
Title Low Power Design Method for Embedded Systems
using VLIW Processor

Author(s) 小林, 悠記

Citation 大阪大学, 2007, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1631

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Low Power Design Method

for Embedded Systems using VLIW Processor

July 2007

Yuki KOBAYASHI

Low Power Design Method

for Embedded Systems using VLIW Processor

Submitted to
Graduate School of Information Science and Technology

Osaka University

July 2007

Yuki KOBAYASHI

Publications

Journal Articles (Refereed)

[J1] Yuki Kobayashi, Shinsuke Kobayashi, Keishi Sakanushi, Yoshinori Takeuchi, and Masa-
haru Imai: “HDL Generation Method for Configurable VLIW processor,” IPSJ Journal,
vol. 45, no. 5, pp. 1311–1321, May, 2004 (in Japanese).

[J2] Yuki Kobayashi, Murali Jayapala, Praveen Raghavan, Francky Catthoor, and Masaharu
Imai: “Methodology for Operation Shuffling and L0 Cluster Generation for Low Energy
Heterogeneous VLIW Processors,” ACM Trans. on Design Automation of Electronic
Systems (to appear).

International Conference Papers (Refereed)

[I1] Yuki Kobayashi, Shinsuke Kobayashi, Koji Okuda, Keishi Sakanushi, Yoshinori Takeuchi,
and Masaharu Imai: “Synthesizable HDL Generation Method for Configurable VLIW
Processors,” in Proc. Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 843–846, Jan., 2004.

[I2] Yuki Kobayashi, Murali Jayapala, Praveen Raghavan, Francky Catthoor, and Masaharu
Imai: “Operation Shuffling for Low Energy L0 Cluster Generation on Heterogeneous
VLIW Processors,” in Proc. Embedded Systems for Real-Time Multimedia (ESTIMe-
dia), pp. 81–86, Sep., 2005.

Domestic Conference Paper

[D1] Yuki Kobayashi, Shinsuke Kobayashi, Toshiyuki Sasaki, Koji Okuda, Keishi Sakanushi,
Yoshinori Takeuchi, and Masaharu Imai: “Synthesizable HDLGeneration Method for
Configurable VLIW Processors,” IPSJ Symposium Series, vol.2003, no. 11, pp. 259–
264, Jul., 2003 (in Japanese).

Summary

Nowadays, embedded systems require severe design constraints, such as high performance and
low energy or low power consumption. Design productivity isalso a major factor for designing
embedded systems since life time of industrial products is becoming shorter and shorter, while
designing complex microprocessors needs design space exploration, where designers have to
try designing and evaluating a lot of architecture candidates.

Superscalar processors are well known as high performance processor architecture that is-
sue multiple operations. However, superscalar processorsneed a special hardware to extract
the parallelism from the instruction stream, and the additional hardware increases power con-
sumption. To achieve high performance in embedded systems where low power is also a key
factor, VLIW processors is assumed as a reasonable solutionsince they can issue multiple op-
erations at a time and a compiler extracts the parallelism; without a special hardware, the power
consumption of VLIW processors is smaller than that of superscalar processors.

Although VLIW processors are effective solution for embedded systems which require both
of high performance and low power, there are a lot of architectural parameters to be decided
by designers. Since these parameters significantly affect the performance and area, it is re-
quired to perform the design space exploration where designers evaluate many architectures to
determine the optimal parameter set. However, designing a VLIW processor is very complex,
and consequently time consuming and error-prone. Hence, design space exploration on VLIW
processors could not have been performed sufficiently so far.

Chapter 3 describes a synthesizable HDL generation method for configurable VLIW proces-
sors, which supports a flexible architecture model, especially in dispatching rules. Experimen-
tal results shows that the proposed method can generate a VLIW processor from a high level
specification description, which is 80% to 90% smaller than HDL description. And also, the
generation time of HDL description is sufficiently short, that is from 2 to 15 seconds. Since the
specification description supports a wide range of dispatching rules and the amount of descrip-
tion is sufficiently small, it is possible to generate a wide range of fine-quality VLIW processors
in a short time. Therefore, the proposed method can significantly improve the design produc-
tivity of VLIW processors.(Related publications: [1] and [2])

Then this thesis comes to the challenge for low power design.The power breakdown of
VLIW processors indicates that the power bottleneck of VLIWprocessors is in the instruction
memory hierarchy (e.g. instruction fetch). A loop buffer orL0 buffer architecture has been
proposed to reduce the energy in the instruction memory hierarchy. The buffer locates between
the instruction cache and the processor core and stores frequently-executed code to reduce the
buffer access to the more power-consuming instruction cache. For further energy efficiency
of L0 buffer in VLIW processors, L0 cluster architecture hasalso been proposed. Since the

i

architecture controls the buffer access more efficiently, the energy consumption is reduced
furthermore. The result of L0 cluster generation is, however, sensitive to the schedule of target
application.

An operation shuffling algorithm is described in Chapter 4. This algorithm improves energy
efficiency of L0 cluster by changing operation scheduling. Since an L0 cluster configuration is
very sensitive to operation scheduling, various schedulesare generated and evaluated in order
to obtain an optimal schedule. By shuffling all basic blocks iteratively, energy consumption can
be reduced significantly. To reduce the size of the exploration space, some heuristics are also
described in Chapter 4. The experimental results show that the proposed operation shuffling
algorithm successfully reduces the energy consumption in various VLIW processors including
heterogeneous VLIW processors as well as homogeneous VLIW processors.(Related publica-
tions: [3] and [4])

Since the simple operation shuffling takes huge amount of time even if the above heuristics
are applied, a more efficient method to find a low energy operation schedule is then described in
Chapter 5. Based on the analysis of characteristics of energy efficient L0 cluster configuration
obtained from the operation shuffling, it is found that the optimal L0 cluster configuration is
fixed after the first iteration of operation shuffling. Therefore, in the proposed method, the
operation shuffling is performed only once for the most significant basic block and a compiler
schedules again for the obtained cluster configuration. Some algorithms to schedule for a given
cluster configuration are described in Chapter 5. By exploiting the scheduling algorithms, a
compiler can generate a low energy schedule in a straightforward way. The experimental result
shows that the proposed method can generate energy efficientschedules with 50 times shorter
exploration time.

Preface

Embedded systems are widely used in our daily life. People use the embedded systems un-
awarely, but most of processors in the world are embedded into such a system. Therefore,
working on the field of embedded systems is very exciting for me.

Nowadays, the life cycle of industrial products is going to be shorter and shorter. One of this
reasons is globalization which is typically led by growth ofthe internet. Merits and demerits
of globalization aside, people wants to have a new product sooner and people involved in the
development has to design a new product sooner.

Design automation, or electronic design automation (EDA),is a representative technology in
this era. We cannot ignore the technology growth and have to keep up with the technology.

Low power or low energy is becoming a keyword in recently years. Global warming cannot
be ignored and it will be a main bottleneck of human activity in near future.

Here it is very important for us to pursue a method which manages these challenges of
embedded systems, that are design productivity and energy consumption.

This thesis first describes a generation method for configurable VLIW processors. This
method enables high design productivity and make the designspace exploration easier.

An operation shuffling algorithm is then described in this thesis. This algorithm improves
energy efficiency by changing operation scheduling. Since an L0 cluster configuration is very
sensitive to operation scheduling, various schedules should be evaluated in order to obtain an
optimal schedule. By shuffling all basic blocks iteratively, energy consumption can be reduced
significantly. To reduce the size of exploration space, someheuristics are also described.

Since a simple operation shuffling takes huge amount of time even if the above heuristics
are applied, a more efficient method to find a low energy operation schedule is then described.
By exploiting some scheduling algorithms, a compiler can generate a low energy schedule in a
straightforward way.

I hope this thesis will make a significant direction in this field for our future.

iii

Acknowledgements

I would like to deeply thank Prof. Masaharu Imai, Osaka University, my supervisor. He has
continuously supported me and my research and I always appreciate his technical insight which
is always on target. Without his graciousness, I would not have enjoyed this fruitful period in
my PhD days.

I would also like to thank Prof. Francky Catthoor, IMEC vzw and Katholieke Universiteit
Leuven. He kindly welcomed me to IMEC and gave me a lot of thoughtful and valuable
comments on my research work including journal and conference papers, as well as this thesis.

I am thankful to Prof. Takao Onoye, Osaka University, for reviewing this thesis.
I would like to thank associate professor Yoshinori Takeuchi and assistant professor Keishi

Sakanushi for their daily advice. They have always taken care of our research and other worries.
I am thankful to Dr. Murali Jayapala, IMEC vzw. Without him, Iwould not have finished my

work. He had made a basis of the work described in the latter half of this thesis. His comments
always made me encouraged.

I thank Hiroaki Tanaka, Ittetsu Taniguchi, Takashi Hamabe,Hirofumi Iwato, Takuji Hieda,
and other all members of Integrated System Design Laboratory in Osaka University for their
helpful comments and suggestions in many aspects, especially in weekly seminars, and so on.
I also thank Dr. Kyoko Ueda and Dr. Mohamed AbdElSalam Hassan. Special thanks to my
contemporaries, Noboru Yoneoka, Hiroaki Tanaka, and Tatsuhiro Yoshimura. Conversation,
lunch, and business trips with them were very pleasant, and have influenced my research as
well. Chatting with friends makes me relaxed. I also thank secretary Yukako Nishikawa for her
help especially on administrative papers.

I wish to thank Dr. Makiko Itoh, who made a basis of the work described in the former half
of this thesis, and I would like to thank Dr. Shinsuke Kobayashi, who also helped the work a
lot especially for the first few years in my research.

I wish to thank Andy Lambrechts, Praveen Raghavan. They helped me a lot in the beautiful
country, Belgium. I also thank Daniele Scarpazza, Estela Rey Ramos, Javed Absar, David
Novo Bruna, Theo Marescaux, Tom Vander Aa, Will Moffat, and other friends in IMEC. The
stay in IMEC definitely has a significant influence not only forthe period but also on whole of
my life.

Finally, I owe a great deal of thanks to Yukiko who gave of her tenderness and sympathy
during my PhD days and I would like to thank my parents and brother for supporting me
through the years.

v

Contents

1 Introduction 1
1.1 VLIW processor . 2
1.2 Design Challenges .3

1.2.1 VLIW processor design challenges 3
1.2.2 Low power embedded systems challenges 4

1.3 Related work . 4
1.4 Approach for low power embedded systems using VLIW processors 6
1.5 Main contributions .. 6
1.6 Thesis organization .. . 7

2 Related work 9
2.1 Approaches for hardware generation 9

2.1.1 Approaches using a base processor 10
2.1.2 Approaches using an architecture description language 10

2.2 Overview of low power optimizations for embedded processors 11
2.3 Low power optimization on instruction memory hierarchy. 11

3 Hardware generation for VLIW processors 13
3.1 Problem and motivation .. . 13
3.2 VLIW processor model .13

3.2.1 Dispatching model . 14
3.2.2 Interrupt model . 15

3.3 Hardware architecture of targeted VLIW processor 16
3.3.1 Hardware overview of VLIW processor 16
3.3.2 VLIW Processor Execution Model 18

3.4 Synthesizable HDL generation method for scalar processors 19
3.5 Synthesizable HDL generation method for VLIW processors 20

3.5.1 Input of VLIW processor generation method 20
3.5.2 Instruction dispatch pattern 21
3.5.3 Control signals for dispatching 23
3.5.4 Control signals for interrupt 25

3.6 Generation method for efficient VLIW processors 29
3.6.1 Relation between FU allocation and design quality 29
3.6.2 Efficient resource group assignment method 31

3.7 Experimental Results and Discussion 37

vii

3.7.1 Evaluation of VLIW processor generation method 37
3.7.2 Evaluation of efficient VLIW processor generation method 39
3.7.3 Evaluation of VLIW processor generation method with interrupt model 45

3.8 Conclusion . 46

4 Operation shuffling algorithm for low energy L0 cluster 49
4.1 Power breakdown of VLIW processors 49
4.2 L0 buffer in VLIW processors and L0 cluster 50
4.3 Motivation for impact of compiler 51
4.4 Proposed operation shuffling algorithm on heterogeneous architectures 54
4.5 Heuristics to limit the exploration space 56

4.5.1 Heuristic to shuffle one basic block at a time 59
4.5.2 Heuristic to limit the number of basic blocks 59
4.5.3 Heuristics to select the combination of assignment candidates 60

4.6 Operation shuffling for multiple data clusters 63
4.7 Experimental results .. . 64

4.7.1 Potential gain of operation shuffling 65
4.7.2 Quality of pruning heuristics 66
4.7.3 Evaluation on multimedia benchmarks and different architecture flavors 69
4.7.4 Discussion on operation shuffling over cycle boundaries 74
4.7.5 Relation between ILP and energy reduction 74

4.8 Conclusion . 76

5 Efficient energy reduction method 79
5.1 Problem and motivation .. . 79

5.1.1 Analysis of existing operation shuffling approach 81
5.2 Overview of the proposed method 81
5.3 Scheduling for a given L0 cluster configuration 82

5.3.1 Algorithm to try to fill an inefficient cluster 83
5.3.2 Algorithm to try to move operations to a shallower cluster 85
5.3.3 Algorithm to try to move operations to a wider cluster 85

5.4 Experimental Results .. . 86
5.5 Conclusion . 89

6 Conclusion and future work 91
6.1 Conclusion . 91
6.2 Future work . 92

6.2.1 Future work on VLIW synthesis .92
6.2.2 Future work on operation shuffling 93

A BNF of processor specification description 101

B Processor description for the proposed VLIW generation me thod 105

List of Figures

1.1 Advantage of ASIPs. .2
1.2 Overview of processor architectures. 3
1.3 System model using a VLIW processor. 7

3.1 VLIW processor model. .. 14
3.2 Example of the dispatching model. 15
3.3 Control paths of scalar processor and VLIW processor. 17
3.4 Execution model of VLIW processor. 18
3.5 An example of micro operation description and DFG generated from the de-

scription. 19
3.6 An example of merging DFGs. .. 20
3.7 Example of table of instruction dispatch patternTIDP 21
3.8 Enumeration of resource group for each slot. 22
3.9 Example of FU conflict. .. 23
3.10 Example of decode signal for resource group and operation. 24
3.11 Merge of DFGs and selector insertion in the VLIW processor generation. . . . 26
3.12 Hardware model of interrupt pipeline to handle a nonmaskable interrupt 27
3.13 A dispatch table of the VLIW processor in the preliminary experiment. 30
3.14 Architecture of VLIW processors with different resource group assignment. . . 32
3.15 Allocation of two FUs to three slots. 33
3.16 Allocation of two FUs to four slots. 33
3.17 Allocation of three FUs to four slots. 34
3.18 Allocation of two FUs to five slots. 34
3.19 Allocation of three FUs to five slots. 35
3.20 Allocation of four FUs to five slots. 35
3.21 Reduction of the amount of description. 38
3.22 Trade-off between HW area and execution time of FIR filter application. 39
3.23 FU allocation for ALUs in assignment 1. 42
3.24 Comparison of hardware area. 43

4.1 Power breakdown of VLIW processor (a) before optimizations (b) after con-
ventional power optimizations. 50

4.2 Power reduction by the conventional power optimizations. 51
4.3 A clustered VLIW processor. 52
4.4 Example of regulation of L0 buffer access. 53

ix

4.5 Example illustrating energy reduction by schedule change. (operation length is
32 bit) . 54

4.6 Overview of an L0 cluster configuration improvement phase (a) in the conven-
tional way, (b) with operation shuffling (proposed method).. 55

4.7 Operation shuffling in each cycle. 55
4.8 Generation of operation shuffled schedules. 57
4.9 A heuristic for multiple basic blocks. 58
4.10 Skipping same combination heuristic. 60
4.11 Dominance checking heuristic. 61
4.12 Advanced dominance checking heuristic. 62
4.13 Dominance and advanced dominance checking. 62
4.14 Efficiency of the heuristics (epic@8 slot Homo). 68
4.15 Frequency distribution of energy of generated schedules (adpcm decoder@8

slot Hetero). 69
4.16 Energy reduction of all benchmarks. 70
4.17 Energy reduction by shuffling operations in multiple BBs (8 slot Hetero). . . . 70
4.18 Energy reduction by shuffling operations in multiple BBs (10 slot Hetero). . . . 70
4.19 Energy reduction by shuffling operations in multiple BBs (8 slot Homo). 71
4.20 Energy reduction by shuffling operations in multiple BBs (4 slot Hetero). . . . 71
4.21 Energy reduction by shuffling operations in multiple BBs (5-5 slot Hetero). . . 71
4.22 Relation between overall IPC and energy reduction due to shuffling. 75
4.23 Various versions of IPC. 76

5.1 Overview of an L0 cluster configuration improvement phase (a) in the conven-
tional way, (b) in the proposed method. 80

5.2 Examples of rescheduling algorithm. 84
5.3 Comparison of energy reduction. 90

6.1 Power reduction by the proposed method. 93

List of Tables

3.1 A VLIW pattern table of the VLIW processor in the preliminary experiment. . 29
3.2 Resource group assignment 1. 30
3.3 Resource group assignment 2. 30
3.4 Synthesis results of the preliminary experiment. 31
3.5 Parameters of designed VLIW processors. 37
3.6 Instruction set of designed VLIW processors. 41
3.7 FU allocation of designed VLIW processors. 41
3.8 Comparison of area and delay between designed VLIW processors. 42
3.9 Allocation of two FUs to four slots for each VLIW pattern.. 44
3.10 Allocation of three FUs to four slots for each VLIW pattern. 44
3.11 Occurrence conditions of added interrupts. 45
3.12 Behavior of added interrupts. 46
3.13 Comparison of area and delay between VLIW processors with and without

interrupts. 46

4.1 Slot capability of 8 slot heterogeneous VLIW processor.. 65
4.2 Slot capability of 10 slot heterogeneous VLIW processor. 65
4.3 Slot capability of 4 slot heterogeneous VLIW processor.. 65
4.4 Slot capability of 2 data cluster 5-5 slot heterogeneousVLIW processor. 65
4.5 Energy reduction for MPEG2 encoder on 8-slot Hetero VLIW. 66
4.6 Operation shuffling on multiple BBs (MPEG2 Encoder@8 slot Hetero). 66
4.7 Minimum energy comparison between exhaustive exploration and with heuris-

tics (Single BB). 67
4.8 Relation between energy reduction and shuffled cycles. 73
4.9 Energy reduction for sha on 8-slot Hetero VLIW. 76

5.1 Optimal cluster configuration and the number of requiredbasic blocks to find
the configuration. 82

5.2 Comparison of estimated energy (g721 decoder@8 slot Homo). 88

xi

xii

Chapter 1

Introduction

Embedded systems are widely used in our daily life and almostall of them have a programmable
microprocessor inside. People might think most of microprocessors in the world are in personal
computers; we call such kind of processor a general purpose processor (GPP). The number of
GPPs inside personal computers is, however, less than 2% of the number of total processors
in the world and most of processors locate in embedded systems [5]. An embedded system is
usually dedicated to a few specific tasks, while a personal computer is intended to a wide range
of applications. A portable audio player, mobile phone, andautomobile are typical examples of
embedded systems. We often see automated teller machines orelectronic billboards in the city,
most of which are controlled by microprocessors embedded. Thus, these kinds of embedded
system have become an essential part of human activities in these days. Therefore, managing
problems concerning microprocessors in embedded systems is very significant and profitable
study.

Embedded systems often require severe constraints on performance and energy consumption.
For instance, a modern audio player or mobile phone has a functionality of video player, as well
as audio processing. Since video encoding or decoding needshuger computational effort than
audio processing, such a system requires much more performance than ten years ago when the
main task of such a system is only a simple audio processing. At the same time, such portable
devices are typically battery-powered and they usually have limited space for a battery. Hence,
they require extremely low energy consumption.

An embedded system can be typically implemented by using ASICs (Application Specific
Integrated Circuits), GPPs, or ASIPs (Application SpecificInstruction-set Processors). The
advantage of ASICs is in the higher performance per area and lower power consumption than
GPPs, but the limitation of ASICs is in the flexibility and extensibility in terms of a change
of specification after the design completion. On the other hand, GPPs have the flexibility
as a functionality of system is implemented by software which is programmable. GPPs are,
however, usually not optimal for a target application. Hence, sometimes GPPs do not meet a
performance requirement or they often exceed a power limitation of embedded systems. ASIPs
can fulfill the requirements for flexibility as they are programmable using software, and for per-
formance as they have an application specific instruction set. Therefore, ASIPs are appropriate
for embedded systems due to flexibility and performance, as shown in Fig. 1.1.

Configurable processors are often used for designing ASIPs.Configurable processors have

1

2 CHAPTER 1. INTRODUCTION

ASICs
ASIPs

GPPs

Flexibility

P
er

fo
rm

an
ce

 /
E

ne
rg

y
ef

fic
ie

nc
y

Figure 1.1: Advantage of ASIPs.

some parameters to tune up their instruction set, such as thebit width of data path, the number
of general purpose registers, and additional instructions. By using configurable processors, the
design time can be shorter than the manual design since the basic architecture is almost fixed.
While configurable processors can be more general purpose oriented, it can be more energy
efficient or higher performance when their instruction set is tuned. Therefore, configurable
processors are reasonable solution for the design of ASIPs.

1.1 VLIW processor

In order to realize a higher-performance instruction set processor, superscalar architecture
[6] and VLIW (Very Long Instruction Word) architecture [7] are proposed, which exploit
instruction-level parallelism (ILP). Figure 1.2 depicts an overview of superscalar processor
and VLIW processor as well as scalar processor. In a scalar processor, an operation (or in-
struction) is fetched from the instruction memory every cycle and assigned to a functional unit
(FU or hardware resource) to execute it. In a superscalar processor, multiple operations are
fetched from the instruction memory at a time and then a special hardware unit analyzes a par-
allelism among the operations. Then operations which can beexecuted in parallel are issued
and executed. On the other hand, a VLIW processor fetches a VLIW instruction which contains
multiple operations that can be executed in parallel. Sincea compiler has extracted parallelism
and scheduled operations, operations in a VLIW instructioncan be issued with a simple hard-
ware, while a superscalar processor dynamically analyzes parallelism and schedules operations
using a special hardware.

Since a set of operations that can be executed in parallel varies in different VLIW archi-
tectures, object code of VLIW processor has no compatibility among different architectures.
Binary compatibility of object code is, however, not necessarily important in embedded sys-

1.2. DESIGN CHALLENGES 3

Register File Register FileRegister File

Fetch

Instruction
Memory

FUs

(a) Scalar processor (b) Superscalar processor (c) VLIW processor

VLIW instruction

operation

instruction

Figure 1.2: Overview of processor architectures.

tems, since software is typically provided together with a target system (hardware) in embedded
systems and it can be compiled again in case that the target system is changed, while software
and hardware are provided independently in personal computers. And also, a VLIW processor
does not need the special hardware for operation scheduling, hence it has simpler hardware
than a superscalar processor and it leads to less power consumption. Therefore, a VLIW ASIP
is a perfect solution for embedded systems that require low energy consumption as well as high
performance.

1.2 Design Challenges

Designing a low energy system using VLIW processor is, however, a challenging problem.

1.2.1 VLIW processor design challenges

Designing a VLIW processor is usually more complex than designing a scalar processor. A
complex system makes a design time longer and error-prone. Therefore, a technique for im-
proving the design productivity of VLIW processors is required.

VLIW architecture has many architecture parameters, such as the number of issue slots, the
number of functional units. A dispatching rule, which represents which slot issues a certain
operation and which combination of operations is allow to beexecuted at a time, is also an
important parameter in VLIW architecture; an unprofitable dispatching rule, where the com-
bination is not so much used, simply makes the hardware logiccomplex. Since it is difficult
to properly define these parameters for the target application in a straightforward way, design

4 CHAPTER 1. INTRODUCTION

space exploration is commonly used, where designing and evaluating are iterated for a lot of
architectures to determine an optimal parameter set. Thus,the technique for improving the
design productivity is very important in terms of design space exploration as well.

1.2.2 Low power embedded systems challenges

Low energy is also a significant factor in design of modern VLIW processors. Traditionally,
VLIW processors are beset by structural problems; a large size of object code, and complexity
of logic compared with scalar processors. Power analysis ofVLIW processor reveals that the
significant amount of energy is consumed in the instruction memory hierarchy. For example in
Lx processor, a VLIW processor designed by Hewlett-Packardand STMicroelectronics, up to
40% of the total processor energy is consumed in the instruction caches alone [8].

An L0 buffer (a.k.a. loop buffer) is an efficient technique toreduce energy consumption
in the instruction memory hierarchy [9, 10, 11]. In most embedded applications, significant
amount of execution time is spent in small program segments (which consist of loops). An
L0 buffer stores these small program segments in a small buffer (SRAM or register file based)
instead of a big instruction cache. Then the processor core only accesses to the buffer during
the loop execution. This reduces the number of accesses to the higher level of the instruction
memory hierarchy and therefore giving large energy reduction, for instance up to 60% as shown
in [10].

In spite of such loop buffering techniques, the instructionmemory remains a major power
bottleneck in most VLIW processors because the conventional centralized loop buffer architec-
ture is not so efficient. Despite adding it, an L0 buffer in VLIW processor consumes significant
energy: about 20% in an 8 slot VLIW processor [12].

Since a VLIW processor does not issue operations from all slots in every cycle due to the
limitation of ILP (instruction level parallelism) of application, some access to the instruction
memory hierarchy is not necessary in some cycles. In order toreduce this unnecessary access,
L0 cluster technique is proposed [13, 14].

The approach of L0 cluster can reduce energy consumption of embedded systems using
VLIW processor, however, the optimal configuration of L0 cluster is very sensitive to a target
application. Hence, an approach to efficiently obtain an optimal configuration is important in a
low energy design of VLIW processors.

1.3 Related work

Some methods are proposed so far for low energy and the designproductivity of processors.
In these years, designing processors using HDL (hardware description language) is a com-

mon way, since a target design has become larger and more complex. The design using HDL
(e.g. VHDL, Verilog HDL) in register transfer level (RTL or RT level) is widely accepted and it
promises much better design productivity than designing ingate level or transistor level that are
used few decades ago. However, the size of design that can be implemented on a single silicon
chip increases along with the advance of deep submicron technology. Therefore, it requires a
further aggressive approach to design circuitry in higher level.

1.4. APPROACH FOR LOW POWER EMBEDDED SYSTEMS USING VLIW 5

A processor design method that uses a base processor is one ofthe promising approaches
that enable higher productivity in processor design. This method assumes a certain processor
architecture as a base architecture and generates a derivative according to some additional spec-
ifications given as input. Since only extension to the base processor is needed to be specified,
designers can obtain the target processor design in relatively shorter time. The flexibility of
architecture is, however, limited because basic architecture parameters such as pipeline archi-
tecture are bounded to the base processor.

Another category of processor generation methods that helpthe design productivity of pro-
cessor is known as architecture description language (ADL). The method takes higher level of
description than RTL as input, which is usually a smaller amount of description than HDL.
Then the method generates an HDL description which represents a structure that a designer
intended to design. Since ADL supports a wide variety of architectures that should be evalu-
ated in a phase of design space exploration, an approach using ADL is attractive for processor
designers who seek the next generation of design methods.

A lot of researches are done on low energy processor design. One of the well-known tech-
niques for the low energy requirement is clock gating. Sincemost of energy consumption is
due to switching activity of wire or register, by gating a clock supply to a functional unit that
is unused, unnecessary switching activity can be suppressed. Dynamic voltage and frequency
scaling [15], substrate biasing, and power shut-off are also known as a technique to reduce
energy consumption.

Besides the hardware approaches, some researches target software approaches for the low
energy problem. One idea is to control voltage and frequencyfrom software. Modern oper-
ating systems have such capability which decreases the clock frequency of processor when a
processor is idle. Some researches target data locality in the data cache and tries to make data
access more efficient [16].

As an approach to reduce power consumption in the instruction memory hierarchy, which
consumes significant power in embedded systems, an L0 bufferor loop buffer [9, 10, 11] is a
well known architecture. The buffer locates between the instruction cache and the processor
core. By storing frequently executed code, that is loops, into a small buffer, it benefits energy
reduction as well as performance improvement. Decode filtercache [17] is an architecture
to reduce the power consumption of instruction decode as well as instruction fetch. Since
decoding instructions also consumes significant power as well as fetching them, the approach
tries to store decoded information into the buffer.

Some compiler techniques are also proposed to increase the utilization of loop buffer for fur-
ther improvement of energy efficiency. A method proposed in [18] transforms code that cannot
be executed on a loop buffer as it is. By applying some code transformation technique such as
conditional instructions, the utilization of loop buffer can be improved. Another approach [19]
optimizes software to efficiently use a loop buffer. The approach optimizes software using if-
conversion and increases the utilization of loop buffer, and consequently reduces the instruction
fetch power by 72%.

6 CHAPTER 1. INTRODUCTION

1.4 Approach for low power embedded systems using
VLIW processors

This thesis proposes methods for each challenge discussed in Section 1.2. For the first chal-
lenge about VLIW processor design productivity, this thesis proposes a synthesizable HDL
generation method for configurable VLIW processors, which takes a processor specification
description as input and generates a synthesizable HDL description of a target VLIW pro-
cessor. The proposed approach allows a designer to change the number of slots and pipeline
stages, dispatching rules, and so on. Control and decode logic, and the data-path of a target
VLIW processor are automatically generated from the processor specification description.

As the second method for low power design, an algorithm of operation shuffling is proposed.
The algorithm generates and evaluates a lot of schedules fora target application, and it finds an
energy efficient schedule. To reduce the exploration space,some heuristics are also proposed.

In order to minimize the iteration of operation shuffling, this thesis then proposes an efficient
scheduling method that generates a low energy schedule for agiven cluster configuration.

1.5 Main contributions

This thesis first describes a generation method for configurable VLIW processors in Chapter
3. Though VLIW processors are effective solution for embedded systems which require both
of high performance and low energy, there are a lot of architectural parameters to be decided
by designers. Since these parameters significantly affect the performance and area, it is re-
quired to perform the design space exploration where designers evaluate many architectures to
determine the optimal parameter set. However, designing a VLIW processor is very complex,
and consequently time consuming and error-prone. Hence, design space exploration on VLIW
processors could not have been performed efficiently so far.The VLIW processor generation
method described in Chapter 3 supports a flexible architecture model, especially in dispatching
rules. Therefore, this method enables the design space exploration on a wide variety of VLIW
architectures with high design productivity. Figure 1.3 depicts a system model using a VLIW
processor. Chapter 3 focuses on the design productivity forVLIW processors as shown in Fig.
1.3 (a).

An operation shuffling algorithm is then described in Chapter 4. This algorithm improves
energy efficiency by changing operation scheduling. Since an L0 cluster configuration is very
sensitive to operation scheduling, various schedules should be evaluated in order to obtain an
optimal schedule. By shuffling all basic blocks iteratively, energy consumption can be reduced
significantly. To reduce the size of the exploration space, some heuristics are also described in
Chapter 4.

Since a simple operation shuffling takes huge amount of time even if the above heuristics are
applied, a more efficient method that finds a low energy operation schedule is then described
in Chapter 5. By exploiting some scheduling algorithms described in the chapter, a compiler
can generate a low energy schedule in a straightforward way.Chapter 4 and 5 focus on a low
energy methods for the instruction memory hierarchy as shown in Fig. 1.3 (b).

1.6. THESIS ORGANIZATION 7

VLIW Processor Core

Instruction Memory Hierarchy

Main Memory
(off-chip)

L1 Cache

L0 Buffer

L1 Cache

L2 Cache

(a) Design Productivity
for VLIW Processors
(Scope of Chapter 3)

(b) Low Energy
in Instruction

Memory Hierarchy
(Scope of Chapter 4 & 5)

Data Memory Hierarchy

Figure 1.3: System model using a VLIW processor.

1.6 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 de-
scribes a synthesizable HDL generation method for configurable VLIW processors. In Chapter
4 an operation shuffling algorithm for low energy embedded systems using VLIW processor
is proposed. Chapter 5 describes an efficient method for low energy operation scheduling.
Finally, Chapter 6 concludes this thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

This chapter describes the previous studies on hardware generation and low energy technique
for embedded systems.

2.1 Approaches for hardware generation

An embedded system can be typically implemented by using ASICs (Application Specific Inte-
grated Circuits), GPPs (General Purpose Processors), or ASIPs (Application Specific Instruction-
set Processors). ASICs have advantages in the performance per area and power consumption
compared with general purpose processors. However, the flexibility of ASICs is very low since
the circuits are almost fixed for a specific application. On the other hand, GPPs have the flex-
ibility as they are fully programmable. GPPs are, however, usually not optimal for a target
application in terms of performance and power consumption.Hence, GPPs sometimes do not
meet a performance requirement and often exceed a power limitation of embedded systems.
ASIPs can fulfill both the requirements for flexibility as they are programmable, and for perfor-
mance as they have an application specific instruction set. Therefore, ASIPs are an appropriate
solution for embedded systems.

Configurable processors are often used for designing ASIPs.Configurable processors have
some parameters to tune up their instruction set, such as thebit width of data path, the number
of general purpose registers, and additional instructions. By using configurable processors, the
design time can be shorter than the manual design since the basic architecture is almost fixed.
While configurable processors can be more general purpose oriented, it can be more energy
efficient or higher performance when their instruction set is tuned. Therefore, configurable
processors are reasonable solution for the design of ASIPs.

Various attempts for configurable processors to efficientlydesign ASIPs and make retar-
getable compiler and other software tools have been made [20]. Approaches for generation of
configurable processors are classified into two categories as follows.

1. Approaches using a base processor (PEAS-I [21], MetaCore[22, 23], Xtensa [24])

2. Approaches using a processor specification description (ISDL [25, 26, 27], nML or Tar-
get [28, 29], LISA [30, 31, 32], EXPRESSION [33, 34, 35])

In this section, a brief overview of these approaches is presented.

9

10 CHAPTER 2. RELATED WORK

2.1.1 Approaches using a base processor

PEAS-I [21] uses a basic CPU called PEAS-I CPU. PEAS-I CPU includes an ALU, a shifter,
a multiplier, and a divider. Based on the results of application profiling, hardware algorithm of
multiplier and divider is selected and unused instructionsare omitted automatically. However,
designers cannot change architecture of pipeline stage.

MetaCore [22, 23] is an environment to develop an ASIP for digital signal processing. Al-
though MetaCore allows using basic instructions, optionalinstructions, and user-defined in-
structions, the number of pipeline stages are fixed. Moreover, MetaCore does not support
VLIW architectures.

Xtensa [24] utilizes a customizable RISC processor core, and designers can add a new in-
struction using special language to improve performance. It is, however, impossible to freely
change a pipeline structure.

An approach using a base processor is a method to design an ASIP based on a base processor
core by changing the number of registers and adding custom instructions. This approach has
an advantage in reduction of design labor, however, has a disadvantage in lack of flexibility to
change the instruction bit width or the number of pipeline stages.

2.1.2 Approaches using an architecture description langua ge

ISDL [25, 26, 27] is an instruction set description languagefor VLIW processors, which can
generate software tools. However, the pipeline structure is not so flexible, since an architecture
is generated from a highly abstracted description based on the supposed pipeline structure.

nML [28, 29] focuses on the instruction set. The abstractionlevel of the nML language is
in a programmer’s model of target processor. It is easy to modify the instruction set, however,
the detailed architecture model is hard to specify due to thehigh abstraction level. And also, a
generation method for VLIW architecture is not reported.

EXPRESSION [36, 33] allows designers to describe detailed specification that can repre-
sent VLIW processors as well. EXPRESSION can generate simulators and compilers for rapid
design space exploration, however, a synthesizable HDL generation method for VLIW proces-
sors, especially the support for FU sharing, is not reported.

The approach of LISA [30, 31, 32] can describe architecturesconsidering pipeline structure,
and can design VLIW architectures or superscalar architectures. However, a pipeline controller
supporting a pipeline stall is not generated unless operations for pipeline registers are explicitly
described. Furthermore, though LISA can generate synthesizable HDL description for control
logic, it is not reported to generate entire data-path of processor.

Although an approach using an ADL description has disadvantages in increase of descrip-
tion, it can describe a detailed processor specification andgenerate various architectures.

In design of ASIPs, a method that allows various pipeline structures and that can generate a
control logic, that is usually error-prone in manual design, is desirable. Unfortunately, there has
not been any method that can generate VLIW processors effectively and flexibly. Therefore,
this thesis proposes a VLIW processor generation method from a processor specification de-
scription to specify a detail of processor and to explore large design space of VLIW processors.

2.2. OVERVIEW OF LOW POWER OPTIMIZATIONS FOR EMBEDDED PROCESSORS11

2.2 Overview of low power optimizations for embed-
ded processors

There are a lot of researches on low energy processor design.One of the well-known tech-
niques for the low energy requirement is clock gating. Sincemost of energy is consumed due
to switching activity of wire or register, by gating a clock supply to a functional unit that is
unused, unnecessary switching activity can be suppressed.Dynamic voltage and frequency
scaling, substrate biasing, and power shut-off are also known as a technique to reduce energy
consumption.

Besides the hardware approaches, some researches target software approaches for the low
energy problem. One idea is to control voltage and frequencyfrom software. Modern oper-
ating systems have such capability which decreases the clock frequency of processor when a
processor is idle. Some researches target data locality or layout in the data cache and tries
to make data access more efficient [16]. A compiler-guided low power method for scratch
pad memories [37] optimizes memory-data layout to maximizebank idleness of scratch pad
memories.

As an approach to reduce power consumption in the instruction memory hierarchy, which
consumes significant power in a processor, an L0 buffer or loop buffer [9, 10, 11] is well known.
The buffer locates between the instruction cache and the processor core. By storing frequently
executed code, e.g. inner most loops, into a small buffer, itbenefits energy reduction as well
as performance improvement. Decode filter cache [17] is an architecture to reduce the power
consumption of instruction decode as well as instruction fetch. Since decoding instructions
also consumes significant power as well as fetching them, theapproach tries to store decoded
information into the buffer.

For further improvement of energy efficiency in loop buffers, some compiler techniques are
also proposed, which try to increase the utilization of loopbuffer. A method proposed in [18]
transforms code that cannot be executed on a loop buffer as itis. A loop that has a transfer
of control (e.g. branch operation) inside or a loop where thenumber of iterations is unknown
cannot be executed on a loop buffer. By applying some code transformation technique such
as a conditional instruction or an explicit manipulation ofthe loop counter, the utilization of
loop buffer can be improved. Another approach [19] optimizes software to efficiently use a
loop buffer. The compiler technique optimizes software using if-conversion and increases the
utilization of loop buffer, and consequently reduces the power of instruction fetch by 72%.

2.3 Low power optimization on instruction memory hi-
erarchy

An L0 buffer (a.k.a. loop buffer) is an efficient technique toreduce energy consumption in the
instruction memory hierarchy [9, 10]. In most embedded applications, significant amount of
execution time is spent in small program segments (which consist of loops). The technique
stores these small program segments in a small L0 buffer (SRAM or register file based) instead
of the big instruction cache. Then the processor core only accesses to the buffer during the loop
execution. This reduces the number of accesses to the higherlevel of the instruction memory

12 CHAPTER 2. RELATED WORK

hierarchy and therefore giving large energy reduction, forinstance up to 60% as shown in [10].
In a simple application of the monolithic L0 buffer to a VLIW processor, at each cycle the

operations would be fetched for all the slots of the VLIW fromthe monolithic L0 buffer. How-
ever, such a monolithic L0 buffer is not effective as not all slots are always active. This implies
that some slots would require unnecessary buffer access forNOP operation [13]. Hence, L0
cluster generation was proposed to obtain a low energy system [13, 14].

In a clustered VLIW processor, ’clustered’ usually refers to data-path clusters. For example,
the TI C6X processor has clustered data-path [38], which canissue up to eight operations at a
time, and has two separated register files. If many FUs are connected to a monolithic register
file, it leads to significant increase of delay time, area, andpower consumption. Therefore,
many researchers have tried to cluster FUs and divide a register file in order to decrease the
number of FUs connected to each register file. The clustered register file reduces the number
of ports of register file, which reduces the delay, area, and energy of the register file. Clustered
register file is almost always used in VLIWs with a larger number of issue slots [39, 40]. Note
that data clustering may cause increase of execution cyclessince sometimes a copy operation
is needed to move data between register files, while instruction clustering does not cause such
a problem.

Some VLIW architectures like Lx processor have a notion of instruction clustered instruction
fetch [41]. However, the instruction clusters correspond directly to the data clusters, while
this thesis makes an instruction cluster explicitly separated from a data cluster to increase the
exploration freedom; an L0 cluster can be applied independently for data clusters. This results
in larger gains of up to energy reduction of 75% as demonstrated in [14].

A loop buffer or loop cache has been studied for years, which aims for energy reduction
on instruction memory hierarchy as well as performance improvement. By exploiting such a
loop buffering mechanism, L1 or higher cache access rate is reduced by up to 38% [9], and
it leads energy reduction of overall instruction memory of up to 67% [10]. A loop buffer
is implemented as a register file or SRAM based architecture and access to buffer is fully
controlled by a control unit (e.g. LC and ITC, described in Section 4.2), while a loop cache has
possibility of cache miss whose performance penalty cannotbe accepted in certain embedded
applications.

Operation shuffling for instruction clusters has been studied only in the recent past [42, 43].
Similar to the work presented in this article, their objective is an overall hardware/software
energy reduction for embedded VLIW processors. However, their target is on the instruction
cache, while this thesis focuses on L0 buffers and generation of L0 clusters.

Chapter 3

Hardware generation for VLIW
processors

This chapter describes the proposed VLIW processor generation method. First, a target VLIW
processor model is explained. Secondly, a scalar processorgeneration method that the proposed
VLIW processor generation method is based on is introduced.Finally, the proposed VLIW
processor generation method is described.

3.1 Problem and motivation

Designing a VLIW processor is usually more complex than a scalar processor which issues only
one operation at a time. A complex system makes a design time longer; describing complex
control logic of such a system is tedious and error-prone. Therefore, a technique for improving
the design productivity of VLIW processors is required.

VLIW architecture has many architecture parameters, such as the number of issue slots, the
number of functional units. A dispatching rule, which represents which slot issues a certain
operation and which combination of operations is allowed tobe executed at a time, is also an
important parameter in VLIW architecture; an unprofitable dispatching rule, where the combi-
nation is not so much used, simply makes the hardware logic complex. Since it is difficult to
define these parameters appropriately for the target application in a straightforward way, design
space exploration is commonly used, where designing and evaluating a lot of architectures to
determine an optimal parameter set. Thus, the technique forimproving the design productivity
is very important in terms of design space exploration as well.

3.2 VLIW processor model

This section introduces a VLIW processor model [44] that theproposed VLIW processor gen-
eration method uses. This model can represent various architecture of VLIW processors.

A VLIW instructionconsists of multipleoperationsthat are executed simultaneously.Dis-
patchingis a managing process to assign issued operations to appropriate FUs ASlot is a unit
to issue an operation. A VLIW processor has one or more slots and issues multiple operations

13

14 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

P
ip

el
in

e
R

eg
is

te
r

Controller

Hardware
Resources

ControllerController

Hardware
Resources

(FUs)

D
ec

od
e

&
 D

is
pa

tc
h

P
ip

el
in

e
R

eg
is

te
r

Controller

Hardware
Resources

Slot 1

Slot 2

Slot n

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Hardware
Resources

(FUs)

Figure 3.1: VLIW processor model.

from the slots in parallel. Note that a VLIW processor with one slot is equivalent to a scalar
processor in this model.

Figure 3.1 illustrates a hardware model of VLIW processor. In first few pipeline stages, a
VLIW instruction is fetched, and then it is decoded and operations are dispatched into FUs. A
data-path in each pipeline stage consists ofhardware resources, that are mainly combinational
circuits, and pipeline registers to send data into the next pipeline stage. An FU is a kind of
a hardware resource. In normal operation mode without any pipeline interlock, hardware re-
sources receive input data from the previous pipeline registers, and send output data into the
next pipeline registers.

3.2.1 Dispatching model

Figure 3.2 (a) shows the dispatching model of [44]. To represent complex dispatching rules
in a simple description, two concepts,operation groupand resource group, are introduced.
An operation groupis a set of operations that have the same characteristic on dispatching, for
instance, a member of operation group can be executed on the same kind of FUs. Aresource
group is a set of FUs that are used when a certain operation is executed in a certain slot. Note
that a resource group belongs to one slot and one operation group. In Fig. 3.2 (a), operations
ADD, ADDI, and so on are members of operation group OG1. Resource group RG1 consists
of FUs ALU0 and EXT0. RG1 belongs to OG1 and Slot1. An FU can belong to one or
more resource groups, which means that a shared FU is represented by belonging to multiple
resource groups. In this way, dispatching rules are described using three relations; between
slots and operation groups, between slots and resource groups, and between operation groups
and resource groups. Figure 3.2 (b) shows a dispatching ruledescription of the above model.

3.2. VLIW PROCESSOR MODEL 15

Resource
Group

Slot

Operation
Group

RG 1 RG 2 RG 3 RG 4 RG 5 RG 6 RG k

OG 2 OG 3 OG mOG 1

Slot 1 Slot 2 Slot 3 Slot n

ADD, ADDI, ADDU,
SUB, SUBI, SUBU, ...

MULT, MULTUALU0, EXT0

slot_opegroup {
 { Slot1: OG1, Slot2: OG1, Slot3: OG3, ... },
 { Slot1: OG1, Slot2: OG2, Slot3: OG1, ... },

(b) Dispatch Rule Description

(a) Dispatch Model

slot_resgroup {
 Slot1: RG1, RG2, RG3;
 Slot2: RG4, RG5;

opegroup_resgroup {
 OG1: RG1, RG4, RG6;
 OG2: RG2, RG5;

 ...
};

 ...
};

 ...
};

Figure 3.2: Example of the dispatching model.

Micro-operation description to be explained later is described for a pair of a resource group and
an operation. This method allows to represent a wide range ofdispatching rules as a designer
intends to make.

3.2.2 Interrupt model

The proposed interrupt model of VLIW processor is shown below.

• Supported interrupt type and instruction canceling policy(in descending order of priority)

– Reset interrupt (the highest priority):cancel all instructions policy

– Nonmaskable interrupt:cancel all instructions policy

16 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

– Internal interrupt:cancel descending instructions policy

– External interrupt (the lowest priority):wait all instruction completion policy

• Precise interrupt

• Select the highest-priority interrupt among multiple interrupts occurred at a time

The proposed interrupt model is based on the interrupt modelof a scalar processor [45].Can-
cel all instructions policyannuls all operating instructions and starts interrupt processing im-
mediately after an interrupt request signal is asserted.Cancel descending instructions policy
annuls only descending instructions when an interrupt occurs, and starts interrupt processing
after completion of ascending instructions.Wait all instruction completion policyannuls no
instructions but suppresses fetching a new instruction, and interrupt processing is started after
completion of all instructions that were being executed when an interrupt request signal was
asserted.

3.3 Hardware architecture of targeted VLIW processor

This section describes an overview of target VLIW processorand execution model of the pro-
cessor.

3.3.1 Hardware overview of VLIW processor

Figure 3.3 illustrates control paths of scalar processor and VLIW processor. As shown in Fig.
3.3 (a), a data-path of scalar processor is controlled by decode signals that are generated from
the value of the instruction register. On the other hand, in aVLIW processor,Decrg,ope, de-
code signal for resource group and operation, is generated from the value of the instruction
register,Decslot,opeg, decode signal for slot and operation group, is generated from combina-
tions ofDecrg,ope, Detptrn, detection signal for VLIW pattern, is generated from combinations
of Decslot,opeg, Actvrg, resource group activation signal, is generated from combinations of
Detptrn. Then, a VLIW processor controls a data-path byActvrg andDecrg,ope, as shown in
Fig. 3.3 (b).

A decode signal for resource group and operation (Decrg,ope) is a signal to identify an op-
eration in the instruction register. As was mentioned earlier, since micro-operation description
is described for a pair of a resource group and an operation, this signal and a micro-operation
description have one-to-one mapping. For instance, if operationADD executing on resource
groupRG1 exists, a signal corresponding to its micro-operation isDecRG1,ADD. A decode
signal for slot and operation group (Decslot,opeg) is a signal to identify an operation group to
be issued from the slot.DecSlot1,ALU is a signal representing that an operation in operation
groupALU is issued fromSlot1. A detection signal for VLIW pattern (Detptrn) is a signal
to identify a VLIW pattern in the instruction register, for instance, a signal representing the
third pattern isDet3. A resource group activation signal (Actvrg) is a signal representing that
the resource group is assigned to a detected VLIW pattern, for instance, an activation signal
of RG1 is ActvRG1. In case that multiple candidates of resource group exist for an operation

3.3. HARDWARE ARCHITECTURE OF TARGETED VLIW PROCESSOR 17

(a) Scalar Processor

(b) VLIW Processor

Instruction RegisterDecoder

Actv rg

Data path

Decslot,opeg Decrg,ope

Control logic

Decoder

Decode signals

Instruction Register

Data path

Control logic

Det ptrn

Figure 3.3: Control paths of scalar processor and VLIW processor.

18 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

IR (Instruction Register)
instruction fetch

decode
operation

decode
operation group

Instruction Memory

VLIW Instruction

VLIW Pattern

detect
VLIW Pattern

operation

operation group

Pattern 3Pattern 2Pattern 1

control data-path selectors

Step 1:

Step 2:

Step 3:

Step 4:

Figure 3.4: Execution model of VLIW processor.

in a certain slot, all corresponding signalsDecrg,ope become active, however, only one signal
Actvrg is active. Then an operation can be successfully executed without any conflict of FU.

3.3.2 VLIW Processor Execution Model

Figure 3.4 illustrates the execution model of VLIW processor. In the proposed model, a VLIW
processor runs with repetition of steps as follows. First, aVLIW instruction is fetched from an
instruction memory, and stored to the instruction register. Secondly, operations in the VLIW
instruction are decoded. Operation groups for each operation are obtained, and a VLIW pat-
tern is detected according to a combination of the operationgroups. Thirdly, a data-path is
controlled by switching data-path selectors according to prepared information corresponding
to the detected VLIW pattern. Finally, operations are executed in the data-path controlled in
the previous step.

In the proposed method, FUs assigned to a VLIW pattern are determined first, and then
control signals of a data-path are generated using the information of assignment.

3.4. SYNTHESIZABLE HDL GENERATION METHOD FOR SCALAR PROCESSORS 19

micro_operation ADD {
 wire [31:0] src0;
 wire [31:0] src1;
 wire [31:0] res;
 stage 2 {
 src0 = GPR.read0(rs0);
 src1 = GPR.read1(rs1);
 };
 stage 3 {
 wire [3:0] flag;
 <res,flag> = ALU.add(src0,src1);
 };
 stage 5 {
 null = GPR.write0(rd,res);
 };
};

(a) (b)

Stage 2
GPR

ALU

GPR

Stage 3

Stage 5

Figure 3.5: An example of micro operation description and DFG generated from the descrip-
tion.

3.4 Synthesizable HDL generation method for scalar
processors

This section introduces a scalar processor generation method [46]. The proposed VLIW pro-
cessor generation method is based on this method.

In the method of [46], a data flow graph (DFG) corresponding toan instruction is derived
from a micro-operation description representing behaviorin each pipeline stage of instruction,
and then DFGs corresponding to all instructions are merged into one data path that represents
an entire processor. Figure 3.5 (a) shows an example of micro-operation description. In Fig.
3.5 (a), behavior in pipeline stage 2, 3, and 5 are described.First, keywordwire declares three
32 bit variables,src0, src1, andres. In stage 2, values of operands,src0andsrc1, are read from
general purpose registerGPR. In stage 3,src0 andsrc0 are added byALU, and the result is
stored intores. In stage 5, the result is written back intoGPR.

Information of connections between FUs is extracted from the micro-operation description
in Fig. 3.5 (a). A DFG in Fig. 3.5 (b) is corresponding to a micro-operation description in Fig.
3.5 (a).

Figure 3.6 shows an example of merging DFGs. Figure 3.6 (a) and (b) are DFGs of an
addition operation and a shift operation, respectively. These DFGs are merged into a DFG
shown in 3.6 (c). Moreover, since the proposed method is based on [47], the method can
control pipeline hazards such as structural hazards.

20 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

GPR

ALU

GPR

GPR

SFT

GPR

ALU

GPR

SFT

GPR

(a) (b) (c)

Figure 3.6: An example of merging DFGs.

3.5 Synthesizable HDL generation method for VLIW pro-
cessors

This section describes the details of the proposed VLIW processor generation method. First,
input of the algorithm is explained. Then a generation method of VLIW processor based on the
model shown in section 3.2 is proposed.

Let a VLIW patterndenote a categorized VLIW instruction that has the same property in
dispatching. In the proposed method, FUs dispatched to a VLIW pattern are decided before
HDL generation.

3.5.1 Input of VLIW processor generation method

This section defines input of the proposed generation method. First, dispatching rules are
defined, secondly, an entire processor specification description is defined.

Let Slot be a set of slots,RG be a set of resource groups,OG be a set of operation groups.
OpegResg, a relation between an operation group and resource groups,andSlotResg, a rela-
tion between a slot and resource groups, are represented as follows:

og ∈ OG, OpegResg(og) ⊆ RG, OpegResg(og) 6= ∅, (3.1)

s ∈ Slot, SlotResg(s) ⊆ RG, SlotResg(s) 6= ∅, (3.2)

A VLIW pattern,V LIW ptrn, is represented as follows:

s ∈ Slot, V LIW ptrn(s) ∈ OG. (3.3)

SlotOpeg means a set of VLIW pattern as follows:

SlotOpeg = V LIW ptrn. (3.4)

Therefore, a dispatching ruleDispatchRule is represented as follows:

DispatchRule = {SlotOpeg, OpegResg, SlotResg} (3.5)

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSORS 21

Slot1

OG01

RG01

Slot2

OG02

RG03

Slot3

OG01

RG04

Slot4

OG04

RG05

VLIW
Pattern

OG01
RG01

OG02
RG03

OG03
RG06

OG04
RG05

OG04
RG02

OG02
RG03

OG01
RG04

OG01
RG07

OG04
RG02

OG02
RG03

OG03
RG06

OG01
RG07

Figure 3.7: Example of table of instruction dispatch pattern TIDP .

Let Res be a set of hardware resources,Operation be a set of definitions of operation that
include opecode and operand for each operation,IO be a set of input/output ports of processor,
Mod be a set of micro-operation descriptions. ThenSpec, the input of the proposed VLIW
processor generation method, is represented as follows:

Spec = {Slot, Res, RG, Operation,

OG, IO, DispatchRule, Mod} (3.6)

3.5.2 Instruction dispatch pattern

In the proposed method, assignment of resource groups to a VLIW pattern is determined before
HDL generation. We call this assignment aninstruction dispatch pattern. All of instruction
dispatch patterns are gathered into a table of instruction dispatch pattern,TIDP . Figure 3.7
shows an example ofTIDP . The first entry of theTIDP represents that resource groups RG01,
RG03, RG04, RG05 are used for VLIW pattern{OG01, OG02, OG01, OG04}.

In this section, an assignment method of resource group to VLIW patterns is described. The
method consists of two steps as follows.

1. Enumeration of resource groups that can execute an operation in an operation group
assigned to a slot.

2. Determination of resource group assignment to VLIW pattern.

The input of this algorithm is the following items; relations between slots and operation groups
that are equivalent to VLIW patterns, relations between slots and resource groups, and relations
between operation groups and resource groups. The output isTIDP .

22 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

ALU MUL MUL JMP

Slot 1 Slot 2 Slot 3 Slot 4

Slot 1 Slot 2 Slot 3 Slot 4

RG01
RG02
RG03

RG04
RG05
RG06
RG07

RG08
RG09
RG10
RG11
RG12

RG13
RG14
RG15

Slot-Resgroup

ALU RG01, RG04, RG09, RG13

MUL RG02, RG05, RG06, RG10, RG11, RG14

DIV RG03, RG08

MEM RG07, RG12

JMP RG01, RG15

Opegroup-Resgroup

RG01 RG05
RG06

RG10
RG11

RG15

NOP RG01, RG04, RG09, RG13

(1)
(2)

(3)

target
VLIW pattern enumerated

resource groups

Figure 3.8: Enumeration of resource group for each slot.

(1) Enumeration of resource groups In this step, resource groups, that can execute an
operation group in each slot of VLIW pattern, are enumerated.

First, according to relations between operation groups andresource groups, resource groups
that can perform the operation groups in each slot of VLIW pattern are calculated. Figure 3.8
shows an example that tries to enumerate resource groups forslot 3 of target VLIW instruction.
In Fig. 3.8 (1), a set of resource groups that can execute MUL operation group is fetched.

Then, according to relations between slots and resource groups, resource groups that really
belongs to the slot are selected from them. In Fig. 3.8 (2), a set of resource groups that belong
to slot 3 fetched, and then intersection of these two sets arecalculated in order to determine
resource groups available for this VLIW instruction.

(2) Determination of Resource Group Assignment In the resource groups calculated
in the previous step, multiple resource groups are sometimes enumerated for a slot. Therefore,
it is necessary to determine one resource group for a slot without any conflict of FU among
resource groups determined for other slots. In an example ofFig. 3.9, RG05 and RG10 both
use the same FU, MUL0. Then, in case that Slot2 uses RG05 or RG06, Slot3 has to use RG11
or RG10, respectively.

Algorithm 1 shows an algorithm that determines one resourcegroup for a slot. FU and
Rg are a set of FUs and resource groups, respectively, that are empty at the beginning of this
algorithm. RGs is the resource groups belonging to slots calculated in the previous step.
If FUs(rg), FUs included inrg, do not overlap withFU , FUs(rg) are added toFU and
rg is added toRg. If a combination of resource groups that have no FU conflict is found,

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSORS 23

MUL MUL

Slot 2 Slot 3

RG05
RG06

RG10
RG11

...
RG05: MUL0
RG06: MUL1
RG10: MUL0
RG11: MUL1
...

Contents of Resgroup

MUL0

MUL1

Figure 3.9: Example of FU conflict.

Algorithm 1 Resource group Decision Algorithm.
boolean function SelectResgroup(s, FU , Rg) {

foreachrg in RGs {
if (FUs(rg) /∈ FU) // no conflict.{

if (s.next = null) {
Rg = Rg ∪ rg;
adopt(Rg); // done.
return true;
} else if (true = SelectResgroup(s.next, FU ∪ FUs(rg), Rg ∪ rg)) {

return true;
}
}
}
return false;
}

this algorithm outputsRg and finishes. The computational complexity of this algorithm is
O(nf 2gs), wheres, f , g, n are the number of slots, FUs, resource groups, and VLIW patterns,
respectively.

3.5.3 Control signals for dispatching

This section describes a generation method of control signals for dispatching in a VLIW pro-
cessor.

3.5.3.1 Decode signals for resource group and operation

A decode signal for a pair of a resource group and an operation, Decrg,ope, comprises a logical
product of comparisons of opecode and corresponding field inthe instruction register.

Decrg,ope =
∧

opecode∈Opecodeope,Slot(rg)

(IR[Begin(opecode)..End(opecode)] = V alue(opecode)),

(3.7)

24 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot k Slot N

begin end

begin = (N - k) x 32 + b
end = (N - k) x 32 + e

Dec_RgA,OpeB = ’1’ when IR [begin .. end] = "110010"
 else ’0’

031(N-k)x32Nx32+31 Nx32
IR

RgA

: a resource group of Slot k

OpeB
31 0

110010

opecode

b e

Figure 3.10: Example of decode signal for resource group andoperation.

whereSlot(rg) returns slot corresponding torg. Opecodeope,slot includes a set of opecode for
ope in slot; an opecode consists of value and range of bit field in the instruction register. Figure
3.10 shows an example ofDecrg,ope where the length of operation is 32 bit. In this example,
by checking a bit field frombegin to end in the instruction register (IR), we can know whether
operationOpeB that can be executed onRgA is coming to the instruction register. Note that
the decode signal is active if and only if the instruction register contains an operationope that
can be executed onrg.

3.5.3.2 Decode signals for slot and operation group

Let RGslot be a set of resource groups that belong toslot. ThenDecslot,og, a decode signal for
a pair of a slot and an operation group, is represented as a logical sum ofDecrg,ope as follows:

Decslot,og =
∨

ope ∈ og

rg ∈ RGslot

Decrg,ope ∧ Exist(rg, ope), (3.8)

whereExist(rg, ope) is the function that returns true if operationope executing onrg is defined
in input, otherwise returns false.

3.5.3.3 VLIW pattern detection signals

Let Slot be a set of all slots, andOpegroup(ptrnslot) be an operation group that corresponds
to slot in VLIW patternptrn.

A detection logic of VLIW patternptrn, Detptrn, is represented as a logical product of
Decslot,opeg as follows:

Detptrn =
∧

slot ∈ Slot

opeg = Opegroup(ptrnslot)

Decslot, opeg. (3.9)

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSORS 25

3.5.3.4 Resource group activation signals

Let Slot(rg) be a slot that resource grouprg belongs to,Detptrn be a detection signal of VLIW
pattern in instruction dispatch patternptrn, andResgroup(ptrnslot) be a resource group that
corresponds toslot in ptrn.

Actvrg, an activation signal ofrg, is represented as a logical sum ofDetptrn as follows:

Actvrg =
∨

ptrn ∈ TIDP

Detptrn ∧ (rg = Resgroup(ptrnSlot(rg))). (3.10)

3.5.3.5 Control signals of data-path selectors

In the proposed method, a micro-operation description is specified for each pair of an operation
and a resource group. Then a data-path of an entire processoris generated by merging DFGs
derived from micro-operation descriptions. Since mergingoften causes signal conflicts at input
port of FU, data-path selectors are inserted, so that the conflicts are resolved.

This section describes control logic of the data-path selector, which represents a condition of
selection.

A DFG that is derived from a micro-operation description of operationope executed on
resource grouprg is valid when the instruction register holds a value that representsope and
rg is activated, as described in Section 3.3. Hence, the logic can be represented by a logical
product of an activation signal forrg and an decode signal for a pair ofrg andope. Assume that
a DFG that is derived from a micro-operation description ofope executed onrg is DFGope,rg.
Then, logic for a selector to formDFGope,rg is represented as follows:

CondDFGope,rg
= Decrg,ope ∧ Actvrg (3.11)

Figure 3.11 shows merging DFGs and inserting a data-path selector. When operation OpeA
executed on resource group ResgM is decoded (identified) andResgM is activated, the DFG
that represents operation OpeA executed on ResgM becomes valid. In other words, the inserted
selector is controlled to select the edge derived from the DFG.

By using the activation signal, it is possible to form an appropriate DFG in case that multiple
candidates of FU exist for an operation to be executed on the same slot. For example of Fig.
3.11, a certain slot can issue OpeA, however, depending on a combination of operations in
other slots, the slot uses either r1 or r2. It is hard to decideonly with decode signals which FU
is to be used for OpeA; if another slot uses r1, this slot has touse r2, and vice versa.

3.5.4 Control signals for interrupt

Since a reset and an external interrupt are independent froma concept of VLIW processor, such
as slot, the same model of [45] can be applied to a VLIW processor. Therefore, this section
discusses a model for a nonmaskable interrupt and an internal interrupt.

3.5.4.1 Nonmaskable interrupt

A nonmaskable interrupt (NMI) is the second highest priority interrupt next to the reset inter-
rupt. It is used for an urgent interrupt from the outside of processor, such as a notice of system

26 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

r3

r2r1
in0 in1

out
sel

r3

r2

OpeA on ResgN

r3

r1

OpeA on ResgM

merge DFGs

r3

r2r1 insert
a selector

Cond. A:
if Decoded(OpeA, ResgM)
 and Active(ResgM)
 then out <= in0
if Decoded(OpeA, ResgN)
 and Active(ResgN)
 then out <= in1

Figure 3.11: Merge of DFGs and selector insertion in the VLIWprocessor generation.

power down, and so on. Figure 3.12 illustrates a hardware model of interrupt pipeline that can
also handle an NMI. In Fig. 3.12, a shaded box represents a pipeline register.NMI Request
represents a request signal of NMI.

Internal Interrupt Requesti, and Internal Interrupt Codei represent an internal interrupt
request and its identifier in thei-th stage, respectively. In the model of Fig. 3.12, a status of
interrupt request and interrupt identifier are entered intothe interrupt pipeline. In the model
of Fig. 3.12, an external interrupt request signal and its identifier EXTINTare entered into
the beginning of interrupt pipeline. Since an interrupt request from ascending stages hides an
external interrupt request, an external interrupt has the lowest priority. On the other hand, an
NMI request signal and a reset interrupt request signal are entered into the end of the interrupt
pipeline, then the interrupts have higher priority than other external and internal interrupts.
Since a reset interrupt identifier is selected after selecting an NMI, a reset interrupt has higher
priority than an NMI.

3.5.4.2 Internal interrupt

In VLIW processors, multiple interrupts can be occurred from multiple slots in a pipeline stage
at a time. Therefore, we need a mechanism to select one interrupt to process among multiple
interrupts.

Internal Interrupt Model of Scalar Processor In [45], an internal interrupt model of
scalar processor is proposed. The detection logic of internal interrupt in the model is shown
below. LetOpeintr be a set of possible operations in which internal interruptintr may oc-
cur, validstage be a condition that represents existence of a valid instruction in stage. Then,

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSORS 27

0 1
MUX

0 1
MUX

0 1
MUX

0 1
MUX

Internal Interrupt Code1
Internal Interrupt Request1

External
Interrupt
Request

"EXTINT"

"RSTINT"Reset
Interrupt
Request

stage 1

stage 2

stage N

stage 3

Interrupt
Code

Interrupt
Request

. . .

. . .

. . .

...

Interrupt
Detected

. . .

Program Counter

Saved PC

register register

output

Interrupt
Handling

0 1
MUX

"NMI"NMI
Request

Internal Interrupt Code2
Internal Interrupt Request2

Internal Interrupt CodeN
Internal Interrupt RequestN

Figure 3.12: Hardware model of interrupt pipeline to handlea nonmaskable interrupt

28 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Detectedstage,intr, a detection signal ofintr in stage, is represented as follows:

Detectedstg,intr = validstg ∧







∨

ope∈Opeintr

Decope ∧ condope,intr







, (3.12)

whereDecope is a decode signal of operationope, andcondope,intr represents thatintr occurs
in ope.

Let Intrstg be interrupts that occur in stagestg. Then,IntrReqstg, a signal to indicate that
any interrupt occurs in pipeline stagestg, is described usingDetectedstg,intr as follows:

IntrReqstg =
∨

intr∈Intrstg

Detectedstg,intr. (3.13)

3.5.4.3 Internal interrupt model of VLIW processors

In VLIW processors, it is needed to select one interrupt occurring in the higher-prioritized slot
among multiple interrupts in a stage.Detectedstg,intr,slot, a signal to detect internal interrupt
intr occurring inslot in stagestg, is described as follows:

Detectedstg,intr,slot = validstg ∧























∨

ope ∈ Opeintr

rg ∈ Rgslot

Decrg,ope ∧Activerg ∧ condope,intr























. (3.14)

Detectedstg,slot, a signal to detect an interrupt occurring inslot in stg, is described as fol-
lows:

Detectedstg,slot =
∨

intr∈Intrstg

Detectedstg,intr,slot. (3.15)

Therefore, using these signals,IntrCodestg, an internal interrupt identifier in stagestg, is
represented as follows:

IntrCodestg =
∨

slot∈Slot







∧

s>slot

{

Detectedstg,s

}

∧
∨

intr∈Intr

{Codeintr ∧Detectedstg,intr,slot}







,

(3.16)
wheres > slot means that slots has higher priority than slotslot.

IntrReqstg, a signal to indicate that any interrupt occurs in pipeline stagestg, is represented
usingDetectedstg,intr,slot as follows:

IntrReqstg =
∨

intr∈Intrstg

Detectedstg,intr,slot. (3.17)

The model of [45] saves the value of program counter when an interrupt occurs. Similarly,
the interrupt pipeline in VLIW processors saves a slot number in which an interrupt occurs
as well as the value of program counter, in order to allow an interrupt handler to precisely
distinguish the operation that causes the interrupt.

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 29

Table 3.1: A VLIW pattern table of the VLIW processor in the preliminary experiment.
VLIW Pattern Slot1 Slot2 Slot3

#1 OGALU OGALU OGNOP

#2 OGNOP OGALU OGALU

3.6 Generation method for efficient VLIW processors

In this section, a resource group assignment method of the VLIW processor generation method
proposed in Section 3.5 is discussed furthermore. First, a relation between FU allocation and
design quality, such as area and delay time, is examined. Then, the importance of FU allocation
to generate a fine quality VLIW processor is discusses.

3.6.1 Relation between FU allocation and design quality

In the resource group decision algorithm explained in Section 3.5.2, even if there are multiple
candidates that can be assigned to a slot, a resource group that is found first is adopted. No
matter which candidate is adopted, a generated VLIW processor properly works. However, the
design quality might change significantly depending on the adopted candidate. In this section, a
relation between the design quality, that is area and delay time, and FU allocation is examined.

3.6.1.1 Preliminary experiment

Simple 3-slot VLIW processors that have only two operation groups,OGALU andOGNOP , are
designed. Figure 3.13 shows a dispatch table of this VLIW processor. This processor supports
resource groups,RG A0Slot1, RG A0Slot2, RG A1Slot2, RG A0Slot3, andRG A1Slot3 for op-
eratingOGALU . It supports for operatingOGNOP RG NSlot1 andRG NSlot3. Furthermore,
RG A0Slot1, RG A0Slot2, andRG A0Slot3 include ALU0, andRG A1Slot2 andRG A1Slot3

include ALU1. VLIW patterns for these processors are shown in Table 3.1.
In this case, there are two candidates of possible resource group assignment, as shown in

Table 3.2 and Table 3.3. In resource group assignment 1, Slot2 uses ALU0 in VLIW pattern
#1, while it uses ALU1 in VLIW pattern #2, as shown in Table 3.2, On the other hand, in
resource group assignment 2, every slot uses either ALU0 or ALU1 through all VLIW patterns,
as shown in Table 3.3,

Both of the processors will work properly, however, the design quality might be different.

30 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Resource
Group

Slot

Operation
Group

VLIW_pattern {

 { Slot1: OGALU, Slot2: OGALU, Slot3: OGNOP },

 { Slot1: OGNOP, Slot2: OGALU, Slot3: OGALU },

(b) Dispatch Rule Description

(a) Dispatch Model

slot_resgroup {

 Slot1: RG_A0Slot1, RG_NSlot1;

 Slot2: RG_A0Slot2, RG_A1Slot2;

 Slot3: RG_A0Slot3, RG_A1Slot3, RG_NSlot3;

opegroup_resgroup {

 OGALU: RG_A0Slot1, RG_A0Slot2, RG_A1Slot2, RG_A0Slot3, RG_A1Slot3;

 OGNOP: RG_NSlot1, RG_NSlot3;

};

};

};

Slot 1 Slot 2 Slot 3

OGALU OGNOP

ALU0 ALU1

RG_A0Slot1 RG_A0Slot2 RG_A1Slot2 RG_A0Slot3 RG_A1Slot3RG_NSlot1 RG_NSlot3

FU

Figure 3.13: A dispatch table of the VLIW processor in the preliminary experiment.

Table 3.2: Resource group assignment 1.
VLIW Pattern Slot1 Slot2 Slot3

#1 RGA0Slot1
RGA1Slot2

RGNSlot3

#2 RGNSlot1
RGA0Slot2

RGA1Slot3

Table 3.3: Resource group assignment 2.
VLIW Pattern Slot1 Slot2 Slot3

#1 RGA0Slot1
RGA1Slot2

RGNSlot3

#2 RGNSlot1
RGA1Slot2

RGA0Slot3

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 31

Table 3.4: Synthesis results of the preliminary experiment.
Assign. 1 Assign. 2 (Reduction)

Entire Area (gate) Combinational 43006 42278 728 (1.7%)
Processor Non-Combinational 14502 14483 19 (0.0%)

Total 57512 56765 747 (1.3%)
Max Delay (ns) 12.65 12.26 0.39 (3.1%)

Data-path # of selectors 18 16 2 (11.1%)
Selectors Area (gate) Total 2914 2339 575 (19.7%)

(0.14 CMOS Library)

3.6.1.2 Synthesis results and discussion of the preliminar y experiment

Table 3.4 shows synthesis results of the VLIW processors. Area and delay time were mea-
sured using Synopsys Design Compiler with 0.14µm CMOS standard cell library. Figure 3.14
illustrates ALU0 and ALU1, and related data-path selectorsand pipeline registers, in the ar-
chitecture of the VLIW processors. Table 3.4 shows that the processor with resource group
assignment 2 has fewer data-path selectors, and lower area of data-path selectors and the entire
processor. The reason is that the required number and size ofdata-path selectors are decreased
since ALU1 is only used by Slot2, and Slot2 only uses ALU1 in assignment 2, while ALU1 is
used by two slots, and Slot2 uses both of ALU0 and ALU1 in assignment 1, as shown in Fig.
3.14.

The experimental results show that allocating fewer FUs to aslot or being allocated fewer
slots for an FU improves design quality in terms of area and delay time. The reason is that
the number of input ports of data-path selector placed on theinput port of FU decreases while
the number of slots to be allocated to an FU decreases, and also the number of input ports of
data-path selector placed on the input port of the register file decreases while the number of
FUs to be allocate to a slot decreases. Consequently, in caseof multiple candidates for a VLIW
pattern, a candidate that contains fewer FUs for a slot wouldbe beneficial in terms of the design
quality.

3.6.2 Efficient resource group assignment method

As was mentioned in Section 3.6.1, trying to allocate fewer FUs for a slot and trying to be
allocated fewer slots for an FU give a fine quality VLIW processor. This section describes a
resource group assignment method that can generate a fine quality VLIW processor.

Let n be the number of instances of FU that is required for operations in operation groupog.
First, an FU allocation method in a case that a VLIW processorcan issuen operations ofog
at a time from all slots is discussed. Then, a resource group assignment method to realize the
FU allocation method is explained. In this section, cases ofthree, four, and five slots, that are
moderate cases to find a trend of optimal FU allocation, are discussed.

32 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

GPR

2 3 2 3

7 13 7

GPR

2 3 2

ALU0 ALU1 ALU0 ALU1

3 4 3

7 7

3 3 3

7

GPR

GPR

#

Read Port
for Slot1

Read Port
for Slot2

Read Port
for Slot3

Write Port
for Slot1

Write Port
for Slot2

Write Port
for Slot3

Write Port
for Slot1

Write Port
for Slot2

Write Port
for Slot3

Read Port
for Slot1

Read Port
for Slot2

Read Port
for Slot3

a.) Assignment 1 a.) Assignment 2

Pipeline
 Register

Datapath
 Selector
of input
 ports

Figure 3.14: Architecture of VLIW processors with different resource group assignment.

3.6.2.1 Case of 3 Slots

If a VLIW processor has three slots, whenn is three or one, allocation between slots and FUs
is determined. Then, in this section, only a case ofn = 2 is discussed.

Figure 3.15 shows allocation of two FUs to three slots. In Fig. 3.15, an operation in Slot1
is operated on FUA, an operation in Slot2 is operated on FUA or FU B, and an operation in
Slot3 is operated on FUB. This allocation can operate all combinations ofog’s operation from
all slots.

3.6.2.2 Case of 4 Slots

If a VLIW processor has four slots, whenn is four or one, allocation between slots and FUs is
decided. Then, in this section, cases ofn = 2 or n = 3 are explained.

Figure 3.16 shows allocation of two FUs to four slots. In Fig.3.16, an operation in Slot1
is operated on FUA, an operation in Slot2 and Slot3 is operated on FUA or FU B, and an
operation in Slot4 is operated on FUB. This allocation can operate all combinations ofog’s
operation from all slots.

Figure 3.17 shows allocation of three FUs to four slots. In Fig. 3.17, an operation in Slot1 is
operated on FUA, an operation in Slot2 is operated on FUA or FU B, an operation in Slot3
is operated on FUB or FU C, and an operation in Slot4 is operated on FUC. This allocation

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 33

Slot 1 Slot 2 Slot 3

FU_A FU_B

Figure 3.15: Allocation of two FUs to three slots.

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU_B

Figure 3.16: Allocation of two FUs to four slots.

34 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU_CFU_B

Figure 3.17: Allocation of three FUs to four slots.

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU_B

Slot 5

Figure 3.18: Allocation of two FUs to five slots.

can operate all combinations ofog’s operation from all slots.

3.6.2.3 Case of 5 Slots

If a VLIW processor has five slots, whenn is five or one, allocation between slots and FUs is
decided. Then, in this section, cases of two, three or four FUs are explained.

Figure 3.18 shows allocation of two FUs to five slots. In Fig. 3.18, an operation in Slot1 is
operated on FU FUA, an operation in Slot2, Slot3 and Slot4 is operated on FUA or FU B,
and an operation in Slot5 is operated on FUB. This allocation can operate all combinations of
og’s operation from all slots.

Figure 3.19 shows allocation of three FUs to five slots. In Fig. 3.19, an operation in Slot1 is
operated on FUA, an operation in Slot2 is operated on FUA or FU B, an operation in Slot3
is operated on FUA, FU B or FU C, an operation in Slot4 is operated on FUB or FU C, and
an operation in Slot5 is operated on FUC. This allocation can operate all combinations ofog’s
operation from all slots.

Figure 3.20 shows allocation of four FUs to five slots. In Fig.3.20, an operation in Slot1 is
operated on FUA, an operation in Slot2 is operated on FUA or FU B, an operation in Slot3
is operated on FUB or FU C, an operation in Slot4 is operated on FUC or FU D, and an

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 35

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU_CFU_B

Slot 5

Figure 3.19: Allocation of three FUs to five slots.

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU_CFU_B FU_D

Slot 5

Figure 3.20: Allocation of four FUs to five slots.

operation in Slot5 is operated on FUD. This allocation can operate all combinations ofog’s
operation from all slots.

3.6.2.4 An FU Allocation Algorithm

Based on the discussion from section 3.6.2.1 to section 3.6.2.3, an FU allocation algorithm is
described. Letx be an FU allocation,Slot be a set of slots,FU be a set of FUs,fs(x) be the
number of FUs that is allocated with slots in allocationx, sf(x) be the number of slots that is
allocated by FUf in allocationx. F (x), the total offs(x) for all slots, andS(x), the total of
sf(x) for all FUs are represented as follows:

F (x) =
∑

s∈Slot

fs(x) (3.18)

S(x) =
∑

f∈FU

sf(x) (3.19)

Then, the proposed FU allocation algorithm selects an FU allocation candidate to minimize
(F (x) + S(x)).

36 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

3.6.2.5 Resource Group Assignment Algorithm

In the VLIW processor generation method explained in Section 3.5, the algorithm chooses a
resource group only from given resource groups specified in the input specification resource
groups that can operate a VLIW pattern are selected in given resource groups as an input speci-
fication. In other words, resource group assignment or FU allocation can be controlled with the
input specification. Consequently, it is possible to assignappropriate resource groups to realize
FU allocation mentioned before, by describing as follows:

1. For operation groupog, obtainFUog, which is a set of FUs that can processog.

2. LetSlotog be a set of slots that issuesog. According to the discussion described in section
3.6.2.4, obtainFUslot, which is assignment ofFUog to Slotog.

3. For∃slot ∈ Slotog, create resource groups that include FUsfu ∈ FUslot.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 37

Table 3.5: Parameters of designed VLIW processors.
Parameter Value

of Slots 1, 2, 3, 4
of Pipeline Stages 3, 4, 5
Instruction Bit Width 32, 24
of VLIW patterns 5 – 938
of ALUs 1, 2, 3, 4
of Multipliers 1, 2, 3
of Dividers 0, 1
of Shifters 1, 2, 3, 4
Interrupts none

3.7 Experimental Results and Discussion

In this section, the proposed VLIW processor generation method is evaluated.

3.7.1 Evaluation of VLIW processor generation method

In order to confirm feasibility of the proposed VLIW processor generation method, 36 VLIW
processors are designed using the proposed approach. In this section, the detail of the experi-
ment and its considerations are discussed.

3.7.1.1 Experimental setup

36 processors are designed and processor specification descriptions are created for each pro-
cessor. These processors have the different number of slotsand FUs and various type of dis-
patching rules. Then HDL description is generated for each specification description using the
implemented processor generation method.

Hardware are and maximum delay time of the generated processors are evaluated after logic
synthesis. Switching information of processor is obtainedfrom gate level simulation with ap-
plications and power consumption is estimated with the information.

The HDL description was generated on Intel Pentium4 2.8GHz,512MB memory, and Red-
Hat Linux 7.3. Area, delay time, and power consumption were estimated using Synopsys
Design Compiler with 0.14µm CMOS library.

3.7.1.2 Experimental results

36 VLIW processors with up to 4 slots are designed. They vary in dispatching rule, FU, the
number of pipeline stages, and instruction width, as shown in Table 3.5. Since so-called copy
and paste technique can be used to describe specification of derivatives, it took only eight

38 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 50

 60

 70

 80

 90

 100

A
m

ou
nt

 o
f D

es
cr

ip
tio

n
(w

or
ds

)

R
ed

uc
tio

n
(%

)

VLIW Processors

Generated HDL
Specification

Reduction

Figure 3.21: Reduction of the amount of description.

hours to create 36 specifications. Furthermore, generationtime of HDL description from the
specification was from 2 seconds to 15 seconds.

On the other hand, there was the tremendous reduction of the amount of description that
a designer has to describe. Figure 3.21 shows a comparison ofthe amount of description be-
tween the processor specification description and generated HDL description. In this figure, the
amount of description is counted by the number of words, since it is assumed that the number
of words represents the complexity of description better than the number of lines. Since a line
is sometimes too long, it is not fair to compare the complexity by the number of lines. In Fig.
3.21, x axis represents the generated 36 processors. A whiteand a black bar represent the num-
ber of words in generated HDL description and in the processor specification description for
each processor, respectively. A triangle represents the percentage of the processor specification
description over the HDL description (refer to the right y axis). The percentage of the proposed
specification description over the VHDL description is from11% to 22%, and the average per-
centage is only 18%. This result shows that designers describe a specification in the proposed
method 82% less than HDL description; the amount of the specification that designers have to
describe by hand is about 5 times smaller than that of HDL description.

A RISC processor generated by the scalar processor generation method has only 20% larger
area than manually designed HDL description [48]. Though a generated VLIW processor has
not been compared with a manually designed VLIW processor yet, it is assumed that the quality
of generated HDL description is almost the same as that of manually designed HDL description.

Figure 3.22 shows a trade-off between area and performance of the generated processors.
The x axis denotes the area of generated processors, and the yaxis denotes the execution time
with an FIR filter application in maximum frequency. In Fig. 3.22, processors from A to F are

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 39

35

40

45

50

55

60

0 50 100 150 200

E
xe

cu
tio

n
T

im
e

(u
s)

HW Area (K gate)

A

B
C

D
F

E

Figure 3.22: Trade-off between HW area and execution time ofFIR filter application.

candidates of design space exploration. This result shows that exploration of large design is
possible using the proposed method, and designers can easily find architecture candidates from
the huge design space.

3.7.2 Evaluation of efficient VLIW processor generation met hod

In this section, a generation method of efficient VLIW processor described in Section 3.6 is
evaluated.

3.7.2.1 Experimental Procedure and Environment

The experiment has been conducted in the procedure as follows.

1. Design a VLIW processor with the proposed resource group assignment method.

2. Design eleven VLIW processors with different resource group assignment, and create
their processor specification descriptions.

3. Generate HDL description from the descriptions by the implemented VLIW processor
generation method.

4. Measure hardware area and maximum delay time with logic synthesis.

Area and delay time were measured using Synopsys Design Compiler with 0.14µm CMOS
library.

40 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

3.7.2.2 Designed VLIW Processors

This section shows the specification of designed VLIW processors. The parameters of proces-
sors designed for this experiment is shown below.

• Operation width: 32bit

• The number of operations: 57

• The number of registers in register file: 32

• The number of register file: 1

• The number of slots: 4

• The number of pipeline stages: 5

• The number of ALU: 3

• The number of multiplier: 2
The multiplication algorithm is sequential type.

• The number of divider: 2
The division algorithm is sequential type.

• The number of shifter: 3

• The number of data memory access units: 1

• Data forwarding: N/A

The instruction set of designed processors is based on the DLX architecture [49], and ev-
ery operation can be issued from all slots (e.g. homogeneousVLIW processors). However,
the maximum number of parallel executable operations depends on the number of FUs; for
example, up to three shift operations can be issued at a time.Table 3.6 shows operations in
the instruction set, their operation group, and their required FUs. With the limitation of the
maximum number of parallel executable operations, 1565 VLIW patterns has been created.

Table 3.7 shows FU allocation of designed VLIW processors. “the proposed method” pro-
cessor is a VLIW processor generated using the proposed resource group assignment method.
Each entry of Table 3.7 includesfs(x) and sf(x) that are explained in section 3.6.2.4. For
instance, in assignment 1 VLIW processor,ALUs(x) (fs(x) for ALU) is {1, 2, 3, 3}. This
means that the numbers of ALUs allocated with each slot of theprocessor are 1, 2, 3, and 3,
respectively. Moreover,sALU(x) (sf (x) for ALU) is {4, 3, 2}. This means that the numbers
of slots allocated to each ALU of the processor are 4, 3, and 2,respectively. Therefore, FU
allocation for ALUs of assignment 1 VLIW processor is shown in Fig. 3.23.

3.7.2.3 Experimental Results

In this section, experimental results are shown.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 41

Table 3.6: Instruction set of designed VLIW processors.
Operation Operation Required
Group Name Name FU

OG SFT SLL, SRL, SRA, SLLI, SRLI, SRAI Shifter
OG ALU ADD, ADDU, ADDI, ADDUI, ALU

SUB, SUBU, SUBI, SUBUI,
AND, ANDI, OR, ORI, XOR, XORI,
SLT, SGT, SLE, SGE, SEQ, SNE,
SLTI, SGTI, SLEI, SGEI, SEQI, SNEI,
SLTU, SGTU, SLEU, SGEU

OG JMP BEQZ, BNEZ, J, JAL, JR, JALR ALU, Sign extender
OG MEM LB, LH, LW, LBU, LHU, SB, SH, SW ALU, Sign extender
OG MUL MULT, MULTU Multiplier
OG DIV DIV, DIVU, MOD, MODU Divider
OG LHI LHI

Table 3.7: FU allocation of designed VLIW processors.
for ALU and shifter for multiplier and divider

VLIW processor ID fs(x) sf(x) fs(x) sf(x)

the proposed method{1, 2, 2, 1} {2, 2, 2} {1, 2, 2, 1} {3, 3}
assignment 1 {1, 2, 3, 3} {4, 3, 2} {1, 2, 2, 2} {4, 3}
assignment 2 {1, 2, 3, 1} {3, 2, 2} {1, 2, 2, 2} {4, 3}
assignment 3 {1, 2, 2, 2} {3, 2, 2} {1, 2, 2, 2} {4, 3}
assignment 4 {1, 2, 3, 2} {4, 2, 2} {1, 2, 2, 2} {4, 3}
assignment 5 {1, 2, 3, 2} {3, 3, 2} {1, 2, 2, 2} {4, 3}
assignment 6 {1, 2, 3, 3} {4, 3, 2} {1, 2, 2, 1} {3, 3}
assignment 7 {1, 2, 2, 1} {2, 2, 2} {1, 2, 2, 2} {4, 3}
assignment 8 {1, 2, 3, 1} {3, 2, 2} {1, 2, 2, 1} {3, 3}
assignment 9 {1, 2, 2, 2} {3, 2 ,2} {1, 2, 2, 1} {3, 3}
assignment 10 {1, 2, 3, 2} {4, 2, 2} {1, 2, 2, 1} {3, 3}
assignment 11 {1, 2, 3, 2} {3, 3, 2} {1, 2, 2, 1} {3, 3}

42 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot 3 Slot 4

ALU0 ALU2ALU1

Figure 3.23: FU allocation for ALUs in assignment 1.

Table 3.8: Comparison of area and delay between designed VLIW processors.
Entire Processor Datapath Selectors Controller

VLIW processor ID Area (gate) Delay (ns) Total Area (gate) Area (gate)

the proposed method 93170 14.9 9662 8802
assignment 1 95536 15.6 11320 10167
assignment 2 93864 15.0 10199 9150
assignment 3 94172 15.3 10142 9807
assignment 4 94605 14.5 10733 9709
assignment 5 94788 15.1 10758 10127
assignment 6 94942 15.2 10943 9995
assignment 7 93530 15.4 10008 8926
assignment 8 93556 15.4 9882 8928
assignment 9 93942 14.6 9844 9478
assignment 10 94237 15.4 10429 9373
assignment 11 94219 14.7 10410 9838

Figure 3.24 illustrates a comparison of hardware area amongthe VLIW processors. Figure
3.24 represents that hardware area differs among the different FU allocation and the proposed
method that uses an efficient FU allocation achieves the smallest hardware area. Table 3.8
shows the detailed results of VLIW processors with different FU allocation. In Table 3.8,
the area and delay time of the entire processor are shown as well as the area of data-path
selectors and a controller. Note that the controller is a part of VLIW processor which decodes
an instruction and dispatches operations, and it also controls the pipeline status such as pipeline
interlock. Table 3.8 shows that the area reduction is mainlycome from the reduction of data-
path selectors and controller.

3.7.2.4 Discussion

The change of resource group assignment leads to the change of FU allocation, then the size of
required data-path selectors also changes.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 43

90000

91000

92000

93000

94000

95000

96000

th
e

pr
op

os
ed

 m
et

ho
d

as
sig

n.
 1

as
sig

n.
 2

H
W

 C
os

t (
ga

te
)

VLIW Processor ID

as
sig

n.
 3

as
sig

n.
 4

as
sig

n.
 5

as
sig

n.
 6

as
sig

n.
 7

as
sig

n.
 8

as
sig

n.
 9

as
sig

n.
 1

0

as
sig

n.
 1

1

Figure 3.24: Comparison of hardware area.

Table 3.9 explains allocation of two FUs to four slots for each VLIW pattern. In this ex-
periments, a case of two FUs is a case of multipliers or dividers. In Table 3.9, “*” indicates
a slot that issues an operation using the FU, in each VLIW pattern. The column of assign-
ment 1 and the proposed method in Table 3.9 represent an FU allocated to each slot for each
VLIW pattern. According to Table 3.9, only one FU, FU1, is allocated to Slot4 in the proposed
assignment method, while two FUs, FU0 and FU1, are allocatedto Slot4 in assignment 1.

Table 3.10 explains allocation of three FUs to four slots foreach VLIW pattern. In this
experiments, a case of three FUs is a case of ALUs or shifters.According to Table 3.10, only
one FU, FU2, is allocated to Slot4 and two FUs, FU1 and FU2, areallocated to Slot3 in the
proposed method, while three FUs, FU0, FU1 and FU2, are allocated to Slot3 and Slot4 in
assignment 1.

Allocating fewer FUs to a slot makes the size of data-path selectors that choose input data
of a register file smaller. Moreover, since it also leads to allocating an FU to fewer slots the
size of data-path selectors that choose input data of an FU also becomes smaller. Since fewer
data-path selectors benefit area and delay time, fine qualityVLIW processors can be generated
using the proposed method. Consequently, the proposed resource group assignment method is
effective to generate a VLIW processor with small area and delay time.

44 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Table 3.9: Allocation of two FUs to four slots for each VLIW pattern.
VLIW Pattern Assignment 1 the proposed method

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

* FU0 FU0
* FU0 FU0

* FU0 FU0
* FU0 FU1

* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU1

* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU1

* * FU0 FU1 FU0 FU1

Table 3.10: Allocation of three FUs to four slots for each VLIW pattern.
VLIW Pattern Assignment 1 the proposed method

S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

* FU0 FU0
* FU0 FU0

* FU0 FU1
* FU0 FU2

* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU2

* * FU0 FU1 FU0 FU1
* * FU0 FU1 FU0 FU2

* * FU0 FU1 FU1 FU2
* * * FU0 FU1 FU2 FU0 FU1 FU2
* * * FU0 FU1 FU2 FU0 FU1 FU2
* * * FU0 FU1 FU2 FU0 FU1 FU2

* * * FU0 FU1 FU2 FU0 FU1 FU2

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 45

Table 3.11: Occurrence conditions of added interrupts.
Interrupt Name Occurrence Condition

Nonmaskable interrupt when the value of “NMI” input port becomes active.
Overflow interrupt when the overflow flag of ALU becomes active

in operation of operation group OGALU
Zero division interrupt when the error flag of divider becomes active

in operation of operation group OGDIV

3.7.3 Evaluation of VLIW processor generation method with i nter-
rupt model

This section describes an experiment that is performed in order to confirm the feasibility of the
proposed interrupt model of VLIW processor.

The experiment has been conducted in the procedure as shown below.

1. Design a VLIW processor with interrupt features based on the proposed interrupt model,
and create its processor specification description.

2. Generate HDL from the description by the implemented VLIWprocessor generation
system.

3. Simulate the VLIW processor to confirm whether or not it canprocess interrupts.

3.7.3.1 Designed Processor

A designed VLIW processor for this experiment is based on theVLIW processor explained
in Section 3.7.2, and interrupts are added as shown below. Moreover,NMI input port of the
processor core is also added to realize a nonmaskable interrupt.

• Nonmaskable interrupt

• Two kind of internal interrupt

– Overflow interrupt

– Zero division interrupt

Table 3.11 shows interrupts and their occurrence condition. A nonmaskable interrupt occurs
when the value ofNMI port of the processor becomes active. An overflow interrupt occurs when
an ALU asserts overflow flag in an arithmetic operation. A zerodivision interrupt occurs when
divider outputs error flag in a division operation. Furthermore, in case of multiple interrupts,
an interrupt occurred from the least number of slot is processing.

Table 3.12 shows behavior of added interrupts. In Table 3.12, PCmeans a program counter.
In the designed processor, a nonmaskable interrupt, an overflow interrupt, and a zero division
interrupt invoke interrupt handlers located on the addressof ”0x00008800”, ”0x00008000”,
”0x00008400”, respectively.

46 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Table 3.12: Behavior of added interrupts.
Interrupt Name Behavior

Nonmaskable interrupt PC← 0x00008800,
reset a register file and an instruction register.

Overflow interrupt PC← 0x00008000.
Zero division interrupt PC← 0x00008400.

Table 3.13: Comparison of area and delay between VLIW processors with and without inter-
rupts.

VLIW Processor Area (gate) Max Delay (ns)

with Interrupts 94329 14.8
w/o Interrupts 93095 14.2

3.7.3.2 Evaluating of Generated Processor

In this section, evaluation of the generated processor is describes.
The behavior of a nonmaskable interrupt and internal interrupts is checked through the RTL

simulation. It is confirmed that the generated processor works properly in case that the non-
maskable interrupt or internal interrupts occur, including the case of multiple internal interrupts.

Design Quality of Interrupt Handling Circuits Table 3.13 shows comparison of hard-
ware area and maximum delay time between the VLIW processorswith interrupts and a VLIW
processor without interrupts. According to Table 3.13, increases of area and delay time are one
percent and four percent, respectively. This result can be considered as appropriate increases.

3.7.3.3 Discussion

This section evaluated a VLIW interrupt model that can handle a nonmaskable interrupt as well
as an internal interrupt. In a VLIW processor, though multiple internal interrupts may occur
in a pipeline stage at a time, the proposed model can select anappropriate interrupt according
to the slot priority. The experimental results show that allinterrupts based on the proposed
interrupt model for VLIW processor works properly.

3.8 Conclusion

This chapter proposed a generation method based on the configurable VLIW processor model
[44]. In the proposed method, pipeline stages, slots and dispatching rule are configurable, and
pipeline control logic is generated automatically. In the design of pipeline processors, designing
pipeline control logic is a troublesome and difficult part, however, automatic generation of such
logic helps designers to concentrate on customizing the processor architecture. Experimental

3.8. CONCLUSION 47

results shows that the proposed method can generate a VLIW processor from a high level
description, which is 80% to 90% smaller than HDL description, as shown in Section 3.7.1.
And also, the generation time of HDL description is sufficiently short, that is from 2 to 15
seconds.

This chapter also proposed a resource group assignment algorithm to generate VLIW pro-
cessors of smaller area and shorter delay time. The proposedassignment algorithm minimizes
a total of the number of slots that an FU is allocated with and the number of FUs that are allo-
cated with a slot. The experimental results indicated that the proposed algorithm can generate
fine-quality VLIW processors.

Though a generated VLIW processor has not been compared witha manually designed
VLIW processor yet, it is assumed that the quality of generated HDL description is almost
the same as that of manually designed HDL description as discussed in Section 3.7.1.2.

Since the specification description supports a wide range ofdispatching rules and the amount
of description is sufficiently small, it is possible to generate a wide range of fine-quality VLIW
processors in a short time. Note that a simplecopy and pastestrategy can be employed during
preparation of the processor specification description. Hence, the actual effort that designers
have to describe is much smaller than the manual design of HDL. Therefore, the proposed
method can significantly improve the design productivity ofVLIW processors.

48 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Chapter 4

Operation shuffling algorithm for low
energy L0 cluster

The method described in Chapter 3 significantly improves thedesign productivity of VLIW
processors. The chapter also gives an algorithm to make selectors in a VLIW processor smaller,
which is also beneficial for power reduction.

VLIW processors, however, have a power bottleneck in the instruction memory hierarchy.
Therefore, energy reduction on the instruction memory hierarchy is the next challenge for
VLIW processors. This chapter describes an approach to reduce the energy consumption in
the instruction memory hierarchy using an operation shuffling algorithm which changes opera-
tion scheduling to make an efficient configuration of L0 cluster.

4.1 Power breakdown of VLIW processors

A detailed power analysis of embedded systems using VLIW processor indicates that signifi-
cant amount of power is consumed in the instruction memory hierarchy. For example in Lx pro-
cessor, a VLIW processor designed by Hewlett-Packard and STMicroelectronics, up to 40% of
the total processor power is consumed in the instruction caches alone [8]. Figure 4.1 (a) shows
the average power consumption of the VLIW processor reported in [8]. This figure shows that
the instruction cache consumes a significant amount of power; 36% of total power.

An L0 buffer (a.k.a. loop buffer) is an efficient technique toreduce energy consumption in
the instruction memory hierarchy [9, 10]. In most embedded applications, significant amount
of execution time is spent in small program segments (which consist of loops). An L0 buffer
stores these small program segments in a small buffer (SRAM or register file based) instead
of a big instruction cache. Then the processor core only accesses to the buffer during the loop
execution. This reduces the number of accesses to the higherlevel of the instruction memory
hierarchy and therefore giving large energy reduction, forinstance up to 60% as shown in [10].

Other components of VLIW processor, such as the data path anddata memory, can also be
optimized for energy efficiency. Many research communitieshave been devoted to the energy
optimization for the components. A power management architecture eliminating the switching
activity of FUs [50] reduces the energy consumed in the data path by up to 40%. The L0 buffer
architecture reduces the energy of the instruction cache byup to 60%. Data memory energy

49

50 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Figure 4.1: Power breakdown of VLIW processor (a) before optimizations (b) after conven-
tional power optimizations.

can be reduced by up to 60% by code transformations at the system level [51]. With these
conventional power optimizations, the power consumption can be reduced by about 50% as
shown in Fig. 4.2. However, the instruction cache is still a major power bottleneck as shown in
Fig. 4.1 (b).

4.2 L0 buffer in VLIW processors and L0 cluster

In a simple application of the monolithic L0 buffer to a VLIW processor, at each cycle the oper-
ations would be fetched for all the slots of the VLIW from the monolithic L0 buffer. However,
such a monolithic L0 buffer is not effective as not all slots are always active. This implies that
some slots would require unnecessary buffer access for NOP operation [13]. Hence, L0 cluster
generation was proposed to obtain a low energy system [13, 14].

Figure 4.3 depicts an overview of a clustered VLIW processor. A VLIW instruction con-
sists of multiple operations that are executed simultaneously. A VLIW processor consists of
a number of slots and each of the different slots operates in parallel, and hence an operation
can be issued from each slot every cycle. An L0 buffer provides operations to slots during loop
execution, while L1 cache or higher instruction memory hierarchy directly provides operations
outside of loop. Each slot is also associated with a data cluster where all the slots inside are
connected to the same register file. The slots are also grouped to form an L0 cluster (instruction
cluster) and these slots are associated with their respective L0 buffer.

Each L0 cluster contains associated slots, the separated L0buffer, and an index translation
controller (ITC) which controls access to the L0 buffer. In each cluster, the buffer stores only
operations destined to the slots in the cluster. A loop controller (LC) gives a relative index in
a loop to ITCs during loop execution, and an ITC regulates access to L0 buffer when no oper-
ation is needed to be issued. Since an ITC controls buffer access for each cluster, unnecessary
accesses to the L0 buffers, i.e. fetching NOP operation, canbe suppressed. Further architecture

4.3. MOTIVATION FOR IMPACT OF COMPILER 51

Figure 4.2: Power reduction by the conventional power optimizations.

details are provided in [13, 52].
Figure 4.4 shows an example of how to control the buffer accesses. Figure 4.4 (a) shows a

schedule to be executed and a possible L0 cluster configuration is shown in Fig. 4.4 (b). In
a cycle when no effective operation exists in an L0 cluster, buffer access can be regulated in
the cluster, as represented in shaded boxes labeled ’INACTIVE’ in Fig. 4.4 (b). Figure 4.4 (c)
shows a detailed cycle by cycle execution behavior of L0 cluster 3. An ITC consists of enable
flags and pointers to L0 buffer, and the LC gives a pointer to anITC in each cluster. In the first
cycle, the enable flag is true in the entry pointed by the LC, then the L0 buffer is activated and
a pointer in the entry is used to fetch operations from the buffer. In the second cycle, the enable
flag is false, which represents that there is no effective operations in the cycle. Therefore, a
buffer access to the L0 buffer is regulated. In the next cycle, the L0 buffer is activated again
and operations for the cycle are fed to slots. Note that applying L0 clusters can reduce the
depth of L0 buffer itself (depth of three, while the size of loop is four), as well as the number
of accesses to the buffer, and consequently contributes energy reduction significantly.

4.3 Motivation for impact of compiler

Clustering L0 buffers is effective for energy reduction. The result of L0 cluster generation is,
however, sensitive to the schedule of the target application. The essence of the relevant energy
model [13] is

E =
Nclusters

∑

i=1

ELBi · Cactvi + EITCi · C, (4.1)

whereNclusters is the number of L0 clusters,ELBi is the energy consumed for any random
access,EITCi is the energy consumed by ITC for a cycle,Cactvi is the number of activated

52 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

L0
 C

lu
st

er
D

at
a

C
lu

st
er

PC Instruction Memory Hierarchy

L0 Cluster 1

L0 BufferLC

Register File

Data Memory Hierarchy

L0 Cluster 2

L0 Buffer

Register File

ITC ITC

S
lot

L0
Buffer

ITC

L0 Cluster 3

Data Cluster 1 Data Cluster 2

S
lot

S
lot

S
lot

S
lot

S
lot

S
lot

Figure 4.3: A clustered VLIW processor.

cycles in L0 clusteri, C is the number of total cycles during loop execution.ELBi depends on
the size of cluster.

Figure 4.5 depicts a small example to show how energy is reduced by a change of schedule1.
An example of 5 cycle schedule in 3 slot VLIW processor is shown in Fig. 4.5 (a). One possible
schedule for this is shown in Fig. 4.5 (b). In this schedule, L0 cluster 1 (L0C 1) has only one
operation in cycle 5, while the cluster can contain up to two operations. If the operation is
moved to another cluster, a smaller cluster (L0C 2) is activated and the larger cluster (L0C 1)
can be inactivated, and consequently, it can reduce energy by 27% as shown in Fig. 4.5 (c).
Therefore the basic rationale of this change in schedule from Fig. 4.5 (b) to (c) is to use smaller
L0 clusters more efficiently than larger L0 clusters inefficiently.

This fact emphasizes the impact of compiler on the energy efficiency; the energy efficiency
is highly depending on the initial schedule generated by a compiler even if L0 clusters are
properly constructed for a given schedule.

1In Fig. 4.5, the buffer size and ITC size are calculated usingthe following equations:

Sizebuffer = (Lenop ×#Slots)×Depthbuf , (4.2)

SizeITC = (Widthflag + Widthindex)×DepthITC , (4.3)

whereWidthflag is the width of enable flag,Widthindex is
log2(Depthbuf), Depthbuf is the same as the number of active cycles in the cluster, andDepthITC is the same
as the length of loop. Note that the above equations are just asimplified model than the energy model used in the
experiments, which is based on Wattch power model [53].

4.3. MOTIVATION FOR IMPACT OF COMPILER 53

Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 Slot8 Slot9 Slot10Slot11Slot12

ADDAND SUBMULADD ADD LD
ADD ADDCMP

ADDADDMUL MUL
SWBR ADD MUL ADDADDSW

ADD

ADDANDSUBMULADD ADDLD

ADD ADDCMP

ADDADDMUL MUL

SWBR ADD MUL ADDADDSW

Slot12Slot11Slot10Slot9Slot8 Slot7Slot6 Slot5Slot4 Slot3Slot2Slot1

ADD

L0C 1 L0 Cluster 2 L0 Cluster 3

INACTIVE

 INACTIVE INACTIVE

 INACTIVE

 INACTIVE

 INACTIVE

 INACTIVE cycle 1

cycle 2

cycle 3

cycle 4

L0 Cluster 4 L0 Cluster 5

0
-

T
F

AND LD
ADDADD

SW ADDADDD
E

C
O

D
E

R

ITC L0 Buffer

to Slots
index

enable

from LC

2T
1T

cycle 1

0
-

T
F

AND LD
ADDADD

SW ADDADDD
E

C
O

D
E

R

2T
1T

cycle 2

0
-

T
F

AND LD
ADDADD

SW ADDADDD
E

C
O

D
E

R

2T
1T

cycle 3

(b) Behavior of access regulation

(c) Behavior of L0 Cluster 3

Schedule

cycle

(a) A schedule

cycle

 INACTIVE

Figure 4.4: Example of regulation of L0 buffer access.

54 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

OP1 OP2

OP3 OP4 OP5

OP6 OP7

OP8 OP9

OP10

OP1 OP2

OP3 OP4 OP5

OP6 OP7

OP8 OP9

OP10

OP1 OP2

OP3 OP4 OP5

OP6 OP7

OP8 OP9

OP10

320*5+20*5 32*1+10*5 256*4+20*5 64*2+10*5

=1782 =1302 (27% reduction)

Slot1

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

Slot2 Slot3 Slot1 Slot2 Slot3 Slot1 Slot2 Slot3

L0C 1 L0C 2 L0C 1 L0C 2L0 cluster

Energy

(a) Original Schedule (b) Schedule 1 (c) Schedule 2

INACTIVE

INACTIVE

INACTIVE

INACTIVE INACTIVE

INACTIVE

INACTIVE

INACTIVE

L0 buffer size

ITC size

(32*2)*5 (32*1)*1

(1+3)*5 (1+1)*5

(32*2)*4 (32*1)*2

(1+3)*5 (1+1)*5 (bit)

(bit)

Figure 4.5: Example illustrating energy reduction by schedule change. (operation length is 32
bit)

4.4 Proposed operation shuffling algorithm on hetero-
geneous architectures

Figure 4.6 shows an overview of the proposed operation shuffling algorithm. Figure 4.6 (a)
shows a conventional method proposed in [13]. Aninitial scheduleis first obtained by compi-
lation of theapplicationon the specifiedarchitectureof target processor by usingretargetable
VLIW C compiler. The CRISP framework [54] is used, which is an extended version of Tri-
maran framework [55]. Theinitial scheduleis then further analyzed by aschedule analyzer
which generatesactivation informationof slot. Finally, anL0 cluster optimizerfinds the most
energy efficient L0 cluster configuration for the information, and reports anoptimized cluster
configurationandestimated energycorresponding it, as output of post compilation phase. Fig-
ure 4.6 (b) shows the extended method proposed in this article. Here theschedule analyzer
is extended to generate all possible operation-shuffled schedules (i.e.slot activation info), ac-
cording to thearchitecture information(target processor). The output of the post compilation
phase is sets ofL0 cluster configurationandestimated energy informationfor each generated
schedule. Therefore, the best schedule and optimized L0 cluster configuration for it can be
obtained. For estimating the energy consumption Wattch power model [53] is used and the
0.18µm technology is assumed.

Figure 4.7 depicts a procedure in the extended schedule analyzer to shuffle operations in a
cycle under constraints of slot capability. For each cycle,assignment candidates are generated
by shuffling operations scheduled to the cycle (the dependencies of the operations need not be
taken into account as cycle boundaries are not crossed). An assignment list includes a list of
operation assignment candidates for each cycle. The list ofcandidates is generated from an

4.4. PROPOSED OPERATION SHUFFLING METHOD 55

retargetable C compiler

sched. analyzer

slot
activation

info

Post Compilation

L0 cluster
optimizer

Arch.
info.

Optimized
L0 clust. cfg.

Estimated
Energy

(a) conventional method (b) extended method

Arch.
info.

slot
activation

info

Optimized
L0 clust. cfg.

L0 cluster
optimizer

Power
Model

sched. analyzer+

retargetable C compiler

Post Compilation

Power
Model

Estimated
Energy

Choose
Best Schedule

Application(C) Application(C)

Trimaran Trimaran

Initial Sched. Initial Sched.

Figure 4.6: Overview of an L0 cluster configuration improvement phase (a) in the conventional
way, (b) with operation shuffling (proposed method).

cycle

c

c+1

c+2

c+3

A M

A

M
AM

A M

A M

AM

AM

AM

Initial Schedule

Assignment List

AM A M A M AM AM AMc

c+1

c+2

c+3

c-1

c-3

c-2
c-1

c-3

c-2

Slot Capability
Information

enumerate
store

Enumerated
Assignment
Candidates

A

M

: ALU Operation

: Multiply Operation

Figure 4.7: Operation shuffling in each cycle.

56 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

initial schedule, which is generated by the compiler, with slot capability information, which is
extracted from architecture information given as input. Note that this operation shuffling algo-
rithm is applied for each data cluster in a data-clustered architecture, since an operation cannot
be simply moved across the border of data cluster without an inter-cluster copy operation. As
the proposed shuffling algorithm is applied as a post compilation phase, new inter-cluster copy
operations cannot be inserted. Section 4.6 describes details of this topic. In Fig. 4.7, an ALU
operation and a multiply operation are bound in cyclec of initial schedule which is generated
by the retargetable compiler. According to slot capabilityinformation (i.e. multiply operation
can be issued from the second and the fourth slot, while ALU operation can be issued from all
slots) which is given as the architecture information, six assignment candidates are enumerated
for the ALU operation and the multiply operation in cyclec. These are candidates for schedules
to be generated in the next step and stored into an entry of cycle c in the assignment list. For
each cycle, operation assignment candidates are enumerated and stored into the assignment list
in this way. The dependency information of the operations isnot needed since the procedure
does not move operations across ’cycle’ boundaries. It onlyneeds slot capability information.

From this assignment list, various schedules can be generated, as shown in Fig. 4.8. By
choosing one candidate for each cycle, all possible combinations of candidates are generated.
For example, by choosing the first assignment possibility for each of the cycles fromc − 3 to
cycle c + 3, schedule (1) is generated. Similarly, the second assignment possibility of cycle
c + 3 is used to generate schedule (2). This approach makes it possible to generate all possible
schedules in which operations are shuffled within a VLIW instruction.

4.5 Heuristics to limit the exploration space

The approach described in Section 4.4 can generate all possible shuffled schedules, however,
the exploration space becomes too huge to solve it in a realistic time. In case of applying the
shuffling to an application that hasM×S cycles (whereM is the number of basic blocks and
S is the number of cycles per basic block) and each cycle has about N candidates on average,
the algorithm generates almostNM×S schedules. SinceM×S becomes larger than thousands
in real applications, this approach is not realistic as it stands. For instance, if each basic block
hasS = 20 cycles2, each cycle hasN = 10 patterns of assignment candidates on average, and
there areM = 500 basic blocks in the entire application, the size of exploration space becomes
10500×20, which cannot be treated in realistic manner. Therefore, itis not practical to perform a
full search based operation shuffling on the entire application.

Before introducing a heuristic for this problem, let us formulate the full search as aglobal
approach. Figure 4.9 (a) illustrates the global approach, where all cycles in all the basic blocks
are shuffled at a time. Here, assignment candidates are enumerated for all cycles (M×S) of

2In the context of low-power wireless and multimedia systems, many loop transformations are applied, for
instance loop transformations like loop fusion is applied to improve the locality of data and instruction accesses.
When these transformations are applied the effective number of cycles are increased compared to conventional
number of cycles reported for generic embedded systems (e.g. as reported in [56]). In this context the number of
cycles assumed for the illustration is fairly realistic.

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE 57

Assignment List

AM A M A M AM AM AMc
c+1
c+2
c+3

c-1

c-3
c-2

AM AM A M AM

Generated Schedules

(1) (2) (k) (N)

Figure 4.8: Generation of operation shuffled schedules.

58 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Estimated
Energy

Estimated
Energy

(a) global approach (exhaustive search)

(b) search with heuristic

Best Schedule

Best Schedule Best Schedule Best Schedule

10%

30%

50%

1st Exploration for BB1 2nd Exploration for BB2 3rd Exploration for BB3

BB3

BB2

BB1

100.0%

Execution
Cycle

10%

30%

50%

BB3

BB2

BB1

100.0%

Execution
Cycle

Figure 4.9: A heuristic for multiple basic blocks.

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE 59

all basic blocks (N) in the target application. Further, each generated schedule is a collection
of combinations of assignment candidates from each cycle. Then, all possible schedules are
generated. From this list of possible schedules, the schedule (Best Schedule) which has the
lowest L0 cluster energy is chosen. The L0 cluster energy is estimated as shown in the bottom
part of Fig. 4.6 (a) or 4.6 (b). In the following subsections,some effective heuristics to reduce
the exploration space are proposed.

4.5.1 Heuristic to shuffle one basic block at a time

As a first heuristic to reduce the complexity of the search space, the shuffling algorithm is ap-
plied to one basic block at a time instead of all the basic blocks together in the global approach.
This heuristic is illustrated in Fig. 4.9 (b). Intuitively,by applying this heuristic the total
schedules generated can be reduced toM×NS from NM×S, which gives a linear reduction
with respect to number of basic blocks (M). This heuristic is inspired by the method in [42],
where a similar approach is applied to which limits the size of exploration space by considering
interaction among instructions only in a basic block.

In order to apply this heuristic, the basic blocks are ordered based on a certain priority. Here,
the number of execution cyclesconsumed by a basic block is utilized as an indicator for this
priority. First, the algorithm ranks basic blocks according to the number of execution cycles
consumed by each basic block. By this ranking, it can distinguish the most significant basic
block for energy reduction; operation shuffling on this basic block is more effective rather
than any other basic block. Once the operation shuffling yields the best schedule for the most
significant basic block, the next operation shuffling is performed on the next cycle-consuming
basic block, taking into account the shuffling result of previous first basic block. Figure 4.9
(b) shows an overview of this heuristic. First, the most significant basic block on execution
cycles, BB1, is selected to be performed operation shuffling. For the second most significant
basic block, BB2, operations are shuffled taking into account the shuffling result of BB1. This
heuristic possibly misses a better schedule that can be obtained in the global approach, however,
this would be a realistic and reasonable way to treat the entire application effectively.

4.5.2 Heuristic to limit the number of basic blocks

In addition to the above heuristic, another useful heuristic is to limit the total number of basic
blocks that are shuffled. By applying this heuristic, theM can be reduced tom(≤ M), thus the
total search space will be reduced to aboutm×NS. In multimedia applications, 66% of total
execution cycles is spent in loops of size 256 instructions or less, 51% of the total execution
cycles is spent in loops of size 32 instruction cycles or less, while the size of application is
a thousand to fifty thousand instructions [56]. For instancealso reported else where in the
literature, about 90% of execution cycles is consumed in fivemost frequently used loops in
multimedia applications [57]. Therefore by focusing on fewkey basic blocks (or loop), the
exploration space becomes much smaller. Note also that by focusing on most important loops
the achievable energy efficiency is not severely compromised, since most time consuming loops
are also the ones which consume energy.

60 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Two ’A’s and ’M’ coming...

A A Mi

cycle

j

...
Possible assignment

1. 3. 5. 6.2. 4.
A M AA A MA M AA A MA A MA A M

Possible assignment

1. 3. 5. 6.2. 4.
A M AA A MA M AA A MA A MA A M AA Mi

cycle

AA Mj

...

A A M

Figure 4.10: Skipping same combination heuristic.

4.5.3 Heuristics to select the combination of assignment ca ndi-
dates

Another set of heuristics is inspired based on the insights of operation of L0 clusters or loop
buffers [13]. Specifically, these heuristics are implemented under the hypothesis that it is better
that all the active slots should be concentrated together. Intuitively, this helps in generating
smaller widths for frequently used clusters. Since smallerclusters are better for energy effi-
ciency, this heuristic helps in achieving higher energy efficiency. However, as a side-effect this
policy might lead to increase in depth of buffer of the frequently used L0 cluster. Therefore,
these heuristics should be experimentally examined for a trade-off between depth and width
of buffer. Even if a result gets a bit worse due to the heuristics, these heuristics will still be
beneficial in reducing the exploration space. This is discussed further in Section 4.7.2.

More importantly, by applying these heuristics, it is potentially possible to reduce the number
of patterns needed for each cycle ton(≤ N), thus reducing the total exploration space to
m×nS. It is clearly evident from the equation that by reducing thenumber of patterns fromN
to n we can reduce the search space drastically, sincen is the base of the exponential factor.
Hence, these set of heuristics are crucial and important forreducing the overall search space.

4.5.3.1 Skipping same combination

In a basic block, if current cycle has the same combination ofoperations as in the previous
cycle, then the same operation assignment is used for the current cycle. For example in Fig.
4.10, if cyclei contains two ALU operations and one multiply operation and they are assigned
into the first, second and fourth slots, respectively, for cycle j which contains the same com-
bination asi, i.e. two ALU and one multiply, the same slots asi, i.e. the first, second, and
fourth slots, are used. In exhaustive exploration, even if cycle j has the same combination of
operations as cyclei, exploration is repeated again for cyclej. On the contrary, this heuristic
skips exploration for cyclej by applying the same assignment as cyclei, which is expected
energy efficient assignment, and consequently the exploration space is reduced.

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE 61

A 1

3

4

M 1

Assignment HistoryTwo ’A’s and ’M’ coming...

Possible
assignment
a.

b.

e.

enumerate A

A A

A A A A

M

A A M

A A M

A A M

A A M OK

NG

type num

f. A M A

c. A A M

d. A M A NG

NG

OK

OK

A

Figure 4.11: Dominance checking heuristic.

4.5.3.2 Dominance checking

In this heuristic, in a basic block, if the current cycle has the same number of operations of
a certain functionality (e.g. one multiply operation) as inone of the previous cycles, then the
same operation assignment as the previous cycle is used for the current cycle. Figure 4.11
explains this heuristic. For a certain cycle, two ALU operations and one multiply operation
are to be scheduled. Anassignment historyis maintained to keep track of the slot assignment
history for each operation type and for its number. Even if there is no exactly same combination
as the previous cycles, there is an entry in thehistorywhich uses a multiply operation in the
fourth slot. Therefore, three of the enumerated patterns (a, d, and f) which do not use a multiply
operation in the fourth slot are omitted in this heuristic, and only the rest of the patterns (b, c,
and e) are used for the generation of schedules. The policy ofthis heuristic is the same as the
previous heuristic. If a certain operation is examined and adecision to assign a slot is made
in the previous cycle, the same decision is applied without any further exploration in the later
cycle.

4.5.3.3 Advanced dominance checking

This is an improved version of the dominance checking heuristic. Here an infeasible candi-
date is skipped not only in the case that the number of operations is exactly same as in one of
the previous cycles for a certain functionality but also in acase that the assignment order is
different. Figure 4.12 shows an example of this heuristic. In Fig. 4.12, though there are four
possible assignments for three ALU operations and there is no exact match with the history,

62 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

A 1

2

4

M 1

Assignment History Three ’A’s coming...

Possible
assignment

NG

NG

a.

c.

d.

enumerate

NG

Compare with history

A

AA

A A A A

M

A

AA

A A A A

A

AA

A A A A

A

AA

A A A A

A A A

A A A
OK

NG

NG

type num

A A A

A A A

A 1

2

4

A 1

2

4

A 1

2

4

b. A A A
OK

A

AA

A A A A

A 1

2

4

Figure 4.12: Advanced dominance checking heuristic.

procedureCheckPattern(candidate, cycle)
skip← false
foreachtype ∈ OpeTypes do

cur ← Extract(candidate, cycle, type)
count← bit count(cur)
// Dominance checking
prev ← History(type, count)
if prev 6= null andprev 6= cur then

skip← true
end if
// Advanced dominance checking
for n← count + 1 to Slotmax do

prev ← History(type, n)
if prev 6= null and(prev&cur) 6= cur then

skip← true
end if

end for
for n← count− 1 downto1 do

prev ← History(type, n)
if prev 6= null and(prev&cur) 6= prev then

skip← true
end if

end for
end foreach

if skip = false then
if cycle is the final cycle then

AcceptCandidate(candidate)
else

AddHistory(type, count, cur)
CheckPattern(candidate, cycle + 1)
RemoveHistory(type, count, cur)

end if
end if

Figure 4.13: Dominance and advanced dominance checking.

4.6. OPERATION SHUFFLING FOR MULTIPLE DATA CLUSTERS 63

assignmentc andd are not appropriate because they are inconsistent with the history; assign-
ment of three ALU operations has to dominate assignment of one and two ALU operations and
has to be dominated by assignment of four ALU operations. Dominating means that slots to
which a fewer operations are assigned should be included in slots to which more operations are
assigned. In this example of Fig. 4.12, three ALU operationshave to be issued from a set of
slots which are used for four ALU operations (this constraint is satisfied in all candidates in
this example), and a set of slots used for one or two ALU operations has to be subset of a set
of slots used for three ALU operations. In the mathematical notation, the slot assignment has
to satisfy the constraint

i < j → Si ⊂ Sj, (4.4)

wherei, j is the number of operations andSk is a set of slots used fork operations.

4.5.3.4 Algorithm for dominance and advanced dominance che cking

Figure 4.13 shows the dominance and the advanced dominance checking algorithm. A gen-
eratedcandidate, which is a combination of assignment for each cycle, is checked whether
conditions of the heuristics are fulfilled for all operationtypes in eachcycle. OpeTypes is a
set of operation types that a VLIW processor supports, andSlotmax is the number of slots in
the processor.Extract(cand, cyc, t) extracts an assignment in cyclecyc from candidatecand
and returns slots to which operation typet is assigned in the assignment.cur is a bit string
in which each bit corresponds with a slot; a bit is true when corresponding slot is used in the
cycle. count is the number of true bits incur, which is one of keys of the history table.prev
is a bit string representing slots used in the previous cycles. By comparingcur andprev, the
dominance checking is done. By bitwise AND of the two bit strings, the advanced dominance
checking is done. If all conditions are fulfilled, the next cycle of the candidates is checked. If
it is the final cycle,candidate is accepted as a result of this algorithm byAcceptCandidate().

4.6 Operation shuffling for multiple data clusters

So far in the approach of operation shuffling, the assumptionwas that all the L0 clusters were
within one data cluster. This section describes an overviewof how to apply this approach when
the architecture supports multiple data clusters. Since a wide VLIW processor leads to drastic
increase of complexity of interconnect and size of the data register file, some VLIW processors
have clustered register files. In data clustered VLIW processors, smaller register files signif-
icantly benefit energy reduction [58], though an inter-cluster copy operation is required to be
added to transfer data across the border of data clusters. Since such a data clustered VLIW
processor is commonly used, this section also describes a operation shuffling approach to treat
VLIW processors with multiple data clusters.

In order to combine both data and L0 clusters, this thesis proposes the following approach:
First the data clustering (partitioned data register files and cluster copy operation insertion) is
applied and then within these constraints, L0 clustering and operation shuffling is applied. Such
a phase ordering is both energy efficient and also scalable tolarge architectures like [39] [40].
Qualitatively, we can see that the register file energy consumption is more than the energy con-
sumption of the L0 clusters, hence by focusing on the higher energy bottleneck first and then

64 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

applying the L0 clustering will lead to better overall efficiency. Moreover, this approach avoids
any side-effects that can arise by L0 operation shuffling which could potentially affect the data
clustering phase. As a consequence of this approach, in the operation shuffling approach pre-
sented in this thesis, the operations will only be shuffled within the boundary of a data cluster.
Which implies that the data clustering constraints are violated, if we shuffle the operation and
reassign it another L0 cluster which resides in another datacluster. Another consequence, is
that we need to keep the size of an L0 cluster to be smaller thanor equal to the size of a data
cluster. Therefore, this thesis assumes only L0 clusters which reside in a data cluster.

Now, in order to optimize a schedule for data clustered VLIW processors, the operation
shuffling described in the previous sections is performed oneach data cluster separately. Under
this policy, no inter-cluster copy operation is needed to beadded since operations are moved
within the data clustering constraints. Hence, there is no performance loss nor any interference
with the data clustering phase. This idea is relatively straightforward, but it has still important
meaning because most VLIW processors have multiple data clusters.

4.7 Experimental results

This section describes experimental results, which show that the proposed operation shuffling
algorithm works properly and the heuristics make computational complexity much smaller.

The energy that this thesis focuses on is the energy consumedin the L0 buffers and ITCs.
Since they consist of register file like storage, Wattch power model[53] has been used and
300MHz clock frequency in an 0.18µm technology node is assumed. Energy estimation is
performed using the equation shown below [13]:

EL0 =
∑

{ELBi · Cactvi + EITCi · C}, (4.5)

whereELBi andEITCi are energy per access of L0 buffer and ITC of L0 clusteri, respectively.
Cactvi is the number of accesses to L0 buffer of the clusteri, andC is the number of total
execution cycles during loop execution.ELBi andEITCi are estimated from the width and
depth of L0 buffer and ITC by usingWattchpower model, andCactvi andC are obtained by
instruction level simulation in CRISP framework.

Note that, this thesis refers energy reduction as thedifferencebetween energy consumed in
optimized L0 clusters for an initial schedule and the minimum energy consumed in optimized
L0 clusters for operation shuffled schedules. In the experiments, five kinds of VLIW processor
targets are used:

1. 4 slot heterogeneous single data cluster

2. 8 slot heterogeneous single data cluster

3. 10 slot heterogeneous single data cluster

4. 8 slot homogeneous single data cluster

5. 2 data clusters, with 5 heterogeneous slots per data cluster.

4.7. EXPERIMENTAL RESULTS 65

Table 4.1: Slot capability of 8 slot het-
erogeneous VLIW processor.

Slot 0 1 2 3 4 5 6 7
alu * * * * * * * *
shift * *
mult/div * *
fp alu * * * *
fp mult/div * *
load/store * * * * * * * *
branch * * * * * * * *

Table 4.2: Slot capability of 10 slot heterogeneous
VLIW processor.

Slot 0 1 2 3 4 5 6 7 8 9
alu * * * * * *
shift * * * * * *
mult/div * *
fp alu * * * * * *
fp mult/div * *
load/store * *
branch * * * * * *

Table 4.3: Slot capability of 4 slot het-
erogeneous VLIW processor.

Slot 0 1 2 3
alu * * * *
shift *
mult/div *
fp alu * *
fp mult/div *
load/store *
branch *

Table 4.4: Slot capability of 2 data cluster 5-5 slot
heterogeneous VLIW processor.

Slot 0 1 2 3 4 5 6 7 8 9
Data cluster 0 1
cluster copy * *
alu * * * * * * * *
shift * *
mult/div * *
fp alu * * * *
fp mult/div * *
load/store * *
branch * * * * * * * * * *

Table 4.1, Table 4.2, Table 4.3, and Table 4.4 show slot capability of 8, 10, 4, and 5-5 slot
heterogeneous VLIW processors, respectively. For instance, the 8 slot heterogeneous VLIW
processor can issue an load/store operation from all slots,while the 10 slot heterogeneous
VLIW processor can issue from only the second and seventh slots.

Note that this thesis introduces three approaches:

1. global approach (full search without any heuristics)

2. exhaustive exploration (global approach + Section 4.5.1and Section 4.5.2)

3. exploration with heuristics (exhaustive exploration + Section 4.5.3).

In this experiments, onlyexhaustive explorationandexploration with heuristicsare compared.
It is believed that it is straight forward to evaluate the benefits of heuristics to shuffle one basic
block at a time (Section 4.5.1) and heuristics to limit the number of basic blocks (Section 4.5.2).
These are reasonable heuristics, as many researchers have employed these in the past [42]; [56].

4.7.1 Potential gain of operation shuffling

First, the feasibility of the operation shuffling methodology and its potential gain of energy
reduction are examined. Table 4.5 shows energy reduction byoperation shuffling on the

66 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Table 4.5: Energy reduction for MPEG2 en-
coder on 8-slot Hetero VLIW.

Initial Energy (mJ) 25.22
Maximum Energy (mJ) 26.53
Minimum Energy (mJ) 19.11

Reduction (Initial-Minimum) 24.2%

Table 4.6: Operation shuffling on
multiple BBs (MPEG2 Encoder@8
slot Hetero).
Shuff. Energy Energy Shuff.

BBs (mJ) Red. Cycles

(Initial) 25.22 – 0.0%
1 19.11 24.2% 46.7%
2 19.09 24.3% 50.4%
3 18.86 25.2% 54.1%
4 18.84 25.3% 56.5%
5 18.81 25.4% 59.0%

most cycle-consuming basic block for MPEG2 encoder benchmark on an 8-slot heterogeneous
VLIW processor. By applying the exhaustive exploration3 (exploring all the alternatives) about
29400 schedules are generated, which have various values ofenergy. Among these alternatives,
the best candidate is picked which achieves maximum energy reduction (refer to Fig. 4.6 (b)).
The best candidate, in this case, is a modified schedule whoseenergy consumption is reduced
by up to 24.2% compared with the initial schedule. The best L0cluster configuration in this
case is: two clusters of two slots and six slots, which have L0buffers whose depth of 110 and
25 instructions, respectively.

Next, operation shuffling is performed not only on the most significant basic block but also
on the other significant basic blocks (based on heuristics described in Section 4.5.2). Table
4.6 shows results of operation shuffling on multiple basic blocks for MPEG2 encoder on the
8-slot VLIW processor. The first and second columns show the number of shuffled basic blocks
and estimated energy, respectively. The third column indicates energy reduction compared to
the initial energy. The fourth column represents how many execution cycles are shuffled, i.e.
how many execution cycles the shuffled basic blocks contribute to. These results indicate that
energy reduction is going up when the number of applied basicblocks is increasing. It becomes
saturated after a few basic blocks are applied, which consume 50% to 60% of the total execution
time.

The potential gain of energy reduction with L0 cluster generation is up to 63%, as shown in
[13]. This experimental results expose the gain can be improved furthermore up to 25.4% by
the proposed operation shuffling.

4.7.2 Quality of pruning heuristics

This section evaluates the quality of the heuristics (Section 4.5.3) both in terms of the achievable
energy efficiency and also in terms of reduction in the searchspace.

Table 4.7 shows the results of exhaustive exploration and exploration with the heuristics for

3Theglobal approachhas not been compared with a scheme which shuffles for each basic block, since we can
imagine how huge the exploration space of theglobal approachwould become. And also, even after introducing
the heuristic to limit shuffled basic blocks (Section 4.5.2), the exploration space is still big, as shown in the
exploration space of the exhaustive exploration in Table 4.7. Therefore, the proposed heuristics introduced in
Section 4.5.3 are still required.

4.7. EXPERIMENTAL RESULTS 67

Table 4.7: Minimum energy comparison between exhaustive exploration and with heuristics
(Single BB).

Architecture Benchmark Exhaustive Expl. with Heuristics BB
Expl. Energy Expl. Space Energy size

Space Red. (Red.) Red. (Deg.)
8 slot Hetero MPEG2 encoder 117600 17.8% 12600 (89.3%) 17.8% (0.0%) 2
8 slot Hetero gsm encoder 117600 11.7% 8400 (92.9%) 11.6% (0.1%) 2
8 slot Hetero adpcm decoder 1835008 1.0% 168 (99.9%) 0.0% (1.0%) 7
8 slot Homo g721 decoder 114688 2.9% 224 (99.8%) 2.8% (0.1%) 6
8 slot Homo g721 encoder 229376 5.0% 56 (100.0%) 5.0% (0.0%) 5
10 slot Hetero g721 decoder 6480 1.7% 60 (99.1%) 1.2% (0.5%) 6
10 slot Hetero g721 encoder 15552 2.2% 12 (99.9%) 0.0% (2.2%) 5
10 slot Hetero gsm encoder 1800 10.5% 360 (80.0%) 10.5% (0.0%) 2
5-5 slot Heteroadpcm decoder 960 0.8% 30 (96.9%) 0.8% (0.0%) 7
5-5 slot Heterog721 decoder 480 2.3% 60 (87.5%) 0.5% (1.8%) 6
5-5 slot Heterosha 9216 1.2% 24 (99.7%) 0.0% (1.2%) 12

some benchmarks and architectures. The third and fifth columns show the size of exploration
space (i.e. generated schedules) of exhaustive exploration4 and exploration with heuristics,
respectively. In the fifth column, the reduction of exploration space is also shown. The fourth
and sixth columns indicate the maximum energy reduction over an initial schedule among
schedules generated by exhaustive exploration and exploration with heuristics, respectively.
The sixth column also shows the degradation of energy efficiency. The seventh column shows
the size of basic block that is shuffled. In this experiment, all of the proposed heuristics are
applied (Sections 4.5.1, 4.5.2 and 4.5.3) and the operationshuffling is applied to the most
significant basic block. In summary, Table 4.7 shows that theexploration space reduction is
around 90%, and energy reduction values of exhaustive exploration and with heuristics are
almost the same; degradation of less than 1% on average. Fromthis table, it is clear that the
proposed heuristics obtain near optimal solution with significantly reduced exploration space.

As described in Section 4.5.3, the proposed heuristics are developed under the hypothesis
that it is better to make a frequently used cluster smaller. In Table 4.7, exploration with the
heuristics generates a little worse results in some cases. This is because the heuristics omit too
much exploration space. Nevertheless, the degradation of results, i.e. difference between the
energy reductions, is still small and reduction of exploration time is much more valuable: we
can optimize more basic blocks in the saved time.

In order to confirm that the difference in energy reduction between exhaustive approach and
heuristic approach is noticeable small, the operation shuffling is applied not only to the most
significant basic block but also to the following significantbasic blocks as indicated already
with the heuristics of Section 4.5.2. Figure 4.14 shows a comparison of exhaustive exploration
and exploration with the heuristics for multiple basic blocks. In Fig. 4.14, two lines represent
energy reduction of the two exploration ways and bars represent accumulated exploration space,
i.e. the total number of generated patterns. Because of the explosion of the exploration space,
operation shuffling is performed only on 30 basic blocks in the exhaustive approach. The figure
shows that the proposed heuristics can reduce exploration space by more than 90% without

4the exhaustive exploration in Table 4.7 also does shuffling for each basic block (not theglobal approach).

68 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80
 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06
E

ne
rg

y
R

ed
uc

tio
n

(%
)

E
xp

lo
ra

tio
n

S
pa

ce

of Shuffled Basic Blocks

Energy Reduction: Exhaustive
Energy Reduction: with Heuristics

Accum. Exp. Space: Exhaustive
Accum. Exp. Space: with Heuristics

Exploration Space
reduction of 90.1%

Exploration Space
reduction of 89.1%

degradation of 1.8%

Figure 4.14: Efficiency of the heuristics (epic@8 slot Homo).

significant degradation of quality of results, only 1.8% (28.1% over 29.9%), after shuffling of
30 basic blocks. The proposed heuristics reduce more than 90% of exploration space, while the
energy reduction is almost the same. This figure also shows that the heuristics can achieve better
result of 30.2% after shuffling 79 basic blocks, with still more than 80% less computational time
than exhaustive exploration of 30 basic blocks. The exhaustive exploration would surpass the
heuristics if the same amount of basic blocks are shuffled, however, the computational effort
for it is beyond the realistic limits. Though exploration with the heuristics requires operation
shuffling of more basic blocks to achieve the same quality of the exhaustive exploration, the
size of total exploration space is still much smaller than the exhaustive exploration.

Figure 4.15 shows a comparison of distribution in the exploration space between exhaustive
exploration and with the heuristics. The x-axis representsthe period of estimated energy; from
minimum to maximum estimated energy of exhaustive exploration is divided into ten periods
(period 1 to period 10). Generated schedules are counted in one of the periods, and the y-axis
represents the percentage of distribution for each periods. The figure also shows distribution
of random exploration, in which schedules are randomly selected from the result of exhaustive
exploration but the number of selected schedules is the sameas the heuristics.

In Fig. 4.15, the black bar (heuristics) almost always higher than other bars in period 1 to 4.
This means that the proposed heuristics mainly generate energy efficient schedules rather than
the exhaustive exploration or the random exploration. Thisfigure implies that the proposed
heuristics can efficiently omit the part of the exploration space that is less relevant as opposed
to random selection approach.

4.7. EXPERIMENTAL RESULTS 69

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

D
is

tr
ib

ut
io

n
(%

)

Exhaustive
Heuristic
Random

Low Energy High Energy

Figure 4.15: Frequency distribution of energy of generatedschedules (adpcm decoder@8 slot
Hetero).

4.7.3 Evaluation on multimedia benchmarks and different ar chi-
tecture flavors

In order to evaluate the proposed operation shuffling methodology and to examine how much
potential gain realistic applications have, the methodology is applied to multimedia benchmarks
[59] and for different architecture flavors as described earlier. Figure 4.16 shows comparison
of energy reduction between architectures. From this figure, we can say that energy reduction
is notable in a homogeneous architecture, but a heterogeneous architecture has still a good
reduction.

Figure 4.17, 4.18, 4.19, 4.20, and 4.21 show the results of energy reduction for 8 slot het-
erogeneous, 10 slot heterogeneous, 8 slot homogeneous, 4 slot heterogeneous, and 5-5 slot
heterogeneous VLIW processors, respectively.

In these figures, the x-axis represents the percentage of execution cycles which are consumed
by shuffled basic blocks, and y-axis represents estimated energy of L0 buffers (smaller number
implies higher efficiency). Each line for a particular benchmark indicates that, as more basic
blocks are shuffled, the energy consumption decreases, since operation shuffling is applied on
more basic blocks. It is to be noted that the lines for a particular benchmark do not reach 100%
consumed cycles on x-axis. This is because, in a particular benchmark not all basic blocks
are shuffled and only basic blocks that can be mapped on to the L0 clusters are considered
[52]. For instance, basic blocks that are not in a loop body orbasic blocks that are too large to
store in the loop buffers are not mapped on to the L0 clusters.For example, in Fig. 4.17 for
‘MPEG2 encoder’ benchmark, about 60% of basic blocks are mapped on to the L0 clusters,

70 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

 0

 5

 10

 15

 20

 25

 30

 35

sh
a

m
pe

g2
 e

nc
od

e

gs
m

 e
nc

od
e

g7
21

 e
nc

od
e

g7
21

 d
ec

od
e

ep
ic

cj
pe

g

bl
ow

fis
h

en
co

de

ad
pc

m
 d

ec
od

e

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Benchmarks

8 slot Hetero
10 slot Hetero

8 slot Homo
4 slot Hetero

5-5 slot Hetero

Figure 4.16: Energy reduction of all benchmarks.

 60

 70

 80

 90

 100

 0 20 40 60 80 100

E
ne

rg
y

(%
)

Consumed cycles by operation shuffled BBs (%)

adpcm decode
blowfish encode

cjpeg
epic

g721 decode
g721 encode

gsmencode
mpeg2 encode

sha

Figure 4.17: Energy reduction by shuffling
operations in multiple BBs (8 slot Hetero).

 60

 70

 80

 90

 100

 0 20 40 60 80 100

E
ne

rg
y

(%
)

Consumed cycles by operation shuffled BBs (%)

adpcm decode
blowfish encode

cjpeg
epic

g721 decode
g721 encode

gsmencode
mpeg2 encode

sha

Figure 4.18: Energy reduction by shuffling
operations in multiple BBs (10 slot Het-
ero).

4.7. EXPERIMENTAL RESULTS 71

 60

 70

 80

 90

 100

 0 20 40 60 80 100

E
ne

rg
y

(%
)

Consumed cycles by operation shuffled BBs (%)

adpcm decode
blowfish encode

cjpeg
epic

g721 decode
g721 encode

gsmencode
mpeg2 encode

sha

Figure 4.19: Energy reduction by shuffling
operations in multiple BBs (8 slot Homo).

 60

 70

 80

 90

 100

 0 20 40 60 80 100
E

ne
rg

y
(%

)
Consumed cycles by operation shuffled BBs (%)

adpcm decode
blowfish encode

cjpeg
epic

g721 decode
g721 encode

gsmencode
mpeg2 decode
mpeg2 encode

Figure 4.20: Energy reduction by shuffling
operations in multiple BBs (4 slot Hetero).

 60

 70

 80

 90

 100

 0 20 40 60 80 100

E
ne

rg
y

(%
)

Consumed cycles by operation shuffled BBs (%)

adpcm decode
cjpeg
epic

g721 decode
g721 encode

gsmencode
mpeg2 encode

Figure 4.21: Energy reduction by shuffling operations in multiple BBs (5-5 slot Hetero).

72 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

and by shuffling these basic blocks about 20% of the energy is reduced.

It is also to be noted that the x-axis does not represent the number of operation shuffling
but the percentage of shuffled execution cycles over the total execution cycles. For example
of ‘epic’ in Fig. 4.17, the energy seems to be decreased by about 10% at the point of 92% on
x-axis. This is because there are a lot of insignificant basicblocks that consumes less execution
cycles in this case. By shuffling these basic blocks the energy can be decreased, however, the
shuffled execution cycles does not change so much since the contribution for execution cycles
is not so much in the basic blocks. Even though over 100 basic blocks are shuffled, the total
execution cycles of these basic blocks is only about 1%. However, the depth of L0 buffer
is managed and decreased by shuffling operations for the basic blocks; since a too deep L0
buffer causes the increase of its power, the shuffling leads to the energy reduction even if the
contribution of execution cycles is not high. For example ofabove case, after shuffling the 100
insignificant basic blocks, the depth of the deepest L0 buffer changed from 72 to 45, and it
reduced the power of the buffer by 26%.

As it can be observed from these figures, for some benchmarks,energy reduction is not
notable even though most of the basic blocks are shuffled. Forexample, in ‘adpcm decoder’ in
Fig. 4.17, though almost all of the execution cycles are shuffled, the energy reduction is limited
to less than 6%. The reason is most probably because instruction level parallelism (ILP) in such
benchmarks is low (less than 1.5 operations per cycle). For low ILP applications, the initial
L0 cluster generation and the corresponding schedule is already very efficient. The available
freedom to optimize L0 clusters is already used by the L0 cluster optimization procedure (refer
Fig. 4.6). By further shuffling operations with in a cycle, the energy efficiency cannot be
improved further, unless the shuffling algorithm is appliedover the cycle boundaries. This does
not imply that low ILP is a limitation of the proposed method,but that the initial schedule is
already optimized by the L0 cluster optimizer. Further discussion a relation between ILP and
energy reduction appears in Section 4.7.5.

On the contrary, too high ILP would not be beneficial for operation shuffling as the freedom
of operation shuffling is limited if all slots are full. Then,it is limited in terms of gain by
operation shuffling, however, having all the slots full is already much beneficial in terms of
performance and energy; it is an ideal schedule that a compiler always pursues. The proposed
operation shuffling achieve a further reduction on the energy that a compiler missed optimizing.

Sometimes energy reduction gets worse when a certain basic block is shuffled. This is be-
cause the heuristics omit the best schedule candidate. However, the degradation is still small
compared with overall energy reduction. Therefore, the proposed operation shuffling method-
ology and heuristics are very beneficial for energy reduction.

As described in Section 4.6, for a data clustered architecture operation shuffling methodology
is applied to a schedule per each data cluster. In Table 4.8 the entries corresponding to5-5 slot
Heterocorrespond to a clustered VLIW architecture with 2 data clusters, with 5 slots in each
cluster. From the results it can be seen that by applying operation shuffling for each data cluster,
relatively significant energy can be further reduced. Note that the energy reduction in this table
refers toadditionalreduction over L0 cluster optimizer in Fig. 4.6.

4.7. EXPERIMENTAL RESULTS 73

Table 4.8: Relation between energy reduction and shuffled cycles.
Architecture Benchmark IPC Energy Redct.Shuff. Cycles
8 slot Hetero adpcm decode 1.48 5.6% 99.9%
8 slot Hetero blowfish encode2.06 9.2% 31.3%
8 slot Hetero cjpeg 1.38 2.8% 22.7%
8 slot Hetero epic 2.02 24.1% 92.4%
8 slot Hetero g721 decode 1.20 14.1% 75.1%
8 slot Hetero g721 encode 1.24 18.5% 73.1%
8 slot Hetero gsm encode 2.19 19.7% 72.2%
8 slot Hetero MPEG2 encode3.00 27.6% 73.5%
8 slot Hetero sha 2.61 3.4% 94.1%
10 slot Hetero adpcm decode 1.48 9.9% 99.9%
10 slot Hetero blowfish encode2.12 10.5% 32.3%
10 slot Hetero cjpeg 1.39 4.6% 55.0%
10 slot Hetero epic 2.03 18.6% 92.9%
10 slot Hetero g721 decode 1.19 6.9% 76.4%
10 slot Hetero g721 encode 1.27 16.8% 73.5%
10 slot Hetero gsm encode 2.24 16.2% 73.5%
10 slot Hetero MPEG2 encode4.22 1.0% 67.0%
10 slot Hetero sha 2.61 2.9% 94.4%
8 slot Homo adpcm decode 1.48 9.3% 99.9%
8 slot Homo blowfish encode1.94 2.5% 29.9%
8 slot Homo cjpeg 1.35 6.2% 21.7%
8 slot Homo epic 2.03 30.7% 92.9%
8 slot Homo g721 decode 1.18 16.8% 76.2%
8 slot Homo g721 encode 1.26 19.3% 72.9%
8 slot Homo gsm encode 2.30 24.6% 74.5%
8 slot Homo MPEG2 encode3.06 28.0% 75.8%
8 slot Homo sha 2.61 6.0% 94.1%
4 slot Hetero adpcm decode 1.44 8.5% 99.9%
4 slot Hetero blowfish encode1.97 3.1% 36.7%
4 slot Hetero cjpeg 1.34 12.2% 56.7%
4 slot Hetero epic 2.06 10.2% 93.9%
4 slot Hetero g721 decode 1.17 7.9% 76.8%
4 slot Hetero g721 encode 1.26 12.1% 73.8%
4 slot Hetero gsm encode 1.98 2.1% 76.2%
4 slot Hetero MPEG2 decode1.55 3.9% 70.0%
4 slot Hetero MPEG2 encode2.30 2.6% 88.3%
4 slot Hetero sha 2.15 0.0% 95.2%
5-5 slot Heteroadpcm decode 1.44 5.8% 99.9%
5-5 slot Heteroblowfish encode1.97 2.2% 36.7%
5-5 slot Heterocjpeg 1.36 9.4% 56.2%
5-5 slot Heteroepic 1.84 6.9% 92.8%
5-5 slot Heterog721 decode 1.15 7.9% 77.0%
5-5 slot Heterog721 encode 1.25 8.1% 74.0%
5-5 slot Heterogsm encode 2.48 8.0% 73.5%
5-5 slot HeteroMPEG2 decode1.56 5.8% 52.4%
5-5 slot Heterosha 2.16 0.0% 95.5%

74 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

4.7.4 Discussion on operation shuffling over cycle boundari es

The shuffling over the cycle boundaries should achieve more energy gain. A method proposed
in this thesis only moves an operation within cycle boundaries. The method already yields
a good result as shown in the previous sections, however, it can be improved furthermore by
allowing move across the cycle boundaries. Some operationscan move to another cycle un-
less the data dependency between related operations is violated. Hence, there would be more
opportunities to optimize operation scheduling for energyefficiency.

The complexity of the shuffling over the cycle boundaries will, however, become too high
since an operation has more freedom to move not only to different slots but also to different
cycles. To manage this problem, another new and different algorithm (heuristic) is needed
to efficiently prune the exploration space. However, the proposed heuristics, which limit the
exploration space during operation shuffling within a cycle, can be utilized for exploration
space reduction of shuffling over the cycle boundaries. Intuitively, it is a realistic assumption
that an operation can also move to a different issue-slot when it moves to another cycle. Then,
after moving to different cycles, the same technique for shuffling within a cycle can be used.

To further improve the effectiveness of shuffling over the cycle boundaries, a software multi-
threading approach would be beneficial, which combines multiple independent loops into one
loop to improve performance [60]. Since independent loops are integrated into one loop, each
operation has less dependency for each other in the loop. This gives an operation more freedom
to move to different cycles and consequently more opportunity for energy reduction.

Shuffling operations over the cycle boundaries is, however,beyond the scope of this thesis
and it will be addressed in the future work.

4.7.5 Relation between ILP and energy reduction

Table 4.8 shows the detailed result which contains IPC (instruction per cycle) as well as the
energy reduction. This thesis refers to an average IPC over all basic blocks in an application as
anoverall IPC. The overall IPC represents a characteristic of target application well.

Figure 4.22 shows a relation between the overall IPC and the energy reduction. The x axis
represents the energy reduction due to operation shuffling.The y axis represents the overall
IPC multiplied by the percentage of shuffled cycles. The IPC is scaled with the shuffled cycles
since the energy reduction is assumed to be small when only few cycles are shuffled even if
the IPC is large. Though it seems there could be a correlationbetween IPC and the energy
reduction, this is not the case. In Fig. 4.22, we can see just aweak correlation between IPC and
the energy reduction.

There would be other metrics for IPC; Fig. 4.23 explains three versions of IPC that are
referred in this thesis. Ashuffled IPCis an average IPC over basic blocks that are shuffled.
An L0 buffered IPCis an average IPC over basic blocks that are running on L0 buffer. The
shuffled IPC also shows a characteristic of application, however, it can change depending on
how many basic blocks are shuffled. Therefore, the shuffled IPC might be an extreme value if
only few basic blocks can be shuffled due to the explosion of exploration space, ex. ‘MPEG2
encoder’ on 10 slot heterogeneous as discussed later. Similarly, the L0 buffered IPC can vary
depending on which basic blocks are decided to be stored in L0buffer. Since an algorithm
that chooses basic blocks to be stored in L0 buffer [52] is sensitive to a configuration of target

4.7. EXPERIMENTAL RESULTS 75

Figure 4.22: Relation between overall IPC and energy reduction due to shuffling.

VLIW processor architecture, the L0 buffered IPC is also notenough to be a representative
characteristic of application. Hence, the overall IPC is used in order to examine a relation
between ILP and the energy reduction. Note also that there isno stronger correlation than the
overall IPC even if another IPC is employed.

One of reasons of the weak correlation is assumed that the initial energy is already good;
the energy gain is not notable in such a case in spite of large IPC. For example, the energy
reduction of ‘sha’ is not so high, 3.4% in 8 slot heterogeneous, while the overall IPC is 2.61.
This is because the initial energy is already good; in the case of ‘sha’, a schedule generated by
a compiler (‘Initial Sched.’ in Fig. 4.6 (b)) is very similarto a schedule that is to be generated
by the proposed heuristics (the best of ‘slot activation info’ in Fig. 4.6 (b)). Since the energy of
these two schedules are compared, the energy reduction is not notable. However, the large IPC
actually yields larger variations of schedules; the energyreduction over the maximum energy
is examined, rather than the energy reduction over the initial energy. Table 4.9 shows the result.
As shown in the table, the energy reduction over the maximum energy is 12.3% in this case.
Though it is believed that a larger IPC leads to a larger variation of energy, the energy reduction
over the initial energy, which is more important than the reduction over the maximum energy
from a practical viewpoint, has no direct relation to the IPC. However, this does not mean to
degrade the value of the proposed method. Though there is nota strong correlation between ILP
(IPC) and the energy reduction, the proposed method still achieves significant energy reduction
in most of cases.

Note that ‘MPEG2 encoder’ on 10 slot heterogeneous is an extreme case, where the energy
reduction is limited to 1.0% while the overall IPC is 4.22. This is because the most significant
basic block in the case contains 9 operations and they can be scheduled in one cycle. Therefore,
IPC of the basic block is 9.0, however there are not so much freedom left to shuffle operations

76 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Operation shuffled

running on L0 buffer

not shuffled due to the
explosion of exploration space

not selected to be stored
in L0 buffer due to the
size of basic block, etc.L0 buffered IPC

Shuffled IPC
Overall IPC

Basic Blocks

can vary among VLIW configurations
can change due to

the complexity

Figure 4.23: Various versions of IPC.

Table 4.9: Energy reduction for sha on 8-slot Hetero VLIW.
Initial Energy (mJ) 0.177
Maximum Energy (mJ) 0.195
Minimum Energy (mJ) 0.171

Reduction (Initial-Minimum) 3.4%
Reduction (Maximum-Minimum) 12.3%

(9 operations out of 10 slots), and consequently it leads to not so much energy reduction.

4.8 Conclusion

This chapter presented an optimization flow of L0 cluster generation on heterogeneous VLIW
architectures and also proposes heuristics to decrease thesize of the exploration space. Though
L0 cluster generation has a potential gain of energy reduction of up to 63% as shown in [13],
the experimental results of this section reveal that this gain can be improved furthermore up
to 27.6% in 8 slots heterogeneous VLIW processor by using theproposed operation shuffling
algorithm. On the assumption that an L0 buffer consumes 20 to40% of total processor energy
[8] [12], the reduction achieved by the proposed algorithm might look not so big, however,
other processor components (ex. register files, data caches) can also be optimized for energy,
as shown in [12]. Therefore, the author believes the approach has significant impact on energy
efficiency. The results also show that a homogeneous architecture has more potential gain than
a heterogeneous architecture. The proposed algorithm supports wide range of heterogeinity
while the previous method [14] supports only limited range of heterogeinity. The experimental
results also indicate that the proposed heuristics drastically reduce the exploration search space
by about 90%, with comparable results, with differences of less than 1% on average, to full
search.

Note that the proposed operation shuffling approach would bealso applicable to other multi-
dimensional architectures. In principle, the operation shuffling would be applied to array style
of architectures like ADRES [61], a coarse-grained reconfigurable array architecture coupled
with VLIW processor developed in IMEC, while the proposed method currently targets on a

4.8. CONCLUSION 77

linear (one-dimensional) style of VLIW processor. In such amulti-dimensional array processor,
a similar approach to L0 cluster can be applied in order to reduce buffer access and activation
of processing elements. Since the number of processing elements is, in general, not smaller
than typical VLIW processors, clustering for coarse-grained control would also be important.
Then a change of scheduling like the operation shuffling would be effective on energy reduc-
tion. To apply the proposed operation shuffling to other architecture, it would be needed to
change a cost function which estimates energy for a given schedule and architecture. Then by
a similar approach to the proposed operation shuffling can beutilized and a similar heuristic to
the proposed heuristics would also be feasible.

78 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Chapter 5

Efficient energy reduction method

The previous chapter describes an operation shuffling algorithm, which explores assignment of
operations for each cycle, generates various schedules, and evaluates them to find an energy
efficient schedule. This approach can find energy efficient schedules, however, it takes a long
time to obtain the final result.

In this chapter, an efficient method to directly generate an energy efficient schedule without
iterations of operation shuffling is described. In the proposed method, a compiler schedules
operations using the result of the single operation shuffling as a constraint. This chapter also
proposes some optimization algorithms to generate an energy efficient schedule for a given L0
cluster configuration. The proposed method can drasticallyreduce the computational effort
since it performs the operation shuffling only once.

This chapter first analyzes the results of operation shuffling and then proposes an efficient
method to directly generate an energy efficient schedule which can reduce the exploration space
furthermore.

The experimental results show that comparable energy reduction can be achieved by using
the proposed method while the computational effort can be reduced significantly over the con-
ventional operation shuffling described in Chapter 4.

5.1 Problem and motivation

Figure 5.1 (a) shows an overview of an operation shuffling approach proposed in Chapter 4.
An initial scheduleis first obtained by compilation of theapplicationon the specifiedarchi-
tectureof target processor by usingretargetable VLIW C compiler. Theinitial scheduleis then
further analyzed by aschedule analyzerwhich generatesactivation informationof slot. Here
the schedule analyzergenerates all possible operation-shuffled schedules (i.e.slot activation
info) for a basic block, according to thearchitecture information(target processor). Finally,
an L0 cluster optimizerfinds the most energy efficient L0 cluster configuration for each ac-
tivation information, and reports anoptimized L0 cluster configurationandestimated energy
corresponding it. In this approach, the basic blocks are first ordered based on their weight (sig-
nificance). Operation shuffling is first performed on the mostsignificant basic block. The cost
of previous basic blocks’ shuffled schedule is kept into account while performing the shuffling

79

80 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Arch.
info.

slot
activation

info

Optimized
L0 clust. cfg.

L0 cluster
optimizer

Power
Model

sched. analyzer+

retargetable C compiler

Post Compilation

Choose the most
energy efficient

L0 clust. cfg.

Application(C)

Trimaran

Initial Sched.

retargetable C compiler

Trimaran

Energy Efficient
Sched.

(a) conventional method

Arch.
info.

slot
activation

info

Optimized
L0 clust. cfg.

L0 cluster
optimizer

Power
Model

sched. analyzer+

retargetable C compiler

Post Compilation

Estimated
Energy

Choose
Best Schedule

for next iteration
(next basic block)

Application(C)

Trimaran

Initial Sched.

Ite
ra

te
 fo

r
al

l B
B

s

(b) proposed method

Estimated
Energy

Figure 5.1: Overview of an L0 cluster configuration improvement phase (a) in the conventional
way, (b) in the proposed method.

5.2. OVERVIEW OF THE PROPOSED METHOD 81

on the following basic block. Therefore, we can obtain the best schedule and optimized L0
cluster configuration after shuffling all basic blocks. Someheuristics are also proposed, which
reduce the complexity of the search space by about 90%.

The approach can find energy efficient schedules; up to 30% of L0 buffer energy can be
reduced as shown in Chapter 4. The approach, however, still takes a long time to obtain the
final result, even if the heuristics are applied. in experiments, it usually takes thirty minutes but
some large applications take a few days.

5.1.1 Analysis of existing operation shuffling approach

First the L0 cluster configuration obtained using the operation shuffling is evaluated. Here basic
blocks are shuffled one by one for all basic blocks. We call this approachshuffling all BBs. In
this experiments, three realistic kinds of VLIW processor targets are used:

1. 8 slot heterogeneous

2. 10 slot heterogeneous

3. 8 slot homogeneous

Table 4.1 and Table 4.2 show slot capability of 8 and 10 slot heterogeneous VLIW processors,
respectively.

Table 5.1 shows the optimal L0 cluster configuration for somearchitectures and benchmarks,
and the number of shuffled basic blocks needed to find the configuration. In Table 5.1, the
third column shows the optimal cluster configuration obtained by the operation shuffling. Each
number corresponds to a slot and represents the identification of L0 cluster. For example,
”01222222” represents the first and second slots formL0 cluster 0andL0 cluster 1respectively,
and the rest of slots (from slot 3 to 8) formL0 cluster 2. The fourth column shows the number
of shuffled basic blocks to find the cluster configuration. Forexample of adpcm decoder on
8 slot heterogeneous VLIW, the optimal cluster configuration was obtained after shuffling the
second basic block. From this table, we can find that optimal cluster configurations are different
for applications and architectures. This results also support the motivation to introduce the
operation shuffling.

In Table 5.1, we see that after one basic block is shuffled, theoptimal L0 cluster configuration
is found in almost all cases. Even if more than one basic blockis shuffled, the best cluster
configuration is not changed.

5.2 Overview of the proposed method

This section describes a new more efficient method to generate an energy efficient schedule in a
short time. The proposed method performs the operation shuffling for the most important basic
block and considers the result of the shuffling as a constraint for other parts of the code. This
makes the computational effort much smaller than the conventional approach which performs
operation shuffling for all basic blocks.

82 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Table 5.1: Optimal cluster configuration and the number of required basic blocks to find the
configuration.

architecture benchmark cluster config. #required BBs
8 hetero adpcm decode 01222222 2
8 hetero blowfish encode 01223323 1
8 hetero cjpeg 01122222 1
8 hetero epic 01122222 1
8 hetero g721 decode 01122222 1
8 hetero g721 encode 01222222 1
8 hetero gsmencode 01122222 1
8 hetero mpeg2 encode 00111111 1
8 hetero sha 01223323 1
10 hetero adpcm decode 0123100100 1
10 hetero blowfish encode 0123401444 1
10 hetero cjpeg 0123301000 1
10 hetero epic 0123021000 50
10 hetero g721 decode 0123300000 1
10 hetero g721 encode 0123000010 4
10 hetero gsmencode 0120311333 1
10 hetero mpeg2 encode 0012200222 1
10 hetero sha 0123401455 1
8 homo adpcm decode 01222222 1
8 homo blowfish encode 01112222 1
8 homo cjpeg 01122222 1
8 homo epic 00111122 1
8 homo g721 decode 01122222 1
8 homo g721 encode 01222222 1
8 homo gsmencode 01122222 1
8 homo mpeg2 encode 00112222 1
8 homo sha 01223333 1

Figure 5.1 (b) shows an overview of the proposed method. In this method, it first applies
the operation shuffling to the most significant basic block. Then the VLIW compiler runs
again with the obtained L0 cluster configuration from the first operation shuffling. Since the
optimal L0 cluster configuration is supposed to be found in the first operation shuffling, an
energy efficient schedule can be obtained without further operation shuffling if the compiler
can efficiently schedule for the given L0 cluster configuration as a constraint. So we now need
an adapted version of the scheduling technique that can incorporate constraints.

5.3 Scheduling for a given L0 cluster configuration

This section proposes algorithms to change slot assignmentof operations in the end of schedul-
ing phase. A top-level description of the scheduling phasesis outlined in Algorithm 2. An

5.3. SCHEDULING FOR A GIVEN L0 CLUSTER CONFIGURATION 83

Algorithm 2 Relevant phases in compiler back-end.

Schedule and allocate (block){
ComputeAnalysis Info();
ScheduleOps(block);
RegisterAllocation();
RescheduleOperations();

}

application is translated into a control flow graph composedof blocks. Each block can be a
basic block, hyper block or a super block, and scheduling is done one block at a time. Each
block is annotated with analysis information like livenessand operation priorities inCom-
puteAnalysisInfo(). In ScheduleOps(), each operation is assigned to a certain cycle and a
certain slot. Once the operations are scheduled, the data (variables, constants and other data
structures) are allocated to registers inRegisterAllocation().

RescheduleOperations()changes the assignment of operations after the register allocation
phase. Here all optimization techniques have been applied and there is still enough freedom to
change the operation assignment for improving the energy efficiency.

An outline of the rescheduling phase is shown in Algorithm 3.

5.3.1 Algorithm to try to fill an inefficient cluster

The first algorithm tries to move operations to a cluster thatis used inefficiently. The inefficient
cluster means a cluster that is not full but not empty; i.e. the cluster has to be activated in the
cycle, however, there is a free slot in the cluster. Therefore, to fill the free slot with an operation
is more power efficient if a cluster where the operation is originally assigned can be inactivated
by this move.

Figure 5.2 (a) shows an example of this move. In this example,there are two L0 clusters,
LC0 and LC1, and assume LC0 is lower power than LC1. Though both clusters have to be
activated in the original assignment, LC0 can be inactivated since all operations assigned to
LC0 can be moved to LC1. This move is energy efficient even if operations move to larger
power cluster, since only one cluster needs to be activated after the move. Figure 5.2 (b), (c),
and (d) are also the same kind of example. Algorithm 4 shows analgorithm to fill an inefficient
cluster. In this algorithm, we search all clusters for an inefficient cluster. If an inefficient
cluster is found, i.e. a cluster that is not empty but not fully filled, then we search for a cluster
which can provide operations to fill the inefficient cluster and can be empty if it provides the
operations. All conditions are fulfilled, then this algorithm tries to move operations to fill the
inefficient cluster inMove Opsbw Clusters().

84 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Algorithm 3 Reschedule operations between L0 clusters.

RescheduleOperations(block){
Build ClusterList(Clust);
Calc ClusterSize(Clust, Size, NumSlot, Depth);
if (block runs on L0 Buffer){

Calc ActiveCycle in Cluster(Clust, block, ActiveCycle);
foreach (cycle in block){

Sort Clusterby Size(Size, Clust, ActiveCycle);
Calc FreeSlotof Cluster(Clust, cycle, block, FreeSlot);
Try To Fill Inefficient Cluster(Clust, cycle, block, NumSlot,

FreeSlot, ActiveCycle);
Try To Move To ShallowerCluster(Clust, cycle, block, NumSlot,

FreeSlot, ActiveCycle);
Try To Move To Wider Cluster(Clust, cycle, block, NumSlot,

FreeSlot, ActiveCycle);
}}}

(a)

(b)

(c)

(d)

S
lot1

S
lot2

S
lot3

S
lot4

S
lot5

S
lot6

S
lot7

S
lot8

LC0 LC1

S
lot1

S
lot2

S
lot3

S
lot4

S
lot5

S
lot6

S
lot7

S
lot8

LC0 LC1

LC0 LC1

LC0 LC1

Low power cluster

Original Assignment Improved Assignment

(e)

LC0 LC2LC1 LC0 LC2LC1

(f)

LC0 LC2LC1 LC0 LC2LC1

Figure 5.2: Examples of rescheduling algorithm.

5.3. SCHEDULING FOR A GIVEN L0 CLUSTER CONFIGURATION 85

Algorithm 4 Try to fill an inefficient cluster.

Try To Fill InefficientCluster(Clust, cycle, block, NumSlot, FreeSlot, ActiveCycle){
for (h = 0 .. NumClust-1){

if (FreeSlot[h]> 0 and FreeSlot[h]6= NumSlot[h]){
for (j = Num Clust-1 .. 0){

if (j = h) continue;
if (FreeSlot[h]≥ (NumSlot[j] - FreeSlot[j])){

if (ActiveCycle[h]≥ Depth[h]){
// do nothing
} else{

moved = MoveOpsbw Clusters(cycle, Clust, j, h, block);
if (moved> 0) {

if (FreeSlot[h] = NumSlot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved;
FreeSlot[j] += moved;
if (FreeSlot[j] = NumSlot[j]) ActiveCycle[j]--;
if (FreeSlot[h] = 0) break;
}}}}}}}

5.3.2 Algorithm to try to move operations to a shallower clus ter

The second optimization algorithm tries to move operationsto a shallower cluster. Here a
shallower cluster means a cluster with the same width but with shallower depth (i.e. low power
cluster). Even if there is no more inefficient cluster, by moving operations from a larger cluster
to a smaller cluster, the energy efficiency can be improved furthermore. Figure 5.2 (e) shows an
example of this case. In this example, there is no inefficientcluster any more; i.e. all clusters
are empty or completely filled with operations. However, LC1has to be activated while a
smaller cluster LC0 is inactivated. By moving all operations assigned in LC1 to LC0, the larger
power cluster LC1 can be inactivated instead of LC0. Algorithm 5 shows an algorithm to move
operations to such a shallower cluster. In this algorithm, it first searches for an empty cluster.
Then for the cluster the algorithm searches for a larger cluster which contains operations. If
a cluster which satisfies all conditions is found, the algorithm tries to move operations using
MoveOps bw Clusters().

Note that the algorithm usesActiveCycleto keep track of the number of activated cycles for
each cluster in order to avoid exceeding the depth of given cluster configuration. It sometimes
restricts the freedom of rescheduling, however, extreme concentration on a single cluster makes
the depth of L0 cluster deeper and consequently leads increase of energy.

5.3.3 Algorithm to try to move operations to a wider cluster

As the third optimization, this section proposes an algorithm that tries to move operations to
a wider cluster. It could happen that the total power of clusters which are full with operations
is larger than the power of an empty cluster. Figure 5.2 (f) shows this case. In this example,

86 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Algorithm 5 Try to move operations to a shallower cluster.

Try To MoveTo ShallowerCluster(Clust, cycle, block, NumSlot, FreeSlot, ActiveCycle){
for (h = 0 .. NumClust-1){

if (FreeSlot[h] = NumSlot[h]){ /* empty */
for (j = Num Clust-1 .. h+1){

if (NumSlot[j] = NumSlot[h] and Size[j]> Size[h]){
if (FreeSlot[j] = 0){

if (ActiveCycle[h]≥ Depth[h]){
// do nothing
} else{

moved = MoveOps bw Clusters(cycle, Clust, j, h, block);
if (moved> 0) {

if (FreeSlot[h] = NumSlot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved;
FreeSlot[j] += moved;
if (FreeSlot[j] = NumSlot[j]) ActiveCycle[j]--;
break;
}}}}}}}}

LC0 and LC1 are full with operations and LC2 is completely empty. Then there is no further
improvement for the last two optimization algorithms. We assume the power of LC0 and LC1
(P0 andP1, respectively) is less than the power of LC2 (P2). However, if the total power of LC0
and LC1 is larger than LC2 (i.e.P0 +P1 > P2), moving all operations to LC2 is beneficial. Al-
gorithm 6 shows an algorithm to selectively move operationsto a wider cluster. This algorithm
first searches for an empty cluster. Then for that cluster it makes a combination of full clusters
whose number of operations is less than the width of the emptycluster. If the total power of
clusters is larger than the empty cluster, it tries to move operations to the empty cluster. Appar-
ently this problem to make a combination of clusters which fits the limit of width and power is
known as a knapsack problem, and consequently it is an NP hardproblem. The proposed non
greedy technique does not care about aslot capabilitywhen making a combination of clusters;
some operations might not move to the new cluster in case thatno slot in the cluster can issue
the operations. Hence, the proposed algorithm does not try to pursue an optimum combination.
However, it yields enough quality of solution with much reduced computational effort.

5.4 Experimental Results

This section describes experimental results, which show the applicability of the proposed
method.

Table 5.2 shows the comparison of the proposed method and conventional methods for one
benchmark (g721 decoder on 8 slot homogeneous VLIW).Monolithic L0 uses a monolithic
L0 cluster with initial schedule. InInitial , L0 clusters are generated for an initial schedule.
Shuffling all BBsshuffles all basic blocks, andShuffling 1 BBis a result after shuffling only one

5.4. EXPERIMENTAL RESULTS 87

Algorithm 6 Try to move operations to a wider cluster.

Try To MoveTo Wider Cluster(Clust, cycle, block, NumSlot, FreeSlot, ActiveCycle){
for (h = 0 .. NumClust-1){

if (FreeSlot[h] = NumSlot[h]){ /* h is empty */
powerh = size[h];
powermov = 0;
MOV = ∅;
for (j = Num Clust-1 .. 0){

if (j = h) continue;
if (NumSlot[j] < NumSlot[h]){

power j = size[j];
ops j = width[j] - free[j];
if (FreeSlot[j] = 0){

if (Free[h]≥ |MOV | + opsj){
powermov += powerj;
MOV += j;
}}}}

if (power mov> powerh){
if (ActiveCycle[h]≥ Depth[h]){

// do nothing
} else{

for (each k in MOV){
moved = MoveOpsbw Clusters(cycle, Clust, k, h, block);
if (moved> 0) {

if (FreeSlot[h] = NumSlot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved;
FreeSlot[k] += moved;
if (FreeSlot[k] = NumSlot[k]) ActiveCycle[k]--;
}}}}}}}

88 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Table 5.2: Comparison of estimated energy (g721 decoder@8 slot Homo).

Method Energy Exploration Approx. Time
(mJ) (%) Effort (sec)

Monolithic L0 2.8912 312.0% c 20
Initial 0.9268 100.0% c 20
Shuffling 1 BB 0.9021 97.3% 224s+c 30
Shuffling all BBs 0.7815 84.3% 60696s+c 2600
Proposed 0.8003 86.3% 224s+2c 50

basic block. InProposed, operation shuffling is performed for only the first basic block and op-
erations are re-scheduled for the obtained L0 cluster configuration. The second column shows
the estimated energy for a optimal solution obtained by eachmethod and the third column pro-
vides the relative energy overInitial . In the fourth column, exploration effort is represented;c is
computational effort of single compilation ands is effort of evaluating a candidate in operation
shuffling. In this experiment, compilation for this exampletakes 20 seconds while shuffling of
60696 patterns takes 43 minutes; i.e.c is 20 second ands is 0.043 second. The fifth column
shows approximate exploration time calculated using thec ands. Note that the experimental
environment is Fedora Core 3 on Pentium 4 3.2GHz with 4096MB memory.

Though the energy ofProposedis little worse thanShuffling all Bbs(only 2%), the proposed
method significantly reduces the exploration space; it is about 50 times faster thanShuffling all
BBs. The proposed method takes almost the same exploration timeas the mere greedyShuffling
1 BB. However, it clearly achieves less energy (factor of 11%).

Compared withMonolithic L0, Initial achieves less energy consumption, however, the result
shows thatInitial is not so energy efficient without the proposed method nor operation shuffling.

Figure 5.3 shows a comparison of energy for various combinations of benchmark applica-
tion and processor architecture. In most of cases, the proposed method achieves less energy
thanShuffling 1 BB, and smaller than evenShuffling all BBsin some cases. The reason why
the proposed method surpassesShuffling all BBswould be because of the heuristics used in
Shuffling all BBs; an optimal schedule might be omitted inShuffling all BBs, while the pro-
posed scheduling algorithm has a chance to generate an optimal schedule that is missed by the
heuristics.

On the contrary, in some combinations the proposed method yields not so good result. This
result can be seen in Fig. 5.3 where the results of most of benchmarks on 10 slot heterogeneous
VLIW show the proposed method does not handle energy gain sufficiently. This is because
moving operations to another cluster is difficult due to theslot capability in heterogeneous
VLIW processors even if there is a free slot in the destination cluster, as discussed in Sec. 5.3.
The architecture of 10 slot heterogeneous VLIW that is used in this experiment has limited
capability for a slot, as shown in Table 4.2.

Furthermore, energy reduction is not obtained in a case where the first operation shuffling
does not yield the optimal cluster configuration (see Table 5.1). This happens in epic on the 10
slot heterogeneous VLIW. Since the rescheduling algorithmis performed on a not optimal clus-
ter configuration, the generated schedule is not so energy efficient. These might be a limitation

5.5. CONCLUSION 89

of the proposed method. However, in most of the cases the results support the feasibility of the
proposed method; the energy reduction of the proposed method is notable compared with other
scalable methods. The average energy reduction of the proposed method overShuffling 1 BBis
11% in 8 slot heterogeneous and 9% in 8 slot homogeneous VLIW processors.

5.5 Conclusion

This chapter presented an efficient method to generate an energy efficient schedule. Based on
the analysis of characteristics of energy efficient L0 cluster configuration obtained from the
operation shuffling, it is found that the optimal L0 cluster configuration is fixed after the first
iteration of operation shuffling. Therefore, in the proposed method, the operation shuffling is
performed only once for the most significant basic block and acompiler schedules again for
the obtained cluster configuration. The proposed method combines a compiler technique of
scheduling for a given L0 cluster configuration with an operation shuffling framework. Some
algorithms to schedule for a given cluster configuration areproposed. The proposed method
can drastically reduce the computational effort by a factorof 50, hence it improves the design
productivity of low energy embedded systems.

90 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Figure 5.3: Comparison of energy reduction.

Chapter 6

Conclusion and future work

In this chapter, the conclusion of this thesis and the futurework are described.

6.1 Conclusion

This thesis describes a low power design method for embeddedsystems using VLIW processor.
VLIW processors are known as an effective solution for embedded systems which require

both of high performance and low energy, however, there are alot of architectural parameters
to be decided by designers. Since these parameters significantly affect the performance and
area, it is required to perform the design space explorationwhere designers evaluate many
architectures to determine the optimal parameter set. However, designing a VLIW processor
was very complex, and consequently time consuming and error-prone. Hence, design space
exploration on VLIW processors could not have been performed sufficiently so far.

The first part of this thesis describes a VLIW processor generation method. Chapter 3 pro-
poses a synthesizable HDL generation method for configurable VLIW processors, which sup-
ports a flexible architecture model, especially in dispatching rules. Experimental results shows
that the proposed method can generate a VLIW processor from ahigh level description, which
is 80% to 90% smaller than HDL description. And also, the generation time of HDL description
is sufficiently short, that is from 2 to 15 seconds. Since the specification description supports
a wide range of dispatching rules and the amount of description is sufficiently small, it is pos-
sible to generate a wide range of fine-quality VLIW processors in a short time. Note that a
simplecopy and pastestrategy can be employed during preparation of the processor specifi-
cation description. Hence, the actual effort that designers have to describe is much smaller
than the manual design of HDL. Though a generated VLIW processor has not been compared
with a manually designed VLIW processor yet, it is assumed that the quality of generated HDL
description is almost the same as that of manually designed HDL description as discussed in
Section 3.7.1.2. Therefore, the proposed method can significantly improve the design produc-
tivity of VLIW processors. This work is reported in [1] and [2].

The second part of this thesis discusses a low power method for VLIW processors. The
energy breakdown of VLIW processors indicates that the power bottleneck of VLIW processors
is in the instruction memory hierarchy (e.g. instruction fetch). An L0 buffer and an L0 cluster
architecture have been proposed to reduce the energy in the instruction memory hierarchy.

91

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

However, the result of L0 cluster generation is sensitive tothe schedule of the target application.
Chapter 4 describes an operation shuffling algorithm for improvement of energy efficiency of

L0 cluster. Since an L0 cluster configuration is very sensitive to operation scheduling, various
schedules are generated and evaluated in order to obtain an optimal schedule. In the proposed
algorithm, by shuffling all basic blocks iteratively, energy consumption can be reduced sig-
nificantly. To reduce the size of the exploration space, someheuristics are also described in
Chapter 4. The experimental results show that the proposed operation shuffling algorithm suc-
cessfully reduces energy consumption in various VLIW processors including heterogeneous
VLIW processors as well as homogeneous VLIW processors. This work is reported in [3] and
[4].

Since the simple operation shuffling takes huge amount of time even if the above heuristics
are applied, a more efficient method to find a low energy operation schedule is described in
Chapter 5. Based on the analysis of characteristics of energy efficient L0 cluster configuration
obtained from the operation shuffling, it is found that the optimal L0 cluster configuration is
fixed after the first iteration of operation shuffling. Therefore, in the proposed method, the
operation shuffling is performed only once for the most significant basic block and a compiler
schedules again for the obtained cluster configuration. Some algorithms to schedule for a given
cluster configuration are described in Chapter 5. By exploiting the scheduling algorithms, a
compiler can generate a low energy schedule in a straightforward way. The experimental result
shows that the proposed method can generate energy efficientschedules with 50 times shorter
exploration time.

Figure 6.1 shows a contribution of the proposed operation shuffling method. As discussed in
Section 4.1 using Fig. 4.2, the instruction memory hierarchy was still a power bottleneck after
applying some conventional optimization algorithms. The L0 cluster reduces the energy by up
to 67% and the proposed operation shuffling improves it furthermore by about 30%. Then the
total energy is 62% smaller than the energy before optimizations. In Fig. 6.1, the contribution
of operation shuffling might look not so notable, however, other processor components such
as the data memory and the data path will also be optimized furthermore as indicated in [62].
Then the instruction memory hierarchy needs to be optimizedagain and the proposed method
acts the significant role in the energy efficiency.

6.2 Future work

The future work includes the following items.

6.2.1 Future work on VLIW synthesis

The input of the VLIW processor generation method is in higher level than RTL, however, it
still requires complicated description. Especially, determining and describing resource groups
that are required for a target architecture is tedious and troublesome work. A simpler input
description helps a designer and improves the design productivity furthermore.

And also, the quality of generated VLIW processor would be improved furthermore. The
decoding logic now is large and complicated. It is because the proposed method supports

6.2. FUTURE WORK 93

Figure 6.1: Power reduction by the proposed method.

a wide variety of dispatching rules. However, when a dispatching rule is not complex, for
instance, no FU sharing, the decoding and dispatching logiccan be simplified. Simpler logic is
very beneficial in terms of area, delay time, and power consumption.

6.2.2 Future work on operation shuffling

The future work on operation shuffling includes operation shuffling across cycle boundaries.
An algorithm proposed in this thesis only moves an operationwithin cycle boundaries. The
algorithm already yields a good result as shown in this thesis, however, it can be improved
furthermore by allowing move across the cycle boundaries. Some operations can move to
another cycle unless the data dependency between related operations is violated. Hence, there
would be more opportunities to optimize operation scheduling for energy efficiency.

The shuffling over the cycle boundaries should achieve more energy gain. The complexity
of the shuffling over the cycle boundaries will, however, become too huge since an operation
has more freedom to move not only to different slots but also to different cycles. To manage
this problem, another new and different algorithm (heuristic) is needed to efficiently prune the
exploration space.

In principle, the proposed heuristics, which limit the exploration space during operation
shuffling within a cycle, can be utilized for exploration space reduction of shuffling over the
cycle boundaries. Intuitively, it is a realistic assumption that an operation can also move to a
different issue-slot when it moves to another cycle. Then, after moving to different cycles, the
same technique for shuffling within a cycle can be used. Hence, this thesis started with the
topic of shuffling within a cycle.

A preliminary experiment shows a result supporting a prospect that the shuffling over cycle
boundaries yields more energy gain; for example in a case, the energy is reduced by 10.3%

94 CHAPTER 6. CONCLUSION AND FUTURE WORK

by the shuffling over cycle boundaries, while the shuffling within a cycle only yields 4.9% of
energy reduction in the same case.

Further improvement in the effectiveness of shuffling over the cycle boundaries would be
achieved with a software multi-threading approach would bebeneficial, which combines mul-
tiple independent loops into one loop to improve performance [60]. Since independent loops
are integrated into one loop, each operation has less dependency for each other in the loop.
This gives an operation more freedom to move to different cycles and consequently more op-
portunity for energy reduction.

Another category of future work is operation shuffling on other architectures. In principle,
the proposed operation shuffling would be applied to array style of architectures like ADRES
[61], a coarse-grained reconfigurable array architecture coupled with VLIW processor devel-
oped in IMEC, while the current target of the proposed methodis a linear (one-dimensional)
style of VLIW processor. In such a multi-dimensional array processor, a similar approach to
L0 cluster can be applied in order to reduce buffer access andactivation of processing ele-
ments. Since the number of processing elements is, in general, not smaller than typical VLIW
processors, clustering for coarse-grained control would also be important. Then a change of
scheduling like the operation shuffling would be effective on energy reduction. To apply the
proposed operation shuffling to other architecture, it would be needed to change a cost function
which estimates energy for a given schedule and architecture. Then by a similar approach to the
proposed operation shuffling can be utilized and a similar heuristic to the proposed heuristics
would also be feasible.

Bibliography

[1] Y. Kobayashi, S. Kobayashi, K. Okuda, K. Sakanushi, Y. Takeuchi, and M. Imai, “Syn-
thesizable HDL generation method for configurable VLIW processors,” in Proc. Asia and
South Pacific Design Automation Conference (ASP-DAC), pp.843–846, Jan. 2004.

[2] Y. Kobayashi, S. Kobayashi, K. Sakanushi, Y. Takeuchi, and M. Imai, “HDL generation
method for configurable VLIW processor,” IPSJ Journal, vol.45, no.5, pp.1311–1321,
May 2004. (in Japanese).

[3] Y. Kobayashi, M. Jayapala, P. Raghavan, F. Catthoor, andM. Imai, “Operation shuffling
for low energy l0 cluster generation on heterogeneous VLIW processors,” in Proc. IEEE
3rd Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia 2005),
pp.81–86, Sept. 2005.

[4] Y. Kobayashi, M. Jayapala, P. Raghavan, F. Catthoor, andM. Imai, “Methodology for
operation shuffling and l0 cluster generation for low energyheterogeneous VLIW proces-
sors,” ACM Trans. on Design Automation of Electronic Systems. (to appear).

[5] J. Ganssle and M. Barr, Embedded Systems Dictionary, CMPBooks, 600 Harrison Street,
San Francisco, CA 94107 USA, 2003.

[6] M. Johnson, Superscalar Microprocessor Design, Prentice-Hall, Inc., 1991.

[7] J.A. Fisher, “Very Long Instruction Word Architecturesand the ELI-512,” in Proc. the
10th Annual Symposium on Computer Architectures, pp.140–150, 1983.

[8] L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria,and R. Zafalon, “A power
modeling and estimation framework for VLIW-based embeddedsystems,” in Proc. IEEE
International Workshop on Power And Timing Modeling, Optimization and Simulation
(PATMOS), IEEE, Sept. 2001.

[9] L.H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction using loop caches
for embedded applications with small tight loops,” in Proc.Int’l Symp. on Low Power
Electronic Design (ISLPED), pp.267–269, Aug. 1999.

[10] R.S. Bajwa, M. Hiraki, H. Kojima, D.J. Gorny, K. Nitta, A. Shridhar, K. Seki, and
K. Sasaki, “Instruction buffering to reduce power in processors for signal processing,”
IEEE Trans. VLSI Syst., vol.5, no.4, pp.417–424, Dec. 1997.

95

96 BIBLIOGRAPHY

[11] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Architectural and compiler
support for energy reduction in the memory hierarchy of highperformance microproces-
sors,” in Proc. Int’l Symp. on Low Power Electronic Design (ISLPED), Aug. 1998.

[12] A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, T. Vander Aa, M. Jayapala,
F. Catthoor, D. Verkest, G. Deconinck, H. Coporaal, F. Robert, and J. Carrabina, “Power
breakdown analysis for a heterogeneous NoC platform running a video application,” in
Proc. IEEE 16th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), pp.179–184, July 2005.

[13] M. Jayapala, F. Barat, T. Vander Aa, F. Catthoor, H. Corporaal, and G. Deconinck, “Clus-
tered loop buffer organization for low energy VLIW embeddedprocessors,” IEEE Trans.
Computers, vol.54, no.6, pp.672–683, June 2005.

[14] M. Jayapala, T. Vander Aa, F. Barat, F. Catthoor, H. Coporaal, and G. Deconinck, “L0
cluster synthesis and operation shuffling,” in Proc. IEEE International Workshop on Power
And Timing Modeling, Optimization and Simulation (PATMOS), pp.311–321, IEEE,
Sept. 2004.

[15] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic voltage
scaling algorithms,” in Proc. Int’l Symp. Low Power Electronics and Design (ISLPED),
pp.76–81, Aug. 1998.

[16] F. Catthoor, F. Balasa, E.D. Greef, and L. Nachtergaele, Custom Memory Management
Methodology: Exploration of Memory Organization for Embedded Multimedia System
Design, Kluwer Academic Publisher, 1998.

[17] W. Tang, R. Gupta, and A. Nicolau, “Power savings in embedded processors through
decode filter cache,” in Proc. Design Automation and Test in Europe (DATE), March
2002.

[18] G.R. Uh, Y. Wang, D. Whalley, S. Jinturkar, C. Burns, andV. Cao, “Effective exploitation
of a zero overhead loop buffer,” LCTES ’99: Proc. the ACM SIGPLAN 1999 workshop
on Languages, compilers, and tools for embedded systems, pp.10–19, ACM Press, 1999.

[19] J.W. Sias, H.C. Hunter, and W. mei W. Hwu, “Enhancing loop buffering of media and
telecommunications applications using low-overhead predication,” in Proc. 34th Annual
Int’l Symp. on Microarchitecture (MICRO), Dec. 2001.

[20] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and P.G. Paulin,
“Embedded software in real-time signal processing systems: Design technologies,” Proc.
IEEE, vol.85, no.3, pp.436–454, March 1997.

[21] J. Sato, A.Y. Alomary, Y. Honma, T. Nakato, A. Shiomi, N.Hikichi, and M. Imai, “PEAS-
I: A hardware/software codesign system for ASIP development,” IEICE Trans. Funda-
mentals, vol.E77-A, no.3, pp.483–491, Mar. 1994.

BIBLIOGRAPHY 97

[22] J.H. Yang, B.W. Kim, S.J. Nam, J.H. Cho, S.W. Seo, C.H. Ryu, et al., “MetaCore: An
application specific DSP development system,” in Proc. Design Automation Conference
(DAC), pp.800–803, June 1998.

[23] J. Yang, B. Kim, S. Nam, Y. Kwon, D. Lee, J. Lee, C. Hwang, Y. Lee, S. Hwang, I. Park,
and C. Kyung, “MetaCore: An Application-Specific Programmable DSP Development
System,” IEEE Trans. VLSI Syst., vol.8, no.2, pp.173–183, April 2000.

[24] G. Ezer, “Xtensa with user defined DSP coprocessor microarchitectures,” in Proc. 2000
IEEE International Conference on Computer Design: VLSI in Computers & Processors,
pp.335–342, Sept. 2000.

[25] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An instruction set description lan-
guage for retargetability and architecture exploration,”Design Automation for Embedded
Systems, vol.6, no.1, pp.39–69, Sept. 2000.

[26] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: A instruction set description lan-
guage for retargetability,” in Proc. Design Automation Conference (DAC), pp.299–302,
June 1997.

[27] G. Hadjiyiannis, P. Russo, and S. Devadas, “A methodology for accurate performance
evaluation in architecture exploration,” in Proc. Design Automation Conference (DAC),
pp.927–932, June 1999.

[28] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set processors using
nml,” in Proc. European Design and Test Conference, pp.503–507, March 1995.

[29] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man, “Instruction set definition and
instruction selection for asips,” in Proc. 7th IEEE Int. Symp. on High-Level Synthesis,
May 1994.

[30] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink,
and H. Meyr, “A novel methodology for the design of application-specific instruction-set
processors (ASIPs) using a machine description language,”IEEE Trans. Computer-Aided
Design, vol.20, no.11, pp.1338–1354, Nov. 2001.

[31] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISA -machine description language
for cycle-accurate models of programmable DSP architecture,” in Proc. Design Automa-
tion Conference (DAC), pp.933–938, June 1999.

[32] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for Embedded Proces-
sors with LISA, Kluwer Academic Publishers, Boston, 2002.

[33] P. Mishra, A. Kejariwal, and N. Dutt, “Rapid exploration of pipelined processors through
automatic generation of synthesizable RTL models,” in Proc. 14th IEEE International
Workshop on Rapid Systems Prototyping, pp.226–232, June 2003.

98 BIBLIOGRAPHY

[34] P. Grun, A. Halambi, N. Dutt, and A. Nicolau, “RTGEN – an algorithm for automatic
generation of reservation tables from architectural descriptions,” IEEE Trans. VLSI Syst.,
vol.11, no.4, pp.731–737, Aug. 2003.

[35] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven exploration of pipelined embed-
ded processors,” in Proc. International Conference of VLSIDesign, pp.921–926, Jan.
2004.

[36] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau, “EXPRESSION: A
language for architecture exploration through compiler/simulator retargetability,” in Proc.
Design, Automation and Test in Europe (DATE), pp.485–490, March 1999.

[37] M. Kandemir, M.J. Irwin, G. Chen, and I. Kolcu, “Compiler-guided leakage optimization
for banked scratch-pad memories,” IEEE Trans. VLSI Syst., vol.13, no.10, pp.1136–1146,
Oct. 2005.

[38] Texas Instruments, “TMS320C6000 CPU and instruction set reference guide,” Oct. 2000.

[39] Silicon Hive. http://www.silicon-hive.com/.

[40] Clear Speed. http://www.clearspeed.com/.

[41] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and F. Homewood, “Lx: A technology
platform for customizable VLIW embedded processing,” in Proc. Int’l Symp. on Com-
puter Architecture (ISCA), pp.203–213, June 2000.

[42] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, andR. Zafalon, “Energy estimation
and optimization of embedded VLIW processors based on instruction clustering,” in Proc.
Design Automation Conference (DAC), pp.886–891, June 2002.

[43] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, andR. Zafalon, “An instruction-
level methodology for power estimation and optimization ofembedded VLIW cores,” in
Proc. Design, Automation and Test in Europe (DATE), p.1128,March 2002.

[44] K. Okuda, S. Kobayashi, Y. Takeuchi, and M. Imai, “A simulator generator based on con-
figurable VLIW model considering synthesizable HW description and SW tools genera-
tion,” in Proc. the Workshop on Synthesis And System Integration of Mixed Information
Technologies (SASIMI), pp.152–159, April 2003.

[45] T. Maeda, J. Sato, Y. Takeuchi, and M. Imai, “A generation method for an interrupt con-
troller in application specific instruction-set processordesign,” Technical Report of IE-
ICE, VLD2001-118, vol.101, no.468, pp.39–44, Nov. 2001. (in Japanese).

[46] M. Itoh, Y. Takeuchi, M. Imai, and A. Shiomi, “Synthesizable HDL generation for
pipelined processors from a micro-operation description,” IEICE Trans. on Fundamentals
of Electronics Communications and Computer Sciences, vol.E83-A, no.3, pp.394–400,
March 2000.

BIBLIOGRAPHY 99

[47] M. Itoh, A. Shiomi, J. Sato, Y. Takeuchi, and M. Imai, “Processor generation method for
pipelined processors in consideration with pipeline hazards,” IPSJ Journal, vol.41, no.4,
pp.851–862, Apr. 2000. (in Japanese).

[48] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, and M. Imai, “Effectiveness of the
ASIP design system PEAS–III in design of pipelined processors,” in Proc. Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.649–654, Feb. 2001.

[49] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative Approach,
Morgan Kaufmann Publishers, Inc., California, 1990.

[50] J. Monteiro, S. Devadas, P. Ashar, and A. Mauskar, “Scheduling techniques to enable
power management,” in Proc. Design Automation Conference (DAC), pp.349–352, June
1996.

[51] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, W.Ye, and D. Duarte, “Evaluat-
ing integrated hardware-software optimizations using a unified energy estimation frame-
work,” IEEE Trans. Comput., vol.52, no.1, pp.59–76, Jan. 2003.

[52] T. Vander Aa, M. Jayapala, F. Barat, G. Deconinck, R. Lauwereins, F. Catthoor, and
H. Coporaal, “Instruction buffering exploration for low energy VLIW with instruction
clusters,” in Proc. IEEE Asia and South Pacific Design Automation Conference (ASP-
DAC), pp.825–830, IEEE, Jan. 2004.

[53] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-
level power analysis and optimizations,” in Proc. Int’l Symp. on Computer Architecture
(ISCA), pp.83–94, June 2000.

[54] P.O. de Beeck, F. Barat, M. Jayapala, and R. Lauwereins,“CRISP: A template for re-
configurable instruction set processors,” in Proc. International Conference on Field Pro-
grammable Logic and Applications, pp.296–305, Aug. 2001.

[55] Trimaran, “Trimaran: An infrastructure for research in instruction-level parallelism.”
http://www.trimaran.org/.

[56] A. Gordon-Ross and F. Vahid, “Frequent loop detection using efficient nonintrusive on-
chip hardware,” IEEE Trans. Comput., vol.54, no.10, pp.1203–1215, Oct. 2005.

[57] D.C. Suresh, W.A. Najjar, F. Vahid, J.R. Villarreal, and G. Stitt, “Profiling tools for hard-
ware/software partitioning of embedded applications,” inProc. Language, Compiler and
Tool Support for Embedded Systems (LCTES ’03), pp.189–198,June 2003.

[58] S. Rixner, W.J. Dally, B. Khailany, P. Mattson, U.J. Kapasi, and J.D. Owens, “Register
organization for media processing,” in Proc. Int’l Symp. onHigh-Performance Computer
Architecture (HPCA6), pp.375–386, Jan. 2000.

[59] MediaBench. http://cares.icsl.ucla.edu/MediaBench/.

100 BIBLIOGRAPHY

[60] D.P. Scarpazza, P. Raghavan, D. Novo, F. Catthoor, and D. Verkest, “Software simultane-
ous multi-threading, a technique to exploit task-level parallelism to improve instruction-
and data-level parallelism,” in Proc. IEEE International Workshop on Power And Timing
Modeling, Optimization and Simulation (PATMOS), pp.12–23, Springer Verlag LNCS,
Sept. 2006.

[61] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo scheduling,” in
Proc. Design Automation and Test in Europe (DATE), pp.296–301, March 2003.

[62] L. Benini and G. De Micheli, “System-level power optimization: Techniques and tools,”
ACM Trans. on Design Automation of Electronic Systems, vol.5, no.2, pp.115–192, April
2000.

Appendix A

BNF of processor specification
description

This chapter shows BNF of the processor specification description described in Chapter 3.

<InstructionSetSpec> ::= ’mod’ <modName> ’ {’
<DeclarationPart>
<BehaviorPart>
’ }’

<modName> ::= <identifier>

<DeclarationPart> ::= <OperationWidthDecl> <SlotDecl> < PipelineStageDecl>
<DesignPriorityDecl> <ResourceDeclPart>
<ResourceGroupDeclPart> <OperationTypeDeclPart>
<OperationDeclPart> <OperationGroupDeclPart> <IODecl> <InterruptDecl>

<OperationWidthDecl> ::= ’operation length’ <OperationWidth> ’;’
<OperationWidth> ::= <NaturalNumber>

<SlotDecl> ::= ’slots’ ’ {’ <SlotNames> ’ }’ ’;’
<SlotNames> ::= <SlotName> { ’,’ <SlotName> }
<SlotName> ::= <Identifier>

<PipelineStageDecl> ::= <StageDecls> <BuildStageDef> <D ispatchStageDef>
<DecodeStageDef> <RegisterBypassDef> <MemoryBypassDef >
<DelaySlotDef> <DelaySlotNum>

<StageDecls> ::= ’stages’ ’ {’ <StageName> { ’,’ <StageName> } ’ } ’ ’;’
<StageName> ::= <Identifier>
<BuildStageDef> ::= ’build stage’ <StageName> ’;’
<DispatchStageDef> ::= ’dispatch stage’ <StageName> ’;’
<DecodeStageDef> ::= ’decode stage’ <StageName> ’;’
<RegisterBypassDef> ::= ’use register bypass <YorN> ’;’
<MemoryBypassDef> ::= ’use memory bypass <YorN> ’;’
<DelaySlotDef> ::= ’use delayed branch’ <YorN> ’;’
<DelaySlotNum> ::= ’num delayed slots’ <NaturalNumber> ’;’
<YorN> ::= ’yes’ |’no’

<DesignPriorityDecl> ::= ’priority’ <DesignPriority> ’; ’
<DesignPriority> ::= <String>

<ResourceDeclPart> ::= { <ResourceDecl> }
<ResourceDecl> ::= ’resource’ <ResourceName> [’:’ <Resou rceUsageDef>] ’ {’

’model’ <FHMModelName> ’;’
’for simulation’ ’ {’ <FHMParameterDef> ’ }’ ’;’
’for synthesis’ ’ {’ <FHMParameterDef> ’ }’ ’;’
’ }’ ’;’

101

102 APPENDIX A. BNF OF PROCESSOR SPECIFICATION DESCRIPTION

<ResourceName> ::= <Identifier>
<ResourceUsageDef> ::= ’program counter’ |’instr memory’ |’data memory’ |

’register file’ |’status register’ |’fetch register’ |
’instr register’ |’flag register’ |’plain register’

<FHMParameterDef> ::= ’design level’ <FHMDesignLevel> ’;’
’parameter’ <FHMParameter> ’;’

<FHMModelName> ::= <String>
<FHMDesignLevel> ::= <String>
<FHMParameter> ::= <String>

<ResourceGroupDeclPart> ::= { <ResourceGroupDecl> }
<ResourceGroupDecl> ::= ’resgroup’ <ResourceGroupName> ’ {’

[’member’ ’:’ <ResourceNames> ’;’]
[’read access’ ’:’ <ResourceNames> ’;’]
[’write access’ ’:’ <ResourceNames> ’;’]
’ }’ ’;’

<ResourceNames> ::= <ResourceName> { ’,’ <ResourceName> }
<ResourceGroupName> ::= <Identifier>

<OperationTypeDeclPart> ::= <OperationTypeDecl>
{ <OperationTypeDecl> }

<OperationTypeDecl> ::= ’opetype’ <OperationTypeName> ’ {’
{ <FieldDef> }
’ }’ ’;’

<OperationTypeName> ::= <Identifier>
<FieldDef> ::= <VLIWInstDelimiterFieldDef> |

<OperandFieldDef> |<OpecodeFieldDef> |<ReservedFieldD ef>
<VLIWInstDelimiterFieldDef> ::= ’terminate flag’ <BitRange>

<FieldName> ’;’
<OperandFieldDef> ::= ’operand’ <BitRange> <FieldName> ’ ;’
<OpecodeFieldDef> ::= ’opecode’ <BitRange> <FieldName>

[’=’ <BinaryConstant>] ’;’
<ReservedFieldDef> ::= ’reserved’ <BitRange> <FieldName > ’;’
<FieldName> ::= <Identifier>

<OperationDeclPart> ::= { <OperationDecl> }
<OperationDecl> ::= ’operation’ <OperationName> ’:’

<OperationTypeName> ’ {’
{ <OpecodeDef> } <Format>’ }’ ’;’

<OperationName> ::= <Identifier>
<OpecodeDef> ::= (’opecode’ |’reserved’) <FieldName> ’=’ <BinaryConstant> ’;’
<Format> ::= ’format’ ’ {’ <ElementList> ’ }’ ’;’
<ElementList> ::= <Element> { ’,’ <Operand> }
<Element> ::= <Identifier> |’ ’’ ’ <Identifier> ’ ’’ ’

<OperationGroupDeclPart> ::= { <OperationGroupDecl> }
<OperationGroupDecl> ::= ’opegroup’ <OperationGroupNam e> ’ {’

<OperationName> { ’,’ <OperationName> }
’ }’ ’;’

<OperationGroupName> ::= <Identifier>

<IODecl> ::= <TopModuleNameDef>
<ClockPortDef> <ResetPortDef> <UserPortDefs>

<TopModuleNameDef> ::= ’top module’ <TopModuleName> ’;’
<TopModuleName> ::= <Identifier>
<ClockPortDef> ::= ’clock port’ <PortName> ’;’
<ResetPortDef> ::= ’reset port’ <PortName> ’;’
<UserPortDefs> ::= <UserPortDef> { <UserPortDef> }
<UserPortDef> ::= ’port’ [<BitRangeDef>] <PortName> ’ {’

’direction’ (’in’ |’out’ |’inout’) ’;’
’connect to’ <Destination> ’;’
’ }’ ’;’

<Destination> ::= ’internal controller’ |<ResourceName> ’.’ <PortName>
<PortName> ::= <Identifier>

103

<InterruptDeclPart> ::= <ResetInterruptDecl>
[<NMIDecl>]
[<ExternalInterruptDecl>]
{ <InternalInterruptDecl> }

<ResetInterruptDecl> ::= ’reset interrupt’ <InterruptName> ’ {’
<InterruptCauseCondition>
’ }’ ’;’

<NMIDecl> ::= ’nonmaskable interrupt’ <InterruptName> ’ {’
<InterruptCauseCondition>
’ }’ ’;’

<ExternalInterruptDecl> ::= ’external interrupt’ <InterruptName> ’ {’
<InterruptCauseCondition>
[<InterruptMaskCondition>]
’ }’ ’;’

<InternalInterruptDecl> ::= ’internal interrupt’ <InterruptName> ’ {’
’cause condition type’ (’decode error’ |’instr specific’) ’;’
[<InterruptMaskCondition>]
’ }’ ’;’

<InterruptCauseCondition> ::= ’cause condition’ ’ {’
’port’ <PortName> ’;’
’active value’ <BitLiteral> ’;’
’ }’ ’;’

<InterruptMaskCondition> ::= ’mask condition’ ’ {’
’mask register’ <ResourceName> ’;’
’mask bitpos’ <NonNegativeInteger> ’;’
’active value’ <BitLiteral> ’;’
’ }’ ’;’

<InterruptName> ::= <Identifier>

<BehaviorPart> ::= <InterruptDefPart>
<CommonStageDef>
<DispatchTable>
<OperationDefPart>

<InterruptDefPart> ::= { <InterruptDef> }
<InterruptDef> ::= ’catch interrupt’ <InterruptName> ’ {’

<VariableDeclPart>
<InterruptDefExpressions>
’ }’ ’;’

<InterruptDefExpressions> ::= { <InterruptDefExpression> }
<InterruptDefExpression> ::= <Assignment> |

<ConditionalAssignment>

<CommonStageDef> ::= ’common pre dispatch’ ’ {’
<CommonStageDesc>
’ }’ ’;’

<CommonStageDesc> ::= <VariableDeclPart>
<MicroOperationDescriptionPart>

<VariableDeclPart> ::= { <VariableDecl> }
<VariableDecl> ::= <WireDecl>
<WireDecl> ::= ’wire’ [<BitRange>] <WireName> ’;’
<WireName> ::= <Identifier>

<DispatchTable> ::= ’dispatch table’ ’ {’
<S-OGTable>
<S-RGTable>
<OG-RGTable>
’ }’ ’;’

<S-OGTable> ::= ’slot opegroup’ ’ {’
{ <S-OGRelation> }
’ }’ ’;’

<S-OGRelation> ::= ’ {’ <S-OGPair> { ’,’ <S-OGPair> } ’ }’ ’;’
<S-OGPair> ::= <SlotName> ’:’ <OGDef>
<OGDef> ::= <OperationGroupName> |’null’
<S-RGTable> ::= ’slot resgroup’ ’ {’

{ <S-RGRelation> }

104 APPENDIX A. BNF OF PROCESSOR SPECIFICATION DESCRIPTION

’ }’ ’;’
<S-RGRelation> ::= <SlotName> ’:’ <RGs> ’;’
<RGs> ::= <ResourceGroupName> { ’,’ <ResourceGroupName> }
<OG-RGTable> ::= ’opegroup resgroup’ ’ {’

{ <OG-RGRelation> }
’ }’ ’;’

<OG-RGRelation> ::= <OperationGroupName> ’:’
<ResourceGroupName> { ’,’ <ResourceGroupName> } ’;’

<OperationDefPart> ::= { <OperationDef> }
<OperationDef> ::= ’micro operation’ <OperationName> ’on’

<ResourceGroupName> ’ {’
<OperationBehaviorDesc>
’ }’ ’;’

<OperationBehaviorDesc> ::= <GlobalVariableDeclPart>
<VariableDeclPart>
<MicroOperationDescriptionPart>

<GlobalVariableDeclPart> ::= { <GlobalVariableDecl> }
<GlobalVariableDecl> ::= ’extern’ <VariableDecl>

<MicroOperationDescriptionPart> ::= { <MicroOperationDescription> }
<MicroOperationDescription> ::= ’stage’ <StageNumber> ’ :’ ’ {’

<StageVariableDeclPart>
<Expressions>
’ }’ ’;’

<StageNumber> ::= <NaturalNumber>
<StageVariableDeclPart> ::= <VariableDeclPart>
<Expressions> ::= { <Expression> }
<Expression> ::= <Assignment> |<ConditionalAssignment> |

<ConditionalFunctionalExecution> |<InternalInterrupt > |
<ConditionalInternalInterrupt>

<Assignment> ::= <LeftSide> ’=’ <RightSide> ’;’
<LeftSide> ::= <VariableName> |<VariableNameSet> |’null ’
<RightSide> ::= <BitwiseAND> |<BitwiseOR> |<BitwiseNOT> |<Comparison> |

<Aggregation> |<ResourceRef> |<BitSelect> |<RangeSelec t> |
<BinaryConstant> |
<VariableRef>

<BitwiseAND> ::= <VariableRef> ’&’ <VariableRef>
<BitwiseOR> ::= <VariableRef> ’|’ <VariableRef>
<BitwiseNOT> ::= ’˜’ <VariableRef>
<Comparison> ::= <VariableRef> <RationalOperator> <Bina ryConstant>
<RationalOperator> ::= ’==’ |’!=’
<VariableRef> ::= <VariableName> |<FieldName>
<VariableName> ::= <WireName>
<VariableNameSet> ::= ’ <’ <VariableName> { ’,’ <VariableName> } ’ >’
<Aggregation> ::= ’ <’ <VariableRef> { ’,’ <VariableRef> } ’ >’
<ResourceRef> ::= <ResourceName> ’.’ <FunctionName> ’(’ [<Parameters>] ’)’
<FunctionName> ::= <Identifier>
<Parameters> ::= <Parameter> { ’,’ <Parameter> }
<Parameter> ::= <VariableRef>
<BitSelect> ::= <VariableRef> ’[’ <NonNegativeInteger> ’]’
<RangeSelect> ::= <VariableRef> <BitRange>
<ConditionalAssignment> ::= <LeftSide> ’=’ ’(’ <BitVaria bleRef> ’)’ ’?’

<VariableRef> ’:’ <VariableRef> ’;’
<BitVariableRef> ::= <VariableRef>
<ConditionalFunctionalExecution> ::= <LeftSide> ’=’ ’[’ <BitVariableRef> ’]’ ’?’

<ResourceFunctionDef> ’;’
<ResourceFunctionDef> ::= <ResourceName> ’.’ <FunctionN ame> ’(’ [<Parameters>] ’)’
<InternalInterrupt> ::= ’throw’ <InterruptName> ’;’
<ConditionalInternalInterrupt> ::= ’[’ <BitVariableRef > ’]’ ’throw’ <InterruptName> ’;’

Appendix B

Processor description for the
proposed VLIW generation method

This chapter shows a sample of processor specification description of VLIW processor shown
in Section 3.7.2 that is designed based on the proposed resource group assignment algorithm.
Since it is too long (11664 lines), this chapter only shows anexcerpt from it.

1 mod CPU {
2 operation_length 32;
3 slots { slot1, slot2, slot3, slot4 };
4 stages { IF, ID, EXE, MEM, WB };
5 build_stage IF;
6 dispatch_stage ID;
7 decode_stage ID;
8 use_register_bypass no;
9 use_memory_bypass no;
10 use_delayed_branch yes;
11 num_delayed_slots 1;
12 priority "Area";
13 resource PC : program_counter {
14 model "/workdb/peas/pcu";
15 for_simulation {
16 design_level "Behavior";
17 parameter "bit_width=32 increment_step=8 adder_algorit hm=cla";
18 };
19 for_synthesis {
20 design_level "Synthesis";
21 parameter "bit_width=32 increment_step=8 adder_algorit hm=cla";
22 };
23 };
24 resource IR : instr_register {
25 model "/basicfhmdb/storage/register";
26 for_simulation {
27 design_level "Behavior";
28 parameter "bit_width=128";
29 };
30 for_synthesis {
31 design_level "Synthesis";
32 parameter "bit_width=128";
33 };
34 };
35 resource IMAU : instr_memory {
36 model "/workdb/peas/imau";
37 for_simulation {
38 design_level "Behavior";
39 parameter "bit_width=128 address_space=32";
40 };

105

106 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

41 for_synthesis {
42 design_level "Synthesis";
43 parameter "bit_width=128 address_space=32";
44 };
45 };
46 resource DMAU : data_memory {
47 model "/workdb/peas/dmau";
48 for_simulation {
49 design_level "Behavior";
50 parameter "bit_width=32 address_space=32 access_width= 8";
51 };
52 for_synthesis {
53 design_level "Synthesis";
54 parameter "bit_width=32 address_space=32 access_width= 8";
55 };
56 };
57 resource GPR : register_file {
58 model "/basicfhmdb/storage/registerfile";
59 for_simulation {
60 design_level "Behavior";
61 parameter "bit_width=32 num_register=32 num_read_port= 8 num_write_port=4";
62 };
63 for_synthesis {
64 design_level "Synthesis";
65 parameter "bit_width=32 num_register=32 num_read_port= 8 num_write_port=4";
66 };
67 };
68 resource ALU0 {
69 model "/basicfhmdb/computational/alu";
70 for_simulation {
71 design_level "Behavior";
72 parameter "bit_width=32 algorithm=cla";
73 };
74 for_synthesis {
75 design_level "Synthesis";
76 parameter "bit_width=32 algorithm=cla";
77 };
78 };
79 resource EXT00 {
80 model "/basicfhmdb/computational/extender";
81 for_simulation {
82 design_level "Behavior";
83 parameter "bit_width=16 bit_width_out=32";
84 };
85 for_synthesis {
86 design_level "Synthesis";
87 parameter "bit_width=16 bit_width_out=32";
88 };
89 };
90 resource ALU1 {
91 model "/basicfhmdb/computational/alu";
92 for_simulation {
93 design_level "Behavior";
94 parameter "bit_width=32 algorithm=cla";
95 };
96 for_synthesis {
97 design_level "Synthesis";
98 parameter "bit_width=32 algorithm=cla";
99 };
100 };
101 resource EXT01 {
102 model "/basicfhmdb/computational/extender";
103 for_simulation {
104 design_level "Behavior";
105 parameter "bit_width=16 bit_width_out=32";
106 };
107 for_synthesis {
108 design_level "Synthesis";

107

109 parameter "bit_width=16 bit_width_out=32";
110 };
111 };
112 resource ALU2 {
113 model "/basicfhmdb/computational/alu";
114 for_simulation {
115 design_level "Behavior";
116 parameter "bit_width=32 algorithm=cla";
117 };
118 for_synthesis {
119 design_level "Synthesis";
120 parameter "bit_width=32 algorithm=cla";
121 };
122 };
123 resource EXT02 {
124 model "/basicfhmdb/computational/extender";
125 for_simulation {
126 design_level "Behavior";
127 parameter "bit_width=16 bit_width_out=32";
128 };
129 for_synthesis {
130 design_level "Synthesis";
131 parameter "bit_width=16 bit_width_out=32";
132 };
133 };
134 resource MUL0 {
135 model "/basicfhmdb/computational/multiplier";
136 for_simulation {
137 design_level "Behavior";
138 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
139 };
140 for_synthesis {
141 design_level "Synthesis";
142 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
143 };
144 };
145 resource MUL1 {
146 model "/basicfhmdb/computational/multiplier";
147 for_simulation {
148 design_level "Behavior";
149 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
150 };
151 for_synthesis {
152 design_level "Synthesis";
153 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
154 };
155 };
156 resource DIV0 {
157 model "/basicfhmdb/computational/divider";
158 for_simulation {
159 design_level "Behavior";
160 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
161 };
162 for_synthesis {
163 design_level "Synthesis";
164 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
165 };
166 };
167 resource DIV1 {
168 model "/basicfhmdb/computational/divider";
169 for_simulation {
170 design_level "Behavior";
171 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
172 };
173 for_synthesis {
174 design_level "Synthesis";
175 parameter "bit_width=32 algorithm=seq adder_algorithm= cla data_type=two_complement";
176 };

108 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

177 };
178 resource SFT0 {
179 model "/basicfhmdb/computational/shifter";
180 for_simulation {
181 design_level "Behavior";
182 parameter "bit_width=32 amount=variable";
183 };
184 for_synthesis {
185 design_level "Synthesis";
186 parameter "bit_width=32 amount=variable";
187 };
188 };
189 resource SFT1 {
190 model "/basicfhmdb/computational/shifter";
191 for_simulation {
192 design_level "Behavior";
193 parameter "bit_width=32 amount=variable";
194 };
195 for_synthesis {
196 design_level "Synthesis";
197 parameter "bit_width=32 amount=variable";
198 };
199 };
200 resource SFT2 {
201 model "/basicfhmdb/computational/shifter";
202 for_simulation {
203 design_level "Behavior";
204 parameter "bit_width=32 amount=variable";
205 };
206 for_synthesis {
207 design_level "Synthesis";
208 parameter "bit_width=32 amount=variable";
209 };
210 };
211 resource EXT1 {
212 model "/basicfhmdb/computational/extender";
213 for_simulation {
214 design_level "Behavior";
215 parameter "bit_width=28 bit_width_out=32";
216 };
217 for_synthesis {
218 design_level "Synthesis";
219 parameter "bit_width=28 bit_width_out=32";
220 };
221 };
222
223 resgroup RG01ASFT {
224 member : SFT0;
225 read_access : GPR.data_out0, GPR.data_out1;
226 write_access : GPR.r_sel0, GPR.r_sel1, GPR.data_in0, GPR .w_sel0, GPR.w_enb0;
227 };
228 resgroup RG02ASFT {
229 member : SFT0;
230 read_access : GPR.data_out2, GPR.data_out3;
231 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1, GPR .w_sel1, GPR.w_enb1;
232 };
233 resgroup RG02BSFT {
234 member : SFT1;
235 read_access : GPR.data_out2, GPR.data_out3;
236 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1, GPR .w_sel1, GPR.w_enb1;
237 };
238 resgroup RG03BSFT {
239 member : SFT1;
240 read_access : GPR.data_out4, GPR.data_out5;
241 write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2, GPR .w_sel2, GPR.w_enb2;
242 };
243 resgroup RG03CSFT {
244 member : SFT2;

109

245 read_access : GPR.data_out4, GPR.data_out5;
246 write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2, GPR .w_sel2, GPR.w_enb2;
247 };
248 resgroup RG04CSFT {
249 member : SFT2;
250 read_access : GPR.data_out6, GPR.data_out7;
251 write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3, GPR .w_sel3, GPR.w_enb3;
252 };
253 resgroup RG01AALU {
254 member : ALU0, EXT00;
255 read_access : GPR.data_out0, GPR.data_out1;
256 write_access : GPR.r_sel0, GPR.r_sel1, GPR.data_in0, GPR .w_sel0, GPR.w_enb0;
257 };
258 resgroup RG02AALU {
259 member : ALU0, EXT00;
260 read_access : GPR.data_out2, GPR.data_out3;
261 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1, GPR .w_sel1, GPR.w_enb1;
262 };
263 resgroup RG02BALU {
264 member : ALU1, EXT01;
265 read_access : GPR.data_out2, GPR.data_out3;
266 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1, GPR .w_sel1, GPR.w_enb1;
267 };
268 -------- snip --------
269 resgroup RG03CMEM {
270 member : ALU2, EXT02, DMAU;
271 read_access : GPR.data_out4, GPR.data_out5;
272 write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2, GPR .w_sel2, GPR.w_enb2;
273 };
274 resgroup RG04CMEM {
275 member : ALU2, EXT02, DMAU;
276 read_access : GPR.data_out6, GPR.data_out7;
277 write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3, GPR .w_sel3, GPR.w_enb3;
278 };
279 resgroup RG01ANOP {
280 read_access : GPR.data_out0, GPR.data_out1;
281 write_access : GPR.r_sel0, GPR.r_sel1, GPR.data_in0, GPR .w_sel0, GPR.w_enb0;
282 };
283 resgroup RG02ANOP {
284 read_access : GPR.data_out2, GPR.data_out3;
285 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1, GPR .w_sel1, GPR.w_enb1;
286 };
287 resgroup RG03ANOP {
288 read_access : GPR.data_out4, GPR.data_out5;
289 write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2, GPR .w_sel2, GPR.w_enb2;
290 };
291 resgroup RG04ANOP {
292 read_access : GPR.data_out6, GPR.data_out7;
293 write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3, GPR .w_sel3, GPR.w_enb3;
294 };

110 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

449 opetype R_R{
450 opecode [31:26] opecode__;
451 operand [25:21] rs0;
452 operand [20:16] rs1;
453 operand [15:11] rd;
454 opecode [10:0] func;
455 };
456 opetype R_I{
457 opecode [31:26] opecode__;
458 operand [25:21] rs0;
459 operand [20:16] rd;
460 operand [15:0] const__;
461 };
462 opetype L_S{
463 opecode [31:26] opecode__;
464 operand [25:21] rs0;
465 operand [20:16] rd;
466 operand [15:0] const__;
467 };
468 opetype B{
469 opecode [31:26] opecode__;
470 operand [25:21] rs0;
471 opecode [20:16] fld_20_16;
472 operand [15:0] const__;
473 };
474 opetype J{
475 opecode [31:26] opecode__;
476 operand [25:0] const__;
477 };
478 opetype JR{
479 opecode [31:26] fld_31_26;
480 operand [25:21] rs0;
481 opecode [20:11] fld_20_11;
482 opecode [10:0] func;
483 };
484 opetype LHI{
485 opecode [31:26] opecode__;
486 opecode [25:21] fld_25_21;
487 operand [20:16] rd;
488 operand [15:0] const__;
489 };
490 operation ADD : R_R{
491 opecode opecode__ = "000000";
492 opecode func = "00000100000";
493 };
494 operation ADDU : R_R{
495 opecode opecode__ = "000000";
496 opecode func = "00000100001";
497 };
498 operation ADDI : R_I{
499 opecode opecode__ = "001000";
500 };
501 operation ADDUI : R_I{
502 opecode opecode__ = "001001";
503 };
504 operation SUB : R_R{
505 opecode opecode__ = "000000";
506 opecode func = "00000100010";
507 };
508 operation SUBU : R_R{
509 opecode opecode__ = "000000";
510 opecode func = "00000100011";
511 };
512 operation SUBI : R_I{
513 opecode opecode__ = "001010";
514 };

515 operation SUBUI : R_I{
516 opecode opecode__ = "001011";
517 };
518 operation MULT : R_R{
519 opecode opecode__ = "000000";
520 opecode func = "00000011000";
521 };
522 operation MULTU : R_R{
523 opecode opecode__ = "000000";
524 opecode func = "00000011001";
525 };
526 operation DIV : R_R{
527 opecode opecode__ = "000000";
528 opecode func = "00000011010";
529 };
530 operation DIVU : R_R{
531 opecode opecode__ = "000000";
532 opecode func = "00000011011";
533 };
534 operation AND : R_R{
535 opecode opecode__ = "000000";
536 opecode func = "00000100100";
537 };
538 operation ANDI : R_I{
539 opecode opecode__ = "001100";
540 };
541 operation OR : R_R{
542 opecode opecode__ = "000000";
543 opecode func = "00000100101";
544 };
545 operation ORI : R_I{
546 opecode opecode__ = "001101";
547 };
548 operation XOR : R_R{
549 opecode opecode__ = "000000";
550 opecode func = "00000100110";
551 };
552 operation XORI : R_I{
553 opecode opecode__ = "001110";
554 };
555 operation SLL : R_R{
556 opecode opecode__ = "000000";
557 opecode func = "00000000000";
558 };
559 operation SRL : R_R{
560 opecode opecode__ = "000000";
561 opecode func = "00000000010";
562 };
563 operation SRA : R_R{
564 opecode opecode__ = "000000";
565 opecode func = "00000000011";
566 };
567 operation SLLI : R_I{
568 opecode opecode__ = "010000";
569 };
570 operation SRLI : R_I{
571 opecode opecode__ = "010001";
572 };
573 operation SRAI : R_I{
574 opecode opecode__ = "010010";
575 };
576 operation SLT : R_R{
577 opecode opecode__ = "000000";
578 opecode func = "00000101010";
579 };
580 operation SGT : R_R{
581 opecode opecode__ = "000000";
582 opecode func = "00000101011";

111

583 };
584 operation SLE : R_R{
585 opecode opecode__ = "000000";
586 opecode func = "00000101100";
587 };
588 operation SGE : R_R{
589 opecode opecode__ = "000000";
590 opecode func = "00000101101";
591 };
592 operation SEQ : R_R{
593 opecode opecode__ = "000000";
594 opecode func = "00000101110";
595 };
596 operation SNE : R_R{
597 opecode opecode__ = "000000";
598 opecode func = "00000101111";
599 };
600 operation SLTI : R_I{
601 opecode opecode__ = "011010";
602 };
603 operation SGTI : R_I{
604 opecode opecode__ = "011011";
605 };
606 operation SLEI : R_I{
607 opecode opecode__ = "011100";
608 };
609 operation SGEI : R_I{
610 opecode opecode__ = "011101";
611 };
612 operation SEQI : R_I{
613 opecode opecode__ = "011110";
614 };
615 operation SNEI : R_I{
616 opecode opecode__ = "011111";
617 };
618 operation LHI : LHI{
619 opecode opecode__ = "001111";
620 opecode fld_25_21 = "00000";
621 };
622 operation LB : L_S{
623 opecode opecode__ = "100000";
624 };
625 operation LH : L_S{
626 opecode opecode__ = "100001";
627 };
628 operation LW : L_S{
629 opecode opecode__ = "100011";
630 };
631 -------- snip --------
632 operation SGTU : R_R{
633 opecode opecode__ = "000000";
634 opecode func = "00000111011";
635 };
636 operation SLEU : R_R{
637 opecode opecode__ = "000000";
638 opecode func = "00000111100";
639 };
640 operation SGEU : R_R{
641 opecode opecode__ = "000000";
642 opecode func = "00000111101";
643 };
644 opegroup OG_SFT {
645 SLL, SRL, SRA, SLLI, SRLI, SRAI
646 };
647 opegroup OG_ALU {
648 ADD, ADDU, ADDI, ADDUI, SUB, SUBU,
649 SUBI, SUBUI, AND, ANDI, OR, ORI,
650 XOR, XORI, SLT, SGT, SLE, SGE,

651 SEQ, SNE, SLTI, SGTI, SLEI, SGEI,
652 SEQI, SNEI, SLTU, SGTU, SLEU, SGEU
653 };
654 opegroup OG_JMP {
655 BEQZ, BNEZ, J, JAL, JR, JALR
656 };
657 opegroup OG_MEM {
658 LB, LH, LW, LBU, LHU, SB, SH, SW
659 };
660 opegroup OG_MUL {
661 MULT, MULTU
662 };
663 opegroup OG_DIV {
664 DIV, DIVU, MOD, MODU
665 };
666 opegroup OG_NOP {
667 LHI
668 };
669 top_module CPU;
670 clock_port CLK;
671 reset_port Reset;
672 port [31:0] InstAB {
673 direction out;
674 connect_to IMAU.addr_bus;
675 };
676 port [127:0] InstDB {
677 direction in;
678 connect_to IMAU.data_bus;
679 };
680 port [31:0] DataAB {
681 direction out;
682 connect_to DMAU.addr_bus;
683 };
684 port [31:0] DataDB {
685 direction inout;
686 connect_to DMAU.data_bus;
687 };
688 port DataReq {
689 direction out;
690 connect_to DMAU.req_bus;
691 };
692 port DataAck {
693 direction in;
694 connect_to DMAU.ack_bus;
695 };
696 port [3:0] DataWm {
697 direction out;
698 connect_to DMAU.w_mode_bus;
699 };
700 reset_interrupt reset{
701 cause_condition {
702 port Reset;
703 active_value ’1’;
704 };
705 };
706 common_pre_dispatch {
707 stage 1 {
708 wire [31:0] current_pc;
709 wire [127:0] inst;
710
711 current_pc = PC.read();
712 inst = IMAU.read(current_pc);
713 null = IR.write(inst);
714 null = PC.inc(); };
715 stage 2 {};
716 };

112 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

767 dispatch_table {
768 slot_opegroup {
769 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_JM P};
770 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_AL U};
771 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_MU L};
772 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_DI V};
773 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_ME M};
774 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_NO P};
775 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_SF T};
776 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_AL U};
777 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_MU L};
778 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_DI V};
779 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_NO P};
780 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_SF T};
781 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_JM P};
782 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_AL U};
783 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_MU L};
784 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_DI V};
785 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_ME M};
786 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_NO P};
787 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_SF T};
788 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_JM P};
789 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_AL U};
790 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_MU L};
791 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_DI V};
792 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_ME M};
793 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_NO P};
794 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_SF T};
795 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_JM P};
796 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_AL U};
797 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_MU L};
798 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_DI V};
799 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_ME M};
800 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_NO P};
801 {slot1: OG_SFT, slot2: OG_SFT, slot3: OG_MEM, slot4: OG_SF T};
802 -------- snip (a total of 1565 patterns) --------
803 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_SF T};
804 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_JM P};
805 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_AL U};
806 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_MU L};
807 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_DI V};
808 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_ME M};
809 {slot1: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_NO P};
810 };
811 slot_resgroup {
812 slot1: RG01ASFT, RG01AJMP, RG01AALU, RG01AMUL, RG01ADIV, RG01AMEM, RG01ANOP;
813 slot2: RG02ASFT, RG02BSFT, RG02AJMP, RG02BJMP, RG02AALU, RG02BALU,
814 RG02AMUL, RG02BMUL, RG02ADIV, RG02BDIV, RG02AMEM, RG02BMEM, RG02ANOP;
815 slot3: RG03BSFT, RG03CSFT, RG03AJMP, RG03BJMP, RG03CJMP, RG03BALU,
816 RG03CALU, RG03AMUL, RG03BMUL, RG03ADIV, RG03BDIV, RG03AMEM,
817 RG03BMEM, RG03CMEM, RG03ANOP;
818 slot4: RG04CSFT, RG04AJMP, RG04BJMP, RG04CJMP, RG04CALU, RG04BMUL,
819 RG04BDIV, RG04AMEM, RG04BMEM, RG04CMEM, RG04ANOP;
820 };
821 opegroup_resgroup {
822 OG_SFT: RG01ASFT, RG02ASFT, RG02BSFT, RG03BSFT, RG03CSFT, RG04CSFT;
823 OG_JMP: RG01AJMP, RG02AJMP, RG02BJMP, RG03AJMP, RG03BJMP, RG03CJMP,
824 RG04AJMP, RG04BJMP, RG04CJMP;
825 OG_ALU: RG01AALU, RG02AALU, RG02BALU, RG03BALU, RG03CALU, RG04CALU;
826 OG_MUL: RG01AMUL, RG02AMUL, RG02BMUL, RG03AMUL, RG03BMUL, RG04BMUL;
827 OG_DIV: RG01ADIV, RG02ADIV, RG02BDIV, RG03ADIV, RG03BDIV , RG04BDIV;
828 OG_MEM: RG01AMEM, RG02AMEM, RG02BMEM, RG03AMEM, RG03BMEM, RG03CMEM,
829 RG04AMEM, RG04BMEM, RG04CMEM;
830 OG_NOP: RG01ANOP, RG02ANOP, RG03ANOP, RG04ANOP;
831 };
832 };

113

846 micro_operation SLL on RG01ASFT {
847 wire [31:0] source0;
848 wire [31:0] source1;
849 wire [31:0] result;
850 stage 2 {
851 source0 = GPR.read0(rs0);
852 source1 = GPR.read1(rs1);
853 };
854 stage 3 {
855 wire [4:0] shamt;
856
857 shamt = source1[4:0];
858 result = SFT0.sll(source0, shamt);
859 };
860 stage 4 {
861 };
862 stage 5 {
863 null = GPR.write0(rd, result);
864 };
865 };
866 micro_operation SRL on RG01ASFT {
867 wire [31:0] source0;
868 wire [31:0] source1;
869 wire [31:0] result;
870 stage 2 {
871 source0 = GPR.read0(rs0);
872 source1 = GPR.read1(rs1);
873 };
874 stage 3 {
875 wire [4:0] shamt;
876
877 shamt = source1[4:0];
878 result = SFT0.srl(source0, shamt);
879 };
880 stage 4 {
881 };
882 stage 5 {
883 null = GPR.write0(rd, result);
884 };
885 };
886 -------- snip --------
887 micro_operation SRAI on RG01ASFT {
888 wire [31:0] result;
889 wire [31:0] source0;
890
891 wire [4:0] shamt;
892 stage 2 {
893 source0 = GPR.read0(rs0);
894 shamt = const__[4:0];
895
896 };
897 stage 3 {
898 result = SFT0.sra(source0, shamt);
899 };
900 stage 4 {
901 };
902 stage 5 {
903 null = GPR.write0(rd, result);
904 };
905 };
906 micro_operation SLL on RG02ASFT {
907 wire [31:0] source0;
908 wire [31:0] source1;
909 wire [31:0] result;
910 stage 2 {
911 source0 = GPR.read2(rs0);

912 source1 = GPR.read3(rs1);
913 };
914 stage 3 {
915 wire [4:0] shamt;
916
917 shamt = source1[4:0];
918 result = SFT0.sll(source0, shamt);
919 };
920 stage 4 {
921 };
922 stage 5 {
923 null = GPR.write1(rd, result);
924 };
925 };
926 -------- snip --------
927 micro_operation SRAI on RG02ASFT {
928 wire [31:0] result;
929 wire [31:0] source0;
930
931 wire [4:0] shamt;
932 stage 2 {
933 source0 = GPR.read2(rs0);
934 shamt = const__[4:0];
935
936 };
937 stage 3 {
938 result = SFT0.sra(source0, shamt);
939 };
940 stage 4 {
941 };
942 stage 5 {
943 null = GPR.write1(rd, result);
944 };
945 };
946 micro_operation SLL on RG02BSFT {
947 wire [31:0] source0;
948 wire [31:0] source1;
949 wire [31:0] result;
950 stage 2 {
951 source0 = GPR.read2(rs0);
952 source1 = GPR.read3(rs1);
953 };
954 stage 3 {
955 wire [4:0] shamt;
956
957 shamt = source1[4:0];
958 result = SFT0.sll(source0, shamt);
959 };
960 stage 4 {
961 };
962 stage 5 {
963 null = GPR.write1(rd, result);
964 };
965 };
966 -------- snip --------
967 micro_operation SRAI on RG02BSFT {
968 wire [31:0] result;
969 wire [31:0] source0;
970
971 wire [4:0] shamt;
972 stage 2 {
973 source0 = GPR.read2(rs0);
974 shamt = const__[4:0];
975
976 };
977 stage 3 {
978 result = SFT0.sra(source0, shamt);
979 };

114 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

980 stage 4 {
981 };
982 stage 5 {
983 null = GPR.write1(rd, result);
984 };
985 };
986 micro_operation SLL on RG03BSFT {
987 wire [31:0] source0;
988 wire [31:0] source1;
989 wire [31:0] result;
990 stage 2 {
991 source0 = GPR.read4(rs0);
992 source1 = GPR.read5(rs1);
993 };
994 stage 3 {
995 wire [4:0] shamt;
996
997 shamt = source1[4:0];
998 result = SFT0.sll(source0, shamt);
999 };
1000 stage 4 {
1001 };
1002 stage 5 {
1003 null = GPR.write2(rd, result);
1004 };
1005 };
1006 -------- snip --------
1007 micro_operation SRAI on RG03BSFT {
1008 wire [31:0] result;
1009 wire [31:0] source0;
1010
1011 wire [4:0] shamt;
1012 stage 2 {
1013 source0 = GPR.read4(rs0);
1014 shamt = const__[4:0];
1015
1016 };
1017 stage 3 {
1018 result = SFT0.sra(source0, shamt);
1019 };
1020 stage 4 {
1021 };
1022 stage 5 {
1023 null = GPR.write2(rd, result);
1024 };
1025 };
1026 micro_operation SLL on RG03CSFT {
1027 wire [31:0] source0;
1028 wire [31:0] source1;
1029 wire [31:0] result;
1030 stage 2 {
1031 source0 = GPR.read4(rs0);
1032 source1 = GPR.read5(rs1);
1033 };
1034 stage 3 {
1035 wire [4:0] shamt;
1036
1037 shamt = source1[4:0];
1038 result = SFT0.sll(source0, shamt);
1039 };
1040 stage 4 {
1041 };
1042 stage 5 {
1043 null = GPR.write2(rd, result);
1044 };
1045 };
1046 -------- snip --------
1047 micro_operation SRAI on RG03CSFT {

1048 wire [31:0] result;
1049 wire [31:0] source0;
1050
1051 wire [4:0] shamt;
1052 stage 2 {
1053 source0 = GPR.read4(rs0);
1054 shamt = const__[4:0];
1055
1056 };
1057 stage 3 {
1058 result = SFT0.sra(source0, shamt);
1059 };
1060 stage 4 {
1061 };
1062 stage 5 {
1063 null = GPR.write2(rd, result);
1064 };
1065 };
1066 micro_operation SLL on RG04CSFT {
1067 wire [31:0] source0;
1068 wire [31:0] source1;
1069 wire [31:0] result;
1070 stage 2 {
1071 source0 = GPR.read6(rs0);
1072 source1 = GPR.read7(rs1);
1073 };
1074 stage 3 {
1075 wire [4:0] shamt;
1076
1077 shamt = source1[4:0];
1078 result = SFT0.sll(source0, shamt);
1079 };
1080 stage 4 {
1081 };
1082 stage 5 {
1083 null = GPR.write3(rd, result);
1084 };
1085 };
1086 -------- snip --------
1087 micro_operation SRAI on RG04CSFT {
1088 wire [31:0] result;
1089 wire [31:0] source0;
1090
1091 wire [4:0] shamt;
1092 stage 2 {
1093 source0 = GPR.read6(rs0);
1094 shamt = const__[4:0];
1095
1096 };
1097 stage 3 {
1098 result = SFT0.sra(source0, shamt);
1099 };
1100 stage 4 {
1101 };
1102 stage 5 {
1103 null = GPR.write3(rd, result);
1104 };
1105 };
1106 micro_operation BEQZ on RG01AJMP {
1107 wire [31:0] temp_pc;
1108 wire [31:0] offset;
1109 wire [31:0] source0;
1110 stage 2 {
1111 wire [31:0] ext_Const;
1112 wire [1:0] zero2;
1113 wire [29:0] temp_offset;
1114
1115 source0 = GPR.read0(rs0);

115

1116 ext_Const = EXT00.sign(const__);
1117 zero2 = "00";
1118 temp_offset = ext_Const[29:0];
1119 offset = <temp_offset, zero2>;
1120 temp_pc = PC.read();
1121 };
1122 stage 3 {
1123 wire cond;
1124 wire [31:0] target;
1125 wire [3:0] flag;
1126
1127 cond = source0 ==
1128 "00000000000000000000000000000000";
1129 <target,flag>
1130 = ALU0.add(temp_pc, offset);
1131 null = [cond] PC.write(target);
1132 };
1133 stage 4 {
1134 };
1135 stage 5 {
1136 };
1137 };
1138 micro_operation BNEZ on RG01AJMP {
1139 wire [31:0] temp_pc;
1140 wire [31:0] offset;
1141 wire [31:0] source0;
1142 stage 2 {
1143 wire [31:0] ext_Const;
1144 wire [1:0] zero2;
1145 wire [29:0] temp_offset;
1146
1147 source0 = GPR.read0(rs0);
1148 ext_Const = EXT00.sign(const__);
1149 zero2 = "00";
1150 temp_offset = ext_Const[29:0];
1151 offset = <temp_offset, zero2>;
1152 temp_pc = PC.read();
1153 };
1154 stage 3 {
1155 wire cond;
1156 wire [31:0] target;
1157 wire [3:0] flag;
1158
1159 cond = source0 !=
1160 "00000000000000000000000000000000";
1161 <target,flag>
1162 = ALU0.add(temp_pc, offset);
1163 null = [cond] PC.write(target);
1164 };
1165 stage 4 {
1166 };
1167 stage 5 {
1168 };
1169 };
1170 micro_operation J on RG01AJMP {
1171 wire [31:0] temp_pc;
1172 wire [31:0] offset;
1173 stage 2 {
1174 wire [1:0] zero2;
1175 wire [27:0] ext_const__;
1176
1177 temp_pc = PC.read();
1178 zero2 = "00";
1179 ext_const__ = <const__, zero2>;
1180 offset = EXT1.sign(ext_const__);
1181 };
1182 stage 3 {
1183 wire [31:0] target;

1184 wire [3:0] flag;
1185
1186 <target, flag>
1187 = ALU0.add(temp_pc, offset);
1188 null = PC.write(target);
1189 };
1190 stage 4 {
1191 };
1192 stage 5 {
1193 };
1194 };
1195 micro_operation JAL on RG01AJMP {
1196 wire [31:0] link;
1197 wire [31:0] temp_pc;
1198 wire [31:0] offset;
1199 stage 2 {
1200 wire [1:0] zero2;
1201 wire [27:0] ext_const__;
1202
1203 temp_pc = PC.read();
1204 zero2 = "00";
1205 ext_const__ = <const__, zero2>;
1206 offset = EXT1.sign(ext_const__);
1207
1208
1209 link = PC.read();
1210 };
1211 stage 3 {
1212 wire [31:0] target;
1213 wire [3:0] flag;
1214
1215 <target, flag>
1216 = ALU0.add(temp_pc, offset);
1217 null = PC.write(target);
1218 };
1219 stage 4 {
1220 };
1221 stage 5 {
1222 wire [4:0] reg_num;
1223
1224 reg_num = "11100";
1225 null = GPR.write0(reg_num, link);
1226 };
1227 };
1228 -------- snip --------
1229 micro_operation ADD on RG01AALU {
1230 wire [31:0] source0;
1231 wire [31:0] source1;
1232 wire [31:0] result;
1233 stage 2 {
1234 source0 = GPR.read0(rs0);
1235 source1 = GPR.read1(rs1);
1236 };
1237 stage 3 {
1238 wire [3:0] flag;
1239
1240 <result, flag>
1241 = ALU0.add(source0, source1);
1242 };
1243 stage 4 {
1244 };
1245 stage 5 {
1246 null = GPR.write0(rd, result);
1247 };
1248 };
1249 micro_operation ADDU on RG01AALU {
1250 wire [31:0] source0;
1251 wire [31:0] source1;

116 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

1252 wire [31:0] result;
1253 stage 2 {
1254 source0 = GPR.read0(rs0);
1255 source1 = GPR.read1(rs1);
1256 };
1257 stage 3 {
1258 wire [3:0] flag;
1259
1260 <result, flag>
1261 = ALU0.addu(source0, source1);
1262 };
1263 stage 4 {
1264 };
1265 stage 5 {
1266 null = GPR.write0(rd, result);
1267 };
1268 };
1269 micro_operation ADDI on RG01AALU {
1270 wire [31:0] result;
1271 wire [31:0] source0;
1272 wire [31:0] source1;
1273 stage 2 {
1274 source0 = GPR.read0(rs0);
1275 source1 = EXT00.sign(const__);
1276 };
1277 stage 3 {
1278 wire [3:0] flag;
1279
1280 <result, flag>
1281 = ALU0.add(source0, source1);
1282 };
1283 stage 4 {
1284 };
1285 stage 5 {
1286 null = GPR.write0(rd, result);
1287 };
1288 };
1289 micro_operation ADDUI on RG01AALU {
1290 wire [31:0] result;
1291 wire [31:0] source0;
1292 wire [31:0] source1;
1293 stage 2 {
1294 source0 = GPR.read0(rs0);
1295 source1 = EXT00.sign(const__);
1296 };
1297 stage 3 {
1298 wire [3:0] flag;
1299
1300 <result, flag>
1301 = ALU0.addu(source0, source1);
1302 };
1303 stage 4 {
1304 };
1305 stage 5 {
1306 null = GPR.write0(rd, result);
1307 };
1308 };
1309 -------- snip --------
1310 micro_operation ADD on RG02AALU {
1311 wire [31:0] source0;
1312 wire [31:0] source1;
1313 wire [31:0] result;
1314 stage 2 {
1315 source0 = GPR.read2(rs0);
1316 source1 = GPR.read3(rs1);
1317 };
1318 stage 3 {
1319 wire [3:0] flag;

1320
1321 <result, flag>
1322 = ALU0.add(source0, source1);
1323 };
1324 stage 4 {
1325 };
1326 stage 5 {
1327 null = GPR.write1(rd, result);
1328 };
1329 };
1330 -------- snip --------
1331 micro_operation MULT on RG01AMUL {
1332 wire [31:0] source0;
1333 wire [31:0] source1;
1334 wire [31:0] result;
1335 stage 2 {
1336 source0 = GPR.read0(rs0);
1337 source1 = GPR.read1(rs1);
1338 };
1339 stage 3 {
1340 wire [63:0] tmp_result;
1341
1342 tmp_result
1343 = MUL0.mul(source0, source1);
1344 result = tmp_result[31:0];
1345 };
1346 stage 4 {
1347 };
1348 stage 5 {
1349 null = GPR.write0(rd, result);
1350 };
1351 };
1352 micro_operation MULTU on RG01AMUL {
1353 wire [31:0] source0;
1354 wire [31:0] source1;
1355 wire [31:0] result;
1356 stage 2 {
1357 source0 = GPR.read0(rs0);
1358 source1 = GPR.read1(rs1);
1359 };
1360 stage 3 {
1361 wire [63:0] tmp_result;
1362
1363 tmp_result
1364 = MUL0.mulu(source0, source1);
1365 result = tmp_result[31:0];
1366 };
1367 stage 4 {
1368 };
1369 stage 5 {
1370 null = GPR.write0(rd, result);
1371 };
1372 };
1373 micro_operation MULT on RG02AMUL {
1374 wire [31:0] source0;
1375 wire [31:0] source1;
1376 wire [31:0] result;
1377 stage 2 {
1378 source0 = GPR.read2(rs0);
1379 source1 = GPR.read3(rs1);
1380 };
1381 stage 3 {
1382 wire [63:0] tmp_result;
1383
1384 tmp_result
1385 = MUL0.mul(source0, source1);
1386 result = tmp_result[31:0];
1387 };

117

1388 stage 4 {
1389 };
1390 stage 5 {
1391 null = GPR.write1(rd, result);
1392 };
1393 };
1394 -------- snip --------
1395 micro_operation DIV on RG01ADIV {
1396 wire [31:0] source0;
1397 wire [31:0] source1;
1398 wire [31:0] result;
1399 wire [31:0] mod_result;
1400 stage 2 {
1401 source0 = GPR.read0(rs0);
1402 source1 = GPR.read1(rs1);
1403 };
1404 stage 3 {
1405 wire div_flag;
1406
1407 <result, mod_result, div_flag>
1408 = DIV0.div(source0, source1);
1409 };
1410 stage 4 {
1411 };
1412 stage 5 {
1413 null = GPR.write0(rd, result);
1414 };
1415 };
1416 micro_operation DIVU on RG01ADIV {
1417 wire [31:0] source0;
1418 wire [31:0] source1;
1419 wire [31:0] result;
1420 wire [31:0] mod_result;
1421 stage 2 {
1422 source0 = GPR.read0(rs0);
1423 source1 = GPR.read1(rs1);
1424 };
1425 stage 3 {
1426 wire div_flag;
1427
1428 <result, mod_result, div_flag>
1429 = DIV0.divu(source0, source1);
1430 };
1431 stage 4 {
1432 };
1433 stage 5 {
1434 null = GPR.write0(rd, result);
1435 };
1436 };
1437 micro_operation MOD on RG01ADIV {
1438 wire [31:0] source0;
1439 wire [31:0] source1;
1440 wire [31:0] result;
1441 wire [31:0] div_result;
1442 stage 2 {
1443 source0 = GPR.read0(rs0);
1444 source1 = GPR.read1(rs1);
1445 };
1446 stage 3 {
1447 wire div_flag;
1448
1449 <div_result, result, div_flag>
1450 = DIV0.div(source0, source1);
1451 };
1452 stage 4 {
1453 };
1454 stage 5 {
1455 null = GPR.write0(rd, result);

1456 };
1457 };
1458 -------- snip --------
1459 micro_operation LB on RG01AMEM {
1460 wire [31:0] source0;
1461 wire [31:0] source1;
1462 wire [31:0] addr;
1463 wire [31:0] result;
1464 stage 2 {
1465 source0 = GPR.read0(rs0);
1466 source1 = EXT00.sign(const__);
1467 };
1468 stage 3 {
1469 wire [3:0] flag;
1470 <addr,flag>
1471 = ALU0.add(source0,source1);
1472 };
1473 stage 4 {
1474 wire addr_err;
1475 <result, addr_err> = DMAU.lb(addr);
1476
1477 };
1478 stage 5 {
1479 null = GPR.write0(rd, result);
1480 };
1481 };
1482 micro_operation LH on RG01AMEM {
1483 wire [31:0] source0;
1484 wire [31:0] source1;
1485 wire [31:0] addr;
1486 wire [31:0] result;
1487 stage 2 {
1488 source0 = GPR.read0(rs0);
1489 source1 = EXT00.sign(const__);
1490 };
1491 stage 3 {
1492 wire [3:0] flag;
1493 <addr,flag>
1494 = ALU0.add(source0,source1);
1495 };
1496 stage 4 {
1497 wire addr_err;
1498 <result, addr_err> = DMAU.lh(addr);
1499
1500 };
1501 stage 5 {
1502 null = GPR.write0(rd, result);
1503 };
1504 };
1505 micro_operation LW on RG01AMEM {
1506 wire [31:0] source0;
1507 wire [31:0] source1;
1508 wire [31:0] addr;
1509 wire [31:0] result;
1510 stage 2 {
1511 source0 = GPR.read0(rs0);
1512 source1 = EXT00.sign(const__);
1513 };
1514 stage 3 {
1515 wire [3:0] flag;
1516 <addr,flag>
1517 = ALU0.add(source0,source1);
1518 };
1519 stage 4 {
1520 wire addr_err;
1521 <result, addr_err>
1522 = DMAU.load(addr);
1523

118 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENERATION

1524 };
1525 stage 5 {
1526 null = GPR.write0(rd, result);
1527 };
1528 };
1529 micro_operation LBU on RG01AMEM {
1530 wire [31:0] source0;
1531 wire [31:0] source1;
1532 wire [31:0] addr;
1533 wire [31:0] result;
1534 stage 2 {
1535 source0 = GPR.read0(rs0);
1536 source1 = EXT00.sign(const__);
1537 };
1538 stage 3 {
1539 wire [3:0] flag;
1540 <addr,flag>
1541 = ALU0.add(source0,source1);
1542 };
1543 stage 4 {
1544 wire addr_err;
1545 <result, addr_err>
1546 = DMAU.lbu(addr);
1547
1548 };
1549 stage 5 {
1550 null = GPR.write0(rd, result);
1551 };
1552 };
1553 micro_operation LHU on RG01AMEM {
1554 wire [31:0] source0;
1555 wire [31:0] source1;
1556 wire [31:0] addr;
1557 wire [31:0] result;
1558 stage 2 {
1559 source0 = GPR.read0(rs0);
1560 source1 = EXT00.sign(const__);
1561 };
1562 stage 3 {
1563 wire [3:0] flag;
1564 <addr,flag>
1565 = ALU0.add(source0,source1);
1566 };
1567 stage 4 {
1568 wire addr_err;
1569 <result, addr_err>
1570 = DMAU.lhu(addr);
1571
1572 };
1573 stage 5 {
1574 null = GPR.write0(rd, result);
1575 };
1576 };
1577 micro_operation SB on RG01AMEM {
1578 wire [31:0] data;
1579 wire [31:0] base;
1580 wire [31:0] offset;
1581 wire [31:0] addr;
1582 stage 2 {
1583 data = GPR.read0(rd);
1584 base = GPR.read1(rs0);
1585 offset = EXT00.sign(const__);
1586 };
1587 stage 3 {
1588 wire [3:0] flag;
1589
1590 <addr, flag>
1591 = ALU0.add(base,offset);

1592 };
1593 stage 4 {
1594 wire addr_err;
1595 addr_err = DMAU.sb(addr,data);
1596 };
1597 stage 5 {
1598 };
1599 };
1600 micro_operation SH on RG01AMEM {
1601 wire [31:0] data;
1602 wire [31:0] base;
1603 wire [31:0] offset;
1604 wire [31:0] addr;
1605 stage 2 {
1606 data = GPR.read0(rd);
1607 base = GPR.read1(rs0);
1608 offset = EXT00.sign(const__);
1609 };
1610 stage 3 {
1611 wire [3:0] flag;
1612
1613 <addr, flag>
1614 = ALU0.add(base,offset);
1615 };
1616 stage 4 {
1617 wire addr_err;
1618 addr_err = DMAU.sh(addr,data);
1619 };
1620 stage 5 {
1621 };
1622 };
1623 micro_operation SW on RG01AMEM {
1624 wire [31:0] data;
1625 wire [31:0] base;
1626 wire [31:0] offset;
1627 wire [31:0] addr;
1628 stage 2 {
1629 data = GPR.read0(rd);
1630 base = GPR.read1(rs0);
1631 offset = EXT00.sign(const__);
1632 };
1633 stage 3 {
1634 wire [3:0] flag;
1635
1636 <addr, flag>
1637 = ALU0.add(base,offset);
1638 };
1639 stage 4 {
1640 wire addr_err;
1641 addr_err = DMAU.store(addr,data);
1642 };
1643 stage 5 {
1644 };
1645 };
1646 -------- snip --------
1647 }

