を設置した場合の最大振幅比である。 の

c) 同時水位変化曲線 

 a
波高計によって得られた結果か

の最大値と入射波高との比を縦軸に、大阪湾を楕円と考えてその中心を原点

とし長軸(湾軸)から左右の各地点の角度(右回りを正とする)を横軸にとり、大防

波堤の有無に分けて、表示したものが表-5.3、5.4 であり、周期別にプロットし

て図示したのが、図-5.13、図-5.14 である。図から大阪湾水域に侵入してきた長

周期波の最大波高が各地点でどのように変化するかがわかる。大体の傾向とし

て各地点での最大振幅比曲線は入射波形に関係なく殆ど同じ傾向をとり、まず

防波堤を設置しない場合、神戸での最大波高が入射波高と同じ位で殆ど水位の

異常上昇が生じることなく、内海右、左の両測定地点でもせいぜい 1.4 倍位であ

る。ところが、西宮へ来ると急にこの比が高くなり 3～3.4 倍で大阪では意外に

小さく平均 1.5 倍である。堺での値は少し散らばりがあるが、大体 1.8～3 倍で

ある。 
一方、

戸においてはむしろ防波堤のない場合より大きく最大波高が 2.50m 位にもな

るが陸岸に遡上するには至らず、また西宮においては波高比は 3～4 倍にもなり

第 1波の水位上昇時間は、先の場合に比して 20分位長く水位上昇は緩慢になる。

大阪の最大振幅比は 2～2.6 倍で最大波高が 2.50ｍ位になる。ただ、堺における

諸値が以外に大きく 4 倍に達している。 
 

 横軸は前と同様で縦軸に最大振幅比
'

PP RR /

における最大波高に対する入射波高の比を表し、

'
PR

従って、

PR

PR/PR ' 0.1

場合、長周期入射波に対する防波堤が有効に働いたといいうる。その結果は図

-5.15 のごとくになった。同図は、波長の異なった色々の波に対する大防波堤効

果を大阪湾内各沿岸地点ならびに水域内地点でどのように変化するかを示した

ものである。これによると遮へい水域内の内海右、左両地点付近、西宮港は、

おおむね良好な結果が出ている。神戸での比が防波堤を設けたためにかえって

非常に悪い方に出ているが、最大波高の絶対値が小さいのであまり問題になら

ないものと思われる。このことは、大阪港の場合にも適用できる。しかしなが

ら、堺港においては、異常最大波高の絶対値が大きく、図-5.15 の防波堤効果の

点から判断して極めて都合の悪い結果が出ている。 
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 図-5.16～5.19 は大防波堤を設置しない場合、図-5.20～5.23 は、大防波堤を

堤がないとき、内海右－内海左－堺の line を結んでみると、極めて興

堤を設置すると、先の場合とは違って神戸と堺において振動の

d）水粒子の移動 
の移動を 8mm、及び 16mm 撮影機で写したフィルムを映

場合の沖合の様子をみると、粒子の移動は押波

7 節 大防波堤内の Seiche について 
  

防波堤内水域海面の周期的な運動に限らず、暴風、地震、津波、吹送流等

設置した時の同時水位変化曲線を表す。縦軸には 10 分毎の各測定地点での波高

を記してあり、これによってあらましの大阪湾沿岸に沿う水位変化の様相がわ

かる。 
 大防波

味ある現象を見出した。即ち、丁度、神戸港を節とし、堺港付近で腹となった

状態のはっきりとした横振動の現象が惹起されていてその周期はおよそ 60～80
分位である。 
 一方、大防波

腹の状態が現れ、遮へい水域内の内海右地点付近で節となった、単節の Seiche
が見られる。この時の観測周期はおよそ 80～100 分である。なお、両者の場合

での最高波高時の時差は、大防波堤を設置すると 10 分位遅れるようである。 
 
 

 水粒子の水平方向

写機にかけ白紙上での浮子の動きを追跡し、水粒子の流跡線図を作成した。図

-5.24 は防波堤を設置しない場合の流跡線、図-5.25 は防波堤を設置した場合の

流跡線の 1 例を示している。 
 まず、大防波堤を設置しない

より引波による移動の方が大きくなっており、多くの粒子の軌跡が相似な形を

なしている。そしてその軌跡は、第一波に関する限り、大体 loop 形状をなして

いる。そして地形等高線、即ち波峰線に直交しているようである。防波堤など

沿岸構造物付近では、それらに沿う流れが顕著に見られる。大阪港内などの小

さい閉塞状水域内での水粒子の動きはかなり複雑である。さて、大防波堤を設

置した時、開口部付近の海域が押波、引波の際相当乱されることがわかった。

これは開口部付近において入射波の襲来時に流れによる負の反射が生じたりし

て、水の出入りのため、その部分にあたる海域が乱れ、大きな渦を巻くためで

ある。堺港沖の大防波堤末端においても、長周期波が回りこんでくるためかな

りの流速が生じている。一方、西宮付近の埋立地沖と大防波堤間の水域におい

ては、水位の上昇も緩慢で水粒子の動きをみると、内海右付近の地点が振動の

節のような状態の水域となっている。大阪港内などの閉塞した水域内の水粒子

の動きは緩慢になっている。一般的にいって、これら二つの図から大防波堤に

よって、開口部付近を除けば湾内の各水域の水実質の流動が減少することが明

らかにわかる。 
 

 大

によって起こされる異常潮位の現象は、その水域内の固有振動と密接に関係し、

この解明には自由振動の周期、振幅分布等をあらかじめ知る必要が生じてくる。 
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 また、第 6 節で既述のとおり、大防波堤を設置した場合、神戸と堺において

振動の腹の状態が現れ、遮へい水域内の内海右地点付近で節となった単節の

Seiche 振動が観測されている。このとき、長周期波が入射してきた過渡期にお

いての観測周期はおよそ 80～100 分であり、その後に大防波堤内水域の固有振

動と思われる、40 分くらいの周期が持続している。ここでは、大防波堤内水域

を深さが沿岸境界に向かって放物線的に変化する平面状の半円形を考え、この

大防波堤内水域の自由振動の周期と振幅分布等を求め、この結果からはたして

第 5 節の観測結果の通り、堺、神戸での異常潮位が Seiche 運動によるものかど

うかを検討する必要がある。 
 そのため、まず計算の便宜上 、角速度 で回転している平面状の半円水域を

 

考える。(図-5.26 参照)この場合の運動方程式及び連続方程式は、次のように表

わされる。 
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      （5.1） 

運動が時間に関して調和的であるならば、時間項は であるので、式（5.1）
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                 （5.2） 

となる。極座標 ),( r を導入し、記号  , が変形ベクトルに沿う変位及び半径ベ

クトルに垂直な変位を表わすものとすれば、    jj 


,

であるから、式（5.2）は次式に等しくなる。 
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したがって、 
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大防波堤内水域の深さの分布を、 

 







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2

2

0 1
a

r
hh        （5.5） 

とし、中心で最深で沿岸周辺に向かって徐々に傾いている半径 の水域を表わし

ている。この の値を式（5.4）に代入し、

a

h およびを消去すると次式を得る。 
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ただし、 
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そして、 は scos か ssin につれて変化するものとする。式（5.6）に、 Z
s

 2

を代入すると、 
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ここで上式と類似な形の方程式を考える。 

   0)1(')2()1(")1(  ZsnnZssZ     （5.8） 

これは、丁度、超幾何微分方程式 
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での解  );;,( zF   に対応しているので 

1,,1  snns   とおくと、式（5.8）なる方程式の解は、 
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n
    （5.9） 

あるいは、Riemann の記号で 

       （5.10） 
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で表示できる。 

 はn が正の整数ならば、 s のあらゆる正の値に対して、 0≦z
s

n
 ≦1 で有効

な（5.8）の解となっている。適当な条件の下において、  についての任意関数

は  ＝0 から  ＝1 まで妥当な級数に展開せしめることができる。即ち、 
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 ここで特に、 はp p の任意の正の値に対して上式のように展開される。 p が

正の整数である時、級数は有限となる。 
（5.12）を適用すると、 
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         （5.14） 

 式（5.13）なる級数に 2

s

 を乗じると、次式を得る。 
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 ただし、   2/sp   

 0 なる領域で、次の展開式が成り立つ。 
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ns, は整数であって、 は奇数とする。任意定数を とし、ns  sA 2

s

 を式（5.16）

の両辺に乗じ、式（5.15）から得られるように 2)(
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を後者の項と置き換える。 
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         （5.17） 
が成立する。次式の operator を式（5.17）の各項に適用するならば、 
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その結果として次式が得られる。 
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 式（5.18）は の全ての値に対して（5.8）を満足し、E の各係数は半円形水

域のいたるところで収斂し、

sE

1 なる沿岸境界でも有限な値をとる。この E を
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決定する最後の条件式は、大防波堤面  ,0 を横切る流速が 0 ということであ

る。 
 即ち、式（5.4）から 
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          （5.19） 
ただし、 
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（5.19）式において E を消去すると固有振動の周期  /2 決定する方程式が得

られる。これによって単節 Seiche の固有振動周期

を

T ≒40 分が得られ、水域内各
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地点の水位上昇は次式で示される。 
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         （5.20） 
 半円形水域での振動の振幅分布の状況を示すために、任意時刻における波形

を示すと図-5.27のごとくになり、丁度、半円形を二分する中心線上に節が生じ、

防波堤端において最大振幅を生ずるような振幅分布状態を示し、本計算は実験

結果の神戸と堺において振動の腹の状態があらわれ、遮へい水域内の内海右地

点付近で節となった単節の Seiche 振動の惹起性を裏付けている。 

 
8 節 結  論 

  
 以上、各測定結果の資料をもとにして各地点の擾乱の様子を見てきたが、防

波堤設置によってその開口部からの長周期波の質量輸送によって港口付近では

極めて顕著な局所的な乱れが生じるという問題点があるけれども、大防波堤内

においてはこの港口からの流入エネルギーが速やかに拡散、散逸するため防波

堤の無い時に見られたような遮へい水域内での流速の大きな複雑な流れは減少

したことが認められる。ただし、堺側の防波堤開口部の影響は港域のかなりの

部分に及ぶようである。大防波堤を設置した場合の高潮に対する防禦効果は、

上述の測定結果のごとく、高潮波長が長ければ防波堤内外の潮位は同じになる

ような傾向にあり、その上、湾奥内の各港湾の平面線形によっては入射エネル

ギーにより大防波堤を設置したためかえって局所的に異常な水位上昇が励起さ

れることがわかった。特に港域両端では横式 Seiche のためかえって都合の悪い

結果が出ていて防波堤設置によって必ずしも全沿岸の異常潮位を減少せしめる

ことができないことを示している。 
 これらの問題は、防波堤の位置、その延長、及び線形と防波堤開口部からの

遮へい水域内のエネルギーの散逸の問題とからんでこれからも研究を進める必

要がある。 
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表 5.2 入射波の特性 
波高(m)  1.00  1.25  1.25  1.42  1.45  1.52  1.20  1.62  1.75 

周期(分) 38.5 41.7 54.0 40.0 41.8 57.5 38.7 43.3 27.8 

波長(km) 29.3 32.0 41.6 30.9 32.3 44.5 30.0 33.6 21.7 

波高(m)  2.25  2.63  0.79  0.79  0.86  0.86  0.86  0.94  1.04 

周期(分) 55.5 50.5 35.0 41.0 31.0 37.5 41.0 33.5 34.0 

波長(km) 43.7 40.0 29.3 34.2 25.9 31.4 34.3 28.1 28.6 

波高(m)  1.11  1.13  1.00  1.20  1.20     

周期(分) 39.0 40.0 41.0 36.0 49.0     

波長(km) 32.8 33.7 34.4 30.4 41.3     

 
 
表 5.3 大防波堤を設置しない場合 

水 位 計 設 置 位 置            整理 

番号 

 

沖第 2② 内海左⑦ 内海右③ 神戸④ 西宮⑤ 大阪⑥ 堺⑧ 

水位上昇時間 38.5 分 48.3 51.5 40.0 45.0 61.5 33.3 

最大波高  1.00m  1.36 1.24 1.10 2.85 1.50 2.22 

 5 

最大振幅比   1.36 1.24 1.10 2.85 1.50 2.22 

水位上昇時間 41.7 56.5 58.3 70.5 42.0 63.3 55.0 

最大波高  1.25  1.86  1.30  1.10  4.00  1.87  2.47 

 11 

最大振幅比   1.49  1.04  0.90  3.20  1.50  1.98 

水位上昇時間 54.0 51.5 57.0 81.0 45.0 58.0 51.5 

最大波高  1.25  1.71  1.41  1.40  3.65  1.67  2.38 

 6 

最大振幅比   1.37  1.13  1.12  2.92  1.33  1.90 

水位上昇時間 40.0 48.3 60.0 66.5 32.5 70.0 53.3 

最大波高  1.42  1.43  1.94  1.44  4.50  2.27 3.11 

 9 

最大振幅比   1.01  1.37  1.01  3.17  1.60  3.22 

水位上昇時間 41.8 47.3 58.5 38.3 46.8 61.5 53.0 

最大波高  1.45  2.00  1.59  1.34  5.05  2.00  4.45 

 1 

最大振幅比   1.38  1.10  0.93  3.49  1.38  3.07 

水位上昇時間 57.5 62.5 68.3 83.0 40.3 48.3 45.0 

最大波高  1.52  1.86  1.82  1.40  5.15  1.70  3.11 

10 

最大振幅比   1.22  1.20  0.92  3.39  1.12  2.05 

水位上昇時間 38.7 47.0 45.0 31.6 36.0 47.7 48.1 

最大波高  1.62  1.72  1.50  1.20  4.60  1.33  2.45 

 8 

最大振幅比   1.07  0.93  0.74  2.84  0.82  1.53 

 



水位上昇時間 43.3 47.3 58.0 56.5 61.5 68.0 56.5 

最大波高  1.62  2.36  2.05  1.46  5.70  2.83  4.11 

 3 

 

最大振幅比   1.46  1.26  0.90  3.52  1.75   2.54 

水位上昇時間 27.8 48.3 53.3 64.3 40.0 53.3 53.3 

最大波高  1.75  2.43  1.88  1.60  5.60  2.33  4.89 

 2 

最大振幅比   1.39  1.08  0.91  3.20  1.33  2.80 

水位上昇時間 55.5 61.8 63.3 61.5 35.0 66.5 34.0 

最大波高  2.25  2.93  2.00  1.70  5.80  2.67  3.73 

4 

最大振幅比   1.30  0.89  0.76  2.58  1.19  1.56 

水位上昇時間 50.5 40.0 58.5 73.3 50.3 73.5 53.3 

最大波高  2.63  2.50  2.29  1.70  7.50  3.70  4.14 

 7 

最大振幅比   0.95  0.87  0.65  2.85  1.41  1.58 

 
 
表 5.4 大防波堤設置の場合 

水 位 計 設 置    位 置            整理 

番号 

 

外海沖① 沖第 2② 内海右⑦ 内海右③ 神戸④ 西宮⑤ 大阪⑥ 堺⑧ 

水位上昇時間 35.0 分 34.5  66.5 60.0 60.0 63.0 59.0 

最大波高  0.86 m  0.72  1.11  1.17  2.33  4.00  1.00 4.40 

 4 

最大振幅比    1.40  1.48  2.95  5.06  1.27 5.56 

水位上昇時間 42.0 40.0  51.5 40.0 52.5 68.0 59.0 

最大波高  0.75  0.85  0.72  0.84  1.73  2.70  1.50 3.20 

13 

  

最大振幅比    0.91  1.06  2.19  3.42  1.90 5.05 

水位上昇時間 30.3 33.3  75.0 61.0 60.5 76.5 70.0 

最大波高  0.86  0.87  1.39  1.33  2.27  3.30  2.25 4.00 

 10 

最大振幅比    1.62  1.55   2.64  3.84   2.60 4.66 

水位上昇時間 36.8 38.3  55.0 59.0 56.5 63.5 61.5 

最大波高  0.86  0.86  1.05  1.00  1.87  3.40  1.50  4.00 

 15 

最大振幅比    1.22  1.16  2.18  3.96  1.70  4.65 

水位上昇時間 40.0 41.7  55.0 46.5 60.0 71.5 60.0 

最大波高  0.87  0.86  1.33  1.00  2.13  3.50  1.75  3.50 

7 

最大振幅比    1.55  1.16  2.48  4.10  2.00  4.10 

水位上昇時間 33.5 33.5  50.0 48.5 58.5 60.0 60.0 

最大波高  0.93  0.95  1.16  0.93  1.80  3.50  1.50  4.40 

  8 

最大振幅比    1.23  1.00  1.91  3.71  1.60  4.10 

 

 



水位上昇時間 45.0 30.5  71.5 73.0 58.5 76.5 57.5 

最大波高  1.00  0.60  1.17  0.80  2.07  3.60  2.00  3.60 

11 

最大振幅比    1.17  0.80  2.07  3.60  2.00  3.60 

水位上昇時間 35.0 33.5  58.5 46.8 61.5 31.8 63.0 

最大波高  1.00  1.09  1.11  1.33  2.66  4.40  1.20  4.80 

  2 

最大振幅比    1.07  1.28  2.56  4.20  1.40  4.60 

水位上昇時間 40.0 36.7  56.5 36.8 50.0 73.0 56.5 

最大波高  1.06  1.17  1.45  1.00  2.13 2.80  2.50  3.80 

14 

最大振幅比    1.31  0.91  1.90  2.50  2.25  3.42 

水位上昇時間 40.0 40.0  52.5 43.3 51.5 70.0 60.0 

最大波高  1.03  1.24  1.33  1.00  1.80  3.20  1.75  3.40 

12 

  

最大振幅比    1.20  1.00  1.59  2.83  1.55  3.05 

水位上昇時間 39.0   56.5 56.5 58.3 33.8 68.0 

最大波高  1.00   1.78  1.17  2.66  4.80  1.50  5.60 

 3 

最大振幅比    1.78  1.17  2.66  4.80  1.50  5.60 

水位上昇時間 35.0 33.4  57.0 63.0 70.5 71.5 65.0 

最大波高  1.33  0.86  1.11  1.33  2.73  4.80  1.50  5.60 

  5 

最大振幅比         

水位上昇時間 35.0 36.5  73.0 47.3 56.5 71.0 65.0 

最大波高  1.26  1.14  1.44  1.67  2.80 4.40  1.75  5.00 

6 

最大振幅比    1.20  1.29 2.33  3.66  1.46  4.17 

水位上昇時間 50.0 46.7  60.0 50.0 61.5 70.0 61.5 

最大波高  1.26  1.14  1.22 1.33  2.67  4.20  1.50  4.40 

  9 

最大振幅比    1.02  1.12  2.22  3.50  1.26  3.66 

水位上昇時間 41.8 50.0  50.0 50.0 60.0 60.8 58.5 

最大波高  0.93  1.43  2.45  2.17  1.40  4.20  2.25  3.60 

  1 

最大振幅比         

 



第 6 章 
 

結  論 
 
 

  
 この研究によって明らかにされた主な事項を要約すれば、次のようである。 
 
 
（1） 特別な境界を有する回折問題を Wiener-Hopf 型積分方程式として式化で

きることを示し、非周期的な入射波に対する厳密解を得る事ができた。 
 
（2） 入射波長(λ)が防波堤と沿岸地帯の距離(2d)に比して小になる程、遮へ

い水域内（ ）の波高は減少する。 0x

 

（3） 5.015.0/2 ～d の程度の波長の波であれば、防波堤遮へい効果が

の全水域にわたって現れ、

0x

15.0/2 d の時には、いかなる入射条件のもとにお

いても最大振幅比の値は 1 を越す。 
 
（4） 大阪湾大防波堤の設置によって必ずしも全沿岸の異常潮位を減少せしめ

るとは限らず、港域両端部では副次的な横振動のため、かえって都合の悪い結

果が出ている。 
 
（5） 大防波堤内水域の自由振動の周期と振幅分布を求め、堺、神戸での異常

潮位が Seiche 運動によるものであることを確かめ、基本振動周期として 40 分

を得た。 
 
（6） 防波堤装置によってその遮へい部分では流れに関して静穏な状態が得ら

れるが堺側の防波堤開口部の影響は遮へい水域のかなりの部分に及んでいる。 
 
（7） 一端を閉じた拡幅水域内での水面擾乱は、過渡状態では入射波形と水域

内固有振動各素波の相互干渉に依存しあっており、その後では閉塞水域の固有

振動に対応する各種素波が合成されている。そして擾乱波高に及ぼす入射波の

比率は 70～80％である。 
 
（8） 湾入部水域内での水面擾乱を、入射波が正弦波形と非周期的波形の場合

について式を誘導し、湾口からの散逸波の性状を明らかにした。 
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（9） 水路に断面急変部を有する時のサージの反射率を算定する場合、衝撃性

の波を正弦波形の式で求めるとおよそ 1 割～2 割以内の誤差が生じる。 
 
 
 
 
 
 

む す び 
 
 

 
 本研究を遂行するに当たり、絶えず、ご指導及びご鞭撻を賜った故 田中 清

教授と室田 明助教授に厚く感謝の意を表します。また同時に、実験、数値計算

などに熱心なご協力をいただきました、大学院博士課程 劉 世燁 氏、本学研

究生 佐藤 邦明、学部学生 岡田 耕、川滕 洋介 氏(鹿島建設) の諸氏に、こ

の機会に厚く御礼申し上げます。 
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