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Vector bundles over quaternionic Kihler manifolds

Takashi Nitta

Introduction

On vector bundles over oriented 4-dimensional Riemannian
manifolds, the notion of self-dual and anti-self-dual connections
plays an important role in the geometry of 4-dimensional
Yang-Mills theory (see Atiyah, Hitchin and Singer [A-H-S]).

On the other hand, in bis differential-geometric study
of stable holomorphic vectof bundles, Kobayashi [K] intréducéd
the concept of Einstein-Hermitian vector bundles over Kiahler
manifolds. Let E be a vector bundle over a guaternionic
Kdhler manifold M, and p: 2 —> M the corresponding
twistor space defined by Salamon [Sl1]. Now Ehe purpose of the
present paper is to give a quaternionic Kahler analogue of self-dual
and anti-self-dual connections, and then to construct a natural
correspondeqce between E"s with such connections and the
set of Einstein-Hermitian vector bundles over 7.

Let H be the skew field of quaternions. Then the
Sp(ﬁ)-Sp(l)—module Azﬁn is a direct sum Né &@ NE @ L2 of

its irreducible submodules Né,_N", L2, where Né (resp. LZ)

is the submodule of the elements fixed by Sp(n) (resp. Sp(l))




and for n = 1, we have Ng = {0}. Hence, the vector bundle

A2T*M is written as a direct sum Aé @ Ag & B2

invariant subbundles in such a way that A!, AE, B2 correspond

of its holonomy-

NE, L2. Now, a connection for E 1is

called an Aé—connection (resp. Bz—connection) if the

corresponding curvature is an End(E)-valued Aé—form (resp.

respectively to Né,

Bz—form). Then we have

- Theorem (0.1). All Aé—connections and also all

B2—connections are Yang-Mills connections.

Furthermore, for E with a Bz—connection we can
associate an E-valued elliptic complex (cf. (3.2)) similar
to those of Salamon [S2]. Such complexes allow us to analyze

the space of infinitesimal deformations of B2—connections

(see Theorem (3.5)).

For our quaternionic - Kdhler manifold M, a pair

(E,DE) of a vector bundle E oyer M and a Bz—connection_ D, on

B

E 1is called a Hermitian pair on M if D is a Hermitian
connection on E. On the other hand, a pair (F,DF) of a
holomorphic vector bundle over 2 and a Hermitian (1,0)-connection

DF on F is called an excellent pair on 2Z if the following

conditions are satisfied:.

(a) F with the corresponding Hermitian metric’ h

“restricts to a flat bundle




on each fibre of p : Z ——> M. (Hence the real structure
T : %2 —> 2 (cf. Nitta and Takeuchi [N~T]) naturally lifts to

a bundle automorphism Tt' : F —3 F.)

(b) 'Let g : F —> F* be the bundle map defined
by F o> f —> o(f) € F¥(£) (z € 2), where

o(£) (g) := h(g,7'(f)) for each g € F Then ¢ is an

1(z) "
antiholomorphic bundle automorphism. We then have the following
generalization of a result of Penrose's type (cf. Atiyah, Eitchin

and singer [A-H-S] ; see also Salamon [S2], Berard-Bergery

and Ochiai [B-0]):

Theorem (0.2). Let ﬁ# (resp. F# ) be the set of all

Hermitian pairs (resp. -all excellent pairs) on M (resp. 2).

Then

o~

/0] > (E,Dg) b > (p*E,p*Dy) ¢ Al

I~

defines a bijective correspondence between F# and F#.

In paticular, if M has positive scalar curvature, then every
excellent pair (F,DF) on Z is a Ricci-flat Einstein-Hermitian

vector bundle.

Finally, I would like to express my sincere gratitude
to Professors H.Ozeki and M.Takeuchi for valuable suggestions.

Special thanks are due also to Professors I.Enoki and T.Mabuchi

for constant encouragement




1. Notation, convention and preliminaries

In this section, we give a quick review of the basic
facts on quaternionic K&hler manifolds (for more details see

Salamon [S1], Nitta and Takeuchi [N-T]).

(1.1) Let H(m) denote the standard Sp(m)—moduleﬁ)

HY (= ¢2m) of complex dimension 2m, where H = R + iR + JR + kR-

m

(= ¢ + j¢). Then the multiplication on W' by 3j £from the

right naturally induces a Sp(m)-equivariant anti-linear map

j(m) : H(m) — H(m) with (j(m))2 = —-id. We now define a

non-degenerate skew-symmetric bilinear form.w(m) on H" by

o™ (h,n) = -, 3™ e e B,

' . s . 2
where < , > is the standard Hermitian inner product on ¢ i

(m)

(= B . This o . can be regarded as an Sp(m)-invariant bilinear

form on H(m) such that

- (n) (1)
Le? Sp(n) -Sp(l) = Sp(n) x Sp(l)///zz. Then H 8& H
is naturally a Sp(n)-Sp(l)-module of complex dimension 4n
. ‘ - 1
with a real structure H(n) @b H(l) Ja > act H(n) 8% H( )

defined by

(n)

' : Ce gD
(1.1.2) (h®h") " := ™rg 3G h hea™ , noen).

£ sp(m) = {s é GL (m,H

) | 5-%5 = 1} is imbedded in GL(2m,C)
by Sp(m) 3 A + B —> (g"g ¢ GL(2m,C) where A, B € GL(m,Q).
, -
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(n) o w1y o

¢ R
H(n)~@k H(l). Then the symmetric bilinear form m(n) @>w(l)

We consider the corresponding real form (H 0%
€ SZ((H(n))*<® (H(l))*) induces an inner product << , >> on

(n) (1)
(H ®¢ H )[R.

(1.2) Recall that a 4n—dimensibnal Riemannian

manifold (M,gM) is called a quaternionic Kahler manifold,
if its linear holonomy group is contained in Sp(n) -Sp(l)
( € s0(4n)) with the additional condition for n = 1 that

Iy is a self-dual Einstein metric. Throughout this paper,

we fix once for all a quaternionic Kahler manifold (M,gM).

By the well-known reduction theorem (see, for instance, Kobayashi
and Nomizu [K-N]), the frame bundle of the tangent bundle

TM is reduced to a principal Sp(n)-Sp(l)-bundle P. Then-

'TM can be regarded as the vector bundle

(1.2.1) P x w® g H(-“),IR

Sp(n) -sSp (1) €

associated to the Sp(n)-Sp(l)-module (H(n) @h H(ljlm.
The inner product <<, >> on (H(n)®CH(l))IR induces a
Riemannian metric g on TM, which coincides with gy P
to constant multiple. Without loss of generality, we may

assume g = g,.

(1.3) Let Sp(n) act trivially on CZ. Then the
standard Sp(l)-action on. C2 naturally induces an
. 2
Sp(n) x Sp(l)-action (resp. Sp(n)-Sp(l)-action) on <C° (resp. P C).

Associated to these actions, we have:




A L 2 .
p: V=P xSp(n)XSp(,l)C ) — M

. .= ‘ 1,
(resp. p : Z(:= P xSp(n)'Sp(l)P C) —_— M),

which is a "locally defined" vector bundle (resp. a globally defined
fibre bundle).' Here, the bundle 2z is nothing but [P (V) :=

vV - {zero section}//’c*, and is called-the twistor space.of M

(see Salamon [S1l; p.147]). Then Z is a complex manifold

with a natural real structure T as follows:

(1.3.1) By the connection on V induced from that of
P, we have a decomposition of T(V-- {zero section}) into the
subbundles Sh ‘and -s¥ corresponding respectively to horizontal
and vertical distributions. Let y be an arbitrary point of
v - {zero section}, and put x := H(y). Via the projection P,

the fibre (Sh) of sP over y 1s regarded as the tangent

Y .
space -TXM at x. Then by the identification of H(n) @E Hcl)

¢ (cf£. (1.2.1)), the space H(n) ® Cy defines a

with T_M
X
C-linear subspace of (TXM)C, denoted also by H(n)Q)Cy.

Furthermore, let (H(n) ® Cy)' be the subspace of (,T;M)_C

corresponing to H(n) &® Cy via the natural isomorphism

¢ = (Txm)c induced by Iy Now we define complex structure of

,0

*
(TXM)
TyV by specifying the subspace A; of (1,0)-forms

in (T;V)q: as follows:

1,0
y

1,0,h 1,0,v
- AT A S Ty
A ay e g,




I

where (A;’O)h

i= ﬁ*((H(n) ® €Cy)'), and (A;’O)V is the subspace
of (1,0)-forms in Tytz by the identification of v, with CZ.
Then this induces a complex structure on Z.

(l¥3.2) The map j(l): H(l) > H(l)

naturally defines an
antilinear bundle automorphism % : V ——3 V, which induces a

real structure =t on 2Z.

(1.3.3) Recall that M alwéys has a constant scalar curvature
(denoted by t). Let Ip be the Fubini-Study metric for PlC
(= (¢ + j¢c - {0}) /¢*). If t X 0, then for some nonzero

real constant c¢

tl
- *
9z T PTIy T ¢ p
defines a pseudo-Kahlerian metric on 2, i.e., the corresponding

(1,1)-form on Z 1is a nondegenerate d-closed (1,1)-form.




2. Aé-connections and B2—connections

We shall here give fundamental properties of the

Aé—connections and B2—connections defined in the Introduction.

(2.1) Let (H(m))* be the dual Sp(m)-module of H(m).

Then in view of AZ(H(l))* = Cw(l), we have

™y re ) 5 = @™y re 520 o (52 xya 0.

Furthermore, the Sp(n)-module AZ(H(n))* is written as a

direct sum Cm(n) + AS(H(n))* of its submodules, where

AS(H(n))* is the orthogonal complement of Cw(n) in

Nz(H(n)i*- Hence,

2.1 A2 ahre, mthyo = e nfe .’

where Néc':’: (E(J.)(n) @0: SZ(H(l))*, N;C = /\g(H(n))* ®(L‘ SZ(H(l))*
and L2¢ 1= SZ(H(n))*”gh Cw(l)i

modules Néc, NEC, Lg respectively admit real forms

Né,'NE, L, fixed by the real structure induced from the

one in (1.1.2). We have the identification

g (1) ®p gtz gy O (1) «

Note that the Sp(n)-Sp(l)-

by the metric << , >>

(cf£. (1.1)). Together with H(n)tg H(l)

~ ..n

above (2.1.1) induces the decomposition of its real form:




L

12" = N, @ Nj ® L,,

which is nothing but the decomposition in the Introduction now
for our principal Sp(n);Sp(l)—bundle P, the bundle T*M

is regarded as the vector bundle associated to the Sp(n) *Sp (1) -

1 .
module ((H(n))* QC (H( )*))P = p®. Hence, AzT*M is a

of its subbundles A!

2’ All

2 27
corresponding respectively to the Sp(n) -Sp (1) -modules

direct sum Aé & Ag & B B

2

1 n .
N2, N2, 92 (cf. Introduction).
(2.2) Fix an arbitrary point x of M. Note that
each point 2z on the fibre ZX defines an almost complex
structure JZ on T;M (cf. (1.3.1)). We then have the

corresponding space atsd

(T;M,Jz) of (1,1)-forms of
(T;MiJZ)- Choose a point y(¥ 0) of V such that its natural
image (denoted by [y]l) is z. In view of (1.3.1), the space

A;'l(T;M,JZ) in A2(T§M)C is associated to the ¢-linear subspace

(H(n) ®C Cy)' - ((H(n)®C Cy)') in the Sp(n)-Sp(l)—mq@ule

(H(n) ®€ H(l))* ~ (H(n)KEC H(l)l*. Since j(n) preserves
H(n), we have (cf. (1.1.2)):
(n) (Mg cn=y = (D) (Mg e (1)
(HYV@Cy) ~ ((H'QeCy) ) = (B 'Q.Ly) ~(H Qi )
(n)

.=<(A,2H(n)®ccnv(y®j(l)y + 386y @ (5% ’®C€(ij(l)y)).-
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(1) (1) (1)

The space C(ij(l)y)) (where y.j

y = (y® "'y - 3 " yey)/2)
in H(l)@tH(l) corresponds tO‘Cw(l) in (H(15R3¢(H(l))*
via the natural isomorphism H(l)®CH(l) = (H(l))*®é(H(l))*
induced by the nondegenerate bilinear form w(l). Furthermore,

Nyeei Py + 3Wey) = (o1,

where (\y always denotes the intersection taken over all

y in VX - {0}. Thus,

/\y(H“"@«:y) o Maeey) = 2w *@ch(-l)

= L2 (cf. Introduction),

and we obtain:

Lemma (2.3). The fibre (,Bz)X of B, over x

1s given by

).

_ 1,1
(B, = ﬂy‘ AT, T




/]

We next give a typical example of an Aé—connection

and also a B2—connection.

Example {(Z.4) . If n > 2, the induced connection on

the locally defined vector bundle

(1) (n)

vV := P H

(resp. W := P )

*Sp (n) xsp (1) B *sp (n) xSp (1)

is an Aé—connection (resp. B2—connection). See Salamon

[S1;p.150] for related computations of cuvatures.

Recall that a connection V is called a Yang-Mills connection

if the corresponding curvature RV satisfies dYkRv = 0.
We shall finally show:
Theorem (2.5). all Aé—connections and also all
Bzfconnections are Yang-Mills connections.
Corollary (2.65. The Riemannian connection on TM
is a Yang-Mills connection.
Proof of (2.6): By (1.2), (2.4) and (2.5), we dbtain

(2.6).




Proof of (2.5): Fix an arbitrary point x, of M.

It then suffices to show (dv*Rv)(xO) = 0. We may take a
local section s to P over a neighbourhood U of X4 such that

the corresponding differential at the point Xq transforms the
tangent space T, M to a horizontal space at s(xo) in the
0
tangent space Ts(x )P. Let (ul,:°~,u4n) be the local
-0

*
frame of T M associated to s. Then all covariant derivatives

|u
of ul's (L £ i < 4n) at the point X4 is zero. Moreover

in . . *
u ), we can identify T M

in terms of the frame (ul,---, IU

with U x R4n (G x Hn). Note that V on E naturally induces

a connection (denoted by the same V) on End(E).

(1) We first assume that V is an Aé—conneqtion_on
*
E. Recall that the rank 3 subbundle Aé of A2T M corresponds
to the Sp(n)-Sp(1l)-submodule N} of A2H% ) where N is the

irreducible submodule of the elements fixed by Sp{n) (cf.

Introduction). Let I,J and K be

1 : 4 4
4k+1 u4k+2 + u4k+3A u.k+-

_ on-1
- 4
J = Z?=é(u4k+lﬂ u4k+3 + u‘k+4A u4k+2),
K = Zn:l(u4k+lA u4k+4 + u4k+2A u4k+3).
k=0
Then it is easy to check that A is spanned by the

2|u

. : v
sections I,J and X. Therefore, the curvature form R

is written on U as

Rv =a® I +bses J+c e K,



where a, b and c are smooth sections to End(E) over U.

- L o o . 1 l.-o 4n
Let (ul, ,u4n) be the base for TMIU dual to (u7, ,u’ )

defined by ul(uj) = 6ij' Then by the first Bianchi identity,

0 = dv(Rv)(xo)

= Zggl{(via)ui(xo)AI(x0)+(Vib)ui(x0)AJ(Xd)+(ViC)ul(XO)AK(XO)},

where Vi denotes V Consequently,

u; (x4) 7

V.a=V.b=V.c =0, for 1 <i <4n if n 2 2.
i i i = = =
Therefore, (dv*Rv)(xo) = 0.
(1i) We next assume that V is a B2—Connection on E.

*
Since the vector subbundle B2 {({of rank n(2n+l)) of A2T M

corresponds to the irreducible Sp(n)-Sp(l)-submodule L2
of the elements in AZHn fixed by Sp(l), the subbundle B2lU
is spanned by

IS,Jé,K (0<s<n-1, 0<p<g<n-1).

7 D IE IF IG 4
S P9’ PG P9 P9

where




u4s+lAu4S+2 _ u4s-.§-3hu4s+4

I =

’

s
+
3, = u4s+lAu4s+3 - u4s 4Au4s+2,
4s+1 4s+4 4s+2 4s+3
KS = u A1 - u AU ’
qu _ u4p+1Au4q+l + u4p+2Au4q+2 + u4p+3Au4q+3 + u4p+4Au4q+4
1 a i . +
qu - u4p+lhu‘g+2 _ u4p+2Au4q+l _ u4p 3Au4q+4 + u4p+4Au4q+3'
qu _ u4p+lhu4q+3 + u4p+2Au4q+4 _ u4p+3Au4q+l._ u4p+4Au4g+2,
G _ u4p+l,;u4q+4 _ ull;::+2ﬂ.u4q+3‘+ u4p+3’\u4q+2 _ u4p+4Au4q+l'
p4q
Let V be a Bz—connection on E. Then over U, the curvature

form RV is written in the form

R =1% _l(l eI + Jg8Jdg + kS@KS)

F G_ ).

0z <n-14{d_ _&®D +e . B
£P<qzn-1f pg" "pq

8E_ _+f & g
Pd P9 P9 P9 PQ

+
Pq

where i _,j ,k f _and g__ are smooth sections
s'”s Pq

Id Ie 7
s’ P9’ P9’ Pq

to End(E) over U. In view of the first Bianqhi identity d\'Rv
we have
T Vasests T Vasaadg t Vygnkg = O
Vast1ts 7 Vastads * Vage3Kg T

v4s+4ls + v4s+ljs V4s+2 S

V4s+215 + y4s+3js V4s+4 s 0,




for s with 0 £ s < n-1. Furthermore, if £ is either p

or q, the identity dvRv = 0 implies

(-1) Vi0+19%q 7 Vae+2%pg T VagrsTpq T Vag+a9pg T O
1, E(2) _ = .
(1) V001950 7 Vages®pg T Vagsofpg Y Vagr19pg T O
(L) - =
(=1) V4l+2dpq * v4Z+lepq V49.+4qu * V42+ngq 0
(-1) ¢V a =0,

02+3%q * Vansa®pq T Vass1fpq T Vags29pq T

for all p,q with 0 < p < g < n-1, where e(p):=0 and €(q) :=1.

Then a straightforward compuﬁation shows that (dv*RV)(xO)=O,

as required.
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3. Deformations of B2—connections

In this section, we shall give an elliptic complex
whose first cohomology group canonically contains the space
of infinitesimal deformations of B,-connections on M

(see Salamon [S2] for a similar complex) .

(3.1) Let r be an integér with r > 2. By setting

NE 1= Ar(H(n))*@CSr(H(l))* (cf. (2.1)), we can express

the Sp(n)-Sp(l)-module Ar(H(n)@CH(l)

Nf o Lg, where Lf is the orthogonal complement of Nf in

)* as a direct sum

Ar(H(n)amH(l))*. As in (2.1), the Sp(n)-Sp(l)-modules
Nf and Lg respectively admit real forms Nr and Lr fixed
by the natural real structure (cf. (1.1.2)). Since T*M

is associated to the Sp(n)-Sp(l)-module (H(n)ch(l))*R

(see.(1.2.1)), the vector bundle ATT*M is a direct sum

Ar ® Br of its subbundles Ar, Br corresponding respectively

r r
- ]\ * —
to N, L . Let . T™*M (= A_ B ) —> A be the

projection to the first factor. Then we have:

Theorem (3.2).  For a B,-connection V on E, the

following is an elliptic complex:-

. o _ v.. a
(3.2.1) 0 —— €E —s E(EOrW 15 ¢(men,)

‘dz. .d3~ d2n—l .
—_— E(E®A3) —_> <. —_— E(BaAZn) _ 0,

where di:= (id@nl+l)o dV and for every vector bundle E'
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- on M, we denote by E(E') the sheaf of gérms of ¢“-gections of E'.

Proof.
(1) Fix a section s € T(M,EQAi) (i > 1) and define a section
t & Iﬁ‘d,E@Bi+l) by

dvs = d.s + t.
i

Then from (dvo dv)sA= (dvo di)s + dvt, we obtain

. - } _ . vV
((1q®ni+2)o d od )s. = (di+lo di)s + ((ld@ﬂi+2) od ) t.

—connection, the Ai+2—component of (dVOdv)s is zero,

- , v
0 —_(di+lodi)s + ((ld@ni+2)o d)t.

Write t as t =

TV, v i local
Hkvkabk locally, where Vi bk is a local

. . 1+
section of V*,Bi+l,respect1vely. The S l(V*)_—component of

2

bk is zero, and hence the Sl+

(V*)—cbmpqheht of V(Yk)Abk

is zero. Therefore,

A v
((icdw, o) ° a’)t = I, v, &dby

Since d is the.éoﬁposiie of the Riemannian connection and the
. : ) ' s .
alternation operator, the st (V*) —component of dbk is. zero. Thus,

(di+

1° di)s = 0, as required.




(ii) Secondly, we shall show that (3.1.1) is an elliptic

complex. Then we need to calculate the symbol G(di,u)
(uw & T*M - {0}). Fix a2 point of M and an element s of
EXGAiX. All computations below are taken at the point x,.

- t ' . -
o(ag,ws = (a/ae) (e a (™) | =(1d®n, ) (uas)

where g 1is a locally defined function such that dqx=u.

We next show that the following sequence is exact for every u:

o(di_l,u) o(di,u)
—_— E&A. . .
1 > E®A; ———— EeA.,,

(3.2.2) ExA.
: i

‘Without loss of'generality, we may assume

u = e;eh, + (el®hl) (= el@hl + e2®h2),
where <el,~--,e2n>_(resp. <hl,h2>) is a symplectic oa51s.01 WE =V
(resp. V¥ = V), i.e., an o;thonormal basis and j_(n)e2j+l = e2j+2
. l) 1 - —
(resp. j( hl = h2). Let s € E&A, be such that o(di+l,u)s = 0.
; k i-k ) ' 1-
Note that Sv* = Span(hl 'h2 0 <k < i), where hlk-hzl k
. : -k i-k
denotes the symmetric. component of hl ®h2
' - i
Hence, there are local sections so,---,§i of Es®A"W* such that

We can now write o(di+l,s) = 0 as fcllows:
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i = (id | i s, ®h k"h iMk)
0 = (1d®ni+l)(uAs) = (1o®ﬂi+l)((el@hl+e2®nz)A s, ®hy 2
- i k+1 . i-k k i+l-k
Zkzo((el,\sk)ahl h2 + (eZAsk)ahl -h2 ) -
Since the coefficient of the right-hand side in hlk-hzi“-’k

is zero, we have:

(0) | e

2450 =.0,
l ~ ~ =
(1) e ~Sy T e, s 0,
(1) €1~S; 1 T eyns; = 0,
s {1+1) el,\'si = 0.
By (0), there exists Ty S Al—lw* such that
Sg = €,5-T-

‘Plugging this into (1), we obtain

ezd(—elarO + sl) = 0.

Hence there exists ry € A}—lw* such that

s, = el;ro + €,nLq -
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i-1. %

Repeating this process inductively, we obtain r, € A W

k

such that S T €3~Ty + €ynTy, 1 <k < i. Now by (i+l),

the identity €1 ~€ AT, = 0 holds. It then follows that

. ) —2
there exists r! AL W* = ' a3
i ¢ such that ez,\ri elAezAri. S5ince

eZA(ri—l + erri) = €,.r. ;, We may replace ri 3 by

1
ri—l + eZAri. Therefore,

Thus,

i X ik
Iy—g Sx®hy - hy

i-1 k . i-l-k
k=0 Tk%P1 Py ¥

S"_.'

= o(di_l,u)(Z

i.e., the sequence (3.2.2) is exact, as required.

Definition (3.3). Let  be the set of all Bz—connections
on E with holonomy groups contained in a compact semisimple Lie
group G. Assume that (% g and let V ¢ {, . Then the frame
bundle Q of E can be regarded as a principal G-bundle.
Put Gy =0 x, G and f}Q := Q xAdq‘ ;,where 8 is the group
conjugation and Ad : G ———~§GL(?) is the adjoint representation
of G. Now, a C°-section to G over M is called a gauge

Q
transformation of Q. Let ?’be the set of all gauge

transformations of Q. Then g’naturally acts on f,(see

Atiyah-Hitchin-Singer [A-H-S}]}. We call QN(:= 6/? } the



moduli space of the B,-connections on E with holonomy

groups in G.

(3.4) Let V ¢ C be irreducible in the sense that ‘ﬁb admits

no nonzero parallel section over M. Fix a smooth
t

one-parameter family V- (|t]| < €) of connections in (,
such that VO = V. Put- § = (d/at)vt[tzo. We write the
t .
curvature form Rv' of vt as
vt v Vil .
R° =R + td S + higher order terms in t,

where V' is the connection on ?b
t

V. Since RV is a (ﬂQ—valued Bz—form, the corresponding

1
derivative dv S at t=0 also satisfies

naturally induced by

vl
a

((1a®r%) o a’ )s = 0.

Let ft ([t1 < €) be a one-parameter family of gauge

transformations such that f? = id. Then,

d t _ Vo
—gc f (V))Itzo.— v o(f) ,
where f :#(d/dt)(ft)ltzo. Since f?(v)'e C  for all ¢,

the same argument as above shows that the ‘?Q—valued 1-form

V' (f) satisfies




V'Yy(wrd)) = o.

((id®712) o a

For each A €& T( %Q), there exists a one-parameter family
£t = exp(tA) such that (d/dt)ft[t=0 = A. Then together with

(3.2), we immediately obtain the following:

Theorem (3.5). Assume that C ¥ @ and let V€& ¢

be irreducible. Then the space of infinitesimal (essential)

deformations at V of connections in {, , that is, the tangent

space of 7% at V is a linear subspace of the firct cohomology

group of the elliptic complex

. ' 4
0 —— B(%y —T— TGerm) —i €(Fen))
- a) _ - ay Ay ' L
— (Fgery) —— - 5 C(Ger, ) —— 0,
where dl:= (iden'*1) o a”'.




4. Einstein-Eermitian connections associated

with B2—connections

In this section we shall prove Theorem (0.2) (see the
Introduction) which clarifies the relationship between B,-connections

and the corresponding Einstein-Hermitian connections.

Proof of (0.2) : (i) Let (E,DE) be a Hermitian
pair. Then by the definition of BZ—connections, the curvature
form corresponding to the connection DE is an End(E)-valued

‘ B2—form, and'by Lemma (2.3) the curvature form corresponding

to the connectiqn p*DE on p*E is an End(p*E)-valued (1,1)-form.

E

complex structure on p*E as follows : Put & := rank(E) and denote

Henice the connection p*D_ induces naturally an integrable

by g:p*E ——> 2 the natural projection. Let (Sl""’sl)
(resp. (yl,---,yl)) be a local unitary frame for p*E (resp.
the dual frame corresponding to (sl,--°,sl)). Then the vector

subbundle AL70

¢

T*(p*E) of type (1,0) in the compiexification

T* (p*E) of the cotangent bundle T*xﬁ*E)ﬁis defined as the
1,0 '

direct sum of the pull-back qg* (A T*7Z) and the space spanned

by {dyj + Ziéiqu*eji’ léjél}, where (eij) is the connection

matrix for p*DE with respect to the frame (sl,'--,sl) (i.e.,

(p*DE)sj = Eizisieij). Now, we may take the frame (sl,;--,sl)
as the pull-back (p*t ""p*tg) of a local unitary frame

1’
(tl,...,tﬁ) on E. Then the l-forms eij’ 1<i,jz, are written




as p*wij,where (wij) denotes the connection matrix for DE with

respect to the frame (tl,'-',tz)- Let q':(p*E)* —> 2 Dbe the
projection naturally induced from g:p*E —> Z. Since the

real structure 1:2 —> 2 is antiholomorphic (cf. Nitta

aﬁd Takeuchi [N-T]), and since the maéping q'eo : p*E —> Z

is equal to Toé, the mapping ¢:p*E —> (p*E)* 1is clearly

an antiholomorphic bundle automorphism by the definition of the

complex structures on p*E and (p*E)*.

(ii) We next fix an arbitrary excellent pair (F’DF)
on Z. Then by the condition (a) in the definition of

excellent pair (see the Introduction), we can choose an open

cover {UA} of M, and a local unitary frame (fi,---,fi)

(r = rank of F) of F such that each restriction

|p-1(U))
(£) 10Ty " Er [p=L () “Lx) (x € Uy £
llp " (x)’ “rlp T(x) over p x) (x A orms a

N Uu # ¢, the

holomorphic frame for F,|_-1 . When U

o~ (x) A \
transition matrix for F in terms of the frames (f;,---fﬁfil
(fu,---,fi) is holomorphic (and hence constant) along each

fibre pfl(x) (x € Ui"Uu)’ Hence there exists a Hermitian vector

bundle E on M such that, including metrics, we have

p*E = F. 1In paticular, we obtain a local unitary frame (fix,---,féx)
for E]U such that (p*fix,---,p*f%k) coincides with the
A ,
previous (fi,---,fi) over p—l(UA). Fix an arbitrary A.
If there is no fear of confusion, we shall omit the suffix A
A A .
and denote UA’ (fl,---,fr), -+ simply by U, (fl,---,fr),---,




respectively. Let (wij) be the connection matrix of D

F
. ' . r
with respect to the frame (fl, ,fr), i.e., DFfj = Zi=lfiwij'
Furthermore, we choose a local symplectic basis (el,- -,ezn)
(resp. (hl)hz)) for W*IU (resp. V*IU) (see Section 3). Now, since
DF is 2 Hermitian connection, we have:
(1) wij + wji = 0, for 1 1, £r.

Then the construction of D_ is reduced to showing that
there exist 1-forms wij (1 £1,jJ £ r) on U satisfying
6.. = p*w!.. In fact, once we can find such 1l-forms w!., they
1] 1] 1]

define a Hermitian connection on E, such that the corresponding
curvature form is pulled back by p to an End(F)-valued

(1,1)-form on Z, which together with Lemma (2.3)‘ implies

that our connection on E 1is a B2—connection. Recall that,
for each x € U, the frame (fllp_l(x)"."frlp_l(x)) for
F, -1 is trivial, Hence,
lp” ~(x)
(2) mij(v) =0 , 1 <-4, < r,
- -1 ~ 1 .
for every vector v tangent to p " (x) (= P C). Since
- . - C i .
.. K £ *M =pi%, V¥ .
(elehl,elehz, ,eZnenl,eznéhz) is a frame for T*M lu { lU@v lU
there exist by (2) Cm—functions ai?’ i? (1 < i,j < r,
-1 '

1 <k 2 2n) on: p " (U) * such that




2n

A
[a]

_ K . k_, . ..
(3) wij Zk=l(aijp (ekéhl) + bijp (ekéhz)) , 1 21,3

For every form n on ZIU , we denote by A the pull-back

of n to (V- {zero section} )IU . Then by (3), we have
A A ~
Rij = dwij + ;tzlwit - ij
2n - - k"* - ~ k/\* , rA ~
Xk=l o(aijp (ekahl)) + a(bijp (ekanz)) + Zt=lwit ~ mtj'
Fix an arbitrary point x on U. Choosing an appropriate
(el,---,ezn) (resp. (hl’h2))’ we may assuwe that QVV ek)(x) = 0,
4?* .
k=1,2,-+,2n (resp. (Vh hi)(x) =0, 1i=1,2) , where
* okd »
VV (resp. VU ) denotes the connection of V* (resp. W¥) canonically

induced by that of P (cf. Example (2.4)). Then, on B T(x),

~ 2n l\k . ./\ I\k ~ R
n = * 3 * I
R j Zkél{d(aij) ~ P (ek@hl) + a(bij) ~ P (ekenz)}
rl\ ~
T les1%e ~ Y

Recall that the complex structure on the twistor space. Z

(= (V - {zero section}) / €*) is induced by the complex structure
‘on V - {zero section} (see Section 1). Since Rij is of type (1,1),
vie have

(4) zkiﬁ{a(aig) ~ (p*(ekehl))(l’o) + 3(bi§) - (p*gekGhZ))(IIO)}
+ Zt=§wit(l’o) ~ wtj(l'O) =0 on P—l(x) i




- 21’1 - 7 k A* a (O/l) =0 k A* (C,l)
(5) . y{8(a;3) ~ (p*(epeh;)) + 3(b;3) ~ (p*(epehy)) }
- "> (0,1 -~ (0,1) _ -1
+ I 195 ¢ - wtj =0 on p " (x},
where for every l-forms ¢ .on (V -~{zero SECtion})lU.f
;(lfo) (resp. g(o’l)) alwayvs denotes the (l,O)—componen£
(resp. (0,1l)-component) of [ . Let (zl,zz) be the local
triviality for VIU corresponding to (hl’hZ)' Then, by the definition
of the complex structure of (V — {zero section}), we obtain from (4)

and (5) the following

, 2n,, 3.7 k. 1, 3.7k, 2, =1, 1%, 27,
(4') Zk=l{(__Taij z +——§aijdz YAz (2P (ekéhl)+z p (ekéhz))
9z 3z
3 2 k. 1.3 2 k.2 =2, 17, 27,
+ (;—Ibijdz +__7bij z7) Az (27 p (ek6h1)+z o (ekéhz))}
4 9z
=0 on p_l(x) ;
\ 2n,, 3 2 ka1, B 2 k.-2, 2. =17, =20 .
(5') Zk=l{(—fz ijdz +———aijdz YA (-27) (z7p (ekéhz) z°p (ekanl))
- =2
3z 3z
9 2 k.=l, 3 2 k,-2, _1.-17, -2,
+ (—:Tbijdz +—:7ﬁijdz )~z (27 p (ekéhz) z°p (ekahl))}
az dz
=0 : on p—l(x)
. 1 : - 2 \
Since both =z -1 and z -1 are holomorphic on
: lp ~(x) lp ~(x)
57 (x) = ¢2 - (0} , we have




S ('K w22 = 22fa K v 215 =0 w=1,2),
3z ] ] 57+ J J
-1 . 1 2, _ 17k 27 k .

-on p (x)f i.e., both fl(z ,27) = oz aij + z bij and
fz(zl,zz) c= —zzaik + zlbik are holomorphic on ¢2 - {0} .
By Hartogs' theorem, both fl and f2_ extend further. to
holomorphic functions on ¢2 . Since fi(czl,czz) = cfi(zl,z
for all =z = (21,22) € C2 and c &€ €* (i = 1,2) , there exist

: k k k .k . .-
constants aij’ Bij’ Yij’ oij € ¢ independent of z

such that

= Kk - X -k
.k QZB.L la.ﬂ 22 .{

() 2915 T B Py T 2057 813 !
(1) -z2a. % + 2'p. K = S22y K42t X, (1 <k < o2n)
ij ij i ij = " =

et T(Z,F*) (resp. T'(z,F* & &*ZC)) be the-space o=

clobal C -sections over % to F* (resp. F* & r+z%) .
Let ¥ : T'(2z,F*) —> T(z,F* & t*2%) be the C-linear
map sending each s ¢ T'(Z,F*) to an elerent y(s) of
T(Z,F* & T*ZC) ~defined by |

¥(s) (X) = o((Dy) (67ts)) € Fx

T, (X)

for X € TZZC (z € 2).
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Then by the condition (b) in the Introduction, this ¥ defines
a Hermitian (1,0)-connection on the holomorphic vector bundle
F*. The corresponding connection matrix with respect to

the frame (Ofl,°",0f ) for F* is written as

-1, .
r lp = (0)
(T*mij). By the definition of ¢ , it is easy to check that

the frame (Cfi,‘°',6fr) is dual to our previous (fl,°°°,fr)-

Eence the unigqueness of the (1,0)-connection on the Hermitian

vector bundle F* implies the equality (T*wij)_ = wij*’ where
w..* := -w... In view of (1), we have 7t1*w.. = w.. and
ij ji ij ij
A*/\ — ”~ - A ”~ — Fal .
T wij wij' By (3) and pe?% P, we obtain
() 2*a.% = a.% ana 2+5.X =% (1 < k < 2n)
1] 1] 1] 1] = =
Therefore,
—Zzé*g.k R L PR gl glg,k (1 <k < 2n).
- 1] 1] 1] 1] = =
iMoreover by (6),
(9) —zzé.g + zlﬁ.k = —zza.k + le.k - {1 < k £ 2n)
1] 1] - 1] 1] = =
Hence by (7) :and (9), we obtain
(1) o=y X ana gX-sk (1 <k < 2n).




e 0

Now, in view of (6), (7) and (10), we see that

=1 =2 A K k
-

zo, z aij i3
. 1 2 b = 0 (1 <k g 2n),
-z, z7/ \B.. - B..
. ij ij
where (zl,z?) & C2 - {0} ( = @_l(x)).-ﬂhus, 3., = @Tk and
i3 — i3
.E = B.g (1L <k < 2n), 4i.e., both a.k and b.~ are constant
ij i3 = = ij i3

along p—l(x),-as required.

Remark (4.1). In some sense, our Theorem (0.2)

completely clarifies the following result by Salamon [£2]

(see Berard Bergery and Ochiai [B-0] for another

generalization)

the pull-back

For a Hermitian pair (E,DE) on M,

is a Hermitian holomorphic vector bundle

(p*E,p*DE) to Z

over 7.

Corollary (4.2). Let (F,DF) be an excellent

M has positive

If the quaternionic Kahler manifold

is a Ricci-flat Einsteiln

pair on 2.

scalar curvature, then F with DF

Eermitian vector bundle over Z.
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Proof. Consider the twistor space p: 2 — M.

Then the horizontal component of the Kanler form on 2 is

a p*Aé—form“'(cfh (1.2), (1.3)). . Recall that the
curvature of DF is an End(F)-valued p*Bz—fqrm. Hence the
Hermitian vector bundle F with DF is Ricci-flat.

Remark (4.3). We have the decomposition of T2z = Th & TV,

h : . . . . . .
where T (rgsp. TV) is the horizontal (resp. vertical) distribution
in terms of the connection on Z induced by that of P.

Since the complex structure on TZ is a direct sum of complex

structures on Th and TV, the holomorbhic part TZ(l’O)

— Th(lro) TV(l,O)’

admits the corresponding decomposition TZ(l’O)

v(1,0), hC  5,(1,0)

o

where Th(l’o)(resp. T
¢

denotes T

(resp. v /\Tz(lﬂo)). Recently, Zandi [Z] ‘obtained the following: -

h(1,0). _h . . . ..
T (1, ),D ) is an Einstein-Hermitian

Tn(l,O)

The vector bundle (

h . .
vector bundle, where D is the connection on

obtained as the restriction of the Riemannian connection on
(1,0

TZ to

This result can be regarded as a straightforward-cohsequence

of our (4,2j. We dznote by L a locally defined (line)

subbundle of p*W (cf. (2.4)) such that, along each fibre
-1,.. 1 . . .
p. () =P°C (x € M), it restricts to a universal bundle over
1 y
P"C. Let vV (resp. VN) denote the connection of V (fesp. W)

canonicglly induced by that of P and VL the restriction of

I " ——




Th(l’o),Dh) is nothing

p*VW to L. Then the vector bundle (
but  (p*W ®L*,p*V" @ (V) %), where (L*,(VF)*) is dual to (L,v%)
(see ESalamon [S1]). Since L* 1is a locally defined line

W

bundle and since V is a Bz—connection on W, Corollary (4.2)

clearly implies Zandi's result.

2DDED IN PROOF. After the completion of this paper,
I received a preprint : M.M.Capria and S.M.Salamon "Yang-Mills
fields on quaternionic Kdhler spaces" , which gives (i) for

(2.6) ,a slightly stronger result and (ii) a-"statement similar

'to (3.2); -
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