<table>
<thead>
<tr>
<th>Title</th>
<th>D.N.A.稀薄溶液に対する放射線作用の研究補遺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>渡邊，一</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 17(11) P.1275-P.1280</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1958-02-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/16308</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
D.N.A. 稀薄溶液に対する放射線作用の研究補遺

北海道大学医学部放射線医学教室（主任 若林藤教授）

渡 邊 一

(昭和32年7月24日受付)

緒 言
稀薄溶液における放射線の作用機序は、水から生ずる遊離基が主役をすなためである。この遊離基と溶質との間の化学反応または溶離基の結合によって生じる化合物と溶質との化学反応によって放射線の作用が出現すると考えられている。しかし実際には、要因が多く複雑である。最近、遊離基の役割については、特にアニオン酸化反応が注目されている。

若林藤教授はこの変化を物理的にも考えている。すなわち、遊離基が溶質分子に与えられ、そこで安定化する時に遊離するエネルギーが溶質分子を励起し分子の反応性の変化をもたらし、これ等の一部が非常可逆的変化となるのである。

遊離基と溶質との間に起こる最初の変化は、物理的であり、化学的であるとされています。

著者はこの若林の考えを D.N.A.溶液について検討させ、したがって本実験を行なった。D.N.A.溶液を照射するとき、その粘度に著しい変化を来すことの裏に重要な因子があり、その二つは、照射による D.N.A.溶液の粘度低下は遊離基の合計によって生ずる H₂O₂ によるものであると考える。

著者は先ず先ず先人の業績を追試し次いで試験的設計を試みた。粘度の低下が放射線の種類によって影響されることを考慮し、更に H₂O₂ による変化と照射による変化とを比較検討した。之等の結果より若林の説を批判せんとするものである。

実験方法
（1）試料として Desoxyribose nucleic acid (D.N.A.と略す) はミノフシゲン製薬製造の乾燥白子より造ったものである（製造番号 No.31）。之を蒸溜水で蒸溜水を浸した後蒸馏して使用に供した。

実験 1 濃度と粘度の関係
先ず高分子化合物であるD.N.A. の濃度と粘度との関係を検査した。0.5%D.N.A.水溶液を蒸溜水にて適宜稀釀（0.2%～0.0125%）し、夫々の比粘度を測定した。その結果は図1に示す如く…
D.N.A濃度が0.125%以下で原封をしても直線となる。これより濃度が大となると濃度の増加に比例する粘度の増加は見られなくな。従って以下実験に於いては0.125%以下の濃度を使用した。

実験2 D.N.A.水溶液自然放置後の経時的変化
D.N.A.水溶液を作成後放置した場合自然に粘度が低下するか否かを検討した。0.05%の試料5コについて20℃に放置して24時間迄経時的に粘度を調査した。表2に示す如く、水溶液製作後僅かではあるが徐々にS.Vは低下し24時間後には3.9±2.4%の粘度低下を認めた。この24時間後の変化は推計学的に検証すると有意差はないと。Butler et al.11は高長時間放置しても粘度の変化のないことを認めて居り2週間にわたり変化がなかったと云って居る。

実験3 X線の影響
0.05%D.N.A.水溶液に1×、2×、3×、5×、10×10^6を照射して24時間迄経時的変化を追求した。照射前比粘度を100とすると図2の如くなる。一般に照射中止後30分に粘度低下を来し、1時間後には更にその度を増し、1日、2時間、6時間に経時的に粘度を増し、24時間では6時間と同程度の粘度低下を示して居る。貯留温度低下の度は照射線量大なるにずつ著しくなつた。

この照射による粘度低下は照射後よりじりずも照射後時間と共に更に粘度低下が進行し、6時間以降はその進行は著しく24時間後で顕著に傾向はみられた。この現象は所謂after effectと云うべきものである。然してこの変化は少なくとも24時間迄非可逆的変化である。高分子のD.N.A.が照射によって低重合化を来たものと考えねばならない。

両この照線量と粘度変化との関係を知るために、照射後1時間目及び24時間目の粘度の変化について、粘度の変化の曲線を綴引に線画を描軸と共にとけて図示すると図3の如くであった。印ち5×10^-6以下の線量範囲では粘度低下と線量との間に指数函数的関係が成立するがこれ越える大線量照射の場合はこの関係に成立しない。

以上からD.N.A.水溶液のX線照射による粘度低下にはafter effectが見られると言うこと及び粘度低下の度は照射線量大なるにずつ著しくなると言えることが出来る。この結果は先人の業績と同様である。

実験4 稀詰効果について
Limperos11a等は乾燥処又は凍結したD.N.AにX線を照射しても粘度は変化を来さないことを認め、D.N.A水溶液に対するX線の作用は間接作用が主役を演ずるようであろうとのべて居る。著者はこの点を追試するに迄階級稀詰（0.1～0.10%5% D.N.A.水溶液に1×、2×、3×、10×の各線量を照射し、経時的に24時間迄粘度変化を追求した。照射前比粘度を100とすると図4の如くである。これによるとX線による粘度の低下は同一線量では濃度が小となるにつれて粘度低下は大となる。

各濃度の試料について37%線量（粘度をe/1に

--- 20 ---
低下させるに要する線量（但しEは自然対数の底）を比較すると表2の如く、D.N.A.濃度が小となるにつれて小となる。

第3図

低下的影響

図表で示されるように、X線照射によるD.N.A.の粘度低下は無観察状態でも起こる。但し無観察状態にて照射させる場合を無観察状態上のX線照射による粘度低下より明らかに粘度であった。粘度が何らかの役割をなし寄ることを物語るものである。然しては次の様に考えられる。大なるエネルギーを発生する核分裂原の生成が粘度低下下では多く出来ると云うことによるのであろう。

第4図

複数効果

第2表

37%線量

<table>
<thead>
<tr>
<th>濃度</th>
<th>37%線量（×10^4）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>3.5</td>
</tr>
<tr>
<td>0.05</td>
<td>2.6</td>
</tr>
<tr>
<td>0.025</td>
<td>1.7</td>
</tr>
<tr>
<td>0.0125</td>
<td>1.0</td>
</tr>
</tbody>
</table>

第5図

酸素効果

高山のパラミアホモアミカル酸についての研究（酸素効果）に於いてもこの場合と全く同様な結果が得られて居る。高山の場合は照射中に起きる現象についてであり、本実験の場合は如く所謂aft
erectfect についても酸素効果が見られたことは興味あることであった。

実験 6 過酸化水素の影響

Lemperos 等は D.N.A. 水溶液に 0.1 M の H₂O₂ を加えて粘度の低下を観察することから X 線の作用
は間接的で、照射により発生した OH⁻、H₂O₂ 等の自由基の強さによって発生する H₂O₂ が重要な
役割をなすと言った。Butler 等は照射後も引続いて粘度を起す作用によって、自由基が
かなり長く残る活性物質で、例えば H₂O₂ 或いは有機過酸化物の生成の可能性を考えて居る。又彼等
は D.N.A. 水溶液に 0.002 M の H₂O₂ を加えて紫外線照射する時は照射による粘度低下が著しく促
進されると言ふ 12)

そこで X 線照射による D.N.A. 水溶液の粘度変化に H₂O₂ がどの様な影響を及ぼすかを検査し
た。

（1） H₂O₂ の影響

0.05%の D.N.A. 水溶液に 10⁻³ M、10⁻³ M、10⁻⁻³ M の H₂O₂ を加えて粘度を測定的に追求した。それ
の結果は図 6 に示す如くであった。

H₂O₂ は D.N.A. 水溶液の粘度を低下させる。その度は H₂O₂ の量の増加と共に大となる。H₂O₂ を
加えると 14 時間経過すると直接的な粘度の低下が
見られる。この時間的経過は X 線照射の場合と趣
を異にして居る。

（2） X 線照射と H₂O₂ の併用

0.05% D.N.A. 水溶液に次の 4 群に分けて夫々の比粘度の変化を測定的に追求し H₂O₂ の併用効
果を検した。H₂O₂ の濃度は 0 × 10⁻⁻⁷ M、X 線照射は
1 × 10⁻⁷ r である。

（a） H₂O₂ を加えたもの。

（b） X 線照射を行ったもの。

（c） H₂O₂ を加えてから X 線照射したもの。

（d） X 線照射後 H₂O₂ を加えたもの。

以上 4 航の実験結果は図 7 に示す如くである。

H₂O₂ 1 × 10⁻⁻³ M では 24 時間迄直接的粘度を低
せる。X 線では照射中止後 1 〜 3 時間までに急激
に低下その後 24 時間迄は短縮の低下を来すにすぎ
ない。併用の場合は何れも 1 〜 3 時間で急激に低
下し更に 24 時間後に可成の低下を来して居る。

この低下の時間的経過より見て併用によって夫々の作用が相加又は相乗するのではなく、X
線の作用と H₂O₂ の作用が独立的に存在すると考えられる。何故ならば処開後 3 時間時に比し 24
時間に更に著しい低下を来すのは H₂O₂ の固有
の作用で X 線の場合は明かに異なる。又 H₂O₂ 単
独の場合、及び X 線と併用の場合の 3 群の 3 時間
以後の経過は全く平行的である。

之等のことより X 線照射による粘度低下は自由
基から生ずる H₂O₂ によることを全く否定出来
ないにしても、少くとも照射によって発生する
H₂O₂ のみによっては説明出来ないと考える。

第 6 図 H₂O₂ の影響

第 7 図 X 線、H₂O₂ 併用
総括考察

D.N.A.の濃度 0.1%以下の塩酸溶液をX線照射する場合に特有の濃度低下を来す。然しながら照射後数分にて該溶液のD.N.A.の濃度範囲に於て一時的照射効果が認められる。著者は本実験の結果その照射効果が照射後数十分にして認められず、照射後数時間にして認められない。

更に照射後数分乃至1時間後の方が更にD.N.A.の濃度が著しく且つその低下の傾向を示す、この現象に於て著者は実験的照射後に於てD.N.A.溶液の粘度を測定せんがために照射してBouet-Maurieが100%の高度の損失あるH₂O₄の変化を測定せんと云ぶ。著者の実験に於いて不完全ではあるが酸素を消すことなく除去して照射した場合（実験5）に更に明かに照射の効果が現われる。この事実は照射によって溶液から間接的に生じたH₂O₄によってD.N.A.溶液の粘度低下を来すと説明し得ない有力な根拠を示す。

故に照射を照射して起る変化の主因は次の様々な考え方をもって論ずる者があるば10)。自然照射によって生ずる自由基をエネルギー源と考へ、その中で自由基が選ばれて生成されるエネルギーを変える。エネルギーを変える分子は分子全体として動起状態となるその分子の反応性が変化する。この変化は主として物理的変化であり、分子状態にある一部が変化するため、非可逆的に変化するに過ぎない。

之によれば変態においてエネルギーを変えるD.N.A.分子は動起状態となりその結果分子は反応性が変化して来ることはD.N.A.分子の反応性合化を示すものと説明しよう。

然しご然なる効果の時はH₂O₄を生じないが変態は発生する。従てこの変態によってD.N.A.分子は低重合化される。

かく考えれば、酸素の有無にかかわらず粘度低下を来すことにより説明することが出来る。

然しごこの動起状態から直ちに低分子化が起こるのはなく、それまでの間に鎖状的に反応が繰り返されて遂に低重合化が起こるであろう。又変態では動起されたD.N.A分子中にButler10)等の炭素有機過酸化物が生成されることも考えられる。この有機過酸化物による低重合化は時間に時間を要するとすればafter effectも説明される。
著者は照射によるD.N.A.水溶液の低重合化は間接作用によることを明らかにし、その機序についてはおそらく無機のH₂O₂によって起こるものでないと主張するものである。そして総合庫をエネルギー源と見做し、そのD.N.A.分子がエネルギーを吸収され複数状態となることがD.N.A.分子の低重合化の第一階級であると主張し若林の仮説を支持するものである。

結論

D.N.A.水溶液の粘度に対するX線の作用を検討した結果を示した。

1) X線照射によりD.N.A.水溶液の粘度は低下する。さらにafter effectの元素低下が見られる。粘度低下の度合いは蓄積が大となる程度である（1〜10×10⁴）。

2) D.N.A.水溶液の各温度（0.1〜0.1125％）における37％酸化に適度の小なる程度ある。即ち温存の有効道が認められる。

3) 無酸素照射においてもD.N.A.の粘度は低下するが照射中に照射による低下の度合いは小である。

4) 過酸化水素を作用させてもD.N.A.の粘度は低下する。X線照射と過酸化水素を併用する時は熟処理の作用が存在すると考えられる。

5) X線による粘度低下は照射により生ずる過酸化水素、特に無機の過酸化水素によるとは考えられない。その機序について若林の説によって説明した。

（原著者に当り、穂々御教示を賜りました島田大学河村教授、並びに御努力賜った中島氏各位に深く感謝致します。）

本論文要旨は、昭和31年4月第13回日本放射線学会総会（東京）、昭和31年10月日本放射線学会第13回東北、北海道、新潟東方会（盛岡市）、昭和31年10月北海道医学会（札幌市）で発表した。

参考文献

2) F.G. Spear: Brit. JR. ad. Suppl. 1, 49 (1947).
4) 若林: 日医放射協会第16号第9号、263（昭31）。
5) 若林: 日本医事新報、1579号（昭31）。
13) 若林: 化学実験学第2部。第3巻。168（昭15）。
14) 若林: 化学実験学。第2部。第3巻。107（昭15）。
15) 若林: 化学実験学。第2部。第3巻。118（昭15）。
18) Butler, G. C. E. Canadian. J. Res. 27, B, 942 (1949)。