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Preface 

This di.ssertation is prepared for partial ful日llment of the requirements for 

the Degree of Doctor of Phil凶ophy in Economics, Osaka University. It contains 

eight chapters on capital market dynamics. The respective chapters are written 
based upon the articlE汚 that were individually published 仕om 1991 through 

1997 in academic journals and discussion papers. The original publications are 
as follows (Chapter 1 is an introduction): 

1. Chapter 2: Shinsuke Ikeda, 1997, Consumer interdependence and dynamｭ
ics, a revised version of: Shinsuke Ikeda, 1995, Time preference, intertemｭ
poral substitution , and dynamics under consumer interdependence, ISER 
Discussion Paper N o. 386. 

2. Chapter 3: Shinsuke Ikeda and Ichiro Gombi , 1997, Habits , costly investｭ
ment, and current account dynamics, ISER Discussion Paper No. 442. 

3. Chapter 4: Shinsuke Ikeda and Akihisa Shibata, 1992, Fundamentalsｭ
dependent bubbl回 in stock pric白， The Jou:rnal of Monetary Economics 
30, 143-168. 

4. Chapter 5: Shinsuke Ikeda and Akihisa Shibata, 1995, Fundamentals unｭ
certainty, bubbles , and exchange rate dynamics , The Journal of Internaｭ
tional Economi岱 38 ， 199-222. 

5. Chapter 6: Shinsuke Ikeda, 1991, The continuous-time APT with diffusion 

factors and rational expectations: A synthesis, The Economic Studies 
Quarterly 42 , 124-138. 

6. Chapter 7: Shinsuke Ikeda , 1991 , Arbitrage asset pricing under exchange 
risk , The Journal of Finance 46 , 447-455. 

7. Chapter 8: Shinsuke Ikeda, 1996, An intertemporal capital asset pricing 

model with stochastic differential utility, Japanese Journal of Financial 
Economics 1, 55-68. 

8. Chapter 9: Shinsuke Ikeda, 1997, Optimal consumption and asset pricing 
under market incompleteness: A simple approach , a substantially revised 

version of: Shinsuke Ikeda, 1995 , A simple approach to arbitrage asset 

pricing in incomplete markets , ISER Discussion Paper 380 

In preparing this dissertation 1 owe substantial debts , directly or indirectly, 
to many persons including my teachers , colleagues, and students. It is impossible 
to make a complete list of acknowledgments. Among them , however , 1 would like 

to give special thanks to Akihiro Amano , Yoshiyasu Ono , and Yoshiro Tsutsui 
for continuous encouragement , invaluable sugg白tions on the selection of topiα ， 

and helpful comments on the original a比icles. 1 am also grateful to Ichiro 

Gombi and Akihisa Shibata for giving me a willing consent to incorporate several 

articles coauthored by them into this dissertation. Acknowledgements for th 
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individual articl白 are listed below. Last, but by no means least, thanks go to 
my family and parents for their encouragement and help. 

Acknowledgements for the individual articles 

Chapter 2: My special thanks go to H. Hayakawa, Y. Ono, and 缶pecially an 

anonymous referee for helpful comments to improve the paper. 1 am also inｭ

debted for discussions to H. Cole, F. Dei , Y. Fukuta, K. F'utagami, K. Itogawa, 
H. Izawa, C. Moriguchi , F. Ohtake, H. Osano, S. Serizawa, A. Shibata, K. 
Shimomura, Y. Tsutsui, K. Ueda, R. Watson , H. Yoshikawa, and seminar parｭ
ticipants at the Finance Forum , the Kada Conference, Kobe U niversity, Kobeｭ
Gakuin University, Osaka University, Ritsumeikan University, and the Univerｭ
sity of Tokyo. This r白earch is 日 nancially supported by the J apan Securities 

Scholarship Foundation and Grants-in-Aid for Sc�ntific R田earch B , Ministry 
of Education, Science and Culture (#06451106). 

Chapter 3: Our special thanks go to S. Ishizawa, Y. Ono, and S. Thrnovsky for 
invaluable comments on earlier versions of this paper. We are also indebted to 

M. Kurima , B. Rowlinson , and participants at the Kobe Conference on Internaｭ
tional Economics and Finance 1997 and at seminars in Tezukayama and Osaka 
Universiti白 for helpful discussions. 

Chapter 4: This research is supported by Grant-in-Aid for Modern Manageｭ

ment Science (Kobe U niversity) and the Segawa Foundation (Osaka City U niｭ

versity). Our special thanks go to two anonymous refere白 for invaluable comｭ

ments. We are also indebted to A. Amano , K. Asako, F. Dei, J. Eaton , H. 
Hayakawa, K. Hirayama, H. Hisamoto, C. Y. Horioka, Toshiaki Itoh , K. Kiyｭ
ono , T. Kobayashi , M. Nishio, Y. Ono, and the seminar participants at Kansai , 
Kobe, Kyoto, Nagoya Gakuin , and Yokohama National Universities and the 
U niversity of Tokyo for helpful discussions. 0 f course, all remaining errors are 
ours. 

Chapter 5: We wish to thank C. McKenzie and two anonymous referees for 

their helpful comments. We are also indebted to K. Ban, T. Fukushima, H. 
Hori, M. Ikeda, O. Kamoike, K. Mino, M. Otsuki , S. Takagi , Y. Tsutsui, M. 
Yoshida , and seminar participants at Musru弓 hi ， Tohoku , and Osaka U niversities 

for their valuable comments. Y. Nakanishi kindly helped us in preparing figures. 
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Fortieth Anniversary Program , Osaka U niversity. 
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Chapter 1 

Introduction 

The last two decades have witn白sed rapid developments in capital asset marｭ

kets. On the one hand this progr白s enables more efficient intertemporal r争

source allocations while, on the other hand, it ha.s caused much fluctuation 

and sometim白“chaos" in ぉset markets , such as stock markets and foreign 
exchange markets. Stimulated by this, of course, economists have done much 
from the empirical and theoretical viewpoints and from practical as well as acaｭ

demic interests (the r回ultant cumulative research is merged as a central field of 

economics under the name of intertemporal macroeconomics, financial macrか
economics, or macro finance.) However , there are many problems unsolved , as 
will be demonstrated in r白pective chapters. My main inter白t in the last one 

and a half decad白 has been to make thrusts on them. 

The objective of this dissertation is to make some contributions to the theory 

of capital market dynamics. The examination is conducted 白pecially in wealth 

dynamics , asset price bubbles , and asset pricing. The following part of the 

dissertation is structured in three parts , 1 through III. Part 1 tr伺ts wealth 

dynamics. Part II develops a new theory of rational bubbles. And Part III 

examines asset pricing theory. 

Part 1 contains Chapters 2-3. In th白e two chapters 1 examine the implicaｭ

tions of interdependent consumption preferenc白 for capital market dynamics. 

In Chapter 2, the effects of consumer interdependence through consumption exｭ
ternalities are examined from the viewpoints of the saving decisions and macrか

dynami白・ This old [e.g ・， Du白e巾e町 (1949) ]， but not commonplace issue is 

reexamined by using a modern rational consumer model. By developing new 

notions of preferences which captur回 consumers' in.teractions , the dynamics of 
the wealth distribution and of the inter田t rate are analyzed. It will be stressed 

that the new notions can addr白s several stylized facts regarding intertemporal 

substitution, and that the r田ulting properti回 of eqUlilibrium dynamics substanｭ

tially differ from those which are obtained by “Ramsey's conjecture." 
Chapter 3 examin田 the implications of consumption habits in a small open 

economy. The main inter白t is , first , to explore several stylized facts regarding 
the dynamics of the current account and , secondly, to derive the welfare irnpliｭ
cations. 1 do this by combining the model of the capital adjustment costs and 

that of consumption habit formation. As an important message, several emｭ
pirical facts regarding the current account will be consistently rationalized by 

choosing the adjustment costs for savings (psychological costs owing to habits) 
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and inv回tment (physical costs). Concerning the welfare implications, it will be 
pointed out that under strong habit persistence a f�cal policy which is beneficial 

from the initial welfare viewpoint may have a harrnful hangover effect on the 

future welfare. 
1n Part II, two chapters 4 and 5 pr白ent the theory of rational bubbles 

which depend on “ rnarket fundamentals." Using a continuous-time rnodel of 

stock pric田 with dividends growing stochastically, Chapter 4 examin白 stock
price bubbles which depend on dividends. The dynamic properties of these new 

bubbl白 are analyzed 田pecially on the stochastic stability, the possible patterns 
of sample paths , and the correlation with fundamentals.. These contributions 

rnight be useful to r白olve the problem that the existing models of fundarnentalsｭ

independent rational bubbl回 are often r吋ect吋 by empirical data [e.g. , J ournal 

of Econornic Perspective 4]. 1ndeed 1 will show that the empirical methods that 

have been used for testing the absence of bubbles are not robust in testing for 

our fundamentals-dependent bubbl白・

Chapter 5 applies the sarne idea to the exchange rate dynamics. B白id回 the

similar dynamic analysis to that of the previous chapter, two main contributions 
are conducted. First , the possibility of cyclic bubbles are derived. Second, a 

closed form solution of fundamentals-dependent bubbles cωan be utilized to obｭ

t凶ai出n solutions for the equilibrium exchange rate under any regirnes of stochastic 

polic句y swi比tchin

Part 1II, Chapters 6 through 9, extends the existing asset pricing theory 
in four directions. The f�st two chapters treat arbitrage pricing, especially the 
arbitrage pricing theory (APT) developed by Ross (1977) whereas the remaining 

two examine asset pricing based upon the market equilibrium. 1n Chapter 

6, the APT, which was developed in a static setting, is recast in a dynamic 

model as a general theory of arbitrage asset valuation. Reforrnulating the APTｭ

type arbitrag• free condition in terms of an asset price function , 1 reduce the 

condition to a partial di庄"erential equation with respect to the function. The 

pricing forrnulae are derived by solving this equation to consistently demonstrate 

the various existing ideas of arbitrage asset evaluation. 

Chapter 7 extends the APT to an international setting. Specifying a linｭ

ear factor return-generating rnodel in local currency terms , 1 show that the 

arbitrage-仕ee expected returns do not satisfy the simple APT equation unless 

they are adjusted by the cωt of exchange risk hedging. 

1n Chapter 8, intertemporal capital asset pricing and the stochastic properｭ
ti缶 of optimal portfolicぉ and consurnption are examined in a continuous-tim 

recursive utility (いstωocha鎚stic di征庄e悶

able白s dynamicωallya百"ecti凶nginv白tmen川1北t oppor吋tun口llll比ti白. The main concern in this 

chapter is to clarify how this generalization of preferenc白 a仔ects the intertemｭ

poral capital asset pricing model (lCAPM) and the consumption-based CAPM 

Chapter 9 analyzes consumptionjportfolio 山i俗 and asset 戸icing under 

market incompleteness. To avoid difficulti白 (explained in the chapter) in th 

incomplete market analysis, 1 here propose that the consumers' problem is transｭ

formed into a reduced space induced by the security markets. 1ntroducing new 

concepts to represent the assets which span this reduced space, 1 characterize 

the security market equilibrium. This approach enables us to apply various theｭ

orems in cornplete market settings [see Duffie (1996) ], such as the martingal 
approach , the repr回entative-agent pricing formula , and the APT , to the cas 
of incomplete markets. 
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Chapter 2 

Consumer Interdependence 

and Dynamics 

Abstract: Implications of consumer interdependence for saving decisions and 

macrodynamics are examined using a rational conSllmer model with consumpｭ

tion externaliti白・ The consumption-saving choic回 of an agent are governed by 

an externality-induced time preference and elぉticity of intertemporal substituｭ

tion, which hinge on other consumers' preferenc白 and consumption. Using this 

property, recent empirical studi白 supporting nonconcave utiliti白 and various 

time preference schedul田 can be rationalized. The Rarnsey equilibrium under 

time-preference differentials is substantially modified. 'Social addiction' to conｭ

sumption resulting from mutual bandwagon externaliti白 caus田 pathological

dynamics. Under asymmetric mutual externalities ,. the equilibrium dynamics 

depend crucially on the initial wealth distribution. 

JEL Classification Numbers: D90 , E21 , D58. 

Keywords: Consumer interdependence, consumption externalities, intertemｭ
poral substitution , time preference, addiction. 

2.1 Introduction 

The consumption choice of one agent is usua11y afFected by that of the other 

agents due to sociological factors , such as envy, ernulation , mob-psychological 
imitation , etc. As stressed by classical authorities [e.g ・ ， Morgenstern (1948) and 

Du白enberry (1949)], this consumer interdependence is particularly important in 
understanding macroeconomic phenomena since consumers' interactions often 

affect qualitatively their aggregate behavior. Except for only several papers,l 

however, this social ぉpect of consumption has not been shed light on in recent 

economic analys田. In particular, little is known about how consumer interdeｭ

pendence affects the consumption-saving choice and macroeconomic dynamics. 

The goal of this paper is to fill the void: Focusing on consumption exterｭ

nalities which affect intertemporal substitution , 1 shall examine implications of 

1 For e:'(amp le , s伺 Abel (1990 ) , Rob関口 ( 1 992) ， Blomquist (199 3) , Galf (1994) , Zou (1995) , 
and Bakshi and Chen (1996). Examples of the microeconomic analysis incorporating consumer 

interdependence include Becker (1974) and Hayakawa and Yenieris (1977). 
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consumer interdependence for saving decisions and the dynamic property of the 
perfect for白ight equilibrium. Consumers' interactions are incorporated into an 

optimizing two-agent model by assuming that the instantaneous utility funcｭ

tion of one agent contains the other agent's consumption rate as an external 

preference-shifting parameter. 

This economy thus differs 仕om the standard heterogeneous-agent economy 

[e.g. , Becker (1980)] only in that there is c∞O∞n凶tem町n叫1可pコO削
of preferences through consumption exter口n凶凶a剖liti 缶. This difference, however , is 
sufficient to generate a distinct feature of interdependent consumption-saving 

behavior: the optimal consumption剖saving choice is governed by an effective 

time preference rate and an effective elasticity of intertemporal substitution 

which are induced by consumption externalities. The two preference param争

ters will be called. induced time preference rates and the induced elasticity of 

intertemporal substitution , r田pectively. Both parameters hinge on the other 

agents' subjective preference-parameters and consumption through externaliｭ

ti白. 1n particular , even under constant subjective utility-discounting rat白， the

induced time preference rate is endogenously determined by the two agents' 

consumption rates. 1n this sense, the model developed here could be taken as 
a new model of endogenous time preferences. It will be shown that various 

time preference sched. ules including the on白 proposed by the existing literature 

[e.g. , Fisher (1907) , Uzawa (1968) , Fukao and Hamada (1991)] can be derived. 
by specifying consumption externaliti田 in alternative forms. 

The distinct feature has two implications. First , lots of articles which estiｭ
mate Euler equations for optimum consumption have reported. empirical results 

against the concavity of the utility function [e.g. ，肘1ankiw ， Rotemberg , and Sumｭ
mers (1985)]. As often commented., do th回e results imply that the consumption 

data observed. cannot be demonstrated by using interior optimum solutions of 

competitive households? The reply of the present paper is positive: It will be 

shown that under strong mutual bandwagon externalities the induced elasticity 

of intertemporal substitution is negative, implying that the utility function is 
seemingly or socially convex while it is concave from the subjective viewpoint. 

This social1y negative intertemporal substitution wil1 be referred. to as social 

addiction , meaning that an increase in consumption enhanc田 the marginal rate 

of substitution through mutual bandwagon externalilti白・

Second，笛 well-known [e.g., Becker (1980) ], under independent preferenc白，
the dynamics under time preference di百'erentials are extremely simple: in the 

long-run , the most patient agent owns a11 the assets, with the real interest 
rate being equal to the low田t subjective discount rate whereas the less patient 

agents consume just the quantity required for subsistence. 1n contrast , 1 sha11 

show that the equilibrium dynamics under consumption externalities display 

richer patterns. For example, (i) the long run interest rate , which is determined. 
by induced. time preferenc田， can be either lower than the lowest subjective disｭ

count rate or higher than the high白t one, depending on the sign and magnit ud 
of consumption externaliti白・ (ii) Under mutual social addiction , the interest 
rate increasingly approaches some long run rate , and asset prices continue to 
decline from the initial high回t level. (iii) When consumption externalities inｭ

duce strong mutual substitutability between individual agents' consumption , 
the order of impatience and of the long-run wealth holdings among consumers 

are reversed.. (iv) Under ぉymmet巾 mutual externaliti白， there may exist two 

“sinks of attraction ," so that which steady state is attained. depends on the 
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initial wealth distribution. 

The contribution might be limited by the underlying restrictive setting in 

which any strategic aspects are assumed away in this two-agent model. An 

implicit assumption which justi五回 this is that “agent" i 白 the representati ve 

agent of group i (more simply, of country i) which is composed of an infinite 

number of identical agents , so that each agent in group i considers himself as 

too small to affect any other agents in groups i and j.2 In this sense, the 
consumption externality treated in this paper is a consumption version of the 

Marshallian externality. 

The organization of the paper is as follows. In S配tion 2.2 an intertemporal 

consumption choice problem under consumption externalities is examined. The 

optimal consumption rule is then summarized as a modi日ed Keyn白-Ramsey

rule. In Section 2.3 the equilibrium dynamics with constant symmetric paraｭ

meters are examined. In Section 2.4 the analysis is extended to the case of 

asymmetric externalities. In Section 2.5 conclusions are summarized and possiｭ

ble future directions are sugg白ted .

2.2 Intertemporal Consumption Choices under 

Consumption Externalities 

2.2.1 Utility and Consumption-Saving Choices 

Consider a 0時good exchange economy populated with two immortal (repr• 
sentative) agents 1 and 2. The good is nonstorable and there is no capital 

accumulation. Faced with perfect bond markets, each agent maximizes his or 
her lifetime utility which is defined as the pr回ent value of the stream of instanｭ

taneous utility or felicity. 

The original feature of the model lies in that consumer interdependence is 

caused by consumption externaliti回. These externaliti田 are modeled by assumｭ

ing that t he time-t felicity of agent i (i = 1, 2) ，が (t) ， contains the other agent's 
current consumption rate, Cj (t) (j -1 i) , as an ex:ternal pr陀efe附
parameter, as well as his own, Ci (t): ut (t) = ut [Ci (t) ; 匂 (t)]. This felicity 

function is ぉsumed to be strictly increasing and strictly concave in Ci , and 
twice-differentiable with respect to the two arguments. To focus on consumpｭ

tion externaliti白 which a百ect intertemporal substitution , 1 assume that the 

cross derivatives, Uij (Ci; Cj) 三 θ2Ui (Ci; Cj) /θCiδCj (i -1 j) , are nonzero. 
Given these ぉsumptions ， the lifetime utility is specified as: 

以=1= u' [ci(川山P (-8it) d仁川=川-1 j) , σ 

where 5i denotes a constant subjective discount rate. The magnitud回 of 81 and 

52 are different 仕om each other. Without loss of generality, agent 1 is assumed 

2 Similar assumptions are usually (and implicitly) made in various context自 Io the repｭ
r田eotative agent models of a c10sed ecooomy [e.g. , Blaochard aod Fischer (1989) ], the repｭ
resentative ageot is assumed to behave as a competitor although she is really a singletoo io 
markets. Io tbe two・couotry model [e.g. , Frenkel and Razin (1985) aod Ikeda aod Ono (1992) ], 
the representative agent in each country is assumed to behave in a non自 trategic manoer deｭ
spite the fact tbat each agent really affects the utility of tbe repr田entative agent io tbe otber 
country through pecuniary externalities 
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to discount the future felicity 1回s than agent 2: 

81 < 82 ・

If it were not for consumer interactions , the discount rate would always equal 
the time preference rate (see Obstfeld (1990)] and agent 1 could be taken as more 

patient than agent 2. As shown below , however , agent 2 here can be essentially 

more patient than agent 1. 

1n Eq. (3.2) , cro岱 derivative U~j deter町山田 the property of the external efｭ

fect of agent j's consumption on agent i's marginal felicity. When '1.包L;しj >0 , C匂j is an 

F臼!:dg伊eWI附or仙t叶凶hト同-c∞om仰ple町印rπmer

minology, a positive external e偽ct on one's marginall felicity (i.e ・ ， Uij >0) could 
be referred to as a “bandwagon門 effect since agent i's preference to consume 

a commodity is enhanced by an incrωe in agent j's contemporaneous conｭ

sumption. This externality could be taken as refiecting the mob-psychological 

inclination of consumers to imitate or follow the other agents' behavior. 1n conｭ

trast , when uij く0 ， the externality induc白 substitutability of Cj for Cj in the 

Edgeworth sense. 
These consumption externaliti白 can take place for various reasons , as exｭ

emplified as follows: 

Example 1 (the “keeping叩-with-Jon白白"倒ernality): Suppose 七hat agent i 

is inter白ted in his consumption relative to the social average of consumption 

C=c?c;-α : ui = 〆 (cdC) ， which captures the “keeping-up-with-Jon回目"
externality. 1n this case, u!j is positive.3 

Example 2 (apparent s州t凶附a抗t山ωus咋 As a modified case of Example 1, supp 附 that 

agent i derives feliciti田 from pure consumption ci and "apparent status" cdC : 
ut = 輻 (Ci , cdC) . 1n th出 case ， uij can be either positive or negative depending 
on complementarity between pure consumption and "conspicuous consumption" 

used to demonstrate a high standard of living.4 

Example 3 (hostility and benev伽lce): Externalitiesωused by “同ility" or 

“benevolence" could be considered by specifying felicity functions in recursive 

manners as ui = (Ci) αi (uj ) βi (αi > 0) ・If lβぬ 1< 1, this can be solved as 
ut = (Ci) σi (Cj ti , whereσi-ï布7and 的=市長 Thus ， in 山 presence
of hostility (βi く 0) ， the other agent's consumption behaves as a substitute 

whereas it is a complement under benevolence (角> 0).5 

3This felicity function is a version of a utility function developed by Duesenberry (1949 , 
Chap.3). As he considered, it would be more plausible to assume that the weights (α ， 1-α) 
differ among agents depending on their reference groups. See also Abel (1990) and Gal� (1994) 

in which versions of this preference are applied to asset pricing. 

4The idea that the relative consumption (cdC here) is 1:1. measure of social status can 

be found in Duesenberry's work (Chap. 3.5). Robson (1992) considers a von Neumannｭ

Morgenstern utility function of wealth and status defined by relative wealth holdings ・ It can 
be easily conj町 tured that in Example 2 the indirect utility is a function of consumer日， own 

wealth holdings and the wealth distribution among conSUme l'8 , as in Robson's direct utility 
function. See also Zou (1995) and Bakshi and Chen (1996) who specify felicity as functions 

of consumption and wealth as a status index. 

5This is a version of interdependent utility functions developed by Becker (1974 , pp . 1080・
1081). 
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Example 4 (public goods): Even without so∞lゆ沼1 interactions considered 
above, consumption externaliti田 occur in the presence of public goods if the 

provision of public goods depends on the other agents' consumption. As the 

simplest example, consider a felicity function ut =ザ (Ci ， g) ， where g is a public 

good , and assume that g is financed by imposing a constant rate of consumption 

tax ァ. Then , the felicity function is given by ut =ザ (Ci ， T (Cl + C2)). Again , Uij 
can be either positive or negative depending on substitutability between Ci and 

g. 

Although th回e exampl田 may have different economic implications, the purｭ
pose here is not to describe a certain economic phenomenon caused by a speｭ

cific consumption externality, but to derive general properti白 r缶ulting from 

consumer interdependence. Throughout this paper, therefore, instead of specｭ
ifying an explicit form of consumption externality, 1 characterize consumption 
externaliti白 in terms of complementarity-inducing externaliti白 (uij > 0) and 
s山stitutability-inducing externaliti白 (uij <0). 

At time zero, agent i chooses his time schedule of consumption {Ci (t)}:o 
and nonhuman wealth holding {αi (t)}之o so as to maximize Eq. (3.2) , taking 
as given 七he time paths of the endowment flow {叫 (t) }三0 ' the real interest 

rate {r (t)}三0' and the other agent's consumption schedule {Cj (t)}三。 (j i i) .6 

Maximization is carried out subject to the initial condition，向 (0) =向。 (a
constant) , and the flow and intertemporal constraints , 

山 (t) = r (t) αi (t) + 切i(t)-Ci(t) ， i=1,2, (2.2) 

("T  1 

limαi (T) exp ~ - I r (t) dt > = 0, i = 1, 2, (2.3) 
i →∞ I Jo I 

where dots denote the time derivatives. Eq. (2.2) is self-explanatory. Eq. (2.3) 
reprεsents the no-Ponzi-game condition , which prohibits the agent from rolling 
over his debts forever. 

Define the current value Hamiltonian function as 

Hi(t) = ぜ [Ci (t) ; 匂 (t)] + 入i {r (t) 向 (t) + 叩i(t) -ci(t)} , i = 1, 2, (2.4) 

where ん is the shadow price of saving. The necessary conditions are given by 

u~ [Ci (t) ; 匂 (t)] = 入i(t) ， i = 1, 2, 

入i (t) j入i (t) = 8i -r (t) , i = 1,2, 

(2.5) 

(2.6) 

where ui = θutjθCi ・ Conditions (2.5) and (2.6) together with (2.2) and (2.3) are 

also sufficient for the solution to be optimum because the Hamiltonian function 

Hi is concave in Ci and αi. 

Note from Eq. (2.5) that the shadow price of savi時九 also depends on the 

other 's consumption Cj through externaliti白， implying that the consumption 

plans for agents 1 and 2 are interdependent. This ωn be clarified by obtaining 

6By the def�ition of externalities , agent i takes time path {Cj (t)}乞o as given. This 

amounts to assuming away any charitable behavior (e.g. , donations) and predatory behavior 
(e.g. , theft). 1n the pr回ent model , agents can feel benevolent and/or hostile toward their 
neighbors but they never control other agents' consumption by any means. Concerning this 

iS6ue , 6ee Becker (1974). 
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from Eqs. (2.5) and (2.6) the Keynes-Ramsey rule under consumption exteト

naliti田:

T}ii [Ci (t) ; 句作)] {ム(t) j ci( t)} - ηij [Ci (t) ; 勺 (t)] {匂 (t)jCj(t)}+ ム = r (t) , 
i , j = 1,2(i :p j) , 

(2.7) 
where T}ii (Ci; Cj) denot白 the elasticity of agent i's marginal felicity with r白pect

to his own consumptionj and ηij (Ci; Cj) is the elasticity of agent i 's marginal 

felicity with respect to agent j's consumption: 

ηii (Ci; Cj) = -ciuii (Ci; Cj) jui (Ci; Cj) > 0，市j (Ci; Cj) = CjUij (Ci; Cj) jui (Ci; Cj) , 
i , j=1 ,2(i :p j). 

From Eq. (2.7) , the instantaneous pure marginal rate of substitution of 
one agent (the left hand side) ,7 which depends on the other agent's consumpｭ
tion as well as his own , must equal the market interest rate. 1 focus on the 

Nash-equilibrium consumption plans of two agents , in which the consumption 
growth rat白 of the two agents simultaneously satisfy the two Euler equations , 
(2.7). The determination of the Nash-equilib山m consumption plans can be 

summarized by the following rule: 

Proposition (α modiβed Keyn砂Ramsey rule): The NIαsh-equilibrium coη

sumption schedules sαtisfy: 

�i(t) j ci(t) = 町 (t) {r (t) -pi( t)} , i = 1, 2, (2.8) 

ωhere 7riαnd Pi represent, respectively, 

切パCj;Ci)+ ηij (Ci; Cj) 
i , j = 1, 2 (i:p j) , (2.9) 

η11 (C1; C2) η22 (C2; C1) - η12 (C1; C2) η21 (C2; C1) , 

η.パCj;Ci)ηij (Ci; Cj) 
3J J54+-64J=l ,2(t#j). 

Pi = η'j j (Cj; Ci) +ηij (Ci; Cj) η'jj (Cj;Ci) +T}ij (Ci;Cj)V] , 
(2.10) 

Proof: Solving the two equations in (2.7) for C1 (t) jC1 (t) and C2 (t) jC2 (t) yields 

Eqs. (2.8).口

In accordance with Eq. (2.8) , the consumption growth rate of agent i is 
governed by two parameters 7ri and Pi , both of which also depend on the other 
agent's subjective preferenc白 and consumption. P.arameter 7ri captures the 
sensitivity of .agent i's consumption growth rate to a change in the interest rate. 
1 thus call parameter 7ri the elasticity of intertemporal substitution induced 
by consumption externaliti民 or more simply the induced (or socially-induced) 

elαsticity of intertem仰向l substitution. Given the sign of 7ri , on the other hand , 

7To be precise , denoting agent i's marginal rate of subBtitution between time t and 
ア(> t) by Mi (t , r) , the instantaneous pure rnarginal rate of substitution , 1MRSi (t) , 
is given as: 1MRSi (t) = limθMi (t , r) jθr. Since in this setting 1MRSi (t , r) = 

γ→ t 

ui (t) exp {8i (r -t)} jui (ァ) for agent i , his insta叫aneous pure rnarginal rate of substitution 

can be represented by the left hand side of Eq. (2 , 7) 
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the relative magnitud田 of the interest rate and parameter Pi determine whether 
agent i's consumption is increasing or decreasing in t. The Pi is thus referred 
to as the rate of time preference induced by consumption externaliti白， 0町r mo町re

S司i凶mpl:匂y、 the in刈1

with the usual c∞or口r白pond出ing notions, 1 give the formal definitions of th白e

parameters in the following. 

Definition: The induced elasticiti白 of inte巾mpo凶 substitution，同 (i=1 ， 2) ，

are defined as increases of r白pective agents' Nash..equilibrium consumption 

growth rates required for the instantaneous pure marginal ra七回 of substitution 

for each agent to rise uniformly by one percent. That is, (九 π2) is a solution , 
(ム (èI/cI) ，ム(句/C2)) , to equation 

27)(2jUG)=(i) 
Definition: The induced time preference rate, Pi , ~:; defined as the instantaｭ

neous pure marginal rate of substitution in agent i's Nぉh-equilibrium consumpｭ
tion schedule (IMRSi) evaluated at �i = 0 and IMRS.)i =IMRSi (j i:-i):8 ,9 

2.2.2 

Pi (t) = IMRSi (t) I ム =0; IMRSj=IMRSi (2.11) 

The Induced Elasticity of Intertemporal Substituｭ
tion 

In the absence of externaliti白， the elasticity of intertemporal substitution is 

given by the reciprocal of the elasticity of the marginal felicity, e.g・， l/'rJii for 

agent i. On the other hand , from Eq. (ρ2.9的) , 七山he引in凶du凶ce吋d elasticity 0ぱf i出n凶t旬er此tem
poral substitution can be rewritten as 

π= 土(1 + 'rJij '¥ __----

ηii \ム'町j) 1-(η'j i/ηi i) (ηij /η'jj) , 
i == 1, 2 (i i:-j) . (2.12) 

This implies that the value of 7ri can be larger or smaller than l/ 'rJii , the no-
externality c出町 depending on (i) whether agent i is subjected to complementarityｭ

inducing ('rJij > 0) or substitutability-inducing externaliti白 (ηり< 0) , and (ii) 
whether externaliti白 are symmetric (川町 i > 0) or not (町 'rJji :::; 0). To focus 

8The time preference rate i自 usually def�ed as the instantaneous pure marginal rate of 

substitution evaluated at 鑛 = 0 [e , g" Uzawa (1969)J , Here 1MRSi (t) (the left hand side of 

Eq , (2 , 7)) also depends on 鑠 (t) /Cj (t) (j i= i). Eliminaもing it from IMRSi (t) by using the 

def�ition of IMRSj (t) , 1MRSi (t) can be rewritten as dependent upon IMRSj (t) 却 well 制
白 (t) /Ci (t) , ln definition (2 , 11) , IMRSj (t) is set equal to 1MHSi (t) by taking into account 
the fact that they are equalized in equilibrium , 

9 As in Obstfeld (1990) , def�ition (2 , 11) can be rewritten in terms of the Volterra derjvative, 
Dv [Ui (0) , Ci (t)] = tL~ (t) exp (-Óit) ， 回:

Pi = _!!. ln Dv [Ui (0) ,Ci (t 
i = - dt c 守 =0 ・ d ln Dv[U ， (O) . c;(t) l == ~ 1nDvfU;(O).c 

-,- -, dt d ι 
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on (i) , suppose that agent j is not subjected to any externaliti回， η'j i. = O. Then , 
Eq. (2.12) reduces to 

πi- 去(1+号)訪れj20
That is , complementarity-inducing (resp. s 山S坑ti比t凶aめbilit句y-ん吋-1I吋u凹ucinω externaliｭ

ti白 tωo ag伊en凶t i raise (resp. lower) his elasticity of intertemporal substitution. 

This is because a one percent increase in r rais白 the optimal consumption 

growth rate for agent j by 1/ηJj ， which ceteris paゆωlowers the instantaneous 

pure marginal rate of substitution of agent i by 川i/ηか so that the consumpｭ

tion growth rate for agent i must rise by (1/ηii) {1 十 (ηij /η'jj)} to satisfy the 
Euler equation, (2.7). As for the second factor (ii) , asymmetric externalities 
(ηij ηji く 0) weaken inte巾mporal substitution, whereas symmetric externaliｭ
ti白 (ηり η'ji > 0) promote it insofar 白川> O. 

1t is noteworthy that , from Eq. (2.9) or (2.12) , the induced elasticity of 
intertemporal substitution can be negative, implying that the felicity function 
ωn be socially convex. 1n this pathological case, the agent is, say, socially 
αddicted to the pr白ent consumption (or the present living standard) in the 

sense that an increぉe in the pr白ent consumption raises the pure marginal 

rate of substitution of the pr白ent for the next instant consumption due to 

social interactions. From Eq. (2.9) or (2.12) , the social addiction occurs, for 
example, under strong mutual Edgeworth-complementariti田 (i.e. ， strong mutual 

bandwagon externalities). 1n that cぉe ， an increase in the pr悶nt consumption 

of agent i , ceteris paribus, increas田 the other agent 's pr白ent consumption. This 

in turn raises the pure marginal rate of substitution of the present for the next 

instant consumption for agent i , d田pite the increase of his pr田ent consumption. 

Two comments are in order regarding this increasi:ng-return property. First , 
social addiction is similar in phenomenon to, but substantially different in 

mechanism 仕om the addiction discussed by Becker and M ur下旬 (1988). 1n 
their model , addiction occurs through an intertemporal habit formation process , 
whereas it is generated here by consumer interdependence. Becker and Murphy 

show that addiction occurs under “adjacent complementarity" between conｭ
sumption and habit. In the pr田ent setting, the Edgeworth-complementarity 
between two agents' consumption rates plays a similar role. 

Second, the possibility of a negative 7ri might be consistent with many empirｭ

ical studies which fail to obtain s取lÍficantly positive estimates of the elasticity of 

intertempo叫 substitution [Giovannini (1985) , Mankiw, Rotemberg, and Sumｭ
mers (1 985) , Hall (1988) , Browning (1989)]. For example, Hall (1988) obtains 
a negative value of the elasticity 仕om US. annual data , commenting that his 
finding cannot be taken literally since it implies nonconcave utility [Hall (1988) , 
p.353]. Mankiw, Rotemberg, and Summers (1985) provide “disappointing" esー
もimates of the Euler equation which support nonconcave utility functions.10 As 

a theoretical po田ibility， however , a felicity function can be socially or seemｭ

ingly convex under consumption externaliti白 even though it is concave from 

10 Although Mankiw , Rotemberg , and Summer自 (1985) [and Kugler (1988) cited belowJ 

incorporate leisure , it is p08sible to apply the pre田nt idea to the felicity function containing 

lei5ure 50 a8 to derive a socially convex felicity function of consumption and leisure. 
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the subjective viewpoint. Ll, 12 This interpretation is also consistent with K ugler 

(1988) 's empirical finding that a cointegration approach which is robust with 

r回pect to stationary taste shocks r田ults in a signifiωntly positive 白timate of 

the elasticity of intertemporal substitution. 

A similar implication of a negative 町 can be derived by examining the 

interest rate elぉticity of the saving propensity out of the permanent income. 

For the ease of exposition , assume that a11 the ηij and r are constant. Then , 
from Eqs. (2.3) , (2.2) , and (2.8) , 1 can derive the saving propensity from the 

permanent inco:ne, y{ (t) = r { αi(t) + Jooo 叫 (t 十ア) exp( -rT)dァ} , as si(r) = 
π1 ・ (1 -pi/r). 凶 It follows that: 

s;(T)20 白川三0， i = 1, (2.13) 

Thus , in contrast to the usual case [e.g. , Takayama (1985) ], the marginal propenｭ
sity to save can be negative. Ind制， under social addiction (7fi < 0) , an increase 

in the real interest rate lowers his saving propensity. Thお possibility could exｭ

plain insigni日cant and/or unstable 白timat白 of the empiriω1 relationship b仔

tween the saving propensity and the inter田t rate which are reported in recent 

studies [e.g. , Giovan山

2.2.3 The Induced Rate of Time Preference 

From Eq. (2.10) , the induced rate of time preference of one agent ， ρi ， is a 

weighted average of his own subjective discount rate Oi and the other agent's 令，

where the weight applied to Oj is given by the relative magnitude of the exterｭ

nality e百ect of agent j's consumption. Roughly speaking, a complementarityｭ

inducing externality draws the induced time preference rate of one agent toward 

the other agent's subjective discount rate whereぉ a substitutability-inducing 

one magni目白 the discrepancy between the two. 

A distinct property embedded in Eq. (2.10) is that, when the elasticiti田 of

marginal felicities are variable, induced time preference rates are endogenously 
determined by the two agents' consumption rat回. In particular, the induced 
time preference rate can be either positively or negatively related to each agent 's 

consumption depending on how the elasticiti白 of marginal feliciti白 ηij rely on 

the two agents' consumption rates. 

Using this property, the pr白ent model can mimic, or give a micro foundation 

to , various forms of time preference schedules proposed by the existing literature. 
To give exampl缶 below ， suppose that TJ22 is constant. 

11 This exp1anation for apparent non-concavity might be somewbat 1imited because convexity 

in a “ composite consumption" of cl and C2 is directly incorporated to exp1ain socia1 addiction. 

[e.g. , consider the generalized Cobb-Douglas felicity function , 'u i川刈z吋t (cμC川

which socia1 addiction occurs iげf and on1y iげfγ> 1, i.e. , ui is convex in c?c~-o.l There are other 
、 J

exp1anations which propose , for examp1e , intertempora1 non-separability [e.g ., Eichenbaum , 
Hansen , Singleton (1988)). 

L2This structure is similar to tbat of endogenous growtb models wbicb ensure weIl-defined 

competitive equi1ibria witb increasing returns by assuming production externalities [e .g. , 
Romer (1986)). Tbe same logic can be found in Robson (1993) who derives tbe "concaveｭ
convex-concave" utility of tbe Friedman-Savage type. 

L3Here r 一川 (r ーん) is assumed strictly positive to ensure that the pr四ent value of the 
lifetime consump も ion stream is bounded 
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Example 5 (increasing marginal impatience): If agent 1 is subjected to an inｭ

creasing bandwagon 出ernality:η12 (C1; 句) > 0 andδη12 (C1; 匂) /θC1 > 0, then , 
from Eq. (2.10) , P1 displays an "increasing marginal impatience ，"θpdθC1 > 0, 
as is assumed by Uzawa (1968) and Epstein and Hyn白 (1983). 

Example 6 (decreasing marginal impatience): If agent 1 is subjected to a 

decreasing bandwagon externality:η12 (C1; C2) > 0 and θη12 (C1;~) /θC1 く 0 ，
then , P1 displays a "decr邸ing marginal impatience ，"θpdθC1 < 0, as propωed 
by Fisher (1907) 

Example 7 (nonmonotonic impatience): Assume that agent 1 is subjected to 

a bandwagon externality:η12 (C1; C2) > 0, and that there exists some positive 
constant k , such that 8TJ12 (C1; C2) /θcきo as C1 き k. Then , P1 displays a U-shaped 
curve as proposed by Fl向。 and Hamada (1991). 

The present model differs from the usual endogenous time preference models 

in two points. First , the induced time preference rate can depend on the other 
agent's consumption. This is because the extent to which an agent is subjected 

to consumption externaliti白 depends on how much the other agent consum白・

Second , an attractive property of endogenous time preference models is that it 
allows for a steady state in which both C1 and C2 are strictly positive, regardless 
of di町'erences in the degree of impatience. In contrast , the present model still 
retains the property that there is no such steady state, which is an inherent 

property of constant subjective time preference models [indeed, Eq. (2.7) implies 
that , insofar as Ci > 0, any levels of the inter白t rate cannot satisfy the steady 

state condition , �1 =匂 =0].

2.3 Equilibrium Dynamics: A Sﾏlnple Case 

Let us examine the equilibrium dynamics by incorporating the market equilibｭ

rium condition with fixed commodity supply，町 (t) = Yi (constant): 

C1 (t) + C2 (t) = Y (= Y1 + Y2) . (2.14) 

Here 1 focus on a simple case with constant and symmetric elasticiti白 : TJ11 = η22 

and TJ12 = TJ21 where TJij are all constant. It will turn out that this simple 

model is useful to shed light on several typical properties arising from consumer 

interdependence. 

The induced substitution elasticiti白 and the induced time preference rates 

for two agents are now given by 

π1=π2=η11 一 η12) 

1 -η11-- 81 +η1-2-82) and P2 = η11-82 +η12_ 81) 
η11+η12η11+η12η11 +η12η11+η12 

(2.15) 

(2.16) 

respectively. Thus, social addiction occurs if and only ifη11 < TJ12 ・ The relaｭ

tion between induced time preference rates Pi and externality elasticity η12 is 

depicted by Fig. 1. As is shown in the 日gure ， for the induced time preference 

rates to be positive, parameter TJ12 must satisfy 

η12 >一η11 (8d 82) orη12 <ーη11 (82/81) • (2.17) 
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1n this section , this condition is assumed to be validバ
The equilibrium inter田t rate can be derived by logarithmically differentiatｭ

ing Eq. (2.14) by t and substituting Eq. (2.8) into the r田ult as 

ァ (t) = {Cl (t) /ν} Pl + {C2 (t) /ν} P2 ・ (2.18) 

That is, 7' (t) is determined as a weighted average of P1 and P2 where the weights 
are given by the consumption shar白 ofr缶pective agents. To analyze the explicit 

dynami岱 of 7' (t) , substitute Eq. (2.14) into (2.18) , differe凶ate logarithmically 
the 間ult by t , and finally substitute Eqs. (2.8) into the equation. Then , the 
following autonomous equation is obtained: 

千 (t) = {7' (t) -pr} {7' (t) -P2} / (η11 一 ηω(2.19)

As for the equilibrium consumption, differe凶ating Eq. (2.14) by t and 

substituting succ白sively Eqs. (2.8) and (2.14) into the r白ult yields , if P1 -#ρ2 ， 

Cl (t) = {P2 -7' (t)} ν/ (p2 -Pl) , 

C2 (t) = {7' (t) -pr}y/ (p2 -pI). 

(2.20) 

(2.21) 

Given the initial interest rate , 7' (0) , the entire time path of (7', C1 , C2) is 

determined by Eqs. (2.20), (2.21) , and (2.19). Given this, in turn , the time path 
ofαi is decided by Eq. (2.2) under given initial value α心 From this recursive 
structure, the perfect for白ight equilibrium dynamics are determined such that 

r (0) gene則自 sequence {αi (t)}三。 which satis自白 the 時Ponzi-game condition , 
(2.3). As demonstrated below, if this perfect for白ight dynamic equilibrium 

exists , it is unique. 

As conjectured 仕om Eq. (2.8) , the equilibrium dynamics depend on (i) 
η12き0 ， ( ii)π1 (=η) き0 ， and (iii) Pl きρ2 ・ Given thi:s observation , in order to 
describe fully the equilibrium dynamics , 1 must consider the four following cas白:

• case(a): TJ12 < -TJ11 (82/81), 

• case(b): ーη11 (8r/ 82)<η12 < 0 , 

• case( c): 0 <η12 <η11 ， 

• case(d): TJ12 > η11 ， 

where each interval forη12 is depicted in Fig. 1. As the case changes from (a) 七0

(d) , externality el副icityη12 becom白 larger: e.g. , c部e (a) rep陀sents the mos坑t 

su山1

i出ndu山1児ci凶ng. The property of each case is summarized by Table 1 from the viewｭ

points of (i) through (iii) above 

( i)η12 ( ii)π1(=π2) (iii) Pi and 8i 
Case (a) + P2 < 81 < 82 < P1 
Case (b) + P1 < 81 く 82 < P2 
Case (c) + + 81 < P1 < P2 < 82 
Case (d) + 81 < P2 < ρ1 < 82 

Table 1: Simple cases 

14 Kocherlakota (1990) proves that in growing economies negative utility-discounting can be 

consistent with well-def�ed competitive equilibria. This proposition do田 not apply to the 

present model since growth is assumed away here. 
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The equilibrium dynamics in cases (a) ー (d) are depicted in Figs. 2( a) -
2( d ), respectively. In each figure, the upper diagram illustrates the interest rate 
dynamics ger町ated by the quadratic differe凶al equation , (2.19); and the lower 

on白 depict the (r ， α1) dynamics generated by Eq. (2.2) with C1 given by Eq. 

(2.20) , i.e. , 

α1(t)=r(t) α 1 (t) +Y1 一 {p2 -r (t)} Y / (P2 -pI) • (2.22) 

As shown by the 日gures ， when -yd P2 < α10 <ぬ/P1 , the equilibrium tim守path
is determined uniquely by the initial 笛set holding α10 on the saddle trajectory 

in the (r ， α1) space 
The effects of consumer interdependence on the equilibrium dynamics can 

be summarized as follows: First , the equilibrium inter回t rate is no longer deｭ

termined by the subjective discount rat白 8'( and can be either lower than the 

low白t subjective discount rate or higher than the highest one, depending on 
the sign and magnitude of consumption externalities. For example, when a 

substitutability-induci時 externality tak白 place (η12 < 0) , the equilibrium inｭ
ter白t rate can be either lower than the low白t subjective discount rate (81), or 
higher than the high白t one (82) depending onα1 [see Figs. 2(a) and 2(b)]. Parｭ
ticularly, in this case, the long-run inter缶t rate is always lower than the most 

patient agent's subjective discount rate. In contrast , when the externality is 
complementarity-inducing (7]12 > 0) , the long-run interest rate is always higher 
than the most patient agent's subjective discount rate, the nかexternality case 

[see Figs. 2(c) and 2(d)]. 

Secondly, since min (P1 ,P2) < T (t) < max (P1 ,P2) from Eqs. (2.16) , Eq. 
(2.18) implies 

ベt) 三O Ç=} η11fη12 (白川(=サ;0) (2.23) 

Thus, r monotonically rises over time when the two agents are socially addicted 
to the pr田ent consumption [i.e. , case (d)]. This contrasts with the independent 
preference case, in which the real inter回t rate declin白 over time toward the 

low田t discount rate (81, he吋 l5 Under social addiction , as agent 1 gradually 

increas白 consumption ， his preference for the present consumption escalat白 over

time, leading the interest rate to monotonically rise over time. This intuition 

can be put otherwise by considering a security which yields one unit of the 

commodity at each instant. Letting q denote the price of the security, the nか
arbitrage condition is given by: r = (q + 1) /q , or equivalently q = rq -1 

As can easily be shown, the equilibrium relationship between r and q can be 

repr白ented by a negatively-sloped saddle trajectory defined in the (r , q) space 
Under social addiction , as r rises over time, q declines monotonically from the 
initial high回t level , meaning that the pr白ent value of the future consumption 

stream in terms of the pr田ent consumption falls down over time. 

Thirdly, strong mutual substitutability-inducing externaliti回 reverse the orｭ

der of impatience and of the long-run wealth holdings among consumers. As 

seen 仕om Table 1 and Fig. 2(a ), when case (a) is true , agent 2 ( i ・ e. ， the less 
patient agent from the viewpoint of the subjective discount rate) is effectively 

more patient than agent 1 due to strong substitutability-inducing externaliti白・

Agent 2 thus eventually occupi田 all the available wealth and consum白 a11 the 

15See Frenkel and Razin (1985) 
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output w hereぉ agent 1 shrinks in the long-run. The long-run interest rate is 

determined by agent 2's induced time preference.16 

2.4 Equilibrium Dynamics: A General Case 

Let us finally extend the model to a more general case in which elastic it i田 市1

are constant but possibly asymmetric. As will be shown below, asymmetric 

externaliti白 bring several possibiliti田 which cannot occur in the previous case, 
e.g. , multiple equilibria, the non-existence of equilibrium under equal wealth 

distributions , etc. 
To derive the equilibrium inter回t rate, di百erentiate logarithmically Eq. 

(2.14) by t and substitute Eq. (2.8) into the result. 1 then obtain 

r (t) = ω (t) P1 + {1 ー ω (t)} P2 , (2.24) 

w here weight ωis given by 

C1π1 C1 (η22 +η12) 
ω==. (225) 

C1π1 + C2π2 Cl ('Tl22 +ηω+ C2 (η11+η21 ) 

That is, the inter白t rate is determined as a weighted average of the two induced 

time preference ra七回 as in Section 2.3 , but here the weights, given by Eq. (2.25) , 
are the consumption shares adjusted by the induced substitution elasticiti白.

The inter白t rate can thus be either higher than mεDC (P1 , P2) or lower 七han
min (P1 , P2) when social addiction occurs. 1n that case, the1'efo1'e , the positivity 

condition fo1' r must be considered carefully. 
From Eq. (2.24) , the autonomous dynamic equation with respect to r and 

the equilibrium relations between r and Ci can be de1'ived using the same p1'か

cedures as in the previous section:17 

(η'22 +η12 一 η11-η21) (η11+η2 1) (η22 +ηω 
計 (t) = ~ 

(η11η22 - η12η21)2 (82 - 81) 

x (r (t) -pr) (r (t) -P12) (r (t) - ρ2) , 

(η11+η21) (r (t) - ρ2) 
C1 (t) = 

(η11+η21 -η22 -ηω(ァ (t) --P12) 

(η22 +ηω (r (t) -pr) 
C2 (t) = 

(η22 +η12 -η11 一 η21) (r (t) 一 P12)

where P12 represents 

P12 = (ぃ

(2.26) 

(2.27) 

(2.28) 

(2.29) 

To characterize th白e equilibrium dynamics , 1 reduce the consumption dyｭ

namics by substituting succ回sively Eqs. (2.24) , (2.25), (2.9), (2.10) , and (2.14) 

into (2.8) as 

16 Case (d) represents a similar case in which P2 is lower than Pl' However , in this case, 
social addiction occurs (see Table 1) , so that agent 1 accumulates wealth to be eventually the 

dominant consumer. 

17Eq. (2.26) is derived by substituting Eq. (2.14) into (2 .24) , differentiating logarithmically 
the result by t , and finally substituting (2.8). Eqs. (2.27) and (2.28) can be obtained by 

differentiating Eq. (2.14) by t and substituting Eq. (2.8) into the result 
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where 

1(t) C2 (t) (82 -81) 
白 (t) = n [C1 (t) ，匂 (t)] 

n (C1 , C2) = C1 (η22 +η12) + c2 (η11 十 η21) . 

(2.30) 

(2.31) 

The steady state is thus given by (ci , c2) = (y , 0) and (0 ， ν) . As pointed ou t in 

Section 2.2 , one of the agents finally becomes the dominant one who consumes 
a11. 

Eq. (2.30) reveals that the equilibrium consumption dynamics depend cruｭ

cially on the sign of 口， which in turn，仕om Eq. (3.11) , depends on the signs of 
η11 + 'r/21 and η22 +η12 ・ Incorporating the positivity conditions for Pi into four 
possib1e combinations of (sign (η11+η21) ,sign (η22 +η12)) ， 1 can distinguish the 
following cas白 .18

• case 1:η11+η21 > 0 and η22+(82/81 )η12 > 0 , 

• case 2:η11 + (8d 82 ) η21 < 0 and η22 +η12 < 0 , 

• case 3:η11 + (8d 82 ) η21 < 0 and η22 十 (82 /81) η12 > 0, 

• case 4:η11+η21 > 0 and 'r/22 + η12 < o. 

Case 1 repr回ents the case in which n (C1 , Y -C1) > 0 for any C1ε [0 ， y]. 
Case 2 is the opposite case in which n (C1 , Y -cI) < 0 for any C1ε [0 ， y]. In 

cas白 3 and 4, the sign of n (C1' Y -C1) depends on the magnitude of C1. As 1 

shall show by turns , case 3 disp1ays richer dynamics whereas inωse 4 there is 

no equilibrium. 

2.4.1 Case 1 

Case 1 represents the case in which both agents are subjected to either a 

complementarity-inducing externality or a substitutability-inducing but suffiｭ

ciently weak externality (η21 > -η11 ， η12 >ー (8d82) 'r/22). Since n > 0 , from 
Eq. (2.30) , agent 1 monotonically increases consumption over time , and hence 
becomes the dominant consumer in the 10ng run. Agent 2 shrinks over time. 

From Eq. (2.24) , the inter白t rate approaches agent 1 's induced time preferｭ

ence rate. Regarding the consumption and wealth dynamics , this case corr• 
sponds to cas白 (b) through (d) discussed in Section 2.3. [加'Iore specifically, if 
η11η22 一 η12 1]21 < 0, social addiction occurs to both agents (πし π2 < 0 from Eq 

(2.9)). The r田ultant dynamics are the same as in case (d).] 

2.4.2 Cぉe2

Contrarily, inωse 2, two agents are subjected to sufficiently strong substitutabilityｭ
inducing externalities (1]21 < -(82 /81) η11 0 ， η12 < -'r/22). Since n is always neg-
ative，仕om Eq. (2.30) , agent 2 continu回 to increase consumption to be finally 

18 For example, case 1 repr田ents the c回e in which η11 +η21 > 0 ， η22 +η12 > 0, P1 > 0, 
and P2 > O. From Eq. (2.10) , the inequalities η11 +η21 > 0 and ρ2 > 0 can be summarized 
as min (η11 +η21 ， η11 + (51/52)η21) > 0; and the inequalitiesη22 +η12 > 0 and ρ1 > 0 槌
皿in (η22 +η12 ， η22 + (52/5 1) η12) > O. These two inequalities reduce to the definition of ca回
1 in the text. The other cases are constructed in the same way 
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the dominant consumer whereas agent 1 shrinks. From Eq. (2 .24) , the long 
run inter白t rate is given by agent 2's induced time preference. This case correｭ

sponds to case (a) in Section 2.3. [Indeed, sinceη11η22 一 η凶21 < 0 in this 印紙
from Eq. (2.9) , social addiction do回 not occur to either agent (九 π2 > 0).] 

2.4.3 Case 3 

In this case, an increase in C1 has a negative external effect on agent 2's marｭ

ginal felicity which is stronger than the internal effect on agent 1 's (η21 < 
一 (82 /81 )η11 < -η11) . An increase in 弘 on the contrary，閃巾 a positive 

or a negative but relatively weak e百'ect on agent 2's rnarginal felicity (7712 > 
-(81/ 82 )η22 >ーη22). 

Letting c denote a value of C1 which satisfies that n (C1 , y -C1) = 0, i.e. , 

ー (η11+η21)ν
ご一 η11+η21 一 η22 -η12? 

it is valid that n (C1 , Y -C1) をo as Cl き 2 ・ From Eq. (2.30) , 1 thus obtain 

é1 ミ0 倍 Clこ c (2.32) 
' ・ー

This implies that there exist two “sinks of attraction ," so that which steady 
state is attained depends on the initial consumption level: if the initial consumpｭ

tion for agent 1 is so large that C1 (0) > c , then agent 1 co凶nu白 to increase 

consumption over time and finally becom白 the dominant consumer , as in case 
1. In contrast, C1 (0) which is sma11er than C 1伺d也s tωo subsequent mo∞toni 

de伐cr閃eaおS缶 i凶n C1 and ag伊en凶t 2 c∞O∞nsume白s a11 the outゆpu凶t i泊n the long run , as in case 
2. 

To show typical dynamics , let me now focus on a case in which externalities 

are asyrnmetric: 7712 > 0 (recall thatη21 < 0 in case 3). Then , from Eqs. (2.9) 

and (2 . 10) ー the induced preference parameters satisfy 

7rl > 0 ， π2 < 0 , and P2 < P12 < P1 ・

With these parameters, in turn , the interest rate given by Eq. (2.24) might be 
negative depending on the magnitude of Cl ・ lndeed ， as proven in Appendix A.1 , 
the inter白t rate is strictly positive if and only if agent 1 's consumption rate 

satis自白:

Cl > C or C1 < c, (2.33) 

where 
で {(82 /81) η11+η2dν
v - (82/81 )η11+η21 一 η22 - (82 /81 )η123 

which is strictly positive in case 3. 
Given these observations, Fig. 3 i11ustrat白 the equilibrium dynamics of 

(" C1 , aI). Panel (a) depicts the interest rate dynami岱 given by Eq. (2.26) , 
where the coefficient of ,3 is negative in the present settiing. Panel (b) illustrates 

relation (2.27) between Cl and , .19 As seen from Eq. (2.24) , and indeed shown 

19 From Eq. (2.27) , 1 can obtain dclldr = (ρ2 -P12) cd (r -P2) (r -P12) , which is negative 
for r ε(O ， P2) U (pl ， ∞) in the present case 
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in the panel, with positive Cl and C2 the inter田t rate satis目白 either r く P2 0r
r > Pl ・ 20 Pane1 (c) depicts the wea1th dynami岱 generated by Eq. (2.2) with 

ωi (t) = Yi. The positive1y-s1oping curv回 with arrows repr田ent a saddle trajecｭ

tory which is obtained from no-Ponzi-game condition (2.3) [see Appendix A.2 
for derivation]. Given the initial condition ， α1 (0) =given, the equilibrium dyｭ
naml白 are determined on this trajectory. Note that the sadd1e trajectory is cut 

off between a and α ， where a and αrepresent the required asset stocks to satisfy 
no-Ponzi-game condition (2.3) when Cl (0) approaches � and c , respective1y: 

ι = 品1=わわ∞「~(い川C
α=cIMJM 

Pane1 (c) illustrat白 the case in w hich α>a 

Regarding these typica1 dynamics , note the two following points. First , 
suppωe that α> a, as depicted in pane1 (c). Then , there is a unique equilibrium 

for al (0) ε (一去合ド刊， a寸邑サ叫)ト川Uべ(什刈) 山お刈山…凶山伽e町r…t句ts n日…n∞O吋叩伺叩叩叫ul凶副山i江山l日i
[p阿阿凶凶a訂制訓…山r吋凶巾山ωtic川ωic川凶C∞ωu叫1ar1y f，町…川α向1仰 (勺ã， ~) , e.gιいい川，al川α向川吋川1パ1 (0ρ例0め)= い 凶問附附ne凶e1刈州川l川巾刷(いω附C吋c)]川l ωnt 2 is S 

凶

and c∞O 削m仰叩pμtion c∞m叫O∞州n凶ti附 tωo i … S臼e tωowa訂rd ( 句九い，C2匂ω2) =: ( 去 ? νけ) and ag伊en凶t 1 

山S.2引1 1…廿川ω凶仇a部副帆S坑札t ，叩t 1 山a剖lい州such山廿凶伽刷山叩1凶川叩れa抗山川t凶川α向川州1パ巾(仰例0め) ε (件).
he becom白 eventually dominant as in case 1. Rough1y speaking, in this case 
of asymmetric externa1ities, the initia1 wea1th distribution determines which 
agent's externa1ity is dominant and which agent becomes eventually dominant. 

Second1y, w hen α< a [as exemp1i日ed by the broken curve starting from point 

山釘叩山l児e1川…ml札u叫叫11

i凶n pane1 (c吋). That is, ifthe initia1 a岱et holdings are fairly eq叫 between agents 1 

and 2, then the initial condition cannot determine which steady state is attained. 
Either equilibrium path is possib1e depending on beliefs or expectations.22 

By definition ， αand a depend on the entire tim争path of (Cl , r). It 出 thus

prohibitive1y difficu1t to examine qualitaもively what determin回 the relative magｭ

nitudε5 of them. 1 instead give a numerical example below in which the order 

of the mag凶吋白 of αand a change depending on output share Ydy.23 

20From Eq. (2.25) , it is valid thatω(1 -ω) < O. Therefore, from Eq. (2.24) , r takes values 
outside interval [p2 ， ρ1] 

21 Although r is determined as lower than P2 , social addiction occurs to agent 2. F'rom 
modif�d Keynes-Ramsey ruJe (2 .8) , he thus increases consumption and asset hoJdings over 
time. 

22 1n finding the possibility of multiple equiJibria , 1 am indebted to an anonymous referee 
for insightful sugg田tions .

23When η12 < 0 , the equilibrium dynamics of r differ from those which are depicted by figure 
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Example 8: Set (7]1l， ~η7]12 ， ~η巾722あ， η恥2
(p内1 ， P払 p向2) = (ρ0.4， 1 ， 2.5司). Then ， αand � can be obtained as the following 

functions of Y1 , respectively:α= 0.16779-0.20268Y1 and � = 0.22123-1.4778Y1 

(see Appendix A.3 for de山ation). It follows that if Yl is sufficie凶y large such 

that Yl E (0.04191 ， 1(=ν)) ， α 出 larger than � and hence there is no equilibrium 

川限 (ι勺寸空) 山 sma肌h凶凶a加n crωva剖山ωlu同山ue

S訂叩m叩maい釘加川山1吋叫山aιい，soい

2.4.4 Cぉe4

1n case 4, no timφpaths of the inter白t rate can be consistent with equilibrium. 

1ntuitively, the r間on can be demonstrated as follows. [For the formal proof, 
see Appendix A.4.] Case 4 can be characterized as the asymmetric case in which 

social addiction occurs only to the less patient agent. Since 7f1π2 く o in this case, 
from Eq. (2.24) the equilibrium interest rate must be higher than max (P1 , P2) or 
lower than min (Pl , P2) , as in case 3. Suppose that r (0) > max (Pl , P2). Then , 
by modified Keynes-Ramsey rule (2 .8) , the more patient agent increases the 
next instant consumption. This , in turn , raises r at that instant because, when 
r> max(p1 ,p2) , theweight applied tothe higher Pi inEq. (2.24) , which is larger 
than unity, is enlarged by an increぉe in the more patient agent 's consumption. 

Through this unstable process , the more patient agent's consumption diverges 
and , sooner or later, exceeds the total output. 

1n the c蹴 of r (0) く min (Pl , P2) , the 1邸 patient agent increases consumpｭ
tion due to social addiction. From Eq. (2.24) , it lowers r more. The r田ultant
divergent proce臼 of the less patient agent's consumption necessarily violates 

the commodity market equilibrium condition. 

2.5 Conclusion and Future Research 

1n this paper , 1 have examined the dynamic property of competitive equilibria 

under consumer interdependence. Key parameters in determining the optimal 

consumption plans of interdependent consumers are the induced elasticity of 

intertemporal substitution and the induced rate of time preference. Both the 

induced parameters of one agent depend on the other consumer's subjective 

preferences and consumption. The behavioral property embedded in the r白ult

ing modified Euler condition can rationalize several recent empirical studies in 

support of nonconcave utility functions andj or various time preference schedｭ

ules. Given the modified Euler condition , the dynamic property of the Ramsey 
equilibrium under time preference differentials is substantially modified. 

Further r白earch is possible in various directions. First , the implication of 
consumption externaliti回 for growth must be inv田tigated. For example, there 

3(a) ifη11η22 一 η12η21 is st巾tly negative. 1n that case , the orders of the induced pararneters 
are reversed such that π1 < 0 ,71'"2 > 0 , and Pl < P12 < P2 ・ The resultant equilibriurn dynarnics 
are those which would be obtained by interchanging agent index 1 with 2: A srnall (large) α1 

[and hence a srnall (resp. large) cl1 is associated with a high (resp. low) interest rate which 
is higher thanρ2 (resp. lower than Pl) 
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is a be!ief or conjecture that a consumption externality caused through trade is 

an important factor a百ecting saving and growth. The present model is useful 

to analyze this issue. Second, the interpersonal dependenc:e of preferenc田 can

be combined with intertemporal dependence of preferenc白 by， for example, inｭ
corporating consumption externaliti白 into the model of habit formation and/or 

endogenous time preferenc白・ Third ， the welfare implications of consumption 

externaliti白 must be examined. See Ikeda (1995) for this issue. Fourth , the 
pr白ent analysis could be applied to examine implications of interdependent 

preferences toward risk for portfolio selections and asset pricing. Finally, it is 

necessary to t白t empirically the validity of interdependent consumer behavｭ

ior described by the modified Keyn白白Ramsey rule or the interdependent Euler 

equations. For example, Ikeda and Tsutsui (1996) report the empirical validity 
of consumer interdependence in asset pricing. 

2.6 Appendix for Chapter 2 

2.6.1 Appendix A.1: Derivation of (2.33) 

This appendix proves that , in case 3 with η12 > 0, the nec田sary and sufficient 

condition for the interest rate to be strictly positive is given by Eq. (2.33). 

Substituting successively Eqs. (2.25) , (2.9) , and (2.10) into (2.24) , r is ob司

tained as 

r = f/D , 

where 0 is given by Eq. (3.11) and 

f = 81 {(C1η22 + c2η21) + (82/81) (C2η11 + C1η12)} . 

Noting thatη22 十 (82 /81) η12 > 0, 1 thus obtain: ア >0φcrJC2 satisfies either 

C1 、 [η11+η21 (82 /81) η11 +η21 1 

or 

C2/max| 一 η22 +η〆一市2 + (82/81 )η12 J 

C1 _ . íη11+ 巾1 (82 /81 )η11+η2: 1 1 
C2\mln|-η22 +η〆一 η22 + (82 /81 )η~; J 

Since 

η11+η21 ((82/81) 7711 +η21 1 _ (82 /81 ー 1) (η11η22 一 η12 7]21) .._ハ
------.ー，

η22 +η12 lη22 + (82 /81) η12 J (η22 +η12) {η22 + (82 /81 )η12} --

in the present setting, the above condition reduc白 to: ア> 0 {:::> C1 / C2 satisfies 

either 
C1 、 η11+η21 C1 (82 /81 )η11+η21 
一一> or -一<一 一一一
句 /η22 +η12 _4 C2 ~ 7]22 + (82 /81) η12 

Finally substituting C2 = Y -C1 into these inequalities yields Eq. (2.33) ロ

2.6.2 Appendix A.2: Properties of the Saddle 'frajectory 

in Case 3 

This appendix derives the equilibrium saddle trajectory in case 3 of Section 2.4 

(see Fig. 3). To define explicitly the equilibrium saddle trajectory, let 1 (ro) 
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denote the required stock of 日nancial assets for agent 1 's consumption path 
[given by Eq. (2.27)] to satisfy Eq. (2.3) [together with (2.2)] when the initial 
interest rate is given by r (0) = ro: 
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By changing integrating variables using Eq. (2.26) , it can be rewritten as 
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(A2) 

where r∞ (ro) represents )i?2_ r (t) obtained from Eq. (2.26) when ァ (0) = ro; 
t→∞ 

C
1 
(ァ) denotes the function on the right hand side of Eq. (2.27); and f ('1・)

repr白ents the function to determine r in Eq. (2.26). 
The equilibrium saddle trajectory in the (α 1 ， r) space is defined as the locus , 

α1 = 1 (ro) , which is rewritten in the (α1 ， C1) space as:α1 = 1 (C~l (C1)) ・ Given
this definition , 1 derive the following properties: 

(Pl) Suppose that cαse 3 is the ωeαηd 仇αt externαlities are αsymmetric 

fη12 > 0). Then, Jor r ε (0 ， P2) U (P1 ， ∞)， the eqωibrium sαddle tr，αjectory is 
strictly doωηωαrd-slopiηg iηγαηd hence st何ctly upwαrd-sloping iηCl' 

Proof: Consider ro ε (0 ， P2). Then, r∞ (ro) = P2 (see Fig. 3). 1 can obtain 

from Eq. (A2) 

出ro) Icase 3 = _ ~:o ¥ (C1 (ro) -y!. -1 (ro) ) 
Icasev J(ro) ¥ ro '~/) 

(A3) 

Here note that for ro E (0 , P2) 1 have f (7'0) > 0 and hence ァ (t) is increasing in 

t. It follows that 1:.告よ Icase 3 < 0 Vroε (0 ， P2) . This means th川le叩ilibrium
saddle trajectory ~. ~trictly decreasing in r for r E (0 , P2) . 

For 7'0ε (P1 ， ∞)， noting that r∞(7'0) = P1 , the same expression as Eq. (A3) 

can be obtained. Since f (ro) く o and thus QJす- νL - 1 (7'0) < 0, it is valid 

again that 併 Icase 3 < 0 for any ro E (P1 ， ∞)口

2.6.3 Appendix A.3: Computation in Exarnple 8 

Letting K repr白ent the negative of the coefficient of r3 in Eq. (2.26): 

K ー (η11+η21 一 η22 ー ηω(η11+η21) (η22 十- 7]12) 
一

(η11η22 ー η凶21) 2 (82 -81) 

the discount factor which appears in Eq. (A2) can be obtained from Eq. (2.26) 

as: 

叫-1: 7告吋 =1と告la 1手先|β|日J ，
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wherehk(P1 -AP12 ー ρ;-y ;β = K (pl -ぷ1ふ一川 ;γ = 吋1 -41)(P1 ーω(hence
α+ β +γ= 0). Thus , in case 3, 1 (ro) can be computed from Eq. (A2) as: 

for ro E (P1 ， ∞) , 

I川斤恥刷(ヤh川ア町川Oω) = L川(ヤ(ro町Oイ川川)ト一 U仇ω1寸}れ汁(かト円Tト一 p向ω2ρ)川一→叩叫p向仰州1口ω2ρ2)ß-1ド門βか円一→1

for ro ε (0 ， P2) , 

1 (ro) = L (アイ川)一仇} (p2 -r) αー 1 (P12 -r)゚-1 (P1 -r)"t-1 dr , 

where 
1 1 ro -P2 1 ー α 1 ro -P1 1 - γ 

L (ro) = ~ I一一一 I 1 ~ v ~~ I 
K I ro -P121 I rO -P121 

Using these reduced forms ， αand ii in numerical example 8 can be obtained 

by computing α= lim 1 (ro) and ii = lim" 1 (ro) , r白pectively. The com-
ro ー"00 ro ー..0

putation was conducted using MIαple (Waterloo Maple Software) in Scient~βc 
ltVorkp1αce Version 2.5 (TCI Software R白earch).

2.6.4 Appendix A.4: Proof of the Non-Existence of Equiｭ
librium in Case 4 

Consider first the case in which η11η22 一 η12η21 > o. Then ， 仕om Eqs. (2.10) 

and (2.29), 1 have 71"1 < 0 ， π2 > 0, and P2 < P12 < P1. From Eqs. (2.27) and 
(2.28) , for C1 (0) and C2 (0) to be pcぉitive ， it must be valid that either r (0) > P1 
or r (0) く P2. Suppose that r (0) > P1. Since the coefficient of r3 in Eq. (2.26) is 

positive in the presentωいhis implies r (t) > P1 't/t 三 O . Then, from modi日ed
Keyn白-Ramsey rule (2.8) , Iobtain 

匂 (t) / C2 (t) = π2 (r (t) -P2) > π2 (P1 -P2) = a positve constar札

so that C2 becom回 larger than y within a finite period. It foIlows that r (0) > ρ1 

is not an equilibrium. Suppose instead that パ0) < P2 , and hence, from Eq. 
(2.26), that r (t) < P2 't/t ど O. Then , it is valid that 

�1 (t) /C1 (t) = π1(r(t)-P1)> 川 (P2 -pI) = a positve constant , 

implying that the divergence of C1 n氏自sarily violates market equilibrium conｭ
dition (2.14) within a fi凶e period. 

When TJ11 TJ22 一 η12η21 < 0, 1 have 71"1 > 0 ， π2 < 0, and P1 く P12 く ρ2 ・ I
can apply the same ar肝ment to this case: The equilibrium inter白t rate must 

剖i均 r > P2 or r く P1 ・ When r > P2 , C1 (t) exc制s y within a finite period. 
Similarly, when r < P1 , C2 (t) sooner or later becomes larger than y . ロ
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Chapter 3 

Habits, Costly Inves.tment, 
and Current Accoun.t 

Dynamics 

Abstract: Using a small country model with habit-forming consumers and 

costly investment, we analyze equilibrium dynamics of the economy and derive 
empirical and welfare implications. The model can mimic some stylized facts: (i) 

a temporary increase in fiscal spending always deteriorates the current account 

whereas a permanent increase in fiscal spending may have a weaker effect; (ii) 

permanent productivity shocks deteriorate もhe current acc:ou叫 and (iii) savings 

and inv回tment tend tO cかmove upon macroeconomic shocks. Strong habit 

persistence ca us田 sluggishness in welfare dynamics. Consequently, a beneficial 

fiscal policy may have a harmful hangover effect on the future welfare. 

JEL Classification Numbers: F32 , F41 , E21. 

Keywords: Habit , current account , investment , savings，日scal policy, welfare. 

3.1 Introduction 

Being stimulated by recent developments in the current account experience, lots 
of empirical studies in openmacroeconomics have been conducted to report imｭ

portant stylized facts regarding the current account. They include that: (i) 

temporary increases in fiscal spending deteriorate the current account whereas 

permanent on白 exert at most weaker negative effects on it [e.g. , Ahmed (1986) , 
Tanner (1994) , and Obstfeld and Rogo百 (1995)]; that (ii) an improvement in 

productivity have a detrimental effect on the current account [e.g. , Glick and 
Rogoff (1992) and Elliot and Fatお (1996)]; and that (iii) savings and investｭ

ment display a positive correlation in the short-and long-run [Feldstein and 

Horioka (1980) and 'Ii倒r (1991)]. To explain these findings , much attention 
in theoretical literature has been paid to the intertemporal ぉpects of savings , 
investment , and the current account [for surveys see Sen (1994) and Obstfeld 
and Rogo百 (1995)]. However, there are still some gaps between the empirical 
findings and the theory. 
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We pr田ent a small country model in which current account dynamics are 
generated by consumption habits and costly investment. The purpos回 of this 

paper are: using the model, (a) to analyze equilibrium dynami岱 ofconsumption 

(savings) , investme爪 and the current account , (b) to show that the r白ultant
dynami岱 can mimic the above stylized facts , and (c) to derive welfare impliｭ
cations. To do so, we examine the e仔ects of permanent as well as temporary 

changes in government spending, capital tax白， and prod uctivity. 

We incorporate habits and costly inv白tment for both empirical and theoretｭ

ical reasons. Empirically, th白e factors are fairly consistent with macroeconomic 

data. Particularly, habit-formation is often reported to be statistically signifiｭ

cant in explaining consumers' behavior [e.g. , Ferson and Consta凶nid白 (1991) , 
Braun , Consta凶nid白， and Ferson (1993) , Naik and Moore (1996)J. 1ncorpか
rating this intertemporally dependent preference would be prerequisite to model 

the saving behavior consistent with macroeconomic data. 

As for a theoretical reason , habit formation and c凶tly inv白tment ind uce 

transition dynamics of the current account in response to demand and supply 

shocks, r白pectively. Although transition dynamics of savings can also arise in 

the overlapping-generation framework [e.g. , Blanchard (1985)] and endogenous 
time-preference models,l these alternativ白 are at most empirically controversial 
for specifying the saving behavior.2 We indeed find the habit-formation model 

more useful than th白e alternatives to explain the above stylized facts. 

Furthermore, this specification allows us to model long-run persistent e百ects
of temporary shocks by assuming constant discount rate equal to the world 

interest rate. The r白ultant ‘ zero root' property [Giavazzi and Wyplosz (1985)] 

is used to address effects of temporary shocks，白pecially stylized fact (i). 

Our comparative dynamics produce the following results. (1) Temporary 

ll1creas回 in fiscal spending always partially crowd out private consumption and 

deteriorate the current account. (2) Adverse productivity shocks and capital 

taxes improve the current account. (3) Both the ∞n-human wealth and the 
capital stock tend to co-move in the short-and long-run. These r田ults are 

consistent with empirical facts (i) through (iii) , r回pectively. We also derive a 

welfare implication: (4) Consumers due to strong habits are present-oriented 

such that upon adverse shocks they sacrifice future spending and welfare in 

order to maintain their pr回ent standard of living. As a policy implication of 

this property, we show that under strong habit persistence even a bene白cial

fiscal policy may be accompanied by a negative hangover effect on the future 

welfare. 

Several openmacroeconomic implications of habit formation are provided by 

Obstfeld (1992) and Mansoorian (1993 , 1996). Our co耐ib凶on di百ers from 

theirs in four points: We incorporate capitaI inv田tment ， consider temporary as 

well as permanent shocks, address empirical implications , and conduct a welfare 

analysis. 

The remainder of the paper proceeds as follows: 1n S伐tion 3.2 , we pr白ent

1 For the current account analysis using Blanchard (1985)'s overlapping-generation frameｭ

work , see Matsuyama (1987) and Bovenberg (1994). For models with the Uzawa (1968)'s 

endogenous time-preference, see Penati (1987) , Devereux and Shi (1991) , and Karayalcin 
(1994) 

2For example , Lawrance (1991) reported strong evidence against the Uzawa's (1968) time 
preference schedule. In Haug (1996)'日 article ， Blanchard's model of consumption is strongly 

rejected by quarterly Canadian data 
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the model and derive equilibrium dynamics. The formulation of consumption 

habits is based on the seminal paper by Ryder and Heal (1973). Costly inｭ
V白tment is formulated using the standard adjustment cost model � la Hayashi 

(1982). In Section 3.3, e偽cts of macroeconomic disturbanCf三s are analyzed. Secｭ

tion 3.4 conducts a welfare analysis. Section 3.5 summarizes this paper with 

concluding remarks. 

3.2 The お10del

Consider a small open economy populated with infinitely-lived identical agents. 

There is a comp侃ite traded good that can be used for consumption and inｭ

V回tment. The good is taken as numeraire. Let us specify the behavior of 
households，日rms ， and governments in turn , and then derive equilibrium dyｭ
naπllCS. 

3.2.1 Households 

Given the market wage rate, Wt , households supply one unit of labor inelastically 
in each point in time t. They hold non-human wealth α t in the form of bonds 

bt and equity qtkt , where qt denot回 the equity price (Tobin 's q) in terms of the 

consumption good; and kt the number of equities held by dom白tic households. 

Bonds can be either purchased or issued freely at a constant inter白t rate, r , 
in the international market. By the no-arbitrage condition, the return on the 
equity equals r. 

The preference of the households displays intertemporal dependence through 

habit formation. Let Zt repr白ent the time-t habit, i.e. , the average of past 
consumption 則自 defined by Zt = αjー∞ Cs exp (-α (t -s)) ds , or equivalently 

Zt = α (Ct -Zt) , (3.1) 

where αrepr回ents the discount rate for past consumption rates; and Ct is the 

consumption rate. We specify consumers' lifetime utility as 

山=1= {仇 Zt) + v (gt)} exp (一白) dt , (3.2) 

where gt represents government services. For brevity, we assume above that 
the felicity function is additively-separable between (Ct , Zt) and gt. Function v 
is concave in gt. We follow Ryder and Heal (1973) in assuming that function 

U satisfies the following regularity conditions: (C1) UC > 0; (C2) Uz 三 0; (C3) 

Uc (c , c) + Uz (c , c) > 0; (C4) U is concave in (c , z); (C5) li円 Uc (c , z) = ∞ 
c-• u 

uniformly in z; and (C6) liIll [uc (c , c) + Uz (c , c)] = ∞. 
c• O 

Intertemporal complementarities in consumption are characterized by using 

the following terminology coined by Ryder and Heal (1973): When Ucz (c , c) + 
泊目zz (c ,c) < (r句 >)0 ， p陀ferences are said to display distant (resp.αdja
cent) complementαバty， meaning that the present consumption is complementary 

to the consumption in the distant (r田p. adjacent) future. As shown later, the 
effects of macroeconomic shocks crucially depend on which complementarity 

tak田 place.
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To ensure the st回dy state in this constant utility discounting model , let us 
assume 

。 =r. (3.3) 

This assumption will bring to the model the ‘zero r∞t' property that the steady 

state depends on the initial condition. As in Turnovsky and Sen (1991) and Sen 
and Turnovsky (1991) , we will utilize this property to address the effe出 of
temporary macroeconomic shocks.3 

Given the initial valu田 (bo ， ko ， 勾) , consumers choose Co = {Ct , at}立。 so as 

to maximize (3.2) subject to the flow budget constraint, 

αt = r・αt+ ωt -Ct -Xt , (3.4) 

and the wealth constraint ， α t = bt + qtkt. In equation (3.4) Xt denotes lumpｭ

sum tax payments to the government. Construct the Hamiltonian function with 

constraints (3.1) and (3.4) 出:

H = U (Ct , Zt) + υ (gt) + 入t (rαt -Ct -Xt) + ふα (Ct -Zt) ) 

where 入t(三 0) is the shadow price of saving; and ふ(三 0) is the shadow price of 

habit formation. The optimality conditions are given by 

H c = 0: 'Uc (c, z) = 入t ー αとt ， (3.5) 

乙一九= -Hz: も =(8+α) ふ - Uz (Ct , Zt) , (3.6) 

together with (3.1) , (3.4), and the transversality conditions for αt and Zt. The 

resulting optimal consumption behavior will be summarized later by a saddle 

arm in the (z , c) space. 

3.2.2 Firms 

Given a costly installation technology of capital, a firm cho侃白 time-profiles of 

labor demand lt , the rate of net inv白tment It , and hence capital stock kt so as 
to maximize the pr白ent value of its future net ωsh flow. Supposed that the 

government levies a tax on capital stocks at constant rate ァミ 0 ， the optimal 

behavior is described as 

九 =m吋∞{βF(kt ， l t) 一叫ん一小川t)) -Tqtkt} 叫(ー付)dt

subject to 

kt = It , 

whereβF(kt ， lt) repr白ents the production (or revenue) function which is linearly 
homogeneous in kt and lt with productivity parameterβ ; Itφ (It! kt) denotes the 

capital adjustment (or installation) cost function satisかi時 φ(0) = 0，ダ(It!kt) > 
0 , and 2c�'(It!kt) + ゆ"(It!kt) > O. 

3The zero root property may be somewhat controversial , although (3.3) is a standard setup 

in the literature [Obstfeld (1992) and Mansoorian (1993 and 1996)J. Obstfeld (1992) shows 
that this property disappears in the overlapping-generation framework. The property can be 

also ruled out by endogenizing utility-discounting [Shi and Epstein (1993)]. 
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The equilibrium behavior satis自由

βFI (k t , 1) =切t ，

1+ ゆ(It!kt) + (It! kt) ダ (It!kt) = qt , 

(ﾍt = (r + T) qt -{β凡 (kt ， 1) + (It! kt)2ダ (It!kt) } , 

together with the transversality condition for k t , where we use the fact that the 
equilibrium labor supply can be normalized as unity and that the shadow price 

for kt equals market stock price qt. The optimal inv白tment rule is summarized 

as It = η (qt) kt , where TJ (1) = 0 and η I (qt) > O. The equilibriumωpital 
accumulation is thus determined by 

kt = η (qt) kt , (3.7) 

ド (r + T) qt -{仇(川)+η ( qt)2 州(仇))} • (3.8) 

Later this sy坑em wilI reduce to a saddle trajectory in the (q , k) space. 

3.2.3 Governments 

The government follows the balanced budget principle. Its fiscal spending gt 

equals tax revenues from lump-sum tax田 and capital tax白:

gt = Xt + Ttqtkt. (3.9) 

In what follows , given exogenously government spending gt and capital tax Tt , 
lump-sum tax Xt is assumed to be deter町山ed by constraint (3.9). 

3.2.4 Equilibrium Dynamics and Steady State 

We focus on the dynamic system linearized in the neighborhood of a steady 

state. As stated earlier, however, owing to assumption (3.::~) the steady state 
equilibrium depends on the initial condition for (bo, ko ， 勾) and hence on the 

linear saddle surface. Avoiding a circular argument , we 日rst a回ume that there 

exists a steady state and linearize the equilibrium dynamic system around the 

steady state. Then equilibrium saddle trajectories are obtained from the linｭ

earized system. Finally, the st伺dy state point is ch侃en such that it is indeed 

connected with the initial point by the trajectories. 

From equations (3.1) , (3.5) , (3.6) , (3.7) , and (3.8) , the dynamic system for 
(Zt ， ~t ， kt ， qt) linea山ed around a steady state is given by 

Zt /一α(1 +せ) -:L 0 0 ¥ ( ~t ¥ 

= I i〈， );了rr tL:r;.. B+ α(U;ç+U: ç 2 0 0 I I ~t I 

¥ 0 0 -βFkk r + T J ¥ qt / 

s
'
uv

a
'U

A
T
LV
 

Z
r
κ

。
《
q

(3.10) 

where fj denot白 deviations of variable y from its steady state value γ: 仏三
Yt- γ ; and the coefficient matrix is evaluated at the steady state point. 

42 



The linear dynamic system has a block structure, four characteristic roots 
of which are obtained separably from the two submatrices of two dimensions. 

For 山(吋伽k ， the smaller r州 is given by 

いJ 三

。- y (f)+2α)2 +ヰヂよいz+市りz)
2 

(3.11) 

If adjacent complementarity is too strong (u~z +誌がz is too la刷， ωcan be 
positive. Our inter白t is, however , not in this d田tabilizing property of addictive 

habits. Following the existing literature [e.g. , Obstfeld (1992) and Mansoorian 
(1993 , 1996 ) ]， ωis assumed to be strictly negative. 

Stable root ωspecifies a saddle trajectory for the optimal consumption dy-

namics. In particular, since Zt= ωZt on the trajectory, the �-z saddle trajectory 

is obtained by substituting it into (3.1) as 

ぃ(午)乏t (3.12) 

From equation (3.11) , in the case of distant complementarity (u~z +誌がz く
0) ， ω+αis negative and thus (ê, i)-trajectory (3.12) is negatively sloping, 
whereas under adjacent complementarity (u~z + 給料z > 0) the trajectory 

has a positive slope with positive ω+α. This can be understood as follows. Unｭ

der adjacent complementarity, today's consumption is complementary to today's 
habits, but a substitute for those in the future steady state. Thus , if habits inｭ
crease over time, consumption will also increase over time. A positively-sloping 
saddle arm under adjacent complementarity reflects this property. In contrast , 
under distant complementarity, today's consumption is complementary to the 
future st伺dy state habits but a substitute for today's. It follows that increasｭ

ing habits are accompanied by decrωsing consumption , as repr缶ented by a 

negatively-sloping saddle arm. 

Forthe ('k， q) 伽k ， the stable root is given by 

ア +T -¥/ (r + T)2 -4η'(l)k*ßF:ふ
χ 三 vn(<O).

The r白ulting saddle trajectory is: 

んt i立辻:土t ア+アーム
一 一一 一

χZFF1kzt 
(3.13) 

Given the above dynamics for consumption and investment , the dynamics of 
the net foreign asset are described by the following balance of payments identity 

obtained from equations (3 .4), (3.7) , (3.8) , and (3.9): 

bt = rbt +ßF(kt , 1) -Ct ーの- (1 +ゆt) It , (3.14) 

which can be linearized around the steady state as 

bt= -k*r/ (1) qt + (ァ +T)ム - �t + 叫. (3.15 ) 
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Using the saddle trajectories, (3.12) and (3.13) , we can express b in terms of 

two nonjumpable state variables z and k. This relationship can be obtained by, 
日rst ， setting b = X1 乏 + X2k and, next , looking for X1 and X2 which validate 
equation (3.15). lndeed, substituting (3.12) , (3.13) , and the trial solution for b 
into (3.15) yields 

|ω+αl 
{X2 (r ー χ)+ 1'+ アー χ} kt + ~ X1 (r ー ω)--zーいt=

so that X1 and X2 are obtained as 

X ω+α 1 r + アー χ
1=α (r ー ω) a… 2 = - r ー χ'

respectively. It follows that the saddle surface for the net foreign asset is given 
by 

ふー ω+α ふ r+ ァ -X Ã;;- ~ 

bα (r 一 ω) -L r- χL 
(3.16) 

When this equation is evaluated at t = 0, it characterizes the steady state 

equilibrium since initial values bo , ko , and 勾 are exogenously given. lncorｭ

porating this relation , the steady state equilibrium , (b* , c* , k* , q* , z* , �: ， 入傘) ， is 

determined by the following equations: 

q* 1, (3.17) 

F゚k (k* , 1) = r+T, (3.18) 
C 傘 . 

(3.19) z , 

c l(*$)  
ず-.-Uz lC , Z ), 
+α 

(3.20) 

Uc (c* , z*) 入*αご\ (3.21) 

rb* + βF (k* , 1) c・ +g， (3.22) 

bo -b* + ア十 T- χ (ko -k*) 
r-X 

ω+α( 傘)
(r-w) \Zo '-Z} , 

α r- ω 
(3.23) 

where equation (3.17) represents k = 0 from (3.7); (3.18) represents q = 0 from 

(3.8); (3.19) repr缶ents 土= 0 from (3.1); (3.20) represents E = 0 from (3.6); 

(3.22) repr白ents b = 0 from (3.14); and (3.23) com白 from (3.16) evaluated at 

t = O. 

From equation (3.18) , the steady state capital stock , k* , is determined by 

productivity ゚  and capital tax T. We denote this capital stock by 

k* = K(β，ァ) , (3.24) 

where Kβ= -Fk (k' , 1) /βFい (k' ， 1) > 0 and KT = 1/βF kk (k' , 1) < O. B y 

substituting this into equations (3.22) and (3.23) , we obtain 

b' = z' /r + g/1' - βF[K(β ， T) , 1] /r , (3.25) 

r=+(f-zo)+'{ko-K(β， T)} -1-bo ・ (3.26)ア十 T- χ

(r 一 ω) ,- -VJ' r -X 
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These two equations jointly determine b. and Z.. Given the z. value and equaｭ
tion (3.19) , in turn , (3.20) giv田 C and (3.21) determin缶入\

The transition dynamics are described by the following autonomous system: 

i (ω -x)(r+T- X) �. b t= ωbt + ¥"'-Ó~\_:_;' -ﾓJ k t , 
(3.27) 

kt= Xkt , 

where the first equation is obtain吋 by differentiating (3.16) by t and substiｭ

tuting k t= χkt ， Zt= ω Zt ， and (3.16) succ回sive1y into the result. This twか
dimensional dynamic system can produce nonmonotonic time-profiles of the 

current account , as will be shown in the next section. 
Figur白 l(a) and (b) depict the determination of the equilibrium dynamics 

derived above. The two figur白 correspond to the cases of adjacent and distant 

complementarities, respectively. In the (z, b) plane of the figures , curve BB' 
repr白ents equation (3.25) and curve Z Z' denot白 (3.26 ) . Curve ZZ' is positively 
sloping under adjacent complementarity and negatively sloping under distant 

one. Intersection E of the two schedul缶 gives (z* , b*). Given this steady state 

point , the (k , b) plane depicts the equilibrium dynamics around point K (kペグ) , 
where k* is given by K (β，ァ) . The b = 0 schedule can be either positively-or 

negative1y-s1oping depending on the sign of ω 一χ . The figures assumeω-χ>0 

and thus the b = 0 sd凶u1e is positively-sloping. In the (z, c) plane, saddle 
trajectory (3.12) is repr白ented by schedule S S'. As aforementioned , the slope 
of the schedule can either positive or negative depending on whether adjacent 

or distant complementarity is the case. The steady state point , (z *, c*) , is given 
by intersection C of schedule S S' and the 45-degree line repr白enting 土 = O. 

3.3 Effects of Macroeconomic Disturbances 

Using the above equilibrium dynamics , this section examin白 effects of changes 

in government spending g, capital taxes T , and productivity β. The shocks conｭ
sidered are unanticipated permanent and temporary chang白 of these variabl回.

They take p1ace at time zero. When the shocks are tempora.ry, they 1ast only 
until t = T (> 0). 

3.3.1 Government Spending 

Begin with a permanent increase in government spending g which is financed 

by a lump-sum tax. The steady state e庁ect of the shock can be derived from 

equations (3.19 ), (3.24) , (3.25 ), and (3.26) as 

竺:=O‘
dg 

dz. dc* α(ァー ω)
一一=一一 ， < 0, 
dg dg ω(α + r) 

db* ω+αf > 0 for distant complementarity, 
dg ω(α+ r) l < 0 for adjacent complementarity 
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Equations (3.28) show that an increase in government spending g reduces 
the long-run level of consumption c* and habit z*. It does not a庄'ect the steady 

state capital stock k*. The e百ect on net foreign asset b' crucially depends 

on whether adjacent or distant complementarity is the case: under adjacent 

(resp. distant) complementarity, �' decreas白 (r田p. increases) in response to 

the shock. Because of lump-sum tax financing , an increase in g implies a deｭ

crease in the permanent income of the repr白entative agent. In the case of 

adjacent complementarity, he or she will not decrease consumption initially so 
much as the decrease in the permanent income. This caus田 the current acｭ

count deficits in the interim run , thereby reduc白 the steady state stock of net 

foreign ぉset ， as in the Keynesian theory. This adjustment proc白s is depicted 

by figure 2. The initial equilibrium is repr白ented by points CO and Eo. In the 
(z , �) panel, a permanent increase in g shifts curve BB' upward 仕om BoBb 
to B1B~ ， thereby changing the steady state point from Eo to E1. Since kt is 

not affected by this shock , schedule ZoZo given by (3.26) also represents the 
saddle arm given by (3.16). The transition dynamics from Eo to E1 thus take 

place along the schedule. Given the steady state effect , in turn , trajectory SS' 
in the (z , c) panel shifts upward to , say, S1 S{. The consumption rate initially 

jumps down from point CO to C01' However , owing to adjacent complementarｭ
ity, this crowding-out is so small that the increase in g dominantly deteriorates 

the current account. Thereafter, along trajectory S1 S~ ， consumption and habits 

decreasingly approach a new steady state level repr回ented by point C 1. 
Under distant complementarity, in contrast , consumers substantially cut 

down initial consumption upon a decline in the steady state consumption ♂， 

generating the current account surplus in transition and hence an increase in 

external asset b* in the steady state.4 

Consider next a temporary increase in g. No matter which complementarity 

is the case, the shock always has negative e百'ects on the steady state consumpｭ

tion , habits , and net foreign assets. Indeed , tedious computation yields the 
following e圧'ects of a temporary change in g on ♂ ， z* , and b': 

dc* I 

dg Idg=temp 

dz* I d�* I 
-ーーー= r-ーーー|

dg Idg=temp. dg Idg,=temp 

(ァー ω)
(1 一口)

ω(α +r) 

where ω ， denotε白s the unstable root for the c∞onsumption dynamics and D = 

一[卜トωんw'-w+一イ一一ω叶川川+バ+{1ο1トパ一~一吋吋吋位仰州叶P以(
Intui凶tiv刊el防y， in response to a temporary increase in lump sum taxes , peト

manent income and hence consumption initially decrease “ The resulting lower 
consumption habits reduce the long run consumption even though lump sum 

taxes and hence permanent income return to their initial levels at time T. It 
follows that the steady state interest revenue must decrease so as to r白tore

balance to the current account. 

4 These effects of a permanent decrease in real income on external debt positions are pointed 
out by Obstfeld (1992) and Mansoorian (1993 , 1996) 

5 For the procedure of deriving the effect of ternporary shocks , see Sen and Turnovsky 
(1990) and Turnovsky and Sen (1991). 
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Figure 2 depicts this adj ustment proc回s in the case of adjacen七 compl争

mentarity. Upon the shock, saddle arm SS' in the (z , c) panel shifts upward 

to S2S~ ， which li白 below trajectory Sl S~ corr田pondi時 to permanent shocks. 

The initial jump of consumption rate stops at some point below the new arm , 
say point CO2 ・ This imperfect crowding-out effect on the initial consumption 

brings about current account deficits. The r田ultant asset decumulation reduces 

both c and z as depicted by the arrows from point CO2 to Cr. Just when time t 
reach白 T， at which 9 reverts to its initial level , the equilibrium arrives at point 
Cr in the (z , c) panel and point Er in the (z , b) panel. H.ecall that trajectory 
ZZ' in the (z , b) panel , given by (3 .26) , depends on the initial ぉset stocks. 

The decumulated stocks of the net foreign asset and habits at time T , as a new 

'initial' state, make schedule ZoZ~ shift downward up to , say, Z2Z~. This gives 
new steady state point E2 , with smaller b* and z*(= c・) • 

These results can be summarized as follows: 

Proposition 1: Consider the model presented in Section 3.2. Then, (i)α tem
porary increase in govemment spending αlωαys deteriorlαtes the CU7アθnt αccou叫

叫ereas (ii)α permαηeηt increase in goverηment spe7凶句 Cαη either dete門0-

Tαte or improve the CU7アent αccount， depending on whether αdjαcent or distαnt 

complementarity is the case. 

Remark 1: Iη the proposition, the K eynesian-type result ω is consistent with 
the ojt-何ported ηegαtive effect of temporary increαses 2n goverηment spending 

on the current αccount [e.g. , Ahmed (1986) , 11αnner (1994)， αηd Obstfeld αηd 
Rogoff (199S)}. Property 向) could αccount for αηo ther stylized flαct thαt the 
effect of permαηent shocks 。η the current αccount is ins叩nificαηt [e.g・ ， Ahmed 

(1986) αηd Obstfeld αηd Rogoff (199S)j or signi.βcαnt buf: smaller thαn thαt of 

temporary ones [e.g. , Tanner (lgg4)}. For exαmple， if w + α 臼 positive but 

suff�iently smαll， the negαtive cu問nt αccount-government expenditure linkαge 

is stronger in the cαse of α temporary shock thα川η the cαse of α permanent 

one， αs reported by 1'1αn7ぽ (lgg4).

Note that the endogenous time preference model cannot mimic th白e stylized 

facts. In 七 hat setting the long-run consumption level is fixed by the world 

interest rate and permanent increases in government spending always improve 

the current account [e.g. , Devere以 and Shi (1991) and Karayalcin (1994)]. As 
an alternative speci日cation ， the overlapping-generation model [e.g. , Matsuyama 
(1987) and Zou (1994)] cannot explain the negative effect of temporary shocks 

on the st回dy state external ぉsets.

3.3.2 Capital Taxes 

From equations (3.19) , (3.24) , (3.25) , and (3.26) , weωn derive the st回dy state 

e百ect of a permanent increase in capital tax T ~ 0 as follows: 

dk ・
ーァ =Kァ< 0, 
αァ

害=与 =T (1 一市) KT 亘 0 ，
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ぽ
一
台

α ( 1' ー ω)ßFkKァ ( l' + T - χ ω+α \ ミハ• 一一一一ω (α + 1') \. (1'+ ァ) (1' ー χ)α (1' ー ω) ) く v

T+ ァー χ 三 ω +α 

as (1' 十 T)(アー χ) < α ( 1' ー ωr

That is , in the long run , an increase in T reduc白 capital stock k" and prか

duction. When capital taxation is initially in effect (i.e ,., T > 0) , the policy 
negatively a庄町ts c. and z.. Although the e百'ect on �. can take either sign , it 
is positive if initial tax ァ is small enough.6 

Taking this case as an example， 日gure 3 depicts the adjustment to an inｭ

crease in capital taxes. The shock makes the k = 0 schedule shift to the right. 

This reduc白 k*. From equations (3.25) and (3.26) , both schedule BB' and Z Z' 
in the (z, �) panel then shift upward like BoBb → B1B~ and ZoZb → Zl Z~ ， 
respectively. If initial tax T is small enough , the shift of schedule ZZ' is domｭ

inant, thereby increas白 ò". U nder capital taxation (ア> 0) , the reduction in 
k* , which decreas田 the steady state production , dominantly lowers c. and z.. 
These steady state effects are depicted by the movements ì仕om point Ko to Kl' 

Eo to El' and CO to C1 ・
The transition dynamics are represented by the arrow-attached paths conｭ

necting Ko to Kl and C01 to C1 ・ In particular, along pa"th KoKl the current 
account adjusts nonmonotonically over time: it initially runs a surplus ther仔

after falls into de日cits . The possibility of this 'overshooting' adjustment proc白s
of the current account is also derived by Matsuyama (1987). The key assumpｭ

tion behind this is that the capital stock adjustment is faster than the wealth 

adjustment. In contrast to his model , where the wealth adjustment speed is 
given by the effective discount rate, the wealth adjustment speed is determined 
by 叫 which ref1ects the degree of habitual persistence in consumption.7 

In a similar way to that in Subsection 3.3.1 , we can examine the effect 

of a temporary increase in T , although detailed discussions entail too tedious 
computation and are skipped here. From (3.18) , the shoc:k do白 not affect k*. 
A new steady state in the (z, �) panel is determined at the intersection of the 

initial BB'-schedule , BoBふ and a new ZZ'-schedule. One interesting possibility 

is that the new ZZ'-schedule can lie above the initial schedule, ZoZb , owing to 
the accumulated stock of bT. The r白ulting steady state can be characterized 

by incr回ses in b* , c* , and Z*. In this case, the steady st.ate lifetime utility is 

enhanced by the temporary increase in capital tax白.

3.3.3 Productivity Shocks 

From equations (3.25) and (3.26) , we can conjecture that effects of negative 

productivity shocks are qualitatively similar to those of capﾏttal taxation. Indeed , 
from equations (3 .19) , (3.24) , (3.25), and (3.26) , we can derive 

6Indeed, if there is initially no tax distor tion, T = 0 , we have f_=+r-Y 一 てそ与ォ 一, • - ~ ， .. ~ ~~ . ~ (r +ァ )(r ーχ)α(r ー ω)

ω (r+α ) _ ,... , t db' ~工工2ム > 0 and hence ~一 > O. 
Tα (r ーω)

7The overshooting adjustment of the current account cannot take place when the capital 

adjustment is slower than the wealth adj us t ment ， χ>ω . In that case the J-curve adjustment 

may occur 回 in Karayalcin (1994). Furthe rmore , in the pr四ent model , an increase in capital 
taxes can reduce the steady state external asset. The adjustment pattern in that c槌e may 

substantially differ from that of the previous models , 
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dk* 
d゚  =n.β> u, 

dz* dc・ α ( 1' ー ω) ( r，>*ァχ\
l P*- 一一 β) > 0 , (3.30) 

d゚  dβω(α + 1') ¥ - l' - χ/ 

ぴ
一
。

α(アー ω){P*+(1' +T)Kβ}

ω(α + 1') 

x( ヤ +τ-χ:)Kß 一 ω +α\
に (1' ー χ)、 {p* + (γ+ ァ)Kβ}α (1' -_ω)) 

> 
= O. 
< 

Therefore, as seen by comparing equations (3.30) with (3.29) , the signs of 
the above derivatives are almost the same as those in the cぉe of a decrease in 

capital taxation. Figure 3 can be interpreted as d回cribing overall adjustment 

to a permanent adverse productivity shock. 

Proposition 2: Conside1' the model p 1'eseηted in Section 3.2. Then, if ωehαve 

( 1' +T ー χ)Kβ 、 ω+α
‘一ー

(1' - χ) {p* + (1' + ァ)Kβ} ~α (1' - ω) , (3.31) 

then pe付nanent increases in producti汎ty deteriomte the current αccou叫.

Remark 2: Mαnyempi門Cα1 studies report thα t the curアent αccount is ηegα tively 

correlαted with producti'llity shocks [e.g・ ， Glick αηd Rogoff (1 992) αηd Elliot αηd 
Fαtás (1996)]. Proposition 2 implies thαt this ωη be 間m'Ícked under inequαlity 

(3.31). 

Intuitively an improvement in productivity exerts two countervailing e町ects

on the current account: the negative e百'ect of encouraging inv白tment and the 

positive effect of ra詰ing income and hence savings. Condition (3.31) claims 

that the investment-encouraging effect dominat白 the saving-raising effect. To 

understand this , consider a simple case where the production function is given 

by the Cobb-Douglas type, P = k' ， γε(0 ， 1) , and where no capital tax is levied 
(ァ= 0). The left hand side of (3.31) then reduc田 toγ. For this inequality to 

be valid, therefore， γmust be sufficiently large compared with ω. Note that 

a large γimpli白 a strong inv回tment-encouraging e庄ect w hereas a large ωa 

strong saving-raising e仔ect.

The analytical r白ults ， (3.30), also give some potentials of explaining empirｭ
ical co-movements between savings and investment. Suppose that T is initially 

negligible and that adjacent complementarity is the case. Then , from equation 
(3.23) and the second equation of (3.30) , we have 

叫告)=叫筈) (3.32) 

That is , upon permanent productivity shocks , savings and inv白tment tend 

to co-move in the long run. Since, from equations (3.28) and (3. 29), the 
other macroeconomic shocks cannot generate either co-movement or counterｭ

movement between them (either of ゲ and k* is unchanged to th白e shocks) , 
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this mimi岱 the oft-reported long run tendency of co-movement in savings and 

investment [e.g・， T白ar (1991) and Coakley, Kulasし and Smith (1996)].8 

Given this long-run tendency, the shorter-run savings-investment co-movement 
can be explained by using the transition dynamics in our model. Since both 

bt + kt and kt move monotonically if T is initially negligible,9 relation (3.32) 
impli白 that

叩(いん)=叩 (kt) . (3 お)

A山ghb+k d恥s from吋gsá(=b+ ん+件)，叩叫an吋…叶
a11y omitted from the statistical data of savings. Relation (3.33) 七hus explains 

the short-run ccトmovements of savings and investment which are empirically 
reported [e.g. , Finn (1990) and Tesar (1991)]. 

Regarding these r白ults ， three comments are in order. First , adjacent comｭ
plementarity plays a key role in producing it. Recall that , as demonstrated in 
Subsection 3.2.4, consumption and habits co-move under adjacent complemenｭ
tarity. This caus 白 C か肘mo

Secondly, adjacent complementarity is supported by many empirical studies 

[e.g. , Consta凶nid白 (1980)]. Thirdly, the saving-inv白tment co-movement obｭ

tained takes place only for permanent shocks. If the shocks are temporary, the 
underlying relations such as equation (3.23) are violated and hence this property 

may not hold true. 

3.4 Welfare Implications 

Using the above equilibrium path of the economy, let us discuss welfare impliｭ
cations. We shall first analyze the effect on welfare (the initial lifetime utility) 

of permanent macroeconomic shocks, and next examine the saddle dynamics of 
welfare. 

3.4.1 Welfare Effects 

To obtain the welfare effects of permanent shocks, linearize the instantaneous 
utility u around the steady state to obtain: U (Ct , Zt) = u (c. , z*) + u日t +U;乏t.

Next , substituting equation (3.12) and Zt zo exp (ωt) (recall that れ=ωZt
along the saddle trajectory) succ 間ively into this equation yields: u (仇Ct ， Z勾川tけ) = 
u仰(μZ* ， z.刈Z.刈eつ) + {戸半ヂ戸2 + u;寸) おいex勾p(川ωω叫tの). B助y s山u山伽bst刷i比川tu川u
(ρ3.2幻)， the lifetime utility at time zero is obtained as 

u (Z* ， Z.)+ υ (g) , u~ (ω+α) /α+ がUo ~ ¥-,- ~ , ~ ¥::1/ + ~C ¥- '/) -/1 - , ~Z (勾- z*). (3.34) 

8 When capital tax田 are initially in effect (ア> 0) ， α. and k' rnay respond in different 
directions to an incre回e in T. Indeed , we can obtain 

dピ TKr{χ(αω) ー ω(α - r)} 

dT ω(α + r) (r 一 χ)

内 ich , ω gether with (3.29) , im叫吋p判li白 tωha凶a叫t 叩( ザ料) =si氾叫g
9τT、he tirne-path of bt +kt is monotonic if T is initially zero because equation (3.16) connects 

bt + kt with Zt , the time-path of which is monotonic along saddle tra.jectory (3.12) 
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It follows that the welfare e百ect of a permanent increase in variable y = T , 
βis given by 

dUo 一一ω {(1 + ~) u~ + u; ) と
dy f} (f) ー ω ) dy , 

which , from regularity condition (c3) , impli白

叫守) = sign (苦) (三叫号))ぉr y = T ,ß (3.35) 

Therefore, whether a permanent change in T and βis beneficial or harmful 

crucia11y depends on whether it enhanc回 or weakens the steady state habits. 

From equations (3.29) , (3.30) , and (3.35) , negative productivity shocks and 
incre出回 in capital tax田 are a11 harmful to the economy. 

As for government spending, equation (3.34) implies 

dUo ーが (g) ω{(1 + ~) u~ + u;} dz* 

dg f} f} (f) - ω ) dg 
(3.36) 

Thus the welfare effect of dg is composed of the direct utility-generating e百ect

(the 日rst term) and the indirect effect (the second term). From (3.28) , the 
indirect e百ect 也 negative ， reflecting that an increase in g rais田 lump-sum tax 

payments. The net welfare effect is determined by the relative magnitudes of 

these countervailing effects. Specifica l1y, the optimal policy is characterized as 
one which equates the two effects.10 

3.4.2 ，九Telfare Dynamics 

The transition dynamics of the lifetime utility can be derived by replacing time 

o with time t in equation (3.34) as 

u~ (ω+α)+αピ
U t - U$=z(zt-f)3  

(f) - ω) 

where U傘 ={u(Z* ， Z*)+ υ (g)} /f}. 

(3.37) 

The adjus七ment pattern of the r白ulting welfare dyna.mics largely depends 
on the property of intertemporal complementarity. When preferences display 

distant , or at most weakly adjacent , complementarity (i.e吋 when ω+αis suff�
ciently small) , the above trajectory is downward-sloping. This impli田 that the 

lifetime utility initially overshoots its steady-state level. Figure 4(a) illustrates 

this adjustment upon a harmful shock (e.g. , an adverse productivity shock) , 
where the schedule, U* = {u (z* , z*) + υ (g) } / f}, represents the steady state 時
laもionship between the lifetime utility and habits. In contrast, in the case of 
strong adjacent complementarity (i.e・， suff�iently large ω+α) ， the adj ustment 
proceeds along the 叩ward-sloping trajectory. As depicted by figure 4(b) , the 
slope of the trajectory 出 smaller than that of U* = {u (z. , z*) + υ (g)} / f}. 11 

10 To be precise, the policy is constrained-optimal because the time path of 9 is restricted 

to be ゚ at. 

llThe slope of U' = {tL (z' ,z') + u (g)} /() is 丘子 The differenc山tween this and (3.37) 

can be computed as 

tL~ + tL; tL~ (ω+α)+αピ
~= ~/ .: ， {(α +()) tL~+ αtL;} > O. 

0α( (J 一 ω)α(J (8-ω) 
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Initial impacts on the lifetime utility in this case are thus always smaller than 

steady state e仔ects :

Proposition 3: Stroη9 habit persistence 作 e. ， stro句 αdjα ceηt complementαïity) 
cαuses sluggishness in ω仰向 dynamics in the seηse that the present lifetime 
utility is less sensitive to permanent shocks thαη the fut'ure lifetime utility (see 

βgure 4 (b)J. 

The above proposition reflects a propensity by habitual consumers to give 

priority to their short range needs. The r白ulting sluggish adjustment has a 

sharp contrぉt to dynamics in the model of endogenous time preferenc白. In 

that model, the long run consumption level is fuced by the world interest rate , 
so that the short-run response of the lifetime utility overshoots its long-run 

response [e.g., Kara}叫cin (1994)]. In this habit model , contrastingly, the present 

consumption and hence the pr白ent lifetime utility are anchored to the initial 

habit. Instead the consumption in the distant future must bear the burden of 

adjustment against disturbances , which results in high sensitivity of the future 

welfare and low sensitivity of the prεsent one. Which of the two adjustment 

patterns is actually the case is purely an empirical problem. As mentioned in 

Section 3.1 , the cumulative empirical literature on intertemporally dependent 
preferences seems to support the habit model. 

One policy implication of proposition 3 is that consumers due to strong 

habits will sacrifice future consumption in order to maintain their pr白ent stanｭ

dard of living. It follows that , for example, even if a permanent increase in 白scal

spending has a beneficial effect on the (present) lifetime utility ， 七hat is , if th 

right hand side of equation (3.36) is positive, that policy may have a negative 

hangover effect in that the welfare in the future (e.g. , the steady state welfare) 

is depr白sed upon the shock.12 

3.5 Conclusion 

In this paper, we have examined the e百ect of fiscal policy, capital taxation , and 
productivity shocks on key macroeconomic variables including consumption , 
investment , the current account , and the social welfare. 

Comparative dynamics have produced several results with theoretical and 

empirical implications. They can mimic recent stylized facts regarding the curｭ

rent account. The key parameters are the degree of habit persistence and adｭ

justment costs of capital. The stylized facts could be consistently explained by 

choosing appropriately magnitudes of these two parameters. As a welfare impliｭ

cation , intertemporal complementarities play a crucial role in welfare dynamics. 

In particular, consumers under strong habit persistence will persist in keeping 

the present welfare unchanged. As a result , even a beneficial 日scal policy may 

have a negative hangover effect on the future welfare. 

An inter白ting possible extension is to endogenize the labor supply by incorｭ

porating the leisure and labor choice. This will enable us to extend our analysis 

in two directions. First , it brings to the model interactions between consumption 

and inv白tment dynamics. Secondly, leisure habits can be incorporated. 

12 Of course , this does not mean that there is a conflict of inter田 ts among generations in 

this dyn詞ty of households. 
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Chapter 4 

F'undamentals-Dependent 
Bubbles in Stock Pri~ces 

Abstract: 1n a continuous-time model of stock prices with dividends growing 

stochastically we examine bubbles which depend on market fundamentals. The 

fundamentals dependency stabilizes bubble dynamics. They can be stochastiｭ

cally stable, saddlepoint-stable, or unstable. Stock prices with th缶e bubbles 

can be less volatile than fundamental prices. These bubbl白 exhibit various 

transition pa tterns , such as nonmonotonic movements and monotonic shrinkage 
in magnitude and volatility. The sign of their correlation with market fundaｭ

mentals is time-varying. We introduce crash risks , permitting bubbles to crash 

partially and display various stochastic process switching. Crash risks affect 七he

stochastic stability of bubbles. 

JEL Classification Number: E44, G12. 

Keywords: Fundamentals-dependent bubb l白， stochastic stability, price volatilｭ
ity, partial crash白， stochastic proc田s switching. 

4.1 Introduction 

When もhe current market price of an asset is determined based on rational expecｭ

tations of its future price changes, a price bubble can occur with price diverging 

from market fundamentals in response to arbitrary, self-fulfilling expectations.1 

1n a typical formulation [e.g. , Blanchard (1979) , Flood and Garber (1980) , and 
Diba and Grossman (1983)1 an asset price is , explicitly or implicitl)九 regarded
as a function of time, so that price bubbles result from the indeterminacy of this 

function which arises under self-confirming speculation. As is well-known , these 
time-driven bubbles (i) are dynamically unstable, (ii) are independent of market 

fundamentals and as a r白ult market pric白 are more volatile in the pr白ence of 

1 The empirical validity of the absence (or presence) of price bubble白 is still controversial 

For example , Blanchard and Watson (1982) , West (1987) , Froot and Obstfeld (1991b) , and 
Dezhbakhsh and Demirguc-Kunt (1990) provide empirical support for the presence of specuｭ

lative bubbles. Diba and Grossman (1988a) derive an empirical result. against the existence 

of rational bubbl田 Evan s (1991) questions Diba and Grossman's empirical findings 
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bubbles , and (iii) exhibit monotonic patterns of dynamics until a market crash 

occurs. 

We have another p凶sible scenario wh兤h describ白 speculative bubbles. Supｭ

pose that market fundamentals change randomly and their current valu白 prcr

vide information for 匤vestors to form expectations of future market conditions. 

Then , an asset price may well be a function of the current value of market 

fundamentals , and the 匤determ匤acy problem may also arise perta匤ing to the 
mapp匤g from market fundamentals to the asset price. Price bubbles would 

then depend on market fundamentals. This might change the basic features of 

bubbl田.

The purpose of this paper 﨎 to prov冝e a theoretical formulation of the above 

scenario: 1n a l匤ear arbitrage model of stock price determination we analyze 
qualitatively fundamentals-dependent bubbles, which are defined 匤 our model 

as divídend-dependent , rat卲nally-expected price deviations from the expected 
present value of the div冝end stream. The important feature of the model is 

that dividends follow a continuous Markov process with the r白ult that the叝 

current quantities as information affect market pric白 through expectations. 1n 

addition , a free-disposal constraint is impc附d explicitly on a stock price, ruling 
out the existence of negative price. Within this setting, systematic analyses are 
provided pertaining to the stochastic stabílity, volatility, and transition patterns 
of fundamentals-dependent bubbl白・

Several r白earchers have already made successful attempts on the same topic , 
though they left some theoretical problems. Froot and Obstfeld (1991b) focus 

on “ intrinsic" bubbles , which exclusively depend on market fundamentals , prか
viding an empﾍrical support for the pr白ence of these bubbl回 in the U.S. stock 

market. Deriving a bubble solution composed of stable and unstable compか

nents, they assume away the stable component on the ground that a stock price 

should go to zero as dividends go to zero. However , it might be hard to justify 

this assumption a priori since bubbles repr白ent deviations from fundamentals 

by definition.1 Miller and Weller (1990) and Buiter and Pese凶 (1990) examｭ

ine the effects of fundamentals-dependent bubbles on exchange rate dynamics , 
using log-linear models , in which the consideration of a free-disposal or pric• 
positivity constraint is not required. 1n models specified in terms of natural 

numbers (rather than logs) , however, some of theﾍr dramatic results might be 
ruled out by this constraint.2 Resolving th缶e issues, we provide a more general 

treatment of fundamentals-dependent bubbl回.

Furthermore, we formulate a stock price as a function of both time and 

market fundamentals. The resulting bubble solution will bridge a gap between 

time-driven bubbles [Flood and Garber (1980) et al.] and bubbles exclusively 
depending on fundamentals [F�'oot and Obstfeld (1991b) ], including these two 
solutions as special cases. 1t will turn out that depending on a parameter which 

decid白 relative degre白 of fundamentals dependency and time dependency, the 
bubble solution obtained exhibits various dynamic properti出 which cannot be 

derived by combining linearly the two special solutions. 

Focusing on this larger class of bubble solutions, we derive the following 
propositions. (i) 1n gene凶 the fundamentals dependency stabilizes bubble dy-

1 As an extreme case , Tirole defines bubbles as assets which have positive prices even though 
they pay no dividends [Tirole (1985) , p.1075] 

2See Diba and Grossman (1987, 1988b) for the implication of a free-disposal constraint on 

price bubbles. 
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namics. Indeed , the dynamics of fundamentals-dependent bubbles can be 抗争
chastically stable, saddlepoint-stable, or unstable. Owing to this stabilizing 

effect , fundamentals-dependent bubbles generally satisfy a stochastic version 

of the transversality condition. (ii) Stock prices with fundamentals-dependent 

bubblesωn be less volatile than fundamental pric回 (i.e. ， the discounted pr白ent
values of dividends). Thus, these bubbles may not be precl吋ed by the varト

ance bounds tests introduced by Shiller (1981a, b). (iii) Th田e bubbles exhibit 
various transition patterns, such as nonmonotonic movements and monotonic 
shrinkage in magnitude and volatility. Furthermore, the sign of their correlation 
with market fundamentals is time-varying. 

We extend the model by introducing crash risk. The model permits bubbles 

to crash partially. It is shown that fundamentals-dependent bubbles display varｭ
ious stochastic proc白s switchings in r・esponse to partial crωh白: The volatility 

of a price bubble may be instantaneously enlarged; the sign of the correlation bか

tween a bubble and market fundamentals can switch instanta.neously. The e百ect

of crash risk on the stochastic stability of bubble dynamics 1S also examined. 

The paper is structured as follows. In Section 4.2 we pr白ent a stochastic 

model of stock price determination and derive explicit solutions for the funｭ

damental price and bubbles. Section 4.3 examines the dynamic properti白 of

fundamentals-dependent bubbl白 Section 4.4 introduces the possibiliti白 of

mar ket crash白. In Section 4.5 are the conclusions. 

4.2 Bubbles and Fundamental Prices in a Ranｭ

dom Dividend Model 

4.2.1 The Basic l¥!Iodel 

Let us consider a stock share which yields dividends D(t) at time t[t ε[0，∞)] • 
These dividends follow a geometric Brownian motion with positive drift:3 

dD(t) = gD(t)dt + σD(t)dz(t) , ( 4.1) 

D(O) = Do , g- σ2/2> 0 ， σ> 0, 

where Do is some initial value of D. Constants g and σare ， r回pectively， the 

expected value and the standard deviaもion of the instantaneous rate of dividend 

growth. dz is an independent increment of a standard \九liener process, z , with 
the initial condition z(O) = O. For the purpose of exposition we assume that 

gーσ2/2 > O. Since ln D follows a normal distribution JV {ln Do+(g-σ2/2)t ， σ2t} 
from (4.1) , this assumption implies that the time seri白 of dividend payments 

have a positive trend.4 However, this does not affect our main analytical results 
presented below. 

3 As for stochastic processes and calculus in continuous-time settings , see Malliaris and 
Brock (1982) 

4 Note the difference between the meaning of (g - σ2/2) and that of g. Application of Ito'自
Lemma to 1n D yields: 

d ln D = (g- σ2 / 2)dt+ σdz ， 

implying that (g 一 σ2/2) repr田ents the expected growth rate of log-dividends. Next integrate 
this equation. Then , after some manipulations , we obtain: 

D(t) = Do exp{(g- σ 2/ 2 )t + σz(t)}. 
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Stochastic dividend-payment proc白s (4.1) is the only source of rar 

and t山he 白印仙l比tr凶a抗叫tion凹∞n generated b匂Y t凶hi泊s p戸ro閃C俗白邸s ， D = {De} 立。， specifies the inｭ

formation proce臼 of inv回tors. Supposing risk-neutrality of investors and free 

disposability of the stock , we assume that the (cum-dividend) stock price, P , is 
determined by the following two conditions: 

E[dP(t)IDt]jdt + D(t) = rP(t) ， ア> 0, 

P(t) 三 0 ， Vtε[0，∞)， w.p.1 , 

( 4.2) 

( 4.3) 

where E['IDt] represents mathematical expectations conditional on Dt , and paｭ
rameter r denot田 the riskless inter田t rate which is assumed to be constant. 

Eq. (4.2) represents the standard arbitrage condition , requiring that the 
expected return on the stock (the expected instantaneous capital gains plus 

dividend payments) equals the riskless inter白t. Eq. (4.3) is the price positivity 

condition. The model is fully desc巾ed by eqs. (4.1) through (4.3) , as being a 

stochastic version of Williams's (1938)-Gordon's (1962) model of growing stock 

prices and, at the same timej the continuous-time variety of Froot and Obstfeld 's 

(1991b). 

The rational expectations stochastic process of the stock price is obtained by 

solving nonhomogeneous partial di民rential eq. (4.2) , subject to the dividend 
payment proc白s (4.1) and the price positivity condition (4.3). Viewing D as 

a Ma比ov proc郎 from (4.1) such that its current value completely describes 

the information at that time, we assume that the solution to this problem 出 a

twice-di百erentiable deterministic function of both market fundamentals D and 

time t 
P(t) = P(D , t). 

As in the case of deterministic rational expectations models , the solution of 
eq. (4.2) with respect to P(D , t) can be expr白sed as the sum of the forwardｭ

looking particular solution , F(D , t) , and the gene凶 solution of the homogeneous 

counterpart of (4.2) , B(D ,t): 

P(D , t) = F(D , t) + B(D , t). (4.4) 

Given this decomposition , we call the forward-looking solution of (4.2) , 
F(D , t) , a んndamentα1 P門ce process if it satisfies the positivity condition , 

F( ・ ， t) 三 0 ， Vtε[0，∞)， w.p.l. 

Provided that a fundamental price process exists, a p何ce bubble process is deｭ
fined as the general solution of the homogeneous counterpart of (4.2) , B(D , t) , 
which satis自白 the price positivity condition , (4.3).5 We now derive conditions 

under which these proce部自 exist and present their explicit :solutions. 

By applying Arnold (1973)'s Lemma 8.4.4 (p.138) , the conditional expectation of D(t) is 
computed 槌・

E[D(t)1口0] = Do . exp(gt) , 
which reveals that 9 denotes the expected growth rate of the level of dividends. 

5 These definitions of fundamental pric回 and rational price bubbles are the standard ooes 

For example , see Diba and Grossman (1988b) and Froot and Obstfeld (1991b) 
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4.2.2 The FUndamental Price Process 

By defìnition, function F is obtained from (4.1) as: 

F(D ,t) = E [1∞ぽp{-r(s -t)} 附SI !1 t]. (4.5) 

Note that E[D( s) IDtl = D(t) . exp{g( s -t)}( s 三 t) from (4.1).6 Therefore, from 
eq. (4.5) , a fundamental price proc白s exists if and only if: 

r> g. (4.6) 

Assume that this inequality holds. Then , the fundamental price proceぉ is

uniquely determined as: 

F(D , t) = D(t)/(r -g). (4.7) 

More explicitly, the stochastic process of the fundamental price is obtained 

by applying Ito's Lemma to (4.7) and substituting (4.1) into the result: 

dF = gFdt + σFdz. (4.8) 

Thus, the proportional rate of ris回 in the fundamental price, dF/ F , equals that 
in the market fundamentals (i .e ・ ， dividends) , dD/ D , with probability one 

4.2.3 Bubble Processes 

By construction, function B satisf�s the following homogeneous equation: 

E[dB(D , t)IDt]/dt = rB(D , t). (4.9) 

Applying Ito's Lemma to function B to obtain E[dBID t] /dt , eq. (4.9) is rewritｭ
ten as: 

(1/2)σ2 D2 BDD(D , t) + gDBD(D , t) + Bt(D , t) 二 rB(D ， t) , (4.10) 

where the subscripts on B denote its partial derivatives, e.g ・ ， BD - θB/θD ， 
BDD = θ2B/θD2 etc. When we def�e q = ln D and set: 

B(D , t) = b(q , t) , 

eq. (4.10) reduces to a di民rential equation with constant coefficients: 

(1/2)σ2bqq (q ， t) + (g- σ2 /2)b q (q , t) + bt(q , t) = rb(q , t). (4.11) 

This partial di百erential 問uation is solved by the separation-of-variables 

method.7 First of all, set function b(q , t) equal to the product of a fundamentalsｭ

dependent factor , x(q) , and a time-dependent factor ， ν (t) 

b(q , t) = x(q) . y(t). (4.12) 

6 See footnote 5. 

7See Farlow (1983) for analytical metbods of solving partial differential equations 
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Next , substitute this into eq. (4.11). The r白ulting equation can be decompω出
into the following two ordinary differe凶al equations with respect to x(q) and 
y(t) , respectively: 

(σ2/2)x"(q) + (g _ σ2/2)ピ(q) = kx(q) , 

ダ(t) = (r -k)y(t) , 

(4.13) 

(4.14) 

where k is an arbitrary constant. Th回e equations are easily solved as: 

x(q) = G1 exp(入 1 q) 十 G2 exp(入2q) , 

ν (t) = J. exp{(r -k)t} , 

(4.15) 

( 4.16) 

where Gi (i = 1,2)and J are arbitrary constants and ん denote characteristic 
roots for (4.13): 

入一一(g- σ 2 /2)+{(g一 σ2/2)2+2σ2k} 1/2 
1 一 σ 1. , 

入ヮ一 一 (g-a2 /2) ー ((g-72/2)2+2σ2k}1/2
寸ー

σー

( 4.17) 

Finally, by substituting eqs. (4.15) and (4.16) into (4.12) and setting GiJ = Ai' 
we obtain a solution to (4.11) as: 

b(q , t) = Al exp{(r -k)t + 入lq} + A2 exp{ (r -k)t + λ2q}.8 (4.18) 

As can be seen from eqs. (4.13) and (4.14) , parameter k repr回ents the 

expected r悶at句e of char時e邸S 1凶n fundamentals-dependent factor x( q) , and (ァ - k) 
in tim• dependent factor ν (t). Since factor y i也s dete町r口Iπ凶r
expected cha加ng缶 e伺qu凶al actual on白， time t driv白 y at the evolution rate, (r-k) 
From eq. (4 .17) , on the other hand , parameters 入i ， w hich characterize t he 

stochastic dynamics of x(q) [and hence of b(q , t) ], are non-linear functions of its 
expected evolution rate k. Fig. 1 depicts this relation between ん and k. As 

is shown in the next section , it is this nonlinearity that causes price bubbl白 to

exhibit various dynamic properties depending on k. 

Bubble proc白ses are deri ved by r白tricting constants Ai and k such that 
function (4.18) satis日目 the price pωitivity condition (4.3). vVhen we defin 
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this restriction amounts to the following: 

Proposition 1: Suppose thαt process b [giveη by (4.18)] is nontriviαl in the sense 
thα t it 臼 not αlwαys equα1 to zero. Then, the necessαry and s1'J,fficient condition 
for this process to sαtisfy the p門ce posit'ivity conditioη(4.以 αnd hence to be α 
price bubble, is 

k 三主 and (A 1 , A2) > 0, (4.19) 

ωhere ( ・， .) > 0 represenお thαt the tω elements αre both positive αηdαt least 
one of them is strictly positive. 

Proof: See Appendix A. 1.口
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From eq. (4.17) or fig. 1 the 入i values are real numbers if k 之主， otherwise 

they are imaginary numbers. Thus , the above proposition says that a price 

bubble exists if and only if the roots 入 i are r回1 numbers and , at the same time , 
the Ai values are both positive. If the 入 i are imaginary numbers and if function 

b is not trivially equal to zero, process b displays a cycle around zero which is 

perturbed by Brownian motion z , so that it becomes strictly negative with nonｭ
zero probability. However smal1 the amplitude of the cycle may be, perturbation 
z , which follows a normal distribution , causes b to deviate downwards from this 

cyclical trend such that process F + b as a whole becom白 negative with nonｭ

negligible probability. On the other hand , if the 入 i values are real numbers 

and if either Al or A2 [and thus one of b's two components in (4.18)] is strictly 
negative, there exist values for parameter q which make this negative component 

large in absolute value such that processes b and P( = F + b) become negative. 

Given that inequalities (4.19) hold true , our bubble solution is provided by 
eq. (4.18) , with Ai and k being given arbitrarily.12 By construction it generally 

depends on both time and market fundamentals.13 As shown in fig. 1, when k 

equals zero，入 1 becom田 zero [and 入2 equals -2 (g -(J2/2) < 0]. 1n one special 

case where k ニ o (入 1 = 0) and A2 = 0 , therefore , price bubbles are independent 
of fundamentals and exclusively driven by time, as in Flood and Garber (1980) 
1n another special case in which k = r , bubbles exclusively depend on fundaｭ
mentals from (4.18). Since, from eq. (4.7) , the fundamental price component F 

is a1so fully determined by fundamentals , this single-state-variab1e solution repｭ
resents 'intrinsic' bubbl回， which are examined by Froot and Obstfeld (1991b ).14 

(Actually, by setting additionally A2 = 0 , we can obtain essentially the same 時
l凶on that they have focused on.) We next analyze systematically the dynamic 

properti白 of our hybrid solution , (4.18) , from the viewpoints of stochastic staｭ
bility, price volatili七y， and transition patterns , bridging a gap between the two 
special cお缶 15

12 Constants Ai(i = 1, 2) and k would be endogenously determined if some preannouncement 
concerning future process switching of market fundamentals were introduced. For a model 
in which process switching is specified as conditional on time, see, for example , Gray and 
τ'urnovsky (1979). Models of stocha山 process switching in which the process of market 
fundamentals switches conditionally on some particular state of the market include Flood and 
Garber (1 983 , 1991); Krugman (1987 , 1991); Froot and Obstfeld (1991a); Miller, Weller, and 
Williamson (1989); Svensson (1991); and Bertola and Svensson (1990) 

13However, note もhat ， ifσ2 = 0, equation (4.13) reduces to: 

9 ・ x' = k ・ 2 ・

Since q(t) = qo + gt in this c回e ， this equation is solved 出:

x(q) = K. exp{(k/g)q(t)} = L. exp(kt) , 

where K and L are arbitrary constants. Thus , the fundamentals-dependent factor is described 
completely in terms of time here. This is because in a deterministic setting each value of m arket 
funda皿entals h槌 a one-tφone correspondence with time , so that the current state contains 
exactly the same information as time. 
14Froot and Obstfeld (1991b) also analyze another special case corr伺ponding to k = 9 and 

A2 =0. 
15 As is easily seen from the above discussion , our bubble solution (4.18) does not satisfy 

McCallum's (1983) ‘ minimal帽state-variable' criterion. Although this criterion might facil咜ate 
focusing on fundamental prices , it does not seem to provide a rational restriction on speculative 
price dynamics such as bubbles , sunspots, and chaotic price motions. 
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4.3 The Stability, Volatility, and Dynamics of 
Price Bubbles 

4.3.1 Stochastic Stability 

Let us first examine the stochぉtic (or alm凶 sure) stability of price bubble b. 

Bubble proc白s b(t) is defined as stochastically (or almost surely) asymptotically 
stable (in the large) if it converg白 ωth probαbility one as t →∞ [for any 
b(O) ε[0，∞)].16 Note that time t evolv田 a price bubble in two ways: by driving 

time-dependent factor y directly and by evolving fundamentals-dependent factor 

x through changing q randomly. As is easily seen from the previous discussion 

on eq. (4.18) , the stability of y(t) is determined by (ァ - k) while the stochastic 
stability of x( q) by characteristic roots 入i ， which are non-linear in k. Because 

of this non-linearity, the stochastic stability of bubble dynamics has a large 

spectrum depending on k ， ぉ we shall show now. 

Since 仕om eq. (4.1) q(t)(= lnD) is expr田sed as: 

q(t) = qo + (g - σ2/2)t + σz(t) , ( 4.20) 

where qo = ln Do , eq. (4.18) can be rewritten as: 

b(q , t) = LAi(Do) 入 1 叫[{r ー仇(ゆ+入i O"Z(t)] ， (4 幻)

where: 

ψi(k) = k 一入i(g - σ2/2) ， i=1 ,2. ( 4.22) 

In eq. (4.21) we have limt→∞ {z(t)/t} = 0 (w.p.1) by the strong law of large 

numbers [see Arnold (1973) , p.46]. Thus, it implies that the stochastic stability 

of b crucially depends on the relative magnitudes of r and ψν 

Proposition 2 (stochαstic stab琩ty of price bubbles): Suppose thα t the inequαli
ties in (4.19) hold， αηd Al > 0αηd A2 > O. The叫 (i) ザ r< ψ1. (k) , price bubble 
process {b(q(t) , t)}三o (= {B(D(t) ， t)}立0) is stochastically αsymptotically stα
ble; 作i) if仇 (k) ~ r < ψ2 (k) , it is stochαstically sαddle-point stαble; αηd 向i) if 
ψ2(k) 三 r ， it is stochαstically unstable.17 

Fig. 2 illustrates this proposition by drawing the loci of ψi in k ー ψi space. 

As is verified in Appendix A.2 ， ψ 1. is represented by a U-shaped curve which 

has a turning point at the origin. The ψ2 is monotonically increasing in k. The 

gradients of both curv田 become infinite (in absolute values) at point 主 and
approach one as k →十∞ Given that the vertical axis measur白七he interest 

16 It is well known that the stabiJjty of a stochastic system can be defined differently dependｭ

ing on how stochastic convergence is defined (e.g. , in terms of ‘ with probability one' or the 
n-th moment). However , the definition of stochastic stability, with which we are concerned 
here , is a direct and natural 田 tension of the determini8tic definition. For details concernｭ
ing the stability of stochastic dynamics , see Arnold (1973) , Chap.11. See al80 Turnovsky and 

Weintraub (1971) and Kiernan and Madan (1989) for stochastic-stability ar凶yses of econom ic 

models. 

17proposition 2 assumes that both Al and A2 are strictly positive. Wben one of the two 

equals zero , stochastic process b must be either stable or unstable depending on the relative 

magnitudes of r and ψi which is associated with nonzero Ai 
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rate r , region S repr回ents the set of points (k , r) under which bubble dynamics 
are stochastically asymptotically stable, region S -P denot白 the stochastically 

saddlepoint-stable area, and region U the stochぉtically unstable area. Itωn 

easily be seen from this figure that , for a given k , the larger r becom白， the 1田s

stable are bubble dynami岱. This is because a large r impli白 a high evolution 

rate of timφdependent factor y while the 入i values , the characteristic roots of 
fundamentals-dependent factor x , do not rely on r. 

The relation between the stochastic stability of bubbl田 and the expected 

evolution rate of fundamentals-dependent factor x , k , is not so simple, reflecting 
that the 入 i valu白 are nonlinear in k. However, note that if a price bubble is 

independent of market fundamentals , it evolv白 at the growth rate equal to 

r while from (4.21) the (average) evolution rate of a fundamentals-dependent 

bubble is characterized by (r - ψi). Here, as seen from 日g. 2, theψi values 
are positive for any k E 民，∞). Therefore, the dynamics of price bubbl白 are
stabilized by their fundamentals dependency. 

This r田ult is consistent with Arnold's (1973 , p. 1851) remark 11.2.17 and 

Kiernan and Mada山 (1989) r白ult. They show that the addition of hetｭ

erωcedastic shocks tends to stabilize dynamics. Kiernan and Madan provide an 

intuitive explanation , which may be app1icable to interpret the stochastic staｭ
bility of fundamentals-dependent bubbles: Consider a discrete-time counterpart 

of our model: ムbi+l = (ァ +αZi+ r) bi where Zi denotes a noise on fundamentals 

in the i-th period and αis a multiplier. These shocks can stabilize bubble dyｭ

namics , as may be seen by observing the e百'ect of two shocks of the same size 

but different signs , (r + αz)(r ー αz) = {r2 -(αZ)2} ， which is smaller than r 2, 
the exclusively time-dependent case. Intuitively, the same argument is valid in 

our model since positive shocks, which are generated by Brown motion z , occur 
with the same frequency as corresponding negative shocks of the same size in 

infinite time.18 

Remark 1: Owing to thお stαbilizing effect of fundαmeηtαls dependency, for 
αηy nonzero k ε[ι ∞) ， αpバce bubble sαtisfies α stochastic version of the 
tnαnsversαlity condition, 

αc-ιzexp(-Tt){F(DJ)+b(qJ)}=03 ( 4.23) 

切here αc represents 'with probability one'. This ca札 be see礼 by deriving from 

(4.21) the process for discounted bubble exp( -rt)b(司、 t)

仰(-rt)b(州 = "L Ai(D計仰[{-ψi(k)}t -+-ﾀiO"Z(t)] 

As noted αbove， ac-limt→∞ {z(t)jt} = 0 by the stro句 lαω of large numbers. 
Thus, the evolution rate of α discounted bubble is chamcterized by -ψi ， ωhich 

are st何ctly negative for αηyηonzero k E [ι ∞)ω ぬωη in fig. 2. 1丸山p

α discounted bubble (αs well ω the discounted value of the んndαment.α l price 

18See Kiernan and Madan (1989) for more detailed discussions 

72 



compone叫) converges to zero with probability one ωt →∞九20

4.3.2 Volatility 

The volatility of price bubble b can be measured in terms ()f the absolute value of 

partial derivative bq. This can be seen if we obtain bubble dynamics by applying 

1to's Lemma to b(q , t) and substituting (4.11) into the result as: 

db = rbdt + bqσdz ， ( 4.24) 

which implies: 
var(db) = (bq )2σ2 ， ( 4.25) 

where var(.) represents variance per unit time. Thus the volatility of bubbles is 

proportional to that of dividend payments and (bq )2 , so that a large JbqJ implies 

large volatility of bubbles relative to that of the market fundamentals. 

Furthermore, bq determin白 the sign of the correlation between b and F 

From (4.8) , (4.24) , and (4.25) , the instantaneous correlation coefficient between 
db and dF , r(db ,dF) , is obtained as: 

r( db , dF) = sign(bq ) ・ (+1).

That is, db and dF are perfectly correlated with each other and the sign of the 

correlation is the same as that of bq ・
1n short , the volatility of price P(= F + b) depends on bq in two ways: 

the absolute value of bq affects the price volatility by changing the volatility of 

bubbl白; and the sign of bq affects it by determining the sign of the correlation 

between the bubble component and the fundamental price component. Ther• 
fore, the stock price may be less volatile in the pr白ence of bubbles than in the 

absence of them if bq is negative and not so large in absolute value. 1n fact , 
since eqs. (4.4), (4.8) , and (4.24) imply: 

var(dP) = {(bq/F) + 1}2var(dF) , 

we obtain the following result: 

19 As for the discounted value of the fundamental price component , exp( -rt)F(D , t) , we 

obtain from equation (4.8): 

αc- lim 叫(-rt)F(D ， t) = αc・ lim 叫(-rt)F(Do ， O)叫{(g -(72 /2)t + σz(t)} 
t ー圃・ C白

0 , 

since r > (g 一 σ2/2) 仕0皿(4.6) 

201n general , mean stability implies stochastic stability, but the converse is not true. See 

Arnold (1973) , Chap. 11. 1ndeed, from eq. (4.9) , B(= b) is expected to diverge at the positive 
rate , r , so that it is always unstable in mean even if it is stochastically stable. As can be seen 

from Froot and Obstfeld's (1991b , p.1197) discussion , a stable bubble wiU be far from zero 

relatively rarely in large samples, but when it is , it diverges by an a.mount large enough to 
equalize the mean growth rate of the bubble to the inter田t rate. Refl.ecting this , price bubbles 
do not satisfy the transversality condition (TVC) if, replacing (4.23) , we follow many studi田

[e.g. , Froot and Obstfeld (1991b)] to specify the TVC in terms of the mean as: 

tu En exp( - Tt)EiF(D , t)+b(q, t) |Qol=0. 
•= 

1mp08ing some conditions , Brock (1982) prov田 tbat the TVC in t.erms of tbe mean is a 

necessary condition for optimality. 
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Proposition 3 (volatility of bubbly prices): The ωlαtilüy of price P and thαt 
of the fundαmentαl price component F sαt臼:fy:

var(dP) 言 var(dF) ∞ l(bq/F)+ll~l ( 4.26) 

Thus , the vo1atility of bubb1y pric回 can be smaller than that of the fundaｭ

menta1 price. This phenomenon occurs when -2F く bq < O. In this case, a 

bubb1e is negative1y corre1ated with the fundamenta1 price whi1e the vo1atility of 

the bubble itse1f is not too 1arge, so that the price vo1ati1ity as a who1e becomes 

smaller in the pr白ence of bubbles. 

Remark 2: 日臼 possibility implies th叫 if the fundαmental-dependent bubbles 
presented here tαke place, they may not be precluded by the vαriance bounds tests 
introduced by Shiller (1981α， b). 

4.3.3 Dynamics: Two Specia1 Cases 

It is difficult to depict the dynamic transition patterns of price bubb1es qua1itaｭ
tive1y since in our formu1ation they are driven by two forc白， t and q (or, equivｭ
a1ent1y, D). Concentrating on clarifying the effect of fundamenta1s-dependency 
on bubb1e motions, we here compare two specia1 cas田; the case of fundamenta1sｭ

independent bubbl回 and that of tim争independent intrinsic bubbles. 

As is pointed out in Section 4.2 , fundamentals-independent bubbles are prか
vided by setting k = 0 叫ん= O. In this case process b, given by (4.18) , 
reduc白 to:

b(t) = Al ・ exp(rt).

This bubb1e exhibits a monotonic divergent motion as in Flood and Garber 

(1980) and others 
Next consider the case in which k = r. Given the current va1ue of the market 

fundamenta1s , b is independent of time t from (4.18). As seen from fig. 1 or 
2, these intrinsic bubbles are stochastically sadd1epoint-stab1e.21 To focus on 

this variation structure, note that in this case function b is the solution of the 

second-order ordinary di百ere凶a1 equation which is obtained by setting b = b(q) 
in (4.11): 

(1/2)σ2bぺq) + (g ー σ2/2)b'(q) = rb(q). 
Letting v(q) denote b'(q) , we decompose this equation into: 

が (q) = -{2(g - σ2/2)/σ2}υ (q) + (2r/σ2)b(q) ， 
b'(q) = υ ( q). 

( 4.27) 

( 4.28) 

These simu1taneous equations determine the variations of v and b caused by 

fluctuations in market fundamenta1s q. By app1ying the usua1 phase ana1ysis 

to 問s. (4.28) , we can depict the sadd1e-shaped variation structure of intrinsic 
bubbles in fig. 3. The arrow attached to each trajectory indicat白 the direction 

in which each point moves along the trajectory with parametric incr伺S白 in q. 
Although the va1ue of q is not given parametrically but generated by stochastic 

proc邸 (4.20) ， fig. 3 is informative in the following two senses. First , given 

21In fig. 2 intrinsic bubbles can be depicted by the 45-degree line (a l.inear space representing 

r = k) 
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constants Al and A2 in (4.18) , each trajectory can be regarded as a transition 
trail on which a price bubble and its volatility are determined depending on 

realized values of state variable q. [From (4.25) , the volatility of a bubble is 

proportional to v2
.] Secondly, since 9 - σ2/2 > 0 by assumption , q becom白

larger on average.22 Thus , the arrows drawn in fig. 3 indicate average directions 

in which intrinsic bubble::ョ move over “randomly passing time" represented by q. 
As shown by trajectori白 1 ， II, and III, intrinsic bubbl田 can exhibit three 

transition patterns since both of Al and A2 must be positive from proposition 

1. Along trajectory 1 the magnitude and the volatility o.f intrinsic bubbles bか

come larger as q increases. In contrぉt ， trajectory III represents a stochastically 

stable bubble: b and v stochastically asymptotically converge to zero.23 Finally, 
trajectory II repr白ents a nonmonotonic bubble: b is decreasing on average while 

q is small, but turns increasing after q becom白 sufficiently large. Furthermore, 
along this trajectoryυmonotonically incre前回 and crωses the horizontal axis. 

Since the absolute value of v( = bq) is a measure of the volatility of bubbles and 

its sign determin白 how the bubble is correlated with market fundamentals q (or 

D) , this monotonic increase in v implies，日rst ， that the volatility of the intrinｭ

sic bubble goes down to zero, but turns increぉing after q becomes sufficiently 

large, and secondly, that its correlation with market fundamentals is negative 

until the process cro回出 the horizontal axis, but after that it turns positive. 

4.4 Parlial Crashes and Stochastic ,Process Switch-
lng 

We have so far implicitly ぉsumed away the possibiliti白 of market crashes. Let 

us extend the model by incorporating crash risks. Recalling that function b, 
given by (4.18) , is obtained by setting it equal to the product of fundamentalsｭ

dependent factor x( q) and tim• dependent factor y (t) , we introd uce crash risks 
in a factor-wise manner: Instead ofremaining forever , at any instant factors x(q) 
and y(t) are assumed to face instantaneous constant probabilities of crashing, 
Px and Py , r白pectively. In our continuous-time setting, th缶e instantaneous 

probabiliti回 can take any positive values. 

For b to be a price bubble, the expected evolution rate of each factor during 
the duration must be higher than that in the nかcrash case in order to compenｭ

sate for each crash risk. Without crash risks the expected evolution rate is k for 

x(q) , and (r -k) for ν (t) ，ぉ pointed out in Subsection 4.2.3. Bubble processes 

under crash risks are thus obtained by replacing (r -k) with (r + Py -k) and 
k with (k + Px) in (4.17) and (4.18): 

b(q,t;px ,Py) = A1exp{(r+py-k)t+B1q} (4.29) 

+A2 exp {(r + pν - k) t + B2q} , 

where the Bi values are the characteristic roots defined by using k + Px instead 

22 From eq. (4.20) ，回 t →∞， q(t) →∞ with probability one 
23This case is similar to "the asymptotically bubblel四日 equilibrium" which Tirole (1985) 

has presented. 
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of k :24 
。一一(g_ (7 2/2)+{(g_(72 /2)2+2σ2(k+px) ト 1 /2
1 -ー σZ

fh = 一 (g_ (72件日9ー σア州内+Px) ト 1 乞
( 4.30) 

The expected evolution rate of b, implied by (4.29) and (4.30) , is (r+ Px + Pν) 
while the probability that it remains for more than T unit time is exp( -PxT) . 

exp(一向T) = exp{-(ρx+ 内)T}. 1t follows that: 

E[b(t + ァ)1九l exp{ -(Px + Pν)ァ} exp{(r + Px + Pν)ァ}b(t)

exp(rT)b(t). 

This reveals that random proc白S白 implied by (4.29) actually satisfy the definｭ

ition of a price bubble, (4.9). 
A remarkable feat ure of the present model is that the crash白 offundamentalsｭ

dependent factor x may be partial on回: When bi.(i = 1,2) denote two compcト
nents of b in eq. (4.29); i.e. , b = b1 +b2, where bi = Ai. exp{(r+pν -k)t+Biq}; 
components b1 and b2 do not nec白sarily crash simultaneously at a crash of x , 
but generally one of the two components remains until the second crash takes 

place.25 At partial crashes, price bubbl白 display various stochastic proc白s
switching. To show this briefly, we now assume pν= 0 and consider the case of 

intrinsic bubbles, i.e. , k = r. 
Bubble dynamics are now described by equations which are obtained by 

replacing r with r + Px in (4.28). The introduction of crash risk Px mak白 the
v' = 0 schedule and saddle trajectories in fig. 3 steeper. Viewing this, fig. 4 

depicts the variation structure of intrinsic bubbl白 in the presence of crash risks. 

When a partial crash occurs on trajectory II' , the bubble proc回s switch田 to

that along saddle trajectory l' or 1II'. If unstable component b1 crash白日rst ，

the intrinsic bubble process switch白 to a stable one which is governed by stable 

root B2. 1n contrast , a七 the first crash of stable component b2 , the bubble 
proc田s switch白 to an unstable one which is governed by unstable root Bl ・ For

example, suppose that a partial crash tak白 place at point C1. If this crash 
pertains to unstable component b1 , the bubble instantaneously jumps from C1 

to some point on stable saddle trajectory II1' , say point C2 , and thereafter , as 
q increas白 on average , the bubble monotonically decr回ses in magnitude and 

volatility along that trajectory until the second crash, which tak白 place with 

respect to b2 ・ On the other hand, if stable component b2 crash白 at point C1 , 
the crash destabiliz回 the bubble dynamics in the sense that after the crash 

the magnitude and volatility of the bubble follow a divergent proce部 along

trajectory l' until the second crash occurs. 

24 Formally, eq. (4.29) is derived by solving the following two ordinary differential equations 
for x(q) and y(t) , respectively 

(σ2/2)x" + (g- σ2/2)x' = (k + Px)x , y' = (r + Pyr -k)ν 

25This can be seen by noting that the motion of component b} and that of b2 , which are 
expressed by using Ito's Lemma as: 

dbi = (r +ρx + Py )bidt + 8i biσdz ， i = 1, 2, 

are both autonomous in the sense that they do not interact with each other. 
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In order to clarify the impact effects of partial crash白 (on intrinsic bubbl白) , 
recall that the absolute value of first derivative υ(= bqωqρ) dete釘r口m汀mm訂n白 the volatilｭ

ity of a bubble and its sign decid白 that of the correlation of the bubble and 

dividends. Note that v is expr白sed as the sum of components Bl b1 and B2b2 , 
which have dωi庄e悶
impact of a partial crash on the stochastic proce白ss of bubblE白~ depends on which 

component , B1b1 or B2b2 , crashes at that time. Let us refer to one of these two 
components which is larger in absolute value as the dominant component of v. 
It is straightforward to show the following: 

Proposition 4 (irr仰ct effecお of partial crashes): C 0η.sider αη intrinsic bubble 
under crash risk Px. Let A 1 α叫ん be 幼'ictly positive. Then, (i) ザ the ηoη
dominαnt compoηent 0 f v (= bq) crashes first, the ωlαtility of the price b叫ble

is instαntαneously enlarged by this pα付叩1 crash， αs illustrated by the jump from 

C1 to C2 in βg. 4; On the otl町 hand， (ii) if the βrst crash pe付αins to the 

dominant component of v , the sign of the corアelation bdween the bubble αηd 

market fundαmentals (i. e. , dividends) switches instaηtαηeously at this crash， αs 

depicted by the jump from C1 to C3 ・

Even when k =p r and py =p 0, results (i) and (ii) in proposition 4 are also valid 

insofar as k + Px > 0 since B1 b1 > 0 and B2b2 < 0 in this case. If li :S; k + Px く 0 ，
on the other hand, B1 b1 and B2b2 are both strictly negative from (4.30). Partial 

crash回 thus nec回sarily reduce the price volatility and have no effect on the 

correlation between a bubble and market fundamentals. In general , stochastic 
proc白s switchings provided by proposition 4 take place under a large crash risk 

of fundamentals-dependent factor x. 

Remark 3: Crash risks Px and Py αlso αjJect the stαbility of bubble dynamics 

during the duration. In the sαmewαyαs in Subsection 4.3.1 ， ωeωη see thαt 

the stochαstic stαbility under crash risks is decided by the relαtive mαgnitudes of 

(r + py) αnd βi(k ， Px)(i = 1, 2), w九ere

ßi(k ,px) = k -Bi(g- σ2/2) . 

Nαturally， ßi(k ,O) eqωls 仇 (k). Fig. 5 depicts the stαbili句 mαp in the preseηce 
of crαsh risks by dr，αwing the loci of ゚i in k-゚i spα ce. As ωη easily be seeη from 

this figure, the cγαsh risk for time-dependent pαctor py destαbihzes the stochαstic 
dynamics αs does r in the αbsence of crash risks 伊e fig. 2). The introduction 

of crash ηsk into fundαmentαls-dependent pαctor x enlarges the region in ωhich 
bubble dynαmics αre stochastically saddlepoint-stαble.26 

4.5 Conclusions 

Using a stochastic dividend-growth model , we have provided a general analysis 

of fundamentals-dependent bubbles in stock prices ・ Given that dividends follow 

a continuous Markov proc白s ， a stock price is specified as a function of diviｭ

dends (i.e. , market fundamentals) as well as of time. We have de山ed a partial 

di庁'erential equation with r白pect to this price function from an arbitrage 

26 Within a model of time-driven bubbles , Evans (1991) shows tt川 certain partial crash田
stabi�e bubble dynamics. 
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equation. Provided that a free-disposal condition is satisfied, a fundamental 
price process is defined as the forward-looking particular solution of th出 equa

tion , and a price bubble as the general solution of the corresponding homog争

neous equation. 

Reflecting the indeterminacy of the mapping from dividends to stock pric白

under rational expectations , price bubbles depend on the market fundamenｭ
tals. This fundamentals-dependency crucia11y a百'ects the bぉic feature of bubｭ

bl白 . First of a11 , the fundamentals-dependency stabiliz田 bubble dynami岱:

The dynamics of fundamentals-dependent bubbl回 can be stochぉtically stable, 
saddlepoint-stable, or unstable. Owing to this stabilizing effect, fundamentalsｭ
dependent bubbles genera11y satisfy a stochastic version of the transversality 

condition. Secondly, stock prices with fundamentals-dependent bubbl田 can be 
less volatile than fundamentals. This occurs when the price volatility is reduced 

by the negative correlation between the bubble and fund.amental components. 

These bubbles may not be precluded by the variance bounds t缶ts. Thirdly, 
fundamenta1s-dependent bubbles exhibit various transition paもterns ， such as 

nonmonotonic movements and monotonic shrinkage in rnagnitude and volatilｭ

ity. 

As an extension we have incorporated crash risks , permitting bubbles to 
crash partially. The volatility of the price bubble may be instantaneously enｭ

larged by a partial crash. Furthermore, the sign of the correlation between a 

bubble and market fundamentals can switch instantaneously at a partial crash. 

Crash risks a1so a圧ect the stochastic stability of bubble dynamics during the 

duration. The crash risk for the time-driven factor of a bubble destabilizes its 

dynamics. The introduction of crash risk for the fundamentals-driven factor enｭ

larges the possibi1iりもhat bubble dynami岱 are stochastically saddlepoint-stable. 

We finally suggest some directions of future r白earch. First, our analysis can 
蹴ily be側ended to the c蹴 ofthe other asset 戸ices. Ikeda and Shibata (1992) , 
for example, construct a model of speculative exchange rate dynamics with funｭ

damentals uncertainty. Secondly, it is necessary to test empirically the validity 

of our fundamentals-dependent bubbles. Thirdly, dropping the assumption of 
riskneutrality of inv田tors ， the consistency of fundamentals-dependent bubbles 

with the rational behavior of inv白tors must be examined. 

4.6 Appendix for Chapter 4 

4.6.1 Appendix A.1: Proof of Proposition 1 

Assuming that proc邸 b [given by (4.18) in the text] is nontrivial , we here prove 
proposition 1 by providing two lemmata. The 日rst lemma constrains the range 

of k 

Lemma A.l: Process P( = F + b) becomes negαtive ωith ηon-zero probαbility 

when characteristic roots ん (i=1 ， 2)αre imαginary numbers. That is, 

k く主=今 Prob[P(. ， t) > 0, Vtε[0，∞)100 ] < 1. 

Proof: vVhen k < ιthe 入i ， defined by (4.17) in the text , are expr白sed as: 

入1=-π+εt ，
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入2= ー7r - é2, 

where π = (g- σ2/2)/σ2(> 0) and ε = {J(g ー σ2/2)2 + 2σ2kJl /2}/σ2(> 0). By 

using th間ほpressions ， stochastic process b [given by (4.18)] can be rewritten 
as: 

b(q , t) = exp{(r -k)t- πq}(α1 COSεq+ α2 sinéq) ， (4.31) 

where 向。= 1,2) are arbitrary constants. Since fundamental price F [given by 
(4.7)] is expressed in terms of q as F = αexp(q) ， where α = l/(r-g) [> 0 

from eq. (4.6)], proc悶 P(= F + b) is de山ed from (4.31) as: 

P(t) = αexp{(r -k)t ー吋}[exp{(k -r)t + (π + l)q} -(d1 COSεq + d2 sinεq) ]， 
( 4.32) 

where di = 一向/α(i = 1, 2). (4.32) impli白 that P(t) is positive iff: 

exp{ (k 一市 +(π + l)q} 三 d1 COSεq + d2 sin 駲. (4.33) 

Assume that, for some (d1 ， の ) :f. 0, proc白s P is alwa.ys positive with probｭ

ability one, that is , inequality (4.33) is valid for a11 t E [0，∞) with probability 
one. Note that the R.H.S. of (4.33) represents a cycle around zero, and therか
fore, for any t , say to , one can choωe q such that the R.H.S. is strictly positive. 

We denote this value by qo ・ Now fix q at qo and change t parametrically from 

to to i凶凶y. Then , since k -r < (主 - r <)0 and hence the L.H.S. of (4.33) 

monotonica11y decre羽田 to zero as t →∞ while the R.H.S. keeps constant , 
there exists some finite time t* which violates (4.33) for q = qo. This and the 

continuity of the R.H.S. of (4.33) with respect to q imply that , for t = t* , there 
exists a range of q at the neighborhoods of qo such that (4.33) is not valid. This 

is a contradiction. 口

Therefore, inequality k ど主 must hold true for (nontrivial) process b to be 

positive. Next , the following lemma rul白 out the possibilities of negative Ai : 

Lemma A.2: When char，αcteristic roots 入i(i = 1 ， 2)αre distinct real numbers, 
process P(= F + b) is αlωαys positive with probαbility one ザ αηd only ザ the Ai 

vαlues αre both positive. That 'is， ωhen k > ι 

(Al' A2 ) と 0 ∞ Prob[P(. ， t) 三 0 ， Vtε[0，∞)JOo] = 1. 

Proof: Assume that k > 主. From (4.7) and (4.18) in the t臼叫 proce回 P(=
F + b) is expre臼ed as: 

P(D, t) = 

α'exp{ (r-k )t+q} [exp{ (k-r)t} +( A1 /α) exp{ (入1- 1)q}+(A2 /α) exp{ (入2- 1 )q}].

Therefore, P is positive if and only if: 

exp{(k -けけど -(Adα) exp{ (入 1 -l)q} -(A2 /α) exp{ (入2-1)q}. (4.34) 

Since (Al' A2 ) 三 O 回 obviously a sufficient condition for price positivity, we 
now verify that if either A1 or A2 is strictly negative, (4.34) is not valid with 

non-zero probability for some t ε[0 ， ∞) . 
Consider the case in which A1 > 0 and A2 < O. In this case inequality 

(4.34) is violated for any t by sufficiently small q's (i.e. , the q values which 
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are negative and large in absolute value) since 入2 - 1 く O. (Note that when 

入 1 - 1 く 0 ， 1 入 2 -11> 1 入 1 -11.) 
Next , suppose that inequality (4.34) is valid with probability one for some 

A1 < 0 and A2 > O. Obviously, if 入 1 -1 > 0, (4.34) is violated by a sufficie凶y
large q since 入 1 ー 1 >入2 -1 from (4.17). Therefore, we consider the case in 
which (入2 - 1 く)入 1 - 1 三 O. In this case, for any tε[0，∞)， say t 1 , one can 
choose a sufficiently large value for q such that the R.H.S. of (4.34) is strictly 

positive since 1 入 1 -11 < 1 入2 -11. Let q1 denote this value. Now f� q at q1 
and change t parametrically from t1 to infinity. Here note that on the L.H.S. 

of (4.34) , k - r く o when 入1 ー 1 三 O. This is because from (4.17) 入1 -1 is 

increasing in k and equals zero at k = g while g < r from (4.6). Therefore, the 
L.H.S. of (4.34) monotonically decreases to zero as t →∞. It follows that there 
exists some finite time t** which violat田 (4.34) ， implying that inequality (4.34) 
is not valid for t = t * ・ and q ど q1 ・ This is a contradiction. 口

In lemma A.2 we do not explicitly consider the case in which k = 主. In this 

case the positivity of Ai is a sufficient, but not nec田sary condition for price 

positivity. Indeed, if k = 主 and A1 = -A2 , Prob[P と 01 .00 ] = 1. However , this 
represents a case in which b(t) is a trivial process. Therefore, lemmata A.1 and 
A.2 imply proposition 1. 

4.6.2 Appendix A.2: The Shapes of the ψcCurves 

By the defi凶ion of ψi [伺・ (4.22)] we have: 

ψ~ (k) = 1 -(g - σ2/2){(g _ σ2/2)2 十 2σ2k} -1/2 , 

ψ~(k) = 1 + (g ー σ2/2){ (g_ σ2/2)2 + 2σ2k} -1/2. 

Therefore, functions ψi satisfy the following: 

ψ1(k) (i) limψ~ (k) = 一∞，
k • k 

(ii) lim ψ~(k)=l ， 
kT+∞ 

(iii) ψ1 (0) = 0 , 
(iv) argminψ1(k) = 0, 

k>主

ψ2 (k) : (i) limψHk) = +∞， 
klj主

(ii) lim ψ2(k) = 1, 
k↑+∞ 

( iii) ψ~(k) く 0 ， Vkε[ι ∞) . 

The equations above imply that the ψi-curv白 can be expr缶sed in k-仇 space

as drawn in fig. 2. 
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Chapter 5 

Fundamentals U nceI1ttaintyラ

Bubbles, and Exchange 
Rate Dynamics 

Abstract: Using a monetary mode1 of exchange rate determination , we study 
exchange rate dynamics with bubb1es which depend on stochastic market funｭ

damentals. These dynamics can be either stochastically stab1e or unstab1ej and 

either monotonic or non-monotonic (including cyclic). In an extreme case, they 
converge with probabi1ity one and exhibit cyclic movements. Implications for 

the ana1ysis of tim仔dependent regime shifts are a1so explored. Exchange rates 
with bubb1田 are 1ike1y to appear 1ess vo1ati1e than the fundamentals in finite 

samp1es. Both the variance bounds and cointegration tests might thus be inefｭ

fective in t白ting the absence of bubbl白 under fundamentals uncertainty. 

JEL Classification Number: D84, E44, F31 , G15. 

Keywords: Exchange rat白， fundamentals uncertainty, bubb1es , cycles , stabi1-
ity, stochastic process switching, volatility, cointegration. 

5.1 Introduction 

This paper treats three topiωconcerning exchange rate dynamics in a stochasｭ

tic environment.1 First, the stochastic properties of speculative exchange rate 

dynamics caused by rationa1 expectations under fundamentals uncertainty are 

examined. Second, the exchange rate process obtained is used to derive imｭ

plications for the analysis of stochastic regime shifts. Third, the results raise 
qu白tions about the power of empirica1 tests such as the variance bounds and 

cointegration tests for asset price bubbles. 

Our r白earch may be viewed as a logical next step to an extensive line 

of theory on stochastic regime shifts , for example, Flood and Garber (1983 , 
1992) , Miller et a1. (1989) , Klein (1990) , Krugman (1991) , Froot and Obstｭ
feld (1991a,b) , and Svensson (1991a ,b , 1992). Th田e studies verify that , in 七 he

1 For recent stylized facts concerning the behavior of exchange rates , see Levich (1985) , 
MacDoDald (1988) , Baillie and McMahon (1990) and Me田e (1990) 
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pr缶ence of stochぉtic process switching of market fund a. mentals , the exchange 
rate deviat回 from its fundamental 仕日子日oat level and the deviation depends 

on the current state of the fundamentals. This fundamentals-dependent deviaｭ

tion from the fundamental fre←日oat rate, however, is not limited to the case of 
stochastic regime shifts: even when the exchange rate floats 仕eely， it may also 

deviate from its fundamental value under fundamentals uncertainty, refiecting 
the indeterminacy of the mapping from market fundamenta1s to the exchange 
rate under rational expectations. By speciかing the exchange rate as a function 

of market fundamentals as well as time, a larger class of rational expectations 

solutions describing erratic exchange rate dynamics can be considered. 

Applying this basic idea to the standard monetary rnodel of exchange rate 

determination, we characterize the erratic behavior of exchange rat田 under the 

free fioat by bubbly dynami岱 which are generated by market fundamentals 

uncertainty. It is shown that the 仕ee-float exchange' rate is likely to appear 

less volatile than market fundamentals in the presence of bubbles which depend 

on stochastic fundamentals: the bubbl白 can be stochぉtically asymptotically 

stableぅ that is , they can converge with probability onej and the equilibrium 
free-fioat exchange rate can exhibit non-monotonic movements , especially cyclic 
movements. The basic model お extended to a multiple stochastic fundamenｭ

tals case. We show that interactions among multiple fundamentals-dependent 

factors cause exchange rates to display richer dynamicsj and that , in this case, 
even bubbl回 depending exclusively on market fundamentals , which correspond 
to Froot and Obstfeld's (1991c) intrinsic bubbles, can exhibit non-monotonic , 
自pecially cyclic movements. 

By using the solutions obtained, we also present a general procedure to 

solve problems of timかdependent stochastic process switching. The procedure 

is applied to examine the e圧ect of announcing a future shi此 from the free-float 

regime into some new currency regime such as a target zone. 

As implications for empirical r白earch ， it is finally pointed out that, in fiｭ
nite samples, the standard cointegration test developed by Campbell and Shiller 
(1987) and Shiller's (1981) variance bound t白t may not be as powerful as previｭ

ously thought for bubble detection: bubbles can be pr白ent even if the hypothｭ

白is that there is no cointegration between pric白 and fundamentals is rejected , 
although the acceptance of the hypoth白is impli回 the presence of bubbles. 

There are several studies which are based on ideas similar to ours. In a 

present value model of stock price determination , Froot and Obstfeld (1991c) 
analyze intrinsic bubbles , which depend exclusively on dividends , and provide 
empirical evidence for the existence of these bubbles in the US stock marｭ

ket. Ikeda and Shibata (1992) examine qualitatively a broader class of th問
dividends-dependent bubbl白 in stock pric白 2 The pr田ent paper can be diι 
ferentiated from these two studies in three ways. First , because of the simple 
linear structure of their models , richer price dynamics are ruled out by the nonｭ
negativity constraint on asset pric回. In contrast , our model is non-linear (but 

log-linear) in the exchange rate, so that more complex patterns (including cyｭ
cl白) of exchange rate dynamics ωn be de山ed even under the non-negativity 

constraint. Second, in the earlier studies intrinsic bubbl回 display only nonｭ

cyclical movements. In this paper it is shown thaも even intrinsic bubbles can 

2 See also MiUer and WeUer (1991) who provide grapbical examples of non-monotonic curｭ
rency bubbles wbich depend on stochastic fundamentals. 
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be cyclic if もhere are multiple fundamentals. Third , implications for the e百ect
of stochastic regime shifts are discu回ed.

The organization of the paper is as follows. Section 5.2 presents the basic 

model and derives an explicit solution to the model. In Section 5.3, the stochasｭ
tic properti回 of free-float exchange rate dynami岱 under a single fundamental 

are examined. Section 5.4 extends the model to the multiple-fundamental case. 

In Section 5.5 , implications of our solution for the theory of stochastic proc田s

switching and for widely-used empirical t白ts are discussed. Section 5.6 contains 

some concluding remarks. 

5.2 The 乱10del and Its Solutions 

5.2.1 The Model 

We use the standard monetary model of exchange rate determination , see, for 
example, Frenkel (1978) , Bilson (1978) , and Mussa (1978). The log of the exｭ
change rate at time t , e (t) , equals some 即
market, m (t) , plus a term proportional to the expected percentage change in 

the exchange rate: 

e (t) = m (t) + (1/α ) E [de (t) I r2t] /dt ， α> O. (5.1) 

In (5.1) , m (t) may repr白ent the difference of logs of the domestic money supply 

and the foreign money supply or 七he logs of the relative velocities of money in 

two countries. This variable is referred to as a market fundamental. The case 

of multiple fundamentals is treated in Section 5.4. The parameter 1/αdenot白

the semi-elasticity of money demand with r回pect to the expected percentage 

change in the exchange rate, E [de (t) I 九]， where E [. I r2t] is the expectation 
operator conditional on the information available at time t , Dt , which will be 
specified later. 

Assume that the fundamental , m , follows a Brownian motion with drift μ 

and instantaneous standard deviation σ: 

dm (t) = μdt+ σdz (t) , m (0) = mo , (5.2) 

where z (t) お a standard Wiener process. From (5.2) the distribution of m (t) 
conditional on m (0) 向 is N (mo + μt ， σ勺 For simplicity, it is assumed 

thatμ> 0, but this assumption do田 not affect any of the r田ults.

Eqs. (5.1) and (5.2) constitute a simple model of exchange rate determiｭ

nation.3 The proce田 for stochastic fundamentals , represented by (5.2) , is the 

source of randomness in the model. The filtration generated by this proc田S

specifies the information process , r2 = {r2 t}立。From (5.2) , m follows a Markov 
process , so that the probability distributions of its future valu白 depend only 

on its current realization. Given this Markov property, it is natural to consider 

the exchange rate as a function of the market fundamental , m. To consider a 

broader c}ass of solutions, we assume that the exchange rate depends on two 
variables, the fundamental and time: 

e (t) = e (m , t) . (5.3) 

3The argument can be applied to macro models which consist 01' more than two 自 tochastic
differential equations. For example, it is straightforward to apply our re自 ults to a s 皿all open 

econo皿y model with two stochastic shocks along the same lines 組 Klein (1990). 
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Equilibrium exchange rate dynamics are derived as a function , e (m , t) , which 
satis自白 the stochastic differe凶al equation (5.1) under fundamental dynamics 

(5.2).4 As in the case of deterministic rational expectations models , the solution 
of the model with respect to e (m, t) can be ぽpressed as the sum of the forwardｭ

looking particular solution , f (m, t) , and the general solution of the homogeneous 
counterpart , b (m , t) , that is 

e (m , t) = f (m , t) + b (m , t). (5.4) 

The parts f (m , t) and b (m , t) are referred to asα fundαmentαl exchαηge TIαte 

and α bubble process, respectively.5 

5.2.2 Solutions for the Equilibrium Exchange Rate 

First , consider the fundamental component of the exchange rate proc白s. By 

definition , it is obtained as:6 
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df (m ,t) = dm =μdt+σdz. 

(5.5) 

(5.6) 
implying: 

In words , stochastic increments of the fundamental exchange rate almost surely 
equal those of the fundamental proc白s {m (t)}立。

Next , the bubble component of the exchange rate process is analyzed. From 
the de白山ion of the bubble proc田町 b (m, t) is obtained by solving the following 
di仔erential equation: 7 

E [db (m , t) I Ot] /dt =αb(m， t). (5.7) 

Applying Ito's lemma to b (m , t) and substituting the r日mlt into (5.7) yields: 

(1/2)σ2bmm (m , t) +μbm (m , t) + bt (m , t) =αb (m , t) , (5.8) 

where the subscripts represent partial derivatives of b, for example, bm -

θb/θm ， bけ1.m -θ2b/θm2 ， etc. By solving this partial differential equation, the 
bubble proc白Sωn be obtained explicitly. 

4 Note tbat tbe non-negativity constraint is not binding in our log-�ear model , that is , a 

negative value of e cannot be ruled out by tbe assumption of free disposability, as pointed 
out by Kompas and Spotton (1989 , p. 329). See also Diba and Grossman (1987) and 1keda 

and Shibata (1992) for tbe implication of tbis constraint in tbe linea.r arbitrage model of stock 

pnces. 

5Tb四e definitions are tbe standard ones , for example, Diba and Grossman (1987) and 
Froot and Obstfeld (1991c). 1n contrast , only bubbles witb crash risks are called "b山bles"

by Miller and Weller (1990). Althougb tbrougbout this paper tbe possibility of bubble crashes 

is ignored , it is easy to incorporate crashe日 into tbe model as in 1keda and Shibata (1992). 

6Froot and Obstfeld (1991a ,b) call this proc田s the saddlepath excha碍e rate. 

7 As can be seen from (5.7) , we can also treat sunspots by specifying component b 却
including an extraneous variable , x , whicb follows some stocbastic proc四s. We follow Froot 
and Obstfeld (1991c) and 1keda and Sbibata (1992) in assumi昭 away extraneous variables 剖

driving forces in a similar spirit to McCallum (1983). 
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The separation-of-variab1es method is app1icab1e to (Ei.8) (see Farlow, 1983). 
Let us specify the function b (m, t) in the separab1e from: 

b (m, t) = x (m) . y (t) , (5.9) 

where x and y are unknown functions which exclusive1y depend on m and t , 
respective1y. Then (5.8) can be decomp凶ed into the following two equations: 

(1/2)σ2X" (m) + μピ (m) = kx (m) , 

ダ (t) = (α - k) ν (t) , 

where k is an arbitrary constant. Linear ordinary di征百e附

and (σ5.11り)伺n be so1ved 88, r白pective1y，

x (m) = C1 exp (入 1m) + C2 exp (入2m.) ，

ν (t) = C3 exp [(α- k) t ], 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

where Ci (i = 1,2,3) are constants and 入1 and 入2 are the eigenva1ues of Eq 

(5.10) , name1y, 

入1 一一μ+(μ2t2σ2k)ー
一

σ 

入 -μ-(μ2+2σ2k) 1/2 
-

2 一 σ2

(5.14) 

(5.15) 

The proce岱es satisかing (5.12) and (5.13) are called, r白pective1y， the fundamentalsｭ

driven factor and the tim仔d巾en factor. As specifﾌed in (5.9) , a bubble solution 

is given as the product of th白e two factors: 

b (m, t) = A1 exp [(α - k)t+ 入1m] + A2 exp [(α - k)t + 入2m] , (5.16) 

where A1 (= C1 C3) and A2 (= C2C3) are constants.8 Eq. (5.16) is one possib1e 
so1ution. The so1ution to (5.8) is complete1y characterized in Section 5.5. 

Note that, from (5.10) and (5.11) , the constants k and (α - k) repr白ent the 

expected rate of change in the fundamentals-driven factor x , and the expected 
rate of change in the timかd山en factor y , respectivel}人 From (5.7) , the bubble 
b grows at the expected rate ofα. Therefore, k determin白 how much of the 

total rate ， α ， is generated by the mean dynami回 of the fundamenta1s-driven 

factor. On the other hand , the eigenvalues ， 入 i ， w hich characterize the stochastic 

dynamics of x and, hence b, are non-linearly related to k. As is shown in the 

following sections, it is this non-linearity that 白山田 this bubb1e so1ution to 

exhibit a 1arge spectrum of dynamic properti白 depending on k. 

Solution (5.16) contains two special cas回 which are ex:amined in the existing 

literature. From (5.14) and (5.16) , when k = 0, that is , the expected growth 
rate of the fundamentals-driven factor is zero , and A2 = 0, the bubb1e proc白S

becomes the fami1iar time-d山en bubble presented by Flood and Garber (1980) 

Another benchmark case is obtained by setting k = αin (5.16). In this case, 
bubb1es depend exclusively on fundamentals , which corr白pond to Froot and 

Obstfeld's (1991c) intrinsic bubbles. Note that the bubb1e s01凶on (5.16) cannot 

be obtained by combining linearly these two special solutions. 

8 More detailed derivation of this equation is given in Appendix A.l 
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5.3 Stochastic Dynamics of the SIJeculative Exｭ

change Rate 

The speculative deviations of the exchange rate from its fundamental process 

are now examined. As discussed earlier , the eigenvalu白，入i ， w hich characterize 

the stochastic dynamics of bubbles, depend in a non-linear way on the expected 

rate of change in the fundamentals-driven factor , k. In particular，ん can be 

imaginary numbers depending on k. Defining 主 as

い2

主=ーか(< 0) , 

then , from (5.14) and (5.15) ，入i are imaginary numbers if k < ιotherwise they 
are real numbers. Th白e two cas田 are examined in turn. 

5.3.1 The Case of Rea1 Roots (k ~主)

First , the stochastic stability of bubble dynamics in the case of real characteristic 
roots is examined.9 Suppose that k ;;;: Js;. and Al . A2 =;1:. O. Time, t , drives a 

price bubble in two waySj by driving directly the tim仔driven factor , y , and by 
evolving the fundamentals-driven factor , x , though changing m randomly. The 

stochastic stability of bubbles is determined by the relative magnitudes of these 

two forces. 

Formally, since m (t) is obtained 仕om (5.2) as: 

m (t) = mo +μt 十 σz (t) , (5.17) 

(5.16) can be rewritten ぉ:

b(m,t)=LAi 叫(入imo) 叫[{(α - k) - (一山) + ﾀiO"z (仰
� = l  

As discussed in Section 5.2 ， α - k in (5.18) repr白ents the growth rate of 

y while the other terms in the exponential denote the random growth rate of 

x. Note that 1imt→∞ [z (t) jt] = 0 (w.p.1) by the strong law of large numbers 

(see Arnold, 1973, p.46). The stochastic stability of (5d8) thus depends on 

the relative magnitud白 of the two exponents; the (negative) exponent which 

repr白ents the driving force of X generated by the trend dynamics of m , (一μ入i) , 
and the exponent which denot田 the driving force of y , (α - k) 

Fig.1 depicts this property by drawing the loci of g (k) = (α- k) and hi (k) = 

-μ入 i (i = 1,2) , where interval S repr白ents the set of the valu白 of k for w hich 
the bubble dynamics are stochastically asymptotically stable; the interval S -
P repr白ents the stochastically saddl• point stable region; and the interval U 

repr白ents the stochastically unstable region.10 From (5.14) and (5.15) ，もhe h1-

curve is downward sloping and passes through the origin whereas the h2 ・curve

9If bubble b (t) converges with probability one (w . p.l) 剖 t →∞ [for any b (0) ], then it is 
said to be stochastically (or almost surely) asymptotically stable (in the main). Note that 

mean stability implies stochastic stability but the converse is not true. See Arnold (1973 , 
chap. 11) 

10 Stable bubbles may be counter-intuitive since by definition (5.7) the bubbles diverge in 

mean. As is discussed by Froot and Obstfeld (1991c) , a skewness in the distribution of the 

bubble's realizations makes it possible: the stable bubble will be far from zero relatively rarely 

in large samples, but when it is , it diverges by an amount large enough to equalize the mean 

growth rate of the bubble to the semi-elasticity of money demand. 
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has a positive gradient. Th回e two curv回 are connected with each other at the 

point k = li where the gradients of both curv白 are infinite. Since the g-line and 

hi-curv回 nec白sarily cro田 at two points ぉ depicted in F' ig.l , a large spectrum 

of stability is possible. 

It is assumed in Fig.l that g(主) >ん(主) and henceα 〉 μ2/σ2 by the 

definition of 主.If αis sufficient1y small, there is no unstable region in this 

figure , implying that stochastic stability depends on the magnitude of αas well 
as k. In order to consider the stochastic stability in k-αspace ， (5.18) 出 rewritten

as follows: 

b(m ， t) = 乞 Ai 叫(入1向)叫 [{α ー ψi(k) + 入ρ (t)/t}t]，

where ψi(k) = k 一入zμ(i = 1,2). This impli白 the following proposition: 

Proposition 1: Suppose that k ~ li. and Al ・ A2 i O. Then the bubble process 
{b (m (t) ， t)}三。 is (i) stochastically ωymptotically stable ザ α< ψ1 (k); (ii) 

stochastically sαddlepoint stαble ザ ψ1 (k) ζα<ψ2 (k) ，. αηd (iii) stochastically 
unstable if ψ2 (k) ζα. 

Proof: See Appendix A.2. 口

Fig.2 depicts this property by drawing the loci of functions ψi in k - ψz 

space.ll) 12 As is easily verified , the ψ1 function is repr部ented by a U-shaped 

curve which has a turning point at the origin. The ψ2 function is monotonically 

increasing in k. The gradients of both curv白 become inf�ite (in absolute vaト

ues) at point 主 and approach one as k →+∞. Given that the vertical axis a1so 
measuresα ， the region S represents the set of points (k ， α) under which bubble 

dynamics are stochastically asymptotically stable, the region S -P denotes the 
stochastically saddlepoint stable area, and the region U denotes the stochぉti

cally unstable area. It can easily be s田n from this figure that , for a given k , the 
1arger αbecom白， the less stable are bubble dynamics. This is because a larger 

αimplies a high evolution rate of tim• dependent factor 'Y while the 入 i valu白?

the characteristic roots of fundamentals-dependent factor x , do not rely onα. 

5.3.2 The Case of lmaginary Roots (k < 主)

Let us next examine the case of imaginary characteristic roots (k < 主). The 

roots given by (5.14) and (5.15) can be expressed as: 

入 1 = -p + q-z , 
入2 - -p -qi , 

11 Even if one of the Ai equals ze ro, the argument holds with only slight modifications. 

12 The gradients of the ψi curv田 町e:

ψ i = l - μ/ I (μ2 + 2a2k) 1勺 and ψ~= 1+μ/ [ (μ2+山) 1勺
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where p = μ/σ2 (> 0) and q = [1μ2+州叶 /σ2 (> 0). U叫 (5 川 (5 凶)
is thus rewritten as: 

b(m, t) = [α1 COS (qm) + α2 sin (qm)] . exp [(α - k) t -pm] 

= [α1 cos (qm) + α2 sin (qm)]. 叫 (-Prno) (5.19) 
. exp [{α - (k+pμ)}t-pσz (t)] , 

where α1 and α2 are arbitrary constants.13 By the strong law of large numbers , 
limt→∞ [z (t) /t] = 0 (w.p ・ 1). In the case of imaginary roots, therefore, the 
stability of bubbles is determined by the relative magnitud白 of αand k+pμ= 

k-2ιThis amounts to the following: 

Proposition 2: Suppose thαt k <主 αnd thα t either α1 orα2 is non-zero. Then 

the bubble process exhibits (i) stochastically ur凶αble cycles ザ α み k-2ιαnd
(ii) stochastically stable cycles if α <k-2主.

Proof: See Appendix A.3. 口

These arguments are illustrated in regions 1 and II in Fig. 2 by drawing 
the line segmentα =k-2主. Region 1 repr白ents pairs (k ， α) which yield the 
cyclic stable bubble proc田s and region II represents the cyclic unstable area. 
From this figure it can be seen that bubble process白 become unstable as k 

decreas田 and/or αincreases. This is beca useα - k represents the growth rate 

of y although p is independent of αand k. 

In order to clarify the mechanism, three illustrative curves of (5.19) are 
presented in Fig.3. First , the shape of al cos (qm) + 句 sin (qm) as a function of 

m is illustrated by curve (a). The term α1 cos (qm) + α2 sin (qm) exhibits cyclic 
movements as m increas白・ Next ， incorporate the term exp [(α - k)t -pm] to 

the cycle as in (5.19). For a given value of t , say to , an increase in m stabilizes 

the cyclic movements since p > O. This stable behavior for given t is depicted 

by curve (b). For each value of m , on the other hand , an increase in t enlarges 
the amp1itude of the cycle since nowα - k > O. Setting t = む(> to) , for 
example, this d白tabilizing e圧'ect is illustrated by curve (c). The stability of a 

cyclic bubble is determined by the relative magnitudes of the former stabilizing 

effect of the fundamentals-driven factor and the latter d回tabilizing e百ect of the 

time-driven factor. In case (ii) of Proposition 2, the for汀町 effect dominat白 the

latter, so that the bubbles converge with probability one as time pass白.
The exchange rate exhibits only monotonic movements in most of the monｭ

etary models with rational expectations see, for example, Frenkel (1978) and 
Ml邸a (1978). This prope均 com白 from the conventional formulation that the 

exchange rate depends exclusively on time. As shown here , if the exchange rate 
depends on both random fundamentals and time, its equilibrium behavior can 
be non-monotonic , and in particular cyclical. Moreover, although in rational 
expectations models bubble solutions are usually disp侃ed of by requiring that 

the solution be bounded (e.g. Sargent and Wallace, 1973; Dor巾usch ， 1976) , 
our fundamentals-dependent bubbles cannot be ruled out by this conventional 

requirement because the bubbl白 can converge with probability one. 

l3Note in (5.19) that the termαl ∞s (qm) + α2 sin (qm) varies within the range 

[-(αi + α~ ) 1川αî + α~ ) 1勺山e[α1 cos (qm) + a2 5in (qm)J = (れCαイz4か?い+ αa~引ザ~ )1/ν/~2
where βsatis自由 sinß =α1/ ( α?+d)l/2 
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( a) 

b 

Fig. 3. Cyclic bubbles. 

(a): [ajcos(qm) + αtsin(qm)] .e.xp [(α-k) t()] 

(b): [α jcos(qm) + atsin(qm)].exp[( α-k)to-pm] 

(c): [αjcos(qm) + αtS i n ( qm)] . e.xp [ (α-k) t1--pm] 

週



5.4 Multiple Fundamenta1s 

Since，仕om (5.16) ぅ intrinsic bubbl回 corr缶pond to the case of k = α(> 0 >主) , 

the cyclic bubbles in Section 5.3 , which are obtained when k < ιare not inｭ

trinsic bubbles. Does this imply that any intrinsic bubbles move non-cyclically? 

Using a multiple-fundamental model , we can derive a negative answer. The 

point is that , in contrast to the case of a single fundamental , in which cyclic 
movements of bubbles are generated by interactions between the fundamentalsｭ

and time-driven factors , interactions among multiple fundamentals-driven facｭ
tors can cause cyclic dynamics in bubbles. 

Let us introduce another fundamental，叫 and replace (5.1) by 

e (t) = m (t) + υ (t) + (1/α) E [de (t) I nt] / dt , (5.20) 

where υfollows a Brownian motion with constant drift v (> 0) and constant 
diffusion coefficient 8 (> 0): 

dv (t) = ぱt + 8dw ， υ(0) =υ0 ・ (5.21 ) 

Here， ωis a standard Wiener process. For the sake of simplicity, it is assumed 

that the two fundamentals , m and υ ， are independent of each other. 

Set: 

e(m ， υ ， t) = f(m ,v ,t) +b(m， υ ， t) . 

As in Subsection 5.2.2 , the fundamental exchange rate process is obtained as: 

f (m ,v ,t) = m(t) + υ (t) + (1/α) (μ + 'u) . 

From (5.2) , (5.20) , and (5.21) , the bubble, b (肌 v ， t) , :satisfies: 

αb(m ， υ ， t) = (1/2)σ2brnrn (m , v , t) + (1/2) 82bvlI (m , v , t) 
+μbrn (m , v , t) + vbv (m , v , t) + bt (m , v , t) . 

(5.22) 

Again , the bubble solution can be obtained by the separation-of-variables method. 
First set 

b (m , v , t) = Xl (m) ・ X2 (υ).y(t) ， 

then (5.22) is decompωed into: 

(1/2)σ2X~ (m) + μX~ (m) 

(1/2) 82x~ (υ)+ 凶~ (υ) = 
y' (t) = 

kXl(m) , 
(h -k) X2 (υ) , 
(α - h) ν (t) , 

(5.23) 

where k and h are the expected growth rate of the m-dependent factor , Xl (m) , 
and that of the product of the two fundamentals-dependent factor , Xl (m) ・ X2 (υ) , 
respectively. Each function is solved as: 

X1(m) = A 1 exp(入1m) + A2 exp (入2rn) , 
X2 (υ) = B1 exp (η1υ) + B2 exp (η2υ) , 
Y (t) = C. exp {(α -h)t} ， 

where ん (i = 1,2) are given by (5.14) and (5.15) , and 7Ji are given by: 

ーν+ rν2 十 282 (九 _k)11/2
η1 = 82 

9 

(5.24) 

戸一一一一



-V - IV2 + 282 (h -k)11/2 
η2 = 82 

Therefore，仕om (5.23) , we obtain: 

(5.25) 

b (m , v , t) = C. exp { (α- h) t} . [A 1 exp (入1m) + A2 exp (入2m)]
X [B

1 
exp (η1υ) + B

2 
exp (η2υ)r-J ' '~.o ~...t' ¥".0 "VJJ (5.26) 

From (5.26) the proc白s b is an intrinsic bubble if and only ifα = h so that 
it depends exclusively on the two fundamentals ,1 4 and is given by: 

b(mタ) - Cl1 exp (入lm+ η1υ) + C12 exp (入lm+η2V)
+C21 exp (入2m+ η1υ) + C22 exp (入2 rn + η2υ) , (5.27) 

where Cij = AiBj (i ,j = 1,2). (See Appendix A.4 for detailed discussions 011 

the derivations of this equation and the other key relations in this section.) 

This intrinsic bubble can display cyclical movements. 111deed, if k is defined 
as 

k= α+ν2/ (282) , 

then , from the definition of 入 i and "li [(5.14) , (5.15) , (5) .24) , and (5.25) ], the 
following relatio11s are valid: 

7
κ
 

ど
口
\

k

一

k
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<<>
k
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k

 

!入i are imaginary numbers , 
~ < 1 "li are real numbers , 
件入i and "li are real numbers , 

l 入i are real numbers, 
仁:> < 1 "li are imaginary numbers. 

Thus , a su侃cie11tly large or small k implies cyclical intrinsic bubbl田.

1n order to examine the stochastic stability of the intrinsic bubble given by 

(5 .27) , consider 日rst the case in w hich all roots are real (ぶ ζkζk). By similar 

目指oni11g to Section 5.3, the number of stable roots is cletermi11ed by the Sig11S 
of ψり (k) where ψij (k) = 入1μ+η'jV (i , j = 1,2). Although th田e functions may 
take various forms depending on the structural parameters, a typical example is 

illustrated i11 Fig. 4.l5 111 the region 主主ミ k ~三五 it can be seen that as k increases 

from Js. to k , the number of stable roots changes, in turn , from four to three, 
and then to two. 

111 the case w here the 入i are imaginary (k 三主)， (5.27) is rewritten as: 

b(mグ) = LBiexp(-pm+"liv)' [α1 i C州qm)+ 句i sin (qm)] , 

where p = μ/σ2 and q = [1μ2+2σ2k 11/2] /σ2 Thus, using the same reasoning 
as was used to derive proposition 2, the stochastic stability of b is determined 

14 A possible criticism of our solution is that the exchange rate should be a function of only 

one state variable, that is, the sum of two fundamentals , m +υ， for m 十 υitself follows a 

diffusion proc田s. This property comes from the homogeneous fundamental processes, which 
is assumed only to simplify the analytical treatment. Instead, if one fundamental , m , is 
assumed to follow a mean reverting process: dm = (μ- Em) dt+σ心， for example , the two 

fundamentals , m and υ ， cannot be summed up to one aggregative diffusion process. 1n this 

case , the solution must depend on m and υindependently (not on m +υ) . 

15 See Appendix A.5 for details concerning the curves in Fig. 4. 
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by the signs of ~i (k) where ふ (k) = -pμ+ηtν. Note that ふ(主)=ψii (.主) . As k 
decreas白 fromιthe number of stable roots turns from two to one, as depicted 
in Fig.4. 

Similarly if k >k so that the T}i are imaginary, the stability is determined 

by 州) where 州) =一(印2) + Ài j1, and hence Pi (k) = ψii (五). Th白e
curves in Fig.4 show that there is only one stable root if k >k. 

Therefore, even if the exchange rate bubbles do not depend on extrinsic 
variables such as time and sunspots , the bubbles can either converge or diverge, 
showing either monotonic or non-monotonic movements (including cycl白) due 
to interactions among fundamentals-dependent factors. 

5.5 Discussion 

5.5.1 Implications for the Stochastic Regime Shi氏 Theory

By the principle of superposition , a general solution is given by a linear combinaｭ

tion of solutions corresponding to possible values of k. In the single fundamental 

model presented in Section 5.2, a general solution to (5.8) can be obtained by 

integrating (5.16) with respect to k to give 

b(m,t) = J [A 1 (k)exp{(α - k) t+ 入1m}
-c幻 (5.28) 

+A2 (k) exp {(α - k)t + 入2rn}]dk ，

where each Ai (i = 1, 2) is now defined as a function of k , which repr田ents the 
distribution density. The exchange rate obtained can display various patterns 

of movements depending on the distribution density functions Ai (k). 

This general solution containing both tim• driven and fundamentals-driven 
factors provides an insight for the analysis of macroeconomic stochastic proc白s

switching. When the effect of a time-dependent stochastic proc出s switching 

of government policies is analyzed, the r田ulting rational expectations solutions 

depend on both time and fundamentals. Our solutions provide a foundation to 

investigate such policy experiments. 

Assume μ= 0 for simplicity. Consider an economy where initially the exｭ
change rat白日oat freely and then at time to the government announces a future 

regime shi此 which affects the stochastic proc回s of the future exchange rate. For 

example, suppose that it is announced at time to that a regime characterized 

by ゆ (m) will be adopted at time T 三 to ， so that the exchange rate process at 

time T is represented by: 

e (T) = f (T) + ゆ (m) . (5.29) 

The ゆ (m) may be the solution to Krugma山 (1991) target zone model of the 

solution to stochastic exchange rate pegging models of Flood and Garber (1983) 

and Froot and Obstfeld (1991a,b). This regime shift is s叩po比ed by u町estricted

intervention at time T. For example, if the exchange rate were outside a band 

at time T , the monetary authority would implement a discrete intervention to 

attain the exchanσe rate within the band. 。
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Although the exchange rate process is tim争independent after time T , it 
must be a function of t as well as m until time T , refiecting anticipations of 
the regime shi此. In order to obtain this solution for tirne t ε [to ， T] , consider 
the general solution, (5.28) , within the range k 三主(= 0 since μ= 0). Defining 
ア = T -t , it follows from (5.19) (whereμ= 0) that: 

b(m， ァ) = J exp {-(α -k)T}{α1 (k) cos (qm) + の (k) sin (qm)} dk 

二J exp {-(α+σ2q2/2) T} {Cl (q) cos (qm) +-C2 (q) sin (q刈} dq , 

where k =-σ2q2/2 and Ci (q) = σ2q. αi [k (q)]. 
(5.30) 

Since (5.30) must satisfy the boundary condition (5.29) , b (m , 0) =φ (m) or 
equivalently 

φ (m)=j{Cl(q)C州m) + C2 (ωsin (qm)) dq 

must be valid. From the Fourier integral theorem, this equation is satisfied 

under some regularity condition if and only if the distribution functions, Ci (q) う

are gi ven by: 16 

Cl (q) 二 (1/π)μ (m)叫m)仇 (5.31) 

-()(コ

句 (q) = (1/π)j φ (m)川m)dm (5.32) 

-c幻

By substituting (5.31) and (5.32) into (5.30), the solution f()r b can be obtained 

Hence, the following result has been shownJ 7 

Proposition 3: Suppose thαtα んture reg'ime sh~β represeηted by (5.29) is αηー

ηounced αt time to ・Then， the 叩tilibrium 問ha句e rate αt time t ε [to ， T] is 
given by: 

e (凧 t) = f (t) + J exp { -(α+σ2q2/2) (T-t)} 

. {Cl (q) cos (qm) + C2 (q) sin (qm) } dq , 

叫ere Ci (q) (i = 1, 2)αre gi附7， by (5.31) αηd (5.32). 

Proof: See Appendix A.6 . 口

16In general the Fourier integral repre日ntation exists ifφ(m) and φI (m) are piecewise 
continuous and φ(m) is integrable over the interval (-∞，∞). It is assumed thatφ(m) 
satisf�s these properti田 Note that these conditions are satisf�d in both Krugman's (1991) 
target zone 回odel and Flood and Garber's (1983) model of stochastic exchange rate pegging 
17Ichikawa et a1. (1990) obtain a closed form solution in the ca田 of p閃annou田ed entry into 

the target zone of Krugman (1991). Miller and Sutherland (1992) discuss a time-dependent 
return to the gold standard. 
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In r田ponse to the announcement, the exchange rate instantaneously displays 
a discrete jump, and, as t goes to T , its distribution function defined over 

fundamentals continuously and uniformly approach白 f+ 仇 which represents 
the new regime. At time T the exchange rate follows the new regime with 
probability one. Otherwise, a discrete intervention would cause the exchange 

rate to jump at time T and to generate at expected infinitely large profit , which 
contradicts the rational expectations equilibrium. 

5.5.2 Implications for Empirical Tests 

In examining whether bubbl白 exist in asset prices, two tests are widely used; 
the variance bounds t白ts developed by Shiller (1981) and the cointegration 
t回t pr田ented by Campbell and Shiller (1987). For example, using a monetary 

model Hua時 (1981) conducts variance bounds t白ts for the US dollar-mark , 
US dollar-sterling, and sterling-mark exchange rat白 and rejects the no-bubbles 

hypoth白is. Implementing a similar t白t for the Australian dollar-US dollar 

exchange rate, Kearney and MacDonald (19ω) find in favor of the no-bubbles 
hypoth田is. MacDonald and Taylor (1991) and Gard切zabal and Regulez (1992) 
use cointegration tests to inv回tigate the validity of the monetary model. If both 
the no-bubbles hypoth田is and the monetary model are valid , fundamentals and 
exchange rates must be cointegrated. Using this fact MacDonald and Taylor 

(1991) find evidence which suppo巾 the joint hypothesis, wher邸 Gardeazabal

and Regulez (1992) reject the monetary model. However, as is demonstrated 

below, th回e two tests , the variance bounds test and the cointegration t田t ，

may not be effective in t白ting no bubble hypotheses (in fi凶e sampl白).18 The 

results supporting the no-bubble hypothesis (Kearney and MacDonald, 1990; 
MacDonald and Taylor, 1991) should thus be carefully interpreted. 

The Shiller t白t follows from the basic idea that asset price volatilities are enｭ

larged in the presence of bubbles. However , this idea is valid only when bubbles 
are independent of the fundamentals. Asset prices can be less volatile even in 

the presence of bubbles if they are negatively correlated with the fundamentals. 

Indeed , by Ito's lemma we obtain 仕om (5.4): 

Var (de) = (1 + bm)2 Var (dm) , 

implying that if 11 + bm 1 < 1 the exchange rate is 1白s volatile than the fundaｭ
mentals. Fundamentals-dependent bubbles, therefore, may not be pr任;luded by 

the variance bounds t白t using finite samples. 

Cointegration t白ts suppose that , if bubbles exist , the order of non-stationarity 
of asset pric白 is higher than that of fundamentals. A cointegration relationship 

between asset prices and fundamentals , however , does not imply the absence 
of bubbles since almost every sample path of fundamentalls-dependent bubbles 

could be convergent.19 Th白e stable bubbles do not appear to amplify the non-

stationary of exchange rat白 (and other asset prices) in finite samples. Indeed, 

18W四t (1987) develops another test for bubbles called a specif�ation test. Our points do 

not dispute the power of the test, so that the results based on this test such a M四回 (1986)
would be valid even in the pr四ence of fundamentals-dependent bubbles. S田 also Frankel 

(1985) who tests for exchange rate bubbles by computing crash risks. 
19 Even stochastically stable bubbles have necessarily explosive sample paths since they 

diverge in mean. However , th田e explosive sample paths occur extremely rarely. See Footnote 

10. 
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Fukuta and Shibata (1993) verify this possibility through a Monte Carlo study. 
For specific parameter valu白 they find that more than fifty percent of simulated 

asset pric白 with fundamentals-dependent bubbles are actually cointegrated with 

the fundamentals. Thus , cointegration t白ts might not be so powerful in t缶ting

for b凶bl白 20 By introducing extrinsic crash risks , Evans (1991) also points 
out a potential difficulty in using cointegration t白ts to 七回t for bubbles. Our 

results show that even without extrinsic factors fundamentals-dependency itself 

weakens the power of the cointegration method in testing for bubbles under 

fundamentals uncertainty. 

As a final remark , it should be noted again that the absence of cointegration 
relationship between pric白 and fundamentals is sufficient for the pr白ence of 

bubbleョ.

5.6 Conclusions 

Using a monetary model of exchange rate determination , the dynamics of exｭ
change rates which contain fundamentals-dependent bubbles have been anaｭ

lyzed. They can be either stochastically stable or unstable; either monotonic 

or non-monotonic , and in particular cyclic. In an extreme case, they conｭ
verge with probability one, showing cyclic movements. Interactions between the 
fundamentals-driven factors and the time-driven factors or interactions among 

the fundamentals-driven factors themselves produce richer dynamics. 

The general solution to the model provides a useful insight for the analyｭ

sis of tim• dependent stochastic proc回s switching in currency and other asset 

markets. A general proc吋ure has been presented to obtain forward-looking 

solutions to models containing an announcement of a future regime shift. In 

response to the announcement , the exchange rate instantaneously displays a 

discrete jump, and thereafter，笛 time go白 to some promised date ， 、its distribuｭ

tion function defined over fundamentals approach白 continuously and uniformly 

the distribution function which represents the preannounced regime. This conｭ

tinuous transition is ensured by rational expectations inve3tors , given potential 
discrete interventions. 

A difficulty of the existing t白ts for bubbles in the foreign exchange market 

(and other asset markets) has been pointed out. Since the exchange rat白 with
bubbl田 are likely to appear less volatile than the fundamentals and to app伺r

stationary under fundamentals uncertainty in finite samples, both the variance 
bounds and cointegration t白ts which are widely used in the literature may have 

low power in tεsting no-bubble hypothesis. 

20To be precise, the cointegration tests could detect fundamentals-dependent bubbles if 
infinitely many sample paths for given k could be observed. However , in reality we can 

observe only one sample path , and even in Monte Carlo experir工lents finite sample paths. In 

this practical context , the power of bubble tests mentioned above is weak. 
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5.7 Appendix for Chapter 5 

5.7.1 Appendix A.1: Derivation of Eqs. in Section 5.2 

We apply the separation-of-variabl白 method to solve our fundamental partial 

differential equation (PDE) ,2 1 

(1/2)σ2brnrn (m , t) + μbm (m , t) + bt (m , t) = αb (m , t) . (5.33) 

Speciか the function b(m , t) in the separable form: b(m, t) = x(m) . y(t) as in 
eq. (5.9) , where x and y are unknown functions which exclusively depend on m 

and t , respectively. Substitute this into eq. (5.33) to obtain: 

(1/2)σ2X" (m) y(t) + μピ (m)y(t) + x(m)y'(t) = αx(m)ν (t). 

Supposing b =1-0 (ω.p.1) ， this 伺n be rearranged by dividiing the both sides by 

x.y(=b)as 

(1/2)σ2X" (m) /x(m) + μx'(m)/x(m) = α -y'(t)/ν (t) 

The r白ulting solution will turn out to satisfy indeed that b =1-0 (w.p・ 1). In the 

above equation the L.H.S. does not depend on t whereas the R.H.S. not on m. 
For this equality to be valid for all po田ible values for m and for t , therefore , the 
both sid白 mus七 be independent of either m or t and take some constant value , 
say k:22 

(1/2)σ2X" (m) /x(m) + μピ(m)/x(m) =: k , 

α - y'(t)/ν (t) = k, 

which can be rearranged as: 

(1/2)σ2x"(m) + μピ(m) = kx(m) , 

ダ (t) = (α - k)y(t). 

(5.34) 

(5.35) 

Th白e can be solved as , respectively, 

x(m) = C1 exp(入1m) + C2 exp(入2m) ，

y(t) = C3 exp [(α - k) t] , 

(5.36) 

(5.37) 

where Ci(i - 1, 2,3) are constants and 入 1 and 入2 are the eigenvalues of eq. 

(5.34) , which are obtained from: (1/2)σ2入2+μ入 - k = 0, namely 

入 1 一一μ+(μ2 十 2σ2k) 1/2 
-

1. 1) , 
σ 

(5.38) 
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Combining (5.36) and (5. 37) , we obtain: 

b(m,t) = x(m) ν (t) 
= Al exp [(α - k)t + 入1m] + A2 exp [(α - k)t+ 入2m] , (5.40) 

21 For the separation-of-variables method, s田 Farlow (1983) , Section 2.5 
22To be precise, parameter k can depend on some extraneous variables called sunspots. For 

simplicity, we ignore the possibility of sunspots as mentioロed in footnote 7. 
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where A1(= C1C3) and A2(= C2C3) are constants. 
As is aforementioned, it can be shown that solution (5.40) tak白 nonzero

values with probability one: The solution can be rewritten as: 

b(m , t) = exp {(α - k) t} . [A1 exp(入 1m) + A2 exp(入2m) ]，

implying that, for any finite k , b(m, t) = 0 if and only if A1 exp(入1m) = 

-A2 exp(入2m). When A1 f-0, this condition is equivalent to: 

exp{(入1 一入2)m} = -(A2/ AI). 

For given A1 and A2' however, there exist at most a countαbly infinite number 

of values for m which satisfies this condition.23 This implies that when A1 f-
0, b f-0 (ω.p.1) unless b = 0 (w.p.1). When Aん1 = 0, A2 e侃xp(υ入2 rT吋 and ， hence , 
A2 must equal zero for b to equal zero, implying that b trivially equals zero. It 
follows that b f-0 (ω.p.1) unle田 b = O(ω.p.1) 

lndeed, the function given by (5.40) is a solution to our PDE (5.33) , as is 
shown now. By differentiating function (5.40) by m and t , we obtain: 

bm (m , t) =入1A1 exp [(α - k)t+ 入 1m]+ 入2A2 exp [(α - k)t+ 入2m] ，

bmm (m ,t) = 入îA1 exp [(α - k) t+ 入 1m]+ 入~A2exp [(α - k)t + 入2m] , 

bt(m,t) = (α -k)b(m ， t). 

From these derivatives we obtain: 

(1/2)σ2bmm (m ， t) +μbm(m ， t) + bt(m, t) 
(1/2)σ2入îA1 exp[(α - k)t + 入1m] + (1/2)σ2入~A2 exp[(α - k)t 十入2m]
+μ入1A1 exp [(α - k)t+ 入1m] +μ入2A2 exp [(α - k) t +入2m] +(α - k) b 
{(1/2)σ2入î+μ入I}・ A1 exp [(α - k)t + 入1m]
十{(1/2)σ2入~+μ入2}.A2 exp[(α - k)t + 入2m] + (α - k)b , 

= k{A1 exp[(α - k)t 十入1m] + A2 exp[(α - k)t+ 入2m]) + (α - k)b 
(using the def. of 入i)

k. b + (α - k)b 
=α . b, 

which prov白 that function (5.40) is indeed a solution to eq. (5.33). 

5.7.2 Appendix A.2: Derivation of Proposition 1 

We now prove proposition 1, which is concerned with the stochastic stability of 
b when 入 i are real numbers, i.e. , k 主主(= -μ2/(2σ2) < 0). It can be derived by 
applying straightforwardly the stability argument of Arnold (1973 , pp.184-186). 

Assume that k 之主 Let rewrite the solution (5.18) a.C): 

b(m, t) = b1(m , t) + b2(m, t) , 

23When 入i are distinct real roots , exp{(入 1 -).2)m} is strictly increasing in m since 入 1 -).2 > 
0 , while 一 (A2 /Al) is a constant. Thus there exists at mωt unique value for m which satisfies 

b = O. When 入 1 - 入2 ， if A1 = -A2 then b = 0 (w ・P ・ 1) ， and otherwise b cannot be zero. 

When 入i are imaginary numbers , exp{(入 1 - ).2)m} is a cycle defined over mε(-∞，∞)，回
that there exist at most countably infinite number of valu四 for m which equates the value of 

this function to 一 (A2/A I).
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where bi = Ai ・ exp(入imo).exp [{α-ψi(k) + んσz(t)/t}t] (i = 1,2) , where ψi(k) = 
k 一九μ(i = 1, 2) . N ote that by the strong law of large numbers [Arnold 

(19731P46)we have Azlz(t)/tl=0(ql-P-l)and ， hence， λ弘 {α ー ψi(k) + 
入1σz(t)/t} = α-ψi(k) (1叩.1). Thus the stochastic convergence of the i'th 

component bi , converges almωt surely to zero ぉ t →∞ crucially depends on 

the relative magnitudes of 仇 (k) and α: 

tlim h=0(ω.p.1) ∞ ψi(k) > α ， i = 1,2, 
ー→0<コ

bi = not converge (ω.p.1) ∞仇 (k) 三 α ， i = 1,2. 

U nderlying intuition is as follows: bi 凶n be represented as: 

bi = Di exp[(α- 仇)t] . exp[入tσz(t)] (i =: 1,2) , 

where Di = exp(入imO) (a constant). That is, bi evolv回 by two driving factors , 
exp[(α-ψi)t] and exp[入tσz(t)]. Of th回e two factors the exp [入iσz(t)] would 

diverge by the property of Wiener processed , while the factor exp[(α ー仇)t]

converges ifψi>αand diverges if 仇 <α. However ， since Atlz(t)/tl= 

o (w.p.1) , the dynamics are domina凶y governed by exp[(α- 仇)t] as long as 

α#ψi. This is intuitively because 入1σz(t) diverg田 at the rate of, at most, the 
order of t山 whereas (α ー仇)t evolv白 at the rate of the order of t whether it is 

positive or negative. It follows that the s討ig伊n of (仲ギψ仇1句i 一 α叫) cruci凶a叫lly dete町r口mi
stochastic stability of bi. [When α= 仇 ， bi diverg回 by the stochastic driving 

factor , exp[入tσz(t)].] 
Recalling thatψ1 (k) 三 ψ2(k) , these relations imply: 

1. α く ψ1(k) ∞both of b1 and b2 are convergent , 

2ψ1 (k) 三 α<ψ2(k) ∞ b1 is nonconvergent but b2 is convergent , 

3.ψ2(k) 三 α Ç::>both of b1 and b2 are nonconvergent , 

which is equivalent to proposition 1.口

5.7.3 Appendix A.3: Derivation of Proposition 2 

This subsection proves proposition 2, which is concerned with the stability of 

b in the case of imaginary roots (k <k (く 0)). In this case the roots given by 

(5.38) and (5.39) can be expr缶sed as: 

入 1 = -p + qi and 入2 = -p -qi , 

where p = μ/σ2 (> 0) and q = [1μ2+2σ2k 1 1 / 2 ]/σ2(> 0). Then the solution 

(5.40) reduc白 to:

b = A1 exp[(α - k)t + (-p + qi)m] + A1 exp[(α - k)t + (-p -qi)m] 
= [A 1 叫(qmi) + A 1 叫(-qmi)] . 仰[(α - k)t-pm] 
= [α1 cos( qr吋 +α2sin( qm)] . exp[(α - k)t -p叫 (by the Euler formula) 

= [α1 cos(qm) + α2 sin(qm)] .叫(-pmo) ・叫[{α- (糾 pμ)}t -paz(t) ], 
(5.41) 

where the last equality comes from eq. (5.17) 
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Note in (5.41) that since [α1 cos(qm) +α2 sin(qm)] = (αî+α~)1 / 2 sin(qm+β) , 
where β 臼tis自白 sinβ=αI! (αî+α~)山， it is valid that 

|α1 cos(qm) + α2 sin (qm) I 三 (α?+d)1/2 .

The stability of bubbl回 is thus deterrr山ed by the behavior of exp[ {α 一 (k + 
pμ)}t -pσz(t)]. by the same argument as in Appendix A.2 , therefore, the 
stability of b is decided by the relative magnitud田 of k + Pμ(= k - 2主) and α 
since .lim [z(t) /t] = 0 (ω .p.1). This amounts to propωition 2. 口

c-→()(コ

5.7.4 Appendix A.4: Derivations of Eqs. in Section 5.4 

In this appendix we derive the bubble solution by solving the PDE under mulｭ
tiple fundamentals , 

αb(m ， v ， t) = (1/2)σ2bmm (mグ ， t) + (1/2)b2bv1}(m, v , t) 
+μbm(mグパ) + vbv(m, v , t) + bt(m, v , t). 

(5.42) 

Again the separation-of-variables method is applied. F註st set: b(m, v , t) 
Xl(m) . X2(υ) . y(t) and substitute it into eq. (5 .42) , obtaining 

(1/2)σ2x~(m)X2(υ)ν (t) + (1/2)82x2' (υ)Xl(m)y(t) 
+μX~ (m)x2(υ)ν (t) + νX~(υ)Xl (m)ν (t) + y' (t)Xl (m)x2 (υ) 

=αXl(m) 'X2(υ) . y(t). 

Suppose b (= xl(m) ・ X2(υ).y(t)) f 0 (ω.p.1) and divide the both sid田 by b. (As 
in Appendix A.l , b f 0 will turn out to be satisfied by the r白ulti時 solution.)
After some manipulation we obtain 

(1/2)σ2x~'(m)/Xl(m) + (1/2)82x2'(υ) /1;2 (υ) 
+μx~(m)/Xl(m) + νX2(υ)/X2(υ) 

=α - y'(t)/ν (t) . 

In the above equation the L.H.S. does not depend on t whereas the R.H.S. 
not on either m orυ. For this equality to be valid for a11 possible valu白 for m , 
υand for t , therefore, the both sid白 must take some constant value, say h: 

(1/2)σ2xnm)/Xl (m) + (1/2)b2x2'(υ)/ぬい)
+μx~(m)/Xl(m) + νX2(υ)/勾(υ) = h , 

α -y'(t)/y(t) = 九

Eq. (5.43) can be rewritten as 

(1/2)σ2x~(m)/Xl(m) + μx~(m)/Xl(7η) 
=九一 (1/2)b2x2'(υ)/X2(υ) 一 νX2(υ)/X2(υ). 

(5.43) 

(5.44) 

Applying again the above argument to this equation of separated form , set the 
both sides equal to some constant , say k: 

(1/2)σ2x~(m)/Xl (m) +μ吋 (m)/Xl(m) = k , (5.45) 

(1/2)82x~ (υ)/X2(υ)+νX;(υ)/X2(υ) = h -k. (5.46) 
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From eqs. (5.44)ー (5.46) ， we obtain the equations pr白ent吋 in the paper: 

(1/2)σ2x~/(m) + μX~ (m) = kXl (m) , 
(1/2)82x~(υ)+νX2 (υ) = (h-k)X2(υ) , 

ダ(t) = (α - h)ν (t) . 

By solving these ordinary equations and combining the r白ults ， the bubble sか

i凶on b (= xI(m)x2(υ)ν (t)) is obtained as: 

b(m ,v ,t) = C. exp{(α- h)t}. 
[A1 exp(入1m) + A2 exp(入2m)][B1 exp(η1υ) + B2 exp(η2υ) J, (5.47) 

where 入i are defined by eqs. (5.38) and (5.39); and "1i are the characteristic 

roots for (5.46) satisfying: (1/2)82"12 + νη - (h -k) = 0, namely 

η1 =一ν + [v2 + 282(h -k)P/2 
82 

η2=-v - [ν2 + 282(h _ k)P/2 
82 

(5.48) 

(5.49) 

In the same way that is used in Appendix A.1 , it is eé泊Y to show that this 

solution tak白 nonzero valu白 with probability one unless it denotes the trivial 

solution in that b = 0 い.p.1) ， and that (5.47) indeed satisfies PDE (5.42). 

From (5 .47) , if h = α， the bubble solution do白 not depend on t , implying 
that the resulting b is an intrinsic bubble, which depends exclusively on fundaｭ
mentals m and υ. Let us concentrate on proving that this intrinsic bubble can 

be cyclical as discussed in the last part of Section 5.4. ¥�hen h = 仏 solution

(5.47) reduc白 to

b(m , v) - Cu exp(入1m+ η1υ) + C12 exp(入1m+ η2υ) (5.50) 

+C21 exp(入2m+ η1υ) + C22 exp(入2rTL + η2υ) , 

- bu(m， υ) + b12 (m ， υ) + b21 (m , v) + b22 (m , v) , (5.51) 

where Cij = AiBj(i , j = 1,2) 
In the definition of ηi ， (5.48) and (5.49) , the term inside the squared root is 

positive when k 三長 and strictly negative when k > k, where 長 =α+υ2/(282)
Recall on the other hand that the relative magnitudes of k and 主 determine

whether 入i take real numbers or imaginary on白. It follows that: 

j 入 i are imaginary numbers, 
k<k ∞ d 

= .. 1ηi are real numbers, 
主 5: k 5: k φ 入i and "1i are real numbers , 

[ィ 1 numbers , 
k>k φ~ .., 

1 "1i are imaginary numbers. 

We check in order the stochastic stability in three po回ible 臼S白: ( i) 主 5: k 三 k;
(ii) k く主; and (iii)k > k. 
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Case (i): 主壬 k 三 k (入i and T]i 訂e real numbers) 

Consider component bij(i = 1, 2) in (5.51). Since m(t) = mo +μt+σz (t) and 
υ (t) = υ0+νt+8ω(t) ， bij can be rewritten as 

bii - Cij 仰いi{mo +μt+ σz(t)} + ηj{υ0+νt+8ω(t)}] 
d=ci  exp(入imO +η3υ0) . exp[{ (入tμ+ηjV) + (σz(t) jt) + (8w(t) jt) }t] 

= D日 exp[{ψり +(σz(t)jt) + (8ω (t) jt)}t], 

where Dij = 叫(入川 +η3υ0) . Cij and ψij (k) = 入zμ+ηjυ.
Applying the same argument as Section 5.3 to the above equation, the 抗争

chastic stability of component bij is crucially decided by the sign of ψij (k): 

bij is stochastically stable. ∞ ψij (k) く 0 ，

and, hence, the overall number of stable roots is determined by how the sign of 
ψij (k) depends on i , j. A typical example is illustrated in 白g. 4. See Appendix 

A.5 for details of each curve in the 日gure.

Case (ii): k <主(入t 訂e imagin訂y; and 可j are real) 

In this case ん can be rewritten as: 入 1 = -p + qi and 入2 = -p -qi. Solution 

(5.50) then reduces to: 

b(m ， υ) = exp(η1υ){ Cu exp(入1m) 十 C21 exp(入 2m)}
+exp(η2υ){ C12 exp(入 1m) + C22 exp(入2m)}
exp(η1υ- pm) {Cu exp( qmi) + C21 exp( -qmi)} 
+exp(η2υ - pm){ C12 exp(qmi) + C22 exp( -qr叫} (by def. of 入i)

= exp(η1 1) - pm){Cll cos(qm) + C21 sin(qm)} 
+exp(η2υ -pm){ C12 cos(qr吋 +C22 sin (qm)} (by the Euler for mula) 
exp(6t +η18ω -pσz){α11 cos(qm) +α21 sin(qm)} 
+exp(6t +η28ω -pσz){α12 C部(qm) + α22 sin(qm)} , 
(by def. of mグ?とt ，ふ = -pμ+η山)

=を州{Çit -pazjt +仰jt}t]. [a1i 州仰)+句 sin(仰)]，

which is equivalent to the equation presented in the paper. 
Applying the same argument as was used in Appendix A.2 to the above 

expression , the stochastic stability of b is determined by the signs of ふ (k) since 

,Hm (z(t)/t)=0(ωpl)and tEZ(ω(t)jt) = 0 (ω p . 1). For example，山e i'th 

component ofthe last expr缶sion is stochastically stable if and only if ふ (k) く O.

Case (iii): k > 長 (ηi are imaginary; and 入1 訂e real) 

In this case T]i can be rewritten as: 

η1 = -T  + si and TJ2 = -T  - S1" 
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where r = v/82; s =1 V2 + 282 (α- k) 11/2 /82. In the sirnilar way to case (ii) , 
solution (5.50) reduc回 to:

b(m ， υ) = exp(入 1m){ C11 exp(η1υ) + C12 exp(η2υ)} 
+exp(入2m){C21 exp(η1V) + C22 exp(T/2υ)} 
exp(入 1m - rυ){Cu exp( svi) + C12 exp( -svi)} 
+exp(入2m 一向){C21 exp(sυi) + C22 exp( -svi)} (by def. of TJi) 
exp(入1m -rv){ C11 cos(sυ) + C12 sin(sv)} 
+exp(入2m - rυ){C21 cos(sυ) + C22 sin(s吋} (by the Euler formula) 

= exp(p1t + 入1σz -r8ω){α11 cos(sυ)+α12 sin(sv)} 
+exp(p2t + 入2σz -r8切){α21 Cω (sυ)+α22 sín(sυ)} 
(by def. of m， υ ， Pi; Pi = -rν+ 入iμ(= _v2/82 + 入tμ))

L exp[{Pit + 入tσz/t -r8w/t}t] . [αi1 cos( Sυ)+αi2 sín(sv) ], 

which is equivalent to the equation pr白ented in the paper. 

Applying the same argument as was used in Appendix A.2 to the above 

expression, the stochastic stability of b is determined by the signs of Pi (k) since 
lim (z(t)/t) = 0 (w.p.1) and .lim (ω(t)/t) =0 (ω .p.1). 

t • 00 ,.. t→∞ 

5.7.5 Appendix A.5: The 仇ρ ふ and Pi Curves 

This appendix examin白 the shap田 ofthe ψij ， と i ， and Pi curv回 (i ， j =1 , 2) in 
Fig. 4. 

By definition , the functions ψij (k) are given by: 

ψ11 (k) 

ψ12 (k) 

ψ21 (k) 

ψ22 (k) 

一 一 μ2+μ(μ2+2σ2 kf /21- v2 +ν[ν2+262 (α -k)r /2
I 62 , 

ー μ2+μ(μ2+2σ2 kf /2ν2 _ V[ν2+26 2 (α- k)r / 2

σ 2 I 62 , 
一 一 μ2 ー μ(μ2+2σ2k) 1/2 v2+v[ v2 +26 2 ( αー た)r / 2

62 , 
ー μ2μ(μ2+2σ2kr /2 v 2 ー ν [v 2 +262 (αー た)r / 2

62 , 

which imply that ψu(k) =ψ12 (k) ， ψ11 (k) = ψ21(k) ， ψ以k) = ψ22(k) and 

ψ21 (k) = ψ22(k). Thus, 

ψ ， n l，l ー μν
11 一ψ-- -

22 - (μ2+2σ2k)1 / 2 [l;2 +282(α _k)]1/2' 

ψ f 一一ψ'- μ ν -
21 - (μ2+2σ2k)1 /2 [ν2 + 282 (α_ k)]l / 2 ・

With k <k=-μ2 / 2a2 , the Ei-curves are represented as: 

E1 (k) 
μ2 1/2 +ν[ν2 + 282 (α _k)]1/2 
σ2 I 82 

一一ι ム-1/2 _ν[ν2 + 282 (α- 虻三
σ2 ・ 82 ) 6 (k) 
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叫

where 

ご~ (伏例k刈)= 一とι~ (伏例k刈)= 一 ν . ， 内 < O. 

Considering the case where k ~ k , we obtain the ρi curv白 as:

ρ1 (k) 
レ2 ーμ2+μ(μ2+2σ2 k:) ω
82 'σ2 

ν2 一μ2_μ(μ2+2σ2k)1 / 2
82 'σ2 P2 (k) 

Thus , P1 (k) = ψll(k) [=ψ以k)] and P2(k) = ψ22(k) [=ψ21 (k) ], where 

ρ~ (k) = -必 (k) = ー， h f 川言 >0

Let us finally show that values for the structural parameters can be chωen 

such that, as in Fig. 4 ， ψ11 (k) < 0 and ψl1 (k) > O. By definitionψ11 (k) is 

obtained as: 

山) =一 [(LG) ーが +2α勺μ2152 /σ2} 1/~] 

After some manipulation , it can be shown that 

ψ 1(k) =叶2α(め-(ダ-(長) (め]
Therefore ， ψll(k) is negative ifμ2/σ2 is sufficiently large and / or ifαis suffiｭ

ciently small. 

Similarly， ψ11 (k) is given as: 

� (J-L2 レ2\μ{μ2+2ασ2+ν2a2 /52 11/21
ψII (k) = 一 I (こー+ート L / J I I \σ2 ' 82 J 82 I 

so that: 
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the inequalitiesψ11 (k) く o and ψ11 (k) > 0 are valid if (μ2/σ2) is large enough 

while (v2 
/ 8

2) is sufficiently small. 
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5.7.6 Appendix A.6: Derivation of Proposition 3 

We first derive eq. (5.30). Assume thatμ= 0, so that , for k く主(= 0) , 

p = 0 and q = (-2σ2k)1 /2/σ2 ， 

from the definition of p and q. The R.H.S. of solution (5.41) thus reduces to: 
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where γ = T-t; and 向 = di exp( -T(kー α)). Let us cons1truct a general solution 

forγ ど o by integrating the above solution over the range k ε(一民主(= 0)): 

山) = 10

= exp{ -(a -k)γ}{α1 (k) cω附句(k)山

where αì are now density functions defined over k ， 向 =αì(k). Note that 

k= ーσ2q2/2 by the definition of q. Thus dk/dq = -σ2q < 0 and , hence, k is 
monotonic in q (> 0). The above solution thus can be rewritten by changing 

the integrating valuable as 

介xp{-(a + (J2q2/2 
C幻

x{αl( -σ2q2/2) cos(qm) + α2(一σ2q2/2) sin( qm)}(-σ2q2/2)dq 

=μp{-(α+州州Cl山

where C� (q) = σ2q. αi(一σ2q2/2). This is equation (5.30). 
The next step is to determine the density functions Ci(q) so that (5.30) 

satisfies the boundary condition, (5.29): Since (5.30) must satisfy condition 

(5.29) atγ= 0, it must hold true that b( m , 0) =φ(m) ， or equivalently, 

rC幻

ゆ(m) = I {Cl(q)cos(qm) + c2(q)sin(qrn)}dq. (5.52) 
JO 

On the other hand, we can prove the following lemma: 

Lemma A.l: Under the 内gularity condition giveη by footnote 15, function 
ゆ(m) cαη be represented in the form of α version of the Fourier inlegral [see 
Farlow (1983, S ection 2.11) j 

伽) = 1= {J, (q) cos(qm) +ん山附dq， (5.53) 

where h(q) α叫ん(q) αre Four，町 sine- and cosine-lr，αnsforms of ゆ(m) ， respecｭ
tively: 
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ん仰州(ωωqω)片=(ωlν山/什πイ: ゆ伽(何川m
ん的州ωω)片=(仰1ν巾/ケπイ二伽桝山)片S州m)drn

(5.54) 

Proof: Applying the double-integral theorem of Fourier to ゆ(m) ， we obtain: 

φ(m) = (1/π) !aCX) dω 心(と) • cosω(m -_ �)di; 

Here from the property of cosin白 ， we have: 

cosω(m ーと) = cos(wm- ω。
- cos(ωm) . cos(ωと) + sin(ωrn) -sin(ωと) • 

Thus the above double-integral representation reduc白 to:

伽) = (1/イり:ゆ(と)仲間)叫)々
刊1/π)J~ィシ(と)叫m)山)dと

= J~ [J~= (l/rr) ゆ(と) cos仰ç] cos(wm)ル
+ J~に(1/酬と)山)々] sin(叩)ル
J~ fl(ω)叫m)ル + J~ ん(ω)叫m)伽?

w here fi are the F，おourier transforms given by (5.54). The last 以pr邸ion is the 
same as (5.53). ロ

Comparing (5.52) with (5 .53) , we can easily see that , if Ci (q) = fi (q) , then the 
density functions nec白sarily satisfy (5.52) and , hence, the resulting function is a 
solution to the problem, We can also prove the converse to obtain the following 

lemma (For the proof, see the appendix of this s叩pleme瓜)・

Lemma A.2: Ci(q) (i = 1,2) satisfy the boundαry conditioη(5.52) ザ and only 
if 

Ci ( q) = fi ( q) (i = 1, 2) , 

ωhere fi are the Fourier transforms 9ωen by (5.54). 

Proof: Let us prove the lemma provided in this supplement. From (5.52)and(5.53) 
we have: 

1= {[Cl(q) 一的州ルド2(日(q)] sin(仰)}dq = 0 \1m 同

Differentiating (5.55) with r白pect to m gives 
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lXO {q[Cl (q) -J.山

Differentiating this again with respect to m , we have 

rぽ[C1 (q) 一川 cos(q叫吋州一州羽川い や日〕

Similarly di百erentiating (5.55) 2ηtimes yields 

l~小凶一川∞州中州一州sin(州

Evaluating (5.57) at m = 0, we obtain 

1= q2n[Cl 付)一ん (qル 0

Since this holds true for any integerη(> 0) , we have 

C1 ( q) -!I ( q) = 0 for any q. (5.58) 

That is , functions C1 and !1 are exactly the same. 
Substituting (5.58) into (5.57) yields 

f附C2(q) 一的州qm)}dq = 0 Vm 

Differentiating this with r白pect to 7n , we get 

1= {q2n+1 [C2仙一州 cos(q州い Vm

Evaluating this at m = 0 gives 

1= {q2n+l い2(q) - ん (q)]}dq = 0 

Since this holds valid for anyη(> 0) , we have 

C2(q)-!2(q)=0 foranyq , 

which complet白 the proof.口

From this lemma, we obtain (5.31) and (5.32) in the paper. Substituting 

(5.31) and (5.32) into (5.30) yields proposition 3. 
Indeed , solution (5.30) with 向 being given by (5.31) and (5.32) satis自由 the

PDE, (5.33), and the boundary condition , (5.29) , as fo11o附 First ， from (5.30) , 
the derivativ田 of b are given by: 
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bt (α 一 k)沖b ，

bm 

bmm  

q. J~ exぽ仰州X勾刷p凶{凶+ 州
qρ2 jJF/F「:〉ぽ仰州叶…X却削叶山p{叶刷川川{←村凶山一ベ引判(似肘α叶+0"川刊σ〆内付2q2附q♂桁2勺/川一q仰山(ωω仙(q) coりか仰)μ凶C∞Oω叫州印州S吋巾付仰(ω伽伽例qrr;仰例げm叫Lけ) 一 匂仰(ωω仙qωい川)μS

2kb/σ2'(using def.of q) 

which implies: 

(1/2)σ2bmm + μbm + bt = kb + (α - k)b 
=αb. 

(using μ ニ 0)

This is equation (5.33). Second , given our solution , we have: 

b川 =T) = J~ {f, (q) cos(仰)+ん山川dq
=ゆ(m) ，

where 九 are given by (5.54); and the last equality follows from the Fourier 

integral theorem. This implies the boundary condition, (5.29). Therefore, the 
function given by (5.30) , (5.31) , and (5.32) is a solution to the PDE (5.33) 

subject to (5.29). 
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Chapter 6 

The Continuous-Tirne APT 
with Diffusion Factors and 
Rational Expectatic)ns: A 

Synthesis 

Abstract: The APT is recast as a general theory of arbitrage asset valuation 

in a model with diffusion factors and rational expectations. De日ning betas 

by factor elasticiti白 of asset pric白， the APT -type arbitrage-仕ee condition is 

reformulated in terms of asset price function. The condition reduces to a partial 

differential equation with respect to the asset valuation function. The price 

function , as a solution of this equation , takes two alternative forms depending on 
how to design risk-adjustment. The resulting formulae consistently demonstrate 

the various existing ideas of arbitrage a田et evaluation. 

JEL Classification Number: G12, G13. 

Keywords: Arbitrage，結set pricing, APT , options. 

6.1 Introduction 

Rωs (1976, 1977) proposed an arbitrage theory of risk pricing in capital marketsｭ

the Arbitrage Pricing Theory (APT). The main proposition is that if asset 

returns conform to a factor generating model , then , by the law of one price, risk 
premia are determined as linear in sensitivity coefficients of returns to factors. 

With a k factor structure this linear relation asserts the existence of a set of k 

constants which evaluate factor risks. Regarded as an alternative to the Capital 

Asset Pricing Model (CAPM), the APT has so far been made rigorous and 

extended by many subsequent works.1 

1 For example, Huberman (1982) and Ingersoll (1984) gave proofs to the APT by rigorously 
reformulati時 the definition of arbitrage in infir山e economies. Dybvig (1983) and G山blatt
and Titman (1983) discussed the misprici時 upper bounds of the APT in settings with finitely 
manyassets. See also Solnik (1983) and Ikeda (1991) for extension8 of the APT to international 
asset pr��g. 
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However , we can find some room to improve in the theory. First of a11 , the 
APT explored もhe risk-premium determination without saying anything about 

a回et valuation. The risk premium of an asset , however, must be consistent with 
its price level in some sense. Secondly, in the APT , factor sensitiviti白 of asset 

returns are assumed to be exogenous. More natural modelling would require 

these parameters to be endogenously determined refiecting some fundamental 

properties of the assets. Thirdly, with some minor exceptions2 the discussion is 
limited within a twcトperiod setting, so that they implicitly assum白 awayany

po田ibiliti田 of intertemporal changes in investment opportunities. Of course, 
th白e problems are interrelated. Given income gains from an asset , the factor 
sensitivities of return are essentially the same as those of the asset price. A 

multiperiod setting would be nec田sary to investigate valuation of the longerｭ

term assets for which return-distributions change over time. 

This paper develops a continuous-time model of asset pricing with k factors 

and rational expectations. The model is used for the purpose of recasting the 

APT as a general theory of the arbitrage ぉset valuation.3 The key assumption 

is that underlying factors obey a joint diffusion process. This specification will 

enable us to apply the diffusion approach to arbitrage asset pricing. Here the 

diffusion approach is one which was originated by Black and Schol缶 (1973)

for option pricing, applied to evaluating other derivative assets (e.g ・， Vasicek 

(1977) , Richard (1978) , Brennan and Schwa山 (1979) ， and Cox , 1時ersoll and 

R侃s (1981)) , and made rigorous by Harrison and Kreps (1979) and Harrison 
and Pliska (1981). In pursuing the ai爪 we generalize the approach to evaluate 

assets with the function forms of their income strearns and boundary values 

unspecified explicitly. 

Our main me部ages are as fol1ows. First of a11, our dynamic asset pricｭ
ing model of the Black and Scholes type is consistent with the factor returnｭ

generating model assumed in the APT. Given the result , the APT-type nか
arbitrage conditions are recast in the dynamic setting with sensitivity coeffiｭ

cients defined by the partial elasticiti白 of asset pric白 with respect to factors. 

The conditions assert the existence of a set of k predictable price processes which 

evaluate factor risk over time. Secondly, th白e conditions reduce to partial difｭ

ferential equations with respect to asset valuation functions. Thirdly, the price 
functions , as the solutions of th白e equations , can take two alternative forrns 
depending on w hether risk adj ustment is made on: (a) a discount rate, or (b) 
expected factor dynamics. Finally, the r白ulting asset pricing formulae consisｭ

tently demonstrate the various ideas of asset evaluation in the existing literature 

such as Modigliani and Miller (1959) , Cox and Ross (1976) , Rubinstein (1976) , 
Harrison and Kreps (1979) , and Harrison and Pliska (1981). In sum, this paper 
accomplish白 synth白is in two different sens田: it synth田izes the APT and the 

diffusion approach of the Black and Scholes typej and it integrate the existing 

ideas of asset evaluation from the viewpoint of arbitrage. 

The remainder of this paper proceeds as follows. 'The model is presented 

2 Roll and Ross (1980) developed a simple intertemporal model of the APT where determiｭ
nant factors follow Wiener proce田es with exogenouB factor loadings. Solnik (1983) and Ikeda 
(1991) implicitly considered the same situation as in Roll and Ross (1980). However, neither 
discussed asset evaluation problems. 

3 A similar purpose has been pursued by Chang and Shanker (1987). They have applied the 
APT to option pricing , but the analysis there is limited within a static uni ・ factor framework 
and his interest is only in options markets. 
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in Section 6.2. In Section 6.3, we derive the APT-type no-arbitrage conditions 
on risk premia. Based on these conditions, Section 6.4 inv白tigates arbitrage 

valuation of risky assets to obtain two alternative formulae for asset pricing in 

Subsections 6.4.1 and 6.4.2. Finally, Section 6.5 summariz回 our analyses. 

6.2 A Multi-Factor Asset Pricing Model 

Ross (1976 , 1977) based his discussion on a multi-factor return-generating proc白S
In that setting, however , it would be difficult to obtain any explicit expression 

for asset valuation rules. Instead, we set up a multi-factor pricing system. The 

model is composed of the following set of assumptions , A1 through A6. 

Al: There αre n kinds oJ パsky αssets ωhich αre in点nitely di仇sible. They 

are indexed by i - 1 ， 2 ，・・・ 7η . The set 01 these index: numbers is denoted by 

A , i.e. , A = {1 ぃ・・， η}. The markets αre αssumed to be: (i) perJect, wit九 α II inｭ
vestors tαking αsset prices αs given; (ii) 向ctionless in t加t trading ωsets tαkes 

ηeither tαx nor αηyotl町 tmnsα ctioη costs; αnd (iii) opeη continuously in time. 

A2: Stαtes oJ all the mαrkets αre described by k stochαstic common Jactors. We 

deηote the fiαctors αs 仇 (t) , . . . ，れ (t) where t represents time. 

Assumption A2 implicitly neglects the existence of asset-specific of idiosynｭ

cratic factors which the APT takes into account. However , this simplification 
will make little di百erence between the APT and our analysis since the APT 

assumes idiosyncratic factor risk to be unsystematic. The case with asset idiか

syncrasy is briefly treated in Appendix A.2. 

Contents of the common factors will depend on the set of assets under conｭ

sideration. In the case of stocks, the factors may include some indic白 affecting

real activities of firms. For derivative assets , factors may be certain variables 
conditioning underlying contracts. Anyway, their contents are left unspecified 
in this paper. What we need for our ends is specification of stochastic processes 

for factors. 

A3: The (k x 1) 切ctor oJ fiα ctors， ゆ (t) = [ゆj (t)] , Jollows α diffusion pr附ss
oJ the type:4 

dφ (t) = 1φ (t) μ(ゆ (t) ,t) dt + 1φ (t) 玄(ゆ (t:) ,t) dz (t) , (6.1) 

where 1φ (t) denotes α (k x k) diagonal mαt巾叫ose j -th compoηeηt お φj (t) 

μ(ゆ (t) ,t) = いj (φ (t) ,t)] is α bour政d (k x 1) vectoァ oJ the e勾ected rates oJ 

change, L: (ゆ (t) ,t) = [σj 1 (ゆ (t) ， t)J ， α bounded (k x k) mαt巾 oJ diffusion coｭ

efficients oJ the une勾ected rates oJ change， αηd z (t) = [Zl (t)] ， α k-dimensional 
stαndαrd Wiener process.5 The covαriance mαtí'ix oJ fiα ctors， 切hich ωη be exｭ

pressed αs 1φ 乞どん ωth the prime denoti句 tmnspose， is assumed to hαυ 

4 For detailed information on diffusion process田 and stochastic differential equations，自ee ，
for example , Arnold (1973) and Friedman (1975). Applications ofstochastic calculus to finance 
and economics are surveyed in Malliari自 and Brock (1982) and Ingersoll (1987). 

5 By the definition of multi-dimensional W iener proc田ses ， the components of z are indeｭ

pendent of each other. 
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full r，αnk. 

Given assumptions A2 and A3 , we specify information available to investors. 

A4: All investors αre αωαre of the fiαct that αsset ma7~kets αre described αs in 

αssumptions A2 and A3， αnd have exαct knowledge of the vector・ vαlued funcｭ

tions， μ(φ (t) , t) αηd L:(ゆ (t) ， t) ， αs well αs 0 f the current vαlues of flαctors αnd 
αsset prices. 

Next, rationality of inv田tors is assumed. 

A5伝: InωU切est抑tωor内s b仇ehα切 Tαtiω2ωOηmαl均lωy in η theflμ'0 1ωlωOωη句g tuωi 

切ωl肋t仇h tωo leωSおs; α仰ηd 作例り g似4初veη t向h仇e informα仰tiωtωOη set αωss幻卯匂.Lmed i仇η A4ふ， e勾ectαtions

αre forγned consistent with the model. 

In A5 , the former rationality, (i) , excl吋白 any pro日table opportuniti回 of
riskl邸 arbitrage. The latter assumption , (ii) , is t山he ra凶王

pot凶he白si泊s .

Assumptions A2 through A5 amount to the following. From assumption 

A3 , the factors are jointly Markov, so that the probability distributions of their 
future valu白 are independent of their past time-paths. Hence, by assumptions 
A2 , A4 and A5 (ii) , we can na七urally set the time t price of the i-th asset , 
pl (t) (iε A) ， equal to a function of the time t values of factors and the time, 
pl (ゆ (t) ， t). Here, function pt (ゆ (t) ,t) is not exogenously but endogenously 

determined. The determination mechanism is our main interest in Section 6.4. 

FinaUy, instantaneous riskless bonds are assumed to exist. 

A6: Riskless instαntαneous borγowing and lending αre αvαilable αt the i nt erest 

rate, r. The r，叩αt臼e i臼Sαωss印um

r (t肋t吟) = r (ゆ (t) , tの). 

This is set only for the sake of simplicity. If risk-仕ee bonds did not naturally 

exist , we could interpret r (t) as the rate of return on the zero-beta portfolio 

without any change in our discussion below. 

6.3 Arbitrage Determination of Jtisk Premia 

From the model presented above, let us now derive the familiar APT -type linear 

equations for risk premia. We first show the consistency between our multiｭ

factor asset-pricing model and the multi-factor return-generating processes asｭ

sumed by the APT. 

As pointed out previously, asset price pt (t) is represented as a function 

pt (ゆ (t) ， t). This implies that the price follows a diffusion proc邸s since the 

factors are diffusio瓜 Therefore ， letting 明 (t) = γi(ゆ (t) , t) be some exogenous 
payout flows or income gains from the i-th asset , and αi (t) = αdφ (t) , t) be the 
total expected rate of return (the expected rate of price changes plus payout 

flows) on the asset , by Ito's Lemma, we can d田cribe the dynamics of (exｭ

dividend) price pl (t) as 

dp� (t) = {αi (t) pi (t) 一明 (t)} dt + 弓 (t) 1φ (t) 乞(似z (t) , (6.2) 
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where the expected instantaneous change of the price ， αi (t) P' (t) 一市 (t) ， is 

given by 

αi(t) pt (t) 一 γi(t) = P� (t) 九 (t) μ (t) 十円 (t)

+(ν2) trace {ぺφ(の Iφ(卯(仙(の) (6.3) 

Here n (t) = n (ゆ (t) ,t) repr白ents the covariance matrix of the unexpected 

rates of char時白 i凶n fa拭ctωors ， i.e. , n 三 L2ご， and the subscripts on pi (t) denote 

partial de山ativ白・ In particular, P，よ (t) stands for a (1 x k) vector whose j-

th element is θpt (φ (t) ， t)/θゆj(t) ， and R;φ (t) is the Hessian of pi (ゆ (t) ,t) 
without columns and rows of partial derivativ回 with respect to t. 

The consistency between our setting and 七he multi-.factor return-generating 

P戸ro∞C邸白 assumed b匂yt巾he APT is a部紙S配cert此rtair凶 i汀fw附e recall t凶ha抗t term L:ε= (t)μdz (例t吟) 
r陀ep戸r白e叩n凶1t匂s the unexpected rat回 of changes in factors , I;ldゆ (t) 一 μ (t) dt , and 
rewrite equation (6.2) as 

{dpi (t) + 悦 (t) dt} / pi (t) 一角 (t) dt = 弘 (t) {dゆ1 (t) /仇 (t) - μ1 (t) dt} + 
一・+勾k (t) {d仇 (t) /仇 (t) 一内 (t) dt} , 

(6.4) 
where the hat (八) denot白 the partial elasticity of an asset price with respect 

to each factor , i. e. ，勾j (t) = (ゆj (t) / pi (t)) { a pi (ゆ (t:) ,t) /θ内 (t)}. The left 

hand side of (6.4) stands for the unexpected rate of 附urn on the i-th asset. 

Thus, this equation states that an innovation in the ra.te of return is generated 
as a linear combination of the unexpected changes of factors. This is the same 

situation as Ross assumed except for two points. First , in proc白s (6.4) the 
sensitivity coefficients to factors' innovations are defined by the endogenous 

partial elasticities, ~よj ， instead of exogenous betas Secondly?no idiosyncratic 

factor appears in this equation. 

Now that multi-factor return-generating proce岱es are derived in equation 

(6 .4), we discuss arbitrage determination of risk premia by extending the APT 

argument straightforwardly to the dynamic setting. Note that if one considers a 

self-日nancing sequence of portfolios , or a self-financing trading-strategy, {O} t = 

{ (0 1 , . .. ， 0π)'} t' its local rate of return is given by,6 

。 (t)' α(t) dt + 0 (t)' ん (t) 玄 (t) d:<~ (t) , (6.5) 

where α (t) is the (ηx 1) vector of the expected rat白 of return, and p，φ (t) 

repr白ents the (ηx k) elasticity matrix whose (i ,j)-element is ~ん (t). Thus 

o'þゅ determines the risk for the trading strategy. The absence of arbitrage 

requires: if 0'九= 0 , then 0' (α - r1n) - 0, where 1πdenotes the (ηx 1) 
vector of ones. The algebraic consequence of this is tl凶 (α ーパπ) is linear in 

the k column vectors of Pφ ，~ゆl' ・・・，~れ・

Lemma: In the αbsence 0 f arbitrage, the e勾ected excess rates of return (over 
the risk-free interest rate) 0η 門sky αsseお αre determined αs linear in .fiαctor elαs

ticities 0 f their prices wit九 ωeigh白山hic九 αre the same αcross αssets. Formally, 

6 By the def�ition of self-financi時 strategi田， expression (6.5) do田 not include any term of 
the continuous change in portfolio weighting. For this , see lngersoll (1987 , p.363) and Duffie 
(1988 , p.157) 
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there exists α set of predictαble pro印ss同 {入L = {(入 1 γ ・・?九 )' L ， such t加t

αi(t) -r (t) = 入 1 (t) Pc゙1 
(t) + ・・・+入k (t) ~ふ (t:) Vi E A , (6.6) 

or, more integratingly in vector notαtion， 

α (t) -r (t) ln = PI゙ (t) 入 (t) (6.7) 

The lemma recasts the original APT in the intertemporal setting in terms 

of endogenous partial elasticities of asset pric白・ 1ntuitively, the elasticiti白，

Pよ(同 A ， j = 1, . • . , k) , can be regarded as measures of local risk ca used by 

factors , and predictable proc回S缶入j as risk pric田・ The statement then illusｭ

trates that the risk premium of any risky asset is determined as an inner product 
of the risk and risk-price vectors. 

Coefficient 入j is interpreted more cl回rly if we a..."8ume the existence of a 

sufficient number of non-redundant assets to introduce a factor trading strategy 

as Ross considered a factor portfolio in his static mode1.7 Here the j-th factor 

trading strategy is defined as self-financing one whose instantaneous local rate of 

return always responds to the unexpected rate of change in the j-th factor with 
an elasticity of one and to the other factors with zero sensitivity. Explicitly, it 

is a trading st吋 {gi }， = { (εi ， イ}，ぬぬかing

九 (t)' �
j (t) = ej , (6.8) 

where εj (t)' ln 1 and ej stands for a (k x 1) vector with all zeros except 

for a unity in the j-th spot. Denoting the local expected rate of return on the 

j-th factor trading strategy by 〆 (t) ， its expected excess rate of return over the 

risk-free rate, or 七he j-th factor risk premium reduces to 
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(by (6.7)) 
(by (6.8)) 

Therefore，入j is exactly equal to the j-th factor premium. 

Remark: As ωηωsily be seeη from the last discussion, the predic的ble vector 
process， 入， uniquely exists in complete mαrkets where α11 ofthe k ~αctor tr，αding

strategies αre αυαilable or marketed. 日ヴwn the markets αre incomplete, on the 

otl町 ha叫 the vector process ωhich supports the αrbitmge-jトee condition (6.6) 
is ηot unique. See I句ersoll (198η， pp.168-170 

6.4 Arbitrage Asset Valuation 

Let us next direct our attention to asset valuation functions. 1n general, condiｭ
tions on risk premia of risky assets will, implicitly or explicitly, bind their prices. 
1n fact , the APT-type equation (6.6) can be rewritten as a partial di民rential

equation for the asset price function. 

7 See Ikeda (1988) , pp.6-7 , for the condition for the as自et non-redundancy 

126 



Corollary 1: In the αbsence of αrbitmge， the price function of αny risky αsset 

m1LSt satisfy the pα付加l differentiαl 句ωtion，

い/2) trace {弘(仙 (t)n (t) 1φ(の} + P� (t) 1φ (t) (μ (t) - 入 (t)) + 行 (t)
+γi(t) = r (t) P¥ (t) , ViεA 

(6.9) 

Proof: Solve equation (6.3) for αi (t) and substitute the result into no-arbitrage 
condition (6.6) to obtain equation (6.9). 口

Di百erential equation (6.9) holds for any risky asset.B The forms of income 

gain functions and some boundary conditions will sp配ify the characteristi岱 of

assets. Here we impose boundary conditions on ぉset pric田 at time T (> t) in 

a general form: 

P¥ (ゆ (T) ， T) = 争\ (ゆ (T)) Vi E A , (6.10) 

where 争t (ゆ (T)) is an exogenous function evaluating the time-T value of the 

i-th asset.9 

If asset i is a contingent claim with some maturity, the function is given by 
the maturity payo百. On the other hand, in the case of assets with eternal lives 
like stocks, it seems to be arbitrary to put boundary conditions like (6.10) on 
the pric白. This, however, turns out not to be more r回trictive than it might 

first appear if one notic白 the following two points. The first is that regarding 

争t (ゆ (T)) as some inv白tors' belief concerning the time T -value of asset i, the 
solution of (6.9) for pt (t) , which will be expressed in terms of 争t (ゆ (T)) ， ωn be 

interpreted as a relative relationship between the pr田ent and expected future 

prices. Secondly, as will be shown later, investors discount the future value 
争t (ゆ (T)) at some rate to evaluate the present value of asset i. Thus, we could 

assume away any effect of 争 t (ゆ (T)) on pt (t) by taking a limit T→+∞ and 
neglecting any possibiliti白 of price bubbles. 

Asset valuation functions , if they exist, can be obtained by solving differｭ
e凶al equations (6.9) subject to boundary conditions (6.10). In general , the 
risk-free asset would be priced as its expected pr回ent value discounted at the 

riskless interest rate. Also in the risk-neutral world, any assets would be evaluｭ
ated in the same fashion. In our general setting, however , we must make some 
risk-adjustment on risk-neutral asset valuation. Assuming the existence and 

uniqueness of a positive solution of (6.9) and (6.10) ,1 0 the following subsections 

show that these equations can be solved as two alternative pricing formulae 

depending on how to design risk-adjustment. The first is a formula with a disｭ

count rate reflecting factor risk. The second method for asset pricing adjusts 

expectations concerning state dynamics. 

8 Many articles which use the diffusion approach have presented the similar equations, but 
in some specific forms. See , for example , Black and Scholes (1973) , Vasicek (1977) and Richard 
(1978). We can reduce equation (6.9) to theirs by specifying factors and the functional forms 

of μ，乞， and γi arbitrarily 
9 Conditions (6.10) implicitly a田ume that boundary dates are the same acrωs all assets 回

in Cox , Ingersoll, and Ross (1985). This 自implifies our analysis because if the dates differed 

from each other , hedging opportunities would change over time. 
10 A stochastic differential equation requires dome technical conditions to have a pathwise 

unique solution. The details are given in Arnold (1973 , Chap. 6) and Priedman (1975 , Chap. 

5 ). 
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6.4.1 Solution (a) 

The first approach defin白 some risk-adjusted discount rate in computing the 

expected pr白ent valu白 of risky assets. Although the idea has so far been 

proposed by many st udi回 as seen in some familiar textbooks such as Elton and 

Gruber (1987) ,11 they have defined a discount rate ぉ exogenously given. The 

problem here is how to find a discount rate which is consistent with the nか

arbitrage condition , (6.6) or (6.9). To answer this, let us first consider a simple 

case where risky assets earn no income gain , i.e. ， γi(8) 三 OVi E A and 8ε [t ， T]. 
We denote asset prices in this case by smallletters like pl (8) = pt (ゆ (8) ,8). Note 
that we are now concerned with the homogeneous equation of (6.9). 

Given the setting, we find a self-financing trading-strategy whose relative 

value to each asset is a martingale in the absence of arbitrage. Formally, it is 

a self-financing strategy whose value process, say D (8) = D (ゆ (8) ,8) , satisfies 
the following relationship: 

pi (t) / D (t) = Et {pi (8) / D (8)} Vi E A , s: E [t , T] , (6.11) 

or equivalently, 

Et[d{pi(8)/D(8)}]=O ViEA , 8 ε [t ， T] , (6.12) 

where Et denot白 the mathematical expectation conditional on information at 

the current time, t. If one obtains this trading strategy, by definition (6.11) , the 
price of asset 'i is expr回sed as an expected pr白ent value of its boundary payo百:

pi(t) =Et [pi(T) {D(t)jD(T)}] . 

This exhibits that the appropriate discount factor in the case of no income-gain 
is given by the intertemporal relative price of the stra.tegy, D (t) / D (T). It is 

straightforwa.rd to prove tha.t exactly the same discount factor is also applicable 

to the general case with income gains. This is the reason for our interest in the 

strategy defined by (6.11). One might be able to call it the di8count'ing trading 
8tnαtegy. 

The discounting trading strategy can be found in the following manner. Since 

its price conforms to a diffusion proc回s by assumption , by Ito's Lemma, we can 
compute the expected local rate of change in the relative price, pt (8) / D (8) , as 
follows: 

Es I~11 = Es[{dpi(仰i(8)}_{叫8)/D(8)}+{州8) / D (ザ
ーー- { dpi (8) / pi (8)} {dD (8) / D (8)}]. 

(6.13) 

Here the expected rat白 of return , Es {dpi (8) /pi (s)} a.nd Es {dD (8) / D (s)} , 
must satisfy the arbitrage-free relationship like (6.6) , so that they aregiven as 

Es { dpi (8) /pi (8)} = {ァ (8) +ぬ (8) 入(8) } d8 , ( 6.14 ) 

Es {州8)jD(8)} = {r(8) +九 (s) 入(中ム (6 日)

llThe idea was originally prop08ed by Modigliani and Miller (1959) 
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respectively, where ぬ (s) and Dφ (s) repr白ent the (1 x k) vectors of factor 

elasticiti白・ On the other hand , the realized rat白 of return , dpt (s) /pt (s) and 
dD (8) / D (s) , can be calculated by application of Ito's Lemma as 

dpi (s) /pi (s) = Es {dpi (s) /pi (8)} +ぬ (s) 玄(s) dz (s) , ( 6.16) 

dD ( s) / D ( s) = E s {dD (s) / D (s )} + ÎJφ (s) 乞 (s) dz (s) . (6.17) 

Th白e two equations imply that the second order moments in (6.13) are given 
by 

Es {dD (s) / D (s) } 2 
= ﾎJ r� (s) n (s) ÎJφ( s) ds , ( 6.18 ) 

Es {dpi (s) /pi (s)} {dD (s) / D (s)} = ぬ (s)n(s)Dφ (s) ds. (6.19) 

Finally, by substituting equations (6.14) , (6.15) , (6.18) and (6.19) into (6.13) 
and rearranging the r白ult ， the expression of the expected rate of change in 

pt (s) / D (s) reduc回 to

E, [官山374(S) 一九 (s)} {入山
Thus, if we choose and reshuffie the portfolio continuously s凶h that Vsε [t ， T ], 

bφ (s) = 入 (s)'n (S)-1 , (6.21) 

then the r白ultingsequence is the discounting trading strategy because portfolicト

formation rule (6.21) with expression (6.20) implies 叫lation (6.12) 
An explicit price dynamics of the discounting trading strategy can now be 

obtained by succ悶ive substitution of (6.15) and (6.21) into (6.17) as: 

制s)/D(s) = [ァ (s) + 入 (s)'n(s)-1 入 (s)] ds + 入 (s)'n (s) 一 12: (s) dz (s) 
(6.22) 

After logarithmic transformation of D (s) ,12 we integrate this differential equaｭ

tion by Ito's rule to get an expr白sion of the intertemporal relative price: 

D (t) / D (T) = exp { -χ (T)} , (6.23) 

where χ (T) (T ε 札 T]) is defined as 

χ (T) = JtT [巾 (s) ， s)+( ν2) 入(ゆ (s) ， s)'n(ゆ (s) ， S)-1 入(ゆ (s) , s)] ds 

+ Jt
T

入(ゆ (s) ス)'n (ゆ (S) ， S) - 1 2:(ゆ(s) , s) dz (s) . 
(6.24) 

12 Through Ito's Lemma we have: 

θlnD 1θ2lnD ヮ
dlnD = 一一~dD+ 一一一τ一 (dD)"

θD 2 8Dゐ

Using equation (6.22) , one can eliminate dD a凶 (dD)2 from the above expr自白ion to obtain 

dlnD = (r + (1 /2) 入'0 - 1 入 ) ds + )， '0 - 1 乞 dz
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In the case of no incom争gain ， as stated earlier , the prices of assets are 
determined as their expected pr白ent valu田 and the arbitrag仔free discounting 

factor is now given by equations (6.23) and (6.24) 

Not surprisingly, this discussion can be extended straightforwardly to the 
general case with income gains, i. e. 川 (s) =1-O. We obtain the 日rst formula for 
asset pr兤匤g. 

Proposition 1: In the αbsence of αrbitrage， the pバce of αηY risky αsset is deｭ
termined αsαη 仰ected present vαlue of its future incoml'; stream αηd boundαry 

p楨ce. Here the discounting fiαctor is given by the intertemporal relative p吋ce of 

the discounting tr，αding stÍlαtegy. That is，Vi ε A ， 

pt (ゆ (t) 日t 卜川

T此ere X (ァ) is defined by (6.24). 

Proof: See Appendix A. l.口

The above formula accomplishes an exponential risk-adjustment in that the 

discount rate is adjusted by' risk. However , the same equation can be rearranged 
as anαdditive risk-adjustment formula provided by Rubinstein (1976). He conｭ

sidered securities within a discret• time framework to pr回ent a pricing formula 

with risk-adjustment done in an additive manner. 

as 

To show the equivalence, let us introduce a random va.riable Y (T) (ァ ε [t ， T]) 

Y (T) = exp{ -JtT (1/2) 入(ゆ (8) ， 8)'O(ゆ (8) ， 8)-1 入(ゆ (s) ， 8)d8
-JtT 入(ゆ (S) ， 8)'O(ゆ (8) ， 8)-1 乞(ゆ(8) , 8) dz ( 8) } , 

and suppose that the expectation operator and the integral with respect to 

time are interchangeable in order. Then, the following corollary results from 
the de日nition of covariance: 

Coroll訂y 2: Formula (6.2り cαn be r仰何tten αs， Vi E A , 

pt吋V判(仲例ゆ引(tの山判)トM川， t刈t) = Eιt [匝片争(Þi (仲ゆげ削(σ仰Tη)) e片e叫xpパ(一f γパ巾(ω例ゆ州仲州(ヤ付7寸巾)

ωhere 

+ JtT γi(仲ゆ (ヤT)ト， T寸) eぽxp {ト一Jt7 rペ(ゆ引(8札)ト，バ刈Sり)μdω8} d酌州アア1+ 宙i(例tの) , 
(6.26) 

川) = Cov t [(゙ i (ゆ (T)) exp ( -JtT 
r (T)外 Y(T)] 

+jf covt(γi (T) exp (-ft T r (8) d8) , Y (T) } dT・
(6.27) 

Equation (6.26) stat白 that the price of any 巾ky asset is given as its exｭ

pected pr白ent value discounted at the risk-free rate plωsome risk-adjusting 
term，弘. The latter, by equation (6.27), is determined by normalized covariance 
of a mixed factor risk Y and the discounted income stream on the asset. This 
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scenario is fairly consistent with that of Rubinstein (1976). In e百ect ， equations 
(6.26) and (6.27) reduce to the 鵠me formula as Rubinstein's Theorem 1 if one 

mak白 another assumption that the inter白t rate is deterministic and takes a 

limit T →+∞ while neglecting any po部ibilities of price bubbl田.

Furthermore, formula (6.25) can be rewritten in the form of martingale meaｭ
sure repr白entation proposed by Harrison and Kreps (1979) , Harrison and Pliska 
(1981) , Huang (1987) , and Chamberlin (1988). Regarding Y (ァ) as a Radonｭ
Nikodym de山ative ， 13 let us define a new equivalent probability measure 厄(ァ)
for ゆ (T) from the original one, M (T) , as 

計)= J Y (T) dNI ( T) 

Then , the immediate r白ult is the following. 

Corollary 3: Formula (6.2り can be rωバtteη 叫 Vi E A , 

p~ (φ (t) , t) = Et[<�i (ゆ (T)) 仰{-Jt
T 
r (ゆ(ア) ,T) dT} 

+ J/ γi(ゆ (T) ， T)exp{-JtTr (ゆ (s) , s) ds} dT ], 

where E denotes the expectαtion with respect to the eqωvαlent martiηgαle meaｭ
sure M. 

That is, an asset price is determined such that the price proc白s discounted by 

the riskless rate becom白 a martingale with r白pect to some artificial probability 

measure. 

6.4.2 Solution (b) 

The second approach considers an alternative economy which supports the sam 

relationship as (6.9). Let us note that condition (6.9) can be also obtained in a 

hypothetical economy defined by the following two a回U叫>tioぽ (i) the expected 
rates of return on any risky assets are determined as the risk-free rate , i. e. , 

αi(t) = r (t) iε A ， (6.28) 

and (ii) capital markets are completely d白cribed by new state variables グ 1

rather than 仇 which jointly follow a risk-adjusted process, 

dφ* (t) = ん. (t) {μ(グ (t) ， t) 一入 (t)} dt +ル (t) 乞 (φ ・ (t) , t) ゐ (t) ， (6.29) 

13By Radon-Nikodym's theorem , Et [Y (ァ)] 1 must be valid for Y (r) to be a Radon-

Nikodym derivative. The equality can be proven as follows. Pirst , def�e qt (ァ) as the ~-th 

asset's price discounted with r , i.e. , 

qt (r) = 戸 (r)叫(-l T r (s) dS) 

Then , we can verify in the same way as in the text that: 

qi (t) = Et [qi (r) Y (r)] Viε A. 

ext, think of asset i as an asset or a self-f�ancing trading-strategy which yields 

e勾 uア r(s)ds) at time r(ァ ε [t， T]) ・ the price of the a8set must satisfy ql (t) = ポ (r) = 1 

Substituting this into the above expr田sion ， we obtain Et [Y (r)] = 1 as desired 
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where the parametric vector 入 (t) is the same as given by (6.7) in the 0バginal
economy. lq This equivalence implies that , given a11 other things equal , asset 
prices in the hypothetical economy are equal to on田 in the original setting. On 

the other hand, one can easily gu白s that the former pric回 are determined as 

expected pr田ent values of the assets with discounting done at the risk-free rate. 

As a consequence, we get the second formula for asset pricing in our original 
economy: 

Proposition 2: The αrbitrage-free p付ce of αny risky αsset is αlso expressed αs 

its expected present value with discounting done α t the r'isk-free rate if expectα

tions are formed αlong the risk-adjusted fiαctor dynamics. Formαlly， Vi E A , 

pi (t) = E; [<�i (グ (T)) 叫{-JtT 
T (グ(小)dT} 

+ JtT γi(グ(ァ) ,T) exp { -JtT 

r (φ・ (s) , s) ds} dァ|
(6.30) 

ωhere E; denotes the mαthematical expectαtion αlong dynam'ics (6.29). 

Proof: Applying Theorem 5.3 of Friedman (1975) to equations (6.9) and (6.10) 
results in solution (6.30). 口

The above solution technique is similar to one pr白ented by Cox and Ross 

(1976) for option pricing. They found an option price function of the underlying 

stock price by considering an expectational economy wi七h risk-neutral investors. 

At first sight , however, the two seem to be a little diHとrent from each other 

because risk-neutrality impli白 that factor risk premia，ん (t) ， must be equal to 
zero in the absence of arbitrage. The diHerence com田仕om the fact that factors 

are not specified as market prices here. If they were, the expected local rates of 
return on factor trading strategi白 must be equal to those on factors themselv白，

i. e. ， μt (t) = μi (t). As a r缶ult ， the risk-adjusted exp倒ed rat回 of return on 

factors would be red uced as 

μt (t) 一入t (t) = μt (t) _ {μt (t) -r (t)} == r (t) . 

In this case, the in凶terestじ-r悶at句e-det句e町r口I町凶T
adjusted factor dynamics (6.29) is equivalent to the risk-neutrality assumption 
Thus, the approach by Cox and Ross can be regarded as a specialωse of ours. 

Remark: Our αηαlysis has been limited to the cαse of n:o idiosyncratic factor. 
But Appendix A.2 shows that αII the αbove discussions ωη be extended straightｭ

forwardly to the geneml ωse tuith idiosyncmtic fiαctors ij， αs in Ross (1976, 
197η， the number of αssets， n, is αssumed to be large eηough for 仇vestors to 

divers'ify αωαy the idiosyncr，α tic r日k. In pαrticular， it proves thα t the sαme risk 

pricing equαtion αs (6. り αηdαsset p何cing formulαeαs (6.25) αnd (6.30) must 

fαpproximately) hold in that setting. The only difference is that in that ωse the 

i-th idiosyncfìαtic factor enters into functions αi ， ti ， αηd <゙t
. Needless to sαy， 

this does ηot meaηt加t idiosyncmtic flαctors have no inβueηce 0ηωset pバcing.
The exαct implication is that 仇e idiosyncT'lα tic risk does not exert any effect on 
the price levels. The expected trend of the idiosyncmtic flαctor dynamics does 

α:ffect the αsset p門ce through changing the expected income st何αmαηd bouηdαァu

payoff. 
14 It can easily be verified by using Ito's Lemma that the left hand side of (6.9) with φ 

replaced by φ ・ is equal to the expected return generated by hypotbetical dynamics (6.29) 
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6.5 Conclusion 

In this paper we have developed an arbitrage asset pricing model with diffusion 
factors and rational expectations. Using the di仔usion approach of the Black and 

Schol白 (1973) type in a general way, the APT of Ross (1976 , 1977) is extended 
to a general theory of arbitrage asset valuation. 

Our main discussion is summarized as follows. First of a11, defining sensitivｭ
ity coefficients by partial elasticiti回 of asset prices with r白pect to factors , one 
can reformulate the APT -type conditions in terms of asset price functions. The 

conditions assert that there must be a set of predictable factor price proce岱es

in the absence of free lunch回.

Secondly, th白e conditions reduce to partial differential equations with r争
spect to asset price functions. 

Finally, asset price functions , which are solutions of the differential equaｭ
tions , take two alternative forms depending on how risk-adjustment is designed. 
The first method of risk-adjustment is to define a discount rate as refiecting 

factors' risk.羽Te have shown that , in the absence of arbitrage, the discount 
rate is given by the intertemporal relative price of a trading strategy whose relｭ

ative price to each asset is a martingale, and that the resulting ぉset valuation 
formula consistently demonstrat白 the additive risk-adjusting proposed by Ruｭ

binstein (1976) and the martingale measure representation given by Harrison 

and Kreps (1979) and others. Even with discounting done at the risk-free interｭ

白t rate, risk-adjusting can also be carried out by taking expectations along some 
risk-adjusted factor dynamics. This is the second method of risk-adjusting. It 

has been pointed out that the risk-neutrality approach by Cox and Rωs (1976) 

ﾍs a special case of this method , and that if we additionally suppose that factors 
are market prices, then two approaches are equivalent. 

The r白ulting formulae of asset pricing have general applicability since the 

function forms of factor dynamics , payout flows , and terminal payoffs have been 
left unspecified in the model. 

6.6 Appendix for Chapter 6 

6.6.1 Appendix A.1: Proof of Proposition 1 

Here we prove that price function (6.25) is the solution ()f differential equation 

(6.9) (given the assumption that the solution uniquely exists). Let us define a 

random variable x (T) ， ァ ε [t ， TJ ， as 

x (T) = pt (T) exp { -x 仙/，' ，i(s) ぽp {--χ (s)} ds , 

whereχ (s) is given by (6.24). Then , if it 出 shown that under condition (6.9) 

X (T) is a ma出ngale ， and so x (t) = Et {x (T)} , it complet白 the proof becaus 

x (t) = pi (t) and Et {x (T)} is equal to the right hand side of (6.25) by conｭ

str凶tion. In the following we sha11 show Et {dx (T)} = 0 
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By Ito's Lemma, one obtains: 

dx (T) = exp ( -χ:) dpi _ pi exp (ーが dX + � exp (-X) dT 

+(1/2)Pt exp (一χ)(dχ)2- exp (-X)dχdPt
=仰(一χ) ~ dpi _ pidχ+ 市dT+ (ν2) pt (dχ)2 _ dχdPi} 

(6.31) 
Here dχωn be computed from de日比ion (6.24) as 

dχ(ァ) = (r + (1/2) 川-1入) dT+ 入'0- 1L dz. (6.32) 

Combining expressions (6.2) , (6.3) and (6.32) yields 

(dχ)2 =入'0- 1入dT，
dxdPt = P4Jφ入dT.

(6.33) 

Substituting equations (6.2) , (6.3) , (6.32) and (6.33) into (6.31) , and taking 
expectations at the initial time, we obtain , VTε [t ， T] , 

Eι't { ぬ州(ヤT)リ} = Etイ[叫州(←一χ幻) [(ον仰刊/ρ2幻)μtra叫弓φμ九
+P;Iφ(μ 一入) + p~ 一 rpt+ γi] dT] . 

It follows that if equilibrium condition (6.9) is satisfied, Et {dx (ァ)} = 0 holds. 
口

6.6.2 Appendix A.2: The Case with Idiosyncratic Factors 

This appendix briefty treats the case with asset idiosyncrasy. We first introduce 

asset idi缶yncrasy by replacing A2 in the text with the following two a田ump

tions. 

A7: Eαch αsset mαrket 'is αjJected by some idiosyncr，α tic fiα ctor αs well αs the 
common ones. We denote the fiαctor spec~βc to the i-th αsset (i E A) 出向 (t)

A8: The idios明cratic factors fo llow dφ'.LSio れ processes of the form: 

dεi (t) = εi(t) ηi(εi(t) ， t)dt+ εi(t) ム (εi(t) パ) dWi (t) , (6.34) 

ωhere ηi is the expected rate of change in εi ， 8i the diffusion coefficient， αηd Wi 
α standαrd Wierぽ process. Functions 'r}i (εi(t) ， t) αnd ム (εi(t) , t) αre supposed 
bounded. 刀l， ese fiαctors αreαssumed to be unrelαted to t:he common ones, i. e. , 
COVt (dεi(t) , d内 (t))=OVi εA αηd j = 1 ，・・・ ， k. 

Given the change in assumptions, we naturally rede目前 functions pt (t) , 
pt (T) ， αi (t) , and γi (t) as: 

pi (t) = pi ( ゆ (t) ,é i(t) , t) , pi (T) = 争i (ゆ (T) , �i(T)) , 
αi (t) = αi(ゆ (t) ム (t) ， t) ， 市 (t) = ìi(ゆ (t) ， ι (t) ， t). 

In the same way as in Section 6.2 , it can easily be seen that the dynamics 

of price pt (t) are d白C巾ed as 

dpi (t) = {αi (t) pi (t) 一乍 (t)} dt + ~よ (t) Jφ (t) 乞 (t) dz (t) 
+Pよ ( t) ι (t) 8i (t) d切i( t) , 
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where the expected change of the price is given by 

αi(t) pt (t) - γi(t) = p~ (t) 1φ (t) μ (t) 十月i (t) εi(t) ηi (t) + ptt (t) 

+(ゆ)trace {弘(t) 川)口(仙(の} + (ν刊‘é i (t) εi (t)2 Di (t)2 , 
(6.36) 

so that the return-generating process is written as 

{dpi (t) + 乍(t) dt} / pi (t) 一角 (t) dt = 勾1 (t) {d仇 (t) /仇 (t) - μ1 (t) dt} + 

…十 Pム (t) {d仇 (t) /仇 (t) 一向(t) dt} + p; i (t) {dεi (t) /εi(t) 一 ηi(t) dt} . 
(6.37) 

As shown by the last term on the right hand side of (6.37) , the process now 
includ白 innovations in the idiosyncratic factor. 

We finally set a well-diversification assumption according to the APT's spirit. 

A9: The number of αssets， n， 岱 large enough for 'l汎vestors to asymptotically 

diversify awα~y the idiosyncratic 楨sk. 

This permits us to apply the APT discussion to return-generating proc白S

(6.37). The result is: in the absence of asymptotic arbitrage, the linear equation 
(6.6) holds with a cross-sectional mean square error equal to zero, and it prices 
most of the assets correctly (see Huberman (1982) and Ingersoll (1984 , 1987). 

Corr白ponding to corollary 1, the partial differential equation can be derived 
by solving (6.36) for αi and substituting the result into APT condition (6.6): 

(1/2) trace ~弓φ (t) 1φ (t) n (t) 1φ (t) ~ + (1/2) p;山 (t) εi (t)2 Di (t)2 
+pよ (t) 1 c�'-(t) (μ (t) 一入 (t)) + ~よ(わ εi(t) ηi (t) + pti (t) + li (t) (6.38) 

= r (t) pt (t) Viε A. 

The effects of asset idiosyncrasy are shown by the second and fourth terms on 

the left hand side of (6.38). 
Equation (6.38) is solved in the form of formula (6.25) in just the same 

manner as in Subsection 6.4.1 in the text if by assumption A9 one neglects 

noise e百'ects on the discounting trading strategy. 

Finally, the same formula as equation (6.30) is obtained by applying Theorem 
5.3 of Friedman (1975) again on equation (6.38) and the terminal condition. 

However, in this case expectation operator E・ must be defined as one with 

respect to the ηon-αdjl川ed dynamics of the idiosyncratic factor (6.34) and the 

risk-adjt凶ed proc白S回 of the common factors (6.29). 
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Chapter 7 

Arbitrage Asset Pricing 

under Exchange Risk 

Abstract: This paper extends the APT to an international setting. Specifying 

a linear factor return-generating model in local currency terms, we show that 
the usual risk-diversification rule in the APT does not yield a riskless portfolio 
unless currency fluctuations obey the same factor model as asset returns. We 

then consider an arbitrage portfolio whose exchange risk is hedged by foreign 

riskless bonds. Under the r白ulting no-arbitrage conditions, the expected returns 
are not on the same hyperplane, unlike the closed-economy APT , unless they 
are adj usted by the cost of exchange risk hedging. 

JEL Classification Numbers: G12 , G11. 

Keywords: APT , exchange risk. 

7.1 Introduction 

In analyses of international economic phenomena , exchange risk is one of the 

mc日 important elements to be considered. This paper studi白 arbitrage asset 

pricing in an international setting and shows how the introduction of exchange 

risk changes the Arbitrage Pricing Theory (APT) for口mt

models by Ro回(1976 ， 1977) , Huberman (1982) , Ingersoll (1984) , and others. 
The extension of the APT to an international framework (IAPT) is successｭ

fully undertaken by Solnik (1983). He prov白 by straightforward application of 

the APT that, if the asset returns measured in an arbitrarily given numeraire. 

currency jointly follow a linear factor model , then , in the absence of arbitrage, 
the vector of expected returns in a given currency is spanned by the vector 
of on回 and factor loading vectors.1 But this direct applicability of the APT 

to an international setting is somewhat counterintuitive since it is natural to 

conjecture that exchange risk will introduce a new element into arbitrage activｭ

iti回. The key assumption in this puzzle is that the return-generating proc白S 1S 

1 The same cODclusion is reached by R08S and Walsh (1982). Levine (1989) generalizes 

Solnik's result in an inBationary model with purchasing power parity deviatioDs. See also 

Kleidon and PBeiderer (1983) for a discussion of the Solnik IAPT 
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specified in a numeraire. currency. It ωn easily be s閃n that under this speciｭ

fication the exchange risk of asset returns is automatically diversified when one 

constructs an arbitrage portfolio according to the rule used in the APT. This 

enabl白 Solnik to apply the closed-economy APT straightforwardly to internaｭ

tional asset pricing. 

Instead, we set up a linear factor return-generating proc回s in local currency 

terms in Section 7.2 to emphasize the e圧ect of exchange risk on international 

arbitrage asset pricing. We 日rst show that the usual risk-diversification rule 

in the APT does not yield a risk-free portfolio in this setting if exchange rate 

fluctuations do not have the same factor structure as asset returns. Our main 

analysis presents a way of constructing an arbitrage portfolio hedged against 

exchange risk and verifies that expected returns are not on the same hyperplane 

unless they are adjusted by the cost of exchange risk hedging. Given this result , 
we also clarify the arbitrage determination of covariances between a回et returns 

and exchange rate fluctuations. The results obtained are compared with Solnik's 

IAPT in Section 7.3. 

7.2 Arbitrage Asset Pricing with Exchange Risk 

Hedging 

7.2.1 A Linear Factor Model with Exchange Risk 

We consider a world with N countri田 indexed 1 to N. In each country, there 
exist one risky asset and one locally riskless national bond which are freely 

traded in perfect international capital markets. The risky assets, as well as 
the national bonds , are assumed to be denominated in their r田pective local 

currencies. Given this assumption , we specify the generating proc缶S of the risky 

asset returns as the familiar linear K-factor model in local currency terms: 

子;=ぺ + bi1fl + ・・・ + biKfK + ム (i = 1,' . " N) . (7.1 ) 

In the equation above，子i is the random return on the i-th country risky asset in 

terrns of the local currency, fi denotes its expected value, the ん valu白 (k = 1, 
, K) represent international common factors with zero means, bik denotes 

the sensitivity of return ぺ to fluctuations in factor k , and ﾋi is a nonsystematic 

risk component with zero mean , bounded variance, and E[ﾋi I ん 1 = 0 for a11 i 

and k.2 As usual in the APT , the number of risky assets N is assumed to be 

large enough to permit the law of large numbers to holdl.3 

We assume flexible foreign exchange rates and denote their random proc回ses

by the general form: 

可=可 +8: (t ， j=13 ・・ '， N) ， (7.2) 

where 昇 represents the random rate of app悶iation of country i's currency in 

terms of country j 's. Val匂ωa剖h悶 5巧:and 6:denote the expected and random pa巾

2The εi values can be correlated with each other. 
3 Since by assumption there is only one risky 回目t in each country, this means that the 

number of countries is large. If there are many risky as田ts in each country, we can easily 

consider an alternative world in which there are only a few countries without any change in 

our main r田ul凶 (below). This point will be discussed at the end ()f Section 7.3 
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of currency variation 再， respectively. By definition , E[ど] = 0 for all i and j 

Trivia11y, when i = j , s可j ? 可ι， and 8尽: a r陀e a11 equal tωO 犯加町r
Here, in contrぉt to Solnik (1983) , we do not assume that currency fiuctuｭ

ations have the same factor structure as equation (7.1). In order to explicitly 

demonstrate the implication of not making this assumption , consider risky asset 
returns from the viewpoint of a given currency，泊y currencyπ. If we define P! 
and Sf as the currency j prices of asset i (the 出ky asset of country i) and 

currency i , respectively, then the price of asset i measured in terms of currency 

ηis given by the law of one price as 庁=PtSi. Thus, by application of Ito's 
lemma , one can compute the currencyηreturn on the asset as:4 

行 =F;+57+Cov(F; ， S?)(t=l ，・ . ', N) , (7.3) 

where Cov( ・ 7 ・) denot回 covariance. Substitution of eq.uations (7.1) and (7.2) 
(where j = η) into (7.3) yields: 

ーー -:.n

子r = fr + bi1fl + ・・・ + biK f K + ﾋi + 8~. (i = 1γ ・・ ， N) ， (7.4) 

where the expected return fi is: 

行=弓 +5?+Cov(F;357). (7.5) 

The last term on the right hand side of equation (7.4) , 6~ ， represents the 
exchange risk for country η's investors. If this term were assumed to be charｭ
acterized by the same K-factor model as equation (7.1) , then by substituting it 
for Ï5~ in (7.4) , the asset returns measured in the numeraire currencyηcould 
be rewritten as being generated by the K -factor model as wel1.5 Thus , the 
usual APT (in a closed economy setting) could be applied to thatωse as in 

the Solnik model. Empirically, however , it might be difl�.cult to extract internaｭ

tional common factors simultaneously, demonstrating both the price variations 
of risky assets (e.g. , stocks) and currency fiuctuations while keeping residual or 
idiosyncratic risk small. This matters because, a鎚s sl 

and Ing炉町ers叫011 (19似84)川，an increase in idiosyncr州市k worsens the fit of the APT 

equations.6 Our formulation avoids this difficulty. 

In our setting, however , it is impossible to construct riskless portfolio in tl:!e 

same manner 出 the usual APT because the exchange ri:sk in equation (7.4), 8~. ， 
depends on the asset index i and , at the same time, is undiversifiable, unlike 
residual risk ﾋi. To see this, construct a portfolio from N risky ぉsets denoted 

by ω= (ω1 ，・・" WN)' with ωi being the inv白tment proportions , according to 
the usual rule: 

ω'b1 
、
l
l
t

〉

t
i
l
l

n

u

n

u

 

一
一

(7.6) 

ω'bK 

W'ﾋ:::. 0 、 (7.7) 

4Pollowing Solnik (1983) , we define a曲目 returns over a short interval of time and assume 

that the conditions required for Ito's calculus are met. See Roll and Ross (1980) and Ikeda 

(1991) for the continuous time APT 
5This c回e will be discussed explicitly in Section 7.3. 
6See Cho , Eun , and Senbet (1986) for empirical r白earch of the Solnik IAPT. 
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where bk = (blk γ. " bNk)' and S =(Slγ . ', SN)'. Then , the currencyηreturn on 
the portfolio can be computed from equations (7.4), (7.6) , and (7.7) as: 

ωfFπ = ω'fn + ω'b1λ+ ・・ ・ +ú.九KJK+ ω'S+ω'6η (7.8) 

=ω'rn+ ω'6ぺ
-::n .-::n -:n 

where fn = (子??・ 1q)f ， F=(叱・ . ',iN)', and 6" == (6~γ ・" 6~ ) '. Equation 
(7.8) reveals tl凶 thesimple hedging rule given by (7.6) and (7.7) do白 not yield a 

.-::n 
risk-free portfolio since the exchange risk w'6' would be left undiversified by this 
rule. The next subsection confronts this problem by considering an arbitrage 

portfolio which hedges against exchange risk by means of foreign lending and 

borrowing at locally riskless rates. 

7.2.2 Arbitrage Pricing of Hedged Assets 

Consider a portfolio of 2N assetけ=(九一 .， B2N )' ， proportion Bi (i = 1, "', N) 
of which is invested in risky asset i and proportion B N+i of which is inv田ted
in the national bond of country i. Based on the portfolio defined by equations 

(7.6) and (7.7) , we now specify portfolio B as: 

。i -ωi(t=l ， --vN) ， (7.9) 

。N+i ーωi(t=l ，・ . .,N) (7.10) 

The resulti時 bundle is an a出trage portfolio since 問uations (7.9) and (7.10) 

imply that investments in the risky assets are fully financed by holding the 

opposite positions of national bonds. 

At the same time the following two facts imply that portfolio B is riskless. 
First，ぉ can be seen from equations (7.6) , (7.7) , and (7.9) , the risk from commo~ 
factors fk and r白idual factors Si is diversified, and second, the investment in 
country i's risky asset is protected against exchange risk by opposite trading in 

the national bond of the same country. Explicitly, if p; denotes the currency 

j return on the national bond of country i (so that a11 of the pi valu田 are

deterrr山istic) ， return ゙i can be computed in the same way used to derive (7.3): 

万 =p;+5?+67(t=l ， --v N). 
、
、

t
s
'
'

'
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、

Thus , setting ゙ n = (戸??・ 1 九)' ， ρ= (ρi ， --JZ)f , and T=(5?? ・・ 5Xr) I, 
the currencyηreturn on portfolio B, f"B , reduces to: 

N N 

F;= 乞ofhZON+♂

= ωf子九一 ω'þn (by (7.9) and ('i'.10)) 

ω'(fn - p -sn). (by (7.8) and (7.11)) 

(7.12) 

This veri自信 that the return measured in currencyη i.s free from any risk. 7 

7Exchange risk hedging by holding locally riskless bonds is also proposed in utility-based 

International Asset Pricing Models (IAPM) , See, for example , Solnik (1973 , 1974), Stulz 
(1981) , and Adler and Dumas (1983) 
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Now that a riskless arbitrage portfolio h出 been obtained from the viewpoint 

of currency n , we can use the same algebraic argument as the APT to determine 

risk premia for country n 's inv白tors. For free lunch白 to be absent , the currency 
ηreturn on portfolio () must be equal to zero. Explicitly, from equation (7.12) , 
the following equation must be valid: 

ωf(F-p-5π) = O. (7.13) 

Given the portfolio formation rule of equation (7.6) , the condition of equation 
(7.13) requires that the expected net return vector (F -ρ-sn) be spanned by 
factor loading vectors bk (k = 1, . . " K) for some para.meters 入??・・・?入E

戸 -p- sr" =入~bl +.・・+入Ì< bK.

Note here that portfolio () retains the property of a riskless arbitrage portfolio 

even if its return is evaluated in any currency other than currencyη. It follows 

that the above discussion is applicable to excluding arbitrage opportunities in 

terms of any currency. This leads to our main r白ult:

Proposition: Suppose that risky αsset returns αnd currency βuctuαtions αre 

gener，αted by processes (7.1) αnd (7.2) , respectively. Then， ザ no αrbitrage oppoれ

tunities are left unexploited in terms of αny currency, there exist N sets of K 

scαlαrs， 入ト.. ，入金 ， such that : 

戸 -p- ♂=入ib 1 +・・・+入金bK (j = し -.3N〕. (7.14) 

The left hand side of (7.14) denotes the expected net returns in terms of 

currency j on risky assets whose exchange risk is hedged by foreign borrowing 

and lending.8 On the other hand, given the local currency specification of 
the return-generating process (7.1) , it is natural to regard bik as a m回sure
of local factor risk, i.e. , factor risk in local currency terms. Thus, the theorem 
asserts that, in each country or currency, there are K local factor risk p巾白3 入43
which determine the expected net returns on hedged assets. Put otherwise, the 
expected returns themselv白 are not on the same hyperplane, unlike the closedｭ
economy APT, unl出s they are adjusted by the cost of exchange risk hedging 

repr白ented by p + s] . 
Formally, if variables 再 ， pi， and 入~ are given , the ncトarbitrage conditions of 

equation (7.14) yield N2 expected returns in terms of di征百e悶
To se伐e the mechanism from another point of view , let us substitute equation 
(7.5) (setting η = j) for ぺ in the i-th row of (7.14). We obtain: 

子~ + Cov(子; ，可 )-ρ:= 入ibi1 + ・・・+入金 biK. (7.15) 

This provides an alternative expr白sion showing that N2 no-arbitrage condiｭ

tions yield N expected values of the risky assets' returns in terms of respective 

8To define the concept of exchange risk hedging used here more precisely, it is one in which 
the r田ulting exc白s return on an 槌set is a!fected by currency fl.uctuations only insofar as they 

a百ect the local currency return on the asset. Thus , these excess returns do not correspond to 
returns hedged against currency risk in a minimum-variance sense because the covariance of 

excess returns with currency fl.uctuations is not zero. 
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local currenci白 and N(N -1) covariances between the risky assets' returns and 

cuπency fiuctuations. 

The arbitrage determination of asset-currency covarianc白 can be shown as 

follows. First , take the difference between the no-arbitrage conditions given 
by equation (7.15) for two different currenci白， say currencies j and e. Next , 
note that Cov(行?の- Cov(行， 3D = Cov(行，ヰ). Then , we obtain our second 
proposition: 

Corollarγ: Suppose that the conditions in the theorem hold. Then, in the 
αbsence 01 αrbitrage， the covαT切nces between local CUírγency returns on 楨sky 

αsseお and exchα句e rate fiuctuαtions αre giveη by: 

Cov(子 7 弓)=入itb1+ ・・・+入ijbk (j ， t=1γ. " N) , (7.16) 

ωhere Cov(f , s~) =(Cov(fi，弓)，' . .， Cov(r~ ， 号))'αηd 入f= 入i 一入:

This shows that covariance vector Cov(子，弓) is al50 spanned by factor loadｭ

ings bk. But here the weights applied are risk price differences 入f A close look 

at the derivation reveal5 the reason for this. By definition, covariance Cov(子;， s;)
equals the di百erence between the expected net return on a hedged investment 

in 出抑制et i in terms of currency j ， ぺ+ Cov(子;?の-ρi ， and that in terms of 
currency e ， 行+Cov(fL 3D-p~. From equation (7 .14), on the other hand, it is 
international discrepanci缶 in factor risk prices that cause cross-currency differｭ

enc回 in expected net returns on hedged inv白tments. It follows that the assetｭ

currency covariance Cov(ぺ，弓) must be determined soωto precisely match the 
e汀'ect of cross-currency differenc白 in factor risk pric田 .

7.3 A Comparison with Solnik's IAPT 

To clarify the implications of our results, we finally compare our discussion with 
tl凶 of Solnik (1983). He spec泊es the return-generating process in a nu叩lme町ra引i陀
currenc句y which is a紅rb凶it廿ra紅n日ly ch仁侃路e叩n. As pointed out in Subsection 7.2.1 , his 
analysis can be replicated in our setting by additionally assuming that currency 

fiuctuations have the same factor structure as the asset returns given by equation 
ー n

(7.1). For example, let currency variation ム be generated by: 

8~ = ci1Jl +・・・ + ciKJK + 日 (t=l ,--vN1 t#η) ， (7.17) 

where cik denot白 the factor loading and Ji,i repr白ents an idiosyncratic risk 

component with zero mean , bounded variance, and E[Ji,i I ム]=O(k=l ， ・ .， K)
Then , equation (7.4) reduc白 to:

子f=ff+bじん+・・・ + biK 1 K + ﾋi' , (7.18) 

where b込 = bik + cik and ﾋi = ム+日.
This means that the returns in terms of numeraire. currencyηfollow a linear 

K-factor model, which is the situation Solnik suppos田. As he prov白， this factor 

structure ﾎs invariant to the currency chc問n if the same factor model as equation 
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(7.17) holds for a11 currenci白・ Applying the usual arbitrage argument to the 

model , we then obtain Solnik's result: 

戸 -41=π{同+・・・ + ~KLYK (j = 1,' . " N) , (7.19) 

where 1 is an N-dimensional vector of on民 the ぺ valu回 represent factor risk 

prices, and the b1c valu回 are factor loading vectors. Equation (7.19) shows that 

if expected returns are measured in the same currency, a11 of them are on the 
same hyperplane as in the ωse of the closed-economy APT despite the existence 

of exchange risk. 

Equation (7.18) (and so (7.17)) plays a key role in producing this result. 

In this setting, the factors fk also generate currency fiuctuations. Naturally, 
the factor loadings lY,.k (= bik + ~k) can be regarded as measures of total or 
composite factor risk , i.e. , factor risk in local currency terms plus exchange risk 
and parameter 吋 in (7.19) as the p巾白 oftotal factor r:isk including the price of 
exchange risk. In this sense, Solnik demonstrat白 international arbitrage pricing 

in terms of totα1 factor risk pric回.

In contrast , our model (in the previous section) considers a cぉe in which 

one cannot successfully extract common factors simultaneously generating asｭ

set returns and currency fluctuations. Our theorem avoids this difficulty by 

explaining arbitrage pricing of hedged securities in terms of local factor risk 

pnces. 

We can also derive Solnik's r白ult concerning asset-currency covariances from 

equation (7.19) in a way similar to that used to obtain (7.16):9 

Cov(-;;j ，弓 )=π{句+・ +dbic(j， t=137N) ， (720)

where Cov(戸 ， s~)=(Cov(ペ ， s{) ，. . .，Cov{f心的)' and 7r{e = ぺ- 7rk 
This shows that the covarianc田 between asset returns measured in a given 

currency, rather than r田pective local currenci白， and currency fluctuations are 

on the same hyperplane. Again , the r・白ult depends crucially on the specmcation 

of the return-generating process in terms of a numeraire. currency. In this 

ωse， factor loadings are measur白 of total factor risk , and therefore the set 
of K factor loadings m邸ures the risk of return variations (correlated with 

currency fluctuations) in numemire. currency terms. In contrast , according 
to the result in our corollary, if the return-generating proc白s is specified in 

local currency terms , arbitrage ensures a similar linear relation between the 

covariance of the local currency return on a risky asset with currency variations 

and factor loadings bik , which are measur回 of local factor risk. 
Our model can easily be extended to the case in which there is more than one 

risky asset denominated in each currency. Such an extension incurs the marginal 

cost of notational complexity (so that we do not treat this case explicitly) but 

yields the marginal benefit of making it po田ible ， in the absence of a locally 

riskl田s bond, to conduct the analysis using a zero beta portfolio constructed 

from risky assets of the same nationality. Although the results are essentially the 

9 As Solnik (1983) shows, returns on 10cally riskless bonds arE! a180 spanned in the same 
way 回 (7.19):

. i , =1 .1 , _1.1 , _1 .1 
ρj + sj = Pﾎ + πì cjl +・ ・ +πi< CjK'

This relation is used to derive equation (7.20). 
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same as pr白ented here, one additional r白ult is that , in this case, the returns on 
risky assets of the same nationality are, if they are large in number, spanned in 
the same way as in the usual APT. This result corr白ponds to the aforementioned 

r回ult of Solnik. This is not surprising because the return process of assets of 

the same nationality satis日es his a岱umption concerning asset returns. 

7.4 Conclusions 

This paper has pursued an international extension of the APT. 1n order to focus 

on the effect of exchange risk on arbitrage asset pricing, we have speci五ed a linear 

factor model in local currency terms (rather than numerai児 currency terrns). 

1n this setting, the usual risk-diversification rule in the APT do白 not yield a 

risk-free portfolio because the exchange risk of an asset is undiversifiable and at 

the same time varies depending on the nationality of the asset. Con仕onted with 

this problem , we have considered an arbitrage portfolio which hedg田 agai11st

exchange risk by means of foreign lending and borrowing at locally riskless rat白・

The resulting no-arbitrage conditions require that the expected net returns 011 

risky assets w hose exchange risk is covered by foreign borrowing and lending 

be determined as linear combinations of factor loadings. This means that the 

expected returns themselves are not on the same hyperplane unl田s they are 

adjusted by the cost of exchange risk hedging. 

145 

、



Bibliography 

[1] Ad1er , Michae1 and Bernard Dumas, 1983 , Internationa1 portfolio choice 
and corporation 日nance: A syn凶l比the白siおs ， The Journa1 of Finance 38, 925ι-984. 

[ロ問2司]Cαh加1O， D. Cαhi吋山山in凶1汁巾hy刊un時g， C白heω01 S. Eun , and Len口即I
tion凶凶a1 arbitrage p戸rici加ng t凶heωorげy: An empirical inv 白tigation, The Journal of 
Finance 41 , 313-329. 

[3] H山erman ， Gur, 1982, A simple approach to arbitrage pricing theory, Jourｭ
nal of Economic Theory 28 , 183・ 19 1.

[4] Ikeda, Shinsuke, 1991 , The continuous-time APT with diffusion factors 

and rationa1 expectations: A synthesis , The Economic Studies Quarterly 
42 , 124-138. 

[5J Ingersoll , J r., Jonathan E. , 1984, Some r白ults in the theory of arbitrage 

pricing, The Journal of Finance 39 , 1021-1039. 

[6] Kleidon , Allan W. and Pau1 Pfleiderer, 1983, Discussion, The Journal of 
Finance 38 , 470-472. 

[7] Levine, Ro白， 1989 , An international arbitrage pricing model with PPP 

deviations , Economic Inquiry 27, 587-599. 

[8] Roll , Richard and Stephen A. Ro回， 1980, An empirical inv田tigation of the 

arbitrage pricing theory, The Journal of Finance 3E; , 1073-1103. 

[9] Ross , Stephen A. , 1976 , The arbitrage thωry of capital asset pricing, Jourｭ
nal of Economic Theory 13 , 341・360.

[10] Ross , Stephen A. , 1977, Return , risk , and arbitrage, in 1. Friend and J. 
Bicksler, eds.: Risk and Return in Finance (Ballinger, Cambridge, MA) 

[11] Ross , Stephen A. and Michael M. Walsh , 1982, A simple approach to the 

pricing of risky assets with uncertain exchange rates, Research in Internaｭ
tional Business and Finance 3, 39-54. 

[12] Solnik, Bruno H. , 1973, European Capital Markets (D.C. Heath, Lexingｭ
ton 

[13] Solnik, Bruno H. , 1974, An equilibrium model of the international capital 

market , Journal of Economic Theory 8, 500-524. 

[14] Sol叫 ， Bruno H. , 1983, International arbitrage pric:ing theory, The Journal 
of Finance 38, 449-457. 

146 

ー一一「



1151 Stulz, Ren6M. , 19811A model of international asset pricing, Journal of 

Financial Economics 9, 383-406. 

147 

ーー一ーー、



Chapter 8 

An Intertemporal C~apital 

Asset Pricing ModE~1 with 

Stochastic Differential 
Utility 

Abstract: Intertemporalωpital asset pricing and the stochastic properti田 of

optimal portfolicぉ and consumption are examined in a continuous-time recurｭ

sive utility (stochastic di庄'erential utility) model with multiple state variables 

dynamically affecting inv白tment opportunities. Although Merton-Richard's 

multi-beta inte巾mporal CAPM (ICAPM) relationships are valid , they do not 
collapse to the consumption-based single beta CAPM (CCAPM). Instead, sevｭ
eral multi-beta versions of CCAPM are proposed in both heterogeneous and 

homogeneous agents settings. The multiple correlation coefficient of the individｭ

ual agent 's optimal consumption with the aggregate consumption and multiple 

state variables is unity. 

JEL Classification Numbers: G12 , G11. 

Keywords: Asset pricing, risk premium, consumption beta, stochastic differｭ
ential utility, multi-fund separation. 

8.1 Introduction 

This paper examin白 intertemporal capital asset pricing and the stochastic propｭ

erties of optimal portfolio-consumption decisions in a continuous-time exchange 
economy in which the lifetime utility of households is repr白ented by tim争

nonadditive recursive preferences. Extending the traditional static capital asset 
pricing model (CAPM) [e.g. , Sharpe (1964) and Lintr町 (1965)] to a dynamic 

model with stochastic inv白tment oppo山niti白， Merton (1973) and Richard 

(1979) constructed an intertempo凶 capital asset pricing model (ICAPM). They 

proved: (i) the multi-beta linear structure in risk premium determination; and 

(ii) the multi-fund separation theorem. Although they consider asset pricing 
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from the viewpoint of rational consumption choice, the direct and close relaｭ
tionship between the consumption rate and asset pricing was not clearly underｭ

stood until Bre他山 (1979) work appeared. Defining a risk meぉure by the 

'consumption beta ,' which is given as the covariance between the asset return 
and chang白 in aggregate consumption divided by the variance of aggregate conｭ

sumption chang白， he shows that the multi-beta linear structure of equilibrium 

risk premia can be represented in terms of a single beta , i.e. , the consumption 
beta. 

These intertemporal versions of CAPM , however , have been criticized for 
both theoretical and empirical reasons. First, th白e analyses are based on 

the restrictive assumption that inv回tors' preferences have tim• additive von 
Neumann-Morgenstern repr白entations. As is well known [e.g ・， Kreps and Porｭ

teus (1978) and Epstein and Zin (1989) ], this utility function cannot disentangle 
attitud白 towards risk and towards time. Second, the ICAPMs pr田ented above 

seem to be inconsistent with empirical data , as pointed out by Mehra and 
Prescott (1985) , Mankiw and Shapiro (1986) , Breeden , Gibbons, and Litzenｭ
berger (1989) , and Hansen and Jagannathan (1991) 

Based on the theory of stochastic differential utility (SDU) , which is develｭ
oped by Duffie and Epstein (1992a, 1992b) and Duffie and Lions (1992) as a 

continuous-time version of non-separable recursive utility,l this paper reexamｭ
in白 equilibrium intertemporal capital asset pricing and the stochastic properties 

of optimal portfoliかconsumption decisions.2 Specifically, 1 do that by applying 

SDU to the Breeden (1979)-Richard (1979) model with X-dimensional Brownｭ

ian information continuously affecting inv白tment opportunities. To generalize 

ICAPM by using recursive utility, the SDU is useful and tractable in two points: 

First , dynamic optimality conditions can be easily derived using a modified Bellｭ

man equation developed by Duffie and Epstein (1992a, 1992b); and secondly, 
the SDU formulation retains the local linear structure of the continuous time 

model. 

The main results obtained in this exercise can be summarized as folIows. 

First, under any preference structures defined by SDU, the ICAPM relationｭ

ships derived by Merlon (1973) and Richard (1979) , i.e. , the X + 2 fund sepaｭ

ration theorem and the multi-beta structure, are still valid. Secondly, however , 
the multi-beta structure of risk premia cannot be reduced to the single合beta

representation in terms of aggregate consumption. That is , Breeden 's CCAPM 

does not hold in time-nonadditive recursive utility models. Thirdly, if individｭ
uals' preferenc白 are heterogeneous , risk premia cannot be generally given as 
a linear combination of the market and consumption betas , in contrast to the 
twcトbeta CAPM developed by Epstein and Zin (1989) and Giovannini and Weil 

1 An underlying formulation of recursive utility i 日 developed by Epstein and Zin (1989) 
within a discrete time framework. See also Svensson (1989) and Ma (1993). Svensson develops 
a continuous-ti皿e extension of time-nonadditive utility, limiting his attention to the case 
of constant elasticity of intertemporal substitution and constant relative risk aversion. Ma 
exa皿in四 the equilibrium property of a recursive-utility model with heterogeneous agents. 

21 can also refer to studies in which dynamic asset pricing is exa皿ined under an alternative 
generalized class of preferenc四 habit persistent preferenc田. See , for example, Sundaresan 
(1989 ), Constantinid田 (1990) ， Detemple and Zapatero (1991) , and Ingersoll (1992). 1n these 
articles past con自umption directly affects current utility, while in recursive utility models , with 
which 1 am concerned here, the consumption history affects currel1t utility only by changing 
current wealth. Moreover , in contrast to recursive preferences, habit formatioD models assume 
von Neumann-Morgenstern type utility, which cannot distinguish attitudes towards risk from 
attitud田 towards time. 
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(1989). Finally, the multiple correlation coefficient of the individual's optimal 
consumption with the aggregate consumption and X state variables is unity. 

The paper is structur吋 as follows. 1n Section 8.2 a model of perfect capital 

markets which is characterized by stochastic inv回tment opportuniti白 and by 

the SDU is pr白ented. It is shown that the standard Merton-Richard ICAPM is 

valid even under the time-nonadditive recursive utility represented by the SDU. 

Section 8.3 examines equilibrium risk premium determination 仕om the viewｭ

point of aggregate consumption and the market portfolio, developing a multiｭ

factor CCAPM. Section 8.4 explores the stochastic properti白 of optimal conｭ

sumption. Section 8.5 contains conclusions. 

8.2 The Model 

Let us extend the Breeden (1979)-Richard (1979) model of intertempora1 capｭ

ital asset pricing by speci今ing inv田tors' attitud田 towards risk and time by 

means of stochastic differe凶a1 utility (SDU): Consider an exchange economy 

popu1ated with K certain-lived rational investors who maximize lifetime utilｭ
ity from consumption streams. Underlying the model is a comp1ete probabili七y

space (n , F , P) where n is the set of states of nature , F' is the σ-field of events , 
and P is a probabi1ity measure on (n, F). An A-dimensional standard Wiener 

proc白鳥ら， and an X -dimensional standard Wiener process , Zx , are defined on 
(n, F , P) . The fiow of information is d田cribed by the 日il ltration {Ft} generated 
by these multi-dimensional standard Wiener process回.

There is a single perishable consumption good, which serv白 as the nuｭ

meraire. Consumers can trade (A + 1) assets: A risky capital assets and one 
instantaneously riskless asset. 1ndividual k has w伺lth ~Vk (t) at time t , continｭ
uously allocating it to the consumption good and the assets. These assets are 

traded in perfect competitive markets that are frictionless. Trading is possible 
on1y at equi1ibrium pric白・ The capital ぉsets yield stochastic rat白 of return (or 

simply, stochastic returns) , whose probabi1ity distributions depend on the state 
of the economy. The state of the economy is described by an X句dimensional

Markovian vector proc白s.

Given this basic structure, 1 characterize inv回tment opportunities with the 
following stochastic di百'erential equation for risky-asset prices:3 

dP = {Iaμα (x ， t) -Da (x , t)} dt + 1，ασα( :Jr:， t) dzα ， (8.1) 

where P repr白ents the (A x 1) vector of the pric白 of risky assets; 1 a is an 

(A x A) diagonal matrix whose 日h diagonal element is the price of the i-th 

巾ky as叫 μαis the (A x 1) vector of expected 則自 of total return on risky 

assets; 九 is the (A x 1) vector of payout fiows; and σαis the (A x A) matrix of 
diffusion coefficients of return p1'ocess白.

Concerning (8.1) ，∞te first that the stochastic vector process of total returns , 
which are the sum of capital gains dP plus income gains Dadt , is given by 

Iaμαdt+ んσαdzαSecondly， fo1' a solution to (8.1) to exist, it is sufficient that 
functions μαand σαsatisfy the regularity conditions known as the Lipschitz 

3 For detailed information on stochastic differential equations，日e ， for example , Arnold 
(1973) 
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condition and the growth condition.4 This condition is assumed to be satisfied 

here. 1 also make the same assumption in (8.2) , introdllced jllst be1ow. 
The investment opportuniti白 specified above are conditioned by an Xｭ

dimensional Markov state process x , which affects at each instant the mean 
return vectorμαand the diffusion coefficient matrix σα.. The stochastic proc白S

of x is given by: 
dx= η:z; (x ,t) dt + σ:z; (x , t) dz :z;, (8.2) 

where 7]:z; is the (X x 1) vector of meanSj and σ:z; the (X x X) matrix of diffusion 
coefficients. 

The instantaneous1y (or 10cally) 山k1白s asset yie1ds the risk-free rate, r 

This inter缶t rate also depends on state variab1e vector x , and hence fiuctuates 
over time random1y. 

Given the investment opportunities , an investor , say the k-th investor , chooses 
his consumption proc白鳥 ck ， and portfo1io allocation so as to maximize his lifeｭ
time utility, Vk (t). The lifetime utility is specified by the SDU. It is defined as 
a solution to the following recursive equation: 
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(8.3) 

where Tk > 0 is investor k's time of death ,5 and Et 也 the expectation operator 

conditiona1 on the state of the economy at time t. fk (c; ， にた) denot回 an agｭ

gregator function which eva1uates the time-s consumption rate , depending on 
1ifetime utility at that time, Vk (s).6 It is assumed that this function is concave 

and strictly increasing in consumption. It is a1so assllmed that the aggregator 
function f is continuous, Lipschitz in uti1ity, and satis自信 a growth condition 
in consumption. These regu1arity conditions ensure the existence of an SDU 
proc田s satisfying (8.3).7 

Note here that the SDU presented above contains a.s specia1 cas田 familiar

classes of preference structures. In particular, if the aggregator function is given 
by: 

fk = uk (ck) _ βkVk and hence f:v = 0, 

where βis a strictly positive constant, and the subscripts denote partia1 derivｭ
ativ回， then , the recursive uti1ity function given by (8.~3) reduces to the tim争

4 See Arnold (1973 , p. 105). 

5 For simplicity, time horizon Tk is assumed finite here , as in Breeden (1979) , Merton (1973) , 
and Du伍e and Epstein (1992b). By assuming some additional technical condition, the utility 
representation given by (8.3) obtain白 also in the c祖e of infinite time horizon Tk →∞・ See
Duffie and Epstein (1992a , Appendix C). 

61n Duffie and Epstein (1992a, b) , the SDU is primitively defined by a pair of aggregator 

functions , one of which determines the degree of intertemporal substitution of consumption , 
and the other of which denotes a local measure of risk aversion. As proven there, this primitive 
utility can be represented in terms of one normalized aggregator after a simplifying change of 

variables. 1n (3) , function J denotes this normalized a邸regator

7 See theo日m 1 of Duffie and Epstein (1992a , p. 366). 

151 



additive von Neumann・Morgenstern utility function ,8 

い日

Letting wk denote the (A x 1) vector of portfolio proportions inv田ted in 
A 

出ky assets and ぅ hence， 1 - L バ denote the inv白tment proportion of the 
α=1 

riskless asset, the budget constraint for each inv白tor is gi ven by: 

川= {wk' (μα 一円)Wk +川 +yk _ ck} dt +山川九 (8.4) 

where L is the vector of ones and yk denotes labor income, the proc出s of which 

is exogenously given in this paper. 

Let Jk (Wk , x , t) be the maximum lifetime utility 山at is attainable under 

given W k , x , t , and let nij (i , j = α ， x) be instantaneous variance-covariance 
matrices. From Duffie and Ep批in (1992a)'s proposition 9, controls ~ (wk, x , t) 
and ωk (Wk, x , t) give the optimal consumption-and portfolio-decision if they 

solve the following modi日ed Bellman equation subject to constraint (8.4): 

where: 

sup DJk (vvk, x , t) + Jk {ck, Jk (Wk , :Z;, t)} = 0, 
(ck ,w k ) 

DJk (Wk, x , t) =々十川wk' (J..La -TL) Wk +州 +yk _ ck} + どηz
+~Wk nααwk (wげ Jゐw + wk WknaxJ:w + ~nxxJ:x. 

Assume the interior optimum. Then the first-order conditions are given by: 

J: (c¥ Jk) = J~ (W\x ,t) , 

(μ。 -n)J九 + naawkWkJおw+ naxJ:w = 0, 

the latter of which can be solved for the asset demand: 

J14rk=QJJ(μα-n) (-J品/J~w) -n;;:a1nax (どw/Jゐw) . 

(8.5) 

(8.6) 

(8.7) 

Note that the aggregator function Jk(ck , V k ), which speci目白 the intertemｭ

poral recursive structure of utility, does not directly appear in (8.6) or (8.7) 
8 For another special case , let βk be a function of consumption , 

fk =uk (é)- βk (ck) Vk 

The resulting utility function is the one of the Uzawa type. The Kreps-Porteus (1978) utility 

function is obtained by setting: 

f (c, V) = !!._ 
P 

(c)ρ- (αV)pj白
, 0 美 p 5: 1 ， β 三 0 ， α 5: 1 

v(pjα-1) 

where superscript k is suppressed;ρrepr田ents the elasticity of in1tertemporal substitution in 

consumption; and αdenotes a parameter of risk aversion. This Kreps-Porteus utijity do田 not

satisfy the Lipschitz condition which is a part of a su伍cient condi tion for the existence of an 

SDU process. Given the Brownian information structure , however , the SDU can be shown to 

exisも uniquely. See Du伍e and Epstein (1992a , p. 367). 
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Indeed, it could be seen that , given the value function , the conditions for optiｭ
mal portfolios, (8.6) or (8.7)，脱出sentially identical to those which are derived 

in the Merton (1973)-Richard (1979) ICAPM with the standard timかadditive
von Neumann-Morgenstern utility. As might be supposed, their ICAPM relaｭ

tionships are va1id a1so in the pr白ent recursive utility model. 

Proposition 1 (validity of the Merton-Richard ICAPM): For αηy preference 
structures defined by SDU in 仰の， the NIerton-Richard ICAPM remains vαlid 
in the following tωo senses: (i) In 句ωlibパum each investor ωn choose their 

optimal po付)olios from (X + 2) funds, i.e. , the instαη句neously riskless αsset， 
the mαrket po付)olio (αggregα te wealth) ， αnd the X hedging portfolioSi・ 9α凶作り
equilibrium risk premiα of any risky αssets have the lineαr multi-betα structure ， 

μα - rl- = ゚aM (μM -r) + βαx (μx-- rL) ， (8.8) 

ωhere μM denotes the expected return on the market portfolio; J.Lx is the (X x 1) 
vector of the expected 問turns on 仇ε hedging po付)olios;lO αnd the elements of 

(A x 1) vector βαM and (A x X) mαt巾 ßax are multiple-regression betαs of A 

何sky αsseお oη the mαrket αnd the hedging portfolios respectively. 

Note that this proposition does not imp1y the irre1evance of the recursive 

structure of utility to risk premium determination. Preference structur白 a庄ect

the maximum value proc白s J k, which determines the risk premia of the (X + 1) 
basis securiti白 which appear on the right hand side of (8.8). 

8.3 Aggregate Consumption, the Market Portｭ
folio, and Capital Asset Pric:ing 

8.3.1 Aggregate Consumption and Capiital Asset Pricing 

Let us now reconsider capital asset pricing pr白ented above from the viewpoint 

of the aggregate consumption 同e. As proven by Breeden (1979) , given the von 
Neumann-Morgenstern utility function , the mu1ti-beta structure of risk premia 
as in (8.8) reduces to a sing1かbeta repr田entation w here the beta coefficient is 

defined in terms of the covariance with chang白 in the aggregate consumption 

rate, i.e ., the consumption beta. The same proposition is, however , not valid in 
the pr白ent mode1 with non-separab1e recursive utility, as 1 shall now show. 

From (8.6) , risk premia must satisfy: 

μα - rl- = OaWIc (-J九W/J~) + 九x (-J:~w/J九) , (8.9) 

9To be precise , prop08ition (i) in proposition 1 is comp08ed of two statements: Tbe f�st 

one is tbe multi-fund separation theorem. It states tbat tbere exist X + 2 mutual funds 
eacb composition of wbicb does not depend on investor自， preferenc国自ucb tbat any optimal 

portfoli08 can be cbosen from tbese funds. Tbis prop08ition is concerned witb subjective 

opti皿 ality ， but not witb market equilibrium. Tbe second statement is tbat equilibrium returns 

on the market portfolio are linearly independent of returns on X bedging portfolios so that the 

market portfolio , togetber witb tbe X bedging portfolios and tbe riskless asset , can comprise 
tbe X + 2 mutual funds. 

10 Return vector μx is not identical witb tbe drift v配 tor of x , T} :c , unless tbe state variables 
are pric回 of marketed as田ts.
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where 0αWk deno岡山 (A x 1) vector of covarianc白 between asset returns 

and chang白 in individual k's wealth , dWk, i. e・， OaWI¥: = OaawkWk. In order 
to rewrite this equation in terms of the covariances of returns with chang缶 III

consumption, note from (8.5) that agent k's optimal consumption can be taken 
ぉ a function of W k , x , and t; cf = cf (W k , x , t). Applying Ito's Lemma to this 

function , 1 obtain the vector of covariances between asset returns and changes 

in agent k's consumption rate, 0αCk' as: 

OaCk = OaWkC~ + OaxC~ ， 

Solve this equation for OaWk, and substitute the r白ult into (8.9). Then , after 
some manipulation, 1 can obtain 

H
k (μα 一川 =0αω + OaxL~ ， 

where Hkand L~ are given by: 

H
k =-cιJゐ/J九W ，

L:=cιJ:W / Jfvw -c~. 

(8.10) 

(8.11) 

(8.12) 

Equation (8.10) can be aggregated over k. Letting C denote the aggregate 

consumption rate: C = Lk ck , 1 obtain 

μα - � = naC (1/ H) + nax (Lx/1f) , (8.13) 

where H = LkHk and Lx =.2ごKLt.
In equation (8.13) , equilibrium risk premia are expr回sed not only in terms 

of covarianc白 between asset returns and chang白 in the aggregate consumption 

rate but also in terms of covarianc白 between a回et returns and chang白 in state 

variables. As can be seen from (8.13) , the Breeden-type singl争beta CCAPM 

holds valid only if Lx equals zero. 1 can prove that the validity of th出 condition

crucially depends on whether or not f;v equals zero; that is, whether or not the 
utility function is time-additive. 

Proposition 2 (consumption b仰sαηd risk premia): 

。) The multi-betα ICAPM given by (8.8) reduces to the single-betα CCAP!Vf 
if and only ザ f;v = 0 so that the utility function お of the time-additive type.11 

例 Suppose that fι -:P O. Then， ザ the vαriance-covαriance mαt巾 of the 
aggregαte consumption growth mte αnd changes in s臼te vαriables， n1n C ,x , has 
full rank， αnd ザ ωpitα1 markets αre complete, equilibrium risk premia αre deｭ

te門nined by 仇e following multi-betα version of the CCAPM: 

μα - ïL =()αC(μC -r) + ()ax (μx -Tl.) , (8.14) 

ω九ere μC denotes the expected retum on a portfolio which is perfectly corナelαted

with chαnges in the αggregαte consumption. 。αcαnd ()αzαre multiple-regression 

betαS on retums on the consumption po付folio αnd the X hedging portfolios. 

llThe invalidity of the single-beta CCAPM has been verified in. a more specific context by 

Bergman (1985). 
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Proof: (i) From (8.13) , the single consumption-beta CCAPM remains valid if 

and only if Lx (=玄k L~) = O. Recalling that ck = ck (-VV k , x , t) , differentiate 
both sid田 of (8.5) with respect to x to obtain: 

J:w=fLct+ffvJ: 

Substitution of this into (8.12) yields: 

ば = f:v (cι J; -c~J九) / Jtvw 

This equation implies that L~ equals zero if and only if f:v equals zero since 
今J; -c~Jtv is not identically zero. This complet白 the proof of (i) of propか
sition 1. 

(ii) Suppose that f:v =/:. O. If capital markets are complete, one can conｭ
struct the X hedging portfolios and the consumption portfolio returns of which 

are perfectly and positively correlated with the rate of aggregate consumption 

growth. 針。m (8.13) , these mimicking portfolios must satisfy: 
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If the variance-covariance matrix n1n C ,x hぉ full rank , this equation can be 
solved for (C / H , Lx/ H) . Substitution of the result into (8.13) yields (8.14). 口

This r白ult can be intuitively understood by recalling the marginal utility 

pricing rule: As well known ,12 the equilibrium risk premium of a risky asset 

must be determined as equal to (minus) the covariance between its return and 

the next instant marginal utility of each agent. lndeed, a close look at (8.9) 

reveals that: 

μα- n = -COVt (dJ品/Jι ， IJ1dP) ， (8.15) 

where COVt (.γ) denotes 七he (A x 1) vector of the covariance per unit of time 

conditional on time-t information Ft ・ ln the model of stochastic investment 

opportuniti民 the indirect marginal utility J九 depends on the wealth and state 

variables. Given the local linear structure of the model , this produc白 the

Merton-Richard type multi-beta ICAPM. On the other hand, from the 日 rst

order condition for optimal consumption, the J品 must 問ual the direct marginal 
utility, which depends only on the consumption rate under the time-additive 
von Neumann-Morgenstern utility function. This produces Breeden's single 

consumption-beta representation of the CCAPM. ln contrast , in the pr白ent

SDU model, the direct marginal utility defir凶 by f: depends on the indirect 

utility Jk (W k , x , t) and the current consumption rate ♂， where Wk ωn be 
eliminated from this relation by using first order condition (8.5). Consequently, 
the direct marginal utility is a function of consumption and state variabl白・ This
r白ults in the multi-beta CCAPM of (8.14).13 ,14 

12 See, for example, Lucas (1978) and Cox , lngersoll , and Ross (1985) 
13 From these discussions it is easy to see that the multi-beta CCAPM given by (8.14) can be 

obtained even by assu皿 ing time-additive von Neumann-Morgenstern utility if instantaneous 

utility is specified 剖 state-dependent: u.k = u.k (c k , x). However, this utility function cannot 
disentangle preferences toward risk and time. 

14 Given equation (8.15) , it is easy to show that in a represenltative-agent economy equiｭ

librium price Pi must also satisfy the same partial difIerential equation 日 derived by Cox , 
I時ersoll ， and R08S (1985) from a separable von Neumann ・ Morger渇tern utility model 
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8.3.2 Homothetic Preferences and a Multi-Beta CCAPM 
in a Representative-Agent Econorny 

As is shown above , the multi-beta ICAPM does not reduce to the single beta 

CCAPM under nonseparable recursive utility, reflecting the fact that aggregate 
consumption do白 not play a key role as a sufficient statistic in asset pricing 

without the von Neumann-Morgenstern expected utility. By assuming homか

geneous preferenc白 and hence a repr田entative agent economy, however, the 
multi-beta structure given by (8.14)αn be rewritten in a simpler and more 

tractable form. 

Following Duffie and Epstein (1992b) , suppose that the preferenc田 are hか
mothetic and the value function J is homogeneous in that it is expr田sed as 

J(W,x ,t) = j (x ,t). W'Y， γ> 0, (8.16) 

w here suffix k is su ppr田sed because of the homogeneous-agent assumption. 

Then 1 have J = W Jw/γ ， implying that the value function solely depends 

on wealth and the marginal utility. From this relationship and the first order 

condition (8.5) , the marginal 凶lity， J w , is a function of c and W alone: Jw = 

ψ (c ， W). It follows from the marginal utility pricing rule, (8.15) , that any 
risk premia are determined by covariances of returns with consumption and 

those with wealth (i.e. , with the market portfolio in the pr白ent setting). It 
is straightforward to derive from this observation D¥ 
twoか-beta CCAPM:戸15

μ。 -1'L = 入αC(μC -1') + 入αM(μM --1') , (8.17) 

w here the elements of the vectors 入αC and 入αM denote multiple-regr田sion betas 

on returns on the consumption portfolio and returns on the market portfolio.16 

The above two-beta structure is obtained under homothetic preference (8.16) 

In order to weaken this assumption, consider instead a non-homothetic preferｭ

ence given by: 

J (W, x , t) = j (Xl , x2, t) . W'Y + g (Xl , t) ， γ> 0, (8.18) 

where Xi (i = 1,2) are (Xi x 1) vectors, where X1 + X2 = X , satisfying x' = 

(Xl' ,X2') . Then 1 have J = W (Jw -g) /γ + g. Substituting this into the first 
order condition (8.5) , it is seen that indirect marginal 凶lity Jw is a function 

of c, W , and x1
: Jw = ゆ (c ， W , x1 

). Finally, s山山巾 this function into the 

marginal utility pricing rule (8.15) to obtain the fol1owing: 

Proposition 3: Consider the representαtive αgent economy with the vαlue funcｭ

tioη given by (8.1り Then 句ωlibrium 巾k p1'emia α陀 given by the (X1 + 2)ｭ
betα CCAPM: 

μα -TL = χαC(μC -T) + χαM(μM -T) + χαXl (μXl - 1'L) , 

wlげe the elemer山 o f vectors XaC , χ α M , α η d χ α x1 der;ηLω川ot白e m1匂叫L

betαωs 0η retωurns 0ηt仇hεCωorηns凶δ卯umpt“的tωOηP仰O付101iωtω0， the mαrket po付10lio ， αnd the X1 

hedging po付10lios.

15The two-beta CCAPM w回 first proposed in Ma出iw and Shapiro (1986)'日 empirical work 

withou も any theoretical reasoning. Its theoretical formulation is first given by Epstein and 

Zin (1989) and Giovan凶ni and Weil (1989) in discrete time models with homogeneous agents. 
161 can show that the twcトbeta CCAPM , given by (8 .17) , entails the absence of preference 

differentials among investors. 
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8.4 Stochastic Properties of Optimal Consumpｭ

tion 

Let us examine the relationship between the aggregate consumption rate and 

each individual's consumption rate. Concerning this point , Breeden (1979) 
prov白 a positive perfect correlation between the two consumption rat田. In 

the SDU model, however, the same relationship is not valid and what is proven 

is just the following. 

By the multi-fund separation theorem, given in proposition 1, the optimal 
portfolio can be taken as being constructed from independent (X + 2) portfolios , 
say the consumption portfolio (whose returns duplicate changes in the aggregate 

consumption C) , the X hedging portfolios, and the riskless asset. Thus random 
changes in Wk are perfectly multiple-correlated with changes in C and x: 

corrt { dWt
k , (dCt , dxt)} = 1. (8.19) 

On the other hand , from (10) , ck is a function of W k , x and t: cf = ck (W k , x , t) , 
so that local chang白 in ck are perfectly multiple correlated with (W k , x): 

corrt {dイ ， (dWt\dxt)} = 1. (8.20) 

Combining (8.19) and (8.20) yields the following: 

Proposition 4 (individuαlαgent's coη.sumption αnd αggregαte cωorωι凶g引umptiωtωO吋
Suppose t仇hαωt cωαpμtωlmηZαT伐ketおSαre cωomplete. Then chαnges in eαch individuαl's 

optimal consumption rαte， cf ， αre perfectly multiple-co 'Tァelated with chαηges zn 
the αggregαte consumptioηTαte απd r万turns 0η the hedging po付folios:

corrt {dck , (dC, dx)} = 1. 

As proven by Breeden and Litzenberger (1978) , one can construct the opti-
mal sharing rule in complete markets with time-additive von Neumann-Morgenstern 
utility. Each individual's consumption rate is repr回ented by an increasing funcｭ

tion of aggregate consumption alone. This results in perfect correlation between 

dC and dck. Proposition 2 implies that with nonseparable recursive utility, 1 

can no longer construct such a simple sharing rule. Hence, cf is a function of x 

as well as of C, so that individual agents' consumption rat白 are related to the 

aggregate consumption rate, depending on the state of nature. 

8.5 Conclusions 

In a model with SDU, 1 have reexamined intertemporal capital asset pricing 

and the stochastic properties of optimal consumption-portfolio decisions unｭ

der a generalized class of preference str凶t町田. As in Breeden (1979)'s and 

Richard (1979)'s articles , the model used is characterized by Brownian informaｭ
tion which continuously affects investment opportuniti回. The results obtained 

are as follows. First, under any preference structur白 given by SDU, the ICAPM 

relationships which Merton (1973) and Richard (1979) have derived, i.e. , the 
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equilibrium X + 2 fund separation theorem and the multi-beta structure , are 
still valid. 

Secondly, however, the multi-factor structure of risk premia cannot be repｭ
r白ented in terms of the aggregate consumption rate alone. That is , Breeden's 

CCAPM , which is based on the time-additive expected utility repr回entation

of preference, do田 not hold here. Instead, several multi-beta versions of the 
CCAPM are proposed. If preferenc白 are homogeneous across agents and hか

mothetic, the twかbeta CAPM developed by Epstein and Zin (1989) and Giovanｭ

nini and Weil (1989) obtains: Risk premia are determined by the consumption 

beta as well as the market beta. Under more generous assumptions betas with 

r回pect to the state variables as well as the consumpti.on beta are required in 
risk premium determination. 

Finally, the multiple correlation coefficient of the individual 's optimal conｭ

sumption with the equilibrium aggregate consumption and X state variabl回 is

unity. 
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Chapter 9 

Optimal Consumpt:ion and 
Asset Pricing under Market 

Incompleteness: A Simple 
Approach 

Abstract: To analyze consumption/portfolio choices and asset pricing under 

market incompleteness, the consumers' problem is transformed into a reduced 

space induced by the security markets. The prices of securities with orthonorｭ

mal payoffs in the reduced space，組y pseudo state pric白， plays precisely the 

same key role as state pric白 in complete markets: the absence of arbitrage is 

equivalent to the unique existence of a martingale measure constructed from 

the pseudo state pric白; the martingale measure is used to , foUowing the marｭ
tingale approach , form a single lifetime budget constraint for a static problem 

equivalent to the original dynamic problem. Implications for the representativeｭ

agent ぉset pricing formula and the APT are discussed. The theory is extended 

straightforwardly to a multi-period model with short-sale constraints. 

JEL Classification Numbers: D52 , GI0, Gll , G12. 

Keywords: Incomplete markets, Arrow-Debreu securities, asset pricing, marｭ
tingale, repr缶entative agent , APT , short sale constraints. 

9.1 Introduction 

The purpose of th is paper is to propωe a simple approach to the analysis of 

the optimal consumption/portfolio choice and asset pricing under incomplete 

security markets. The key proposal is to transform the consumption space into 

a reduced space induced by marketed-security payo仔5 ， thereby repr田enting conｭ

sumers' choice problems in the same form as in the ωse of complete markets. In 

the r白ulting canonical repr白entation ， basis securiti白 with orthonormal payo百s
are defined as pseudo Arrow-Debreu securiti白 and the prices of the securities 

as pseudo state prices. Pseudo Arrow-Debreu securities can be regarded as a 
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normalized consumption lottery, and the reduced consumption space a composｭ
ite consumption or lottery space. Arbitrage pricing is characterized in precisely 

the same manner as in the complete market case. Applying the martingale apｭ

proach [e.g. , Pliska (1986) , Cox and Huang (1989 , 199 ]L)], this unique pseudo 
martinga1e measure is used to form the lifetime budget constraint in a static 

utility maximization problem equivalent to the original dynamic prob1em. 

In the case of incomp1ete security markets, the infinite1y many sets of the 
state prices or equivalent martinga1e measur白 are consistent with the absence of 

arbitrage. When , following the martingale approach , the dynamic utility maxｭ
imization problem is reduced to a static one, infinitely many lifetime budget 
constraints must be considered corr回ponding to arbitrage-仕ee equivalent marｭ

tinga1e measur缶・ To cope with this difficulty, some “completizing" of mode1s 
is generally needed. He and Pearson (1991a, b) proposed choosing uniquely a 

martingale measure, called a minimax martinga1e measure, by solving a dual 

problem, thereby extending the feasible consumption space. 
However , their sophisticated and well-estab1ished theory is faced with some 

difficulti白， which motivate this r回earch. First , to obtain the minimax martinｭ
ga1e measure , it is necessary to solve the indirect-utility minimization problem 

with respect to the arbitrage-free state price vector. Although, once the dual 
prob1em is solved , the primary dynamic problem can be easily solved by solvｭ
ing the r白ultant static prob1em, the dua1 prob1em itself is not always easier to 
solve compared with the primary prob1em. In contrast, my approach proposed 

here reduc白 the consumption space into a composite consumption space which 

reftects market incompleteness. Given this transformation, only the arbitrage 
argument is needed to form unique1y the lifetime budget constraint , as in the 
case of comp1ete markets. 

Secondly, the minimax martingale measure is agent-specific because the unｭ
derlying implicit state prices are not equalized under market incompleteness. 

Due to this property, it is prohibitive1y difficu1t to consider heterogeneous-agent 
economies using the duality approach.1 In the pr白ent approach , contrasting1y, 
the pseudo martingale measure is equalized among agents though arbitrage. 

This facilitat回 to ana1yze heterogeneous-agent economi白. Specifically, it will 

be shown that a hypothetica1 sing1• agent economy can b4e constructed such that 

it produces a nかtrade equilibrium supported by the 泊me security price vector 

as in the equi1ibrium of the origina1 heterogeneous-agent economy. This is an 

incomp1et• market extension of the representative-agent asset pricing formula 
deve10ped by Duffie (1996). 

Implications for the arbitrage asset pricing (APT) are a1so discussed. Under 

market incomp1eteness, there exist some unavoidable factor risks. Avoiding this 
problem , an incomp1ete-market version of the APT will be derived using the 

pseudo state price vector without the zerかbeta and factor portfo1ios. 

The r缶t of the paper proceeds as follows. In the next section , a simple 

one-period model of exchange economy is pr田ented. In Section 9.3 , 1 develop 

a space-reducing approach and reconstruct the arbitrage and equi1ibrium arguｭ
ments. Section 9.4 considers implications and app1ications of the approach. In 

Section 9.5 are conclusions. 

1 He and Pearson (1991a , b) avoid this difficulty by assuming a single-agent economy 
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9.2 The お10del

Consider a one-period exchange economy with uncertainty d白cribed by a finite 

set: n 全 {ωl'...'WS} ofstat白， one of which will realize at the end of period. 

The probabi1ity measure is given by I1, under which each state can occur with 
a nonzero probability. There are N st抗争contingent securiti白・ Each asset is 

characterized by its price at the beginning of period, Pn , n = 1, . . . , JV , and payoff 
vector giving its payo百's in 伺ch of the S state of nature, xn 全 (xη(ωs)) εRS

The entire security markets are thus d白cribed by the payo百 matrix， ZERS× NF
and the security price vector, p E RN

. 

Whether security markets (x ,p) are complete or incomplete is determined 

by the relative magnitudes of the rank of payo庁 matri.x x and the number of 
state, S: They are complete if and only if ra此(x) = S , otherwise [ra出(x) く S]
they are incomplete. Putting otherwise, letting M denote the marketed (or 
attainable) payo百 space ， defined by the span of payoff vectors Xl , . ・ . ,XN , the 
security markets are complete if and only if M = R S and incomplete otherwise 

(M C RS). 1n order to consider incomplete markets, assume that rank(x)(三
L) く S. Setting K 三 S-L (and hence 1 ::; K ::; S -1) , 1 call K the deficiency 
in the security markets. 

The economy are populated with 1 households, ith of whom is characterｭ

ized by endowment vector ピ全 (eb ， ei)5Rf+13where e; 全 (e~ (ωs)) E R~ ， 
and utility functional Ui = Ui (ci) , where ci 会 (cb ， ci) εRitldemt回 the
consumption vector with ci 全 (ci (ωs)) εR~+ ・ Ui (ci

) is strictly increasing 

and concave. Letting ()i E RN denote the security holding vector, agent i's 
consumption choice problem is represented as problem (P) below: 

(P) ，I?~:C" U
i (ci) , 

ciEC(ei) 

where C (♂) repr白ents the budgt feasible consumption set: 

C(♂)全{ ciε Rf+l I ヨ(JÌ;eð =pT()i +~ and ei +x()i = ci}. (9.1) 

Given the consumers' choices , the market-clearing conditions for security marｭ
kets are repr白ented as: 

乞 ()t = 0 (9.2) 

tεI 

From the budget equations in (9.1) , the sec凶ty market 割=luilibrium (9.2) implies 

2: c� =乞 eò and εcl =2: el 
1ε 1 iε 1 iε 1 iεI 

9.3 Transformation 

1n order to analyze this incomplete market model , consider a linear transforｭ

町ma凶l凶凶a抗t川ω

AL ε RLxS and A\ L ε RKxS . 

1. A is orthogonal matrix, i.e ・ ， A T A = E and hence A了 = A-1
; 

2. AL > 0; 
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3. A¥LX = O. 

Setting i 全 ALX E R LxN , the payo庄 matrix is then transformed by A into: 
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一
一
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That is, transformation A reduces the commodity space defined by R S into an 

L-dimensional s山space (Note: rank(i)= L). In what follows , we repr白ent the 

L dimensional commodity vectors in the reduced space by tild白， e . g・ ， iπ ・

The idea of the pr缶ent research is to simplify the incomplete market model 

using this reduced space representation. To do so, 1 deHne below a set of secuｭ

rities which would be Arrow-Debreu securities under market completen白s:

Definition 1: A security with payoff vector d1 ε RL whωe elements are a11 
zero except unity on the i'th spot, 

刊 ojhOd) 丁 (9.3) 

is called the l'th pseudo Arナow-Debreu security, and its price the l'th pseudo 
stαte price. 

The set of L pseudo Arrow Debreu securities is an orthonormal basis of the 
reduced space. As 1 shall show below, under market incompleteness the pseudo 
state pric白 play precisely the same key role as state prices in complete markets. 

9.3.1 Arbitrage Pricing 

To begin with 1 rewrite the definition of arbitrage in the reduced space. 

Lemma: A portfolio Ð モ RN is an arbitnαge if and only if 

(ず)三 o but 手 0 (9.4) 

Proof: Recall that arbitrage is defined as a portfolio ﾐ E:: RN such that 

ハ
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Since it is valid from the definition of A that xﾐ > 0 ∞ iÐ > 0 and xﾐ = 0 ~ 

iﾐ = 0, condition (9.4) follows from this definition of arbitrage.ロ

Therefore, the usual nかarbitrage r回triction on asset prices can be duplicated 

in the reduced space. 

Proposition 1: 刀l，e secu門ty price system is arbitrage-free if αηd only if there 

u向
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p=x丁ゆ. (9.5) 

Proof: Applying the separating hyperplane theorem to (9.4) yields (9.5). 口

To characterize the above arbitrage pricing using a martingale concept , conｭ
sider a marketed security, indexed by 0, with payoffs of unity in the reduced 
consumption space: 

Definition 2: Security xo 会 (1 ，・・・， 1) ε Rt+ is called the pseudo riskless 

security. 

Since the payoff vector of the pseudo riskless security can be duplicated by 

holding one unit of each pseudo Arrow-Debreu security, the price ofthe security, 
Po , is given in the absence of arbitrage as 

po =乞 φk (9.6) 

Next, let me define a new probability measure: 

/ L ¥ 

Definition 3: P = (Pl) εRt+ ， where Pl 全:ゆd( L: 仇 )ε(0 ， 1) (and hence 

L 

ε Pl = 1) , is called a pseudo mαrtingα le mωsure. 

Then , 1 obtain the following corollary from equations (9.5) and (9.6): 

CoroU訂'y 1: The security pγice system 旬。，rbitr，α，ge-free if αnd 0刈 if there 

uniquely ex'岱ts α pseudo mar抗ngale measuγe p, such that 

P = poEp [x ], (9.7) 

ωhere Eρ rep陀sents expectαtions 7.J.Jﾍth respect to ρ ， e.g・ ， [p [Xn] 全 X;: P

Contrary to the standard state pricing, in the pseudo state pricing proposed 
above, the arbitrage-free price functional or (pseudo) martingale measure is 
unique and observable even under market incompleten出s since the pseudo Arｭ

row Debreu securiti田 are necessarily marketed. This would facilitate applying 

the martingale approach to incomplete market models. 

9.3.2 Consumers' Choice Problems 

Next , 1 transform consumers' choice problem (P) into the reduced space. Letting 

� and 麒 denote: ëi 全 ALCl εRL and ci 全 A\ LCì εRK (and hence 

Ac( ~ ( ~l )), respectively，いiい…al is rewritt… 
ut (似) = U

i (い-1AcD = U
i (ιAJEi+Aじえ) • (9.8) 

165 

士±士アーー、



As for the budget constraint , the second equation in (9.1) is rewritten by mulｭ
tiplying A from the left as 
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(9.9) 

where è~ = ALe~ and �t = A\Le~. 
Eliminate ê~ from (9.8) by substituting the second equation of (9.9). Then , 

given êi , the r白ultant utility functional depends only on (ci , c1) εRtt1 . Deｭ

note this reduced utility functional by ﾜi (ci , ci), i.e ,,2 

�i (~， (1)全 Ui (~， AIci + A¥L�l) , 

where, if Ut is differentiable, the de巾ativ田 of ﾜi (ci , ci) are given by 

U� = U� and UI = ALU; , 

with U� = θUt /δcò and U� = δUt/θc~ ， etc 
Given this transformation , consider the following proble民 (P'):

(9.10) 

(P') maモ Üi (~， cD , 
(cQ ， è t) ε C(ë i ) 

where � (�i
) represents the set of budget-feasible consumption in the r吋uced

space: 

� (ë) 会 {ci
E Rt+1 I ヨBi; e� = p T Bi + cb and 鑛 + :ﾏ;Bi = c~} . (9.11) 

Then , it is easy to prove the following proposition. 

Proposition 2: Consumers' choice problem (P) is 句ωuαlent to problem (P') in 
the followi吋 sense: (i) 1f (cò , c~ , Bt) = (CÒ* , cl* , BH) お α solution to (P) , theη 
(佑， 51394)=(q ， ALei-79H)tsα solution to (P'), with [Ji(cbぺ ALcieji)=
Ui(ciJ*, Cγ); Conversely， 作りザ (cb ， E: ， P)=(crJY ， oz')4sα solution to (P'), 
then (CiJ, ci, Bi) = (伶\A15Y+A?Ltl ， 91・)臼 α solutioη to (P) 

Proof: (i) is self-evident. To prove (ii) , suppose that (cò , c~ ， Bt) = (cò*, c~* ， Bt ・)
is α solution to (P'). By the definitions of c~ and A , the corr白ponding optimal 

consumption cl* is given by: cl* = A -1 (守 )=A了(守)， which implies 
¥ ei } ¥ ei } 

(ii) .口

Note that problem (P') has the same structure as in complete market setｭ

tings. lndeed, as in Pliska (1986) and Cox and Huang (1989 , 1991) , dynamic 
problem (P') can be transformed into a static problem faced with a single lif,• 
time budget constraint. 

Coroll担γ2示:Cω0 17，.削‘

ti句αle アepres犯erη~tαtio r.叫Lら， {Pつ:

(P") 1 . ~ax~ . ﾜ
i (cb ,cD , 

( cb ， εi. )ε B(è') 

2 Although ﾜi (cð , �i) depends on ë , it is safely abbreviated from the notation because 1 

will not consider any endowment shocks throughout this paper. 
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where 忌 (ei ) represents the li fetim• budget-feasible set , 

fJ ( ei ) 全 { ëi E R~+l I cb -eb +poEp [� -�] = o}. (9.12) 

Proof: Noting that x has full rank L , assume without loss of generality that 

x repr回ents the payoff matrix for the set of L pseudo Arrow Debreu securities: 
x = E L , the L-dimensional unit matrix. Solving the 自国 inequaliy in (9.11) for 
B1 and substituting the r白ult into the second inequality yields 

4-d+ ゆ了 (Ei- e;)=O，

which impli白忌 (ei ) = � (♂ ) in 問uation (9.11 ) . 口

In general , analyzing incomplete market equilibrium entails some ‘ compl仔

tization' of the model. For this purpose, He and Pearson (1991a, b) choose 

uniquely the state price vector by solving a dual problem , thereby extending 

the feasible consumption space. In applying this approach, a dual indirectｭ

utility minimization problem, which is as difficult as the primary one, must be 

solved to determine the direction in which to extend the consumption space. In 

contrast, the present approach reduces the consumption space into a composite 

consumption space which reflects the deficiency of some security markets. In 

this way of ‘completizing' the problem , only required procedure is coordinate 
transformation and there is no need to solve any associate problem. This facilｭ

itat回 the analysis of incomplete market models, as shown in the next section.3 

9.4 Discussions 

9.4.1 Comparison with Other MartingaIe Measures 

Based on propositions 1 and 2, the familiar martingale measure concepts can 
be related to pseudo state prices. Letting K er・ (A L) rep陀sent

Ker(AL ) 全 {νε RS;ALlノ =o} , 

and 1 S denote (1 γ ・ . , 1) T E R s , equivalent martingale measur白 and minimax 

martingale measures can be characterized in this context as follows: 

Proposition 3: Suppose that the 句uilibrium pseudo stαte price vector of α 

incomplete security ma巾t economy, ({ ei }任 l ' {Ui}iEI ,x ) is giveη by ゆ αnd

an αssociα te optimal s山tioη to (P') by {cõ , ëb*}民I - TRm，

1. equivαlent mα付ingαle measure q is given by 

ψ 
q= 一一一一

ψT 1 s' 

wl附eψ =AIゆ +ν， V ε Ker(AL); an 

3Milne (1981 , 1988) prop08ed an approach in which the utility function over consumption is 
transformed as one defined over portfolic渇. Our method is a variant of his induced preference 

approach in that consumers' preference is transformed 担 refiecting the security market. 
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2. minimαxmα吋ingαle measure q:ninimax for αgent i 臼 giveη by

qt-iL 
mlnlmax 一 ψi.T ls ' 

山内 ψt. 可 (cb・ ， AI可 +A\Lêi ) j同 (cb. "AIわAM)

Proof: See Appendix A. 1.口

Note from (9.10) that UUU� = ALUUUﾒ where 'rankAL is L. Thus , while 
U;jU� are equalized among agents by pseudo state pric回ゆl ， U; j U� and hence 

equilibrium state price vector 'l�H are generically ag;ent-specific. This makes it 

difficult to apply the minimax martingale method to the case of heterogeneous 

agent economi回. The next subsection shows that the space-reducing approach 

proposed here is useful to avoid this problem. 

9.4.2 Constructing a Representative-_Agent Economy 

From the fundamental theorem of welfare economics, it is well known that in 

a complete market economy with heterogeneous agents a hypothetical single 

agent economy can be constructed such that the r白ulting no-trade equi日brium

produc白 the same competitive equilibrium prices ωin the original economy 

[see Duffie (1996)]. Using the approach presentecl. above, 1 can extend this 
proposition to the present incomplete market setting. The key point is that 

the competitive equilibrium of the security market 回onomy considered here is 

constrained-Pareto optimum [see, e.g., Milne (1981 , 1988)]. 
Given endowment vectors {e i } 任 1 ' let 入 εR~ de則e an aggregation weight 

vector to define a (transfo口ned) “aggregate" utility, Ü入 (cd?Ef) ， as:

が (ct ， ët) 全叫乞入iÜi (cb , �i) subject to ct 三L ~ and ëA と玄 ë~
{ C~ ， εi} iEI 任I

(9.13) 
Then , 1 can prove the incomplete-market version of the above proposition as 

follows: 

Proposition 4: Suppose that ({ ci .}民 1 ' { ()i・)同 1 ， 10.) is αη 句uilibrium 0 f αη 

incompl的犯ω何ty market economy ( {どん1 ' {Ui }任 I'X) . Th叫 (i) with some 

αggregαtioη weight vector 入 εR~ ， ωe cαη construct α single-αg側 economy

( ( e~ , �) , [r 入 (cd ， Ef)J) ， ωhere (e~ ， � t) = (乞 eð ， L ë~ ), such that the no-
\i ε 1 iε I ノ

t加raαd白e 叩equili幼brium (伊E♂A ，()μA ， pω) = (伊EがA ， O ， p川$つ) ω α仰η 叩叩.âl
the optimα1 utility Ü入 (etef) お related to the equilibrium co r削mptioηαllocα-
tion {ci ・ } iEI 

in the 0門ginal competitive economy αs: 

が (ed ， Ef)=乞入1U1(4\EY) ， (9.14) 

where ë1 • 三 ALd・-
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Proof. See Appendix A.2. 口

Given the proposition , a version of the representativ• agent asset pricing 
formula developed by Duffie (1996) can be proven in this incomplete market 

model: 

Corollarγ 3: Suppose 。入 is differentiαble αt (e~ ， ët). Then, the 叩九librium
αsset prices αre given by: 

p. = x了cf(ed?Ef)/UJ(ed ， Ef) ，

叩九eTe CJ 全 θC入/θC1αηd CJ 全 δO入/θ句・

Proof. See Appendix A.3. ロ

(9.15) 

9.4.3 The APT without ZerかBeta and Factor Portfolios 

To show the usefulness of the simple approach propωed above, let me use the 

pricing rule obtained above to reformulate R邸， (1976 , 1977) APT within the 

incomplete market model without zero-beta and factor-mimicking portfolios. 

In this case, there exist some unavoidable factor risks and , as a r白ult ， factor 

risk premia are neither unique nor observable.4 Avoiding this difficulty, an 
incompl抗争market version of the APT can be derived using the price functional 

constructed from pseudo state prices, as we shall show now. 
1 follow Dybvig and Rωs (1988) in considering a special case without idiか

syncratic risks.5 Assume that returns on marketed securiti白 ， rn 三 Zη/pπ -1s ε
R s , are generated by a linear G-factor model: for η = 1,"', N , 

Tπ = E [r n] 1s + ß.η 1 h 1 + ・・・ +ß.πchc ， (9.16) 

where E [.] represents expectations with r白pect to ll; hk ε R S (k = 1,'" 1 G) 
denote vectors of return-generating factors common to all the securities; and 

n゚k are factor loadings. 
Gross return 1s + rn = (1 + E [rn]) 1s + ß.叫ん+・・・ +βπchc is nec白sarily

marketed whereas each component of this expr白sion is not normally marketed in 
the pr回ence of security market deficiency.6 For example, the st抗争independent
component , (1 +E [rn]) 1s , is not attainable unless the riskl出s asset is marketed 

Similarly, other individual components cannot be attained in the absence of 
factor portfoliω. 

To avoid this difficulty, let us repr田ent the return vectors in the reduced 

form by multiplying transformation matrix AL 仕om the left as 

1s +子π= (1 + E [rn ])1s 十 Fπ1 hl +... +βπchc ， (9.17) 

where tild白(7) denote transformed vectors, e.g. , 1s = AL1S and 子π = ALrη 
Note 仕om proposition 1 that , in the absence of arbitrage, it is valid that 

4 For the nonuniquen田s of factor risk premia in the presence of unavoidable factor risks , 
see Inge四oll (1987 , Chap.7). 

5 The disc ussion pre田nted below can be easily extended to rnodels with asset idi08yncrasy 

if the idiosyncratic risks are assurned approximately dive問ifiable 回 in Ross (1976 , 1977). 
6 Note that νεspan(x) and z εspan(x) imply y + z εspan(x) whereas the inverse is not 

always true. 

169 



ゅ丁 (1s + 九) =ゆ丁九/pπ= 1 for any ma比eted securiti田 η Applying equaｭ

tion (9.17) to this relationship yields 

(1 +ε [1'n ]) φT 1s + βπ1 ゆ了ん1+ ・・・ +ß.πGφ了hc = 1. 

Rearranging this equation produc白 the incomplete rnarket version of the APT 

as follows: 

Proposition 5: Suppose that secu叫 T伽rns conform to (9.16). Then, in the 
αbsence of α1'bit1'age， expected 1'etu~凶 0π the ma1'keted securities α1'e given by 

E [1'πl=χ0+χ1ßn1 +... +χCßnC ， η= 1 ，・・・ ， N， (9.18) 

ωhe1'e χoαMμ (k = 1 ，・ .. ， G) αre unゅの given by χ0=(1/ゆT 1S) -1αηd 
χk= ーゆアん/ゆ了 1s ， respectively. 

9.4.4 Short-Sale Constraints 

The space-reducing method pr白ented in the previous section can be applied to 

the case of short sale constraints: 

rp > 0 Viε 1. (9.19) 

Indeed, the familiar supermartingale property under short sale constriants can 
be reproduced using psuedo concepts: 

Proposition 6: U吋er shorl-sale constTlαints (9.19) , (i) the security price sysｭ
tem is α:rbitrage-free す a吋 only す there exists a 下seudo stαte prices 中 E R~+ 、
such that 

p と￡丁仇 (9.20) 

αηd 作り iザft仇h印e 1包Ltilit句Y f1肌ctiωtωO叩lおSα陀 d必iffer，陀erηLt“tαωbl化e， the eqωlibrium security prices 
must sαtおか

p. 三 XTÜ~ (弘守) /ﾜ3 (c!o* ，守)Vi E 1 (9.21) 

Proof: See Appendix A.4.口

9.5 Conclusions 

In this paper , 1 have proposed a simple approach to the incomplete market 

analysis. The key idea is to transform the consumpt:ion/portfolio choice probｭ
lem into a reduced consumption space refiecting the security market deficiency. 

The r白ultant canonical repr回entation allows me to analyze asset pricing in 

precisely the same manner as in the case of complete markets. Securiti田 with
orthnormal payoffs in the reduced space (pseudo Arrow Debreu securiti缶) are 

used to characterize the incomplete market equilibrium. The absence of arbiｭ

trage is equivalent to the unique existence of a martingale measure constructed 

from the pseudo state prices. The martingale measure is used to, fol1owing the 
martingale approach , form a single lifetime budget constraint for a static probｭ

lem equivalent to the original dynamic problem. Based on this, the incomplete 
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market versions of the repr白entative-agent asset pricing formula and the APT 

are derived. 

The analysis is, however, limited especially in the two following points. First , 
the model is restricted to the finite dimensional case. The logical next step is 

to extend this approach to infinite dimension case suc:h as a Brownian filtration 

model treated by He and Pearson (1991b). Secondly, the repr回entativ←agnet
asset pricing formula obtained above crucially depends on the onかcommodity

setting. When there are more than two commodities, it is well known that the 
incomplete market equilibrium is usually not constrained-Pareto optimal [see 

Cass (1992) and Duffie (1987)]. In contrast to the complete market case, this 
would make it difficult to reproduce the same formula under multi-commodity 

settings. 

9.6 Appendix for Chapter 9 

9.6.1 Appendix A.1: Proof of Proposition 3 

To prove part 1 of proposition 3, note that state price vectorψsatis自由 p= xTψ 

in the absence of arbitrage. Since x = AIi , this and equation (9.4) imply that 

ALψ= 仇

from which ψcan be obtained ωa particular solution AI (AL AI)-1 ゆ =AIゅ
plus the general solution to ALlノ= O. Regarding part 2 of the proposition, 
from the definition of minimax martingale measur白， the associate state price 

vectorψU equals the vector of intertemporal marginal rate under the attained 

consumption allocation.口

9.6.2 Appendix A.2: Proof of Proposition 4 

Proposition 3 can be proven using the same way as used by Duffie (1996): 

Suppose that ({ cﾌ* LEI ' {gi・)任 1 ' p*) is an equilibrium of an incomplete secuｭ

rity market economy ( {♂)任 1 ' {Ui L EI ， x) ・ Let グ represents the pseudo state 

price vector under this equilibrium and �1* the corresponding optimal composｭ

ite consumption. Then, from proposition 2 and the saddle point theorem, there 
exists a Lagrange multiplier α1 と o such that (cb* , �i*) solves a problem 

sup ﾜi (ch , 錺 +α1(eb-4+ ゆ傘下(計一三)}. 
Cö,Cí 

The positivity of αi follows 仕om the fact that Ut is increasing in CD. 
To construct a utility functional for a single agent , set 入i = 1/αi as agent 

weights. The resl州ng aggregate utility 乞入i Ui (佑，錺 indeed attains maxiｭ
iεI 

mum at (伶，錺 = (cb・ ， 鑛 *), as follows: 

2二入i Ui (ch. ， è~.) = 工[入i Üi (ch* , è~*) + ﾀiC�i { eb -ch* +グ了 (ëi -è~*)}] 

> 乞(入i Ùi (机)+九州

171 



=乞入iﾜi (~， ë~) + e� -~ +φ汀 (ë~ -� 
$εI 

〉乞入iÜi (~， ëU 

Finally, let me prove that, given the aggregate utility constructed above 
and aggregate endowment v出or(ed ， Ef) ， C入(cfi , ,ët) attains maximum at 
( cfi , �) = (e~ ， �) . Suppose that Ü入(Cfi ，とt) attains maximum at (Cfi， 可) = 

(zt 去の #(ed ， Ef) ， so that C入 (zd ， 2f)>U入 (e~ , �). Then，仕om equation 

(伶9 叫凶伽悦…eeぽ切X剖i凶S

X~ and .lε=x釘: = 云村f ? s u c h t凶ha抗t 

乞入i [ﾙi (xð ,xD + αt(eb-4+φ汀 (ë~ 一角)} ] 

〉乞入i [ﾜi (~・1)+αi {eò ーやが了(む-�.)}] , 

which contradicts the optimality of (cb. , ëi.) 口

9.6.3 Appendix A.3: Proof of Corollary 3 

From corollary 2, the consumption choice problem for the single agent conｭ
structed following proposition 4ωn be reduced to: 

sup Ü入 (ct ， �4) +α(ed-cd+ ゆ丁 (Ef-Ef))3
(~.，ën 

where αrepr白ents a Lagrange multiplier. Suppose that Ü入 is differentiable. 

Then, from the first order condition and proposition 4, it is valid that 

CC(ed ， gf)/CJ(etEf)= ゆ，

which impli白 (9.15).口

9.6.4 Appendix A.4: Proof of Proposition 6 

(i) To prove the “ if" pa吋， suppose that a price system p is arbitrag争free. Then , 

S閃et倒山t抗t

The separating hyperplane t凶h切r陀em impl日le白st山ha抗t there exists a linear functional , 
F (y) = cp 

T y , cp = (CPI)I=O ,...,L E Rtt¥ such that 

F(YM) 三 0 三 F(y) ， VYM εM， yERit1. 

The first inequality can be rewritten as -p T B+ゆ了xB ~ 0, where ゆ=(cPz/ψ0)1=1 ， .. ， L 巴

Rt+. From 。三 0 ， this impli白 equation (9.20). 

To prove the "only ir' part , suppωe that equation (9.20) holds valid. Conｭ

sider a feasible portfolio B E R~ such that xB 三 o. 1 prove thaいhお ωnnot be 

an arbitrage. First , it must hold valid that -p丁 B ~ 0 because p了。三 φTxB ~ 0, 
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where the first inequality com白 from the assumption and the second from the 
positivity of (). Next , supp06e that this portfolio satis自由 P了。= O. Then , by 
assumption , 1 have φT i;() ::; O. This implies that either j;() = 0 or at least one 

component of j;() is strictly negative. It follows that () cannot be an arbitrage. 

(ii) From the Kuhr汀ucker theorem , the first order conditions are given by 

-p-cd+ ￡TC;550;and O 三 0
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