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— Abstract —

Short range electron correlation effects in one- and two-dimensional periodic
systems are studied. The electronic structure of CuQO, plane of the High-T¢
compounds is chiefly examined by regarding the plane as a network of Cu-3d
orbitals via oxygen-2p ones. The valence band structure of this network is outside
the scope'of the one-body theory because of the strong Coulomb interaction in
Cu-3d,; there is a competition between the band energy and the local Coulomb
energy. The author has investigated many-body effects in the CuQO, plane by
reconstructing a finite size system into a computer, and by directly diagonalizing
the Hamiltonian via the Lanczos method. Ground state properties, such as the
hole/electron occupation and the spin correlation between atoms, are evaluated
by using the ground state wave function that is obtained numerically. One particle
excitation spectrum from the ground state is also examined through the recursion
method. As a result, core and valence band X-ray photo excitation spectra are
modified by the relaxation of the valence holes. Finally, the charge excitation gap,
which is the opening between the one-particle removal and additional spectrum,
is calculated by taking a derivative of the ground state energy with respect to
the particle number in the system. Effects of inter-atomic Coulomb repulsion
on the gap are mainly examined for the one-dimensional d-p and the extended
Hubbard models. Details of the numerical methods and the systematic way of

data analyses are also reported.
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Chapter |

Introduction

§1.1 Historical Background of the Problems
Discussed in the Present Thesis

In the present thesis the author discusses the electronic states of low dimensional periodic
systems, focusing attention on the correlation effects. The author attacks the problems
by numerical studies of the model Hamiltonians for systems consisting of finite lattice
sites with the periodic boundary condition. The methods of the calculations are the
exact diagonalization of the Hamiltonian matrix by use of the Lanczos method and the
calculation of the Green function by the recursion method which are explained in detail
in chapter Il. The calculations carried out by the present author represent a frontier of
the researches along the line mentioned above, promoting them to a feasibility limit and
exploring new aspects of various problems. This section gives a brief discussion of the
historical backgrounds of the problems discussed in the present thesis.

The conduction property of transition metal oxides, such as CuO, NiO, CoO, etc.,
has been a focal point in solid state physics during the past several decades.[1,2] A tran-
sition metal atom in these materials is surrounded by several oxygen atoms, and has an
incomplete 3d shell. The network of these 3d orbitals via oxygen 2p orbitals makes a
valence band, and it can carry current, while some of these materials have finite charge
excitation gap and insulating at room temperature. The one-body theory has not been
successful very much for these insulators. It failed to explain finite charge excitation gap
in the middle of the valence band, since the 3d shell is open.[3,4] Thus, the insulating
nature of these materials has been a riddle for long years. In fact, a precise treatment of
the electron correlation, which comes from the strong intra-atomic Coulomb interaction
in 3d orbitals, is indispensable to analyze these materials.

Mott[1,5] first discussed a non-perturbative effect of Coulomb interaction in narrow
bands. He suggested that when the band width is sufficiently small, electrons and holes in

the valence band bind each other, and they do not carry any current at all; a finite charge
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Electron Correlation Effects in Low Dimensional Periodic Systems

excitation gap that originates the binding energy appears, and the system is insulating.

Hubbard[6] reformulated the Mott’'s scheme by using the Green function technique,[7]

which were originally introduced to explain ferromagnetism in 3d metals.[8-11] He consid-

ered the Coulomb repulsion U in Wannier functions that have 3d character, and its effect
on the valence band. He showed that the half-filled band is insulating if the repulsion

U exceeds the band width W. Today, the charge excitation gap in the highly correlated

single band at half-filling is called the ‘Mott-Hubbard gap’ after them.

Relevance of oxygen 2p orbitals to the gap was first pointed out by Zaanen, Sawatzky
and Allen.[12] .They have calculated the charge excitation gap of transition metal oxides
as a function of the intra-atomic Coulomb interaction U in the 3d orbitals and the energy
difference A between the 3d orbitals and oxygen 2p orbitals. They also calculated the
X-ray photo-elec'tron spectra of these materials through the analyses on MO, (M = Cu,
Ni, Co, etc.) cluster,[13] and compared the theoretical result with their experimental
results. They concluded that the charge excitation gap of the half-filled band is always
smaller than both U and A. They divided the (insulating) transition metal oxides into
two groups whether U or A is relevant to the gap: one is the traditional Mott-Hubbard
insulator when A > U, and the other is the so-called ‘charge transfer (type) insulator’
when U > A.

The discovery of the high-Tc superconductors cast new lights upon the transition
metal oxides. In 1986, Bednorz and Miiller[14] found out a kind of copper oxide —
BasLas_CuO4_y, — which shows the superconductivity at z = 0.15 below Tc = 38K.
Many related materials have been found in the following several years. Some of them
have the transition temperature higher than the boiling point of liquid nitrogen, such as
YBazCuz07-5 and BigSraCay Cugn Ogt2n.[15,16] These materials are different from the
transition metal oxides thus far known at least in the following three points:

(i) They show superconductivity.

(i) The valence band is two dimensional in atomic level. These materials have the two
dimensional structure, the so called ‘CuQ, plane’;[17] copper atoms make a square
lattice approximately and oxygen atoms are at the mid-points of Cu-Cu lines.(Fig.1)
The valence electrons itinerate among Cu-3d orbitals via oxygen-2p orbitals in the

plane.



l. Introduction

Fig. 1.1 Lattice structure of the high-Tc materials:
(a) Unit cell of the BasLa;_CuO4_y. (b) That of the YBay;Cu3zOr_s.
Both of them have the characteristic structure, so called the ‘CuQ, plane’.

(iii) They are non-stoichiometric compounds. The number of carriers (holes) in their
valence band is nothing to do with the number of Cu atoms on the plane. The
carrier density can be changed in a wide range.

The transition temperature Tc is very sensitive to their composition. Thus, they started

investigations on the electronic structure of the high-Tc materials and related transition

metal oxides for various electron densities.

A number of theories have been proposed to explain the high-temperature super-
conductivity. Anderson[18,19] regarded the CuO, plane as the two dimensional Hubbard
model and discussed the possibility of superconductivity away from half-filling. It was the
first attempt to attribute the attractive interaction between carriers to the Coulomb repul-
sion in narrow band. On the other hand, Emery[20] proposed a more primitive conduction
model comprized by Cu—3d and in plane O — 2p orbitals. The model is known as the ‘d-p

model’ today. He insisted that the excess carriers (holes) mainly exist in oxygen 2p orbitals
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and interact via local spin fluctuation on Cu site. The d-p model is now widely used as
a starting point of many other conduction models.[21] Zhang and Rice[22] have obtained
an effective Hamiltonian for CuQ, plane on the basis of the d-p model. They suggested
that the excess holes enter oxygen 2p orbitals to form local singlet with Cu spins, and
moves through the lattice in a similar way as holes in strongly correlated Hubbard model.
The present author in collaboration with Kikuchi and Kanamori proposed a model from a
different point of view.[23] They assumed that the carriers for superconducting current are
chiefly in apical oxygens, where the assumption was based on the experimental results by
Bianconi et al.,[24] and that the carriers form local triplet with Cu spins. The model was
not very successful, because sufficient attractive interaction was not obtained for moving
holes. Now dozens of similar effective Hamiltonians to that of Zhan and Rice have been
proposed. Most of these effective models have both the Heisenberg interaction between
local spins at the Cu-site and effective hopping of excess holes in single band.[21-23, 25]
They explain several experimental results, but no theories of the high-Tc super conductivity
have been established.

On the other hand, more direct investigations on CuQO2 plane have been performed
numerically by using the configuration interaction method; we can test the effective con-
duction models or restrict their extent by specifying orbitals in which the excess holes
are. For example, Eskes and Sawatzky[26] have analyzed the role of apical oxygens —
the off-plane oxygens — by using the Anderson impurity model, and showed that the
apical oxygen is not relevant to the conduction via CuO, plane for realistic situations.
The present author[27] in collaboration with Kanamori extends their consideration to a
periodic system. They calculated ground state wave functions of CusOy5 cluster, which
contains four CuOs clusters in it, and studied how the apical oxygens took their part in
periodic circumstance. They showed that the off-plane oxygen-p, orbitals worked as a
short cut between in-plane oxygen-p,(y) orbitals, and about one tenth of the excess holes
passed through the off-plane oxygens. They observe no ferromagnetic coupling between
the excess holes in apical oxygens and Cu spins. The result placed a restriction on the
effective Hamiltonians known so far; those which are based on the Hund rule coupling
in Cu-3d orbitals are denied.[23] Matsukawa and Fukuyama [28] have included the role
of off-plane oxygens — as the short cut — into the d-p model through a perturbative

consideration.



L _Introduction_

Electronic structure of the CuO; plane has also been studied in connection with core
and valence band photo emission (or absorption) spectroscopies. Balseiro, Avignon and
Gagliano[29] calculated the valence band XPS spectra of the d-p model by use of the
‘modified Lanczos method’ formulated by Gagliano and Balseiro[30], and discussed how
the spectra near Fermi energy changed with both electron and hole doping. Kuramoto and
Shmidt[31] calculated the angle resolved XPS and BIS spectra and indicated a narrowing
of valence band. They pointed out that the structure of the 2p band is not changed
so much by the intra-atomic Coulomb interaction in Cu-3d orbitals. The present author
extended their study to Cu-2p core level XPS and XAS spectra, and discussed a role of
periodicity of the d-p model.[32] It was the first attempt to calculate the core-level spectra
for a highly correlated periodic system. He showed that small multiple peak appeared
in the high-energy side of the main and the satellite peaks of core-level XPS spectra, in
consequence of valence hole relaxation. The main-peak-shift with hole doping was also
examined. Wagner, Hanke and Scalapino[33] calculated the optical conductivity of d-p
and Hubbard model, and discussed the presence of the Zhang-Rice singlet state. Recently
Eskes, Meinders and Sawatzky[34] have reported an anomalous transfer of spectral weight
in doped correlated system. Now the central debates on the spectro-scopies are that
whether there is a large Fermi surface in the valence band or not, and that what.is the
lowest excitation in charge degree of freedom. The study of one- and two-particle excitation
spectra of the d-p model is still in progress to answer these questions.

The electron correlation effect in transition metal compounds has been carried out
as we have reviewed above. The main problem comes from the competition between the
band energy and the short range Coulomb interaction in 3d; since the former is diagonal
in the momentum space and the latter is diagonal in the real space, we cannot treat them
exactly at the same time. Generally speaking, the correlation effect is important in low
dimensional systems. A number of solids, in addition to the transition metal compounds,
reflect the correlation effect. For example, quasi one-dimensional organic crystals, such as
tetracyanoquinodimethan(TCNQ)[35,36] and related materials, have a very narrow band,
thereby a weak Coulomb interaction greatly changes their conduction properties;[37] some
of them show the superconductivity. Beni and Pincus[38] assumed a modified Hubbard
model for TCNQ and discussed its thermodynamic properties by using a classical ap-

proximation. Their model is called the ‘extended Hubbard model’ today. Recently, many
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theoretical methods, that are obtained through the study of high-Tc materials, have been
applied to the one-dimensional extended Hubbard model.[39,40] Cannon, Scalettar and
Fradkin have studied the ground state phase diagram of the model.[41] They confirm the
presence of tricritical point. The present author have calculated the charge excitation gap
of the model at half-filling by the exact diagonalization of the model Hamiltonian for a
finite system.[42] Compared with the mean field theory, the calculated gap was consider-
ablly reduced by the electron itinerancy throughout the parameter space, especially near

the phase boundary.

§1.2 Scope of Each Chapter

The purpose of this thesis is to investigate non-perturbative effects of electron correlations
and itinerancy in the valence band of low dimensional systems, especially the High-Tc
compounds. We reproduce these systems into a computer, and calculate their ground
state wave functions to obtain physical observables, such as magnetic correlations, electron
densities, charge excitation gap, etc., under various circumstances. The periodic clusters,
that have several transition metal atoms in them, are employed. Since we duplicated
the system into a computer, we can impose any perturbations on each atom to get the
response of the system. In other word, all that we will see in the following are experiments
on the objects — the reproduction of real materials — in a computer.

Throughout in this thesis, we study periodic models written by a general Hamiltonian

H = Zeijc:{acja + Z Uijnicrnjo" ) (11)

i,jo <ii>
a,0!

where the first term contains both on-site energy and inter-site hopping amplitude of
valence holes or electrons; the coefficients ¢;; determines the dispersion of the valence
band. The second term represents on-site and inter-site Coulomb repulsions. Ratio of
these &;;'s and U;;'s determines the conduction and the magnetic properties of the system.
In the following, we directly diagonalize the Hamiltonian by use of the Lanczos method[43]

and study ground state properties and charge excitation gap of the periodic system.
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I Introduction_

We review the details of the numerical method in the next chapter, the method which
is used for the analyses in chapters III~VI. A specific procedure to represent the Hamil-
tonian of a finite size cluster is shown with several cording techniques for computation.
The algorithms of the Lanczos method and the recursion method are also shown.}

In chapter III, we investigate the electronic structure of the CuQO; plane with apex
oxygens by use of the CuyO,, cluster with the periodic boundary condition for two in-
plane directions. The cluster is the smallest replica among those taking account of the
electron transfer between CuQOj units with the translational invariance of the CuQO; plane.
We substitute realistic parameters into the Hamiltonian(eq.1.1) and calculate the ground
state wave function. The role of apex oxygens is chiefly examined. When extra holes are
introduced, they have amplitudes on all the atoms including the apex oxygens unlike the
case of the single CuOj cluster. The result agrees with the experimental result by Bianconi
et al.[24] that there is finite hole occupancy in the apical oxygens. No appreciable spin
correlation between the apex oxygen-p, orbital and Cu-d(z? — y2) is found, even though
there is a strong Hund rule coupling in Cu-3d. We also examine spin correlations between
other pairs of orbitals and spin and charge fluctuations of a CuOs cluster.

We then calculate one-hole excitation spectra of one- and two-dimensional d-p ;nodel
in chapter IV. The d-p Hamiltonian — a special case of the Hamiltohian ineq. 1.1 —is

written by creation and annihilation operators for both p and d orbitals in CuO, plane:

-»p= 6 prpw + €q Z jo ]a‘ - tpd Z (pjad]a' + dTapia)

<i,1>0
PP Z (ng-plo' +pla-pza' +U szszszlpzl
<tl>eo
+Ua ) diydyydyd; . (1.2)
J

The difference of on-site energies ¢, — €4 is the so called ‘charge transfer energy’,[12]
which is usually denoted as A. The nearest neighbor hopping between 2p and 3d orbitals,
and in between 2p orbitals are t,4 and t,,, respectively. The last two terms in the r. h. s
are interaction parts due to the on-site Coulomb repulsion in 2p orbitals (U,) and in 3d

orbitals.(Uz) We mainly investigate the realistic cases where Uy > U, > A ~ t,5 > tpp

'i' Those who are not interested in computation shall pass the second chapter.
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We calculate ground state wave functions for various hole densities, and obtain the Cu-
2p XPS, Cu-2p XAS, BIS and valence band XPS spectra by use of the modified Lanczos
method. Size dependence of the spectra including the valence band XPS and BIS as well is
examined by extending the calculation to linear clusters containing up to seven d-orbitals.
We chiefly study effects of the hole itinerancy as well as those of the hole correlation on
these spectra. It is shown that the Cu 2p XPS spectra consist generally of three groups of
peaks which are assigned to (gdlo_L), |gd9> and lgd1°L2> final states. The last one which
was not obtained by use of either a single Cu atom cluster or the impurity Anderson model
appears in between the first two in energy. The main peak corresponding to the |cd*°L)
state shifts with concentration of additional holes consistently with experimental data on
Y-Ba-Cu oxides.

In chapter V, the charge transfer gap of the one-dimensional d-p model is calculated
as a function of intra- and inter-atmic Coulomb repulsion and the charge transfer energy.
We evaluate the gap by use of a ‘two dimensional filter'* in particle number space. The
inter-atomic Coulomb repulsion enhances the charge transfer gap, but it cannot be the
origin of the gap; the gap is nearly zero when A = 0 even if there is finite inter-atomic
Coulomb repulsion. The strong intra-atomic Coulomb energy case is also discussed.

In chapter VI, we study the charge excitation gap of the one-dimensional extended

Hubbard model, whose Hamiltonian has the form

H=-t Z (c;ftocjd + c}acia) +U z 114y
P

<i,j>o
+V Y (mip +ma) (gt + ) — ) (nr + may)- (1.3)
<t,7> i

The first two terms in the right hand side represent the Hubbard Hamiltonian. The
third term is the Coulomb repulsion between neighboring sites. The chemical potential
p =2V +U/2 corresponds to the half-filled band. The charge excitation gap at half-filling
is obtained via the finite size scaling method. Compared with the Hartree-Fock solution,
the gap is reduced by the itinerancy of electrons throughout the U — V plane, especially
near the boundary of the Mott-Hubbard and the CDW phases.

In the last chapter, we summarize the conclusions on the electron correlation effect

in the periodic finite size systems.

* The definition of the filter is discussed in the Appendix.
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Chapter Il

Numerical Methods

§2.1 Introduction

A numerical téchnique is nothing but a step to get physical information from quantum or
classical systems, and is never our final object. A limited capacity of avaliable computers,
however, requires us to develop efficient methods of calculation without which we cannot
draw meaningful conclusions from numerical computation. Thus, in this chapter we review
and discuss the detail of each specific numerical method that is used in the following
chapters, and that has impruved features compared with methods known so far.

As was mentioned in Chapter I, we investigate finite size systems described by the

Hamiltonian

H=Y eijel,cjn+ > Uijnionjo, (2.1)
i,jo <i§> ’

a, 0!

which includes both the d-p and the Hubbard Hamiltonian. The €;;'s and U;;'s are of
the order of electron volt.(eV) We take the electron picture — the c}La and ¢;, represent
creation and annihilation operators of electrons, respectively — throughout this chapter
for convenience. We represent the Hamiltonian by a large scale Hermite or real-symmetric
matrix and diagonalize it numerically in order to get physical observables.

We first study a way of representing the Hamiltonian by a Hermite matrix: we count
electron configurations in a finite size system,(§2.2) and then calculate the matrix elements
of H in the configuration space.(§2.3) Sometimes the matrix is too large to diagonaize; in
the case we reduce the matrix size by use of a symmetry of the system.(§2.4) We next dis-
cuss how to diagonalize the Hamiltonian matrix, and how to obtain physical observables.
As far as our system is concerned, the matrix is much larger than that we can diagbnalize
by usual methods, such as the QR method or the House Holder method.[1] In §2.5, we
therefore introduce the Lanczos method[2] to diagonalize the large scale matrix, and to
obtain the low-lying eigenvalues including the ground state energy. Once we succeed in
obtaining the ground state energy and the corresponding wave function, we can calcu-

late any observables as we please. One particle excitation spectrum is also obtained by
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Electron Correlation Effects in Low Dimensional Periodic Systems

Fig. 2.1. Distribution of non-zero elements in the Hamiltonian. The matrix
element is finite only in the shaded region, since the Hamiltonian conserves
the particle number. Each shaded region is a yCpy * NCny by NCn1*xNChy
square matrix.

Haydock's recursion formula,[3] which is an extension of the Lanczos method.(§2.6) We
briefly discuss applicability of the numerical method in the last section.(§2.7)

The following numerical methods prove their real worth when we perform the com-
putations on super computers. We should design the structure of variables in programs
so that the parallel computation will be smoothly performed in actual computations; the

variable structures are briefly discussed at the end of each section.

§2.2 Basis Set in Real Space

When there are N atomic orbitals in a system, the Hamiltonian in eq. 2.1 is 4N by 4N
Hermite matrix, because four electron configurations 0,7, ] and 7| are possible for each
orbital. One does not, however, have to diagonalize such a large matrix directly, since the
Hamiltonian conserves the number of up- and down-spin electrons, N; and N|, respec-
tively; the Hamiltonian is represented by a direct product of smaller matrices.(Fig. 2.1)
One may as well diagonalize each sub-matrix. (Shaded squares in Fig. 2.1) The dimen-
sion of each sub-matrix is yCnt % yCi|, since there are yCy, configurations for spin-o
electrons. From now on, we confine ourselves to discuss a subspace specified by N; and

N,.
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Let us use v7 (¢ = 1,2,..., NCn,) to denote electron configurations in the sub-
space, and I'? to the set of these configurations {~{,...,77,...}. The set of all electron

configurations " in the subspace is thus given by

r=riern! :{'le'yll,...,'yiT'y]l-,...}. (2.2)

1

We align these electron configurations -, fy} € I" in order of the integer

(ij)EZ'*NCNl—}-j, (2.3)

since this order is convenient to the numerical calculation. We define each real-space basis

state that has the configuration 7;17;, as

|’YiT’le> = CN1CN 115+ €17 ENIEN-1 ) ---7511|0>
= 1)), (2:4)

where the operator &,, is cl,, if there is a spin-o electron at n-site in the configuration

no
Yi17v;1. and is 1 (=identity operator) otherwise. All of these I’YiT’le>’5 span the Hilbert
space of the sub-space.

In the computation, each configuration v/ is represented by a binary number

N 8
GAMMA(i,0) = ¥ 277 (y7 el e, |47), (2.5)
j=1

and is stored into an integer valued array-variable.{ It is well known that another integer
array that is closely related to the GAMMA as

INVERS(1,0) = { ©» If JGAMMA(i, 0) = 1 (0<1<2V 1) (2.6)
’ 0, otherwise, -7

is worth storing for two reasons.[4,5]
(i) We can judge whether a certain binary number & represents a configuration in ', or
not; if INVERS(b, ) # 0, then there is a configuration that satisfies b = GAMMA(z, o).
(il) When ¢ = INVERS(b, o) # 0, the array gives the position of ¥7 in the set I'?,
These integer variables, GAMMA and INVERS, are frequently referenced at every step in the

following computations.

t Names written in CAPITAL TYPE FACED CHARACTERS always denote
variables for actual FORTRAN programs which were coded by the author.
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Fig. 2.2. Distribution of
NoN-Zero elements 1in i
NCN;

the Hamiltonian matrlx 5
H ] =[] 4[] ¢ NCNfXNCN;

The matrix element is ﬁmte
only in the shaded regions
and on the dotted %\ ::

positions.

§2.3 Non-Zero Elements in the Hamiltonian Matrix

Having obtained the basis set {ly}ﬁ) lfy, 7]> .}, we calculate the matrix ele-
ment

Hejan = (gl H ), (2.7)

where (ij) and (ki) are the integers defined by eq. 2.3. If we write down the matrix elements

explicitly, we will find out that the matrix is sparse and non-zero elements appear regularly.

(Fig. 2.2) The diagonal part of the Hamiltonian matrix [H(,-j)(k,)] * comes from the on-site
energy and the Coulomb energy:

Diijyan = (473 |Dlviat) = 6£65(vv; D]l ;). (2.8)
D = Z EiiNie + Z Uijn,-,,nja/ . (2.9)
i,0 <i,j,>
The block diagonal parts are kinetic energies of down-spin electrons:
k
Tsiyany = vy [Tkt ) = 65 (T4 ), (2.10)
T = Zaii(c:‘ficji + c}icu)- (2.11)
i#]
The off diagonal parts are kinetic energies of up-spin electrons:
T — [T T AT — gL/ TP T
T = v | T k) = 6 [T, (2.12)
TT =) eijlclest + cfrei).- (2.13)
1]

* A square bracket | | denotes a matrix.
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1. Numerical Methods

Thus, the Hamiltonian matrix [H] is the sum of [D], [TT] = [71] ® I! and [T] =
I'® [Tl}, where I is the identity operator for spin-o electrons and [7-1-"'-] is the tiny
matrix [<7{’IT”|7}’>] The {H(ij)(kl)] is a real-symmetric matrix if all ¢;;'s are real;
otherwise, it is a Hermite matrix.

In actual computation, we store the diagonal elements Dijyij) into a real valued
array DIAG(M = (17)). The tiny matrices, [”’5’] = [(7{"T”|fy;’>] in eq. 2.9 and 2.12, are

also sparse; we should store only non-zero elements in [Tf’~] and their positions. Three

array variables are employed:

FTAU(L,0) = <7z‘.’]T"’|~/§’)
ITAU(I,0) = ¢ (2.14)
JTAU(I,0) = j . (<)),

where the index I runs from 1 to the total number of non-zero elements in the upper
triangular part of [7‘:;] We can quickly find out the non-zero elements by using the
variable INVERS(1,0). For example, the value <'y]?'|c;'0cma|fy;7> is finite ( = +1 ) only
when j is equal to INVERS(XOR(2'~! + 2™~ GAMMA(4,0)),0') # 0, where XOR represents

the ‘exclusive-or’ between two binary numbers.
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k=0 Fia
e k=271/N @g.

N > s

< k=2m(N-1)/N e

Fig. 2.3. Block diagonalization of the Hamiltonian by use of rotational (or
translational) invariance of one-dimensional systems. The dimension of each
sub-matrx is about yCnp * NCn| / N.

§2.4 Reduction of Matrix Size by Use of a Symmetry'

The dimension of the matrix [H(,-j)(kl)] grows very rapidly with the system size N. For
example, when (N, Ny, N|) is (14,7,7), the matrix size is (14C7)? = 11,778, 624; com-
putation for such a large matrix requires considerable memories. If our computer does not
have enough memory to treat such a large matrix, we have to reduce the matrix size by
using some symmetries of the system. In this section, we discuss a method of the matrix-
size-reduction for one-dimensional systems. The rotational symmetry is most efficient for
any one-dimensional system with periodic boundary condition; one can block diagonalize
the matrix [H(,-j)(k,)] according to the total momentum k.[5,6](Fig. 2.3) In fact, it is
worth using the rotational symmetry even if one has enough memory, because we can
follow the dispersion relation of elementary excitations, such as the spin wave excitation, ‘
by use of the symmetry.

Let’s modify the formula in §2.2 and §2.3 in order to reduce the matrix size. First
we count the number of independent electron configurations again,(§2.4.1) and create
ortho-normal basis vectors.(§2.4.2) We then store minimum information to reproduce the
matrix elements, (§2.4.3) and transform the Hamiltonian matrix into a real-symmetric
one.(§2.4.4) The formalism shown in the following sub-sections is also applicable for other

symmetries of the system, with a slight modification.(§2.4.5)

t Those who have enough storage region in their computer might as well skip this

section.
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RZ
—>

Fig. 2.4. Equivalent electron configurations; two electron configurations are
equivalent if one is obtained by rotating another.

§2.4.1 Reduction of thé Electron Configurations

Suppose there is a N-site one-dimensional system with periodic boundary condition — a
N-site ring which is invariant under lattice rotation. We first introduce an equivalence
relation between electron configurations on the lattice in order to reduce the number of
bases: the 77 and the 47 are equivalent if we can transform the former into the I;icter by

the lattice rotation

¥ ~5, 3n v = R"7, (2.15)

where R represents the rotation of the system by a lattice constant.(Fig. 2.4) We can

naturally extend the relation to the elements in I:
3 —
b~ In alat = Rr(rlah) = (RPADE). (2.16)

By using this relation, we specify the smallest subset ', C I'” which satisfies the

condition

N-1
I7 =Y ®R'T%, (R:qf €7 — Ry{ € TY), (2.17)
n=0

and also introduce a subset 'y C T" in the same manner,

N-1
r'= Z R"Tg, (?R : 7}7}- er— (Ry})(R’y}) € I‘) . (2.18)

n=0
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The 'g contains all of the electron configurations that are necessary to represent the bases
that have a momentum k.(See §2.4.2.) One might infer that T'r is the same as I’% @I,

since T is represented by

i
Ngh
< pandd

8
——

—

:U—)

D
INVE
AN

=

3

H

:_Ui—
N———
N—

=Yg (1“}c ® Fl) : (2.19)

but it is not always true. Actually T'r is a subset of I‘IR ®T!; a few 7}'5 in I‘% satisfy the

relation ,),iT ~ R"'yiT for non-zero n < N, thereby some of the elements in I‘}z & Tl satisfy
= R*(v]R™™y}) ~ 4k 2.20
vy (vi B7™5) ~ %% (2.20)

where 'y] R” + belongs to T'l. Thus we obtain I'g by projecting out such redundant
elements from 'L, @ T'L.

In the actual computation, we store the configurations %-T € I‘% and fy} € I'! instead
of 'yz 'yJ €T'r. We prolect out the redundant bases in F ®T! to get I'r when we create

the basis vector in the next subsection.

§2.4.2 Representation of the Basis states

The total momentum k(= 2ir/N, 0 <[ < N —1) of the systerh is a well-defined quantity.
We create an ortho-normal basis set for the subspace specified by k. A basis state that

have the momentum % is given by

N-—
|’y 7Jl,k E-\/—_Z ”‘llRl('yz'yJ Z ’“|Rl >|Rl7}>, (2.21)
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where 'yz 7] is (3j) = (¢ * NCny + 7)'th element in I‘ @ T'l. Most of the bases given by

eq. 2.21 are already normalized, but there are some exceptions. The norm of each base is

wrlvki k) = (vl kvl k)

N-1
1 .
= LS bkt R ) (R R
I,m=0
N-1
n=0

and is not always unity. Now, we introduce several notations for convenience:

s(v7in) = (Y7|R™7) = (R |7¢) = 0, %1, (2.23)
N-1

g( 77 ) =D _{s(rfim)) (2.24)
n=0

c¢?(4;n) =, (2.25)

where j in the r.h.s. of eq. 2.25 is the integer which satisfies R™y7 = v7. The fyiT's and
the 'yil’s here belong to the sets I‘% and T, respectively. The g(v7) is either unity or a
measure of N. If g(77) is unity then s(y7;n) is the same as §%. The norm w(f)/z 'y] s k) is
then written by s(v7;n) as

N-1 ‘
wirivdik) = e™Fs(v]in)s(v)im), (2.26)

n=0

and is unity as far as g(v]) or g(fy}) is unity. Let us introduce one more notation for the

normalization constant:

0 , lfw('y*y],k)—O
, : 2.27
n(y] 73 k)= { {w(~] fy],k)} /2 otherwise. (2.27)

The normalized basis state that has momentum £ is then expressed as
vk k) = n(vlag )|l v)s b (2.28)

The normalization constant n(*y}*y};k) automatically projects out a base in eq. 2.21
whose norm is zero. Remember that we have to project out some more bases, since we

use 73’)/} € FT @ T'! instead of 72 ny € ’'r. When g(’yiT € I‘}z) is not unity, the 7}7} is
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the same as Rm(ygvj) for integers m and [ that satisfy s(y];m) # 0 and [ = ¢}(J; m),
respectively; the state lfygfyll; k> is proportional to ,71 7],k> To avoid the duplication of
bases, we must choose one out of these redundant bases. The rest of the redundant bases
are rejected by changing the normalization factor n(’yffy,l; k) into zero. Thus, one might
as well store the configurations v/ € TI'L, 7] € T, the factors s(77), g(77), c?(3;n),
n(fyl fy],k) and the complex numbers {1,ei*, % .. V=1 in order to represent the

orth-normalized basis set.

§2.4.3 Matrix Elements

We calculate matrix elements H(”)(lm) = 72 7] ; kI(H D+TT+ Tl)|7l Vi k)N
follows. Since the on-site term D does not change the electron configuration, the matrix

elements for D appear only in the diagonal part, as eq. 2.8:

D{iiyimy = <7z’7w’“|D|71’7 k)
= n(’y't ’Y] ) k) 51 z 7_7 ) le,7 ’Y‘yl) k (229)

Since the expectation value of D for the un-normalized base ]’yl V5 k>

N-1
(YIaki k| Dlyiabi b) = = Z e HmE (R (R | D|R™] )| R™4})
lm=0

N-1
- Z ei"ks('yiT; n)s(’y}; ")<7zT |D|7z 7J>

= w(v Il )Y DA, (2.30)

the diagonal part Dgcij)(lm) is the same as the D(;;)(im) in eq. 2.8:

NIk kDA k) = (v 1D (2.31)

Expressions of the off-diagonal elements are rather complicated. The expectation

value of 77 for the un-normalized state is

. 1 M=o
Pkt = 2 3 e

p,q=0
N~

Z mk ’Yz

n=0

7L

(g k

71| R L)t R, (232)
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where each factor can be further factorized by the known variables as

(| TH R ) Z(%

DR

= <7z' 7k><7k|Rn7£>
= (y]| T ys(vlim) (2.33)
and
<7Jl'|Rn7ll> = 521(1;7,)](([; n) (2.34)

The new factor f(l;n) = +1 is the sign which comes from the ordering of Fermion
operators. The matrix elements T(”)(lm) = N(fyl 7],k|TT|fyl s > are then obtained
by multiplying the normalization constant n(y] 'y] ; k)n(fyl vl k) to <7z 7] ; lc|TT "yl v k).
The g(’yiT) is unity and 3(7};71) is the same as 62 for most of the 7i 's. Therefore there
are only a few non-zero elements for n # 0 in eq. 2.33. The matrix elements for T4 is

given as we have done for Tt

N-1
(vl k[T v k) = D e (] | RP ] ) (v | TH R ) (2.35)
n=0
where
(v|1R™M]) = 8{s(v];m), (2.36)

(FITHR M) = (T s iy 2 (5 )- (2.37)

All that we have to store in order to express the matrix is thus the diagonal elements
D(;jyij). the sign f(I;n) and the tiny matrix [7]] = [<7;’|T"‘7J" ] in addition to the
factors s(v7), g(77), ¢?(2;n) and n('yl 'y] ; k). Most of these quantities should be stored
into integer arrays to save the memory space. If one has enough memory, one would

better directly store the off-diagonal elements <7§’IT"|R”7§-’> instead of dividing it into

three factors <7f|T"|fy,”> f(7;n) and ¢(j : n) so that the computation speeds up.
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k=0
k=271/N

Fig. 2.5. Map of non-zero elements

in [H(kij)( lm)]. The dimension of sub-

spaces for £k = 0 and 7 is about a half
of those of other subspaces.

§2.4.4 Real-Symmetric Representation of the Hamiltonian

The matrix [H(kz.j)(lm)] is Hermite, and is real-symmetric only if £ = 0 or w. Since a
real-symmetric matrix is more preferable in numerical calculation than a Hermite one, we

transform [H(kij)(,m)] into a real symmetric matrix. Let us introduce new basis states

b} = 2= (lndafsk) + ok =)
N—
= \/— Z cos(kl)‘Rl("yz v; )> ' (2.38)
I'Yz '7]7 >(—) = _\/}"— <| zT’Y > |71 7]’ k>)

N-—
\/‘ Z .sm(kl)]l:il(q/z )8 (2.39)

so that the Hamiltonian matrix always be real-symmetric. The bases l'yz 7],k>(+)
|71 7J,k>( ) are defined in the regions 0 < k < 7 and 2r/N < k < (N — 2)7/N,
respectively.

If we represent H by use of the new basis set, the size of each block diagonal matrix
becomes twice as large as that of the [H(kij)(lm)] for each k, except for k = 0 and 7, since
the ('*')(7 7],k|H|fyl 7l k>( ) is not always zero.(Fig. 2.5) Most of the procedures to
calculate matrix elements through eq. 2.21 ~ eq. 2.37 are of use; we might as well avoid

repeating here the lengthy calculation.
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§2.4.5 Reduction by Other Symmetries

We have reduced the size of the Hamiltonian matrix by a factor of N by use of the
rotational invariance of N-site ring. The reduction is, however, not sufficient if one tries
the calculations on large IV systems, such as the Hubbard model at half-filling for N > 14.
One inevitably use other symmetries in addition to the rotational symmetry in order to
further reduce the matrix size.[5,6]

Most of the technique shown above are of use to other symmetries, such as inversion,
mirror, charge conjugation, etc., with slight modification. Usually, not all of the symmetries
are independent, and therefore one should make a group table and clarify the relation
between the elements in each group. The most dangerous step where one would easily
make a mistake is the step to find out the reduced set I'g in eq. 2.18. A combination
of several symmetries unexpectedly makes two configurations be equivalent. One should

carefully make I'p before creating basis set and calculating the matrix elements.

§2.5 Lanczos Method

Today the maximum size of the matrix which we can diagonalize by usual direct methods
— the Householder method or the QR method[1] — is of the order of 10%, since
modern super computers have a few giga-bytes of main memories at most. However, the
matrix [Hijykr] or [H(ki].)(,m)] immediately exceeds the limit with increasing N. For
example, the size of the [H(ij)(kl)] is 63504 for 10-site Hubbard model at Half-filling. We
have to adopt other diagonalization method. Remember that the parameters ¢;; and Uj;
in the Hamiltonian (eq. 2.1) are of the order of €V, and that we are studying properties of
the system at low- or at most room-temperature; only the low-lying eigenvalues of H are
necessary for our study. The Lanczos niethod[Q] is appropriate for such a requirement.

The Lanczos method is a diagonalization algorithm for a large scale real-symmetric
matrix; we can obtain the first several lowest (and highest) eigenvalues of a matrix up to
107 dimension. The method has one more advantage: if the matrix is sparse, one can get
the largest and the smallest eigenvalues fairly faster than other diagonalizaton methods.

Now let us review the algorithm of the Lanczos method and its property.
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§2.5.1 Algorithm of the Lanczos Method

Suppose there is a M by M real-symmetric matrix A whose eigenvalues and ortho-
normalized eigenvectors are A1 < Xy < ... < Ay and Vy,Va, ..., Vs respectively. Any

M dimensional real vector q can be written by a linear combination of V,’s,

M
Q=Y a,V,. (2.40)
p=1

If we multiply 4 to an arbitrary vector q for number of times, the vector A™q/|A™q| will
approach a certain eigenvector of 4; it is the power method, so called.[1] The method is
not realistic in two points: (a) One can get only one eigenvalue A, whose absolute value is
the largest, and the eigenvector which corresponds to A,. (b) If there are some eigenvalues
that are very close to )\, the convergence of the series {q, Aq/|Aq|, A%q/|A%q], ...} will
be worse.

We can overcome these two problems by representing the matrix A in the sub-space
spanned by the vectors {q, Aq,..., A™q}, where m << N. Let {q;,95,..,4,} be
an ortho-normal set obtained through the Gram-Schimidt orthogonalization on
{q,Aq,...,A™q}. An eigenvector V, that corresponds to a large eigenvalue ), would
be well approximated by a linear combination of q;,q,,..., and q,,. Conversely, several

eigenvalues of the m by m matrix B defined by
Bij = (a; Aq;) = (Aq;, q;) = Bii o (241)

are good approximation of those of A. If X is a such eigenvalue of B and

a =!(a',d?,...,a™) is an eigenvector of B that corresponds to A, then a vector
m
R = Z a'q, (2.42)
=1

will be a good approximation of an eigenvector of A.
The Lanczos Method performs the re-orthogonalization of the vectors
{q, Aq, ..., A™q} by using a kind of conjugate gradient (CG) method.[1] The ortho-

normal set {q;,qs, .., q,, } is obtained by the recursive operations, the so called ‘Lanczos
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step’:

Q= 9
819, = Aq; — (a1, 4qy)q,
B2ds = Ady — (dz, Adz)az — (q15 Adz)ay
B34 = Ads — (a3, Ads)q3 — (A2, Ad3)q2

ﬂmqm-i-l = Aqm - (qma Aqm)qm - (qm—-h Aqm)qm—l . (243)

At every step, a new normalized vector q; is obtained by orthogonalizing Aq;_; to the
previous two vectors q;_; and q;_,. The inner product (q;, Aq;) is conventionally written
as a;. The B;'s are normalization constants so that |q,| is unity. In fact, q, is already
orthogonal to all of its previous vectors qy,q,,...,q;_;, where the orthogonality among

q)'s is justified through the relation[2,3]

Bi=(q;,Aq;_,) = (a1, 4qp)- (2-44)

Thus, the matrix B = [(q;, Aq;)] in eq. 2.41 is tridiagonal as far as we use the q;'s

obtained through the Lanczos step, and the matrix is written by «a;'s and ;s

Far Br 0 e e e 0
,31 £ 52 0 ;
0 B2 a3 B3 O :
B = : 0 B . - : . (2.45)
o .. 0
: o ame1 Bm-1
_0 “ee PPN e 0 ﬂm_l Xm J

Since B is tridiagonal, we can quickly diagonalize it by the bi-section method.[1] It is
known that when m is sufficiently large, (= several hundreds) the largest and the smallest
eigenvalues of B are the same as those of A within the numerical accuracy.

An eigenvector of the matrix A is also obtained approximately by substituting elements
of an eigenvector of B into eq. 2.41. The vector R is called ‘the Lanczos vector’. Since the

vector R is not always a good approximation of a true eigenvector of A, we would better
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apply the inverse iteration method [1] combined with the conjugate gradient

(CG) method[1] to the Lanczos vector R in order to reduce the numerical error.

§2.5.2 Computation in the Lanczos Step

The Lanczos method is practical in deed when the Lanczos step is performed by using the
smallest storage region. We study here a specific way for the Lanczos step, the way which
use only main-memory of a computer. |

Consider a virtual processor that has three vector registers, V1, V, and V5 say, where

their vector length is M. We use the boxes| V3 | V, | V; | to denote these

registers. We can work out the computation in eq. 2.43 by storing vectors into the register

as follows:

# Procedure Register After the Proc. Comment/Kind of Proc.

Vs Vs Vi

(i)  Choose |q1| =1 I | [ @ | Initialization

(i) p:=Aq | [ Pr | @1 | Multiplication
(i) @1 =q1-p1 | [ p1 | @ | Inner Product
(iv) rp= bl —a1qy Lra | 1 | | Orthogonalization
(v) Bi=yr1irg [ra [ P | @ | Inner Product
(vi) qa2=r1/5 (92 [ p1 | a1 | Normalization
(vii)  p3=A4q: [ a2 | p5 | a1 | Multiplication
(vii)  p2=p3-Hfia1 [ 92 | P2 | a1 | Orthogonalization
(ix) Move gz to V3 l | P2 | @2 | Copy

(x)  Go to (iii) L[ P2 | a2 | Repeat ii)~(ix)

t We do not use any file space here. If we use the space, we can treat a huge scale
matrix, but the computation requires much time to access the file space through very slow

{/O interface.
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Every time we pass through the steps (iii)—(ix) we obtain a set of coefficients (a;, 8;). We
then diagonalize the tri-diagonal matrix B every five or ten Lanczos steps until the lowest

eigenvalue or the second lowest eigenvalue converges.{

The registers LV3 | Vo | V, | are realized as a real-valued array

VECTOR(0:M-1, 0:2) in actual programs. One would better declare them as 64-bit float-
ing number to get a fast convergence of the lowest eigenvalue; you should use 32-bit
floating number only when you don’t have enough memory space to store the array.

In conclusion, the Lanczos method is appropriate for a large scale sparse matrix
because of these two convenient properties:

(a) The matrix A is not changed at all during the computation. All one have to do about
A at each Lanczos step is to multiply A to a unit vector q;. Thus, one can pass
through the Lanczos step without possessing all of the elements in A; one might as
well have only non-zero elements.

(b) We have to store only three vectors, in addition to the non-zero elements in 4 in
order to perform the Lanczos method, since one can get the new basis vector ¢; from

the previous two vectors.

§2.5.3 Application to the Lattice Fermion System

The application of the Lanczos method to our system is straightforward, since we
have already obtained the non-zero matrix elements Hiyrn (or H(ki].)(,m)). We prepare

an arbitrary state vector

lfm'tial> = Zq(ij)"y}’yb (2.46)
(i5) »
as the trial vector q; in eq. 2.43, where the q(iz)'s satisfy the condition
S {gap) =1. (2.47)
(i5)
We store the coefficients somewhere — memory spaces or file spaces, for they are of use

when we create the Lanczos vector. We then repeat the Lanczos step by successively

T Sometimes one encounters a trouble, where the lowest eigenvalue of B falls down on
and on, and never converges. In that case, there is a bug in his program, especially in the

steps (i) and (ii). If A was not real-symmetric by a mistake, one would face the trouble.
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multiplying the Hamiltonian matrix into a unit vector q; in order to get the tri-diagonal
matrix B. The lowest eigenvalue of B becomes a good approximation of the ground state
energy Ey for H after about one-hundred steps. The matrix multiplication is performed
in four steps as far as the [H(ij)(k,)] is concerned; we multyply [H] = [D] + [T'1] + [T]
to an unit vector q = *(¢(11), ..., ¢(i5), ---) to obtain p:

1) Set p;jy =0 for all 7 and j.

2) Multiply [D] to q as p(ijy = Dijqeij)-

3) Multiply [T1] = [t ® I! to q as P(ij) = Pij) + Tiqu(kj).

4) Multiply [TY] = IT®[r!] to q as P(ij) = PGj) + T}kq“k).
The matrix multiplication procedure for [H(ki]-)(kl)] is complicated a little bit, since we
have to multiply the normalization constant n(yz-T'y}; k) to q(i;) after the step 2) and to
p(ijy after 4).

How about the ground state wave function? It is represented by the Lanczos vector R
in eq. 2.42. It seems that one have to store all the q;'s into memory in order to obtain R.
It is, however, not true. We can create q;'s at any time as far as we have only q; all that
we have to store in order to get R are q; and an eigenvector a that satisfies Ba = \ja.
.The right hand side of eq. 2.42 is calculated successively by performing the Lanczos step
again from the beginning. The procedure here is called ‘the two pass method'[7] since we
perform the Lanczos method twice. One would better integrate q;’s with the weight a;
after the step (iii) shown in the prevous subsection, because the vector Vg is empty there
and we can use it as a work space.
Once we obtain the ground state wave function ,g), we can evaluate any observables

of the form

Olg) | (2.48)

(0)= (g

as we please. If O is diagonal in configuration space, we can calculate the r.h.s. as the

diagonal part [D] in thé Hamiltonian matrix [H]. If O consists of a linear combination of

Olg) or {glel,c;,|g) as we did for T7. The

the bond-order c}acja, we can calculate (g

integer variable INVERS defined by eq. 2.6 is greatly of use in the computation of <O> for

any 0.
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§2.5.4 Lanczos Method as a Perturbation Expansion

The Lanczos method is usually nothing but a numerical technique for a large scale sparse
matrix. A special choice of the initial vector |0> = ]Im'tial> (or q1) for the Lanczos step,
however, gives a physical character to the method as a perturbation expansion which is
closely related with the cummulant expansion; the a;’s and the ;'s in the tri-diagonal
matrix in eq. 2.45 give [-th order cummulant for the kinetic energy and the Coulomb
interaction as follows.

Remember that our Hamiltonian is consists of two parts
H=Hy+YV, (2.49)

where Hy and V are one-body energies and Coulomb interactions, respectively. If we
adopt a ground state of H as the initial state |O> then the «y Is the energy expectation

value

ay = (Ho+ V), = (0|(Ho + V)|0) = Eg +(V),, (2.50)

where the <V>0 is the first order energy correction in stationary perturbation theory. (The
angular bracket < >0 denotes the expectation value with respect to |0>) The first Lanczos

step gives a new state |1 > defined by

Bil1) = (V = (V),)]0), (2.51)

where the normalization constant 3 is

Br= (), — (V)2 (2.52)

that is the fluctuation of V' in the initial state. The ay is the energy expectation for the

new state |1> which is written by

a2 = (1[H[1) = Z 0]V = (V)) (o + V) (V = (V),)]0)

_ VBV + (V) = 2V) () - BV (V)

<V2>0 - <V>§

and is the third order cummulant in energy. In the same manner, we will get higher order

cummulant successively as a;'s and 3;'s. After m Lanczos steps, we get a m by m tri-

diagonal matrix M,,. The lowest eigenvalue of M, monotonously decreases with m and
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is always the upper limit of the true ground state energy of H. For example, the matrix

form=2Is

o By
e [2 2] .

and its lowest eigenvalue is { a3 + oy — v/(a; — azz).2 + 452 }/2, that is always smaller
than a;, the eigenvalue of M; = [a;]. Thus, if only we calculate the expectation values
<V>0, <V2>0, ‘<H0V>0, <VH0V>0, etc., by numerical or analytical technique, we can
obtain the upper limit of the true ground state energy Ey. The Lanczos vector R in
eq. 2.42 is, in reality, the corresponding variational-wave function. Thus, the Lanczos
method is a variational, and also a perturbative, method which is based on the cummulant
expansion.

The division of the Hamiltonian in eq. 2.49, is essential to the variational interpretation
of the Lanczos method. For example, if we chose the Hartree-Fock Hamiltonian as the
Hy, then the o is the HF energy; the following ag's and f§;'s gives a systematic correction
to the HF energy. If we would choose the true ground state |1/)> as the initial vector, then
aq is the true ground state energy Ey and all of the following «;'s and f;'s are zero. This
means that a good choice of the initial state |0> (or q1) leads the result a; >> a; or
Bi ~ 0 for a small [. By using this property, we would be able to look for a good analytical
expression of the variational wave function U, by substituting several trial wave functions

into |0>

-30 -



!l. Numerical Methods

§2.6 Recursion Method

We can obtain all of the ‘static’ properties of the finite size systems via eq. 2.48, while we
cannot get the ‘dynamical’ character of them directly since we don’t have all of the excited
states. For example, intensities of photo-electron excitation spectra, inverse photo-electron

excitation spectra and optical conductivity are expressed by

I(w) = Y |(f|A|9)|"6(w — Ef + Eo)
f

' 1 ~ 1 .
= —=1 Al——— A
s m<gl w—H+ By

g>, (2.55)

where A represents a perturbation on the ground state, and the |f>s are excited states.
If A is c}‘a or ¢is, the I(w) gives the density of states for occupied or un-occupied band,
respectively. Gagliano and Balseiro[8] have shown that such a I(w) can be given by a
generalization of the Lanczos method, that originates from the Heydock’s recursion
formula.[3] (There is not a definite name of their method; it is occasionally called the
Lanczos method, the modified Lanczos method,} the continued fraction method, or the
recursion method.)

The algorithm of the recursion method is essentially the same as that of the Lanczos

method. Suppose the (normalized) perturbed state is expressed by a linear combination

Ag)

Tl
—— = i) (2.56)
V{g|AT4lg) G !

We take the state as the initial vector q; of the Lanczos method,* and repeat the Lanczos

of the real-space bases

step (eq. 2.42) to get the tri-diagonal matrix B.(eq. 2.44) The (relative) spectral intensity

is then given by a continued fraction written by a;'s and ;'s
1

I(w+i€) = —Im (2.57)

B ’
B3

w + 1€ — oz —

w+1e—a; —

w+ite— ag —

Bs

T It would not be better to use the name ‘modified Lanczos method’ since it also stands
for some other modifications of the Lanczos method. |n this article we refer to the method

as the ‘recursion method’, for the name is widely known
* One sometimes forgets to normalize the initial vector A[g). Such a mistake is too

trivial to find out, so one should code a program for the recursion method very carefully.
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where the small imaginary term e gives a finite width to each peak. The total spectral
weight is given by <g,/i*filg> in eq. 2.56. We don't have to calculate the r.h.s. exactly;
a cut off via putting B,, = 0 at m ~ 100 for modest ¢ does not affect I(w) at all. Thus,
we can obtain excitation spectrum of a finite size system without calculating the factor
<f|fl‘g> explicitly. It should be noted that the recursion method is also efficient for a

small sparse matrix; it gives I(w) much faster than usual diagonalization methods.

$2.6.1 Choice of the Operator A

A choice of the operator A in eq. 2.49 is essential in actual applications of the recursion
method. If we intend to analyze the I(w), which is obtained experimentally, via the nu-
merical study on the finite size systems, the choice of Ais unique; we should use A that
represents the true excitation process in each experiment.[9] If we use the recursion method
just in order to analyze the many body wave function ¥(211¢,..., 2N, 1; 211, ..., N, |) Ob-
tained by the Lanczos method, the choice is arbitrary. In the latter case, we have to find
out A that draws physical information from ¥. We discuss here about examples of A
which are bi-linear or bi-quadratic in Fermion operators.

We first see two basic examples. The total spectral weight [ I(w)dw = <glflffllg>
for A = C;y OF A= Cro represent the occupation number in real-space <nia> or that in
momentum-space (nk(,> respectively. Both of them are special cases of A’s which are
bi-linear in c,:

A=) dici Dol =1 (2.58)

The spectral weight <ATA> gives the occupation number of the one-body state ¢. When
there is no interaction between electrons or holes, the many-body wave function ¥ is just

the Slater determinant

W( 211y ey TmiT1Ly-eey Tn)

e1(z11) 0 em(zay) [ fea(zy) oo pn(z1y)
= ; : : ; ,  (2.59)

o1@m) o m@m) || o1(Ea) o Palzay)

and the <.[UA> has its maximum value (= unity) if the coefficient ¢; is the same as

the ¢, (z = 1), i.e., the wave function of an occupied state. If finite Coulomb repuision
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is present, the U is not the Slater determinant any more. Nevertheless, the so called
‘one-body theory’, such as Hartree-Fock approximation and many other band theories,
assumes that quasi one-particle levels are still present. /f such a one-body level is present,

the <fﬁfi> that corresponds to the one-particle level should be nearly equal to unity,

1
E-H

and there is only one dominant peak in I(E) = <\IIMJr /i]\Il> Conversely, we can
find out such one-body states by finding out the operator A (or the set of coefficients
{qbi, P2, ...s Giy ...} ) which satisfies <fl“fl> ~ 1 and gives the single peak structure to I(w).
We can also find out empty levels in the same way, by exchanging the order of AT and
A. Generally speaking, one-body wave functions (¢:) obtained by the Hartree-Fock (HF)
approximation are good candidates of ¢; in eq. 2.58, while the one-body level position
specified by the recursion method does not agree with that of the HF results.

Let us see typical candidates for {¢;} for the d-p model, as an example. A present
debate on the model is the character of one-particle levels near the Fermi energy, so far as
we believe the presence of the Fermi surface. We can obtain the (most probable) occupied

level, that has the momentum k,* by adjusting a parameter 0 < § < 27 so that.the

expectation value
<ATA> = (¥|(cosh dza + sind pza)(h. c)|¥) (2.60)

be maximum.{ If-there is the so called ‘Zhang-Rice singlet state’, the 6 should be nearly
equal to 7/2 at the Fermi-surface. A preliminaly calculation of the spectral intensity I(w)
for 8 = 0 and 7 will be discussed in chapter V. It will be shown there that free-Fermionic
levels are still present even when there is a strong intra-atomic Coulomb interaction.
" Another debate on the d-p model is the locality of the valence holes. They frequently

calculate (angle integrated) valence band photo-emission spectra of high-Tc materials by

* The lattice momentum depends on the definition of the d-p model; the k is different

from the lattice momentum for the usual band theory.
T In actual calculation, we would better use operators d;:i: dT_,C and pz ipt_k instead

of d}; and p;'c so that all of the numerical calculations shall be done without using any

complex number.
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use of a local CuOp=45,6 cluster, assuming that the valence holes are localized to the

cluster. If the holes are truly localized, the expectation value

<ATA> = <\I’|(0039 d;ro + sin@\/iﬁ Zp;o,)(h. c)|\Il> (2.61)

should be of the order of unity for a certain 8, where 5 points the ligand sites around the
i-site, and n is the coordination number of ligands.
We can also find out a local two-particle state as we have done for one-body states.

Consider an operator B defined by
BYd®) = a|d®) + B|d°L) +~|d"°L?), (2.62).

where the r.h.s. is the well-known local two-body state that have been studied by Sawatzky
et. al.[10] We can specify the most realistic two-body state by finding out the operator
B which gives the largest <\IIIBTE’|\IJ> If there would be a local Zhang-Rice singlet, the
operator B of the form

B

= \/ii(dnf} —di fr)

1
= —S s, 2.63
f \/E;p (2.63)

should be selected through the search of the maximum <B:’]§z> that gives a single peak
structure to I(w). Note that we can also catch a moving singlet state by use of the
Foulier component By, = ——\/17 S, €% B;. The extension of the above formula to a local
M-body state is straightforward. However, number of adjustable parameters as 6, o, 3,

and « increases very rapidly with M; the upper limit of M shall be three or four.
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§2.7 Discussion

We have studied the way of numerical calculation in diagonalization study for finite size
lattice Fermion system. Once we had made up a program for the system described by the
Hamiltonian, (eq. 2.1) we can apply the program to various electron conduction models
by changing ¢;;'s and U;’s. All that we have to do in the following is to analyze the
ground state wave function of the system. Specific methods for each observables shall be
explained in the following chapters.

Those who try the diagonalization study should always pay their attention to the
ability of their computers. Generally speaking, applications of the Lanczos method are
limited by its memory requirement. In the following studies, all of the large-scale numerical
calculations are performed by the NEC SX-2N super-computer which have 224M-byte main
memory and a file space of the same order with rather slow |/O. The author code programs
and perform trial calculations on NEC ACOS-52020 main frame computer which provides
128M-byte real memory.f Now both of these processors are not the largest and the fastest
machine any more. We shall expand applicability of the diagonalization method in solid
state physics by use of new super computers, such as $X-3, VP2500 and the ‘Connection
Machine’ CM-2[9]

The numerical methods shown above are applicable to a system which contains more
complicated interaction than that in eq. 2.1. For example, we can handle the Kondo
interaction, the off-diagonal intra-atomic Coulomb interaction, spin-orbit interaction, etc.,
within our framework. (A special intra-atomic Coulomb interaction in Cu-3d is treated
in the next chapter.) The methods are also applicable to quantum spin systems. The
most general program package for the system has been coded by Nishimori.[4] Kaburagi,
Tonegawa and the present author modified Nishimori's program in order to study S = 1

spin chain, and also improved its speed.[10]}

t All of the programs for the diagonalization study are stored into ACOS in Computation
Center, Osaka University, with read permission; one can use it any time as he pleases, as

long as he keeps the GNU spirit.
T Now both Nishimori's and Kaburagi's programs for spin systems are opened to the

public.[4,10]
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Chapter |11
Electronic Structure of CuO; Pyramidal Plane

— Role of Apical Oxygens —

§3.1 Introduction

The p-type oxide high-T. superconductors so far known possess the CuQOg planes on
which each Cu atom is surrounded pyramidally by four in-plane oxygen atoms and an
extra one at the apex site; in the case of the prototypé of them, Ba-La-Cu-O system, they
are surrounded octahedrally. The TI-Ba-Ca-Cu-O and Bi-Sr-Ca-Cu-O systems possess
another kind of the CuQO; planes with Cu atoms surrounded only by four in-plane oxygen
atoms without the apex ones. Since T, as a function of the number of the latter kind of
the CuQ, planes decreases after passing a maximum, we may assume that the pyramidal
planes are primarily responsible for the superconductivity.

The electronic structure of the pyramidal plane has been investigated using the im-
purity Anderson model or a CuQjy cluster model.[1,2] The XPS and XAS experimental
data have been analyzed also by use of these models.[3,4] Similar calculations have been
done also in the case of n-type superconductors.[5] In these models, where the number
of holes in the system is fixed, the charge fluctuation arising from the itinerancy of holes
is not fully taken into account. If the holes in the system are not localized to a single
CuOs cluster, representations of the point group of each CuOs cluster cease to be ‘good
quantum numbers’. For example, the sharp ground state transition of the cluster model
from the 1A; state to the 3B state with decreasing the Madelung energy of the apex
oxygens shall not take place under periodic circumstance.

The author reports in this chapter a calculation of the ground electronic state of a
model of the CuQOj3 pyramidal plane. The model is consists of four CuOs pyramids sharing
the in-plane oxygens. We substitute a realistic parameter set into our Hamiltonian,(eq.1.1)
and calculate ground states of the system with and whithout extra holes. In the next section
(§3.2) we give details of our model. In §3.3 we discuss the hole distribution. Section 3.4
deals with the spin and number correlations among various pairs of the orbitals. In §3.5

conclusions are summarized.
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Fig. 3.1. A CuyO;2 cluster used in the calculation. Large and small spheres
denote Cu and oxygen atoms respectively. Periodic boundary conditions are
imposed for both directions in the a-b plane.

Fig. 3.2. The atomic orbitals in the CuyO;5 cluster. We treat only the oxygen
p orbitals that are ¢ bonded to the Cu dy orbitals.
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§3.2 Model of the Pyramidal Plane

In this chapter we have employed a CusO; cluster, which may contain 4 or 6 holes,
to study the effect of the intercluster itinerancy on the ground state.(Fig. 3.1) Although
this is the smallest cluster allowing the itinerancy with the translational invariance of
the CuQ, plane, there are still too many atomic orbitals to calculate the ground state
wave function with an exact treatment of the Coulomb interaction between holes. We
confine ourselves, therefore, to twenty atomic orbitals shown in Fig. 3.2, that is, eight
Cu dv orbitals, eight p, orbitals of in-plane oxygen atoms and four p, orbitals of apex
oxygen atoms. We take into account the electron (hole) transfer among Cu dy and
oxygen p orbitals in the LCAO scheme,[6] assuming the same transfer parameters as in
Fujimori’s sing‘le cluster calculation, in-plane (ppoc) = 0.5e¢V, (pdo) = —1.35eV, and
(pdm) R_3‘5, (ppm) o< R™? with 1.23 for the ratio between the off-plane and in-
plane Cu-O distances.[2] Coulomb and exchange interactions between Cu d(z? — y?) and
d(32% — r?) orbitals are treated exactly; J = 5.3eV and K = 0.8eV are assumed. The
Coulomb self-energy of the bxygen p orbitals U, and that of Cu d orbitals Uy are taken
to be 3.0eV and 6.0eV, respectively. There are two remaining parameters A,, and A,
which are the charge transfer energies defined by the difference of the one-hole energies
between the in-plane or apex oxygen p orbitals and the Cu dv orbitals. The value of Ay,
is not well established yet.[7,8] Thus we vary it from 0.5eV to 2.5eV. Since no conspicuous
change of the ground state is observed in this parameter range, we report here only the
calculations for A,, = 1.5eV and 2.5eV. The parameter A, is varied within the range
0.0eV < A,, < A,,. Since the Hamiltonian conserves the total spin of the system, we

investigate the ground state with zero total 5.
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Fig. 3.3. The hole occupancy of each orbital in the CusOq, cluster vs. A,,
when A,, = 1.5eV. (a) The case of 4 holes. (b) The case of 6 holes.

§3.3 The Hole Occupancy

Figure 3.3a plots the hole occupancy of each orbital as a function of A,, when there are
4 holes in the CuyO;; cluster; the charge transfer energy A, is taken to be 1.5eV. The
average hole density of the whole system, a hole per a Cu atom, corresponds to the high-
Tc compounds without doping. The holes are mainly in oxygen p, and Cu d(z? ~ y?)
orbitals. The hole occupancy is not sensitive to Ay, since (n,. ), the hole occupancy of
the apex oxygen, remains small. We present in Fig. 3.3b the result for the case of 6 holes
in the cluster with A,, = 1.5eV, where the average hole density corresponds to 50% doped
high-Tc compounds. The occupancies <npz> and <nd(3,z_r2)> are more than 6/4 times
as large as those of the 4 hole case.(Fig. 3.3b) This behavior of the hole occupancy seems
to reflect the effect of the intra-atomic Coulomb energy of p, and d(z? — y?) orbitals.
We plot the difference between the hole occupancies shown in Figs. 3.3a and 3.3b
against A, in Fig. 3.4a, regarding the difference as the additional hole occupancies in

the system with 6 holes. About 60% of the additional holes enter the oxygen p orbitals
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throughout the parameter range whereas the additional hole occupancy in p, orbital de-
creases with A,,. (Note that p, orbitals are twice as many as p, orbitals. The sum
of additional hole occupancies in p, orbitals is always greater than that of p, orbitals.)

Figure 3.4(b) shows the additional hole occupancies with A,, = 2.5¢V. The effect of
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Fig. 3.5. The hole occupancies in the single CuOs cluster when A,, = 1.5eV.
The symmetry of the ground state wave function changes from 'A; to By
at Ap, = —0.5eV.

A, on the additional hole occupancy in p, orbitals appears more clearly than in the case
of Fig. 3.4(a), but no qualitative change is apparent.

We also calculate the ground state of a CuOj cluster with 2 holes for comparison
with the CuyOy5 cluster.(Fig. 3.5) Although Cu de orbitals are neglected, the behaviof of
the hole occupancy and the total spin of the cluster agree with those obtained by Fujimori
who treats all Cu d orbitals.[2] The ground state changes from the A1 state to the *B;
one at A,, = —0.5¢V and the hole occupancies are discontinuous there. This transition
is due to the geometry or the point group symmetry of the CuQOj cluster; the ground state
changes continuously in our CusO12 model. As will be shown in Table lil.l, however, no
indication of the appearance of the 3B; is found in the present calculation of the CusO12

cluster even with A,, = —0.5¢V.
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Fig. 3.6. A bird’s-eye view
of figure 1 and an example
of the hole distribution. In
the examples, each atom
occupied by a hole is
shaded; Therefore the a, b
and ¢ CuOjs sub-cluster
contains 2, 1 and

1 holes, respectively.

§3.4 Hole Number and Spin of a CuOj cluster in the Cu;0;; Cluster

We can take the CuyO;, cluster for a superposition of four CuOsy clusters as far as
the atomic arrangement of the cluster is concerned. (Fig. 3.6) It is not easy, however, to
pinpoint the difference of the electronic states between the CuyO;2 cluster and the CuOs;
one. Thus we focus our attention on a CuQOs unit in the CuysOq4 cluster which we call
‘a CuOs sub-cluster’ to avoid a confusion with the isolated CuOs cluster assumed in the
previous calculations. Then we calculate several quantities pertaining to the sub-cluster
with the ground state wave function of the Cuy,Oq5 cluster.

We obtain the spin expectation value <S2> = <(Zl Si)2> of a CuOs sub-cluster
where S; is a spin operator on site ,(fine dotted line in Fig. 3.7) and probabilities P(n,m)
of finding n holes in the same cluster with total spin m where 0 < n < 3and 0 < m < n/2.
When there are 4 holes in the CuyOy4 cluster and A,, = 1.5eV, the spin expectation
value <S 2) is approximately equal to 3/4 which is the value if the hole number in the CuOj;
sub-cluster is strictly kept to be one. However, the probability of finding a hole in the
cluster, P(1,1/2) is less than 1/2.(thin solid line in Fig. 3.7a) This apparent discrepancy

is due to the fact that the states of two holes in the sub-cluster appear easily since an
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Fig. 3.7. The expectation value of the total spin of a sub-cluster, <S 2> and
the probability of finding n holes in the cluster with total spin m, P(n,m).
(a) The 4 hole case. (b) The 6 hole case.

in-plane oxygen is shared by two CuOj clusters.(see the cluster a in Fig. 3.6) When there

are two holes in the sub-cluster, the probability P(2,0) is greater than the probability

P(2,1), reflecting the singlet correlation between the Cu and in-plane oxygen atoms, and

the super-exchange interaction between neighboring Cu atoms. Note that the appearance

of the triplet state is an effect of the intercluster transfer which is not taken into account

in the treatment assuming an isolated CuOj cluster.

Figure 3.7b shows the total spin (Sz> and the probability P(n,m) for the case of

6 holes in the CuyO1, cluster. The increase of the total spin (S2) and the probability

P(2,1) with decreasing A,, might look a precursor to the change of the total spin of the

ordinary CuOs cluster from the 1 A; to the 3B;. The increasing rate of these quantities is,

however, rather small compared with that of the additional hole occupancy in p, orbitals,
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Table IILI.

The spin correlations among Cu and oxygen atoms when A, = 1.5eV. Scy is
the total spin of a Cu atom defined by Sg, = Sa(3z2—r2)+Sd(z2—y2); nCu 1s the
total number of holes of a Cu atom defined by ngy = ng(3:2-r2) + Na(e2—y2)-
The expectation value <Scu . Scu/> is a spin correlation function between
nearest neighboring Cu atoms.

CuOs Cluster (2 holes) Cug 012 Cluster (6 holes)
A, -1.0eV (®B;) | 0.5eV (*A,;) | -0.5¢V | 0.0eV 0.5eV
<SCu ’ SCu
0.713 0.594 0.629 0.632 0.633
(nc.)
(Scu 8.) 0.013 -0.148 -0.080 | -0.086 | -0.001
(nca)
<SC“ : SPZ>
e 0.1693 0.0000 -0.011 | -0.0080 | -0.0055
{nc.)
<S°<—ns§c——> — _ -0.095 | -0.098 | -0.100
Cu,

indicating that the holes in the latter orbitals are not necessarily associated with the 3B,
state of the CuOs cluster. |

We calculate the spin correlations to check whether the probability P(2,1) represents
the appeafance of the local 3B, state or not.(Table Ill.I) Since the hole occupancy in p,
orbitals is equal to zero in the 'A; state of a single CuOj cluster calculation,(see Fig. 3.5)
the hole in p, otbital in that calculation is associated with the 3B, in which it has inevitably
a strong ferromagnetic coupling with the Cu spin just below. In our calculation, however,
the value of (Scy - Sp:)/(ncu) which represents the spin correlation between a p. orbital
and a Cu atom just below is small and negative even with A,, = —0.5eV where the
ordinary CuOj cluster changes its ground state symmetry. The behavior of this spin
correlation means that the finite hole occupancy in p, orbital is not associated with the
local 3By state. Thus a finite value of the probability P(2,1) arises from the holes in
in-plane oxygens.

From thev facts described above, we conclude that the ground state wave function of

the ordinary CuQOj is too severely restricted by the point group symmetry of the cluster.
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§3.5 Conclusion

We have studied the CuyO;2 cluster and compared it with the ordinary CuOs cluster to
investigate the effect of the intercluster hole transfer. We conclude from the analysis of
the hole distribution and spin correlations that the pyramidal plane cannot be treated as
an assembly of independent CuOj clusters even when we discuss the electronic structure
of a single unit of them. Since the intercluster hole transfer generates off-diagonal matrix
elements between different representations of the point groups at neighboring CuOs clus-
ters, we have to include excited states if we represent the ground state wave function of the
pyramidal plane by use of the wave functions of the single CuOs cluster. In consequence
the ground state changes gradually with the parameter A, .

The additional holes due to doping are not in a definite orbital but distributed in
all orbitals rather evenly; two thirds of them enter the oxygen atoms. We may treat the
pyramidal plane as a concentrated Kondo system,[10,11] but there are some points to be
noticed:

(i) A part of the holes enter the p, orbital of the apex oxygen, where practically no
magnetic coupling with the Cu atoms appears.
(i) The Coulomb repulsion energy between the additional holes is not the bare intra-

atomic Coulomb energy of the oxygen p orbital, because there are some holes in p

orbitals even in the undoped system.

We will discuss in the next chapter the XAS and XPS spectra on the basis of the
present analysis of the ground state of the pyramidal plane. It will be interesting to
see whether the intercluster transfer together with many body effects will modify the
conclusions so far drawn from the analyses based on single CuOsg) cluster or impurity
Anderson models. Actually, the intercluster transfer can give rise to a new feature in the
XAS and XPS spectra.
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Chapter IV
Effect of Hole Itinerancy on XAS and
XPS Spectra of the High-T. Compounds

§4.1 Introduction

Since the discovery of the high-T. superconductors, many X-ray emission and absorp-
tion spectroscopy measurements on these compounds and related metal oxides have been
performed[1,2] to investigate the electronic structure of the CuQO; plane. The XPS and
XAS spectra of stoichiometric compounds which are insulating differ from those of non-
stoiciometric ones which are metallic;[3] this phenomenon indicates that the presence of
valence holes affects the spectra. It is obvious that we need to take into account the
correlation among holes and their itinerancy in order to discuss such an effect.

In the last chapter we investigated the ground state wave function of the CuyO1,
cluster with periodic boundary condition which is one of the smallest replicas of the CuO,
pyramidal plane. We found that the ground state of this periodic cluster is different: from
that of a single Cu atom cluster (CuQOs3) in many respects.[4] For example, the ground
state wave function of the periodic cluster is not governed by the local point symmetry
group of the configuration of oxygen atoms around a Cu atom, because the symmetry
of the ground state wave function is violated by the inter-copper hole transfer through
in-plane oxygen atoms.

Thus it is necessary for investigating the effects of the hole correlation and itiner-
ancy to carry out calculations for extended clusters containing more-than-one Cu atoms.
Such calculations for the valence band XPS and BIS spectra have been made so far by
two groups. Bélseiro, Avignon and Gagliano[5] calculated the valence band XPS spectra
of a CuyOg cluster by use of the modified Lanczos method proposed by Gagliano and
Balseiro[6] with the result that the stoichiometric system with one hole per Cu atom is
the charge transfer insulator. They also calculated the spectra of hole or electron doped
systems to discuss the difference of the spectra near the Fermi energy. On the other hand,

Kuramoto and Schmidt[7] calculated the angle resolved XPS and BIS spectra of the same
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stoichiometric and electron or hole doped CuyQOg clusters, using also the modified Lanc-
zos method; compared with the result of the tight binding band calculation, their result
indicated a narrowing of the band width and the appearance of new peaks on the high
energy side both due to the correlation.

In this chz;pter we extend the calculation by the modified Lanczos method to the Cu
2p core level XPS and XAS spectra which have been discussed so far by use of the impurity
Anderson model[8] or single Cu cluster CuO,(n = 5,6)[9] models. The following clusters
are assumed: two clusters in which Cu atoms are arrayed two dimensionally, CuyOg with
periodic boundary condition and CusQO;4 with open boundary condition, one-dimensional
linear clusters with open ends Cu, Oy with n ranging up to 7 and two linear chains with
the periodic boundary condition, CuyO4 and CugQOg. The valence band XPS and BIS
spectra of the one-dimensional clusters are also calculated to check the dependence on
size and geometry.

In the next section (§4.2) the method of calculating the XAS and XPS spectra is
explained. In §4.3,84.4 and §4.5 the results are presented for the Cu 2p XPS, Cu 2p XAS

and valence band XPS spectra, respectively. In §4.6 conclusions are summarized.
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Fig. 4.1 Atomic orbitals and related parameters: (a) Configuration of atomic
orbitals. (b) One hole energy levels. The parameters A and U,y are the
charge transfer energy and the Coulomb energy between a core and a valence
hole, respectively.

§4.2 Method of Calculation on XAS and XPS Spectra

We adopt the d-p model[10] as the model for the CuO, plane in order to treat the
hole itinerancy. The Hamiltonian of the d-p model written in the creation, annihilation

and number operators of holes is given by

Hd—p =t Z (C;Ucdo‘ + CLGCPO‘) - t’ Z c;)acp’a'

<pd>o <pp'>o
+AZnPU+UPZn1’TnPl+UdzndTndl’ (41)
po P d

where the indices p (or p') and d are labels of oxygen po orbitals and Cu d(z? — y?)
orbitals, respectively. The first two terms of the right hand side of eq. 4.1 are valence
band energies of holes, where ¢ and ¢’ are the hole transfer energy between Cu and oxygen
atoms and that between oxygen atoms, respectively.(Fig. 4.1a) The charge transfer energy

A is the one hole energy difference between Cu and oxygen atoms

A=¢gp—eq. (4.2)
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The one hole energy ¢4 is taken to be zero, i.e., A is the same as €,. (See Fig. 4.1b.)
The last two terms are the intra-atomic Coulomb energies between valence holes in Cu
and O atoms, respectively, with U, and U, are representing the Coulomb integrals.

When we calculate the core level XPS or XAS spectra of the Cu atom, we have to
add the core hole energy and the Coulomb energy between a core hole and the valence
holes

H = e + Ucqneng (43)

to the Hamiltonian Hy_p, where the operators n, = n¢; + ney and ng = ngy + nqy are
core and valence hole number operators of the photo-excited Cu atom, respectively. We
neglect the spin orbit interaction for the core orbital and the orbital dependence of the
Coulomb energy U4, because our aim is not to analyze these effects on the spectra but to
discuss the effect of hole itinerancy and correlation on them. The number of basis states
of the system is considerably reduced by this simplification.

The spectral intensity I(w) of the Cu 2p XPS is expressed by use of the total Hamil-
tonian H = Hy_, + H' as

1 t

I(LU) = —%Im<g‘ccw—:T-+—E—gcclg> ) i (44)

where c] is a core hole creation operator and w is the binding energy. If an imaginary part
I' = Im(w) is introduced in the denominator, then a convolution with the Lorenzian whose
half width is T' is obtained. The initial state |g> is the ground state of the Hamiltonian
H with no core hole; it is, therefore, also the ground state of Hy_, where the ground
state energy is E,. If we replace the operator c! by c,c! or c;'l(p) Of Cy(p)r then we obtain
Cu 2p XAS or valence band XPS or BIS spectra, respectively. (Note that the physical
interpretation of I(w) and w depends on the type of spectroscopy.) In every case, the
inter-atomic transfers t and t' enable valence holes to escape from the photo-excited site
so as to cause an energy relaxation, which results in a change in the spectrum I(w).

We calculate the XPS and XAS spectra by use of relatively large Cu,Oy, clusters
(Fig. 4.2a) with periodic or free boundary condition. The system size has to be larger
than the relaxation range of the valence holes. In order to examine the size dependence of
the results, we employ one-dimensional Cu,Oy4; chains or Cu, O, rings (Fig. 4.2b) for

which the calculation is feasible for larger linear dimension than for the two-dimensional
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Fig. 4.2 The employed clus- A
ters: ol
(a) The two-dimensional
clusters. The CuQO4 and
Cus0;¢ clusters have open
boundary, and the periodic
boundary condition is 1m- 3

posed on the Cus0y¢ clus- ©0-0-0O

ter. r7
(b) The one-dimensional

clusters. For linear chains,
the central Cu atom or the 1 ]_
nearest neighboring oxygen
atoms to this Cu atom are

excited in the calculation of 1 5
the XPS and XAS spectra
to reduce the boundary ef-

fect. . O — Ou O — O

clusters. In the following we label the clusters by the total number of the atoms in them,
for example, the CuyOg cluster is called the ‘12-site system’. We obtain the initial state
|g) by use of the Lanczos method[11] and calculate the spectral intensity I(w) by use
of the modified Lanczos method proposed by Gagliano and Balseiro[5]; the algorithm
of this method is the same as that of the well known recursion method[12]. For small
clusters, we also calculate the spectrum by the exact diagonalizaton of the Hamiltonian
H = Hy_, + H' to identify the final states. The convergence of the modified Lanczos

method is checked also by this calculation.
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Fig. 4.3. The Cu 2p XPS spec-
tra of the one-dimensional sys- M
tems when there is one valence 3 S\
hole per Cu atom. For the 3- Binding Energy
site system (CuQ,), the two-hole S E—
case is also shown by the fine line. 15 10 G, 5 0

§4.3 Cu 2p XPS Spectra

Figure 4.3 shows Cu 2p core level XPS spectra of the one-dimensional clusters with
the parameters Uy = 6.0eV, U, = 3.0eV, Uq = Ug/0.7 = 8.6eV, t = 1.5¢V, and
A = 1.0eV[9,13] for the stoichiometric case where one hole per Cu atom is assumed.
For the one-dimensional systems, the direct transfer between oxygen atoms ¢' is taken to
be zero. The spectrum with two holes in it for the CuQ; cluster is also shown by the
fine line. Since the core hole energy ¢, is irrelevant to the shape of the spectra, only the
relative binding energy defined by Re(w) — €. is shown on the horizontal axis. We set
the parameter T' for 0.16eV; the value is selected to secure a rapid convergence in the
modified Lanczos method.

The spectrum of the CuQ; cluster with a valence hole has simple two peak struc-
ture. The main peak and the satellite one correspond to the final states whose electron
configurations are represented mainly by [cd*°L) and |cd®), respectively. The interval be-
tween these peaks, 9eV is roughly given by the sum of the Coulomb and transfer energies
U.q+ c-2t, where the constant c is of the order of unity. Note that the state ]gd9> giving
rise to the satellite peak corresponds to the bound state of two holes in which the transfer

contributes to an increase of its energy. The peak interval of the CuO; cluster is smaller
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Fig. 4.4. The Cu 2p XPS spectra
of the 8-site system. The vertical
lines denote the spectrum I(w)
obtained by the exact diagonal-
1zation of the final state Hamil-
tonian. The radii of open and
meshed circles represent the oxy-
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than those of the larger clusters, since this contribution of the transfer is reduced by the
smallness of the cluster size.

The main and satellite peaks of the spectra of the larger clusters show multiple
peak structures on their high energy sides, which indicate the variety of the valence hole
configurations in the final states. In other words, there are various ways of the valence
hole relaxation in the final states. We note also the appearance of a group of small peaks
within the range 8¢V to 9eV in between the main peak and the satellite one. In order
to make a quantitative check of the validity of the assignment of the main and satellite
peaks to the lgd”@) and |gd9> final states for larger clusters than CuO; and also to
elucidate the origin of the new peak, we calculated the final state wave functions of the 8
site linear cluster by the exact diagonalization of the Hamiltonian H = Hy_, + H'. The
computational difficulty forces us to édopt this size of the cluster in this analysis. In spite
of the smallness of the size, the XPS spectrum of the 8-site system which is shown in
Fig. 4.4 is similar to those of the 11-, 12- and 15-site systems shown in Fig. 4.3, showing
the three group structure. Figure 4.4 shows the XPS spectra as well as the hole distribution

in the final state of principal peaks, where the radii of open and meshed circles denote the
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Fig. 4.5. The Cu 2p XPS spectra A X=0 !
of 11-site system with 5,6, and 7 — '
holes, where the additional hole Bl?dlng Ener%gy
densities are X = 0, 0.2 and 0.4, — e —
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hole densities of O and Cu atoms, respectively. The final states which are between 0 and
5¢V have the |¢d!®L) character. The hole distributions in them are quite similar to each
other. The calculation shows clearly also that the satellite peaks on the left correspond to
the Igd9> final state.

The hole distribution in the final states of the new peak in between the main peak
and the satellite one is quite interesting, since the hole density of the oxygen atoms which
are at the nearest neighboring sites of the excited Cu atom is the largest. The distribution
indicates that the final state may be represented by the Igdlo_L2> configuration, though
there are no extra holes in the system. The hole itinerancy gives rise to the |d1°L2>
configuration in the initial state which amounts to 0.082. The relative intensity of the
|_c_d1°L2> peak is somewhat smaller than this ratio. [t may arise from the fact that the
differences in the hole configuration of the ligand states comprised by L? between [gd1°L2>
and |d1°L_2> states give rise to a reduction of the overlap integral.

In Fig. 4.5 we show a calculation which demonstrates the dependence on the con-
centration of additional holes. It gives the XPS spectra of the 11 site system containing
five Cu atoms with 5, 6, and 7 holes which correspond to the additional hole density X =

0, 0.2 and 0.4, respectively. The location of the main peak shifts towards higher binding
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energy with increasing X in agreement with the experimental data obtained by Flavell and
Egdell.[3] Though it is difficult to make a quantitative comparison, the calculated shifts
are of the same order of magnitude as the observed ones. This peak shift which we obtain
for other clusters as well can be ascribed to an increase of the band energy cost required
to exclude the valence holes from the excited Cu atom. Note also that the intensity of the
|gd1°L2> peak increases with the density X. Since the presence of the additional holes
enhances the component of the ld1°L2> configuration in the initial state, the increase of
the peak intensity can be expected.

Figure 4.6 shows the XPS spectra of the two-dimensional clusters when there is one
hole per Cu atom. The parameters are the same as those of the one-dimensional clusters
except that the additional parameter ¢’ is taken to be 0.5¢V.[9,13] The spectra are similar
to those of the one-dimensional systems as a whole, but the structure of the spectra is
rather simple. This difference may be due to smaller sizes of the two-dimensional clusters
in linear dimension compared with those of the linear clusters. We note also that the
intensity of the lgdlo_lf> peak is very weak and hard to see in this figure, though it is

present.
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Fig. 4.7. The Cu 2p XAS spectra when there is a valence hole per Cu atom.
For the CuO, and CuQy clusters, the two-hole case is also shown by the fine
line. When an odd number of valence holes are present in the initial state,
the calculation assumes that a hole of majority spin state is annihilated in
the final state. (a) One-dimensional cases. (b) Two-dimensional cases.

§4.4 Cu 2p XAS Spectra

Let us glance over the process of Cu 2p XAS before analyzing the calculated spectra. A
valence hple is annihilated by the excitation of a Cu 2p core electron. Then the valence
hole configuration will be changed so as to relax this sudden change. The XAS spectrum
should reflect this many body effect. The photon energy of a peak represents the difference
between the final state energy and one hole energy of the annihilated hole. We cannot
predict the direction of the peak shiff with the concentration of the additional holes without
detailed calculation, because both the final state energy and the energy of the valence hole
in the initial state increase generally with additional holes to result in a partial cancellation.

Figure 4.7a shows Cu 2p XAS spectra of the one-dimensional clusters when there
is one hole per Cu atom. For the CuO; cluster, the two hole case is also shown by a
fine line. The parameters are the same as those of the XPS case. The tail of the main

peak has a multiple peak structure, which looks like that of the XPS spectra. Existence
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of the multiple peak structure is a common feature of the core level spectra of these large
clusters. Experimentally, this structure is observed in several Cu oxides as a smooth tail
of the peak on high energy side.[14] In the present calculation on the Cu 2p XAS spectra,
the ‘gd9> and |gd1°L2> peaks are not obtained. Figure 4.7b is the spectra of the two-
dimensional CuQy4, CusO12 and CusOi4 clusters when there is one hole per Cu atom.
Compared with the cases of large linear clusters the number of peaks composing the tall
part is small because of the smallness of the cluster in linear dimension.

The XAS spectra of one-dimensional systems with additional holes are also calculated.
The direction of the peak shift, however, depends on the size of the clusters and the number
of the valence holes. This uncertainty indicates the necessity of calculations with larger

clusters.
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Fig. 4.8. One hole energy levels of 11- and 12-site system when there is no
Coulomb interaction. If there is a hole per Cu atom, the 11-site cluster have
open shell structure,(b) while the 12-site cluster have the closed one.(a)

§4.5 Valence Band XPS and BIS Spectra

The valence band X-ray photo-emission spectroscopy (valence band XPS) and the
Bremsstrahlung isochromat spectroscopies (BIS) directly yield the DOS of empty and
filled bands in the hole picture.[7] As was mentioned in §4.1, the valence band XPS of the
CuyO;2 cluster has been investigated by Balseiro, Avignon and Gagliano[5] and Kuramoto
and Schmidt.[7] Since the linear dimension of the cluster adopted in their calculation is
rather small, we calculated the spectra of one-dimensional systems with more than 7 atoms
(Fig. 4.2b) to investigate the size dependence of the spectra. Here we present results for
7-, 8-, 11-, 12- and 15-site cases. The same values of the parameters ¢t ,U, and Uy as
before, t = 1.5eV, U, = 3.0eV and U; = 6.0eV are assumed here, as far as we do not
refer the values explicitly. We take a slightly large charge transfer energy, A = 1.5eV
compared with the value used in previous sections in order to observe the charge transfer

gap clearly.
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Note that the degeneracy of the initial state depends on both the cluster size and
the hole number in the clusters. Figure 4.8 shows the one-particle energy level of 11- and
12-site clusters when there is no Coulomb repulsion. If there is a hole per Cu atom, the
11-site cluster has open shell structure, while the 12-site cluster the closed one. Such a
finite size effect is always present as far as we adopt the finite size systems even when there
is finite Coulomb interaction and therefore we have to pay attention to the size effect.

Figure 4.9 shows BIS and valence band XPS spectra of the systemé when there is one
hole per Cu atom. The thick and fine lines on the left hand side are the valence band XPS
spectra by a copper and oxygen hole creation, respectively. The right hand side shows the
BIS spectra by a Cu hole removal. The separation between the Fermi edges of the XPS
and BIS spectra is of the order of the charge transfer energy A, which indicates that these
systems may be classified as the charge transfer insulator.

It is not clear that what part of the spectra in Fig. 4.9 represents the electron corre-
lation effect that comes from the intra-atomic Coulomb repulsion. We therefore observe
the spectra by gradually imposing the Coulomb interaction. Fig. 4.10 shows the spectra of
11- and 12-site systems when there is a hole per Cu atom (a, b) and when there are two
additional holes.(c) The relation U, = Uy/2 is always assumed. It should be noted that

the spectra are not modified so much within the range 5eV > Ej > —2eV except for the
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neighborhood of the Fermi surface; the one-body energy levels are still present even when

there is the strong Coulomb interaction. Outside the region, the correlation effect appears

chiefly as the growth of a peak with the Coulomb interaction, where the peak corresponds
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Fig. 4.11. Angle resolved XPS and BIS spectra of the 12-site system with 6
holes. We here take the Fermi-energy as a reference of the relative binding
energy. The relative binding energy is shown on the vertical axis. The
spectra above/below the horizontal line denote the XPS/BIS spectra, where
the right/left-hand side of each vertical line corresponds to the d/p hole
removal or additional cases.

to a local two-hole bound state. If there are additional holes, the charge excitation gép is
not present any more.(Fig. 4.10c)

If we analyze the spectra more carefully, we will find the correlation effect within the
range 5eV > Ey > —2eV. Figure 4.11 shows the angle resolved XPS and BIS spectra[7]
of the 12-site system with 6 holes when Uy = 2U, = 0.0,1.5,3.0 and 4.5. The d-hole
removal spectra for kK = 7 splits with increasing the Coulomb repulsion. The origin of the
splitting is not clear, since it cannot be explained by the anti-ferromagnetic correlation
between d orbitals. Such a splitting is not observed for p-hole removal case.

We finally compare the XPS spectra of each cluster with its energy levels obtained by
the HF approximation assuming either the antiferromagnetic or nonmagnetic state. Fig-
ure 4.12 shows the 12-site case, where the energy levels obtained by the antiferromagnetic
and no"nmagne.tic HF approximations are shown by short bars. Most of the peaks within
the ranges 4eV > E; > 1.5e¢V and 1.5¢V > E, > 0eV are identified by the HF energy
levels of oxygen and Cu band, apart from the splitting of the d-hole removal spectra dis-

cussed above. The peaks, whose binding energies are more than 6eV, may correspond to
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local 2-hole bound states formed by the Coulomb energy U, or U;.[15] In this case, the
valence band width obtained from the calculated XPS spectra is 17% and 15% reduced
comparéd with that of the antiferro- and nonmagnetic HF solution, respectively.

The reduction of the band width is common to all system, but it depends on the
system size, where the minimum is 13% of the 15-site system and the maximum is 21%
of the 7-site system.(Table IV.l) A systematic dependence of the reduction ratio on the
boundary condition and the linear dimension of the clusters is not obtained. The shape of
the XPS spectra is also size dependent. For example the XPS spectra of 12-site system
have a large peak at the Fermi level but those of the 15-site system do not. We conclude
that the size dependence of the valence band XPS spectra is rather large, which indicates
the need of the analysis of larger systems to obtain quantitative estimates of the reduction

of the band width due to the correlation.
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—Table TV.I. —
Reduction of occupied valence band width obtained from the calculated

XPS spectra compared with anti-ferromagnetic (paramagnetic*) HF solution.

Valence band width (eV)
System size Reduction ratio
a. Hartree Fock b. Present calculation  b/a (%)

7 48 3.8 79%

8 4.9 (4.9%) 4.1 83% (83%*)
11 48 41 86%

12 4.7 (4.5%) 3.9 83% (85%*)
15 4.9 42 87%

§4.6 Conclusion

We have studied the Cu 2p XPS, XAS valence band XPS and BIS spectra of the Cu,O,,
clusters, taking into account the intra-atomic Coulomb interactions. In conclusion we have
obtained the following properties of these spectra.

a) The main peak of the Cu 2p XAS and XPS spectra have a multiple peak structure
on the high energy side. The structure arises from the fact that there are various
valence hole distributions of the final states.

b) There appears a ]gdlo_lf) peak between main and satellite peaks of the Cu
2p XPS spectra, which arises from the |d1°L2> component of the initial state
produced by the hole itinerancy.

c) The main peak of the Cu 2p XPS spectra shifts to high energy side with addi-

tional hole density.

These are the properties of the core level spectra of larger clusters (n > 3), and
have not been obtained in the previous calculations using the single Cu atom cluster.
Size dependence of both core level and valence band photo-emission spectra are also

investigated, and the next two conclusions are drawn.
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d) The interval between the main peak l_c_leL> and the satellite one |ga’9> of the
Cu 2p XPS spectra of the single Cu atom cluster is smaller than that of the
larger clusters. This means that the kinetic energy of a valence hole is reduced
by the boundary effect in the case of the single Cu atom cluster.

e) The angle resolved photo-emission spectra for d-hole removal at k = = splits
when there is strong intra-atomic Coulomb repulsion.

f) The valence band XPS and BIS spectra of the Cu,Oy41 chain or the Cu,O,
rings depend on the system size within the cluster sizes adopted in the present
investigation. The reduction of the valence band width by the correlational effect,
for example, ranges from 13% (n=7) to 21% (n=3) which are of the same order

as the value 20% concluded by Kuramoto and Schmidt.[7]
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Chapter V

Charge Excitation Gap of the One-Dimensional
d-p Model as a Function of Inter-Atomic

Coulomb Repulsion

§5.1 Introduction

i

When the d-p model was proposed by Emery as a conduction model of the CuO; plane,[1]
the model did not contain any inter-atomic Coulomb repulsion U4 between Cu-3d and
oxygen-2p orbitals. Soon after that, they modified the model so that it had finite Upqg
based on both experimental results[2] and band theories.[3,4] Since U,q works between
neighboring sites, it is different from intra-atomic Coulomb interactions Up and Uy in the
following points:

(i) The intra-atomic Coulomb repulsion is present only between up- and down-spin elec-
trons as far as we do not consider the degeneracy of d or p orbitals, while the inter-
atomic one is present among any kind of electrons, regardless of their spin. Thus,
even the electronic structure of complete ferromagnetic band is not trivial any more
if there is finite inter-atomic Coulomb repulsion.

(ii) The intra-atomic Coulomb repulsion enhances the local moment (the Cu spin) while
the inter-atomic one does not enhance it. The latter enhances the charge correlation
between neighboring sites.

(iii) The inter-atomic Coulomb repulsion becomes dominant as the coordination number

of neighboring sites increases.

A naive consideration leads us to a result that the U,q works only if there are additional
holes in oxygen-p orbitals, and that it enhances the charge excitation gap, which is either

the charge transfer gap or the Mott-Hubbard gap. Thus we examine in this chapter how
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the inter-atomic Coulomb repulsion enhances the charge excitation gap. We should adopt
a relatively large cluster in numerical calculation when there is finite Up4, because the
interaction itsélf is finite ranged and it directly causes inter-site correlation. We there-
fore confine ourselves here to the one-dimensional d-p model in order to gain the linear

dimension of the system. The Hamiltonian of the system is

Hd']’ = - th Z (pzi—l)adia + djap(i—l)a + dgapia + p;radia) + A Zp;tapid

i

+Up D phpigplipiy +Ua Y dlydiydlidy

+ Upd Z (pgi-—l)ap(i—l)ad'z!‘a’dia’ + dZodiapIa'pia’) 3 (51)
oo’
where pET) and dET) denote annihilation (creation) operators of p and d holes, respectively.

We set t,q as unity for convenience, for most of the cases in the following studies.i In the
preceding chapters we put Upq = 0, partly because it is hard to handle more than three
parameters in the Hamiltonian — A U, U; and U,y — simultaneously and to trace a role
of each parameter. Thereby the numerical calculation here is performed only for several
typical parameter sets with finite Upgq.

Before we work out the numerical calculation, we examine two special parameter
cases. First we consider the atomic limit (t,4 = 0) in the next section. It is shown there
that we should not adopt an open boundary system if there is finite inter-atomic Coulomb
repulsion. In §5.3 we discuss the charge excitation gap at U, = Uq = oo, where we can
map the one-dimensional d-p model into the S = 1/2 XXZ-spin chain under staggered
magnetic field; the charge excitation gap of the original d-p model corresponds to the
excitation gap in the spin wave of the chain. If A = 0, then the system is gapless unless
Upq exceeds 2|t,q4]. Numerical result for CusOy4 cluster is shown in §5.4. It is concluded
that the intra-atomic Coulomb repulsion enhances the Charge excitation gap, while it

cannot be the origin of the gap by itself.(§5.5)

t Sign of t,q is arbitrary, as far as the one-dimensional d-p model is concerned.
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Fig. 5.1. The charge excitation gap of the d-p chain when ¢, = 0. Open
and shaded circles represent p and d orbitals, respectively. The vertical axis
shows the one hole energy level. The charge transfer gap is A4 2U,q except
at the boundary site, and is A + U,y at the boundary.

§5.2 Atomic Limit

When t,q is zero, the d-p Hamiltonian is diagonal in the configuration space, and we
easily obtain the charge excitation gap Egqp. If Us > A +2U,4, the elementary excitation
is the one hole transfer from a d orbital to the neighboring p orbital, and the Eg,, is
the same as A + 2U,,. (Fig. 5.1) Boundary effect is present because of the inter-atomic
Coulomb repulsion; at the boundary site, Egqp is A+Upq. The consideration here suggests
us to use a finite size cluster with periodic boundary condition in the following numerical
calculation. Otherwise we under-estimate the charge transfer gap because of the boundary
effect.

The atomic limit is not realistic in a sence, because the charge transfer gap A +2U,4
is finite for infinitesimal A > 0 when there is finite Upg; if we leave the limit by substituting
a finite value into t,4, the gap would be greatly reduced by the itinerancy of holes. For
example, the second order process in t,4 shown in Fig. 5.2 decreases E ., by amount
of —(tpq)?/A. The term dominates the E,,, if A is sufficiently small. We would not
refer the second order perturbation any further, since we would get a non-trivial effective

Hamiltonian after a systematic but lengthy calculation.
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Fig. 5.2. A process of second order perturbation in t,; when there is an
additional hole: a d-hole which is by an additional p hole moves empty p or-
bital, and it comes back again. The E,,, decreases by amount of —(¢pq4)?/A
through the process.

§5.3 Large U Limit

We next consider another limit where U, = Ug = oco. The condition is not totally
unphysical, since Uy and A + U, is relatively larger than t,; and A. The system is
charge transfer insulator when the band is quarter filled, i.e., when there is a hole per d
orbital. We discuss the limit because the electronic structure- is less complicated there;
only three states |0> |T> and Il) are allowed for each site instead of four. Electrons will
never exchange their order, for double occupancy is prohibited, thereby we can map the
one-dimensional d-p model into S = 1/2 XXZ spin chain. The mapping is done through

the assignment

1
§; =nl+n; -3, (5.2)

where we lose the information on the electron spin through the assignment. The d-p
Hamiltonian is then transformed to the XXZ-spin Hamiltonian under both uniform and

staggered magnetic field:
Hxxz = *tpa p (SFS71 +SH.S7) + Upa ) SiSTn
L2 > (-1)S;+hYSP. . (5.3)
2 l 2 - t
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AA

Fig. 5.3. Gapless region of the
spin Hamiltonian Hxxz given

by eq. 5.3. The spin model is Gapless

solvable on both vertical and hor- U

. . VA » pd
izontal axes, and the spin wave .

excitation is gaplessif h = A =0 . t =
and 0 < Upg < 2tp4. 0 2 pd

The uniform magnetic field h in the right hand side is connected with the chemical potential
of the d-p Hamiltonian. If A = 0, total magnetization of the spin chain is zero, the situation
which corresponds to the quarter-filled d-p model. The E,,, of the d-p model corresponds
to the lowest spin wave excitation energy of the spin chain.

The spin model has been solved under h = 0 if (i) Upyq = 0 or (ii)A = 0. When
Upa = 0 the spin Hamiltonian Hx x z can be mapped into a spin-less free Fermion S);;tem,
and we get Eg,p, = A. The case A =0 and Upg > 0 is rather complicated. vAcccn)rding
to Yang and Yang,[5] the spin chain does not have any anti-ferromagnetic order and
gapless unless Upq exceeds 2t,4.(Fig. 5.3) The result means that the inter-atomic Coulomb
repulsion enhances the charge transfer gap, while it cannot be the origin of the gap alone

if Upg is smaller than 2¢,4.
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Fig. 5.4. Charge excitation gap of CusOy4 ring obtained by eq. 5.4 when
tpa = 1,Uq = 2Up = 6,Upq = 2 and A = 0 or 2. If the charge transfer
energy A is zero, there is no remarkable peak at quarter-filling, (see where
the white down arrow points) while a sharp peak is present when there is
finite A. The charge transfer gap is enhanced by Upq in the latter case.

§5.4 Charge Excitation Gap of Cu,04 Ring
Now we calculate the E,,, numerically outside the previous two parameter sets. We
adopt one-dimensional CusO4 ring. We use a definition of E,, for finite size systems of

the formf

EgapINy +1/2, Ny +1/2] = — Eg[N} + 1, N|] + Eo[Ny + 1, N + 1]

+E0[NT ’Nl]_EO[NT ’Nl+1]’ (54)

where the E[Nj, N|] is the lowest energy when there are N, electrons in the CusO4
cluster.

Figure 5.4 shows the Ey,, of the cluster when t,g = 1,Us = 2U, = 6,Upq = 2 and
A = 0 and 2. The white arrow indicates the quarter-filling point where Ny + N| = 4. If
the charge transfer energy A is zero, there is no remarkable peak at quarter-filling as shown

in the left hand side of the figure, while there is a sharp peak if there is finite A.(The right

t+ Details of background for the definition on E 4, is given in the Appendix.
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A=4

Fig. 5.5. The Eyqp of CuyOy cluster for various A’s and Upq’s when tpq =
1,U3 = 2 and U, = 6. The dotted line connects the cases where A4 2U,q =
4.

hand side.) The charge transfer gap is enhanced by the inter-atomic Coulomb repulsion
Upq in the latter case so that Ey,, > A. There are also sharp peaks at half-filling and
3/4-filling, the peaks which come from on-site Coulomb repulsions. We would not discuss
these peaks here, since the hole density that corresponds to these peaks is unrealistic for
the Copper oxides.}

Figure 5.5 shows E,,, for several A’s and U,4's when tpa = 1,Ug =2 and U, = 6.
The dotted line in the figure connects the cases where A + 2U,; = 4. One can easily see
that the charge excitation gap at quarter filling increases with A under constant A+ 2U,,.
After the surveillance of E,, on the parameter space,(A-U,q plane) we get the result in
Fig. 5.6 which shows the gap at quarter filling. As we have studied for the infinite on-site

Coulomb repulsion limit, no apprecable E,,, is obtained when A = 0.

t Half-filled case will be discussed in the next chapter, only for the case where A = 0.
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Fig. 5.6. The charge excitation gap of CusOy4 cluster at quarter-filling ob-
tained by eq. 5.4, when Uy = 3,6,9 and t,q = 1. The Ey,, is much less than
A + 2Up4, which is the gap for the atomic limit, if A is not large enough.

§5.5 Conclusion

In conclusion we have calculated the charge excitation gap of one-dimensional d-p model
with inter-site Coulomb repulsion U,4. In conclusion the U,y cannot be the origin of
the charge transfer gap by itself, since Egqp ~ 0 if A = 0 for these cases: (i) when
U, =Uqg =00 and A =0, the Eg,; is zero unless Upy exceeds 2t,,. (i) f U, and Uy are
comparable with t, the Eg,, is very small even when Upqa > 2t,4.

We have confirmed ourselves to the study on the one-dimensional d-p model. Di-
mensionality of a system is usually relevant to most of the low-dimensional systems and
therefore we should examine two dimensional systems in order to analyze the CuO; plane,

in future studies.
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Chapter VI
Charge Excitation Gap of
the Extended Hubbard Model

§6.1 Introduction

The Hubbard model[1-3] is a simple model which describes several non-trivial effects of
intra-atomic Coulomb interaction in narrow band. When the narrow band is half-filled,
there is a finite excitation gap which is known as the ‘Mott-Hubbard gap’.[2,3] In real ma-
terials, there are also inter-atomic Coulomb interactions between neighboring atoms. Beni
and Pincus modified the Hubbard model so that it contained the inter-atomic Coulomb in-
teraction, and discussed the possibility of the charge density wave (CDW) at half-filling.[4]
Today their model is called ‘the extended Hubbard model’, where the Hamiltonian has the

form

H=—t Z (CL% + c}ocia) + Uznnnu
<t,j>o :

+V Y (i +nag)(njp +nyy) — 4 Z(nz‘r +nip)- (6.1)

<i,j>
The first two terms in the right hand side represent the Hubbard Hamiltonian. The
third term is the Coulomb repulsion between neighboring sites. The chemical potential
p =2V + U/2 corresponds to the half-filled band.
The ratio of these parameters t,U and V determines the character of the ground
state of the half-filled band: the cases (i) t >> U,V, (ii)) U >> ¢,V and (iii)) V >> t,U
correspond to the free-Fermionic, the Mott-Hubbard and the CDW states, respectively.{

If these parameters are at the same order, the ground state phase is not trivial. The

1 The ‘Tomonaga-Luttinger liquid state’ is also a candidate for correlated one-dimensional

systems. [S.Tomonaga: Prog. Theor. Phys. 5 (1950) 544.]
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phase diagram has been investigated by the Hartree-Fock (HF) approximation,[5] the
functional integral formalism[6] and the quantum Monte Carlo simulation.[7] Recently van
Dongen has analyzed the thermodynamic property of the model by using the perturbation
expansion around the Hartree solution.[8] He showed that in high-dimension, (d > 1) the
line U/V = 1/2 is the phase boundary between the Mott-Hubbard and the CDW phases
for both strong correlation limit (U,V >> t) and the weak limit.(U,V << t) Quite
recently the ground state phase diagram has been carefully determined numerically for
one-dimensional extended Hubbard model by Cannon et al.[9] They confirm the presence
of the tricritical point. So far, the charge excitation gap of the one-dimensional extended
Hubbard model has not been examined quantitatively.

The purpose of this chapter is to survey the charge excitation gap of the one-
dimensional extend Hubbard model on U — V plane, and to observe how the gap reflects
the itinerancy of electrons. In the next section, we examine a reduction of the charge
excitation gap by the electron itinerancy in the large V' region ( U < 2V ) by use of the
second order stationary perturbation in t. The perturbation study is, however, inapplicable
near the phase boundary. Thus, in §6.3 we calculate the gap numerically and estimate the
gap for the infinite size system through the extrapolation with respect to the system size.
We compare the numerical result with that of the perturbation study and the Hartee-Fock

approximation. In §6.4, conclusions are summarized.
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§6.2. Perturbation Study in the Large V region

We calculate the charge excitation gap of the one-dimensional extended Hubbard model
at half-filling via the stationary perturbation theory[10] in the large V region. (U < 2V)
The result obtained here will be compared with the numerical results later.

We regard the kinetic energy term in the extended Hubbard Hamiltonian as a pertur-

bation:

HI =—t Z(C'Jiroci+1a + c!—{»—lacio) (63)

ic

Ho=U) naniy+V ) (it +ni)(nipar + nis1))

(V4 5) Y (mur + ). (6.4)

1

The charge excitation gap Ey,), is usually defined as

: N
Egap = ]\}E,noo Egap
EN,=EY(N+1)~2EY(N)+ EN(N - 1), (6.5)

where ENV(M) is the ground state energy of N-site system when there are M electrons in

the lattice. In fact, there is a less complicated formula of E%p at half-filling for even N ,

E}, =2{EY(N +1) - EN(N)}, (6.6)

since we choose the chemical potential y = 2V +U/2 so that the Hamiltonian is invariant
under the particle-hole transformation.

We first consider the half-filled band — the N electron case. There are two non-
perturbed states |0) and |0'), where doubly occupied sites and empty sites appear alter-
natingly, as shown in Fig. 6.1a. They have the same eigenvalues for Hy, i.e. EN(N) =
<0|H0 |0> = —2NV. ltissufficient to treat one of them in the perturbation study, because

they do not have any overlap

(0|HF|0'y =0, ifn<2N. (6.7)
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Fig. 6.1. Electron configurations that

7\
appear as the initial and intermediate M@‘O’“@_O HIO>
states in the second order perturba- I

tion for U > 2V: (a) Two equivalent
non-perturbed states lO> and ’0' > at
half-filling. (b) An intermediate state

m H 1,0}. There are 2N intermedi- l .
ate states (¢) A non-perturbed state M—@_‘O_%_O --- 11>
l > = c l0> where one additional elec- ( 0 )

tron is created at the half-filled band.

There are 2N intermediate states which we have to take into account for the second order
perturbation.(Fig. 6.1b) The eigenvalue of Hy for these intermediate states is EYY (N) +

3V — U, thus the energy correction for the second order is

EN(N) 7, 110 = t -U’ (©8)

We next consider the N+1 electron case. A non-perturbed state |z> is given by putting

eN(N) = (0|H;

an electron on the empty site 1 of the state lO).(Fig. 6.1c) The eigenvalue E{¥(N +1) =
<z’lH0lz'> is EY(N) + 2V —U/2. The state lz) is hybridized with | & 2). Therefore we
obtain two different kins of energy corrections as a result of the second order perturbation:

one is the diagonal term

) ,
N y :
Egiag(N + = <ZIHIEéV(N -, HI|2>
8t* 442 2t*
=eN(N) + — - = (6.9)

3v-U 2v-U 'V
and the other is the off-diagonal term
1
ENM(N+1)-H
42
2V U’

eop (N +1) = (i|H; OHIIi +2)

(6.10)
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Fig. 6.2. The charge excita-
tion gap Fg,p, obtained by
the second order perturba-
tion. In the shaded region
Egqp is negative, where the
perturbation study does
not work ‘any more.

The latter is merely the hopping amplitude of the additional electron; the ‘band width’
of this additional electron is 4|5f,\9f(N + 1)|. Thereby the second order energy correction
e (N +1) is between e, (N 4 1) + 26} +(N + 1) and el (N 4+ 1) — 2] (N + 1).

Now we can obtain the charge excitation gap. The E,,, is 2{EY (N+1)~E{(N)} =
4V —U when t = 0, the value which is finite (= 2V') at the phase boundary U = 2V'. The
second order process in ¢t reduces the gap by amount of 5é\£ag(N+1)-|—25£\}f(N+1)—-5N(N)
and the gap for the finite # is

1642 12¢2 flﬁ
3V-U 2V-U V~

Egap =4V —U + (6.11)

Figure 6.2 shows the gap Ey,, in eq. 6.11. In the shaded region the value is negative,
where the second order perturbation does not work any more; the perturbation study
suggests that no CDW order is present in the region.

Let us briefly see how the perturbation study works in the large U side.(U > 2V') At
half-filling, there are 2V non-perturbed states that have any double occupancy. According
to the degeneracy of these non-perturbed states, the second order perturbation at half-

filling leads the antiferromagnetic Heisenberg Hamiltonian with coupling constant J =
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Fig. 6.3. Low-lying eigenstates of 12-site extended Hubbard ring at half-
filling for each k. The vertical axis shows the energy per site E'/N = (H +
,uz:i(nzT + nf))/N (a) When U is much larger than V, (U = 6,V = 0)
the system has the Mott-Hubbard character. The dotted line connects the
lowest energy in each subspace, where the line reflects the dispersion of the
spin wave. (b) When V is much larger than U, (U = 0,V = 3) the CDW
order is present. There are two low energy states in the subspaces with k = 0
and k£ = m, and there is finite excitation gap above these two.

t2/(U — V).[11] In the same manner as we have obtained the Heisenberg model, we get
the ¢t-J model for non half-filled band.[12] The one-dimensional ¢t-J model have not been
solved except for a special parameter set[13] and the parameter set does not coincide with
our model; we cannot obtain the charge excitation gap of the extended Hubbard model
without performing the numerical calculation on the ¢-J model. We would better perform
the numerical calculation on the original Hamiltonian (eqs. 6.2~6.4) rather than on the

effective Hamiltonian obtained by the perturbation study.

§6.3. Numerical Result

We calculate the ground state energies of 4,6,8,10,12 and 14-site extended Hubbard
rings by diagonalizing the Hamiltonian (eqs. 6.2~6.4) via the numerical method which
we have studied in Chap. [I; we use the rotational symmetry of the system and obtain
the ground state for each lattice momentum k. It takes about a hundred-second of the

CPU time to get the ground state energy of 14-site system for every parameter set, and
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Fig. 6.4. Momentum of the ground state of 4,8 and 12-site rings. Inside
the meshed region the momentum is zero. The region gets narrow with the
system size N.

it is hard to survey the whole parameter range for both U and V. Therefore most of the
numerical calculations are worked out up to N = 12.

A trial numerical calculation shows that the ground state has a definite lattice mo-
mentum. Figures 6.3 (a) and (b) show the energy distribution of 12-site system at
half-filling for each momentum k. The vertical axis shows the energy per site E'/N =
(H+p Zz(n3+nf)>/1\7 In the large U region,(U = 6,V = 0) there are many eigenstates
just above the ground state.(Fig. 6.3 a) The dotted line connects the lowest energy in
each sub space, where the line reflects the dispersion of the spin wave excitation. On the
other hand, in ;che large V region (U = 0,V = 3) there are two low energy states at k =0
and k = m, and there is finite excitation gap above these two.(Fig. 6.3 b) For both cases,
the ground states have the momentum k = w. The lattice momentum of the ground state
is determined by such a way for every system size and parameter set. At half-filling, the
ground state momentum is always zero for 6, 10 and 14-site systems, while it depends
on the parameters U and V for 4, 8 and 12-site systems.(Fig. 6.4) When an additional
electron is introduced to the half-filled band, the momentum is always the same as the

Fermi momentum when U =V = 0.
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1 Fao

2

o U=0
Fig. 6.5. The charge excitation gap E;g‘pm &7 - V — 1
and E;Z;z when U = 0 and V = 1. We .
obtain the large N limits E;q, = 0.66 and
0.58 by connecting {ES,,, E;o,, Egap) and O ]-/N
{E}up > Esup s Ejapr} with curves of sec- rerh el !
ond degree. 18 1/4

After we have obtained the ground state energy for both half-filled and non-half-filled
bands, we calculate the charge excitation gap for each system size and parameter set.
We then perform an extrapolation in 1/N to reduce the size effect. We evaluate the gap
Egop = Bim v —oo Eé\flp from three different groups of data. The first group consists of
ENZ4™t2 for N = 6,10 and 12 defined by eq. 6.6. The second and third groups consist

of the gap for 4, 8 and 12-site systems defined as

EN=an = 2{EN(N +1) — E{Lo(N)}, (6.12)
and ,
EN=n = 2{EN(N +1) - B{L(N)}, (6.13)

where EY(N) is the lowest energy at half-filling with the momentum k. (Either EJ7,

or E;, - is the same as E;%, in eq. 6.6.) Figure 6.5 shows these gaps when U = 0 and

V = 1. The value E;Zp,o does not differ from E;7  for more than £0.03 for all n, and

therefore only E27,  and Ej72 are plotted. The gap Egiit? is greater than EJ7
for each n, because the former reflects the ‘closed shell structure’ of the ground state at
half-filling.[14] Since we have only three points in each group of data, and have no guiding
principle for extrapolation, we connect these three points by a curve of second degree

to obtain Egqp at large N limit: the data Efnt?, E;n o and Eg, o give Egqp = 0.58,
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Fig. 6.6. The charge excitation gap at large N limit. In both figures the dot
denotes the gap Fgqp obtained from E;Z; 2. and the dotted line denotes the
result of the second order perturbation. The real line is the gap (a) Egap,o
and (b) E;,p » obtained from E4n o and Ei"  respectively.

gap, gap,m’

0.65 and 0.66, respectively. We should regard their difference (=0.08) as the error in the
extrapolation.
Figures 6.6 (a) and (b) show the Eyq, on the U-V plane. The dots in the figures

represent the gap obtained from E*r+2

; 4n
442, The real line shows Eg,), that comes from Egf,

(Fig. 6.6a) or .Eﬁj"f,”.(Fig. 6.6b) After all, the gaps obtained by three different ways do
not differ so much. The result of the second order perturbation study is shown by the
dotted line for comparison. The perturbation study always under estimates the gap; the
numerical data shows the presence of finite gap in the shaded region in Fig. 6.2, except
at the phase boundary. |

The numerical result is also compared with that of the Hartree-Fock (HF) approxi-
mation.[5] (Fig. 6.7) We assume the CDW or the anti-ferromagnetic (AF) order for the
approximation; the CDW and AF orders are stabilized within the parameter range U < 2V
and U > 2V, respectively. In the large V region, the approximation deduces the gap that
is a constant of V. Thus the approximation gives finite charge excitation gap at the phase
boundary U = 2V. The numerical result, however, shows that the gap is greatly reduced

near the phase boundary; the HF approximation always overestimates the Egqp.
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-

Fig. 6.7. The same as the
Figure 6.6. The result of
the  Hartree  Fock
approximation is shown by
the dash-dotted lines for
comparison.  Here, the
Egapo and the Eg,p . are
shown by real and dotted
line, respectively.

The phase boundary is near the line U = 2V, but slightly shifted to the large-V
side by the quantum effect. This result agrees with that Cannon et al. have obtained
through the analyses of the CDW order parameter. They further confirm the presence of
a tricritical point above U = 3.5. It is, however, difficult to observe the tricritical point
from the Egy,, alone. There is at least a qualitative change in the shape of the gap at the
phase boundary; the gap tangentially touches the U-V plane at the origin (U =V = 0)
whereas it has a kink at the phase boundary for modest U and V.

Finally, let us see how the CDW order is suppressed near the phase boundary. We

adopt the definition of S which does not contain the self correlation term:

1

N
S = N _1 ;(“1)z(nlt +nyp — 1)(nip + nip — 1). (6.14)

Figure 6.8 shows the CDW order parameter S in the large V region. The parameter S is
greatly reduced near the phase boundary by the itinerancy of the electrons, especially at

the neighborhood of the origin.
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O 1\/2 3

Fig. 6.8. The CDW order parameter S on the U — V plane. The real and
dotted lines are the S extrapolated from the data for N = 4,8,12 with k = 0
and =, respectively. The dott denotes represent S for N = 6,10,14 and

k = 0. The extrapolation for S is performed as we have done for Ey,, in
Fig. 6.5

§6.4. Conclusion and discussion

We have evaluated the charge excitation gap of the one-dimensional extended Hubbard
model at half-filling by use of the diagonalization method. We use the rotational symmetry
of the system to reduce the size of the matrix. The calculation up to 14-site system enables
us to perform the finite size scaling, and to get a quantitative result on the charge excitation
gap Egqp. At the phase boundary, the Egqp is almost zero within the parameter range
that we had survayed, 0 < U <6and 0 <V < 3. |

The numerical result is compared with the results of the second order perturbation
study and the Hartree-Fock approximation. The second order perturbation always under-
estimates the gap Fy,, and the method is inapplicable near the phase boundary. On the
other hand, the HF approximation always over estimates the gap; the gap obtained by
the approximation is a constant of V in the large V region. Actually, the calculated gap
gradually decreases to zero with increasing V' in the large V side.

The one-component lattice Fermion model with nearest neighbor repulsion V' does

not have CDW order and the finite charge excitation gap as far as the repulsion is smaller
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than 2¢, which is the half of the band width.[15] We have studied here the two component
lattice Fermion model — the extended Hubbard model — and observed the presence of
finite gap for fairly small V' compared with ¢. Does the generalized m-component Fermion
system have the gap for infinitesimal V7 It would be one of the problem on one-dimensional

lattice fermion models to future.
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. Chapter VII

Summary

The author has studied electron correlation effects, which originate in short range
Coulomb interactions, in one- and two-dimensional periodic systems. Since there is no
general analytic method for these systems, most of the analyses were done through nu-
merical calculations on finite size clusters. Ground state properties and excitation spectra
of the periodic systems were examined when intra- and inter-atomic Coulomb energies are
present, as it is summarized here.

Several numerical methods are integrated in chapter Il in order to study the finite
systems via the Lanczos and the recursion methods. We developed efficient technique of
computations without which we cannot draw meaningful conclusions from the computa-
tion. The systematic numerical method enables us to draw maximum ability of computers
and also physical information from the study in finite-size systems.

Ground state properties of the CusO;2 cluster, was studied in chapter Ill, where
the cluster is the smallest reproduction of the CuQO; plane of high-Tc compounds. Hole
density for each site and spin correlation between atomic orbitals are chiefly examined.
In consequence no ferromagnetic coupling between apical oxygens and Cu atoms are
observed, even though there are one tenth of the additional holes in the apical oxygens;
the Hund rule coupling, which originates in the off-diagonal Coulomb interaction in Cu-
3d, is not dominant. The fact is that the periodicity of the cluster prevents a sub-cluster
in it — the CuQjs sub-cluster — to have local 3B; hole configuration; point group at
each sub-cluster is not a good quantum number any more, since inter-cluster hole transfer
generates off-diagonal matrix elements between different representations of the group.

The result in chapter Il was one of the motivation of the following study in chapter
IV on XPS anq XAS spectra of the d-p model. The subject was that how the spectra of
the highly correlated system would be modified by the inter-cluster hole transfer. As a
result of the valence hole relaxation, the main-peak of core-level spectrum is modified so
that it has multiple peak structure on its high-energy side. The presence of lgd1°L2> peak
in Cu 2p XPS reflects the presence of the |d1°_l_}_2> local hole configuration in the initial

state. A shift of the main peak with an increase of the valence hole density is observed,
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which coincides with the experimental results. The valence band XPS and BIS spectra
show that the free-Fermion like dispersion relation is still present although there is strong
intra-atomic Coulomb repulsion. The position of each level is, however, different from
that of the HF result.

The last two chapters were on the charge excitation gap of one-dimensional systems,
which are described by Hubbard like Hamiltonians with inter-atomic Coulomb repulsion.
We first calculated the gap of the d-p chain at quarter-filling as a function of intra- and
inter-atomic Coulomb repulsion, and the charge transfer energy A. A new formula for
E,qp was employed to reduce the size effect, and to clearly observe the gap as a function
of intra- and inter-atomic Coulomb repulsion. It was shown that the inter-atomic repulsion
enhances the charge excitation gap if there is finite A, but it cannot be the origin of the
gap by itself; Eg,p is very small when A ~ 0. We next surveyed the gap of the extended
Hubbard model in the parameter space, i.e., the U — V plane. The inter-atomic Coulomb
energy V directly creates the density fluctuation — the charge density wave — at half-
filling. Finite size scaling was employed this time, to estimate the gap at thermodynamic
limit. As a result, we obtain the gap which is nearly equal to zero at the phase boundary,
unlike the classical limit or the Hartree-Fock result.

As we have studied through previous chapters, the diagonalization study gives us direct
information about ground state energy, the ground state wave function, excitation spec-
trum, and also those of several low-lying states. There is, however, a major problem in the
diagonalization study, i.e., the restriction of the system size in numerical diagonalization:
the maximum size is about N = 10 ~ 20, as far as the lattice electron systems are con-
cerned. The restriction chiefly comes from the capacity of contemporary computers. We
have therefore block-diagonalized the Hamiltonian by hand before putting the Hamiltonian
matrix into the computer as we have discussed in §2.4. Recently, applications of permu-
tation group or quantum group are tried to reduce the matrix size for one-dimensional
lattice electron or spin systems.[1,2] The limitation would be eased gradually with both

the development in the programing and that in the computer architecture.
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Appendix

Charge Excitation Gap of Finite Size Systems

The charge excitation gap is the energy cost to add/remove an electron to/from the
valence band. It is an essential quantity for the metal-insulator transition, since a system
is insulating if the gap is finite. We discuss here about the details in definition of the gap
that are used in chapter V. '

The charge excitation gap E,,, of a macroscopic system is usually defined by a
discontinuity in first derivatives of the ground state energy per site ¢(n) with respect to
electron density nt

de(z)
dn

Eyupln) = - A 0

r=n

T=n
The subject is how to discretize this formula to obtain Ey,, of finite systems. The

conventional definition of E,,,, when there are M electrons in a N-site system, is given
by a naive discretization of eq. i,*

Egap = (Eo[M + 1] — Ey[M]) — (Eo[M] — Ey[M ~ 1])
= Ey[M + 1] — 2E,[M] + Eo[M — 1], (i1)

where Eo[M] is the ground state energy when there are M-electrons in the system. This
definition has been widely used because of its simplicity.

The definition in eq. ii , however, has two problems. One is the ambiguity of the
equation. If the number of up-spin electrons Ny in the system is not the same as that of
down-spin ones N, the E,,,[M = N; + N,] depends on the spin of the added/removed
electron. There are at least three plausible formula for the gap: (a) the Eg,, which is
obtained through adding or removing an up-spin electron as

EgaP[NT’Nl] = EO[NT - 1’Nl] - 2E0[NT>N1] + EO[NT + 17Nl]: (”Z)

where Eo[Nq, N|] is the ground state energy when there are M = N 4+ N, electrons in
the system, (b) the E,,, which is defined by

Egap[Nt, N = —2Eo[N1, N|]

1 1
1 1 )
+ §E0[NT1NL -1+ §E0[NT,NL + 1], (iv)

t for example, P. W. Anderson: Science 235 (1987) 1196.
* E. Lieb and F. Y. Wu: Phys. Rev. Lett. 20 (1968) 1445.
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Fig. i. Two dimensional filters on the particle number space that give the
charge excitation gap Eg,, of N-site system. The cases a, b, ¢ and d corre-
spond to egs. i, tv, v and viz, respectively.

and (c) the E,q, which is defined by
1 1
Egop[Np,Nj| = é'EO[NT —1,N; — 1] — Ey[Ny, N|| + -2—E0[NT +1,N; +1]. (v)

(Figs. 7.1 a, b, ¢) The other problem comes from the discreteness in energy level of finite
size systems. Since both egs. 27 ~ v also represent discretizations of

2
¥z =n

they give finite values for E,,, as far as the one-particle density of state p(n) of the
system is not a constant of n, even though there is no Coulomb interaction. We cannot
tell whether E ., obtained by eq. 3¢ ~ v represent the charge excitation gap in eq. 7, or
the value vi. Since the term (vi) is not extensive, its contribution decreases with N. The
contribution, however, is not negligible in actual calculations, where N is of the order of
ten.

To avoid these problems and purely observe Ega,‘, that comes from the electron corre-
lations in a finite size system, the author proposes a new formula for the charge excitation

gap

Egap[Nt +1/2,Ny +1/2] = = Eo[N; + 1,N|] + Eo[Ny + 1, N, + 1]
' + B[Ny N|J—Eo[Ny Ny +1].  (vir)

The right hand side is, so to speak, a two-dimensional filter to E¢[Ny, N|] on the particle
number space.(Fig. i d) /t is easy to show that Ey,,[Ny+1/2,N| +1/2] is always zero if
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Fig. ii. The charge excitation gap of the 12-site Hubbard ring at ¢ = 1 and
U = 8 obtained by the filters a ~ d in Fig. i. The case d shows the Hubbard
gap most clearly.

there is no Coulomb interaction (U; ;=0 ); we can catch the effect of electron correlation
from the ‘noise’ that purely comes from the discreteness of one-particle energy levels. Note
that the filter (eq. vii) catches the charge excitation gap that originates in interactions
between electrons, such as the Mott-Hubbard gap, the charge transfer gap and the BCS
gap, etc., while it misses the band gap that comes from one-body potential. (The latter
is of no interest, as far as the highly correlated system is concerned.) Many modifications
of eq. viz are possible, but we would better use eq. vi7, because it is the smallest filter for
Egap on the particle number space.

Now, let us examine how the two-dimensional filter (eq. viz) works for a typical model.
Figure ii shows the E,, of 12-site one-dimensional Hubbard model with periodic boundary
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Fig. ii. The charge excitation gap of a two-dimensional 10-site Hubbard
cluster at t =1 and U = 8. (a) The E,,, obtained by eq. vit. (b) The Egy,),
'is finite at the shaded position in the particle number space. There are rows
of weak charge excitation gap at Ny + N; = 6 and 14.

condition at ¢ = 1 and U = 8 obtained by egs. i¢:(a), iv(b), v(c) and viz.(d) It is obvious
that the E ,, defined by eq. viz is free from the ‘noise’ away from half-filling compared
with the cases a ~ c. Since eq. vi: gives zero as long as there is no electron correlation
effect, it sometimes catches a weak charge excitation gap away from half-filling, the gap
which originates in electron correlation effect in finite size systems. Figure vii a shows
Egop[Nt +1/2,N| 4+ 1/2] of the two-dimensional 10-site Hubbard model at ¢t = 1 and
U = 8. The Mott-Hubbard gap is present at Ny + N| = 10. We also observe two weak
rows of peaks at Nt + N| = 6 and 14.(Fig. iii b) These two rows of the weak charge
excitation gap come from the generalized Kondo coupling which have been proposed by
Kusakabe and Aoki;f the electrons at the Fermi surface align its spin so as to reduce the
intra-atomic Coulomb energy. The generalized Kondo coupling works most efficiently when
there are 5, 14, 22, ..., electrons in the two dimensional lattice, thereby we observe the
weak peaks at Ny+ N; = 6 and 14. (The weak singularity vanishes at the thermodynamic
limit, N — 0.)

The expression in eq. viz is an example of the data processing for numerical data
in multi-dimensional parameter space; we define the Ey,, in two-dimensional particle
number space, unlike the ‘one-dimensional’ analysis in eq. 7i. Applications of such a
multi-dimensional filter would be efficient for other physical observables, such as the spin
susceptibility and the compressibility of the periodic systems.

T K. Kusakabe and H. Aoki: Phys. Rev. B44 (1991) 7863.
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