|

) <

The University of Osaka
Institutional Knowledge Archive

Title Code Optimization Methods for Configurable
Processors

Author(s) |Hieda, Takuji

Citation |KFRKZ, 2011, HIHX

Version Type|VoR

URL https://hdl. handle.net/11094/1622

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Code Optimization Methods for

Configurable Processors

January 2011

Takuji HIEDA



Code Optimization Methods for

Configurable Processors

Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2011

Takuji HIEDA






Publications

Journal Articles (Refereed)

[J1] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai:
“Heuristic Instruction Scheduling Algorithm using Available Distance for Partial For-
warding Processor,” IEICE Transaction on Fundamentals of Electronics, Communica-
tions and Computer Sciences, vol. E92, no.12, pp. 3258-3267, Dec., 2009.

International Conference Papers (Refereed)

[11] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai:
“Optimal Instruction Scheduling for Processors with Partial Forwarding using Integer
Programming,” Proceedings of 13th Workshop on Synthesis And System Integration of

Mixed Information technologies (SASIMI 2006), pp. 274-279, Apr., 2006.

[12] Hiroaki Tanaka, Yutaka Ota, Nobu Matsumoto, Takuji Hieda, Yoshinori Takeuchi, and
Masaharu Imai: “A New Compilation Technique for SIMD Code Generation across Ba-
sic Block Boundaries,” Proceedings of 15th Asia and South Pacific Design Automation
Conference (ASP-DAC) 2010, pp. 101-106, Jan., 2010.

International Conference Papers

[13] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai:

“Effectiveness of Partial Forwarding in Pipeline Processors,” Proceedings of Workshop



on Compiler Assisted SoC Assembly 2006 (CASA2006), Oct., 2006.

Domestic Conference Paper (Refereed)

[C1] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai,
“Heuristic Instruction Scheduling Supporting Partial Forwarding Structure, ” Proceed-
ings of 21st Circuits and System Workshop at Karuizawa, pp. 599-604, Apr., 2008 (in

Japanese).

[C2] Keishi Sakanushi, Junya Okamoto, Takuji Hieda, Taichiro Imamura, Yoshinori Takeuchi,
Junji Kitamichi and Masahari Imai: “Electronic Triage System for Disaster Medical
Treatment, ” Proceedings of Embedded Systems Symposium (ESS2009), pp. 147-152,
Oct., 2009.

Domestic Conference Paper

[D1] Taichiro Imamura, Keishi Sakanushi, Yasumasa Ode, Takuji Hieda, Junya Okamoto,
Yoshinori Takeuchi, Masahari Imai, Hiroshi Tanaka and Teruo Higashino: “Evaluation
of Electronic Triage Tag to obsurve injured person’s condition in Real Time, ” IPSJ

Technical Report vol.2010-EMB-16, no. 5, pp. 1-8, Mar., 2010 (in Japanese).

[D2] Keishi Sakanushi, Akihito Hiromori, Taichiro Imamura, Junya Okamoto, Takuji Hieda,
Yoshinori Takeuchi, Masaharu Imai, Junji Kitamichi, and Teruo Higashino: “Triage De-
vice Slightly Injured Person in Disaster Medical Assistant Network, ” IEICE Technical
Report VLD2009-37, Vol. 109, No. 201, pp. 45-50, Sep., 2009.

[D3] Hirofumi Ilwato, Takuji Hieda, Hiroaki Tanaka, Jun Sato, Keishi Sakanushi, Yoshinori
Takeuchi, and Masaharu Imai: “A Highly Extensible Base Processor for Short-term ASIP
Design, ” IPSJ Technical Report 2007-SLDM-132, vol. 2007, no. 114, pp. 133-138,
Nov., 2007 (in Japanese).

[D4] Aiko Watanabe, Takuji Hieda, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu

Imai: “ Debug environment generation method for Software development in Hardware/Software



Co-design, ” Proceedings of DA symposium 2007, pp. 43-48, vol. 2007, No. 7, Aug.,
2007 (in Japanese).

[D5] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu
Imai: “Heuristic Instruction Scheduling Method for Processors with Partial Forward-
ing Structure, ” IEICE Technical Report VLD2007-1, vol. 107, no. 31, pp. 7-12, May,
2007 (in Japanese).

[D6] Takuji Hieda, Hiroaki Tanaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu
Imai: “Optimal Instruction Scheduling for Partial Forwarding Processors, ” Proceedings

of DA symposium 2005, vol. 2005, No. 9, pp. 85-90, Aug., 2005 (in Japanese).






Summary

Configurable processor based development of embedded processor reduces cost of hardware
design effort and development time of processors. However, development of software tools
for configurable processors is still not an easy task. In order to achieve feasible time soft-
ware development, programming in high level language is essential and compiler is one of
indispensable tools for the target processor. In order to achieve performance of customized
processors, compiler should generate assembly codes utilizing customized instructions of pro-
cessors. When configurable processor is based on simple RISC processor, it is not so difficult
to generate code for processors with basic instruction set. However, to achieve performance of
customized processors, code generation technology to generate optimized codes is a very dif-
ficult task. Therefore, there is great need for code generation technique to generate optimized
assembly code for customized configurable processors.

This thesis discusses two types of code optimization methods for configurable processors.
The first one is a methodology for configurable processors with partial forwarding architec-
tures. This thesis proposes two instruction scheduling methods for partial forwarding proces-
sors which has limited valuable forwarding paths for the target application. To utilize par-
tial forwarding mechanism effectively, design space exploration of processors with forwarding
structure is required, since optimal forwarding structure depends on the application of the target
system. Fast optimized compiler which supports variable partial forwarding is required to find
the optimal processor from all the candidates, because there are a lot of structures of forward-
ing datapaths on the target processor. This thesis proposes an optimal instruction scheduling
algorithm and a fast heuristic instruction scheduling algorithm for partial forwarding proces-
sors by making use of the characteristics of the partial forwarding. Experimental results show

that the proposed instruction schedulers generated efficient code for arbitrary partial forwarding



processors.
The second code optimization method is data order optimization for configurable processors
for media applications. Programs of media application include a lot of data level parallelism
and are executed on processors with SIMD instructions. Compilers for SIMD processor should
have responsibility to exploit parallelism from sequential code without consideration of parallel
data processing. In this thesis, media processors which have two types of instructions, SIMD
instructions and data permutation instructions, are selected as target processors. SIMD instruc-
tions are instructions which operate on subword data in registers, and permutation instructions
are instructions which reorder or repack data in registers. In this thesis, code optimization
problem for media processors is discussed and optimization methods for data permutation in-
structions are proposed. Experimental results show the proposed methods reduces the number
of permutation instructions compared to the conventional permutation instruction generation

method.
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Chapter 1

Introduction

In modern society, there are an enormous number of microprocessors in our daily life. Inte-
gration scale of microprocessors grows as processing technologies for semiconductor products
evolved according to Moore’s law [1]. This progress also contributes to shrink size of micro-
processors and reduce market price of them. Nowadays microprocessors exists everywhere,
not only large information appliances such as information infrastructure systems and personal
computer but portable platforms such as cell phones and personal digital assistants. Moreover,
microprocessors are also used in various fields where the people do not realize. Modern home
appliances such as 3-D TV, air-conditioner, and video players have microprocessors to operate
their functions. Up-to-date automobiles are equipped with electronic vehicle control systems
implemented by microprocessors such as throttle and transmission controllers and collision
avoidance systems. These kinds of electronic systems which implements dedicated functions
by microprocessors inside of the products are calethedded systeraad such microproces-
sors are calleémbedded processofSmbedded processors are expected to satisfy tight design
constraints for the application dedicated purpose. For example, power consumption of the em-
bedded systems must be low for mobile systems which depend on battery as power resource.
Product cost and size of embedded processors for mass production are also an important aspect.
As modern embedded processors have improved their performance, complexity of the semi-
conductor systems explodes even though in embedded systems. Function requirements for
embedded systems also become more complex so that the scale of embedded software systems

which runs on embedded processors is also explodes. Ubiquitous computing is one of the huge

1
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scale systems related to embedded processors. Hundreds or thousand of embedded processors
orchestrate for the same dedicated application through wireless network such as information
home appliances, intelligent transport systems for automobiles, and sensor area network. In
contrast, product development cycle for embedded systems become shorter although size of
the systems inflates. Although improvement of processing technology expands application area
and functions for embedded systems, it shortens the life range of existence embedded systems
and raises development cost of embedded systems. To satisfy both requirements, flexibility is

key feature for development of embedded system.

1.1 Configurable Processor

Once processing technology was not mature so much, embedded system designers have two
design options to develop functions for target specific application; one is software implementa-
tion which run on general purpose processor (GPP), the other is application specific integrated
circuit (ASIC) which is integrated circuit dedicated for functions of the target specific appli-
cation. If the functions do not require execution speed to satisfy timing deadline, software
implementation on GPP is sufficient. This solution is sufficient since the cost of massively
product GPP is reasonable. Besides, developer can implement the functions in high level lan-
guage such as C so that the developed functions have portability, flexibility, and re-usability. If
the execution speed by GPP is inadequate to satisfy severe timing constraint which is required
for the functions, the designer had to choose ASIC, hardware implementation for the functions,
in past days. ASIC accomplishes the functions with extremely faster speed than the solution
by GPP. However, implementation cost of ASIC is extremely expensive, especially the planned
amount of the production is not much, and the specification cannot be changed even though
crucial problem is found. Also, reusing ASIC for another products is almost impossible since
it is dedicated hardware for the functions of the target product. In recent embedded system
design, these two design options is not sufficient due to huge scale of the applications, variety
of the application domains, highly expensive manufacture cost of the semiconductor products,
and rapid production cycle, as discussed at the beginning of this chapter.

Configurable processor is introduced to complement the gap between GPP and ASIC [2].



1.2. COMPILER SUPPORT FOR CONFIGURABLE PROCESSORS 3

Configurable processor whose architecture is customizable is one of the solutions to improve
design productivity. Configurable processor has some customizable parameters such as the bit
width of data path, the number of general purpose registers, and additional functional units
and instructions, based on basic instruction-set architecture. The designers implements ad-
ditional functional units for dedicated application domain such as multimedia processing to
satisfy performance requirements and design constraints. Configurable processor also has flex-
ibility against modifying specification of the target systems since basic instruction-set is often
constructed as simple general purpose processor and Such a customized processor for dedi-
cated application domains are called application specific instruction set processor (ASIP.) Con-
figurable processor is often employed to design ASIP. Designing embedded processor or ASIP
based on configurable processor reduces cost of the design effort and development time since
the designers can concentrate on architecture optimization. As a result, the customized pro-
cessor can be desirable for the target application. Figure 1.1 shows the trade-off of design
solutions between performance/power consumption and cost/flexibility. ASIPs stand on the in-
termediate position between ASICs and GPPs. Though ASIPs are considered desirable solution
for embedded systems, appropriate design efforts, both hardware customization and software

optimization, are required to achieve performance improvement of embedded systems.

1.2 Compiler Support for Configurable Processors

Configurable processors can be customized their hardware structure to suit for dedicated em-
bedded systems. Compiler for configurable processors must understand customized architec-
tures to generate correct and effective machine code. Electronic design automation (EDA) tools
with configurable processors usually have compilers to adapt customized processors. Such

compilers are calleRetargetable Compil€B, 4].

1.2.1 Compiler Optimization for Configurable Processor

Code optimization flow in compiler can be split into two parts; machine-independent opti-

mization and machine-specific optimization. Machine-independent optimization methods are
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Figure 1.1: Advantage of ASIPs.

applied in the form of intermediate representation, which are used the inside of the compiler,
before code generation.

In compiler back-end for the target processor, machine-specific optimization are applied.
There are three major parts: code generation for the target processors, instruction scheduling,
and register allocation. Retargetable compilers are required to adapt these optimization phases
according to customization results. The next two subsections describe the target of the retar-

getable optimization problems in this thesis.

1.2.2 Data Path Customization

Even though a processor in target embedded system is a single issue RISC processor, the design
cost of the processor have to be reduced if a processor violates design constraint of the system.
In such a case, partial forwarding is a way to reduce datapaths in the processor to suppress
size of the processor [5]. Partial forwarding can reduce cost of the processor and may improve

execution time of the program by removing certain forwarding paths which are not inefficient.
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Partial forwarding processor which has only valuable forwarding paths for the target applica-
tion achieves both performance design constraints. However, design space exploration about
forwarding structure is required to use partial forwarding since optimal forwarding structure is
depend on the application of the system. Structure of forwarding datapaths on the target pro-
cessor varies so fast optimization compiler which supports variable partial forwarding should
be desirable to find the optimal processor from all the candidates.

Partial forwarding can decrease hardware cost and still keep execution performance to re-
move forwarding datapaths that are not used frequently. It is important to explore design space
of forwarding for high performance system design, in particular, for embedded systems that
have no margin for forwarding at all possible points between the functional units. However,
suitable instruction scheduler which takes account of partial forwarding is required to execute

application programs with high performance.

1.2.3 Architectures for Data Level Parallelism

Digital signal processing (DSP) is one of the most important task for embedded processors
since embedded systems often engage in signal processing systems such as media encod-
ing/decoding. There are many processors which are n&8&dprocessorDSP processor has
special instruction set to process huge amounts of signal data in a short time. Single-Instruction
Multi-Data (SIMD) instruction set is one of the major instructions for DSP SIMD architecture
consists of parallel functional units so that SIMD instruction process several data at a time. If
a processor has 4-way SIMD instructions, a program can be executed four times faster than a
processor without the SIMD instructions in ideal. However, practical programs have sequential
codes so that ideal performance cannot be obtained. To improve the opportunity of parallel
execution, programmers have to consider parallelism during development with mature skills of
parallel programming.

Recently, automated SIMD instruction generation methods are proposed [6, 7, 8]. These
method generates SIMD instructions in assembly code by compilers so that programmers can
develop their programs without consideration of parallelism. However, there are some opti-

mization problems which are difficult to solve by compilers. Permutation optimization problem
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is one of such problem. When SIMD instructions are executed, each operand register contains
a number of data. According to the position of data in registers, SIMD instructions calculate
their operations. If position of data in registers differs from the context of the program, it is

required to change data order in registers to execute the program correctly.

1.3 Contribution of the Thesis

This thesis discusses code optimization method for configurable processors and application
domain specific instruction set processors.
The main contributions of this thesis are as follows. The first contribution is on instruction

scheduling method for partial forwarding processors.

e The optimal instruction scheduling method for partial forwarding processors is proposed.
Characteristics of partial forwarding from the view of compiler are studied. For given
partial forwarding architecture, the proposed method solves scheduling problem con-
verted into 0-1 integer linear programming problem which reflects the characteristics of

the target partial forwarding processor.

e A heuristic instruction scheduling method for partial forwarding processors is proposed.
For given partial forwarding architecture, the proposed heuristics scheduler optimizes the

order of instructions to improves the rate of operation for each forwarding paths.

e With these instruction scheduling algorithms, effectiveness of design space exploration
for partial forwarding is evaluated. Both the proposed scheduling methods supports ar-
bitrary partial forwarding structures so that designer can configure forwarding datapaths
to suit for the target application. Experimental results showed that the performances of
some partial forwarding processors are superior to the existence full forwarding proces-

sor.
The second contribution is on data permutation optimization method for SIMD instructions.

e Data permutation optimization problem for SIMD registers is discussed and a heuristic

data permutation optimization method for SIMD registers in proposed. The proposed



1.4. OVERVIEW OF THE THESIS 7

optimization method supports general input programs which are not considered data level

parallelism.

e Experimental results show that the proposed optimization method improves the number

of permutation instructions and execution cycles.

1.4 Overview of the Thesis

The rest of this thesis is organized as follows: chapter 2 discusses about configurable processors
and compiler optimization methods. In chapter 3, partial forwarding architecture is summarized
and optimal instruction scheduling method for partial forwarding processor is proposed. Then,
chapter 4 proposes heuristic instruction scheduling method for partial forwarding processor. In
chapter 5, data permutation optimization in SIMD registers for SIMD instructions is described.

Finally, chapter 6 concludes this thesis and summarizes future works.






Chapter 2

Configurable processor and Code

Optimization

This chapter discusses configurable processors and code optimization methods for configurable

processaors.

2.1 Architecture Customization for Configurable Pro-

cessor

One of the advantage of configurable processors is that processor designer can customize to
satisfy tight design constraints. Xtensa [2], a pioneer of configurable processor, is based on
RISC processor and embedded system designer can change the number of registers and append
customize instruction to write behavior of the instruction. Other properties, such as instruction

bit width and pipeline stages, are fixed.

ASIP meister [9] is an EDA tool which generates processor HDL (Hardware Description
Language) and software development tools for the processor. To describe micro operation
description, HDL description of the processor is obtained. On the other hand, to describe
behavior description, compiler for the processor based on DLX processor [10] can be obtained
[11]. ASIP meister also provides Brownie [12], a RISC configurable base processor, with GCC

compiler toolchain supports.
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LISA [13] is an architecture description language to design processor and simulator. The
processor designers can be developed VLIW or superscalar processors to devote much effort to
the development. Processor Designer [14] provided by Coware cooperates with LISA proces-

sor. This tool generates compiler by nML [15].

2.1.1 Customizing Datapaths on Processor

Abnous and Bagherzadeh analyze performance effect of limited datapaths for VIPER VLIW
processor [16] which has four ALUs and one global register file [17]. They show that limited
interconnect datapaths among ALUs could achieve higher performance than fully-connected
datapaths. They solved read-after-write (RAW) data hazards by stalling pipeline and did not
focus on scheduling in their study, although they schedule instructions to reduce hazards. For
similar architecture, Buss, et al. propose a bypass wiring method by which the most com-
municating interconnection datapaths were wired actually [18]. An arranged list scheduler of
IMPACT [19] retargetable compiler was used for compaction in their work. Brown and Patt
also examined partial forwarding for their adders that use redundant binary representation [20].

Sassone, et al. propose broadcast forwarding for out-of-order superscalar processor to for-
ward the results in several cycles [21]. Although the number of forwarding paths can be reduced
with decreasing instructions per cycle, performance improvement by increasing processor fre-
guency is superior. In embedded systems with strict constraints, selecting superscalar processor
may be difficult.

Ahuja, et al. study partial forwarding for MIPS-like single-issue pipelined processors [5].
They measured down rate of execution performance with two types of partial forwarding, sym-
metric and asymmetric forwarding. A processor with the latter have to care about the order of
operands for each instruction because forwarding paths may be connected with a part of inputs
of a functional unit, while the former do not have to. They concluded that partial forward-
ing could reduce hardware cost with just a few percent performance losses. They used safety
scheduling method; an instruction will be scheduled only it can use the forwarded result at the

current cycle.

M. Kudler, et al. develop instruction scheduling algorithm for partial forwarding [22].



2.2. CODE OPTIMIZATION FOR CONFIGURABLE PROCESSOR 11

FLASH, which is acronym for "Foresighted Latency-Aware Scheduling Heuristic,” is improved
version of what they have been used in the study of design space exploration for partial for-
warding [23]. FLASH based on exhaustive scheduling which checks all candidates of sched-
uled instruction sequences. To reduce number of candidates, FLASH limits search depth and

uses some assumption for simplification.

A. Shrivastava, et al. insist that instruction scheduler based on Operation Table [24], which
represents instruction data flow in each stage, can achieve better scheduling for partial forward-
ing processor than that based on reservation table which is commonly used in many compilers
to avoid structure hazards. Operation Table is also used for design space exploration for partial
forwarding [25, 26, 27]. They did not focus on scheduling algorithm but hazard detection, and
there are no discussions about optimization for partial forwarding. Jayaseelan, et al. propose

forwarding customization method to improve usability of instruction set extensions [28].

Kimura, et al. propose Procyon processor which takes other approach similar to partial
forwarding to optimize program [29]. Procyon has full forwarding paths which can be activated
or inactivated by control instructions. Each forwarding path is activated or inactivated to use

old register value after an instruction which will change the contents of the register is issued.

Shoji and Tian, et al. study for forwarding architecture implemented by bus interconnection
on VLIW processor [30, 31]. All processing elements (PEs) are connected by bus for global
forwarding to spread local forwarding value into other PEs. Compared to forwarding structure
which connects for each pair of PEs, the number of forwarding datapaths is reduced and imple-
mentation facility is improved, instead of bus occupation constraint which means only one PE
can broadcast forwarding value at a cycle. They also propose a power-consumption-aware in-
struction scheduling method for the bus forwarding processor to reduce the number of register

accesses.

2.2 Code Optimization for Configurable Processor

Code optimization is one of the major compiler optimization problem so that many code gener-

ation and optimization methods for many kinds of processors have been studied [32, 33, 34, 35].
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2.2.1 Parallelism Exploitation for Configurable Processor

There are several approaches to generate and optimize assembly code or programs [33, 36].
Target dependent transformation on intermediate representation of the input programs is major
optimization method. There are many machine-independent optimization techniques based
on intermediate representation so that this method is widely used in practical compiler. This

approach is also applied for machine-specific optimization.

Another approach to optimize programs and assembly code is generation of high quality
assembly code in assembly code generation phase [35]. As described so far, there are three ma-
jor tasks in compiler back-end; code generation, instruction scheduling and register allocation.

These tasks are the main focus of this thesis.

Like as automatic SIMD code generation, there are many studies on SIMD code optimization
[37, 38, 7, 39], SIMD instructions have fixed length registers for their operands so that SIMD
load/store operations also access registers according to data alignment of the SIMD register

size, thus shifting is also important problem during optimization.

Leupers studies SIMD code generation problem in early stage [37]. In this study, SIMD code

generation for Tl 62xx processor is proposed by integer programming.

Franchetti, et al. proposes an efficient SIMD code generation technique for numeric opera-
tion [38]. This technique focuses on optimization for the output numerical kernels, including
matrix arithmetic libraries and DSP algorithms such as FFT, generated by automatic perfor-

mance tuning systems.

In [6], generation method of SIMD argkrmutationinstructions is presented. SIMD instruc-
tions are generated by grouping operations in a basic block represented by Data Flow Graph
(DFG). After the grouping, permutation instructions are inserted between SIMD instructions.
Ren, et al. proposes an optimization technique to minimize permutation instructions in basic
block [7]. By propagating permutations across statements and merging consecutive permuta-
tions, the number of permutations can be reduced. Suzuki, et al. also propose similar automatic

SIMD instruction generation method [40] for COINS compiler infrastructure [41, 40].

[39] solves SIMD alignment problem using MIN-CUT/MAX-FLOW algorithm in some spe-

cial cases. This paper insists that the cases supported by the algorithm often appears in practical
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code. Both [7] and [39] show that the problems are reducted into the multiway cut problem
which is an NP-hard problem [42].






Chapter 3

Optimal Code Scheduling for Partial

Forwarding Processors

This chapter describes optimal instruction scheduling method for partial forwarding proces-
sors. This chapter is organized as follows. Partial Forwarding Architecture is summarized in
section 3.1 and how to treat characteristics of the partial forwarding architecture in code sched-
uler is summarized in section 3.2. The way to convert scheduling problem into integer linear
programming (ILP) problem is presented in section 3.3. Experimental results are described in

section 3.4. Finally, this chapter is concluded in section 3.5.

3.1 Partial Forwarding Architecture

In this section, partial forwarding architecture [5] in processor pipeline is summarized.

3.1.1 Naive Pipeline Processor

In typical pipeline processor, a pipeline stage to read content from a register file is different
from that to write result into a register file. Figure 3.1 shows pipeline structure of DLX pro-
cessor [43]. IM and DM mean instruction memory and data memory, respectively, and Reg
represents register file. This typical RISC processor has five pipeline stages. Role of each stage

is summarized below;

15
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Instruction Fetch (IF) stage.

Instruction Decode (ID) stage.

instruction Execution (EX) stage.

Memory Access (MA) stage.
e register Write Back (WB) stage.

ALU at EX stage in the DLX processor has two input ports and one output port. During
decoding instruction in ID stage, the decoder resolves operand registers and read values from
the registers according to input operands. execution result of ALU in EX stage and data loaded
from data memory in MA stage are written in an output register at WB stage which is three
stages after ID stage so that the result of an instruction become available four cycles after the
instruction is fetched on this basic DLX processor. Program code which runs on this processor
must satisfy latency constraint between instructions caused by the gap of register access timing
between read and write, otherwise the processor will read an input value from the register in
which EX or MA stages generate an output value, which changes semantics of the program
code.

There are two solutions, hardware solution and software solution, to avoid violation of the
latency constraint which is called hazard or data hazard [43]. The hardware solution is using
hazard detection unit. Hazard detection unit is one of popular solution against data hazard to
stall pipeline until execution result is written back to register file [43]. Hazard detection unit
resolves the problem without modifying on the input instruction sequence in exchange for per-
formance loss of the processor due to stalling which just consumes execution cycles. On the
other hand, instruction scheduling which is the software solution resolves hazards. Instruction
scheduling is one of the compiler back-end tasks to reorder instructions in input code [32].
Instruction scheduler changes the order of instructions in compilation time to optimize total
execution cycles of the instructions. Between a couple of instructions which have dependence
between them, instructions which are independent from them are inserted during this optimiza-
tion process. If there are no or not enough independent instructions, No-OPeration (NOP)

instructions are inserted for waiting. NOP does nothing but just consumes execution cycles,
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Figure 3.1: DLX processor which has five pipeline stages

one cycle in almost processors. Although it is the same result as the hardware solution if only
NOP instructions are inserted, execution performance of the instruction sequence improves in

most cases.

3.1.2 Forwarding Processor and Partial Forwarding Processor

As described above, naive pipeline processor has to wait for several cycles to finish writing the
computation result of an instruction. This delay caused by data hazard increases execution cy-
cles of the programs especially when the instruction sequence has long critical path. Forward-
ing, an processor architecture to dissolve this delay, is used to improve processor performance
[43]. Forwarding unit consists of datapaths, multiplexer, and forwarding control logic. Each
forwarding datapath with the processor pipeline sends computational result from a functional
unit into pipeline stages to read register in which the result is written. In a read stage, the
forwarding unit of the processor reads the result from one of the forwarding datapaths if the
fetched instruction requires the result. Figure 3.2 shows DLX processor with forwarding unit.
Each forwarding datapath is connected between ID stage and pipeline register after EX stages.

Forwarding unit with decoder verifies whether input operands contain registers whose latest
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Figure 3.2: DLX processor with full forwarding unit

values are yet in pipeline registers. If the forwarding unit found the latest values, the decoder
read input values from forwarding datapaths instead of the register file so that the decoded in-
struction make use of the latest value of the input registers. On the processor shown in Fig. 3.2,
one cycle is enough to use results of the preceded instructions.

In general, processor area which is occupied by forwarding unit is directly proportional to the
number of pipeline stages and quadratically proportional to the number of issue slots [5]. Em-
bedded processor is also demanded to equip low power consumption and small processor area
to satisfy design constraints by the systems. Furthermore, forwarding unit also may increase
the critical path delay of the processor to extend the length of the critical path even though the
processor is a single-issue RISC procesBartial forwarding, also called incomplete bypass-
ing [5] or partial bypassing [24], is a forwarding which datapaths for forwarding are not at all

possible points in the processor. Figure 3.3 is an example of partial forwarding implemented on
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Figure 3.3: DLX processor with partial forwarding from only the third stage

DLX processor. Compared with DLX processor which has forwarding paths from all effective
pipeline registers as Fig. 3.2, the forwarding datapath from the fourth stage to the second stage
is removed on DLX processor in Fig. 3.3. In contrast, processor with forwarding unit which
has all possible forwarding datapaths like Fig. 3.2 is cdildidorwarding. Partial forwarding
decreases the number of forwarding datapaths and reduces hardware cost which arises from a

multiplexer and the control logic.

3.1.3 Characteristics of Partial Forwarding

Partial forwarding processor has distinct property of issue timing of instruction from full for-
warding processor; an execution result of an instruction may not be always available although
it was available one cycle before. If an instruction is issued on a processor without forwarding
like Fig. 3.1, the result of the instruction can be used when it is written back to a register. After
that, it can be used on any following instructions until a new value is overwritten back to the

register. In the case of full forwarding processor like Fig. 3.2, the result can be used after the
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next cycle through forwarding datapaths. In both cases, there are common property that the
computational result of the functional unit can be used until the register is overwritten when

it become available at once. On the other hand, partial forwarding processor may not satisfy
this property. Consider an instruction of which following three instructions use the result is
issued on the DLX processor with partial forwarding datapaths illustrated in Fig. 3.3. The first
instruction produces the result when it is processed at the third stage. At the next cycle, the
second instruction is able to obtain the result of the previous instruction through the forward-
ing datapath, and it is executed correctly. Then, the third instruction also tries to get the latest
execution result from the first instruction, but it cannot be used since the result is in the fourth
stage and there are no forwarding paths. As a result, the functional unit reads the register which
has old register value. For this reason, instruction sequence for a processor with full forwarding
datapaths cannot be used on the processor which changes its partial forwarding datapaths. The
last instruction executed at after one cycle is executed correctly because it can read the desired

value from the forwarding path from the fifth stage.

3.1.3.1 Hazard Detection for Partial Forwarding Processor

Hazard detection unit enables to execute instructions without instruction scheduling even though
on partial forwarding processor. However, hazard detection unit without instruction scheduling
is not enough to dissolve the disadvantage of partial forwarding. When pipeline stall occurs,
following instructions have to wait their issue until the pipeline resolves the hazard. Due to this
delay, the total number of execution cycles becomes larger in almost cases. This problem is

also discussed in [5].

3.1.3.2 Effect of the Operand Position by Partial Forwarding

The ALU in Fig. 3.3 has two input ports. In the case of Fig. 3.3, there are forwarding datapaths
into the input ports if a pipeline register is connected with forwarding unit and vice versa; in
other words, the form of forwarding datapatrsignmetrical It means that the performance of
partial forwarding are independent from the ALU ports. This property is not required, although
it is desired for application developers. Figure 3.4 shows an example of DLX processor with

such a partial forwarding datapaths. In this processor, forwarding datapaths are connected
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Figure 3.4: An example of partial forwarding DLX processor with a forwarding path for only

one of the ALU input ports

into only one of input ports of the ALU. In other words, the form of forwarding datapath

is asymmetrical The decoder analyzes fetched instruction and assigns ALU input ports for
input operands so that the performance of partial forwarding depends on the ALU ports. For
application developers for the processor, this difference appears in the form of difference of the

latency constraint of the instruction set architecture.

3.2 Treatment of Partial Forwarding in Instruction Sched-
uler

In this section, the way to treat partial forwarding in instruction scheduler is described.

3.2.1 Architecture Model of Partial Forwarding

Partial forwarding is implemented on pipeline processors. The proposed method assumes that

the target processor has only one pipeline. The proposed method also assumes that register
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MUL | DIV | MOD | Write

Fetch [Decode

ALU |MEM | Write

Figure 3.5: Pipeline of the sample processor with partial forwarding

value is read at the decode stage in early stage of the pipeline and written into the destination
register at the write-back stage in the end stage of the pipeline like as DLX processors of Fig.
3.3.

However, the proposed method support for processor with more than two pipelines if in-
struction scheduler can regard pipeline structure of the target processor as one pipeline. The
processor shown in Fig. 3.5 has two pipelines; The upper pipeline has forwarding paths from
stages 3 and 5 and the lower pipeline has forwarding paths from stages 3, 4, and 5. The proces-
sor decodes fetched instruction and reads register file at the second stage. The decoder chooses
the destination pipeline according to the type of the fetched instructions. Only instructions for
multiplication and division are passed into the upper pipeline in Fig. 3.5. In this case, the

proposed method is applicable.

The proposed method schedules instructions in compiler so that the order of the input instruc-
tion sequence is unchangeable. Therefore, the proposed method assumes the target processor
is an in-order issue processor since out-of-order processor may change the execution order of

the fetched instructions.

Avoiding pipeline hazard is one of the important role in instruction scheduler for pipeline
processor. In general, there are three type of hazards in instruction sequence; read after write
(RAW), write after read (WAR), and write after write (WAW) hazards. RAW hazard occurs
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when an instruction use the result of a former instruction before it is written into the destination
register. RAW hazard is unavoidable hazard in any pipeline processor so that dependence be-
tween a pair of instructions with RAW hazard is called true dependence. WAR hazard occurs
when an instruction writes the result into the destination register before the register is accessed
to read the old value by former instructions. WAR hazard can be avoided to change the des-
tination register of the writing instruction so that dependence between a pair of instructions
with WAR hazard is called false dependence. WAW hazard is similar to WAR hazard; it occurs
when an instruction writes the result into the destination register before the register is accessed
to write the old result by former instructions. WAW hazard also can be avoided to change the
destination register of the writing instruction as WAR hazard and dependence between a pair of
instructions with WAW hazard is called output dependence. However, after register allocation,
both WAR and WAW hazards are also real hazards so that instruction scheduler must avoid

them.

3.2.2 Available Distance

When program runs on partial forwarding processor without hazard detection unit, instruction
sequence of the programs must be scheduled by compiler to avoid any hazard to drive the
program correctly, otherwise the functional units which use the result of preceding instruction
read old and wrong value from register file described in section 3.1. Due to the characteristics
of partial forwarding as described in section 3.2, conventional scheduling algorithms which do
not consider partial forwarding cannot optimize programs for partial forwarding processor. The
property of partial forwarding demands consideration of partial forwarding from instruction

scheduler.

A conventional instruction scheduler cannot utilize partial forwarding datapaths enough
since it uses a single value, instruction latency, to represent the number of cycles which are
required that the execution result becomes available. To solve instruction scheduling problem,
analyzing dependence among instructions in an instruction sequence is required. The analyzing
result is represented by means of a Data Dependence Graph (DDG) [36]. DDG is the base of

instruction scheduling. In the case of Fig. 3.3, an instruction scheduler must avoid generating
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scheduling result which contains an instruction which uses the result of an instruction scheduler
at two cycles before. To satisfy this constraint, a single latency value is inadeduwaitable
distances defined to adapt partial forwarding to instruction scheduler. An available distance is
represented a9, [). D is a set of natural numbers. Each elemenbirepresents the distance

at which the execution result of the predecessor is available. The successor can use the exe-
cution result of the predecessor if the instruction distance between them equals to an element
in D. On the other hand,is a natural number which is bigger than any element®.ini de-

notes the minimum distance that the following instruction can use the preceding instruction’s
result without data hazard. The successor can use the execution result of the predecessor if the

instruction distance between them is equals to or biggerithan

For example, Fig. 3.7 shows the DDG of the instruction sequence represented in Fig. 3.6 on
the processor in Fig. 3.5. LOAD, ADD, ADDI, and MULI in Fig. 3.6 mean load memory data
into a register, add second and third operand registers into first operand register, add second
register and third immediate into first operand register, and multiply decoder register and third
immediate into first operand register, respectively. If a decoded instruction uses multiplier or
divider, the processor calculates it in the upper pipeline in Fig. 3.5. Other instructions, such
an ALU instruction or a memory access instruction, are processed in the lower pipeline in Fig.
3.5. Only MULI is processed in the upper pipeline among the instructions in Fig. 3.6. The
result of MULI becomes available through forwarding paths from MUL and MOD stages, and
it is written back to the register file at write stage in the upper pipeline. The decoder in ID stage
can use the result after one, three, and five cycles and after. Therefore, the available distance on
the edgel — 6is ({1,3},5). Since LOAD instruction is processed in MEM stage which is one
stage after ALU stage, The edges from LOAD ha&we2) while The edges from ADD have
(¢,1). The proposed method generates a DDG that has one source and one sink to insert virtual
start and terminal nodes for the following scheduling phases. The start and terminal nodes are

represented asandt in Fig. 3.7.
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/1: LI %R0, $1 ;RO=1; \

2:LD $100, %R1 ; R1 =Mem[100];

3: Ll %R2, $3 ;R2=3;

4: ADD %R0, %R1, %R3 ;R3=RO0O+R1;

5. ADDI %R0, $1, %R0 ;RO=RO+1;

6: MUL %R1, %R2, %R4 ;R4=R1l+R2
Q: SUB %R3, %R4, %R5 ;R5=R3- Réy

Figure 3.6: Sample code for sample processor

3.2.3 Complexity of instruction scheduling for partial forwarding

processor

Hennessy and Gross show that instruction scheduling with arbitrary latencies on one single
pipeline in-order issue processor is a NP-hard problem [44]. Obviously the proposed archi-
tecture model for partial forwarding includes conventional pipeline processor model. This fact
implies that instruction scheduling method for arbitrary partial forwarding is also NP-hard. In
general, only some restricted instruction scheduling problems are solvable in polynomal time

[45].

3.3 ILP Formulation of Instruction Scheduling Prob-
lem for Partial Forwarding Processor

In this section, optimal instruction scheduling method for partial forwarding processors is de-

scribed.

3.3.1 Preconditions

ILP scheduling method described in this chapter is based on some preconditions. The target

processor on which ILP scheduling method is applied must satisfy following conditions:

e RISC processor.



CHAPTER 3. OPTIMAL CODE SCHEDULING FOR PARTIAL FORWARDING
26 PROCESSORS

CISC processor has complex instruction set architecture (ISA) such as variable length
instructions. Required cycles for each instruction also varies in wide range so that in-
structions not flow in the processor pipeline smoothly. Partial forwarding contributes for

simple ISA and pipeline control logic processor such as RISC.

e Single-issue processor.

Multi-issue processor can fetch several instructions at a cycle so that the cost of forward-
ing increases in order of the square of the number of issue slots [5]. There are many
previous work to reduce forwarding cost like clustered VLIW [17, 46]. When patrtial
forwarding is implemented on clustered VLIW processor the scheduling method for par-
tial forwarding can be applied to treat for each issue slot as a pipeline of single-issue

processor, after assigning instructions for each issue slot.

e In-order issue processor.

Out-of-order issue processor shuffles the order of fetched instructions in their instruction
buffer to execute instructions in parallel. In the proposed, the order of instructions is

optimized by compiler and must not be changed in the target processor.

e Symmetric partial forwarding processor.

On asymmetric partial forwarding processor, instruction scheduler requires to consider
order of the operands for each instruction. In the proposed method, the orders of the
input operands for each instruction are ignored. Note that full forwarding processor and

no forwarding processor are also symmetric.

3.3.2 Scheduling Method

Input of the instruction scheduling method is an instruction sequence for each basic block,
and ISA information which includes available distance. The scheduling method consists of

following four steps:
e DDG construction

e DDG simplification
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e Calculate upper bound of the total execution cycles

e Solving ILP

3.3.2.1 DDG Construction

Data dependence occurs when an instruction uses a value in a register or a memory before
precedence instructions define [32]. Figure 3.8 is DDG construction algorithamd £ mean

a set of nodes and edges, respectively. An elemestigmrepresented a3t f,om, 7o) M from

andn,, are precedence and succession nodes of the étjgepresents storage resource such

as register and memory.

This algorithm constructs DDG with only one source node and one sink node. These nodes
are calledSTARTandTERMINALNode, respectively. The instructions which are indicated by
these nodes are calle&t’ ART andTERMIN AL pseudo instructions, or simplyT"ART
andTERMINAL. START andTERMIN AL are removed after instruction scheduling.

3.3.2.2 ILP Formulation for Partial Forwarding Processor

Nodes, edges, and weights of the edges in DDG constructed by the previous step represent
instructions, dependences, and available distances, respectively. An available distance is rep-
resented a¢D, [). | denotes the minimum distance that the following instruction can use the
preceding instruction’s result without a data hazdvd= {d,, d», ds, ...} is a set of distances.
All elements inD are smaller thah. To execute a program without hazards, all pairs of in-
structions that have dependencies must keep their distances moretreadistance irD.

The proposed scheduling method generates a DDG that has one source and one sink to insert
virtual start node and terminal node for the following phases. The start node and terminal node

are represented asandt in Fig. 3.7.
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3.3.3 DDG Simplification

In this step, DDG is simplified to reduce computation complexity to partition DDG and to
remove redundant edges in DDG [47, 48].

Partition nodeis a node on any path from the source node to the sink node. In other words,
there are no paths from the source to the sink without partition node. The source and the sink
are also partition nodes since output DDG generated by Fig. 3.8 has only one source node
and one sink node. These facts insist that the scheduler regards partition node as barrier node
which prevents dependences between preceding nodes and succeeding nodes. All instructions
in preceding nodes must be executed before the instruction of the partition node. In contrast,
all instructions in succeeding nodes must be executed after the instruction of the partition node.
Therefore, the scheduler obtains the optimal solution to solve for each instruction chunk divided
by partition nodes. For example, nodes, andt are partition nodes in Fig. 3.7.

Redundant edgesre removable edges when solving scheduling probleme betan edge
from nodes: to b. If there is another path between the nodes witl@and the minimum length
of the path is larger thahof e, b can use the result af since the dependence ofs dissolved
while that of the other path is dissolved. Therefarés a redundant edge and the scheduler
can ignore this edge when solving scheduling problem. Since the number of edges in the DDG
affects the size of the ILP problem, deleting redundant edges in DDG contributes the problem

size reduction. For example, the edge between 3-6 is redundant in Fig. 3.7.

3.3.4 Calculating Upper Bound of the Total Execution Cycles

Before solving the ILP problem, Instructions are scheduled by list scheduler to obtain an ex-
ecution cycle which may be smaller than the original value. The obtained execution cycle is

used as the upper bound of the objective function.

3.3.5 Solving ILP

In the last phase, the scheduler solves ILP problem converted from scheduling problem for par-
tial forwarding processors. This problem is formulated as 0-1 ILP problem [47, 49]. Variable

2} denotes whether instructiaris scheduled at cyclg If instructions is scheduled at cyclg



3.3. ILP FORMULATION OF INSTRUCTION SCHEDULING PROBLEM FOR PARTIAL
FORWARDING PROCESSOR 29

2] is 1. If it is not scheduled;’ is 0. The range of is [0, n — 1] where the number of nodes in
DDG isn. The range ofi is [0, m + 1] where the execution cycle of list-scheduled instructions
ism, not[0, m — 1] since the virtual start and end nodes are inserted in the DDG.

To solve the scheduling problem by ILP, a valid instruction sequence must satisfy the follows

constraints:
Constraint 1 Each instruction must be executed exactly once.
Constraint 2 No more than two instructions can be executed in the same cycle.

Constraint 3 A following instruction that uses a result of the preceding instruction must not

be executed at an unavailable distance.

Constraint 1 means that exactly one variable among the variables relatealds 1; in other

words, the summation of the variables equals 1, which can be represented as Eq. (3.1):
Vi ) oal = 1 (3.1)
j=1

Constraint 2 means that at most one variable among the variablesjatalds 1 and can be

represented as Eq. (3.2):
Vi ) @l < L (3.2)
=1

WhetherD is empty or not for constraint 3 is the most important constraint for partial for-
warding processor. Assume that instructiodepends on instructioh. If D is empty, the
distance betweeh andi must be more tha,;, which means aboutk and:. In this case,

constraint 3 can be represented as Eq. (3.3):
ijxi—l—Lki < ijx?. (3.3)
j=1 Jj=1

If D is not empty, constraint 3 is represented by two equationsdl.gtbe the minimum

value of Dy;, andN,; be the set of unavailable distances:
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In this case, constraint 3 means that the distance betweaml: is more thand,,;, and not

[ € Ny,;. Therefore, it can be represented as Egs. (3.5) and (3.6),

Y ixaltde < > jxal (3.5)
i=1 j=1
o+t < 1 forle Ny, (3.6)

wherej in Eq.(3.6) take$,1,2,... . m+ 1 — L.
The objective function of the problem is the execution cycle of the terminal node’s instruction
since it equals all input instructions. The objective function can be represented as Eq. (3.7)

because Eq. (3.1) binds the variables in Eq. (3.7) where exactly one variable holds 1:

mian x al (3.7)
j=1

3.4 Experiments

In this section, the experimental results are presented.

3.4.1 Environments

To perform and evaluate the proposed method, | constructed a C compiler using a CoSy com-
piler kit [50] and an opbdp O-1 ILP solver [51] to solve the scheduling problem’s formulation.

| compared execution cycles of the outputs by the proposed ILP scheduler with a list scheduler
and calculated how many execution cycles are reduced. Target processors in the experiments
have various partial forwarding paths based on DLX with five-stage pipeline. The DLX pro-
cessors were generated by ASIP Meister [9] in form of VHDL description. Partial forwarding
paths of the processors are configured on ASIP Meister. For simplification, the DLX pro-
cessors were implemented only integer instructions. In experiments, ModelSim was used for
cycle accurate simulation. Table 3.1 shows available distance for each processor. The first col-

umn shows the processors. All processors names start with “DI\}hat follows the prefix
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Table 3.1: Available distance of DLXs

Processor Name Available Distance
DLX_no {},4)

DLX X ({1},4)
DLX_M ({2},4)

DLX W ({},3)

DLX XM ({1,2},4)

DLX _XW ({1},3)
DLX_MW ({},2)

DLX XMW ({},1)

means the stages where a forwarding path exists between the input of the EX stage and spec-

ified stages. X, M, and W represent EX, MA, and WB stages, respectively. All target DLX

processors have no hazard detection units so that the compiler has to insert NOP instructions.
Table 3.2 shows the specifications of the DLXs. We obtained these estimation values for each

processor by logic synthesis. The frequency of the processors increases in inverse proportion

to the number of forwarding paths. Also, if the numbers of the forwarding paths are the same

between two processors, e.g. DXand DLX_M, the processor which has a forwarding

path on an earlier stage runs at lower frequency instead of efficient execution. This result is

inconsistent with an intuition that reducing forwarding path on a later stage improves frequency

of the processor higher. The delay of the critical path is the reason._Bh#ve the critical

path through forwarding paths and ALU in EX stage so that the maximum delay of ®OLX

become longer than DL and DLX_W. Delay due to control unit for forwarding also affects

the frequency so that the frequency of DI is longer than that of DLXW. For the same

reason, the processors which have forwarding paths from two stages XM, XOLX _XW,

and DLX.MW is slower than DLXM and DLX_W. However, DLX X is slower than DLXMW

because DLXMW does not have forwarding paths through ALU which is the largest functional

unit in the processor.

Although execution cycles of the programs increases in proportion to the number of for-
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Table 3.2: Specifications of DLXs

program
processor || Frequency(MHz) Area(Gate) Power(mW)
DLX _no 141.64 34961 7.92
DLX _X 124.38 37241 8.11
DLX_M 128.87 38188 8.46
DLX_ W 130.72 38853 8.77
DLX XM 120.34 40383 8.59
DLX _XW 119.76 41083 8.90
DLX_MW 127.39 42071 9.24
DLX XMW 119.05 44077 9.36

warding paths, however, the frequency of the processors increases in inverse proportion to the

number of forwarding paths. If programs are scheduled optimally for the processor with less

forwarding paths, the total execution time may faster than the processor with more forwarding

paths. For example, DLX may be faster than DLXMW if the proposed scheduler solves

the better solution.

The following programs were used in this experiment:

crcl6: calculate 16bit-CRC

inssort: perform insertion sort

sieve: perform the Sieve of Eratosthenes

fir2dim: perform FIR-filtering for 4x4 matrix

matl1x3: calculate product of 3x3 matrix with 1x3 matrix

Sieve is a program that searches for prime numbers bet{@e&00). Fir2dim and mat1x3 are

from DSPStone [52]. The rest of programs in DSPStone are not chosen because not all of them

can be compiled using ILP on all DLX processors in reasonable time. Crcl16 and inssort were

made from scratch.
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All programs in this experiment have no basic blocks which size is more than 20; This
characteristic means that the programs may be solved in practical time even though instruction

scheduling for partial forwarding is an NP-hard problem.

3.4.2 Code Size

Table 3.3 shows the improvement ratios of code size for each program by the proposed method
against the list scheduler. An improved program ratio of is calculatéd-aS;.p/Cj;s, Where

Crp andCy;; denote the output code size of ILP and the list scheduler. The list scheduler
is used as a comparison target since it is a well-known scheduling algorithm. The proposed
algorithm reduces code size up to 4.0% on average, and maximum improvement is 13.5%.
Note that the improvement ratio tends to be proportional to the program size. In the result,
fir2dim shows the most improvement by the proposed method. This result suggested that more
improvement is possible if the program size is large. In this experiment, target program sizes
were relatively small, and thus more improvements was expected for practical programs. The
improvement ratio tends to be inverse proportional to the number of forwarding paths, except
DLX _no. Note that all programs scored the highest ratio on DLX his result implies that

the result of an instruction is often used by the next instruction, and the list scheduling cannot

fully exploit the partial forwarding path of the DLX.

3.4.3 Execution Cycles and Times

Table 3.4 shows the execution cycles of the programs with the proposed method and list sched-
uler and improvement ratio. Although each improvement ratio of execution cycles differs from
that of code size because of the number of the execution count for each basic block, the total
tendency of the results are similar to the result of code size. This result seems to show the
trivial result that full forwarding processor, DLXMW, is the best solution for all programs.
However, experimental results of execution time deny the intuition.

Table 3.5 shows the execution times of the programs by the proposed method and the list

scheduler for each DLX processor. The fastest time for each program is marked in Table 3.5.
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Table 3.3: Improvement Ratio of code size compared ILP with list scheduler

program

sieve matlx3 inssort crclé fir2dim

processor || List | ILP | Ratio[%] | List | ILP | Ratio[%)] | List | ILP | Ratio[%] | List | ILP | Ratio[%] | List | ILP | Ratio[%)]
DLX_no 177|175 1.1 131 125 4.6 277 | 269 2.9 379 | 367 3.2 559 | 524 6.3
DLX _X 140 | 127 9.3 111 103 7.2 218 | 203 6.9 301 | 277 8.0 483 | 418 13.5
DLX_M 143|137 4.2 111 | 105 54 214 | 209 2.3 304 | 294 3.3 490 435| 11.2
DLX W 154 | 153 0.6 117|111 51 241 233 3.3 333|324 2.7 496 | 464 6.5
DLX XM 128 | 121 55 100| 99 1.0 193 | 186 3.6 270 | 258 4.4 425 | 408 4.0
DLX_XW | 128|123 3.9 104 | 101 2.9 197 | 190 3.6 272 | 265 2.6 446 | 412 7.6
DLX_ MW | 134|132 1.5 105| 103 1.9 205 | 200 2.4 290 | 283 2.4 451 | 430 4.7
DLX XMW | 122 121 0.8 99| 99 0.0 182 | 181 0.5 257 | 257 0.0 408 | 408 0.0

All programs become faster with the proposed method; in case sieve, XOAXs the fastest
processor if the program is scheduled by list scheduler. However, the proposed method shows

that DLX_X is the fastest processor.

Except for fir2dim, the actually fastest processor for each program scheduled by the proposed
method differs from that scheduled by the list scheduler. This result insists that the proposed

method is useful for partial forwarding.

Table 3.6 shows the results of compilation time using the proposed method. All programs
except one are compiled within practical time. Since the proposed scheduler aims to calculate
the optimal solution, compilation time in this experiment is almost acceptable. However, inssort
consumed over 24 hours for DLXo processor. The reason for this overtime apparently is that,
for one of the basic blocks, DDG has a complex structure, and thus combinational explosions
occurred at scheduling. The same reason may exists in the rest of the DSPStone programs so

that shortening compilation time is one of the important future work.
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Table 3.4: Improvement Ratio of execution cycles compared ILP with list scheduler

program

sieve matlx3 inssort

processor || List ILP | Ratio[%] | List | ILP | Ratio[%] | List ILP | Ratio[%)]
DLX no | 15295| 15193 0.7 | 979|926 5.4 21899 21768| 0.6
DLX X 11817| 10586 10.4 897 | 859 4.2 18387| 18144 1.3
DLX_M 12155| 11749 3.3 899 | 865 3.8 18531 18472 0.3
DLX W 13313 13212 0.8 917 | 883 3.7 20131| 20000 0.7
DLX XM 10999 10380 5.6 864 | 855 1.0 17770| 17466 1.7
DLX XW | 10793| 10382 3.8 864 | 857 0.8 17756| 17539 1.2
DLX MW | 11534 11332 1.8 873 | 861 1.4 18363| 18235 0.7
DLX_XMW | 10481| 10380 1.0 855 | 855 0.0 17201| 17113 0.5

program
crcl6é fir2dim

processor | List ILP | Ratio[%] | List ILP | Ratio[%]
DLX _no 12597 12173 3.4 15517 15204 2.0
DLX X 9219| 8335, 9.6 14643| 13361| 8.6
DLX_M 9470| 9436 0.4 14581 13954 4.3
DLX W 10995| 10574 3.8 14683| 14268 2.8
DLX XM 8316| 7868 5.4 13835| 13777 0.4
DLX _XW 7906 | 7887 0.2 14138 13781 2.5
DLX_MW 9396| 8977 4.5 14131 13928 1.4
DLX XMW 7855| 7855 0.0 13777| 13777 0.0

3.5 Summary

In this chapter, an optimal scheduling method for partial forwarding processors solved by con-
verting ILP problem is proposed. In experiments, the proposed instruction scheduler generated
more efficient code than the simple list scheduler which supports partial forwarding. Experi-
mental results also showed that the proposed scheduler extracted the advantage of partial for-
warding processor. These results proved that the proposed scheduling method can achieve to

optimize embedded systems with configurable processors.
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Table 3.5: Execution time of the programs on each DLX processor

sieve matrix1x3 inssort crcl6é fir2dim

processor || list[us] | ILP[us] | list[us] | ILP[us] | list[us] | ILP[us] | list[us] | ILP[us] | list{us] | ILP[us]

DLX_no 108.0 | 107.3 | 6.91 | *6.54* | 154.6 | 153.7 88.9 85.9 | *109.6* | *107.3*

DLX_X 95.0 | *85.1* | 7.21 6.91 147.8 | 145.9 74.1 67.0 117.7 | 107.4

DLX_M 94.3 91.2 6.98 6.71 | *143.8*| 143.3 | 735 73.2 113.1 | 108.3

DLX_W 101.8 | 101.1 | 7.02 6.75 154.0 | 153.0 | 84.1 80.9 112.3 | 109.2

DLX_XM 914 86.3 7.18 7.11 1477 | 145.1 69.1 | *65.4* | 115.0 | 1145

DLX_XW | *90.1* | 86.7 7.21 7.16 148.3 | 146.5 | *66.0* | 65.9 118.1 | 115.1

DLX_MW 90.5 89.0 | *6.85* | 6.76 1441 | *143.1* | 73.8 70.5 1109 | 109.3

DLX XMW | 88.0 87.2 7.18 7.18 1445 | 1437 66.0 66.0 115.7 | 1157

Table 3.6: Scheduling time using ILP [sec.]

program
processor || sieve| matlx3| inssort | crcl6| fir2dim
DLX _no 0.87 | 85.00| 100680.0| 1.87 8.8
DLX _X 0.69 | 318.00 3.8| 1.00 | 1100.0
DLX_M 0.68 | 129.00 13| 1.00 | 230.0
DLX W 0.53| 30.00 58.2| 1.13 23.9
DLX XM 0.31 4.13 1.2| 0.66 21.8
DLX _XW 0.27 0.16 1.2| 0.33 61.0
DLX_ MW | 0.47| 59.00 0.7 0.76 | 107.0
DLX_XMW || 0.10 0.07 0.3| 0.13 0.2
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Figure 3.7: DDG of the sample code on the sample processor
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Input: Instruction sequende= {i1,42,...,0n—1}
Output: Data dependence graptDG(V, E)
begin
ns = STARTnode,ne = TERMIN ALnode,V = {ns}, E = ¢;
VR (USE[Ry] = {ns}, DEF[Ry] = ns);
for(k=1;k<n;k++){
ng = instruction of node, V =V U {n;};
for all Ry (i, usesR;) {
L = Latencyweightofedge(DEF[Ry], ng);
E = EU(DEF|Ry],ng, L);
USE[ri] = USE[Ry] U {ny};
}
for all R, (ix, definesR;) {
forall n; in USE[R] {
L = Latencyweightofedge(n;,ny);
E =FEU(nj,ng, L),
}
USE[R;] = ¢, DEF[R;] = ny;

}

V=Vui{n};

forall n, € V (n is sink node)
L = Latencyweightofedge(ng, ne);
E = E U (ng,ne, L);

}

returnDDG;

end
J

Figure 3.8: DDG construction algorithm



Chapter 4

Heuristic Code Scheduling for Partial

Forwarding Processors

This chapter describes heuristic instruction scheduling method for partial forwarding proces-
sors, which differs from integer linear programming (ILP) method described in chapter 3. This
chapter is organized as follows. Instruction scheduling algorithm for partial forwarding proces-
sors is described in section 4.1. Experimental results are described in section 4.2. Finally, this

chapter is concluded in section 4.3.

4.1 Instruction Scheduling Algorithm for Partial For-

warding Processor

In this section, the proposed scheduling algorithm for partial forwarding processor is described.

4.1.1 Detail of the Scheduling Algorithm

The proposed heuristic scheduling algorithm for partial forwarding based on list scheduler
which takes the length of the longest path in the input DDG as priority function. Figure 4.3
shows the proposed algorithmichC'ycle represents current cycle. The scheduler increments
SchCycle when an instruction is scheduled @thCycle. M AX PATH; is the length of the
longest path fromy; to the other nodes in the graph. The scheduler ugesX PAT H; as

39
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priority to sort instructions inVodeList by descending ordetxecutable List is a subset of
NodeList, which has only executable instructionssathCycle. The order of instructions in
EzxecutableList is the same that itWode List.

When the target processor has partial forwarding structure, it is important to determine pri-
ority of each node. The proposed algorithm chooses the instruction with the highest priority

based on these policies:

o If there are enough executable instructions at the current cycle so that the processor can
finish processing all instructions in the pipeline, the scheduler issues the instruction with

the highest priority.

¢ If more than two instructions with the highest priority, the scheduler issues the instruction

which uses the result from partial forwarding circuit.

¢ If the instruction with highest priority will prevent other instruction which uses the result
from partial forwarding, the scheduler does not issue the highest instruction and try to

issue the second highest instruction.

The first heuristic aims to ignore partial forwarding paths when there are enough instructions
to be issued. Though an instruction requires certain cycles to write the execution result into a
register, the processor can execute other instructions which do not require the result through
forwarding datapaths. In this algorithm, if there are enough executable instructions, the sched-
uler issues instructions to wait results of the instructions in the pipeline are written back to the
destination registers.

The scheduler takes second and third heuristics when the number of executable instructions
is less than the number of the longest latency for which the target processor has to wait. These
policies aim to raise use rate of partial forwarding paths. In some cases for partial forwarding
processor, the optimal instruction sequence may have no operation cycle even if issuable in-
struction exists to reduce total execution cycle. For this reason, the proposed scheduler changes
the instruction to issue from the highest instruction to the other instructions with lower priorities

when a state satisfies these conditions during scheduling:

e The instruction;, the scheduler tries to issue, only has one instruction which uses the

result ofs.
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e The following instructiory uses the result afand other preceding instructioh
e Both dependencies— j,7 — j haveD which is not empty set.
e D of // — j has the shortest available distance value thawf i — ;.

Figure 4.2 shows an example of this case. In this case, node 1 should be scheduled at 1 cycle
after the fastest executable cycle since node 3 become use the results of nodes 1 and 2 through
partial forwarding paths. If node 1 is scheduled at the fastest executable cycle, the result of

node 2 cannot be used.

Outline of the proposed scheduling algorithm described in Fig. 4.3 is summarized below;

1. Calculate maximum path length for each nodes which are not scheduled. According
to the maximum path length as priority, choose the node with the highest priority as

scheduling candidate node .

2. Compare eachof the succeeding instruction from the candidate instruction. If the num-
ber of current schedulable instructions is more thahe scheduler schedules the candi-
date instruction at the current cycle, otherwise calculate minimum scheduling cycle for

each instruction which succeeds the candidate instruction directly.

3. If the scheduler decides that the candidate instruction should be scheduled at the current
cycle to execute the succeeding instruction at the earliest cycle, otherwise scheduler reject
the candidate instruction and choose new candidate instruction with the second highest

priority.

4. Repeat 2 and 3 until the candidate instruction is scheduled. If all schedulable instructions

are rejected, NOP is scheduled.
5. Repeat 1-4 until all instructions are scheduled.

Step 1 aims to schedule instructions on the critical path prior to the others. Note that the
weight of edge is available distance so that the scheduler has to consider how to calculate path
length. In the proposed method, summation of all minimum element of available distance is

adopted as path length. This means that the scheduler refjarfid is empty set, or the
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Figure 4.1: An example DDG for the scheduling algorithm

minimum element inD as the weight of each edge. The scheduler searches the critical path
for schedulable instruction. If found, it is chosen as the candidate instruction and the scheduler
advances to the next step. Otherwise, the scheduler searches candidate instruction on the second

longest path. This search continues until candidate instruction is found.

In step 2, the scheduler counts all schedulable instructions except the candidate instruction.
The scheduler decides whether the candidate instruction should be scheduled on the current
cycle or should not be, according o of the directly succeeding instruction on the critical
path. If the number of schedulable instructions is greater than this threshold value, the candidate
instruction is scheduled on the current cycle. This decision policy stands on an intuition that

the result of the candidate instruction become available while other instructions are executed.

If the number of schedulable instructions is less than the threshold value, the scheduler cal-
culates the earliest schedulable cycle of the directly succeeding instruction on the critical path.
This strategy assumes that improvement of the issue cycle of the instructions on the critical
path contributes the total execution cycle of whole instruction sequencet, Leandi, be
the current cycle, the candidate instruction, and the directly succeeding instruction on the crit-
ical path, respectively. The scheduler searches the earliest schedulable cycferodach
t,t+1,t+2,....,t +1; — 1 of the scheduled cycle af wherel; meang of available distance
of i. If the best scheduling cycle is estimated on the current cycthe candidate instruction
is scheduled on. Otherwise, the scheduler rejects the candidate instruction from the schedu-
lable instructions on the current cycle and searches the other instructions until an instruction

is scheduled on the current cycle. If there are no schedulable instructions or all schedulable
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Figure 4.2: Example for scheduling problem about partial forwarding

instructions are rejected, NOP is scheduled on the current cycle.

For example, scheduling steps on DDG of Fig. 4.1 is as follows:

1.

10.

The current cycle is 1 and insns. 1 and 3 are schedulable in initial state.

The current critical path is instruction chain 1-2-4 so that insn. 1 is chose as the schedul-

ing candidate.

. The scheduler decides to schedule insn. 1 at cycle 1.

. The current cycle is 2 and insns. 2 and 3 are schedulable. The current critical path is

instruction chain 2-4 so that insn. 2 is chose.

The scheduler decides that insn. 2 should be scheduled at cycle 4 rather than cycle 2, at

the current cycle, to schedule insn. 4 earlier. Insn. 2 is rejected.

Insn. 3 is the only schedulable instruction except insn. 2 so that it is chosen.

. The scheduler decides to schedule insn. 3 at cycle 2.

. Although insn. 2 is the only schedulable instruction at cycle 3, the scheduler still decides

that insn. 2 should be scheduled at cycle 4 so that NOP instruction is scheduled.

Insn. 2 is scheduled at cycle 4.

Atcycle 5, insn. 4 is schedulable. The scheduler decides that insn. 4 should be scheduled

at the current cycle. Insn. 4 is scheduled and finish scheduling.
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4.1.2 Complexity Order of the Scheduling Algorithm

In this section, the order of the algorithm according to line numbers of Fig. 4.3 are discussed.
Lines 03-04 are initialize part. Line 04 can be implemented to use Dijkstra’s algorithm [53], and
the order of the initialize part i©( £+ N ), whereFE is the number of edges adis the number

of nodes in DDG. Target processor is a RISC processor by the assumption, numbers of inputs
of instruction are fixed. In this case, the order of these lines can be redidedasO(N).
Ezxecutable Nodes has to be sorted by descending order so that the initialize part requires at
least order of)(NV log N). Therefore, the order of the initialize partif( £ + N + N log N) =
O(NlogN).

In the main loop, at most one instruction is issued for each loop by the assumption. It
means that the order of the main loop can be calculated(a8) times the number of loop
iteration. The number of loop iteration increases only if the scheduler decides to suspend an
instruction to use partial forwarding following the heuristics. Each line from line 09 to line
16 can be calculated by constant order since the number of input of node is restricted due to
the constraint of RISC processor. Therefore, the order of the algorithm depends on the number
of suspension. At a certain cycle during scheduling, the number of suspension is at most the
half of number of waiting instructions due to the suspending condition described above, where
waiting instruction means instructions fzecutableList and instructions which wait until
the result of preceding instructions become available. Therefore, the number of suspension
is O(log N) since the number of waiting instructions is at moxiog V') due to the form of
DAG. Moreover, even though the scheduler continues not to issue instructions, the number of
suspension does not grow at a certain number of the longest latency of the processor since
the result of preceding instructions become available when the processor drives the pipeline.
Therefore, the order of the main loop %N x log N). Consequently, the order of whole

algorithm isO(N log V).

4.2 Experiments

In this section, the experimental results are presented.
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Table 4.1: Total, average, and maximum sizes of basic block for each program in DSPstone

complex | complex con- dot | fft | fir | fir2dim | iir _biquad

multiply update| volution | product N_sections

total 93 130 86 731299 101 285 195

average 7 13 7 6 7 7 6 10

max 39 77 23 27| 55| 25 23 96
iir_biquad | Ims | matrix1 | matrix2 | matrix1x3| n.complex | n_real | real
onesection updates updates update
total 120 | 140 150 173 69 216 125 63
average 7 9 5 6 6 15 8 5
max 62| 25 23 27 21 100 37 20

4.2.1 Specification of processors

In experiments, execution time of testbench programs compiled with the proposed method were
compared with that of optimal scheduling results obtained by the ILP scheduler described in
chapter 3. The same DLX processors shown in table 3.2 are used in this experiments so that

available distances of the processors also the same as table 3.1.

4.2.2 Evaluation of the proposed scheduling algorithm

| compared the execution time of the testbench programs whether the proposed scheduler gen-
erates optimal or suboptimal result within short time. Following result shows experimental
results of comparison. | executed DSPStone Kernel Benchmarks [52] on each DLX processor
in Table 3.1. Table 4.1 shows total, average, and maximum sizes of basic block size for each
program in DSPstone. The program is easy to schedule if average size of the program is rela-
tively small to the total size of that, and vice versa. In table #r2dim  is easy to schedule

andn_complex_updates s difficult to schedule.
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4.2.3 Comparison with ILP method

Although ILP scheduler solves the optimal solution, it requires long time to solve and only
two programsmatlx3 andfirzdim , were solved within practical time among DSPstone.
Therefore, | used these two programs and three additional progssws, , inssort , and

crcl6 , used in chapter 3 for comparison of compilation and execution time. Table 4.2 shows
the execution cycles with the proposed heuristic method and ILP method in chapter 3. | as-
sumed that each processor drives at maximum frequency since partial forwarding is used to
raise frequency to reduce amount of forwarding circuit. Increasing rates in Table 4.2 represent
gaps of execution cycles with the proposed heuristic scheduler from that with the optimal ILP
scheduler. Table 4.2 shows that the proposed heuristic method solves scheduling problems op-
timally for many pairs of processor and program. Also, increasing ratio of execution cycles
from the optimal solution was at most 5% and only five pairs of processor and program shows
more than 2%. Table 4.3 shows the execution time with the proposed heuristic method and
ILP method in chapter 3. Each increasing rate in Table 4.3 was similar to that of Table 4.3.
These results insist that the optimal or suboptimal solution can be obtained with the proposed
scheduler.

At the point of compilation time, shown in Tables 4.4, the proposed scheduler finished com-
pilation within 0.001s in contrast the ILP scheduler may consume several minutes. This rapid
compilation time is enough to explore design space for partial forwarding.

At the point of design space exploration for partial forwarding, fast design space exploration
method is important since a huge amounts of processors have to be evaluated. Figures 4.4-4.8
show trade-off graph for each test program. In each graph, points on solid line represent Pareto
optimal solution with the proposed heuristic method and points on dotted line is Pareto opti-
mal solution with ILP method. Witimat1x3 , crc16 , andfir2dim , the proposed heuristic
method obtained the same Pareto optimal solutions with ILP method. Although there were
some suboptimal solutions, the proposed method could be used for fast design space explo-
ration for partial forwarding. On the other hand, the proposed heuristic method missed the best

Pareto optimal solution witeieve andinssort . However, the difference from the Pareto
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Table 4.2: Comparison of execution cycles between proposed heuristic and ILP methods

program
sieve matlx3 inssort
processor | Heuristics| ILP | Ratio[%)] | Heuristics| ILP | Ratio[%] | Heuristics| ILP | Ratio[%]
DLX_no 15193 15193 0.00 2181 2181 0.00 21802| 21768 0.16
DLX X 10995| 10586 3.86 2003 | 1977 1.32 18303| 18144 0.88
DLX_M 11989 11749 2.04 1933 1933 0.00 18490 18472 0.10
DLX W 13212 13212 0.00 1974 | 1974 0.00 20059| 20000 0.30
DLX_XM 10380| 10380 0.00 1974 | 1974 0.00 17508 | 17466 0.24
DLX _XW 10744| 10382 3.49 1976 | 1940 1.86 17612| 17539 0.42
DLX_MW 11338 11332 0.05 1936 | 1936 0.00 18235| 18235 0.00
DLX_XMW 10380| 10380 0.00 1869 | 1869 0.00 17113| 17113 0.00
program
crclé fir2dim

processor | Heuristics| ILP | Ratio[%] | Heuristics| ILP | Ratio[%)]

DLX _no 12173| 12173 0.00 37719| 37719 0.00

DLX X 8731| 8335 4.76 33869| 33595 0.82

DLX_M 9436| 9436 0.00 33339| 33054 0.86

DLX W 10688| 10574 1.08 33360| 33360 0.00

DLX XM 7978| 7868 1.40 33755| 33225 1.60

DLX _XW 7892| 7887 0.07 33617| 33317 0.90

DLX_MW 9022| 8977 0.50 33465| 33465 0.00

DLX XMW 7855| 7855 0.00 30501| 30501 0.00

optimal solutions with ILP method was small with both programs due to enough approximation

ratio by the proposed heuristic method.

4.2.3.1 Results for other benchmarks

Table 4.5 shows the execution time for each pair of DLX processors and benchmark programs.

fit in table 4.5 uses FFT INPUT SCALED C function in DSPStone and takes 16-bit input
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Table 4.3: Comparison of execution time between proposed heuristic and ILP methods

program
sieve mat1x3 inssort
processor || Heuristics [is] | ILP [us] | Ratio[%] | Heuristics [:s] | ILP [us] | Ratio[%] | Heuristics [is] | ILP [us] | Ratio[%)]
DLX_no 107.3 107.3 0.00 15.4 15.4 0.00 153.9 153.7 0.14
DLX _X 88.4 85.1 3.88 16.1 15.9 1.26 147.2 145.9 0.86
DLX_M 93.0 91.2 2.01 15.0 15.0 0.00 1435 143.3 0.13
DLX W 101.1 101.1 0.00 15.1 15.1 0.00 153.5 153.0 0.30
DLX_XM 86.3 86.3 0.00 16.4 16.4 0.00 145.5 145.1 0.27
DLX _XW 89.7 86.7 3.47 16.5 16.2 1.85 147.1 146.5 0.38
DLX_MW 89.0 89.0 0.00 15.2 15.2 0.00 143.1 143.1 0.03
DLX XMW 87.2 87.2 0.00 15.7 15.7 0.00 143.7 143.7 0.03
program
crcl6é fir2dim

processor | Heuristics [is] | ILP [us] | Ratio[%)] | Heuristics is] | ILP [us] | Ratio[%]

DLX _no 85.9 85.9 0.05 266.3 266.3 0.00

DLX X 70.2 67.0 4.78 270.1 272.3 0.81

DLX M 73.2 73.2 0.03 256.5| 258.7 0.86

DLX W 81.8 80.9 1.07 255.2 255.2 0.01

DLX _XM 66.3 65.4 1.38 276.1| 280.5 1.59

DLX XW 65.9 65.9 0.00 278.2| 280.7 0.90

DLX _MW 70.8 70.5 0.46 262.7 262.7 0.01

DLX XMW 66.0 66.0 0.00 256.2| 256.2 0.00

data. In some cases, DLXMW which has forwarding circuits from all pipeline stages was not
the fastest processor since these processors run at the maximum frequency. These results insist
that partial forwarding processor can drive some benchmarks faster thanXi™W which

has the full forwarding structure.

4.2.4 Comparison with hazard detection unit

As described in chapter 2, hazard detection unit can be used even though in partial forwarding
processor. | compared the execution cycle of benchmark programs between the scheduled
code for partial forwarding and the code for full forwarding processor on partial forwarding

processor with pipeline stall function.
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Table 4.4: Comparison of compilation time between proposed heuristic and ILP methods

sieve mat1x3 inssort crcl6 fir2dim
Processor Name Heuristics [s]| ILP [s] | Heuristics [s]| ILP [s] || Heuristics [s]| ILP [s] | Heuristics [s]| ILP [s] || Heuristics [s]| ILP [s]
DLX_no 0.001| 42.0 0.001 35 0.001| 140.5 0.001 1.2 0.001 2.8
DLX X 0.001| 157.2 0.001| 451 0.001| 222 0.001 3.0 0.001| 267.0
DLX_-M 0.001 13.6 0.001 2.2 0.001 6.2 0.001 3.2 0.001 4.8
DLX_W 0.001| 23.0 0.001 1.3 0.001| 11.3 0.001 4.0 0.001 9.0
DLX XM 0.001 0.8 0.001 0.5 0.001 0.9 0.001 1.2 0.001 0.6
DLX _XW 0.001 1.2 0.001| 11.2 0.001| 321 0.001 0.6 0.001| 58.0
DLX_MW 0.001| 52.0 0.001 0.2 0.001 2.6 0.001 0.4 0.001 1.8
DLX_XMW 0.001 0.7 0.001 0.1 0.001 0.1 0.001 0.3 0.001 0.1

Table 4.7 shows the result of execution cycles on partial forwarding processors which have
hazard detection unit. Each program is compiled for DKMIW and any data hazard is solved
by hazard detection and pipeline stall. Table 4.8 illustrates differences of execution cycle be-
tween processor with hazard detection unit and the proposed scheduling. This result insists
that large programs tend to perform fast execution with the proposed scheduler. For example,
matrixl andmatrix2 , largest programs in this benchmark, run faster with the proposed
scheduler than the hazard detection unit. On the other hand, the hazard detection unit improves
execution cycle of some small programs since small basic blocks in their programs have no
affords to optimize their code for partial forwarding. This ineffectiveness is limited when |

apply the proposed scheduler to practical programs.

The proposed scheduling algorithm can be also applied for partial forwarding processor with
hazard detection unit. However, since the proposed scheduler removes all hazards, the execu-
tion cycle of the scheduled code on the processor with hazard detection unit equals that on the
processor without hazard detection unit. In other words, the proposed algorithm can be used to

reduce hazard detection unit for partial forwarding processor.
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Table 4.5: Execution time for each benchmark program with the proposed scheduler

Processor Name complex | complex con- dot. fft fir | fir2dim | iir_biquad
multiply update| volution | product N_sections
DLX _no 8.0 10.2 371 7.0] 342.2| 30.6| 266.3 92.1
DLX X 8.3 10.5 38.4 7.4|289.8|35.1| 2723 97.2
DLX_M 8.1 10.0 36.4 6.9|330.6| 32.9| 258.7 92.0
DLX W 7.8 9.8 371 7.0|300.2| 31.8| 255.2 92.9
DLX XM 8.6 10.5 38.4 7.4|288.5|34.9| 280.5 99.3
DLX XW 8.5 10.5 38.8 7.5|292.0| 34.0| 280.7 99.7
DLX_MW 7.9 9.8 36.2 6.9|310.2| 32.5| 262.7 92.9
DLX XMW 7.8 10.1 37.0 6.9| 283.6| 33.6| 256.2 93.1
Processor Name iir_biquad | Ims | matrix1l | matrix2 | matrix1x3 | n.complex | nreal | real
onesection updates updates| update
DLX no 10.7| 56.6| 1976.2| 1888.7 15.4 150.1 55.6 6.0
DLX X 11.8| 57.0| 2020.0| 1866.5 16.1 150.9 56.6 5.5
DLX_M 11.4| 53.7| 1982.6| 1895.3 15.0 145.0 54.6 5.7
DLX W 11.1| 52.7| 1968.4| 1880.4 15.1 146.6 54.2 5.6
DLX _XM 12.0| 58.7| 2089.0| 2001.8 16.4 155.5 58.5 6.0
DLX _XW 12.0| 58.3| 2139.1| 2053.5 16.5 157.3 54.1 6.0
DLX_MW 11.2| 53.9| 1944.4| 1869.8 15.2 146.6 54.6 5.6
DLX XMW 12.0| 58.7| 2080.1| 2000.3 15.7 157.9 56.7 5.9
4.3 Summary

In this chapter, heuristic scheduling method for partial forwarding processors is proposed. In
experiments, the heuristic instruction scheduler generated nearly optimal solution within feasi-
ble compilation time. Experimental results also showed the advantage of the proposed schedul-

ing method compared with hazard detection unit.
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Table 4.6: Execution cycle for each benchmark program with the proposed scheduler

Processor Name complex | complex con- dot. fft fir | fir2dim | iir_biquad
multiply update| volution | product N_sections

DLX_no 1133 1445 5255 991 | 48469| 4334 | 37719 13045
DLX X 1032 1306 4776 920 | 36045| 4366| 33869 12090
DLX_M 1044 1289 4691 889 | 42604 | 4240| 33339 11856
DLX W 1020 1281 4850 915| 39242| 4157| 33360 12144
DLX_XM 1035 1264 4621 891| 34718| 4200| 33755 11950
DLX _XW 1018 1257 4647 898 | 34970| 4072| 33617 11940
DLX_MW 1006 1248 4612 879| 39516| 4140| 33465 11835
DLX_ XMW 929 1202 4405 821| 33763| 4000| 30501 11084
Processor Name iir_biquad | Ims | matrixl | matrix2 | matrix1x3 | n.complex | nreal | real
onesection updates updates| update

DLX_no 1516| 8017 | 279909| 267515 2181 21260 7875 850
DLX X 1468| 7090 | 251248| 232155 2003 18769 7040 684
DLX_M 1469 | 6920 | 255498| 244247 1933 18686 7036 735
DLX W 1451| 6889 | 257309| 245806 1974 19164 7085 732
DLX_XM 1444 | 7064 | 251390| 240897 1974 18713 7040 722
DLX _XW 1437| 6982 | 256179| 245927 1976 18838 6479 719
DLX_MW 1427| 6866 | 247697| 238194 1936 18675 6955 713
DLX _XMW 1429| 6988 | 247636| 238136 1869 18798 6750 702
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-
Input: A data dependency graghDG(V, E)

V. A set of instruction nodedy: A set of directed edges iRDG
Output: A scheduled instruction sequerce {i,, i, ..., % }
01: begin
02: //Initialize part
03: SchCycle = 0;
04: ExecutableList = list of nodes which have no predecessor nodes3 InG,
sorted by descending order of the longest reachable path length for each node;
05: // Main loop

06: while (unscheduled node exis{s)

07: do{

08: /l Choose an instruction to schedule

09: Uarger = The first schedulable node &thCycle in ExecutableList,
10: if (the number of child nodes af,,.4e: >= 2

|| Vtarger 1S the only parent node of.
|| the available distance with the dependency,of
the other parent node of, to v, (D,, L,), has the emptyp,
|| In the available distance with the dependency@f;.. to v., (D;, L;),

the smallest value @b, >= the smallest value abp) {

11: Scheduley;q,ge¢ at SchCycle,

12: Removev,q, e from ExecutableList;

13: for each ¢, = successors af;yger) {

14: if (all predecessors af,,.. are scheduled) Add,,.. into FxecutableList;
15: }

16: }

17: Checku,, 4 to avoid to schedule at cyclechCycle;

18: } while (an instruction is scheduled at cydehCycle

|| All instructions in Executable List have been checked);
19: SchCyclet++,;
20: }
21: end

Figure 4.3: The proposed scheduling algorithm
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Table 4.7: Execution cycle for each benchmark program with hazard detection unit

Processor Name complex | complex con- dot. fft fir | fir2dim | iir_biquad
multiply update| volution | product N_sections

DLX _no 1112 1526 5357 1000 | 49444 | 4430| 37377 13084
DLX X 1023 1396 4734 917 | 40491| 4135| 32978 12564
DLX M 1029 1331 4796 913| 44482| 4063| 32361 12318
DLX W 999 1341 5012 951 | 41324| 4271| 33720 12417
DLX XM 1020 1297 4438 864 | 37001| 3927| 31307 12772
DLX _XW 1003 1311 4569 889 | 35879| 4084 | 32675 11838
DLX_MW 994 1272 4741 897 | 40689| 4131| 31557 11949
Processor Name iir_biquad | Ims | matrixl | matrix2 | matrix1x3 | n.complex | nreal | real
onesection updates| updates/ update

DLX no 1486| 8197 | 292572| 279878 2136 23345 8760 808
DLX X 1474 | 7006 | 266335| 247842 1958 21421 7916 663
DLX M 1427| 7067 | 261855| 252404 1834 20822 7924 711
DLX W 1427 | 7192 | 271247| 259444 1956 20643| 7748 711
DLX XM 1402 | 6740 | 254042| 243549 1812 20021 7388 692
DLX _XW 1398| 6871 | 257544| 247892 1931 19768 6788 689
DLX_MW 1421| 6992 | 250016| 240213 1810 19251 7099 707




CHAPTER 4. HEURISTIC CODE SCHEDULING FOR PARTIAL FORWARDING
56 PROCESSORS

Table 4.8: Differences of execution cycles on processor with hazard detection unit from the

result of scheduled code

Processor Name complex | complex con- dot. fft fir | fir2dim | iir _biquad
multiply update| volution | product N_sections
DLX no -21 81 102 9| 975| 96 -342 39
DLX X -9 90 -42 -3 | 4446 -231 -891 474
DLX M -15 42 105 24| 1878 -177 -978 462
DLX_ W -21 60 162 36| 2082| 114 360 273
DLX_XM -15 33 -183 -27| 2283 | -273| -2448 822
DLX _XW -15 54 -78 9| 909| 12 -942 -102
DLX MW -12 24 129 18| 1173| -9 | -1908 114
Processor Name iir _biquad | Ims | matrix1 | matrix2 | matrix1x3 | n.complex | nreal | real
onesection updates| updates| update
DLX _no -30| 180| 12663| 12363 -45 2085 885 -42
DLX X 6| -84| 15087| 15687 -45 2652 876 -21
DLX M -42 | 147 6357| 8157 -99 2136 888 -24
DLX W -24| 303| 13938| 13638 -18 1479 663 21
DLX XM -42 | -324 2652| 2652 -162 1308 348 -30
DLX _XW -39 -111 1365 1965 -45 930 309 -30
DLX MW -6| 126 2319| 2019 -126 576 144 -6




Chapter 5

Code Optimization for SIMD

Instruction-set Processors

This chapter proposes the data permutation optimization method for SIMD (Single-Instruction
Multiple-Data) instructions. This chapter is organized as follows. SIMD instruction-set ar-
chitecture for embedded processor is summarized in section 5.1. Automatic code generation
for SIMD instructions by compiler is described in section 5.2 and data permutation optimiza-
tion problem and optimization algorithm are described in section 5.3. Experimental results are

described in section 5.4. Finally, this chapter is concluded in section 5.5.

5.1 SIMD Instructions in Embedded Processor

SIMD is acronym from Single-Instruction Multiple-Data, which means a number of operations
are executed by one instruction. SIMD instructions can be considered as fixed length vector
operations whose vector length are short, less than ten in most cases of embedded processors.
These instructions load a number of data from memory at once and store them into wide regis-
ters. In this thesis, such a wide register is cal@D register SIMD arithmetic instructions
perform their operations for each data in SIMD register in parallel. Memory store operation

is also executed in the same way of the load instruction. Figure 5.1 shows datapibaf

a SIMD instruction of Texas Instruments C62xx processor [54], that performs two additions

57
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BIi]
32 bits load Bli+1]
32 hits load Cli]
16 bits 16 bits 16 bits ’ 16 bits Cli+1]
Ali]
Afi+1]
16 bits 16 bits

32 bhits store

Figure 5.1: Example of datapath of ADD2, a SIMD instruction in TI C62xx.

in parallel. This SIMD instruction reads upper parts of the input SIMD registers and writes
the result of addition into the same position of the output SIMD register. The same operation
are processed for lower parts of the SIMD registers at the same time. Figure 5.1 also shows an
example of datapath of SIMD load and store instructions. Note that memory accesses by SIMD

load and store instructions are always contiguous so that they load and store 32 bits data.

Besides arithmetic operations, SIMD instruction set architecture also has instructions for
data replacement within SIMD registers. Such instructions are gadladutation instructions
Figure 5.2 shows an example of dataflow of permutation instructions. In Fig. 5.2, there are two
SIMD registers, one contains BJ[i] and BJ[i+1], and the other contains C[i] and C[i+1]. If the
program is written inA[i] = BJ[i] + C[i+1]; andA[i+1] = BJ[i+1] + CJi]; ,

SIMD addition cannot be executed right after loading since position of values are not located
regularly. To replacing values by permutation instructions, SIMD instructions can be applied.

In general, not all of the sentences in the program can be mapped into SIMD arithmetic instruc-
tions directly due to mis-order of index of the array so that permutation instructions is essential

for SIMD instruction set architecture.
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| ci | cli+g |
permutatlon
BIi] B[i+1] Cli+1] CIil
Alil Ali+1]

Figure 5.2: Example of dataflow of permutation instructions.

Pattern Matching

SIMD Assembly Code
Generation
AN

CDFG Generation

Instruction
Pattern Matching

Assembly Code

Generation

(a) Conventional Compiler (b) SIMD Compiler

Figure 5.3: Automatic SIMD code generation flow.

5.2 Code Generation for SIMD Processor

In this section, automatic SIMD code generation method from source code is summarized.

Figure 5.3 shows processing flow of SIMD code generation. Instruction pattern matcher
generates scalar instructions from CDFG (Control-Data Flow Graph) which is generated by
compiler front end. Conventional compiler back end generates assembly code through instruc-
tion scheduling and register allocation after pattern matching phase as Fig. 5.3 (a). To generate

SIMD assembly code by compiler, SIMD grouping and data permutation ordering phases are
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inserted between pattern matching and assembly code generation phase as Fig. 5.3 (b).

5.2.1 Grouping SIMD Operations

In SIMD grouping phase, SIMD instructions are generated using tree matching algorithm
[55, 35]. This step constructs a data flow graph (DFG) whose nodes correspond to elements
of SIMD operations. Note that these elements are represented as scalar operations in DFG.
After DFG construction, a DFG is divided into data flow trees (DFT). Pattern matching, DFG
construction and DFT construction methods used by the proposed method are similar to [6].
The elements of SIMD operations are grouped into several SIMD instructions. Finally, a DFG
whose nodes are SIMD instructions is constructed.

Groups of operations performed by SIMD instructions are determined as follows.
1. Leaves of DFTs which have the same operations are selected.

2. Selected nodes are grouped as a SIMD instruction if the selected nodes can be performed
by one SIMD instruction, otherwise split the nodes into smaller group to fit size of SIMD

instruction.
3. Grouped SIMD nodes are removed from the DFTSs.
4. Repeat the above steps until all nodes are removed from DFTSs.

Note that load and store operations have to be grouped into SIMD instructions only these mem-
ory address are contiguous and aligned with memory alignment. This constraints are due to
memory access operations of SIMD load/store instructions. Figure 5.4 shows an example of
SIMD grouping [8]. The load operations have been removed from DFTs as shown in Fig. 5.4
(a). In this example, a0, al, a2, and a3 are on contiguous memory addresses. Similarly, bO and
b1 are on. The add operations, nodes with a plus operator, are grouped and added to the DFT in
Fig. 5.4 (b). This procedure is callg@ckingand generated SIMD node is also calfstked

node The add nodes will be removed from Fig. 5.4 (a) in the next packing step. After this

grouping, the DFT in Fig5.4 (b) is constructed.
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—

(a) Selection of DFT nodes (b) Grouping DFT nodes

Figure 5.4: Operation grouping

5.2.2 Data Permutation Ordering

After SIMD grouping, SIMD DFG of the input program is constructed with SIMD DFTs. Each
SIMD node in SIMD DFG has more than one scalar operations executed in parallel. However,
data order for each SIMD node is not yet determined except for SIMD load/store nodes. In
data permutation ordering phase, data order of operations for each SIMD node is determined
to minimize the number of permutation instructions. Figures 5.1 and 5.2 show the importance
of data permutation ordering. In the case of Fig. 5.2, permutation instructions are required to
arrange the order of C[i] and CJ[i+1]. After this permutati®fD2instruction can be executed

as Fig. 5.1.

Although data permutation ordering is an important optimization problem for SIMD code
generation, there are few studies focused on this problem. First study of data permutation
ordering is shown in [37]. This method generates SIMD code considering the order of each
data by integer programming. However, this method only generates 2-way SIMD code since
it focuses on Tl 62xx processor which has only 2-way SIMD instructions. [6] supports more
than 2-way SIMD instructions to split SIMD code generation problem into SIMD grouping and
data permutation ordering. SIMD instructions are generated by grouping operations in a basic
block represented by DFT. Data permutation ordering is also solved by integer programming
as [37]. A heuristic method to solve data permutation ordering is shown in [7]. This method
optimizes data order of SIMD nodes for each basic block to propagate data order across state-
ments in the input program. It aims to reduce the number of permutations to merge consecutive
permutations. There are no global data permutation ordering method so that | propose a global

optimization method described in section 5.3.
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5.2.3 Data Permutation Instruction Sequence Generation

After data permutation ordering, data permutation instruction sequence is generated for each
mis-order point.

For each mis-order point where the pair of SIMD registers have different data order, instruc-
tion sequence for data permutation is required. Since permutation instructions do not contribute
for program execution result, it is an important optimization problem to minimize the number
of permutation instructions. Hereafter, the contents of packed data are pefledtationbe-
cause they are naturally represented by permutations. Data permutation instruction sequence is

generated by the following steps:

1. generate all permutation patterns from source permutations using available permutation

instructions.

2. construct expression tree which represents permutation steps from source permutation to

output permutation pattern.

3. generate permutation instruction sequence.

These steps are processed based on Multi-valued Decision Diagram (MDD) [8]. Multi-valued
Decision Diagram represents binary-valued output function which takes multi-valued input
parameters. In this problem, MDD represents a set of permutation patterns and manipulation
on MDD correspond to operations on the sets of permutations. Figure 5.5 (a) shows a MDD
of {abcd } and Fig. 5.5 (b) shows a MDD dfabcd ,abdc }. Fig.5.5 (b) is constructed by

the logical-or of MDDs representinfabcd } and {abdc }, which corresponds to the union

of {abcd } and{abdc } [8]. Logical-and operation on MDD corresponds to the intersection
operation, similarly.

The generation algorithm is summarized as follows; detail of the generation algorithm is de-
scribed in [8]. The generation algorithm calculates the minimum length of permutation instruc-
tion sequence based on MDD manipulation. The algorithm calculates the set of permutations
from the previous set of permutations and given set of permutation instructions. In first step,
this step starts from the source permutation set. This loop continues until the required permu-

tation is found or the set of permutations equals to the previous set of permutations. When
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(a) Set { abcd } in MDD (b) Set { abcd, abdc } in MDD

Figure 5.5: MDDs for{ abcd} and{ abcd,abdg

the required permutation is found, the algorithm generates permutation instruction sequence to

backtrack the steps of permutation set generation to the source permutations.

5.3 Data Permutation Optimization in SIMD Registers

As summarized in section 5.2, instruction sequences for data permutation are generated where
the data orders differ between input and output SIMD registers. If program is designed to
consider data parallelism, permutation instructions may be not required. However, automatic
SIMD code generation compilers have to compile arbitrary program codes including sequen-
tial function codes or legacy codes which are not considered about parallelism. Permutation
instruction generation method in [8] focuses on minimizing the number of permutation instruc-
tions for each mis-order point. To improve efficiency of the execution cycles, minimizing the

number of mis-order point in SIMD DFGs have to be considered.
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Figure 5.6: An example of SIMD DFG

5.3.1 Data Permutation Optimization Problem

In this section, data permutation optimization problem is discussed. Objective of the optimiza-
tion problem is to minimize the number of mis-order points which require permutations on

input SIMD DFG generated by SIMD grouping phase.

5.3.1.1 SIMD DFG

SIMD DFG represents dependences among SIMD nodes and each operation in SIMD nodes.
Figure 5.6 shows an example of SIMD DFG. Small circles correspond to operations and rounded
rectangles which encloses some operations are SIMD operations. Source and sink nodes rep-
resent load and store instructions, respectively. Each directed edge shows dependence between
operations. Each node in SIMD DFG has a number of operations. In the grouping example
presented in Fig. 5.6, all SIMD nodes contain four operations. In this thesis, the number of op-
erations in the SIMD instructions or width of SIMD operations is capjadk count Maximum

pack count is limited by register size and data size for each operation. If each operation treats
8 bit data and these operations are packed in 64 bit register, maximum pack count of the SIMD
node equals 8.

There are three types of dependences between SIMD nodes;
e Regular dependence,
e Partial dependence, and

e Spreading dependence.

Regular dependence means that all operations in the precedence SIMD node connects opera-

tions in the succeeding SIMD node. Both pack counts of the SIMD nodes are the same and there
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are one-to-one correspondence hence bijection. Figure 5.6 shows an example of regular depen-
dence. There are two source SIMD nodes and each source SIMD node has regular dependence
onto the sink SIMD node. Most of dependences in SIMD DFG are regular dependences and
permutation may be not required to adjust data order of the operations between precedence and
succeeding SIMD nodes. On the other hand, partial and spreading dependences must require
permutations between them. In this thesis, partial and spreading dependences are classified as
irregular dependences. Partial dependence although connects in an injective manner, however,
not in an bijective manner. Partial dependence occurs in two cases; pack counts differ between
the SIMD nodes, or not all the operations connects onto the succeeding nodes. Figure 5.7 (a)
shows the first case. Two source SIMD nodes pack two operations and connects onto one sink
SIMD node which pack count is 4. Operatica, al, b0, andbl are the precedence opera-
tions ontocO, c1, c2, andc3, respectively. In the second case, Fig. 5.7 (b), only 2 of 4 packed
operations fromaX andbX are connected ontoX operations. Spreading dependence do not
has one-to-one connection though partial dependence has. The opefatmmnects all of
operationX in Fig. 5.8 so that there is spreading dependence while the other source SIMD
node which packs operations bX have regular dependence onto the sink SIMD node. Partial
and spread dependences can be combined like Fig. 5.9. In this case there are two operations
which have dependences onto succeeding operations and each of them have two succeeding
operations.

For all SIMD nodes, data orders of the operations are not determined at first, except for load

nodes and store nodes due to memory address constraints.

5.3.1.2 Computational Complexity of the Problem

As Ren, et al. described, data permutation optimization problem is a NP-hard problem [7].

5.3.2 Data Permutation Optimization Method

In the proposed method, optimizer with heuristic methods described in this section solves data

permutation optimization problem based on SIMD DFG generated by the whole input program.
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(a) Differences of the number of PACK nodes
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(b) Propagation of partial PACK nodes

Figure 5.7: Examples of partial propagation

Figure 5.8: Example of spreading propagation

The proposed data permutation optimization algorithm are consists of two strategies based on
propagation; the most frequently used position where sources and destinations are arranged is
selected for each operation [8]. Figure 5.10 shows an example of propagation with a part of
SIMD DFG [8]. The most left add operation has two souraésandbO, one destinatiomll.

The order in the grouped nodeat is the second elemerd( is the first andll is the second.
Therefore, the most left add operation in Fig. 5.10 (a) is reordered to the second in the grouped
node as shown in Fig. 5.10 (b). Similarly the second add operation is reordered to the most left

in the grouped node.

In the proposed optimization method applies two strategies; one is data order propagation
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Figure 5.10: Operation ordering

from SIMD load/store instructions, the other is data order propagation from neighbor nodes.

The algorithm applied the better solution as a result of the optimization.

5.3.3 Data Order Propagation from SIMD Load Nodes and Store

Nodes

The order of SIMD nodes are determined by load and store instructions since SIMD load and
store instructions are performed on contiguous memory locations. This strategy is implemented
as [8]. The basis of this strategy is to adjust data order of SIMD nodes according to the domi-
nated order of SIMD load nodes and store nodes. For each SIMD load node and store node, the
order of the node is propagated onto all SIMD nodes except the other SIMD load/store nodes.
Order of SIMD load nodes and store node is represented by position of each operation in SIMD
load nodes and store nodes. The most left operation is numbered by 0, and the most right one
is p — 1, wherep means the pack count of the SIMD load/store nodes. This position number
of operation are propagated according to the dependence edges. While visiting the other SIMD
nodes from a SIMD load/store node, The order of a SIMD load node is propagated to following

edges in the forward direction. On the other hand, the order of a SIMD store node is propagated
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Load A Load B Load C

Figure 5.11: Example of propagation from SIMD Load/Store Nodes

following edges in the backward direction. For example, SIMD DFG shown in Fig. 5.11 has
three SIMD load nodes and two SIMD store nodes. The remaining three SIMD nodes which
pack arithmetic operations are propagation target SIMD nodes. All dependences are regular
propagation in this example. Figure 5.12 shows the propagation resultLfoach A. From
Load_A, only two SIMD nodes are visited and propagated by the same ordevaaf A,

(0,1). The order oLoad_A is not propagated onto the rest of one SIMD node. In contrast, all
three propagation target SIMD nodes are visited f@are_D to traverse edges backward as
shown in Fig. 5.13. Contrary to the caselafad_A, Store_D propagate$l,0) caused by
crossed edges from the precedenc&iwire_D . Similarly, the orders oLoad B, Load_C,
andStore_E are propagated. Finally, the order of each target SIMD nodes are determined
by majority rule. This result is shown in Fig. 5.14 with voting result of the order for each the

target SIMD node. In this case, all three target SIMD nodes have the same(order,

Figure 5.15 shows the algorithm of this strategy. Computational complexity of this algorithm
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Load A Load B Load C

Figure 5.12: Propagation from Loail

is O(N?) where N means the set of nodes of the input SIMD DFG since SIMD nodes in the
DFG are visited for each SIMD load/store nodes. In practical, the number of SIMD load nodes
and store nodes in SIMD DFG is less théxi/V), such as(log V) or constant, so that the
complexity of the strategy is smaller thar{N?).

5.3.4 Data Order Propagation from Neighbor Nodes

Although the previous strategy propagates order of SIMD nodes through irregular dependences,
inappropriate result may be obtained so that another propagation strategy is required. To solve
this problem, the another data order propagation strategy to propagate data orders from neigh-
bor SIMD nodes is proposed. This strategy is similar to data order propagation from load nodes
and store nodes. The order of SIMD load/store nodes are also propagated by this strategy, how-
ever, the order of neighbor SIMD nodes are applied as source order for each propagation and
majority rule is applied only on junction nodes which have more than two precedence nodes.
Figure 5.16 shows an example of order decision on junction nodes. Similar to the previous

strategy, the order of junction nodes are adjusted by dominated order of the precedence nodes.
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Load A Load B Load C

Figure 5.13: Propagation from Stobe

In this example, the order dfode_D is the same alode_A, not asNode_B andNode_Cin
Fig. 5.16 (a). If the order dNode_D is fixed as Fig. 5.16 (a), two permutations are required.
Both Node_B andNode_C have the same order so that one permutation can be reduced to

adjust the order dNode_D with Node B andNode_C.

The proposed method targets on SIMD DFG of the whole program so that branch path and
loop path may exist in SIMD DFG. Figure 5.17 shows an example of SIMD DFG with the
pair of branch paths. A number sequence written in each node means permutation order. This
DFG assumes that the pack count of all SIMD nodes equals toNmate X is connected with
two source SIMD nodes and one sink SIMD node. Inside of the branch paths, the orders of
the source and sink SIMD nodes are corresponded. However, the source SIMD node outside
of the branch paths has different order from the others. To adjust the ortiedef X to the
outside SIMD node, two permutations are required as shown in Fig. 5.17 (a). The number of
permutations can be reduced to adjNside X according to the inside SIMD nodes inside of

the branch paths as shown in Fig. 5.17 (b). It costs only one permutation between the SIMD
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Load A Load B Load C

Figure 5.14: Result of the propagation from Load/Store nodes

source node outside of the branch paths.

Data order propagation from neighbor nodes strategy supports propagation for these paths.
Both branch and loop paths are the same circulation form to ignore direction of the edge in
SIMD DFG. Figure 5.18 shows the concept of propagation on branch or loop paths. For each
propagation, to find the branch or loop paths, neighbor nodes are visited from the current target
SIMD node of which the algorithm prepares to determine the order. The algorithm searches
to find a pair of SIMD nodes which are start and end node of two paths, one path includes the
target SIMD node and the another path does not. If found such a pair, the order of the target
SIMD node is adjusted according the pair. If the orders of the pair differs, one of the order is
selected according to the number of nodes which are directly connected with the pair. Figure
5.19 shows the algorithm of this strategy. Line 03 can be calculated using Floyd-Warshall
algorithm by#(N3) [53]. There are two loops in the main body of the algorithm and one
traversing step in line 08. Traversing costi$F) so that the complexity of the algorithm is
O(N?E). In practical SIMD DFG,O(F) can be regarded a3(N) hence the complexity of
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e N
Input: SIMD DFGG(V, E)
V: A set of SIMD nodes~: A set of directed edges iRFG
Output: SIMD DFG with reordered SIMD nodes
01: begin
02: for each (root nodes in G') {
03: Traverse> in forward and propagate the order@f
04: }
05: for each (leaf nodes in G) {
06: Traverse= in backward and propagate the ordewgf
07: }
08: for each ( nodes except roots and leavesG ) {
09: Determine the order efaccording to majority rule;
10: }
\11: end )

Figure 5.15: Algorithm of data order propagation from SIMD Load/Store nodes

the algorithm is)(V?3).

5.4 EXxperiments

In this section, the experimental results are presented. The proposed data permutation opti-
mization method is implemented in automatic SIMD code generator which is proposed in [8].

This SIMD code generator targets on Media embedded Processor, MeP [56, 57].

5.4.1 Target Processor Architecture

To evaluate the proposed optimization method, configurable processor with SIMD instruction
setis required. MeP was selected as the target processor in this experiments. In this experiment,
MeP consists of two cores; one is MeP core, the base processor of MeP, the other is SIMD co-

processor. MeP core processor is a 32 bit RISC processor which has single-scalar arithmetic
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(b) After re-order: only 1 misorder occurs

Figure 5.16: permutation adjustment on a junction node

instructions, logical instructions, branch control instructions and so on, including coprocessor
move instructions [58]. Fig. 5.4.1 shows the architecture of MeP [56, 57]. There are several
configuration options for MeP, such as embedding user designed logics, adding coprocessors,
and so on. SIMD coprocessor for MeP is one of the customize option of MeP configurable
processor. The MeP core and the coprocessor share a local memory to access directly through
64 bit data bus. Fig. 5.21 shows the architecture of SIMD coprocessor [56, 57]. SIMD co-
processor has 2-way issue instruction pipeline and 64 bit SIMD register file and 2 accumulator
for multiplication. SIMD coprocessor works with MeP core in parallel so that the MeP in
this experiment can be regarded as a 3-way VLIW processor. SIMD coprocessor supports 8-
parallel byte, 4-parallel halfword, and 2-parallel word SIMD instructions, including addition,
subtraction, shifting, logical, and permutation operations. Multiplication operations uses ac-
cumulator register which have 256 bit width. An accumulator consists of 8 registers, each of

them has 32 bit width. In this experiments, multiplication nodes were mapped on pseudo SIMD
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misgrder NOde_x
0123 0123
(a) Adjust by the node (b) Adjust by the nodes
outside of the branch path inside of the branch path

Figure 5.17: An example of permutation adjustment on branch paths

multiplication instructions to hide accumulator from the architecture model.

There are two types of permutation instructions on SIMD coprocessor; fixed pattern permu-
tation instruction type and arbitrary permutation instruction type. Both instruction types take
two input SIMD register and write the result into a SIMD register. Fixed pattern permutation

instructions are classified by following properties:
e data size of each element (byte, halfword, or word),
e where of the data are read (upper or lower half of the input registers), and
e how the data are replaced (block or alternative).

Figures 5.22 and 5.23 show fixed pattern and arbitrary permutation instructions of SIMD co-
processor for 4-parallel halfword operations.

In the experiments, 10 test programs for permutation optimization were used to evaluate.
Each test program has several control flows and permutation patterns. The proposed method
was implemented in the automatic SIMD optimizer [8]. This optimizer is a part of optimizing
C compiler for MeP with SIMD coprocessor, which generates SIMD instructions after loop
unrolling. The compiler systems used in the experiments were provided by Toshiba Corp.

In these experiments, permutation optimization methods were evaluated to compare the re-
sults of two strategies. Execution cycles and the number of permutation instructions were com-

pared. Execution cycles were obtained by the simulator which were also provided by Toshiba



5.4. EXPERIMENTS 75

<0123> ( 3012 )

Figure 5.18: Data permutation adjustment method inside of the loop

Corp. The number of permutation instructions for each test program was counted from assem-
bly code generated by the compiler with SIMD optimizer and the proposed method. Compi-
lation and simulation were performed on Intel Xeon 2.8 GHz processor with 2GB of memory

and RedHat Enterprise 3 operating system.

5.4.2 Experimental Results

Figure 5.24 shows the number of execution cycles of the optimized test programs. The white
bars represent the execution cycles with data order propagation from load/store nodes and
the gray bars represent that with data order propagation from neighbor nodes. This result
shows that neighbors propagation method reduced more execution cycles in average. However,
load/store propagation is superior than neighbors propagatiortegthh andtest8

Table 5.1 shows the number of permutation instructions of the optimized test programs. The
second and third columns represent the numbers of fixed and arbitrary permutation instructions
of load/store propagation while the fourth and fifth columns represent that of neighbors propa-

gation. These results also shows that neighbors propagation method reduced more permutation
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Table 5.1: Comparison of the number of permutation instructions with two strategies

Load/Store Propagation Neighbors Propagation

# of fixed perm.| # of arbitrary perm/|| # of fixed perm.| # of arbitrary perm,
testO 12 3 10 3
testl 12 3 6 4
test2 10 3 4 3
test3 2 2 2 2
test4 14 4 12 4
testS 8 4 6 3
test6 4 4 2 4
test7 8 1 8 3
test8 8 4 8 4
test9 2 3 0 4

instructions in averageaest7 was the only program for which neighbors propagation method
obtained inferior result. The reason of the result webst7 was that the order of one SIMD

node in SIMD DFG otest7 was not optimized correctly. This SIMD node was a precedence
node of a junction node, however, it was not on the branch nor loop paths. In this case, the
current neighbors propagation decided inappropriate order on this node though the same case
in other test programs generated better results. The resu#ést8f shows that there were no
difference between the two strategies. The reason why the result happened is due to control
flow and trace otest8 . The permutation points can move beyond the border of basic block

by global optimization method. In the casetebt8 , a permutation point was moved into

the basic block which was executed more times than the previous basic block. Solving these

problems is in future works.
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5.5 Summary

In this chapter, data permutation optimization method for SIMD instructions is proposed. In
experiments, . Experimental results also showed the advantage of the proposed scheduling

method compared with hazard detection unit.
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e I
Input: SIMD DFGG(V, E)
V: A set of SIMD nodes~: A set of directed edges iDF'G
Output: SIMD DFG with reordered SIMD nodes
01: begin
02: [/ Initialization: ( N?)
03: Calculate distance between all pairs of nodes;
04: for each (root and leaf nodesin G') {
05: v, = one of the neighbor node of;
06: while ('the order ofy, is not determined
07: if (v; has other neighbor node§)
08: (vs, ve) = the pair of start and end nodes of the nearest branch or loop paths
of v,;
09: if ( (vs,v.) are not found X
10: Propagate the order of into v,, according to the majority rule;
11: }
12: else{
13: Propagate the order of into v,, according to the order df, v, );
14: }
15: Vg = Up;
16: }
17: else{
18: v, = one of the neighbor node of;
19: Propagate the order of into v,,;
20: Vg = Up;
21: }
22: }
23: }
\24: end )

Figure 5.19: Algorithm of data order propagation from neighbor nodes
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Figure 5.20: MeP processor architecture
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Chapter 6

Conclusion and Future Work

This chapter concludes this thesis. Future direction of compiler optimization for application

specific instruction-set processors is also discussed.

6.1 Conclusion

This thesis describes two types of code optimization method for configurable processors. First
contribution of the thesis is instruction scheduling for partial forwarding processor. Although
partial forwarding technique is supposed to be utilized with compiler support, in the aspect of
design space exploration, there are rarely previous works about compiler optimization method
for partial forwarding. In this thesis, optimal instruction scheduling method is proposed at first.
The proposed instruction scheduler by using integer linear programming method generated
more efficient code than the simple list scheduler which supports partial forwarding. Heuristic
scheduling method for partial forwarding processors is proposed in the next step. Experimental
results show that the proposed heuristic scheduler generates efficient code for partial forwarding
processor and improves execution time. In particular, some benchmarks runs faster on partial
forwarding processor than the full forwarding processor.

The second contribution of the thesis is code optimization for media processors. Exploiting
data level parallelism is important for media processor, especially used in embedded systems.
In this thesis, data permutation optimization problem is discussed. Obstacles when optimizing

data permutations are discovered and heuristic optimization method is proposed. Experimen-

83
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tal results show that the proposed method achieved reducing the number of data permutation

instructions.

6.2 Future Work

The future work includes following items.

6.2.1 Algorithm Expansion

The code optimization methods proposed in this thesis have some constraints. Multi-issued
processors such as VLIW processor are widely used in recent embedded systems such as MeP
[56, 57]. However, the proposed instruction scheduling methods for partial forwarding do not
support multi-issue processors and parallelism. Besides, a number of dedicated forwarding
architectures which differs from the partial forwarding architecture model in this thesis are
proposed [29, 30, 31]. Instruction schedulers for these architectures have to consider different
characteristics from the proposed instruction scheduling methods discussed in this thesis. In
out-of-order issue processor, order of the fetched instructions are shuffled so that reordering
for partial forwarding in instruction buffer is required. Expanding scheduling algorithms for
such dedicated forwarding architecutures is a challenging study. Design space exploration
of partial forwarding for such modern architectures is also not considered so that improved
instruction scheduling algorithm is required to enable to customize forwarding paths on multi-

issued configurable processors.

the proposed SIMD data permutation optimization method also has some constraints without
the future works described in chapter 5. SIMD multiplication instructions on MeP coprocessor
use accumulator for its calculation. However, the current proposed method regards these in-
structions as the same format of other arithmetic instructions which use SIMD registers. There
are some performance losses so that improved optimization algorithm for SIMD instructions

with accumulator is required.
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6.2.2 Theorical analyzation of the heuristic algorithms

Both instruction scheduling for partial forwarding and SIMD data permutation optimization
are NP-hard problems so that heuristic optimization methods are proposed in this thesis. How-
ever, approximation ratio of the heuristic algorithms are only considered from the experimental

results and there are no theorical analyze.

6.2.3 Compilation Techniques for Low Power

Low power consumption is desired property for embedded systems, especially battery driven
PDAs or embedded chips with the small battery in the buildings to co-operate other chips for
sensor area network. Although power consumption were reduced in the experiments as a result
of code optimization, the code optimization methods proposed in this thesis do not consider
power consumption directly in the optimization methods. Some compiler optimization methods
focused on power consumption are proposed so that it is important for design space exploration

to consider power consumption in the optimization methods.
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