<table>
<thead>
<tr>
<th>Title</th>
<th>Malformation Effects in ddY Mice Irradiated at Two Stages in the Preimplantation Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>具，然和；鈴木，郁功；長谷川，武夫；朴，相来</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 62(2) P.92-P.97</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-02-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/16238</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Malformation Effects in ddY Mice Irradiated at Two Stages in the Preimplantation Period

Yeunhwa Gu1), Iukatsu Suzuki2), Takeo Hasegawa1) and Sanrae Park1)

1) Department of Radiological Technology, Suzuka University of Medical Science
2) Department of Clinical Nutrition, Suzuka University of Medical Science

Introduction

There have been many experimental studies on the developmental effects of radiation in mouse embryos. Their major conclusions were that the mouse embryos at the preimplantation stage were highly sensitive to lethal irradiation effects, whereas there was very little increase in malformation frequency due to irradiation during the preimplantation period. Therefore, the conclusion reached by many publications is that the embryonic developmental effects on the embryo during preimplantation follow the "all or none" rule, that is, the embryos affected by radiation were dead or normal. However, Fampfer, Streffer and Muller, recently have reported steeply increasing frequencies of malformations in Heiligenberger strain mice which were irradiated at various stages during preimplantation. Furthermore, Muller et al. describe that only in the case of both parents being of Heiligenberger origin was a pronounced increase in malformation frequency observed after irradiation of embryos in the 1-cell stage. However, No statistically significant increase in radiation-induced malformations was obtained in the F1 fetuses when the father was Heiligenberger and the mother: C57BL/10. They proposed that the possibility that radiation exposure during the preimplantation period in some mouse strains induced malformations should not be neglected. In the Heiligenberger mice, gastroschisis was frequently induced by irradiation during preimplantation stages. The frequencies of radiation-induced malformations varied both with the strain and with the stage of preimplantation. The preimplantation stage is a very important stage for radiological protection, because it is difficult to voluntarily avoid irradiation to embryos at this stage. Further studies are needed in order to resolve the problem of whether there is an increase in frequencies of malformations due to irradiation during preimplantation periods or not. We previously studied the relationship between preimplantation stage and malformation in ICR mice. Here we further study using the ddY mouse to examine external
malformations and other effects in (ddY mouse) embryos irradiated at two stages during preimplantation.

Radiation at the preimplantation stage is thought to cause a hereditary effect. Gastrochisis occurs frequently by X-rays during preimplantation period in Hillebrandt’s report\(^4\). The ddY strain of mice have frequently been used in many experimental studies of malformations\(^5\). We investigated the effects on embryos at 24 h.p.c. and 48 h.p.c. (hours post-conception), which correspond with a two-cell stage embryo and a less than 8-cell stage precompacted embryo\(^6\). In many previous studies, relatively high doses of more than 0.5 Gy were used, leading to the conclusion that lethal effects were dominant on embryos/fetuses\(^1\)-\(^3\). Therefore, we irradiated the embryos during preimplantation with relatively low doses.

Methods and Materials

1. **EXPERIMENTAL ANIMALS AND MATING PROCEDURE**

 We used ddY mice housed at a temperature of 21-23\(^\circ\)C and a relative humidity of 50 to 70% with a 12-hour light-dark cycle (lights on at 8:00 and off at 20:00).

 The ddY mice have been fertilized individually since 1963 from the Japan National Institute of Health, Coatcolor is albinos, and the generative descendant and the development of multiplication are good. And ddY mice are widely being used for the bioassay and other research in Japan.

 A closed colony of ddY mice was purchased from SLC Japan, Inc.

 The mice were given free access to food (CA-1, CLEA Japan Inc.) and tap water. One or two female mice and one male mouse of the same age range were mated for exactly three hours from 8:00 to 11:00. The female mice in which vaginal plugs were detected were assumed to have become pregnant at 10:00 \(^7\),\(^8\).

2. **IRRADIATION WITH X-RAYS**

 The pregnant mice were placed in plastic cages for exposure, and were treated with a single whole-body X-radiation at 0.1 to 3 Gy with a dose rate of 20cGy/min. We used a 5 MeV X-radiation source (CLINAC 6-100 Varian). The time of exposure for embryos was 24 or 48 h.p.c. The total number of dams and live fetuses observed in this study were 278 and 2,432 for irradiation, respectively, while 48 control dams and 278 live fetuses served as unirradiated controls.

3. **OBSERVATION OF EXTERNAL MALFORMATION AND OTHER EFFECTS**

 After irradiation, the pregnant mice were sacrificed by cervical dislocation on day 18 of gestation. The total numbers of corpus luteums in the ovaries and the total number of implantation consisting of and of live and dead embryos/fetuses were counted. The implantation was defined by a ratio of the number of implantation/the number of corpus luteum. The live fetuses were removed from the uterus and examined for external malformations under a dissecting microscope. The body weight and sex of each fetus were also determined.

4. STATISTICAL METHODS

In studying teratological effects, it is not appropriate to consider the fetus/embryo to be an experimental unit\(^9\). Instead, the litters (pregnant mice) were used as the experimental unit in the statistical analysis of the experimental data. In the per-litter analysis, an average fetal response within a litter was calculated. For statistical tests, we used nonparametric methods, with Kruskal-Wallis tests for comparison among dose groups and Wilcoxon tests for comparisons between two groups\(^10\). This is because the embryo/fetus binary response data do not show a normal distribution.

In addition, we used logistic regression analysis, which models the relationship between radiation dose and a binary response such as frequency of malformation or embryonic/fetal death. The linear logistic regression model has the form,

\[
\text{logit}(pij) = \log\left(\frac{pij}{(1-pij)}\right) = \alpha + \beta D,
\]

where \(pi\) is the probability that a binary response of the \(i\)-th event occurs, \(D\) is dose, and \(\alpha\) and \(\beta\) are regression parameters. \(pi\) is \(\xi_j/nj\) in each litter, where \(nj\) is the number of live fetuses of the \(j\)-th litter in the \(i\)-th dose group and \(\xi_j\) the number of the events. Fitting the binary logistic regression model was carried out using the SAS LOGISTIC procedure\(^11\),\(^12\). Based on the logistic regression analysis, the threshold dose of embryonic death or malformation was obtained as the dose giving a probability of 5% or two-thirds (2/3) of 10%\(^13\),\(^14\).

Results

1. **INTRAUTERINE DEATH**

 Prenatal deaths of embryos/fetuses were divided into three categories: preimplantation death, post-implantation embryonic death and fetal death. The number of preimplantation deaths in each mouse was calculated by subtracting the number of dead and live embryos/fetuses from the number of corpus luteums in each pregnant mouse. In implantation sites, placental remnants and resorption of embryos were identified as post-implantation embryonic death. Maceration of fetuses was identified as fetal death. The implantation rate and the mortalities during embryonic and fetal periods in mice irradiated at various stages of preimplantation are shown in Tables 1.
Malformation Effects in ddY Mice Irradiated at Two Stages in the Preimplantation Period

Table 1. Embryonic/fetal death and fetal body weight of ddY mice irradiated at 24 hpc in the preimplantation period.

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>No. of Dams</th>
<th>No. of Implantations (%)</th>
<th>No. of Embryonic deaths (%)</th>
<th>No. of Fetal deaths (%)</th>
<th>No. (%)</th>
<th>No. of Live Fetuses (%)</th>
<th>Fetal Body Weight (g) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>48</td>
<td>612 (99.2)</td>
<td>45 (7.4)</td>
<td>1 (0.16)</td>
<td>561 (92.4)</td>
<td>1.38 ± 0.11</td>
<td>1.32 ± 0.10</td>
</tr>
<tr>
<td>0.1Gy</td>
<td>20</td>
<td>384 (86.7) b</td>
<td>41 (15.6) a</td>
<td>0</td>
<td>218 (64.4) a</td>
<td>1.10 ± 0.17c</td>
<td>1.13 ± 0.10c</td>
</tr>
<tr>
<td>0.5Gy</td>
<td>25</td>
<td>499 (63.0) b</td>
<td>60 (19.0) a</td>
<td>0</td>
<td>255 (81.0) a</td>
<td>1.20 ± 0.09</td>
<td>1.21 ± 0.10</td>
</tr>
<tr>
<td>0.75Gy</td>
<td>25</td>
<td>534 (53.3) b</td>
<td>129 (45.6) b</td>
<td>0</td>
<td>155 (54.4) b</td>
<td>1.50 ± 0.08</td>
<td>1.42 ± 0.14</td>
</tr>
<tr>
<td>1.5Gy</td>
<td>24</td>
<td>424 (56.6) b</td>
<td>101 (41.7) b</td>
<td>0</td>
<td>149 (58.3) b</td>
<td>1.57 ± 0.05</td>
<td>1.60 ± 0.15</td>
</tr>
<tr>
<td>3Gy</td>
<td>22</td>
<td>408 (46.4) b</td>
<td>69 (37.8) b</td>
<td>0</td>
<td>123 (62.2) b</td>
<td>1.11 ± 0.03c</td>
<td>1.12 ± 0.13c</td>
</tr>
</tbody>
</table>

a: Significantly different from control group p<0.05 by Wilcoxon nonparametric test.
b: Significantly different from control group p<0.01 by Wilcoxon nonparametric test.
c: Significant at the 1% probability level by Student's t-test.

(): The number in the parentheses is a percentage. For example, the rate of implantation in the womb was calculated as dividing the number of luteal corpora by the number of preimplantations. An embryonic death rate was the number of death divided by the number of implantations in the womb. A fetal death rate was the ratio of the number of dead fetuses to the total number of embryo and fetal death. A live fetus rate was the ratio of the number of live fetuses to the number of implantations.

We used Kruskal Wallis test for preimplantation, embryonic and fetal death and there was a significant difference from the control group. We used the t-test for statistical analysis of the fetal body weight and it also showed a significant difference from the control group.

Table 2. Embryonic/fetal death and fetal body weight of ddY mice irradiated at 48 hpc in the preimplantation period.

<table>
<thead>
<tr>
<th>Dose (Gy)</th>
<th>No. of Dams</th>
<th>No. of Implantations (%)</th>
<th>No. of Embryonic deaths (%)</th>
<th>No. of Fetal deaths (%)</th>
<th>No. (%)</th>
<th>No. of Live Fetuses (%)</th>
<th>Fetal Body Weight (g) Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>48</td>
<td>612 (99.2)</td>
<td>45 (7.4)</td>
<td>1 (0.16)</td>
<td>561 (92.4)</td>
<td>1.38 ± 0.11</td>
<td>1.32 ± 0.10</td>
</tr>
<tr>
<td>0.1Gy</td>
<td>21</td>
<td>397 (69.5) b</td>
<td>35 (59.2) a</td>
<td>0</td>
<td>234 (90.5) a</td>
<td>1.28 ± 0.12</td>
<td>1.32 ± 0.07</td>
</tr>
<tr>
<td>0.5Gy</td>
<td>20</td>
<td>438 (55.6) b</td>
<td>56 (23.3) b</td>
<td>0</td>
<td>184 (57.6) b</td>
<td>1.33 ± 0.12</td>
<td>1.37 ± 0.06</td>
</tr>
<tr>
<td>0.75Gy</td>
<td>20</td>
<td>398 (67.4) b</td>
<td>29 (19.0) b</td>
<td>0</td>
<td>176 (71.0) b</td>
<td>1.20 ± 0.08</td>
<td>1.26 ± 0.13</td>
</tr>
<tr>
<td>1.5Gy</td>
<td>25</td>
<td>515 (52.4) b</td>
<td>98 (36.7) b</td>
<td>2 (3.37)</td>
<td>170 (63.0) b</td>
<td>1.30 ± 0.14</td>
<td>1.25 ± 0.10</td>
</tr>
<tr>
<td>3Gy</td>
<td>28</td>
<td>604 (56.3) b</td>
<td>212 (62.4) b</td>
<td>0</td>
<td>126 (37.6) b</td>
<td>1.20 ± 0.10c</td>
<td>1.25 ± 0.06c</td>
</tr>
</tbody>
</table>

a: Significantly different from control group p<0.05 by Wilcoxon nonparametric test.
b: Significantly different from control group p<0.01 by Wilcoxon nonparametric test.
c: Significant at the 1% probability level by Student's t-test.

We used Kruskal Wallis test for preimplantation, embryonic and fetal death. The results showed a significant difference from the control group. We used the t-test for statistical analysis of the fetal body weight. The results showed a significant difference from the control group.

and 2. The implantation rate of the non-irradiated control mice was 99.2%. In the mice irradiated at 24 and 48 h.p.c, the implantation rates significantly (p<0.01) decreased at doses of 0.1Gy or greater.

The frequency of embryonic death in the control mice was 7.4%. The frequencies of embryonic death in mice irradiated at two stages of preimplantation increased significantly (p<0.01). Particularly in mice irradiated at 24 and 48 h.p.c, were strong dose-response relationships for embryonic mortality found (p<0.01). The frequencies of fetal death in irradiated mice at various stages of preimplantation were not significantly different from those in control mice. Regarding the mortalities during the preimplantation and embryonic periods, this study showed that the embryos irradiated at 24 h.p.c. and irradiated at 48 h.p.c. were similarly sensitive to radiation.

2. EXTERNAL MALFORMATIONS

The incidence of external malformations observed in fetuses irradiated at 24 h.p.c. is shown in Table 3 and Fig 1. External malformations such as exencephaly, cleft palate, abdorional hernia, open eyelid, anophthalmia and abnormal tail, were observed in fetuses irradiated at 24 h.p.c. However, postnatal incomplete polydactyly of the forelimb was removed from the calculation of the malformation rate, since it might not be a malformation of the absence type. Open eyelids were also observed in control fetuses; however, other external malformations were not observed in control fetuses. On the other hand, in fetuses irradiated at 48 h.p.c., external malformations were not observed.

The dose parameter of the logistic regression model performed a statistical test that measured whether the total incidence of all types of malformation increased with dose Us-
Table 3. Numbers of fetuses bearing external malformations in mice irradiated at 24 hpc in the preimplantation period.

<table>
<thead>
<tr>
<th>Type of malformation</th>
<th>Control</th>
<th>0.1 Gy</th>
<th>0.5 Gy</th>
<th>0.75 Gy</th>
<th>1.5 Gy</th>
<th>3 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exencephaly</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3a</td>
<td>4b</td>
</tr>
<tr>
<td>Cleft palate</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Anomalies of leg</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Open eyelid</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anophthalmia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3a</td>
<td>3a</td>
<td>1</td>
</tr>
<tr>
<td>Abdominal hernia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anomalies of tail</td>
<td>0</td>
<td>1</td>
<td>4b</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Total number of malformations: 1, 4, 9, 8, 11, 8
- Total number of dams: 48, 20, 25, 25, 24, 22
- Incidence of malformations (%±SD): (0.17±0.11), (1.85±0.24), (3.52±2.37), (5.16±3.21), (7.85±3.25), (6.50±1.92)
- Total number of live fetuses: 561, 216, 255, 155, 140, 123

a. Significantly different from control group p<0.05 by Wilcoxon nonparametric test.
b. Significantly different from control group p<0.01 by Wilcoxon nonparametric test.

We used Wilcoxon tests for the malformation rate between each treatment groups and they were significantly different from control group.

![Incidence of malformation](image)

Fig. 1. The Incidence of malformation in ddY mice irradiated at 24 hpc in the preimplantation period. A significant (p<0.01) dose-dependence was detected among all dose groups by the Kruskal-Wallis test. ○: ○ shows the disconnectation value which isn't in the box of liter effect.

The data were analyzed using the methods of Wilson [211], but the increase was significant (Wald χ² statistics with p<0.01) for 24 h.p.c. The litter size decreased with dose. For considering the litter effects, we added the deviation (nij−μi) of each litter size nij from μi as an explanatory variable into the logistic regression [23].

\[\text{logit}(\pi) = \alpha + \beta D + \gamma(nij - \mu_i) \]

where \(\mu_i \) is the mean litter size among the i-th group.

The fitting results showed that the litter-size effect did not exert an influence on the dose effects. It was evident that malformations significantly increased with the dose at 24 hpc. However, there was no teratogenesis at 48 hpc.

3. FETAL BODY WEIGHT

The fetal body weights on day 18 of gestation are shown in the seventh column in Tables 1 and 2. The body weights of female and male control fetuses were 1.323 g and 1.376 g, respectively. There was no significant difference in fetal body weight between irradiated and control mice, except for the body weights of mice irradiated with 0.1 and 3 Gy at 48 h.p.c. and 48 hpc. Also, the sex ratios of the fetuses were not significantly affected by irradiation.

Discussion

It is difficult to estimate a threshold dose statistically because the problem of statistical type-two error always remains. In analyzing experimental data, it was useful to find an alternate index as a single value expressing a dose-response relationship. For analyzing a threshold dose-like dose response, we used the ED 5 and two-thirds of the ED10, which has been used to estimate threshold doses for deterministic effects [22, 23]. These doses expressing the predicted values based on a logistic regression can be used for comparing each dose-response relationship in a quantitative way for a threshold-like dose response. The mice irradiated at 24 h.p.c. had the lowest threshold dose of embryonic death, 0.075 Gy or 0.085 Gy. Rush et al. point out that threshold dose of embryonic death is 0.47Gy by the UNSCEAR report [21]. Ozkay and Mekino point out that threshold dose of embryonic death is 0.42Gy. These results are similar to the results of this research [22].

It has been reported that the preimplantation mouse embryo was most sensitive briefly after sperm entry into the oocyte [26]. Schlesinger et al. and Pampfer and Streffer reported that the one-cell-stage embryo showed sensitivity of preimplantation death and early postimplantation death in C57BL and Heiligenberger mice, respectively [8, 26]. In in-vitro studies, the
embryo was very sensitive to radiation when the irradiation was carried out during the pronuclear stage. In ddY mice, embryos at 24 h.p.c. were at the two-cell stage and were located at the ampullar region of the oviduct. Fertilized eggs completed the first cleavage division with the 24 hours post conception. In this study, the sensitivities for embryonic death decreased during the development stage during the preimplantation period. Similar changes in radiosensitivity have been reported in C57BL mice and Heiligenberger mice. The threshold dose of embryonic death in ICR mice irradiated at day 8 of gestation was 1.4 Gy in our previous study. The relationship between incidences of all types of external malformations in mice irradiated at 24 h.p.c. was 0.6 Gy, obtained on the assumption that it is the same as the 5% effective dose estimated by logistic regression. At the threshold dose of external malformations, only exencephaly and anophthalmia were observed. In ICR mice irradiated at day 8 of gestation, i.e., during organogenesis, the threshold dose for external malformations was 1.0 Gy as estimated in our previous study. The studies carried out by Müller et al. reported that Heiligenberger mice had a significant elevated sensitivity of gastroschisis for irradiation during the preimplantation stage. Recently, Nagao has reported that the embryos during the preimplantation period were susceptible to ethyl nitrosourea, which is a chemical mutagen. The fertilized egg at 24 h.p.c. is the juncture when the first cleavage occurs. It becomes for any organs to the embryonic cell of this stage is totipotency germ cell, too. Therefore, as for the irradiated fertilized egg at 24 h.p.c., it is thought that the various malformation can occur. Also, Pampfer and Streffer reported that irradiation of zygotes with neutrons or X-ray increased significantly the number of externally malformed fetuses, with a linear quadratic dose effects relationship and that the spectrum of observed malformations was larger after irradiation than in controls. In Juchaus report, an attempt has been made to summarize our current understanding of the mechanisms whereby certain chemicals cause birth defects. It is clear that his current understanding of mechanisms whereby these agents cause teratogenic effects (birth defects) can vary dramatically from one agent to the next. Extremes include the folic acid antagonists, which are now well established as agents that produce birth defects by virtue of potent inhibition of dihydrofolate reductase as a primary biochemical mechanism. Parental exposure to X-rays induced significant yields of dominant lethals, abnormalities and tumors in the offspring. However, the incidence of death and abnormalities were much lower than those induced by treatment of embryos during organogenesis with equivalent doses of X-rays. In Hillebrandt's report, gastroschisis occurs with a high frequency in the mouse-inbred strain HLG compared with C57BL/6J mice. A suggestive linkage for a locus responsible for radiation-induced gastroschisis was found in a region of mouse Chromosome 7. In this study, no malformations were observed in the mice irradiated at 48 h.p.c., at which stage the embryos were pre-morula at about the 6-cell stage. In the pre-morula embryos, damage cells could be replaced by the trophectoderm.

The inner cell mass either receiving no damage or fully repaired damages would have totipotency. After the 8-cell stage, compaction occurs among the cells and then each cell begins to have a specific function and morphology; therefore, many types of external malformations could occur. In the one-cell stage embryos, external malformations could be caused by genetic changes in the fertilized egg due to teratogens such as radiation.

A difference between the mouse strains in the malformation induced to preimplantation stage is not detected for ddY and ICR mice. The malformation induction of the Heiligenberger mice (HLG/Ztc) is high against 1 Gy. This result is the same as this research. However, Müller et al. reported that this was a strain specific phenomenon. Therefore, Müller et al. refer to those experiments using the entirely different strain C57BL. As reported in their paper, they did not indeed find an increased malformation frequency after exposure of the zygote under exactly the same conditions as in the Heiligenberger experiments. It might be that malformation occurred significantly with ddY mice and ICR mice. Future research to explore the mechanism underlying strain difference should be done in future.

Acknowledgements
We thank Dr. M. Kai for helpful comments on the manuscript, and Dr. T. Kusama for encouragement.
References

6) NCRP: Biological effects of ultrasound mechanisms and clinical implication. NCRP. Report 74, 1983

7) Welsch F: Pharmacokinetics in developmental toxicology: methoxyflurane as a prototype chemical for teratogenic studies at different stages of gestation. CIIT. Activities. 15, 1995

