|

) <

The University of Osaka
Institutional Knowledge Archive

. Low Power Design Method for Embedded Systems
Title .
using VLIW Processor

Author(s) |/IN#k, %352

Citation |KFRKZ, 2007, EHIHwX

Version Type|VoR

URL https://hdl. handle.net/11094/1631

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Low Power Design Method

for Embedded Systems using VLIW Processor

July 2007

Yuki KOBAYASHI

Low Power Design Method

for Embedded Systems using VLIW Processor

Submitted to
Graduate School of Information Science and Technology
Osaka University

July 2007

Yuki KOBAYASHI

Publications

Journal Articles (Refereed)

[J1] Yuki Kobayashi, Shinsuke Kobayashi, Keishi Sakanuétshinori Takeuchi, and Masa-
haru Imai: “HDL Generation Method for Configurable VLIW pessor,” IPSJ Journal,
vol. 45, no. 5, pp. 1311-1321, May, 2004 (in Japanese).

[J2] Yuki Kobayashi, Murali Jayapala, Praveen Raghavaan¢ky Catthoor, and Masaharu
Imai: “Methodology for Operation Shuffling and LO Cluster&eation for Low Energy
Heterogeneous VLIW Processors,” ACM Trans. on Design Auwttiom of Electronic
Systems (to appear).

International Conference Papers (Refereed)

[11] Yuki Kobayashi, Shinsuke Kobayashi, Koji Okuda, KeiShkanushi, Yoshinori Takeuchi,
and Masaharu Imai: “Synthesizable HDL Generation MethadClonfigurable VLIW
Processors,” in Proc. Asia and South Pacific Design AutanaBionference (ASP-
DAC), pp. 843-846, Jan., 2004.

[12] Yuki Kobayashi, Murali Jayapala, Praveen RaghavaanEky Catthoor, and Masaharu
Imai: “Operation Shuffling for Low Energy LO Cluster Geneoat on Heterogeneous
VLIW Processors,” in Proc. Embedded Systems for Real-Tim#tiedia (ESTIMe-
dia), pp. 81-86, Sep., 2005.

Domestic Conference Paper

[D1] Yuki Kobayashi, Shinsuke Kobayashi, Toshiyuki Sas#kiji Okuda, Keishi Sakanushi,
Yoshinori Takeuchi, and Masaharu Imai: “Synthesizable HB&neration Method for
Configurable VLIW Processors,” IPSJ Symposium Series, 2003, no. 11, pp. 259—-
264, Jul., 2003 (in Japanese).

Summary

Nowadays, embedded systems require severe design caistgaich as high performance and
low energy or low power consumption. Design productivitgliso a major factor for designing
embedded systems since life time of industrial productecming shorter and shorter, while
designing complex microprocessors needs design spaceratiph, where designers have to
try designing and evaluating a lot of architecture candislat

Superscalar processors are well known as high performaromegsor architecture that is-
sue multiple operations. However, superscalar processe®d a special hardware to extract
the parallelism from the instruction stream, and the addél hardware increases power con-
sumption. To achieve high performance in embedded systdmgawow power is also a key
factor, VLIW processors is assumed as a reasonable sokitioe they can issue multiple op-
erations at a time and a compiler extracts the parallelisiimout a special hardware, the power
consumption of VLIW processors is smaller than that of ssip@iar processors.

Although VLIW processors are effective solution for embeddystems which require both
of high performance and low power, there are a lot of architet parameters to be decided
by designers. Since these parameters significantly affecperformance and area, it is re-
quired to perform the design space exploration where dessggvaluate many architectures to
determine the optimal parameter set. However, designingl#\processor is very complex,
and consequently time consuming and error-prone. Hensgyrepace exploration on VLIW
processors could not have been performed sufficiently so far

Chapter 3 describes a synthesizable HDL generation methadhfigurable VLIW proces-
sors, which supports a flexible architecture model, espgdradispatching rules. Experimen-
tal results shows that the proposed method can generate \& kdcessor from a high level
specification description, which is 80% to 90% smaller thadlLHlescription. And also, the
generation time of HDL description is sufficiently shortatls from 2 to 15 seconds. Since the
specification description supports a wide range of dispatctules and the amount of descrip-
tion is sufficiently small, it is possible to generate a widege of fine-quality VLIW processors
in a short time. Therefore, the proposed method can significanprove the design produc-
tivity of VLIW processors.(Related publications: [1] and [2])

Then this thesis comes to the challenge for low power desigme power breakdown of
VLIW processors indicates that the power bottleneck of VLpv¥dcessors is in the instruction
memory hierarchy (e.g. instruction fetch). A loop bufferldy buffer architecture has been
proposed to reduce the energy in the instruction memonralghy. The buffer locates between
the instruction cache and the processor core and storaseindg-executed code to reduce the
buffer access to the more power-consuming instruction e€adtor further energy efficiency
of LO buffer in VLIW processors, LO cluster architecture redso been proposed. Since the

architecture controls the buffer access more efficientlg, énergy consumption is reduced
furthermore. The result of LO cluster generation is, howesensitive to the schedule of target
application.

An operation shuffling algorithm is described in Chapter BisTalgorithm improves energy
efficiency of LO cluster by changing operation schedulingc® an LO cluster configuration is
very sensitive to operation scheduling, various schedalegenerated and evaluated in order
to obtain an optimal schedule. By shuffling all basic blo¢&satively, energy consumption can
be reduced significantly. To reduce the size of the explonagpace, some heuristics are also
described in Chapter 4. The experimental results show Heaptoposed operation shuffling
algorithm successfully reduces the energy consumptioaiious VLIW processors including
heterogeneous VLIW processors as well as homogeneous Viddépsors(Related publica-
tions: [3] and [4])

Since the simple operation shuffling takes huge amount o guen if the above heuristics
are applied, a more efficient method to find a low energy oferachedule is then described in
Chapter 5. Based on the analysis of characteristics of gregfigient LO cluster configuration
obtained from the operation shuffling, it is found that theimal LO cluster configuration is
fixed after the first iteration of operation shuffling. Thered, in the proposed method, the
operation shuffling is performed only once for the most digant basic block and a compiler
schedules again for the obtained cluster configuration.eSaigorithms to schedule for a given
cluster configuration are described in Chapter 5. By exjlgithe scheduling algorithms, a
compiler can generate a low energy schedule in a straigtdiorway. The experimental result
shows that the proposed method can generate energy eficieatiules with 50 times shorter
exploration time.

Preface

Embedded systems are widely used in our daily life. Peoptetlus embedded systems un-
awarely, but most of processors in the world are embeddedsunth a system. Therefore,
working on the field of embedded systems is very exciting fer m

Nowadays, the life cycle of industrial products is going éodhorter and shorter. One of this
reasons is globalization which is typically led by growthtlbé internet. Merits and demerits
of globalization aside, people wants to have a new produmeoand people involved in the
development has to design a new product sooner.

Design automation, or electronic design automation (E@D#g,representative technology in
this era. We cannot ignore the technology growth and haveep kip with the technology.

Low power or low energy is becoming a keyword in recently ge&lobal warming cannot
be ignored and it will be a main bottleneck of human activityear future.

Here it is very important for us to pursue a method which masatpese challenges of
embedded systems, that are design productivity and energgumption.

This thesis first describes a generation method for configersLIW processors. This
method enables high design productivity and make the degigoe exploration easier.

An operation shuffling algorithm is then described in thiedis. This algorithm improves
energy efficiency by changing operation scheduling. SimckCcluster configuration is very
sensitive to operation scheduling, various schedulesldhmievaluated in order to obtain an
optimal schedule. By shuffling all basic blocks iterativelgergy consumption can be reduced
significantly. To reduce the size of exploration space, shewgistics are also described.

Since a simple operation shuffling takes huge amount of tivea & the above heuristics
are applied, a more efficient method to find a low energy oparachedule is then described.
By exploiting some scheduling algorithms, a compiler canegate a low energy schedule in a
straightforward way.

| hope this thesis will make a significant direction in thiddiéor our future.

Acknowledgements

| would like to deeply thank Prof. Masaharu Imai, Osaka Ursitg, my supervisor. He has
continuously supported me and my research and | always eippgéis technical insight which
is always on target. Without his graciousness, | would nethenjoyed this fruitful period in
my PhD days.

| would also like to thank Prof. Francky Catthoor, IMEC vzwdalkatholieke Universiteit
Leuven. He kindly welcomed me to IMEC and gave me a lot of tifudg and valuable
comments on my research work including journal and confeggrapers, as well as this thesis.

| am thankful to Prof. Takao Onoye, Osaka University, foriegung this thesis.

| would like to thank associate professor Yoshinori Takewetd assistant professor Keishi
Sakanushi for their daily advice. They have always takea cbour research and other worries.

| am thankful to Dr. Murali Jayapala, IMEC vzw. Without himywbuld not have finished my
work. He had made a basis of the work described in the latiéohthis thesis. His comments
always made me encouraged.

| thank Hiroaki Tanaka, Ittetsu Taniguchi, Takashi Hamatiepfumi lwato, Takuji Hieda,
and other all members of Integrated System Design LabgratoDsaka University for their
helpful comments and suggestions in many aspects, edgenialeekly seminars, and so on.
| also thank Dr. Kyoko Ueda and Dr. Mohamed AbdElISalam Has&pecial thanks to my
contemporaries, Noboru Yoneoka, Hiroaki Tanaka, and Tatsuwoshimura. Conversation,
lunch, and business trips with them were very pleasant, awd imfluenced my research as
well. Chatting with friends makes me relaxed. | also thardtestary Yukako Nishikawa for her
help especially on administrative papers.

| wish to thank Dr. Makiko Itoh, who made a basis of the workatidsed in the former half
of this thesis, and | would like to thank Dr. Shinsuke Kobdya#ho also helped the work a
lot especially for the first few years in my research.

| wish to thank Andy Lambrechts, Praveen Raghavan. Theyeldetpe a lot in the beautiful
country, Belgium. | also thank Daniele Scarpazza, Esteka R&mos, Javed Absar, David
Novo Bruna, Theo Marescaux, Tom Vander Aa, Will Moffat, arides friends in IMEC. The
stay in IMEC definitely has a significant influence not onlytlee period but also on whole of
my life.

Finally, | owe a great deal of thanks to Yukiko who gave of rerderness and sympathy
during my PhD days and | would like to thank my parents andHhaofor supporting me
through the years.

Contents

11
1.2

1.3
1.4
15
1.6

2.1

2.2
2.3

3.1
3.2

3.3

3.4

3.5

3.6

3.7

Hardware generation for VLIW processors

Introduction

VLIW Processor. o i e e e e
DesignChallenges
1.2.1 VLIW processor designchallenges
1.2.2 Low power embedded systemschallenges
Relatedwork
Approach for low power embedded systems using VLIW Bs0es
Main contributions
Thesis organization

Related work

Approaches for hardware generation
2.1.1 Approaches using a base processor . : e e
2.1.2 Approaches using an architecture description Iaglgua
Overview of low power optimizations for embedded preces
Low power optimization on instruction memory hierarchy.

Problem and motivation
VLIW processormodel
3.2.1 Dispatching model
3.2.2 Interruptmodel
Hardware architecture of targeted VLIW processor

3.3.1 Hardware overview of VLIW processor
3.3.2 VLIW Processor ExecutionModel
Synthesizable HDL generation method for scalar pragsss.
Synthesizable HDL generation method for VLIW processor.
3.5.1 Input of VLIW processor generation method

3.5.2 Instructiondispatch pattern.
3.5.3 Control signals for dispatching
3.5.4 Control signals forinterrupt
Generation method for efficient VLIW processors
3.6.1 Relation between FU allocation and design quallty e e
3.6.2 Efficient resource group assignmentmethod
Experimental Results and Discussion

vii

3.7.1 Evaluation of VLIW processor generation method 37

3.7.2 Evaluation of efficient VLIW processor generationoet 39
3.7.3 Evaluation of VLIW processor generation method witeirupt model 45
3.8 Conclusion e 46
Operation shuffling algorithm for low energy LO cluster 49
4.1 Power breakdown of VLIW processors 49
4.2 LO bufferin VLIW processorsand LOcluster 50
4.3 Motivation forimpact of compilero 51
4.4 Proposed operation shuffling algorithm on heterogesacthitectures 54
4.5 Heuristics to limit the exploration space c e imwe ... 56
4.5.1 Heuristic to shuffle one basic block atatlme N < 1°)
4.5.2 Heuristic to limit the number of basic blocks 59
4.5.3 Heuristics to select the combination of assignmemdlicates 60
4.6 Operation shuffling for multiple dataclusters 63
4.7 Experimentalresults 64
4.7.1 Potential gain of operationshuffling 65
4.7.2 Quality of pruning heuristics 66
4.7.3 Evaluation on multimedia benchmarks and differechiéecture flavors 69
4.7.4 Discussion on operation shuffling over cycle bouredari. 74
4.7.5 Relation between ILP and energy reduction 74
4.8 Conclusion e e 76
Efficient energy reduction method 79
5.1 Problemandmotivation. e 79
5.1.1 Analysis of existing operation shuffling approach 81
5.2 Overview of the proposed method 81
5.3 Scheduling for a given LO cluster configuration 82
5.3.1 Algorithmto try to fill an inefficientcluster 83
5.3.2 Algorithm to try to move operations to a shallowertdus 85
5.3.3 Algorithm to try to move operations to a wider cluster. 85
5.4 ExperimentalResults e 86
55 Conclusion 89
Conclusion and future work 91
6.1 Conclusion 91
6.2 Futurework 92
6.2.1 FutureworkonVLIW synthesis 92
6.2.2 Future work on operation shuffling 93
BNF of processor specification description 101

Processor description for the proposed VLIW generation me thod 105

List

11
1.2
1.3

3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1

4.2
4.3
4.4

of Figures

Advantage of ASIPS. 2
Overview of processor architectures.o ... 3
System model using a VLIW processor. 7
VLIW processormodel. 14
Example of the dispatchingmodel. 15
Control paths of scalar processor and VLIW processor.. 17
Execution model of VLIW processor. 18
An example of micro operation description and DFG geeedrfrom the de-
SCriptioN. e 19
AnexampleofmergingDFGs. o e 20
Example of table of instruction dispatch pattéipp. 21
Enumeration of resource group foreachslot. 22
Exampleof FUconflict. 23
Example of decode signal for resource group and opexati. 24
Merge of DFGs and selector insertion in the VLIW prooeggneration. 26
Hardware model of interrupt pipeline to handle a norkabke interrupt 27
A dispatch table of the VLIW processor in the prelimnaxperiment. 30
Architecture of VLIW processors with different resoegroup assignment. . . 32
Allocation of two FUs to threeslots. 33
Allocation oftwo FUs to fourslots. 33
Allocation of three FUstofourslots. 34
Allocation of two FUs tofiveslots. 34
Allocation of three FUs tofive slots. 35
Allocation of four FUs tofiveslots. 35
Reduction of the amount of description. 38
Trade-off between HW area and execution time of Fll?rfdtmllcatlon 39
FU allocation for ALUs inassignment 1. 42
Comparisonof hardwarearea. 43
Power breakdown of VLIW processor (a) before optimizadi (b) after con-
ventional power optimizations. 50
Power reduction by the conventional power optimization 51
A clustered VLIW processor. o v i it e 52
Example of regulation of LO bufferaccess. b3

iX

4.5 Example illustrating energy reduction by schedule geaifoperation length is

32bit) . . e e 54
4.6 Overview of an LO cluster configuration improvement gh@s in the conven-
tional way, (b) with operation shuffling (proposed method). 55
4.7 Operation shufflingineachcycle. 55
4.8 Generation of operation shuffled schedules. 57
4.9 A heuristic for multiple basic blocks.o 58
4.10 Skipping same combination heuristic. 60
4.11 Dominance checking heuristic. 61
4.12 Advanced dominance checking heuristic. 62
4.13 Dominance and advanced dominance checking. 62
4.14 Efficiency of the heuristics (epic@8 slot Homo). . . 68
4.15 Frequency distribution of energy of generated sctml(ﬂdpcm decoder@8
slotHetero). e 69
4.16 Energy reduction of all benchmarks. 70
4.17 Energy reduction by shuffling operations in multiple8B slot Hetero). . .. 70
4.18 Energy reduction by shuffling operations in multipleBR&0 slot Hetero). . . . 70
4.19 Energy reduction by shuffling operations in multipled8B slot Homo). 71
4.20 Energy reduction by shuffling operations in multiples8@ slot Hetero). . .. 71
4.21 Energy reduction by shuffling operations in multipledBB-5 slot Hetero). . . 71
4.22 Relation between overall IPC and energy reduction dséaffling. 75
4.23 Variousversionsof IPC. e 76
5.1 Overview of an LO cluster configuration improvement gh@s in the conven-
tional way, (b) in the proposed method. 80
5.2 Examples of rescheduling algorithm. 84
5.3 Comparison of energy reduction. o 90

6.1 Power reduction by the proposed method. 93

List

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

5.1

5.2

of Tables

A VLIW pattern table of the VLIW processor in the prelimany experiment.
Resource group assignment1.
Resource group assignment2. e
Synthesis results of the preliminary experiment.
Parameters of designed VLIW processors.«
Instruction set of designed VLIW processors.

FU allocation of designed VLIW processors. . e
Comparison of area and delay between designed VLIW psme
Allocation of two FUs to four slots for each VLIW pattern..
Allocation of three FUs to four slots for each VLIW pate
Occurrence conditions of added interrupts. L.
Behavior of added interrupts. e
Comparison of area and delay between VLIW processdis avid without
INTEITUPES. o e

Slot capability of 8 slot heterogeneous VLIW processor.
Slot capability of 10 slot heterogeneous VLIW processaor.
Slot capability of 4 slot heterogeneous VLIW processor.
Slot capability of 2 data cluster 5-5 slot heterogenadu$V processor.
Energy reduction for MPEG2 encoder on 8-slot Hetero VLIW.
Operation shuffling on multiple BBs (MPEG2 Encoder@@$ Kletero).
Minimum energy comparison between exhaustive exptoraind with heuris-
tics(Single BB).
Relation between energy reduction and shuffledcycles.
Energy reduction for shaon 8-slot Hetero VLIW.

Optimal cluster configuration and the number of requbbasic blocks to find

the configuration.

Comparison of estimated energy (9721 decoder@8 slotthiom

Xi

Xii

Chapter 1

Introduction

Embedded systems are widely used in our daily life and alalbst them have a programmable
microprocessor inside. People might think most of micrgpssors in the world are in personal
computers; we call such kind of processor a general purpaseepsor (GPP). The number of
GPPs inside personal computers is, however, less than 2%eofumber of total processors
in the world and most of processors locate in embedded sgdt&lnAn embedded system is
usually dedicated to a few specific tasks, while a persomapeter is intended to a wide range
of applications. A portable audio player, mobile phone, anthmobile are typical examples of
embedded systems. We often see automated teller machiakestonic billboards in the city,
most of which are controlled by microprocessors embedddudisTthese kinds of embedded
system have become an essential part of human activitiéegetdays. Therefore, managing
problems concerning microprocessors in embedded systeresy significant and profitable
study.

Embedded systems often require severe constraints orrpenice and energy consumption.
For instance, a modern audio player or mobile phone has &ifunadity of video player, as well
as audio processing. Since video encoding or decoding rregps computational effort than
audio processing, such a system requires much more penfiearthan ten years ago when the
main task of such a system is only a simple audio processihthefsame time, such portable
devices are typically battery-powered and they usuallyeHemited space for a battery. Hence,
they require extremely low energy consumption.

An embedded system can be typically implemented by usingCASRpplication Specific
Integrated Circuits), GPPs, or ASIPs (Application Spedifistruction-set Processors). The
advantage of ASICs is in the higher performance per area@merlpower consumption than
GPPs, but the limitation of ASICs is in the flexibility and emsibility in terms of a change
of specification after the design completion. On the otherdhaPPs have the flexibility
as a functionality of system is implemented by software Whi&programmable. GPPs are,
however, usually not optimal for a target application. Hergometimes GPPs do not meet a
performance requirement or they often exceed a power liroitaf embedded systems. ASIPs
can fulfill the requirements for flexibility as they are pragrmable using software, and for per-
formance as they have an application specific instructibnigerefore, ASIPs are appropriate
for embedded systems due to flexibility and performanceha#s in Fig. 1.1.

Configurable processors are often used for designing ASTBsfigurable processors have

1

2 CHAPTER 1. INTRODUCTION

>
3 N
15
2 ASICs
o ASIPs
>
S
g - N
L
©
[&]
C
£
5 GPPs
o
o
N J
Flexibility]

Figure 1.1: Advantage of ASIPs.

some parameters to tune up their instruction set, such dstthedth of data path, the number

of general purpose registers, and additional instructi8ysusing configurable processors, the
design time can be shorter than the manual design since #hedrahitecture is almost fixed.

While configurable processors can be more general purpaeseted, it can be more energy

efficient or higher performance when their instruction setuned. Therefore, configurable
processors are reasonable solution for the design of ASIPs.

1.1 VLIW processor

In order to realize a higher-performance instruction setcpssor, superscalar architecture
[6] and VLIW (Very Long Instruction Word) architecture [7Jre proposed, which exploit
instruction-level parallelism (ILP). Figure 1.2 depicts averview of superscalar processor
and VLIW processor as well as scalar processor. In a scatarepsor, an operation (or in-
struction) is fetched from the instruction memory everyleyend assigned to a functional unit
(FU or hardware resource) to execute it. In a superscalargssor, multiple operations are
fetched from the instruction memory at a time and then a sppeeirdware unit analyzes a par-
allelism among the operations. Then operations which cagexkeuted in parallel are issued
and executed. On the other hand, a VLIW processor fetched\&\fistruction which contains
multiple operations that can be executed in parallel. Sncempiler has extracted parallelism
and scheduled operations, operations in a VLIW instruat@m be issued with a simple hard-
ware, while a superscalar processor dynamically analyzeslplism and schedules operations
using a special hardware.
Since a set of operations that can be executed in parall@svar different VLIW archi-

tectures, object code of VLIW processor has no compatybéinong different architectures.
Binary compatibility of object code is, however, not ne@edg important in embedded sys-

1.2. DESIGN CHALLENGES 3

Instruction
Memory
operation
‘ Fetch ‘ ‘
instruction VLIW instruction

FUs

Reg|ster F|Ie Register File Register File

(a) Scalar processor (b) Superscalar processor (c) VLIW processor

Figure 1.2: Overview of processor architectures.

tems, since software is typically provided together withrgét system (hardware) in embedded
systems and it can be compiled again in case that the targieinsys changed, while software
and hardware are provided independently in personal coenufnd also, a VLIW processor
does not need the special hardware for operation scheduiamnge it has simpler hardware
than a superscalar processor and it leads to less powerroptisn. Therefore, a VLIW ASIP

is a perfect solution for embedded systems that require fewgy consumption as well as high
performance.

1.2 Design Challenges

Designing a low energy system using VLIW processor is, h@nev challenging problem.

1.2.1 VLIW processor design challenges

Designing a VLIW processor is usually more complex thanglgsg a scalar processor. A
complex system makes a design time longer and error-proherefore, a technique for im-
proving the design productivity of VLIW processors is reui.

VLIW architecture has many architecture parameters, ssdche@number of issue slots, the
number of functional units. A dispatching rule, which reggats which slot issues a certain
operation and which combination of operations is allow toeRecuted at a time, is also an
important parameter in VLIW architecture; an unprofitabigpdtching rule, where the com-
bination is not so much used, simply makes the hardware logiplex. Since it is difficult
to properly define these parameters for the target appdicati a straightforward way, design

4 CHAPTER 1. INTRODUCTION

space exploration is commonly used, where designing andawag are iterated for a lot of
architectures to determine an optimal parameter set. Tthestechnique for improving the
design productivity is very important in terms of design@paxploration as well.

1.2.2 Low power embedded systems challenges

Low energy is also a significant factor in design of modern Wiprocessors. Traditionally,
VLIW processors are beset by structural problems; a lage ai object code, and complexity
of logic compared with scalar processors. Power analys\eLdéWV processor reveals that the
significant amount of energy is consumed in the instructi@mory hierarchy. For example in
Lx processor, a VLIW processor designed by Hewlett-Packai STMicroelectronics, up to
40% of the total processor energy is consumed in the ingbrucaches alone [8].

An LO buffer (a.k.a. loop buffer) is an efficient techniquertmluce energy consumption
in the instruction memory hierarchy [9, 10, 11]. In most ewdbed applications, significant
amount of execution time is spent in small program segmemitécti consist of loops). An
LO buffer stores these small program segments in a smakb(BRAM or register file based)
instead of a big instruction cache. Then the processor auseazcesses to the buffer during
the loop execution. This reduces the number of accesses tudher level of the instruction
memory hierarchy and therefore giving large energy reductior instance up to 60% as shown
in [10].

In spite of such loop buffering techniques, the instructi@mory remains a major power
bottleneck in most VLIW processors because the converteamdralized loop buffer architec-
ture is not so efficient. Despite adding it, an LO buffer in W.processor consumes significant
energy: about 20% in an 8 slot VLIW processor [12].

Since a VLIW processor does not issue operations from al$ stoevery cycle due to the
limitation of ILP (instruction level parallelism) of apgktion, some access to the instruction
memory hierarchy is not necessary in some cycles. In ordesdoce this unnecessary access,
LO cluster technique is proposed [13, 14].

The approach of LO cluster can reduce energy consumptionmbiedded systems using
VLIW processor, however, the optimal configuration of LOstlr is very sensitive to a target
application. Hence, an approach to efficiently obtain amagltconfiguration is importantin a
low energy design of VLIW processors.

1.3 Related work

Some methods are proposed so far for low energy and the designctivity of processors.

In these years, designing processors using HDL (hardwaseriggion language) is a com-
mon way, since a target design has become larger and mordeanifhe design using HDL
(e.g. VHDL, Verilog HDL) in register transfer level (RTL orlRevel) is widely accepted and it
promises much better design productivity than designirggpie level or transistor level that are
used few decades ago. However, the size of design that camgdbennented on a single silicon
chip increases along with the advance of deep submicromt¢datpy. Therefore, it requires a
further aggressive approach to design circuitry in higkeel.

1.4. APPROACH FOR LOW POWER EMBEDDED SYSTEMS USING VLIW 5

A processor design method that uses a base processor is ¢me mfomising approaches
that enable higher productivity in processor design. Thethoud assumes a certain processor
architecture as a base architecture and generates a deraetording to some additional spec-
ifications given as input. Since only extension to the basegssor is needed to be specified,
designers can obtain the target processor design in relatshorter time. The flexibility of
architecture is, however, limited because basic architeghbarameters such as pipeline archi-
tecture are bounded to the base processor.

Another category of processor generation methods thatthelpesign productivity of pro-
cessor is known as architecture description language (ADh¢ method takes higher level of
description than RTL as input, which is usually a smaller antaf description than HDL.
Then the method generates an HDL description which reptesestructure that a designer
intended to design. Since ADL supports a wide variety of éeckures that should be evalu-
ated in a phase of design space exploration, an approach ABih is attractive for processor
designers who seek the next generation of design methods.

A lot of researches are done on low energy processor desiga.obthe well-known tech-
niques for the low energy requirement is clock gating. Simmest of energy consumption is
due to switching activity of wire or register, by gating a ckosupply to a functional unit that
iS unused, unnecessary switching activity can be suppte&®mamic voltage and frequency
scaling [15], substrate biasing, and power shut-off are &sown as a technique to reduce
energy consumption.

Besides the hardware approaches, some researches tdtgetra@pproaches for the low
energy problem. One idea is to control voltage and frequdray software. Modern oper-
ating systems have such capability which decreases thk& frleguency of processor when a
processor is idle. Some researches target data localiheidata cache and tries to make data
access more efficient [16].

As an approach to reduce power consumption in the instmiectiemory hierarchy, which
consumes significant power in embedded systems, an LO lrffeop buffer [9, 10, 11] is a
well known architecture. The buffer locates between thé&ursion cache and the processor
core. By storing frequently executed code, that is loops, énsmall buffer, it benefits energy
reduction as well as performance improvement. Decode fildehe [17] is an architecture
to reduce the power consumption of instruction decode as ageinstruction fetch. Since
decoding instructions also consumes significant power disasdetching them, the approach
tries to store decoded information into the buffer.

Some compiler techniques are also proposed to increasdilikhation of loop buffer for fur-
ther improvement of energy efficiency. A method proposed 8] fransforms code that cannot
be executed on a loop buffer as it is. By applying some codetoamation technique such as
conditional instructions, the utilization of loop buffesirt be improved. Another approach [19]
optimizes software to efficiently use a loop buffer. The @agh optimizes software using if-
conversion and increases the utilization of loop buffed emnsequently reduces the instruction
fetch power by 72%.

6 CHAPTER 1. INTRODUCTION

1.4 Approach for low power embedded systems using
VLIW processors

This thesis proposes methods for each challenge discusseection 1.2. For the first chal-
lenge about VLIW processor design productivity, this tegsioposes a synthesizable HDL
generation method for configurable VLIW processors, whadkes a processor specification
description as input and generates a synthesizable HDLrigésn of a target VLIW pro-
cessor. The proposed approach allows a designer to chaagrithber of slots and pipeline
stages, dispatching rules, and so on. Control and decod® kgd the data-path of a target
VLIW processor are automatically generated from the pregespecification description.

As the second method for low power design, an algorithm ofatpen shuffling is proposed.
The algorithm generates and evaluates a lot of schedulestéwget application, and it finds an
energy efficient schedule. To reduce the exploration spsee heuristics are also proposed.

In order to minimize the iteration of operation shufflingistthesis then proposes an efficient
scheduling method that generates a low energy schedulegigen cluster configuration.

1.5 Main contributions

This thesis first describes a generation method for configereLIW processors in Chapter
3. Though VLIW processors are effective solution for emletidystems which require both
of high performance and low energy, there are a lot of archital parameters to be decided
by designers. Since these parameters significantly affecperformance and area, it is re-
quired to perform the design space exploration where dessggvaluate many architectures to
determine the optimal parameter set. However, designingls\processor is very complex,
and consequently time consuming and error-prone. Hensgyrspace exploration on VLIW
processors could not have been performed efficiently solfiae VLIW processor generation
method described in Chapter 3 supports a flexible architecthwdel, especially in dispatching
rules. Therefore, this method enables the design spacerakiph on a wide variety of VLIW
architectures with high design productivity. Figure 1.®igés a system model using a VLIW
processor. Chapter 3 focuses on the design productivitylfdW processors as shown in Fig.
1.3 (a).

An operation shuffling algorithm is then described in Chagte This algorithm improves
energy efficiency by changing operation scheduling. SimckCacluster configuration is very
sensitive to operation scheduling, various schedulesldhmievaluated in order to obtain an
optimal schedule. By shuffling all basic blocks iterativelgergy consumption can be reduced
significantly. To reduce the size of the exploration spacmesheuristics are also described in
Chapter 4.

Since a simple operation shuffling takes huge amount of tirea & the above heuristics are
applied, a more efficient method that finds a low energy operatchedule is then described
in Chapter 5. By exploiting some scheduling algorithms dbed in the chapter, a compiler
can generate a low energy schedule in a straightforward @hagpter 4 and 5 focus on a low
energy methods for the instruction memory hierarchy as shiavrig. 1.3 (b).

1.6. THESIS ORGANIZATION 7

Instruction Memory Hierarchy Data Memory Hierarchy

Main Memory
(off-chip)

N

(b) Low Energy

in Instruction 1 : : ;
Memory Hierarchy i |
(Scope of Chapter 4 & 5)§ |-t Clache P L1 Cache
1 1 I
i LO Buffer E i
v ! l

[
\
’

—_————-— e . . — —

(a) Design Productivity

for VLIW Processors mp VLIW Processor Core
(Scope of Chapter 3)

Figure 1.3: System model using a VLIW processor.

1.6 Thesis organization

The rest of this thesis is organized as follows. Chapter @udises related work. Chapter 3 de-
scribes a synthesizable HDL generation method for configardLIW processors. In Chapter
4 an operation shuffling algorithm for low energy embeddesteays using VLIW processor
is proposed. Chapter 5 describes an efficient method for logvgy operation scheduling.
Finally, Chapter 6 concludes this thesis.

CHAPTER 1. INTRODUCTION

Chapter 2

Related work

This chapter describes the previous studies on hardwarerggon and low energy technique
for embedded systems.

2.1 Approaches for hardware generation

An embedded system can be typically implemented by usin@A%Application Specific Inte-
grated Circuits), GPPs (General Purpose Processors),l®sA8pplication Specific Instruction-
set Processors). ASICs have advantages in the performan@¥ga and power consumption
compared with general purpose processors. However, thbiflgxof ASICs is very low since
the circuits are almost fixed for a specific application. Caather hand, GPPs have the flex-
ibility as they are fully programmable. GPPs are, howevsyally not optimal for a target
application in terms of performance and power consumptitence, GPPs sometimes do not
meet a performance requirement and often exceed a poweatian of embedded systems.
ASIPs can fulfill both the requirements for flexibility as yhare programmable, and for perfor-
mance as they have an application specific instruction $etrefore, ASIPs are an appropriate
solution for embedded systems.

Configurable processors are often used for designing ASTBsfigurable processors have
some parameters to tune up their instruction set, such dstthedth of data path, the number
of general purpose registers, and additional instructiBysusing configurable processors, the
design time can be shorter than the manual design since #hedrahitecture is almost fixed.
While configurable processors can be more general purpaseted, it can be more energy
efficient or higher performance when their instruction setuned. Therefore, configurable
processors are reasonable solution for the design of ASIPs.

Various attempts for configurable processors to efficieddgign ASIPs and make retar-
getable compiler and other software tools have been madeA@proaches for generation of
configurable processors are classified into two categosiésliaws.

1. Approaches using a base processor (PEAS-I [21], Metaf@@re3], Xtensa [24])

2. Approaches using a processor specification descript®DL([25, 26, 27], nML or Tar-
get [28, 29], LISA [30, 31, 32], EXPRESSION [33, 34, 35])

In this section, a brief overview of these approaches isqures!.

9

10 CHAPTER 2. RELATED WORK

2.1.1 Approaches using a base processor

PEAS-I [21] uses a basic CPU called PEAS-I CPU. PEAS-I CPlLdes an ALU, a shifter,
a multiplier, and a divider. Based on the results of applicaprofiling, hardware algorithm of
multiplier and divider is selected and unused instructiaresomitted automatically. However,
designers cannot change architecture of pipeline stage.

MetaCore [22, 23] is an environment to develop an ASIP foitdigignal processing. Al-
though MetaCore allows using basic instructions, optionsiructions, and user-defined in-
structions, the number of pipeline stages are fixed. MonedMetaCore does not support
VLIW architectures.

Xtensa [24] utilizes a customizable RISC processor cord,d@signers can add a new in-
struction using special language to improve performantes, however, impossible to freely
change a pipeline structure.

An approach using a base processor is a method to design &baSéd on a base processor
core by changing the number of registers and adding custetrugtions. This approach has
an advantage in reduction of design labor, however, hasaaldistage in lack of flexibility to
change the instruction bit width or the number of pipeliregsss.

2.1.2 Approaches using an architecture description langua ge

ISDL [25, 26, 27] is an instruction set description languémeVLIW processors, which can
generate software tools. However, the pipeline structuret so flexible, since an architecture
is generated from a highly abstracted description baseti®@aupposed pipeline structure.

nML [28, 29] focuses on the instruction set. The abstrackwel of the nML language is
in a programmer’s model of target processor. It is easy toifpdie instruction set, however,
the detailed architecture model is hard to specify due tdtbk abstraction level. And also, a
generation method for VLIW architecture is not reported.

EXPRESSION [36, 33] allows designers to describe detaipgtification that can repre-
sent VLIW processors as well. EXPRESSION can generate atonsland compilers for rapid
design space exploration, however, a synthesizable HDergéon method for VLIW proces-
sors, especially the support for FU sharing, is not reported

The approach of LISA [30, 31, 32] can describe architectuaoesidering pipeline structure,
and can design VLIW architectures or superscalar architest However, a pipeline controller
supporting a pipeline stall is not generated unless omersifior pipeline registers are explicitly
described. Furthermore, though LISA can generate syrghle HDL description for control
logic, it is not reported to generate entire data-path otessor.

Although an approach using an ADL description has disacgged in increase of descrip-
tion, it can describe a detailed processor specificatiorganerate various architectures.

In design of ASIPs, a method that allows various pipelinecitres and that can generate a
control logic, that is usually error-prone in manual desigresirable. Unfortunately, there has
not been any method that can generate VLIW processors iggcand flexibly. Therefore,
this thesis proposes a VLIW processor generation methad &@rocessor specification de-
scription to specify a detail of processor and to explorgdatesign space of VLIW processors.

2.2. OVERVIEW OF LOW POWER OPTIMIZATIONS FOR EMBEDDED PROGEOR%1

2.2 Overview of low power optimizations for embed-
ded processors

There are a lot of researches on low energy processor de§lge. of the well-known tech-
niques for the low energy requirement is clock gating. Simast of energy is consumed due
to switching activity of wire or register, by gating a cloclgply to a functional unit that is
unused, unnecessary switching activity can be suppreddgdamic voltage and frequency
scaling, substrate biasing, and power shut-off are alsevkres a technique to reduce energy
consumption.

Besides the hardware approaches, some researches tdtgetres@pproaches for the low
energy problem. One idea is to control voltage and frequérmy software. Modern oper-
ating systems have such capability which decreases thk frieguency of processor when a
processor is idle. Some researches target data localitgymut in the data cache and tries
to make data access more efficient [16]. A compiler-guided power method for scratch
pad memories [37] optimizes memory-data layout to maxinbiaek idleness of scratch pad
memories.

As an approach to reduce power consumption in the instnuectiemory hierarchy, which
consumes significant power in a processor, an L0 buffer g ladfer [9, 10, 11] is well known.
The buffer locates between the instruction cache and theepsor core. By storing frequently
executed code, e.g. inner most loops, into a small bufféetefits energy reduction as well
as performance improvement. Decode filter cache [17] is ehiteccture to reduce the power
consumption of instruction decode as well as instructidohfe Since decoding instructions
also consumes significant power as well as fetching themgplpeoach tries to store decoded
information into the buffer.

For further improvement of energy efficiency in loop buffeseme compiler techniques are
also proposed, which try to increase the utilization of |@offfer. A method proposed in [18]
transforms code that cannot be executed on a loop bufferiss A loop that has a transfer
of control (e.g. branch operation) inside or a loop wherertbmber of iterations is unknown
cannot be executed on a loop buffer. By applying some codesftsemation technique such
as a conditional instruction or an explicit manipulationtio® loop counter, the utilization of
loop buffer can be improved. Another approach [19] optiraizeftware to efficiently use a
loop buffer. The compiler technique optimizes softwarengsf-conversion and increases the
utilization of loop buffer, and consequently reduces thegoof instruction fetch by 72%.

2.3 Low power optimization on instruction memory hi-
erarchy

An LO buffer (a.k.a. loop buffer) is an efficient techniqueréaluce energy consumption in the
instruction memory hierarchy [9, 10]. In most embedded @pgibns, significant amount of
execution time is spent in small program segments (whiclsisbiof loops). The technique
stores these small program segments in a small LO buffer (8BAregister file based) instead
of the big instruction cache. Then the processor core ordgsses to the buffer during the loop
execution. This reduces the number of accesses to the Hegletiof the instruction memory

12 CHAPTER 2. RELATED WORK

hierarchy and therefore giving large energy reductionjristance up to 60% as shown in [10].

In a simple application of the monolithic LO buffer to a VLIWqzessor, at each cycle the
operations would be fetched for all the slots of the VLIW frtime monolithic LO buffer. How-
ever, such a monolithic LO buffer is not effective as not kdtsare always active. This implies
that some slots would require unnecessary buffer acced$@bt operation [13]. Hence, LO
cluster generation was proposed to obtain a low energy systa, 14].

In a clustered VLIW processor, 'clustered’ usually referslata-path clusters. For example,
the T1 C6X processor has clustered data-path [38], whichigsure up to eight operations at a
time, and has two separated register files. If many FUs areextiad to a monolithic register
file, it leads to significant increase of delay time, area, padier consumption. Therefore,
many researchers have tried to cluster FUs and divide ateedike in order to decrease the
number of FUs connected to each register file. The clustegidter file reduces the number
of ports of register file, which reduces the delay, area, axaigy of the register file. Clustered
register file is almost always used in VLIWSs with a larger n&mbf issue slots [39, 40]. Note
that data clustering may cause increase of execution cgoles sometimes a copy operation
is needed to move data between register files, while instnuctustering does not cause such
a problem.

Some VLIW architectures like Lx processor have a notion efrunction clustered instruction
fetch [41]. However, the instruction clusters correspoivéally to the data clusters, while
this thesis makes an instruction cluster explicitly sefgtdrom a data cluster to increase the
exploration freedom; an LO cluster can be applied indepetigléor data clusters. This results
in larger gains of up to energy reduction of 75% as demorestrit [14].

A loop buffer or loop cache has been studied for years, whiois dor energy reduction
on instruction memory hierarchy as well as performance owpment. By exploiting such a
loop buffering mechanism, L1 or higher cache access ratedsaed by up to 38% [9], and
it leads energy reduction of overall instruction memory @fto 67% [10]. A loop buffer
is implemented as a register file or SRAM based architectance access to buffer is fully
controlled by a control unit (e.g. LC and ITC, described irct8m 4.2), while a loop cache has
possibility of cache miss whose performance penalty cabea@ccepted in certain embedded
applications.

Operation shuffling for instruction clusters has been stddinly in the recent past [42, 43].
Similar to the work presented in this article, their objeetis an overall hardware/software
energy reduction for embedded VLIW processors. Howeveir tlarget is on the instruction
cache, while this thesis focuses on LO buffers and generafit0 clusters.

Chapter 3

Hardware generation for VLIW
processors

This chapter describes the proposed VLIW processor gaornatethod. First, a target VLIW
processor model is explained. Secondly, a scalar procgeseration method that the proposed
VLIW processor generation method is based on is introdudedally, the proposed VLIW
processor generation method is described.

3.1 Problem and motivation

Designing a VLIW processor is usually more complex than ¢esgaocessor which issues only
one operation at a time. A complex system makes a design tngel; describing complex
control logic of such a system is tedious and error-proner@lore, a technique for improving
the design productivity of VLIW processors is required.

VLIW architecture has many architecture parameters, sadch@number of issue slots, the
number of functional units. A dispatching rule, which reggpts which slot issues a certain
operation and which combination of operations is allowebdaexecuted at a time, is also an
important parameter in VLIW architecture; an unprofitabilgpatching rule, where the combi-
nation is not so much used, simply makes the hardware logiptex. Since it is difficult to
define these parameters appropriately for the target agijaitin a straightforward way, design
space exploration is commonly used, where designing anldaiag a lot of architectures to
determine an optimal parameter set. Thus, the techniguenfmoving the design productivity
is very important in terms of design space exploration as.wel

3.2 VLIW processor model

This section introduces a VLIW processor model [44] thatghaposed VLIW processor gen-
eration method uses. This model can represent variousectiie of VLIW processors.

A VLIW instructionconsists of multipleoperationsthat are executed simultaneousis-
patchingis a managing process to assign issued operations to apgieptJs ASlotis a unit
to issue an operation. A VLIW processor has one or more studsssues multiple operations

13

14 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

ontroller: % ontroller | = o
/ % (FUs) (FUs)
v % v %
% % ™| Hardware ~Hardware | 210t 2
% % 7| Resources Resources
% s % (FUs) (FUs)
Hardware % Hardware % .
Resources % Resources % N g:gguwri;es ’% N Ftigsrguwrirei ’%
? g:c_? (FUs) (FUs)
é') é | Hardware | Hardware Slotn
é‘ % \ Re(sFoLLJch):es 0%— Re(slgﬁgt):es *%
))

Figure 3.1: VLIW processor model.

from the slots in parallel. Note that a VLIW processor witheaslot is equivalent to a scalar
processor in this model.

Figure 3.1 illustrates a hardware model of VLIW processaorfidst few pipeline stages, a
VLIW instruction is fetched, and then it is decoded and opens are dispatched into FUs. A
data-path in each pipeline stage consistsaflware resourceghat are mainly combinational
circuits, and pipeline registers to send data into the ngpélime stage. An FU is a kind of
a hardware resource. In normal operation mode without apglipie interlock, hardware re-
sources receive input data from the previous pipeline tegisand send output data into the
next pipeline registers.

3.2.1 Dispatching model

Figure 3.2 (a) shows the dispatching model of [44]. To repmésomplex dispatching rules
in a simple description, two concepigperation groupand resource groupare introduced.
An operation grougs a set of operations that have the same characteristicspaidhing, for
instance, a member of operation group can be executed omathe lsind of FUs. Aresource
groupis a set of FUs that are used when a certain operation is esgtgutr certain slot. Note
that a resource group belongs to one slot and one operatoupgin Fig. 3.2 (a), operations
ADD, ADDI, and so on are members of operation group OG1. Resogroup RG1 consists
of FUs ALUO and EXTO. RG1 belongs to OG1 and Slotl. An FU carohglto one or
more resource groups, which means that a shared FU is repeesey belonging to multiple
resource groups. In this way, dispatching rules are desgrilsing three relations; between
slots and operation groups, between slots and resourc@grand between operation groups
and resource groups. Figure 3.2 (b) shows a dispatchingdadeription of the above model.

3.2. VLIW PROCESSOR MODEL 15

Slot Slot1) (Slot2) (Slot3) e (Slotn)

N NS

Resource [RG 1][RG 2] [RG 3] [RG 4] [RG 5] [RG 6] « [RG k|
Group

Operation
Group

---""b

ALUO, EXTO| (ADD, ADDI, ADDU,) (MULT, MULTU)
SUB, SUBI, SUBU, ..
(a) Dispatch Model

slot_opegroup {
{ Slotl: OG1, Slot2: OG1, Slot3: 0OG3, ... },
{ Slotl: OG1, Slot2: OG2, Slot3: OG1, ... },

gpegroup_resgroup {
OG1: RG1, RG4, RG6;
0G2: RG2, RG5;

%

slot_resgroup {
Slotl: RG1, RG2, RGS;
Slot2: RG4, RG5;

- W O E O E WO EOEEEEEEm
- E R EEEEEEEEEmS

(b) Dispatch Rule Description

Figure 3.2: Example of the dispatching model.

Micro-operation description to be explained later is disad for a pair of a resource group and
an operation. This method allows to represent a wide rangksphtching rules as a designer
intends to make.

3.2.2 Interrupt model
The proposed interrupt model of VLIW processor is shown welo
e Supported interrupt type and instruction canceling pdlisylescending order of priority)

— Reset interrupt (the highest prioritygancel all instructions policy

— Nonmaskable interruptancel all instructions policy

16 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

— Internal interrupt:cancel descending instructions policy
— External interrupt (the lowest priorityWwait all instruction completion policy

e Precise interrupt

e Select the highest-priority interrupt among multiple migts occurred at a time

The proposed interrupt model is based on the interrupt maofilscalar processor [45Can-
cel all instructions policyannuls all operating instructions and starts interruptpssing im-
mediately after an interrupt request signal is asserteahcel descending instructions policy
annuls only descending instructions when an interrupt i&;@nd starts interrupt processing
after completion of ascending instructioné/ait all instruction completion policgnnuls no
instructions but suppresses fetching a new instructiod,iai@rrupt processing is started after
completion of all instructions that were being executed nvaa interrupt request signal was
asserted.

3.3 Hardware architecture of targeted VLIW processor

This section describes an overview of target VLIW processut execution model of the pro-
cessor.

3.3.1 Hardware overview of VLIW processor

Figure 3.3 illustrates control paths of scalar processdr\An\W processor. As shown in Fig.
3.3 (a), a data-path of scalar processor is controlled bgdkesignals that are generated from
the value of the instruction register. On the other hand, WVL&N processor,Dec, oy, de-
code signal for resource group and operatjos generated from the value of the instruction
register, Decgor 0peg, deCode signal for slot and operation graup generated from combina-
tions of Dec,g ope, Det i, detection signal for VLIW patterms generated from combinations
of Decgioropegs Actu,g, resource group activation signais generated from combinations of
Det,,,,. Then, a VLIW processor controls a data-pathAstv,, and Dec, o, @S shown in
Fig. 3.3 (b).

A decode signal for resource group and operatibad,) is a signal to identify an op-
eration in the instruction register. As was mentioned egriince micro-operation description
is described for a pair of a resource group and an operatimsignal and a micro-operation
description have one-to-one mapping. For instance, ifatper ADD executing on resource
group RG1 exists, a signal corresponding to its micro-operatiois:rc1 app. A decode
signal for slot and operation grouécs.: opey) IS @ signal to identify an operation group to
be issued from the slotDecg1n arv IS @ signal representing that an operation in operation
group ALU is issued fromSiotl. A detection signal for VLIW patternffet,..,,) is a signal
to identify a VLIW pattern in the instruction register, fangtance, a signal representing the
third pattern isDets;. A resource group activation signal{tv,,) is a signal representing that
the resource group is assigned to a detected VLIW patternndtance, an activation signal
of RG1 is Actvgrg:. In case that multiple candidates of resource group exisaricoperation

3.3. HARDWARE ARCHITECTURE OF TARGETED VLIW PROCESSOR

Decoder [« Instruction Register

(Decode signals)

Al

(Control logic) g"’iié

*Z(Data path

(a) Scalar Processor

Decoder

o
<

Instruction Register

RRRRRAN!

:

Control %%%?p%hg
et

v vV VvV vV

(b) VLIW Processor

Figure 3.3: Control paths of scalar processor and VLIW pssoe

17

18 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Step 1: Instruction Memory
instruction fetch \/

Step 2: IR (Instruction Register) VLIW Instruction
decode
operation

decode <> <> <> <> operation

i
operation grOUD() () () () operation group
detect

VLIW Pattern |
C VLWPattem D
Step 3:

control data-path selectors

Figure 3.4: Execution model of VLIW processor.

S

i

in a certain slot, all corresponding signdlc,, ., become active, however, only one signal
Actv,4 is active. Then an operation can be successfully executibutiany conflict of FU.

3.3.2 VLIW Processor Execution Model

Figure 3.4 illustrates the execution model of VLIW processothe proposed model, a VLIW
processor runs with repetition of steps as follows. FirdtL &V instruction is fetched from an

instruction memory, and stored to the instruction regisgscondly, operations in the VLIW
instruction are decoded. Operation groups for each operatie obtained, and a VLIW pat-
tern is detected according to a combination of the operagiroips. Thirdly, a data-path is
controlled by switching data-path selectors accordingrepared information corresponding
to the detected VLIW pattern. Finally, operations are exedun the data-path controlled in
the previous step.

In the proposed method, FUs assigned to a VLIW pattern arermated first, and then
control signals of a data-path are generated using thenv#ton of assignment.

3.4. SYNTHESIZABLE HDL GENERATION METHOD FOR SCALAR PROCE®RS 19

micro_operation ADD {

wire [31:0] srcO;

wire [31:0] srcl;

wire [31:0] res; Stage 2
stage 2 { GPR
srcO = GPR.read0(rs0);
}srcl = GPR.read1(rsl); Stage 3 _ 1
stage 3 { ALU
wire [3:0] flag;
<res,flag> = ALU.add(srcO,srcl); Stage 5 v
h GP
stage 5 {

null = GPR.writeO(rd,res);

J§

3

(@) (b)

Figure 3.5: An example of micro operation description andDgenerated from the descrip-
tion.

3.4 Synthesizable HDL generation method for scalar
processors

This section introduces a scalar processor generationadg#t6]. The proposed VLIW pro-
cessor generation method is based on this method.

In the method of [46], a data flow graph (DFG) correspondingrianstruction is derived
from a micro-operation description representing behawia@ach pipeline stage of instruction,
and then DFGs corresponding to all instructions are menmgtxddne data path that represents
an entire processor. Figure 3.5 (a) shows an example of mjgesation description. In Fig.
3.5 (a), behavior in pipeline stage 2, 3, and 5 are describest, keywordwire declares three
32 bit variablessrcO, srcl, andres. In stage 2, values of operandsgOandsrcl, are read from
general purpose regist&PR In stage 3src0andsrcOare added byALU, and the result is
stored intares. In stage 5, the result is written back ifBPR

Information of connections between FUs is extracted froerthcro-operation description
in Fig. 3.5 (a). ADFG in Fig. 3.5 (b) is corresponding to a mi@peration description in Fig.
3.5 (a).

Figure 3.6 shows an example of merging DFGs. Figure 3.6 (d)(ahare DFGs of an
addition operation and a shift operation, respectivelyesehDFGs are merged into a DFG
shown in 3.6 (c). Moreover, since the proposed method ischase[47], the method can
control pipeline hazards such as structural hazards.

20 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

GPR GPR GPR

v v %

ALU SFT P | ALU / SFT /
v v \/

GPR GPR GPR

(a) (b) (c)

Figure 3.6: An example of merging DFGs.

3.5 Synthesizable HDL generation method for VLIW pro-
Cessors

This section describes the details of the proposed VLIW gssor generation method. First,
input of the algorithm is explained. Then a generation methfo/LIW processor based on the
model shown in section 3.2 is proposed.

Let aVLIW patterndenote a categorized VLIW instruction that has the sameegutppn
dispatching. In the proposed method, FUs dispatched to &\Mpattern are decided before
HDL generation.

3.5.1 Input of VLIW processor generation method

This section defines input of the proposed generation methodst, dispatching rules are
defined, secondly, an entire processor specification gegmuriis defined.

Let Slot be a set of slotsiRG be a set of resource groug3(= be a set of operation groups.
OpegResg, a relation between an operation group and resource granpsy/ot Resg, a rela-
tion between a slot and resource groups, are representetass:

og € OG,OpegResg(og) C RG, OpegResg(og) # 0, (3.1)

s € Slot, SlotResg(s) C RG, SlotResg(s) # 0, (3.2)
A VLIW pattern,V LIW _ptrn, is represented as follows:

s € Slot, VLIW _ptrn(s) € OG. (3.3)
SlotOpeg means a set of VLIW pattern as follows:
SlotOpeg =V LIW _ptrn. (3.4)
Therefore, a dispatching rul@ispatch Rule is represented as follows:

DispatchRule = {SlotOpeg, OpegResg, SlotResg} (3.5

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSs 21

(Slotl) (Slot2) (Slot3) (Slot4)

Wl e L L _ OG04 ||*~ pattern
RGOl RGOB RGO4 RGO5

| 0Go1 | | 0G02 | | 0GO3 | | OG04 |
RGO1 RGO3 RGO6 RGO5

| 0Go4 | | 0Go2 | | 0Go1 | | OGO1 |
RG02 RGO3 RG04 RGO7

| OG04 | | 0Go2 | | 0GO3 | | oGo1 |
RG02 RGO3 RG06 RGO7

i
CD
o
=
i
CD
o
N
i
CD
o
=
i
CD
o
N

Figure 3.7: Example of table of instruction dispatch pattEr, .

Let Res be a set of hardware resourcégyeration be a set of definitions of operation that
include opecode and operand for each operatiohbe a set of input/output ports of processor,
Mod be a set of micro-operation descriptions. Thgpec, the input of the proposed VLIW
processor generation method, is represented as follows:

Spec = {Slot, Res, RG, Operation,
OG, IO, DispatchRule, Mod} (3.6)

3.5.2 Instruction dispatch pattern

In the proposed method, assignment of resource groups td\&yhttern is determined before
HDL generation. We call this assignment iastruction dispatch patternAll of instruction
dispatch patterns are gathered into a table of instructispatich pattern];pp. Figure 3.7
shows an example d&f;pp. The first entry of thél';pp represents that resource groups RGO1,
RGO03, RG04, RGO5 are used for VLIW pattgl@G01, 0G02, OG01, OG04

In this section, an assignment method of resource group 18\WMaatterns is described. The
method consists of two steps as follows.

1. Enumeration of resource groups that can execute an apelnatan operation group
assigned to a slot.

2. Determination of resource group assignment to VLIW patte
The input of this algorithm is the following items; relat®between slots and operation groups

that are equivalent to VLIW patterns, relations betweetssdod resource groups, and relations
between operation groups and resource groups. The outpus is

22 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

(Slot 1XSlot ZXSlot 3XSlot 4)

— AU | muL | muL | awe |

RGO1 RGO5 RG10 RG15 .| €numerated
RGO6 RG11 resource groups

target
VLIW pattern

Opegroup-Resgroup

ALU | RGO1, RG04, RG09, RG13
{1 L | Rooz Re0s, Reos, Ro10, Ro1t, Rota | § (1)
N e E e ———————————— Slot-Resgroup L At
1
RGO03, RG08 ' 1
(smt 1) (smt 2) ! (smt 3) : (smt 4)
MEM | RGO7, RG12 RGO1 RG04 1 RGOS § RG13
RG02 RGO05 § RGO09 : RG14
RGO1, RG15 RGO03 RGO06 : RG10 j RG15
RGO7 y RGI1 ¥
NOP | RGO1, RG04, RG09, RG13 : RG12
1
[]
-
Figure 3.8: Enumeration of resource group for each slot.
(1) Enumeration of resource groups In this step, resource groups, that can execute an

operation group in each slot of VLIW pattern, are enumerated
First, according to relations between operation groupsrasdurce groups, resource groups
that can perform the operation groups in each slot of VLIWgratare calculated. Figure 3.8
shows an example that tries to enumerate resource group®fd@ of target VLIW instruction.
In Fig. 3.8 (1), a set of resource groups that can execute Madration group is fetched.
Then, according to relations between slots and resouragpgraesource groups that really
belongs to the slot are selected from them. In Fig. 3.8 (2¢t @fresource groups that belong
to slot 3 fetched, and then intersection of these two setsaloeilated in order to determine
resource groups available for this VLIW instruction.

(2) Determination of Resource Group Assignment In the resource groups calculated
in the previous step, multiple resource groups are somstanamerated for a slot. Therefore,
it is necessary to determine one resource group for a slttowitany conflict of FU among
resource groups determined for other slots. In an examplegnf3.9, RG05 and RG10 both
use the same FU, MULO. Then, in case that Slot2 uses RG05 08 R&@3 has to use RG11
or RG10, respectively.

Algorithm 1 shows an algorithm that determines one resogroeip for a slot. U and
Rg are a set of FUs and resource groups, respectively, thangpéyeat the beginning of this
algorithm. RG, is the resource groups belonging to skotalculated in the previous step.
If FUs(rg), FUs included inrg, do not overlap with?'U, FUs(rg) are added taU and
rg is added toRg. If a combination of resource groups that have no FU confiidbound,

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESSs 23

Contents of Resgroup

MUL MULO MUL RGO05: MULO
RGO06: MUL1
RGO05

RGO06

RG10 RG10: MULO

/ RG11 RG11: MUL1

/\

MUL1

Figure 3.9: Example of FU conflict.

Algorithm 1 Resource group Decision Algorithm.
boolean function SelectResgroupf'U, Rg) {
foreachrg in RG, {
if (FUs(rg) ¢ FU) Il no conflict. {
if (s.next =null’) {
Rg=RgUrg;
adopt(Rg); // done.
return true;
} else if (true = SelectResgrouptext, FU U FUs(rg), RgUrg)) {
return true;

}
}
}

return false;

}

this algorithm outputsRg and finishes. The computational complexity of this algontts
O(nf?g®), wheres, f, g, n are the number of slots, FUs, resource groups, and VLIW pette
respectively.

3.5.3 Control signals for dispatching

This section describes a generation method of control Ednadispatching in a VLIW pro-
cessor.

3.5.3.1 Decode signals for resource group and operation

A decode signal for a pair of a resource group and an operafieq,, ..., comprises a logical
product of comparisons of opecode and corresponding fidldemnstruction register.

Dec, g ope = A (I R[Begin(opecode)..End(opecode)| = Value(opecode)),
opecode€O0pecode ype, Siot(rg)

(3.7)

24 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot k Slot N
|R | | | amn | (RN |
Nx32+31 Nx32 begin end (N-k)x32 31 0
e N
RgA begin=(N-k)x32 + b
: a resource group of Slot k end =(N-k)x32 +e
\N) Dec_RgA,OpeB ='1" when IR[begin..end] = "110010"
7 N else '0’
/OpeB h
31
[120010
b e
7/
opecode
S)

Figure 3.10: Example of decode signal for resource groupogedation.

whereSiot(rg) returns slot corresponding t@. Opecode,. 510+ iNCludes a set of opecode for
ope in slot; an opecode consists of value and range of bit field in theuioBbn register. Figure
3.10 shows an example @¥ec,, ., Where the length of operation is 32 bit. In this example,
by checking a bit field frondegin to end in the instruction register (IR), we can know whether
operationOpe B that can be executed dRy A is coming to the instruction register. Note that
the decode signal is active if and only if the instructioniségy contains an operatianpe that
can be executed aty.

3.5.3.2 Decode signals for slot and operation group

Let RG ., be a set of resource groups that belongitgé. ThenDecy,, .,, & decode signal for
a pair of a slot and an operation group, is represented as@l@ym ofDec, ., as follows:

Decgioroq = \/ Dec,g ope N\ Exist(rg, ope), (3.8)

ope € og
rg € RG ot

whereEzist(rg, ope) is the function that returns true if operatiope executing ong is defined
in input, otherwise returns false.

3.5.3.3 VLIW pattern detection signals

Let Siot be a set of all slots, an@pegroup(ptrng,;) be an operation group that corresponds
to slot in VLIW patternptrn.

A detection logic of VLIW patterrptrn, Det,,,, iS represented as a logical product of
Decgior opeq as follows:

Detptm = /\ Decslot, opeg- (39)

slot € Slot
opeg = Opegroup(ptrngot)

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCESS 25

3.5.3.4 Resource group activation signals

Let Slot(rg) be a slot that resource group belongs toDet ..., be a detection signal of VLIW
pattern in instruction dispatch pattephyn, and Resgroup(ptrng,) be a resource group that
corresponds telot in ptrn.

Actv,4, an activation signal afg, is represented as a logical sumioét,,,,, as follows:

Actvyg = \/ Detyirn N (rg = Resgroup(ptrnsiow(rg)))- (3.10)

ptrn € Trpp

3.5.3.5 Control signals of data-path selectors

In the proposed method, a micro-operation descriptionesiied for each pair of an operation
and a resource group. Then a data-path of an entire procissgenerated by merging DFGs
derived from micro-operation descriptions. Since mergiftgn causes signal conflicts at input
port of FU, data-path selectors are inserted, so that thiéficisrare resolved.

This section describes control logic of the data-path setewhich represents a condition of
selection.

A DFG that is derived from a micro-operation description @ecationope executed on
resource groupg is valid when the instruction register holds a value thatespntsype and
rg is activated, as described in Section 3.3. Hence, the Iagiche represented by a logical
product of an activation signal fery and an decode signal for a pairaf andope. Assume that
a DFG that is derived from a micro-operation descriptiom@f executed ong is DFG e rg-
Then, logic for a selector to form F'G,,,. ., is represented as follows:

Condpra,y..,, = Decrg.ope N Actv,g (3.11)

Figure 3.11 shows merging DFGs and inserting a data-paticteel WWhen operation OpeA
executed on resource group ResgM is decoded (identifiedRasdM is activated, the DFG
that represents operation OpeA executed on ResgM becorimslmather words, the inserted
selector is controlled to select the edge derived from th&DF

By using the activation signal, it is possible to form an ajpiate DFG in case that multiple
candidates of FU exist for an operation to be executed onaheslot. For example of Fig.
3.11, a certain slot can issue OpeA, however, depending amdioation of operations in
other slots, the slot uses either r1 or r2. It is hard to deoiulg with decode signals which FU
is to be used for OpeA,; if another slot uses rl, this slot has®r2, and vice versa.

3.5.4 Control signals for interrupt

Since a reset and an external interrupt are independentdrooncept of VLIW processor, such
as slot, the same model of [45] can be applied to a VLIW pramesBherefore, this section
discusses a model for a nonmaskable interrupt and an ithiateerupt.

3.5.4.1 Nonmaskable interrupt

A nonmaskable interrupt (NMI) is the second highest pryjoiriterrupt next to the reset inter-
rupt. It is used for an urgent interrupt from the outside afgassor, such as a notice of system

26 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

(N
OpeA on Resg OpeA on ResgN | Cond. A:
if Decoded(OpeA, ResgM)
f : f and Active(ResgM)
| } | then out <=in0
| ; | if Decoded(OpeA, ResgN)
Y R and Active(ResgN)
N r'4 . then out <= inl)

1) (2] - insert

a selector

Figure 3.11: Merge of DFGs and selector insertion in the Vigwicessor generation.

power down, and so on. Figure 3.12 illustrates a hardwareetrafdnterrupt pipeline that can
also handle an NMI. In Fig. 3.12, a shaded box representsdipgregister.NMI Request
represents a request signal of NMI.

Internal Interrupt Request, andInternal Interrupt Codei represent an internal interrupt
request and its identifier in theth stage, respectively. In the model of Fig. 3.12, a stafus o
interrupt request and interrupt identifier are entered th®interrupt pipeline. In the model
of Fig. 3.12, an external interrupt request signal and ienidier EXTINT are entered into
the beginning of interrupt pipeline. Since an interruptuest from ascending stages hides an
external interrupt request, an external interrupt has ekt priority. On the other hand, an
NMI request signal and a reset interrupt request signal miered into the end of the interrupt
pipeline, then the interrupts have higher priority thanestexternal and internal interrupts.
Since a reset interrupt identifier is selected after seigain NMI, a reset interrupt has higher
priority than an NMI.

3.5.4.2 Internal interrupt

In VLIW processors, multiple interrupts can be occurredrinmultiple slots in a pipeline stage
at a time. Therefore, we need a mechanism to select oneupter process among multiple
interrupts.

Internal Interrupt Model of Scalar Processor In [45], an internal interrupt model of
scalar processor is proposed. The detection logic of iaténterrupt in the model is shown
below. LetOpe,,; be a set of possible operations in which internal interriupt: may oc-
cur, validg,g be a condition that represents existence of a valid insomdh stage. Then,

3.5. SYNTHESIZABLE HDL GENERATION METHOD FOR VLIW PROCES35

27

External "EXTINT"
Interrupt

Request

 mux *

NMI output N’I\/“

Request v
% mux *

Reset "RSTINT"
Interrupt
Request

Figure 3.12: Hardware model of interrupt pipeline to harelleonmaskable interrupt

@J@

élM reglster

A\

J

Interrupt Interrupt
Handling Code

Interrupt
Request

Interrupt
Detected

Saved PC

Internal Interrupt Codel
Internal Interrupt Requestl

Program Counter

Internal Interrupt Code2
Internal Interrupt Request2

Internal Interrupt CodeN
Internal Interrupt RequestN

28 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Detectedsiqge intr, @ detection signal afutr in stage, is represented as follows:

Detectedsig intr = validgg A { \/ Decype N condope,mtr} , (3.12)

ope€Opeintr

whereDec,,. is a decode signal of operatiepe, andcond,. .- represents that.tr occurs
in ope.

Let Intry, be interrupts that occur in stagey. Then,IntrReq,,, a signal to indicate that
any interrupt occurs in pipeline stagsy, is described usin@etected,y ;nir as follows:

IntrReqqy = \/ Detectedig iy - (3.13)

intrelntrseg

3.5.4.3 Internal interrupt model of VLIW processors

In VLIW processors, it is needed to select one interrupt a@eg in the higher-prioritized slot
among multiple interrupts in a stag@letectedsg intr sior, @ Signal to detect internal interrupt
intr occurring inslot in stagestg, is described as follows:

Detected g intr sior = validgg N \/ Dec,g ope N Active,g N\ condope intr ¢ - (3.14)

ope € Opeint'r‘
rg € Rgslot

Detectedy 5100, @ signal to detect an interrupt occurringsft in stg, is described as fol-
lows:
Detectedsig sior = \/ Detectedsig intr siot- (3.15)
intrelntrseg
Therefore, using these signals;trCodey,, an internal interrupt identifier in stageyg, is
represented as follows:

IntrCodeg, = \/ { /\ {Detectedstg,s} A \/ {Codeinir N Detectedsg intrsiot} ¢ »

sloteSlot | s>slot intrelntr
(3.16)

wheres > slot means that slot has higher priority than slotlot.
Intr Reqs,, a signal to indicate that any interrupt occurs in pipelitegestg, is represented
usingDetectedsg. inir,sior @S fOllOWsS:

IntrReqqy = \/ Detectedsig intr siot- (3.17)

mntrelntrseg

The model of [45] saves the value of program counter when &mrirpt occurs. Similarly,
the interrupt pipeline in VLIW processors saves a slot numbevhich an interrupt occurs
as well as the value of program counter, in order to allow aarmpt handler to precisely
distinguish the operation that causes the interrupt.

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 29

Table 3.1: A VLIW pattern table of the VLIW processor in theefpominary experiment.
| VLIW Pattern| Slotl Slot2 Slot3 |

#1 OGary OGary OGyop

#2 OGnop OGary OGary

3.6 Generation method for efficient VLIW processors

In this section, a resource group assignment method of tHéAMirocessor generation method
proposed in Section 3.5 is discussed furthermore. First|adion between FU allocation and
design quality, such as area and delay time, is examined, Theimportance of FU allocation
to generate a fine quality VLIW processor is discusses.

3.6.1 Relation between FU allocation and design quality

In the resource group decision algorithm explained in $ac8.5.2, even if there are multiple
candidates that can be assigned to a slot, a resource graujs lound first is adopted. No
matter which candidate is adopted, a generated VLIW pracgssperly works. However, the
design quality might change significantly depending on thappéed candidate. In this section, a
relation between the design quality, that is area and defas, tand FU allocation is examined.

3.6.1.1 Preliminary experiment

Simple 3-slot VLIW processors that have only two operatioougs,OG 4. andOG yop, are
designed. Figure 3.13 shows a dispatch table of this VLIWg@ssor. This processor supports
resource groupsRG_A0got1, RG_AOgior2, RG_Al g2, RG_AOg0:3, aNd RG_Al g3 fOr op-
eratingOG 4. It supports for operatin@G yop RG_N g,,:1 and RG_N g;,+3. Furthermore,
RG_AOgi011, RG_AOg102, and RG_A0Qg;+3 include ALUO, andRG_Alg,e and RG_Al gy
include ALU1. VLIW patterns for these processors are shawiable 3.1.

In this case, there are two candidates of possible resoume@ssignment, as shown in
Table 3.2 and Table 3.3. In resource group assignment 12Slees ALUO in VLIW pattern
#1, while it uses ALU1 in VLIW pattern #2, as shown in Table,3&n the other hand, in
resource group assignment 2, every slot uses either ALUQ&IAthrough all VLIW patterns,
as shown in Table 3.3,

Both of the processors will work properly, however, the degjuality might be different.

CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

R

oroun . [RG_AOu || RG Nos || RG A0 ||RG ALy || RG_ A0 | [RG ALy || RG News
FU

Operation

Group P

VLIW_pattern {
{ Slotl: OGp| y, Slot2: OGp ., Slot3: OGnop

{ Slotl: OGNQp, Slot2: OGp| y, Slot3: 0G| y +
opegroup_resgroup {

OGALU: RG_AOg|ot1, RG_AOg|ot2, RG_Alg)ot2, RG_AOg|ot3, RG_Alg|ot3:;
};OGNOP: RG_Ngiot1, RG_Ngjot3;
slot_resgroup {

Slotl: RG_AOg)ot1, RG_Ngjot1;

Slot2: RG_AOg)ot2, RG_Alg|oto;

};Slot3: RG_AOg|gt3: RG_Alg|g3, RG_Ngjot3;

PR L L L L L T
- o M o o MmO Emmmm

--

(b) Dispatch Rule Description

Figure 3.13: A dispatch table of the VLIW processor in thdipranary experiment.

Table 3.2: Resource group assignment 1.

| VLIW Pattern| Slotl Slot2 Slot3 |
#1 RGAOSlotl RGAlSlotQ RGNSlotB
#2 RGNSlotl RGAOSlotQ RGAISlotB

Table 3.3: Resource group assignment 2.
\ VLIW Pattern\ Slotl Slot2 Slot3 \
#1 RGAOSlotl RGAlSlut2 RGNSlotS
#2 RGNSlotl RGAlSlotQ RGAOSlotB

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 31

Table 3.4: Synthesis results of the preliminary experiment
| | Assign. 1] Assign. 2| (Reduction) |

Entire Area (gate)| Combinational 43006 42278 728 (1.7%)
Processof Non-Combinationa 14502 14483| 19 (0.0%)
Total 57512 56765| 747 (1.3%)

Max Delay (ns) 12.65 12.26| 0.39 (3.1%)

Data-path| # of selectors 18 16 2 (11.1%)
Selectors| Area (gate)\ Total 2914 2339| 575 (19.7%)

(0.14 CMOS Library)

3.6.1.2 Synthesis results and discussion of the preliminar y experiment

Table 3.4 shows synthesis results of the VLIW processoreafnd delay time were mea-
sured using Synopsys Design Compiler with Q.#4CMOS standard cell library. Figure 3.14
illustrates ALUO and ALU1, and related data-path selectord pipeline registers, in the ar-
chitecture of the VLIW processors. Table 3.4 shows that ttoegssor with resource group
assignment 2 has fewer data-path selectors, and lower tedeopath selectors and the entire
processor. The reason is that the required number and sta@fpath selectors are decreased
since ALU1 is only used by Slot2, and Slot2 only uses ALU1 isigisment 2, while ALU1 is
used by two slots, and Slot2 uses both of ALUO and ALU1 in assignt 1, as shown in Fig.
3.14.

The experimental results show that allocating fewer FUs stoaor being allocated fewer
slots for an FU improves design quality in terms of area ardydBme. The reason is that
the number of input ports of data-path selector placed omnet port of FU decreases while
the number of slots to be allocated to an FU decreases, andhasiumber of input ports of
data-path selector placed on the input port of the regideedécreases while the number of
FUs to be allocate to a slot decreases. Consequently, iro€asdtiple candidates for a VLIW
pattern, a candidate that contains fewer FUs for a slot weldeneficial in terms of the design
quality.

3.6.2 Efficient resource group assignment method

As was mentioned in Section 3.6.1, trying to allocate fewds For a slot and trying to be
allocated fewer slots for an FU give a fine quality VLIW proses This section describes a
resource group assignment method that can generate a filiy bdW processor.

Letn be the number of instances of FU that is required for opematin operation groupg.
First, an FU allocation method in a case that a VLIW processorissue: operations obg
at a time from all slots is discussed. Then, a resource gresigiament method to realize the
FU allocation method is explained. In this section, casdbreie, four, and five slots, that are
moderate cases to find a trend of optimal FU allocation, aseudised.

32 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

GPR GPR
Read Port Read Port Read Port| Read Port Read Port Read Port
for Slotl for Slot2 for Slot3 for Slotl for Slot2 for Slot3

:ALUOi ZALUli
A | /A | /A | /

/1y [/

Pipeline

Register
Write Port Write Port Write Port Write Port Write Port Write Port U Datapath
for Slotl for Slot2 for Slot3 for Slotl for Slot2 for Slot3 # Selector
of input
GPR GPR ports

a.) Assignment 1 a.) Assignment 2

Figure 3.14: Architecture of VLIW processors with diffetersource group assignment.

3.6.2.1 Case of 3 Slots

If a VLIW processor has three slots, whens three or one, allocation between slots and FUs
is determined. Then, in this section, only a case ef 2 is discussed.

Figure 3.15 shows allocation of two FUs to three slots. In Bdl5, an operation in Slotl
is operated on FLA, an operation in Slot2 is operated on FAJor FU_B, and an operation in
Slot3 is operated on FIB. This allocation can operate all combination®g¥§ operation from
all slots.

3.6.2.2 Case of 4 Slots

If a VLIW processor has four slots, whenis four or one, allocation between slots and FUs is
decided. Then, in this section, casesiof 2 orn = 3 are explained.

Figure 3.16 shows allocation of two FUs to four slots. In F&16, an operation in Slotl
is operated on FLA, an operation in Slot2 and Slot3 is operated on.&kWr FU_B, and an
operation in Slot4 is operated on ERI This allocation can operate all combinationsogfs
operation from all slots.

Figure 3.17 shows allocation of three FUs to four slots. p Bi.17, an operation in Slotl is
operated on FLA, an operation in Slot2 is operated on FAJor FU_B, an operation in Slot3
is operated on FUB or FU_C, and an operation in Slot4 is operated on_EUThis allocation

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS

Slot 1 Slot 2 Slot 3

FU A FU B

Figure 3.15: Allocation of two FUs to three slots.

Slot 1 Slot 2 Slot 3 Slot 4

FU_A FU B

Figure 3.16: Allocation of two FUs to four slots.

33

34 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot 3 Slot 4

FU A FU B FU C

Figure 3.17: Allocation of three FUs to four slots.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

FU_A FU B

Figure 3.18: Allocation of two FUs to five slots.

can operate all combinations @j's operation from all slots.

3.6.2.3 Case of 5 Slots

If a VLIW processor has five slots, whenis five or one, allocation between slots and FUs is
decided. Then, in this section, cases of two, three or foug &td explained.

Figure 3.18 shows allocation of two FUs to five slots. In Figl8 an operation in Slotl is
operated on FU FLA, an operation in Slot2, Slot3 and Slot4 is operated onA0r FU_B,
and an operation in Slot5 is operated on_BUThis allocation can operate all combinations of
og’s operation from all slots.

Figure 3.19 shows allocation of three FUs to five slots. In Bid9, an operation in Slotl is
operated on FLA, an operation in Slot2 is operated on FAJor FU_B, an operation in Slot3
is operated on FLA, FU_B or FU_C, an operation in Slot4 is operated on BJbr FU_C, and
an operation in Slot5 is operated on KLJ This allocation can operate all combinations g6
operation from all slots.

Figure 3.20 shows allocation of four FUs to five slots. In B0, an operation in Slotl is
operated on FLA, an operation in Slot2 is operated on FAJor FU_B, an operation in Slot3
is operated on FWB or FU_C, an operation in Slot4 is operated on Jor FUD, and an

3.6. GENERATION METHOD FOR EFFICIENT VLIW PROCESSORS 35

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

FU_A FU B FU C

Figure 3.19: Allocation of three FUs to five slots.

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

FU A FU B FU C FU D

Figure 3.20: Allocation of four FUs to five slots.

operation in Slot5 is operated on H. This allocation can operate all combinationsogfs
operation from all slots.

3.6.2.4 An FU Allocation Algorithm

Based on the discussion from section 3.6.2.1 to sectio2.3,6an FU allocation algorithm is
described. Let: be an FU allocation$lot be a set of slotsf'U be a set of FUsf;(x) be the
number of FUs that is allocated with sletn allocationz, s¢(x) be the number of slots that is
allocated by FUf in allocationz. F(x), the total off;(x) for all slots, andS(z), the total of
s¢(z) for all FUs are represented as follows:

F(x) = Z fs(x) (3.18)
seSlot

S(z)= > sg(x) (3.19)
fEFU

Then, the proposed FU allocation algorithm selects an Focatlon candidate to minimize
(F(x) 4+ S(x))-

36 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

3.6.2.5 Resource Group Assignment Algorithm

In the VLIW processor generation method explained in Sec8id, the algorithm chooses a
resource group only from given resource groups specifiethéninput specification resource
groups that can operate a VLIW pattern are selected in ge®ource groups as an input speci-
fication. In other words, resource group assignment or Fatation can be controlled with the
input specification. Consequently, it is possible to asajgpropriate resource groups to realize
FU allocation mentioned before, by describing as follows:

1. For operation groupg, obtainF'U,,, which is a set of FUs that can process

2. LetSlot,, be a set of slots thatissueg According to the discussion described in section
3.6.2.4, obtainF'Uy,,, which is assignment af U, to Slot,,.

3. Fordslot € Slot,,, create resource groups that include Rusc F'U,,.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 37

Table 3.5: Parameters of designed VLIW processors.
| Parameter | Value |

of Slots 1,2,3,4

of Pipeline Stages| 3,4,5

Instruction Bit Width| 32, 24

of VLIW patterns | 5—-938

of ALUs 1,2,3,4
of Multipliers 1,2,3

of Dividers 0,1

of Shifters 1,2,3,4
Interrupts none

3.7 Experimental Results and Discussion

In this section, the proposed VLIW processor generatiorhouts evaluated.

3.7.1 Evaluation of VLIW processor generation method

In order to confirm feasibility of the proposed VLIW procesg@neration method, 36 VLIW
processors are designed using the proposed approachsiseittion, the detail of the experi-
ment and its considerations are discussed.

3.7.1.1 Experimental setup

36 processors are designed and processor specificationpliess are created for each pro-
cessor. These processors have the different number ofasldtgUs and various type of dis-
patching rules. Then HDL description is generated for epetification description using the
implemented processor generation method.

Hardware are and maximum delay time of the generated proceare evaluated after logic
synthesis. Switching information of processor is obtaifrech gate level simulation with ap-
plications and power consumption is estimated with therm#ftion.

The HDL description was generated on Intel Pentium4 2.8@312MB memory, and Red-
Hat Linux 7.3. Area, delay time, and power consumption wesgneated using Synopsys
Design Compiler with 0.14m CMOS library.

3.7.1.2 Experimental results

36 VLIW processors with up to 4 slots are designed. They vargispatching rule, FU, the
number of pipeline stages, and instruction width, as shawrable 3.5. Since so-called copy
and paste technique can be used to describe specificatioariwhiives, it took only eight

38 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

180000 100
Al M Generated HDL

% 160000] Specification =
o Reduction 2
= | AAA 1 90
\% 140000 AL NAAAAAAAADAL A
.5 120000 - 2a, & AAfAA,,fféﬁAA* S
= - 4 80 ~
= 100000 f 5
(&] =
O 80000 F 5
- 170
S 60000 | o
C
é 40000 | 1 60
< 20000 | ""I "

0 50

VLIW Processors

Figure 3.21: Reduction of the amount of description.

hours to create 36 specifications. Furthermore, generétiom of HDL description from the
specification was from 2 seconds to 15 seconds.

On the other hand, there was the tremendous reduction ofrtiweirst of description that
a designer has to describe. Figure 3.21 shows a comparisibie @mount of description be-
tween the processor specification description and gertekddd description. In this figure, the
amount of description is counted by the number of words,esitis assumed that the number
of words represents the complexity of description bettantthe number of lines. Since a line
is sometimes too long, it is not fair to compare the compyelit the number of lines. In Fig.
3.21, x axis represents the generated 36 processors. A ardta black bar represent the num-
ber of words in generated HDL description and in the procespecification description for
each processor, respectively. A triangle represents tleeptage of the processor specification
description over the HDL description (refer to the right ys§x The percentage of the proposed
specification description over the VHDL description is frad? to 22%, and the average per-
centage is only 18%. This result shows that designers desarspecification in the proposed
method 82% less than HDL description; the amount of the §ipation that designers have to
describe by hand is about 5 times smaller than that of HDL rejgigmmn.

A RISC processor generated by the scalar processor gameragthod has only 20% larger
area than manually designed HDL description [48]. Thougkregated VLIW processor has
not been compared with a manually designed VLIW procesdpitye assumed that the quality
of generated HDL description is almost the same as that obiaibrdesigned HDL description.

Figure 3.22 shows a trade-off between area and performainttee @enerated processors.
The x axis denotes the area of generated processors, anciitie genotes the execution time
with an FIR filter application in maximum frequency. In Fig23, processors from A to F are

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 39

60 ! . . .
i
&,
55f A" ’”]
0 ;¢ *s
- 50t i]
(b}
= . KX
2 2
S I M SR o
5 C i S
L e
g 40| | & . * -
| &>-—o--
D E L.]
35| =]
0 50 100 150 200

HW Area (K gate)

Figure 3.22: Trade-off between HW area and execution tinfdRffilter application.

candidates of design space exploration. This result shbatsetxploration of large design is
possible using the proposed method, and designers cay fadiarchitecture candidates from
the huge design space.

3.7.2 Evaluation of efficient VLIW processor generation met hod
In this section, a generation method of efficient VLIW pramsdescribed in Section 3.6 is
evaluated.
3.7.2.1 Experimental Procedure and Environment
The experiment has been conducted in the procedure as follow
1. Design a VLIW processor with the proposed resource gresgament method.

2. Design eleven VLIW processors with different resourceugr assignment, and create
their processor specification descriptions.

3. Generate HDL description from the descriptions by thelemgnted VLIW processor
generation method.

4. Measure hardware area and maximum delay time with logithegis.

Area and delay time were measured using Synopsys Design i&smwith 0.14um CMOS
library.

40 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

3.7.2.2 Designed VLIW Processors

This section shows the specification of designed VLIW preces The parameters of proces-
sors designed for this experiment is shown below.

e Operation width: 32bit

e The number of operations: 57

e The number of registers in register file: 32
e The number of register file: 1

e The number of slots: 4

e The number of pipeline stages: 5

e The number of ALU: 3

e The number of multiplier: 2
The multiplication algorithm is sequential type.

e The number of divider: 2
The division algorithm is sequential type.

e The number of shifter: 3
e The number of data memory access units: 1
e Data forwarding: N/A

The instruction set of designed processors is based on theddthitecture [49], and ev-
ery operation can be issued from all slots (e.g. homogen¥ai/ processors). However,
the maximum number of parallel executable operations dépen the number of FUs; for
example, up to three shift operations can be issued at a firalkle 3.6 shows operations in
the instruction set, their operation group, and their regpliFUs. With the limitation of the
maximum number of parallel executable operations, 1568/ bhatterns has been created.

Table 3.7 shows FU allocation of designed VLIW processotise proposed method” pro-
cessor is a VLIW processor generated using the proposednasgroup assignment method.
Each entry of Table 3.7 include§(z) ands¢(x) that are explained in section 3.6.2.4. For
instance, in assignment 1 VLIW processdi.U(z) (fs(x) for ALU) is {1, 2, 3, 3. This
means that the numbers of ALUs allocated with each slot optbeessor are 1, 2, 3, and 3,
respectively. Moreover . (z) (s¢(x) for ALU) is {4, 3, 2. This means that the numbers
of slots allocated to each ALU of the processor are 4, 3, anéshectively. Therefore, FU
allocation for ALUs of assignment 1 VLIW processor is showrFig. 3.23.

3.7.2.3 Experimental Results

In this section, experimental results are shown.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION

Table 3.6: Instruction set of designed VLIW processors.

Operation Operation Required
Group Name| Name FU
OG_SFT SLL, SRL, SRA, SLLI, SRLI, SRAI | Shifter
OGALU ADD, ADDU, ADDI, ADDUI, ALU

SUB, SUBU, SUBI, SUBUI,

AND, ANDI, OR, ORI, XOR, XORl,
SLT, SGT, SLE, SGE, SEQ, SNE,
SLTI, SGTI, SLEI, SGEI, SEQI, SNEI,
SLTU, SGTU, SLEU, SGEU

OG.UMP BEQZ, BNEZ, J, JAL, JR, JALR ALU, Sign extender
OG.MEM LB, LH, LW, LBU, LHU, SB, SH, SW | ALU, Sign extender
OG.MUL MULT, MULTU Multiplier

OG.DIV Dlv, DIVU, MOD, MODU Divider

OG_LHI LHI

Table 3.7: FU allocation of designed VLIW processors.

for ALU and shifter | for multiplier and divider
VLIW processor ID | f,(z) | ss(x) @) T 5@
the proposed method{1,2,2,3 | {2,2,2 | {1,2,2, 3 {3,3}
assignment 1 {1,2,3,3 | {4,3,2 | {1,2,2,2 {4, 3}
assignment 2 {1,2,3,1 | {3,2,2 | {1,2,2,2 {4, 3}
assignment 3 {1,2,2,2 1 {3,2,2 | {1,2,2,2 {4, 3}
assignment 4 {1,2,3,2 | {4,2,2 | {1,2,2,2 {4, 3}
assignment 5 {1,2,3,2 | {3,3,2 | {1,2,2,2 {4, 3}
assignment 6 {1,2,3,3 1 {4,3,2 | {1,2,2, L {3, 3}
assignment 7 {1,2,2,1 1 {2,2,2 | {1,2,2,2 {4, 3}
assignment 8 {1,2,3,1 | {3,2,2 | {1,2,2, 1 {3, 3}
assignment 9 {1,2,2,2 1 {3,2,2 | {1,2,2, 1 {3, 3}
assignment 10 {1,2,3,2 | {4,2,2 | {1,2,2, 1 {3, 3}
assignment 11 {1,2,3,2 1 {3,3,2 | {1,2,2, % {3,3}

42 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Slot 1 Slot 2 Slot 3 Slot 4

ALUO ALU1 ALU2

Figure 3.23: FU allocation for ALUs in assignment 1.

Table 3.8: Comparison of area and delay between designed/\gtbcessors.

Entire Processor Datapath Selectors Controller
VLIW processor ID || Area (gate)\ Delay (ns)| Total Area (gate) Area (gate)
the proposed metholi 93170 14.9 9662 8802
assignment 1 95536 15.6 11320 10167
assignment 2 93864 15.0 10199 9150
assignment 3 94172 15.3 10142 9807
assignment 4 94605 14.5 10733 9709
assignment 5 94788 15.1 10758 10127
assignment 6 94942 15.2 10943 9995
assignment 7 93530 154 10008 8926
assignment 8 93556 154 9882 8928
assignment 9 93942 14.6 9844 9478
assignment 10 94237 154 10429 9373
assignment 11 94219 14.7 10410 9838

Figure 3.24 illustrates a comparison of hardware area anfoay/LIW processors. Figure
3.24 represents that hardware area differs among the elifféiU allocation and the proposed
method that uses an efficient FU allocation achieves thelsstdlardware area. Table 3.8
shows the detailed results of VLIW processors with différek) allocation. In Table 3.8,
the area and delay time of the entire processor are shown hasvéhe area of data-path
selectors and a controller. Note that the controller is & paYLIW processor which decodes
an instruction and dispatches operations, and it also alsrttre pipeline status such as pipeline
interlock. Table 3.8 shows that the area reduction is mainiye from the reduction of data-
path selectors and controller.

3.7.2.4 Discussion

The change of resource group assignment leads to the chaktkatiocation, then the size of
required data-path selectors also changes.

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 43

96000 — T T

95000

94000 _

93000

HW Cost (gate)

92000

91000

VLIW Processor ID

Figure 3.24: Comparison of hardware area.

Table 3.9 explains allocation of two FUs to four slots forleddIW pattern. In this ex-
periments, a case of two FUs is a case of multipliers or drgidén Table 3.9, “*” indicates
a slot that issues an operation using the FU, in each VLIWepattThe column of assign-
ment 1 and the proposed method in Table 3.9 represent an Bthtl to each slot for each
VLIW pattern. According to Table 3.9, only one FU, FU1, isoalted to Slot4 in the proposed
assignment method, while two FUs, FUO and FU1, are allodat&dot4 in assignment 1.

Table 3.10 explains allocation of three FUs to four slotsdach VLIW pattern. In this
experiments, a case of three FUs is a case of ALUs or shiffarsording to Table 3.10, only
one FU, FU2, is allocated to Slot4 and two FUs, FU1 and FU2aloeated to Slot3 in the
proposed method, while three FUs, FUO, FU1 and FU2, are atkolcto Slot3 and Slot4 in
assignment 1.

Allocating fewer FUs to a slot makes the size of data-patbctets that choose input data
of a register file smaller. Moreover, since it also leads tocating an FU to fewer slots the
size of data-path selectors that choose input data of an $aJosicomes smaller. Since fewer
data-path selectors benefit area and delay time, fine qUAlity processors can be generated
using the proposed method. Consequently, the proposedroesgroup assignment method is
effective to generate a VLIW processor with small area ardydéme.

CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Table 3.9: Allocation of two FUs to four slots for each VLIWtpen.

VLIW Pattern Assignment 1 the proposed method
S1 S2 S3 S4S1 S2 S3 S4, S1 S22 S3 S4
* FUO FUO
* FUO FUO
* FUO FUO
* FUO FU1
oo FUO FU1 FUO FU1
* * FUO FU1 FUO FU1
* * | FUO FUl| FUO FU1
* % FUO FU1l FUO FU1
* * FUO FU1 FUO FU1
oo FUO FU1 FUO FU1

Table 3.10: Allocation of three FUs to four slots for each WLpattern.

VLIW Pattern Assignment 1 the proposed method
S1 S2 S3 S4S1 S2 S3 S4, S1 S22 S3 S4
* FUO FUO
* FUO FUO
* FUO FU1l
* FUO FU2
oo FUO FU1 FUO FU1
* * FUO FU1 FUO FU1
* * | FUO FUl| FUO FU2
* % FUO FU1l FUO FU1
* * FUO FU1 FUO FU2
oo FUO FU1 FU1L FU2
ook % FUO FUl1 FU2 FUO FUl1 FU2
oo * | FUO FU1 FU2| FUO FU1 FU2
* * * | FUO FU1 FU2| FUO FU1L FU2
*oox % FUO FUl1l FU2 FUO FU1 FU2

3.7. EXPERIMENTAL RESULTS AND DISCUSSION 45

Table 3.11: Occurrence conditions of added interrupts.

| Interrupt Name | Occurrence Condition
Nonmaskable interrupt when the value of “NMI” input port becomes active.
Overflow interrupt when the overflow flag of ALU becomes active

in operation of operation group Q&LU
Zero division interrupt| when the error flag of divider becomes active
in operation of operation group QGIV

3.7.3 Evaluation of VLIW processor generation method with i nter-
rupt model

This section describes an experiment that is performeddardo confirm the feasibility of the
proposed interrupt model of VLIW processor.
The experiment has been conducted in the procedure as sledom b

1. Design a VLIW processor with interrupt features basedhemproposed interrupt model,
and create its processor specification description.

2. Generate HDL from the description by the implemented VLjiWdcessor generation
system.

3. Simulate the VLIW processor to confirm whether or not it pancess interrupts.

3.7.3.1 Designed Processor

A designed VLIW processor for this experiment is based onMhBN processor explained
in Section 3.7.2, and interrupts are added as shown beloweder,NMI input port of the
processor core is also added to realize a nonmaskableupterr

e Nonmaskable interrupt
e Two kind of internal interrupt

— Overflow interrupt
— Zero division interrupt

Table 3.11 shows interrupts and their occurrence condifomonmaskable interrupt occurs
when the value dMI port of the processor becomes active. An overflow interrgptios when
an ALU asserts overflow flag in an arithmetic operation. A adikasion interrupt occurs when
divider outputs error flag in a division operation. Furthems in case of multiple interrupts,
an interrupt occurred from the least number of slot is preires

Table 3.12 shows behavior of added interrupts. In Table, 2Cdmeans a program counter.
In the designed processor, a nonmaskable interrupt, arl@vanterrupt, and a zero division
interrupt invoke interrupt handlers located on the addas®x00008800”, "0x00008000”,
"0x00008400", respectively.

46 CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Table 3.12: Behavior of added interrupts.
| Interrupt Name | Behavior |
Nonmaskable interrupt PC <+ 0x00008800,
reset a register file and an instruction register.
Overflow interrupt PC <~ 0x00008000.
Zero division interrupt| PC+« 0x00008400.

Table 3.13: Comparison of area and delay between VLIW psmrssvith and without inter-
rupts.

| VLIW Processor| Area (gate)] Max Delay (ns)

with Interrupts 94329 14.8
w/o Interrupts 93095 14.2

3.7.3.2 Evaluating of Generated Processor

In this section, evaluation of the generated processorssriees.

The behavior of a nonmaskable interrupt and internal infgs is checked through the RTL
simulation. It is confirmed that the generated processoksvproperly in case that the non-
maskable interrupt or internal interrupts occur, inclugline case of multiple internal interrupts.

Design Quality of Interrupt Handling Circuits Table 3.13 shows comparison of hard-
ware area and maximum delay time between the VLIW procesgtiisnterrupts and a VLIW
processor without interrupts. According to Table 3.13r@ases of area and delay time are one
percent and four percent, respectively. This result camolpsidered as appropriate increases.

3.7.3.3 Discussion

This section evaluated a VLIW interrupt model that can harmdhonmaskable interrupt as well
as an internal interrupt. In a VLIW processor, though muidtimternal interrupts may occur
in a pipeline stage at a time, the proposed model can selexg@opriate interrupt according
to the slot priority. The experimental results show thatiatérrupts based on the proposed
interrupt model for VLIW processor works properly.

3.8 Conclusion

This chapter proposed a generation method based on the waifig VLIW processor model

[44]. In the proposed method, pipeline stages, slots anghttking rule are configurable, and
pipeline control logic is generated automatically. In tlesidn of pipeline processors, designing
pipeline control logic is a troublesome and difficult padwever, automatic generation of such
logic helps designers to concentrate on customizing thegssor architecture. Experimental

3.8. CONCLUSION 47

results shows that the proposed method can generate a VLdéegsor from a high level
description, which is 80% to 90% smaller than HDL descriptias shown in Section 3.7.1.
And also, the generation time of HDL description is suffitigrshort, that is from 2 to 15

seconds.

This chapter also proposed a resource group assignmenttailgdo generate VLIW pro-
cessors of smaller area and shorter delay time. The propssgnment algorithm minimizes
a total of the number of slots that an FU is allocated with d&drtumber of FUs that are allo-
cated with a slot. The experimental results indicated thaftroposed algorithm can generate
fine-quality VLIW processors.

Though a generated VLIW processor has not been comparedawitfanually designed
VLIW processor yet, it is assumed that the quality of geregtatiDL description is almost
the same as that of manually designed HDL description asisked in Section 3.7.1.2.

Since the specification description supports a wide rangéspatching rules and the amount
of description is sufficiently small, it is possible to gestera wide range of fine-quality VLIW
processors in a short time. Note that a simgdey and paststrategy can be employed during
preparation of the processor specification descriptionnddethe actual effort that designers
have to describe is much smaller than the manual design of.HDBDErefore, the proposed
method can significantly improve the design productivity)/ei\W processors.

48

CHAPTER 3. HARDWARE GENERATION FOR VLIW PROCESSORS

Chapter 4

Operation shuffling algorithm for low
energy LO cluster

The method described in Chapter 3 significantly improvesdissign productivity of VLIW
processors. The chapter also gives an algorithm to maketeeden a VLIW processor smaller,
which is also beneficial for power reduction.

VLIW processors, however, have a power bottleneck in theuoion memory hierarchy.
Therefore, energy reduction on the instruction memoryarsry is the next challenge for
VLIW processors. This chapter describes an approach taceethe energy consumption in
the instruction memory hierarchy using an operation sgfélgorithm which changes opera-
tion scheduling to make an efficient configuration of LO ctust

4.1 Power breakdown of VLIW processors

A detailed power analysis of embedded systems using VLIV¢gasor indicates that signifi-
cant amount of power is consumed in the instruction memasahnchy. For example in Lx pro-
cessor, a VLIW processor designed by Hewlett-Packard ami&delectronics, up to 40% of
the total processor power is consumed in the instructiohesalone [8]. Figure 4.1 (a) shows
the average power consumption of the VLIW processor redart¢8]. This figure shows that
the instruction cache consumes a significant amount of p@6é6 of total power.

An LO buffer (a.k.a. loop buffer) is an efficient techniqueréaluce energy consumption in
the instruction memory hierarchy [9, 10]. In most embeddepliaations, significant amount
of execution time is spent in small program segments (whatsist of loops). An LO buffer
stores these small program segments in a small buffer (SRAMgster file based) instead
of a big instruction cache. Then the processor core onlyssaseto the buffer during the loop
execution. This reduces the number of accesses to the Hegletiof the instruction memory
hierarchy and therefore giving large energy reductionjristance up to 60% as shown in [10].

Other components of VLIW processor, such as the data patlla@dmemory, can also be
optimized for energy efficiency. Many research communitiage been devoted to the energy
optimization for the components. A power management achite eliminating the switching
activity of FUs [50] reduces the energy consumed in the datia ppy up to 40%. The LO buffer
architecture reduces the energy of the instruction cachepbp 60%. Data memory energy

49

50 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Data Cache
30% Data24cofche
Core Core
29% 35%
Optimization
Register Fi Ieu
5% (Q[
Register File Inst Cache
Inst Cache 11% 30%
%
(a) Before Optimizations (b) After Conventional Optimizations

Figure 4.1. Power breakdown of VLIW processor (a) beforarogtations (b) after conven-
tional power optimizations.

can be reduced by up to 60% by code transformations at therayistvel [51]. With these
conventional power optimizations, the power consumptian be reduced by about 50% as
shown in Fig. 4.2. However, the instruction cache is still@onpower bottleneck as shown in
Fig. 4.1 (b).

4.2 LO buffer in VLIW processors and LO cluster

In a simple application of the monolithic LO buffer to a VLIWqzessor, at each cycle the oper-
ations would be fetched for all the slots of the VLIW from themolithic LO buffer. However,
such a monolithic LO buffer is not effective as not all slots always active. This implies that
some slots would require unnecessary buffer access for Nl@rRton [13]. Hence, LO cluster
generation was proposed to obtain a low energy system [13, 14

Figure 4.3 depicts an overview of a clustered VLIW procesgoNLIW instruction con-
sists of multiple operations that are executed simultaggowd VLIW processor consists of
a number of slots and each of the different slots operatesiallpl, and hence an operation
can be issued from each slot every cycle. An LO buffer pravimigerations to slots during loop
execution, while L1 cache or higher instruction memory &iehy directly provides operations
outside of loop. Each slot is also associated with a datdeziwghere all the slots inside are
connected to the same register file. The slots are also gddogerm an LO cluster (instruction
cluster) and these slots are associated with their resyeddd buffer.

Each LO cluster contains associated slots, the separatédff€r, and an index translation
controller (ITC) which controls access to the LO buffer. bch cluster, the buffer stores only
operations destined to the slots in the cluster. A loop atletr (LC) gives a relative index in
a loop to ITCs during loop execution, and an ITC regulategeseto LO buffer when no oper-
ation is needed to be issued. Since an ITC controls buffersacior each cluster, unnecessary
accesses to the LO buffers, i.e. fetching NOP operationbeasuppressed. Further architecture

4.3. MOTIVATION FOR IMPACT OF COMPILER 51

100. 0%

90. 0%

80.0% Reduction of 50%

70. 0%

60. 0%

D-Cache
50. 0% [] I1-Cache

[[DRegister File
40. 0% | HCore

Power

30. 0%

20. 0%

10. 0%

0. 0%

Before Optimizations After Conventional
Optimizations

Figure 4.2: Power reduction by the conventional power ozations.

details are provided in [13, 52].

Figure 4.4 shows an example of how to control the buffer eaeesFigure 4.4 (a) shows a
schedule to be executed and a possible LO cluster configareishown in Fig. 4.4 (b). In
a cycle when no effective operation exists in an LO clusteffeb access can be regulated in
the cluster, as represented in shaded boxes labeled 'INMETh Fig. 4.4 (b). Figure 4.4 (c)
shows a detailed cycle by cycle execution behavior of LOtelu3. An ITC consists of enable
flags and pointers to LO buffer, and the LC gives a pointer tbT&hin each cluster. In the first
cycle, the enable flag is true in the entry pointed by the LEntthe LO buffer is activated and
a pointer in the entry is used to fetch operations from thédouln the second cycle, the enable
flag is false, which represents that there is no effectiveamns in the cycle. Therefore, a
buffer access to the LO buffer is regulated. In the next gyitle LO buffer is activated again
and operations for the cycle are fed to slots. Note that apgli,0 clusters can reduce the
depth of LO buffer itself (depth of three, while the size objois four), as well as the number
of accesses to the buffer, and consequently contributegyereduction significantly.

4.3 Motivation for impact of compiler

Clustering LO buffers is effective for energy reduction.€Tiesult of LO cluster generation is,
however, sensitive to the schedule of the target applicafitie essence of the relevant energy
model [13] is

Ncluste'rs

E= Z Ergi - Cactv; + Erre; - C, 4.1)
=1
where N ..:ers 1S the number of LO clustersy; g; is the energy consumed for any random
access ko is the energy consumed by ITC for a cyctéqctv; is the number of activated

52 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

PC > Instruction Memory Hierarchy
LO Cluster 1 LO Cluster 2 LO Cluster 3
|/ ——————— —v————‘\ '/ ————— ‘v———\\l, ————— Lw r—\\
LC LITCl LO Buffer 'Ll LoBuffer | 'UefiTcls] L0 |
| Ly l Buffer | !
- | | | . | — ' | '
2, 4 . y T T
2 2]] 2] F 2] w1 2N NO] !
9, =l = = F =4 = | =R el !
N I\) ‘\ !
5 il Sl il i 4
2 Register File Register File
o
@ |Data Cluster 11 Data Cluster 2 1
©
a

Data Memory Hierarchy

Figure 4.3: A clustered VLIW processor.

cycles in LO clustet, C' is the number of total cycles during loop executidf),z; depends on
the size of cluster.

Figure 4.5 depicts a small example to show how energy is extibg a change of schedtile
An example of 5 cycle schedule in 3 slot VLIW processor is shawFig. 4.5 (a). One possible
schedule for this is shown in Fig. 4.5 (b). In this schedul@ cluster 1 (LOC 1) has only one
operation in cycle 5, while the cluster can contain up to tywerations. If the operation is
moved to another cluster, a smaller cluster (LOC 2) is atdtvand the larger cluster (LOC 1)
can be inactivated, and consequently, it can reduce engr@y¥% as shown in Fig. 4.5 (c).
Therefore the basic rationale of this change in schedute f@. 4.5 (b) to (c) is to use smaller
LO clusters more efficiently than larger LO clusters ineéidily.

This fact emphasizes the impact of compiler on the energgiefity; the energy efficiency
is highly depending on the initial schedule generated byrapiler even if LO clusters are
properly constructed for a given schedule.

YIn Fig. 4.5, the buffer size and ITC size are calculated usliegollowing equations:

Sizepuffer = (Lengy X #Slots) x Depthy,, (4.2)

Sizech = (W’idthﬂag + W’idthindem) X Deptthc, (43)

whereWidth s, is the width of enable flag) idthipqes iS

loga(Depthpys), Depthy, ¢ is the same as the number of active cycles in the cluster[andh ¢ is the same
as the length of loop. Note that the above equations are gist@ified model than the energy model used in the
experiments, which is based on Wattch power model [53].

4.3. MOTIVATION FOR IMPACT OF COMPILER

Schedule

ADD|MUL|AND|SUB|ADD| LD [ADD
ADD|CMP ADD
MUL ADD MUL ADD|ADD
cycle BR | SW |ADD SwW ADD MUL|ADD

Slotl Slot2 Slot3 Slot4 Slot5 Slot6é Slot7 Slot8 Slot9 Slot10Slot11Slot12
(a) A schedule

- === = 1
LOC 1) (LO Cluster 2 LO Cluster 3 LO Cluster 4 LO Cluster 5
Slotl Slot2 Slot4 Slot3 Slot6 Slot8 Slot5 Slot7 Slot9 Slot10Slot11Slot12
1

1
| :|ADD|ADD| |

cycle1 [ADD] [MUL[SUB]' [AND[LD |
cycle2 [ADD| |cMP|ADDI!
cycle3 [MuL] [INacTVE]! [ADD] |ADD] ![MUL]ADD[]
cyce4 |BR| [sw]| |! [ADD[sw |ADD| '}

____1____¢

cycle

(b) Behavior of access regulation

.)
! cycle 1 ITC LO Buffer '
>, —|T] O & JAND] LD '
t fomlC [F| - S |ADD ADD|
1 T 1 4 |[ADD| SW |ADD :
: T] 2 '
1 I— !
. index !
: enable :
, cycle?2 !
' T| 0 '
: - :
. T] 1 .
1 T 2 1
1 | | 1
1
I cycle 3 :
! Tl 0 @ AND| LD 1
. Fl - 9 ADD ADD :
! T1 1 d |[ADD| SW |[ADD|
T[] 2 !
: o — $:
: : -
1 : !
" = ,

(c) Behavior of LO Cluster 3

Figure 4.4: Example of regulation of LO buffer access.

54 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Slotl Slot2 Slot3 Slotl Slot2 Slot3 Slotl Slot2 Slot3
cyclel [OPi[oP2| | [oP1]oP2] fiacel [OP1[OP2| fnacrve:
cycle2 [OP3][OP4|OP5] [oP3|oP4] [OP5| [OP3][OP4] [OPS]|
cycle3 |[oP6[oP7| | [oP6|OP7]| fiacie] [OP6[OP7| facrve!
cycle4 |[OPg[OP9| | [oPg|OP9]| fiace] [OP8[OP9| fnacrve:
cycle5 [oP10] [] opP10] | fmcmel EEweneEE OP10|

LO cluster LOC1 LOC 2 LOC1 LOC 2

LO buffer size (322)*5 (32*1)*1 (32*2)*4 (3212
ITC size (1+3)*5 (1+1)*5 (1+3)*5 (I+1)5

320*5+20*5 32*1+10*5 256*4+20*5 64*2+10*5
=1782 =1302 (27% reduction)

Energy
(a) Original Schedule (b) Schedule 1 (c) Schedule 2

Figure 4.5: Example illustrating energy reduction by salled¢thange. (operation length is 32
bit)

4.4 Proposed operation shuffling algorithm on hetero-
geneous architectures

Figure 4.6 shows an overview of the proposed operation shgiffilgorithm. Figure 4.6 (a)
shows a conventional method proposed in [13].iAitial schedules first obtained by compi-
lation of theapplicationon the specifie@rchitectureof target processor by usinigtargetable
VLIW C compiler The CRISP framework [54] is used, which is an extended warsf Tri-
maran framework [55]. Thénitial scheduleis then further analyzed by schedule analyzer
which generateactivation informatiorof slot. Finally, anLO cluster optimizefinds the most
energy efficient LO cluster configuration for the informatj@and reports anptimized cluster
configurationandestimated energgorresponding it, as output of post compilation phase. Fig-
ure 4.6 (b) shows the extended method proposed in thisartidere theschedule analyzer
is extended to generate all possible operation-shuffleddidbs (i.e slot activation infg, ac-
cording to thearchitecture informatior{target processor). The output of the post compilation
phase is sets df0 cluster configuratiomndestimated energy informatidor each generated
schedule. Therefore, the best schedule and optimized Letlgonfiguration for it can be
obtained. For estimating the energy consumption Wattcheponodel [53] is used and the
0.18:m technology is assumed.

Figure 4.7 depicts a procedure in the extended schedulgzanab shuffle operations in a
cycle under constraints of slot capability. For each cyatsignment candidates are generated
by shuffling operations scheduled to the cycle (the dependsinf the operations need not be
taken into account as cycle boundaries are not crossed).sgigranent list includes a list of
operation assignment candidates for each cycle. The lisaoflidates is generated from an

4.4. PROPOSED OPERATION SHUFFLING METHOD

55

Arch. | application(C) Arch. | application(C)
info. info.
Trimaran — Trimaran

retargetable C compiler

Initial Sched.

retargetable C compiler

Initial Sched.

Post Compilation

Post Compilation

sched. analyzer

sched. analyzer+

!

slot
activation
info

slot

a°‘.'¥?§

Choose

B Best Schedule

(a) conventional method

LO cluster |Power LO cluster |Power
optimizer |Model optimizer |Model
TR
/ \ ST\
Optimized Estimated Optimized Estimated |[}.
LO clust. cfg. Energy LO clust. cfg. Energy

(b) extended method

Figure 4.6: Overview of an LO cluster configuration improverhphase (a) in the conventional
way, (b) with operation shuffling (proposed method).

e [0

Assignment List\

Initial Schedule Enumerated
cycle Slot Capability ~ Assignment

H Information Candidates
c-3

X A

C. ,,,,,,,

M LI l

c-1 l

c (A M)

o+l enumerate

ct2 I I I . ALU Operation

c+3

H D . Multiply Operatlon

store -El M VA T P M A
c+2 D]]] ‘
e /000D
_ H

Figure 4.7: Operation shuffling in each cycle.

56 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

initial schedule, which is generated by the compiler, wltt sapability information, which is
extracted from architecture information given as inputté\hat this operation shuffling algo-
rithm is applied for each data cluster in a data-clusteretiggcture, since an operation cannot
be simply moved across the border of data cluster withouhter-cluster copy operation. As
the proposed shuffling algorithm is applied as a post coripilaphase, new inter-cluster copy
operations cannot be inserted. Section 4.6 describedslefdhis topic. In Fig. 4.7, an ALU
operation and a multiply operation are bound in cycl# initial schedule which is generated
by the retargetable compiler. According to slot capabilitfiprmation (i.e. multiply operation
can be issued from the second and the fourth slot, while AL&raion can be issued from all
slots) which is given as the architecture information, sigignment candidates are enumerated
for the ALU operation and the multiply operation in cyeleThese are candidates for schedules
to be generated in the next step and stored into an entry & eyo the assignment list. For
each cycle, operation assignment candidates are enuharadestored into the assignment list
in this way. The dependency information of the operationsoisneeded since the procedure
does not move operations across 'cycle’ boundaries. It nagds slot capability information.

From this assignment list, various schedules can be gekgras shown in Fig. 4.8. By
choosing one candidate for each cycle, all possible contibimaof candidates are generated.
For example, by choosing the first assignment possibilityech of the cycles from — 3 to
cyclec + 3, schedule (1) is generated. Similarly, the second assighpussibility of cycle
¢+ 3 is used to generate schedule (2). This approach makes ibjfssgenerate all possible
schedules in which operations are shuffled within a VLIW instion.

4.5 Heuristics to limit the exploration space

The approach described in Section 4.4 can generate allpj@ssiuffled schedules, however,
the exploration space becomes too huge to solve it in a tiediisie. In case of applying the
shuffling to an application that had x S cycles (whereV/ is the number of basic blocks and
S is the number of cycles per basic block) and each cycle hast@be@andidates on average,
the algorithm generates almast”*“ schedules. Sinc&/ x .S becomes larger than thousands
in real applications, this approach is not realistic asahds. For instance, if each basic block
hasS = 20 cycleg, each cycle had/ = 10 patterns of assignment candidates on average, and
there arell = 500 basic blocks in the entire application, the size of exploraspace becomes
10°%9%20 "which cannot be treated in realistic manner. Therefoiis,ribt practical to perform a
full search based operation shuffling on the entire apptioat

Before introducing a heuristic for this problem, let us fadate the full search asglobal
approach Figure 4.9 (a) illustrates the global approach, whereyalles in all the basic blocks
are shuffled at a time. Here, assignment candidates are eat@thdor all cycles {7 x.S) of

2In the context of low-power wireless and multimedia systemany loop transformations are applied, for
instance loop transformations like loop fusion is appliedhiprove the locality of data and instruction accesses.
When these transformations are applied the effective numibeycles are increased compared to conventional
number of cycles reported for generic embedded systemsds.gported in [56]). In this context the number of
cycles assumed for the illustration is fairly realistic.

57

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE

~

Assignment List

(N)

(k)

2)

(1)

Generated Schedules

Figure 4.8: Generation of operation shuffled schedules.

58 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

(Execution)
Cycle

10% BB3

36% BB2 i B |

1]

50% BB1

100.0%

Estimated
Energy

N

L]

Best Schedule

(EX ecut On) (a) global approach (exhaustive search)
Cycle

10% BB3

30% BB2

50% BBl

100.0% 1 l 1 l

Estimated
Energy

y Best Schedule ;i Best Schedule i Best Schedule
1st Exploration for BB1 2nd Exploration for BB2 3rd Exploration for BB3
(b) search with heuristic

Figure 4.9: A heuristic for multiple basic blocks.

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE 59

all basic blocks V) in the target application. Further, each generated sdheasia collection
of combinations of assignment candidates from each cychenTall possible schedules are
generated. From this list of possible schedules, the stbdBest Schedule) which has the
lowest LO cluster energy is chosen. The LO cluster energgtismated as shown in the bottom
part of Fig. 4.6 (a) or 4.6 (b). In the following subsectiossme effective heuristics to reduce
the exploration space are proposed.

45.1 Heuristic to shuffle one basic block at a time

As a first heuristic to reduce the complexity of the searcltepthe shuffling algorithm is ap-
plied to one basic block at a time instead of all the basickddogether in the global approach.
This heuristic is illustrated in Fig. 4.9 (b). Intuitivelfpy applying this heuristic the total
schedules generated can be reducedste N° from N> which gives a linear reduction
with respect to number of basic block&/§. This heuristic is inspired by the method in [42],
where a similar approach is applied to which limits the sizexploration space by considering
interaction among instructions only in a basic block.

In order to apply this heuristic, the basic blocks are orddr@sed on a certain priority. Here,
the number of execution cyclemnsumed by a basic block is utilized as an indicator for this
priority. First, the algorithm ranks basic blocks accoglio the number of execution cycles
consumed by each basic block. By this ranking, it can disistigthe most significant basic
block for energy reduction; operation shuffling on this basiock is more effective rather
than any other basic block. Once the operation shufflingigiéhe best schedule for the most
significant basic block, the next operation shuffling is perfed on the next cycle-consuming
basic block, taking into account the shuffling result of poes first basic block. Figure 4.9
(b) shows an overview of this heuristic. First, the most gigant basic block on execution
cycles, BB1, is selected to be performed operation shufflfrgy the second most significant
basic block, BB2, operations are shuffled taking into acttum shuffling result of BB1. This
heuristic possibly misses a better schedule that can baeltan the global approach, however,
this would be a realistic and reasonable way to treat theeeafiplication effectively.

4.5.2 Heuristic to limit the number of basic blocks

In addition to the above heuristic, another useful heuristto limit the total number of basic
blocks that are shuffledy applying this heuristic, th&/ can be reduced ta(< M), thus the
total search space will be reduced to about N°. In multimedia applications, 66% of total
execution cycles is spent in loops of size 256 instructianiess, 51% of the total execution
cycles is spent in loops of size 32 instruction cycles or,ledsle the size of application is
a thousand to fifty thousand instructions [56]. For instaals® reported else where in the
literature, about 90% of execution cycles is consumed in vt frequently used loops in
multimedia applications [57]. Therefore by focusing on fkey basic blocks (or loop), the
exploration space becomes much smaller. Note also thatdmgiiog on most important loops
the achievable energy efficiency is not severely compromsiace most time consuming loops
are also the ones which consume energy.

60 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Two 'A’s and 'M’ coming...

(- , :
cycle Possible assignment

Figure 4.10: Skipping same combination heuristic.

4.5.3 Heuristics to select the combination of assignment ca ndi-
dates

Another set of heuristics is inspired based on the insightgperation of LO clusters or loop
buffers [13]. Specifically, these heuristics are impleneeninder the hypothesis that it is better
thatall the active slots should be concentrated togethetuitively, this helps in generating
smaller widths for frequently used clusters. Since smallesters are better for energy effi-
ciency, this heuristic helps in achieving higher energycedficy. However, as a side-effect this
policy might lead to increase in depth of buffer of the fregiyg used LO cluster. Therefore,
these heuristics should be experimentally examined foadetoff between depth and width
of buffer. Even if a result gets a bit worse due to the hewsstthese heuristics will still be
beneficial in reducing the exploration space. This is disedgurther in Section 4.7.2.

More importantly, by applying these heuristics, it is pdiaity possible to reduce the number
of patterns needed for each cyclen¢< N), thus reducing the total exploration space to
mxn®. Itis clearly evident from the equation that by reducing tiuenber of patterns fromV
to n we can reduce the search space drastically, sinisethe base of the exponential factor.
Hence, these set of heuristics are crucial and importanefitwcing the overall search space.

4.5.3.1 Skipping same combination

In a basic block, if current cycle has the same combinatioapafrations as in the previous
cycle, then the same operation assignment is used for thentwycle. For example in Fig.
4.10, if cyclei contains two ALU operations and one multiply operation dmel/tare assigned
into the first, second and fourth slots, respectively, farley which contains the same com-
bination asi, i.e. two ALU and one multiply, the same slotss.e. the first, second, and
fourth slots, are used. In exhaustive exploration, eveydfec; has the same combination of
operations as cyclg exploration is repeated again for cygleOn the contrary, this heuristic
skips exploration for cyclg by applying the same assignment as cyiclevhich is expected
energy efficient assignment, and consequently the exparapace is reduced.

4.5. HEURISTICS TO LIMIT THE EXPLORATION SPACE 61

Two 'A’s and 'M’ coming... Assignment History
type num
’enumerate Al
3
Possible 4
assignment
M |1

a
b
c

d.

e

f.

|
(
‘L

Figure 4.11: Dominance checking heuristic.

4.5.3.2 Dominance checking

In this heuristic, in a basic block, if the current cycle hae same number of operations of
a certain functionality (e.g. one multiply operation) asme of the previous cycles, then the
same operation assignment as the previous cycle is usetidazurrent cycle. Figure 4.11
explains this heuristic. For a certain cycle, two ALU opemas and one multiply operation
are to be scheduled. Aassignment historis maintained to keep track of the slot assignment
history for each operation type and for its number. Eveneféis no exactly same combination
as the previous cycles, there is an entry in tiory which uses a multiply operation in the
fourth slot. Therefore, three of the enumerated patternd, @nd f) which do not use a multiply
operation in the fourth slot are omitted in this heuristiegdanly the rest of the patterns (b, c,
and e) are used for the generation of schedules. The polittyioheuristic is the same as the
previous heuristic. If a certain operation is examined amasion to assign a slot is made
in the previous cycle, the same decision is applied withaytfarther exploration in the later
cycle.

4.5.3.3 Advanced dominance checking

This is an improved version of the dominance checking haarigdere an infeasible candi-
date is skipped not only in the case that the number of op@mis exactly same as in one of
the previous cycles for a certain functionality but also inase that the assignment order is
different. Figure 4.12 shows an example of this heuristicFig. 4.12, though there are four
possible assignments for three ALU operations and there isxact match with the history,

62 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Compare with history

. : ~N
Assignment History Al 1 Three 'A’s coming...
type [num 2
Al
4 enumerate
) \
4 All (Possible h
assignment
M |1 N\,
\ a.
’ tsk '
= C.
=
7d.
A

Figure 4.12: Advanced dominance checking heuristic.

procedureCheck Pattern(candidate, cycle)

skip «— false if skip = false then
foreachiype € OpeTypes do if cycle |fs the final cycle then

cur « Extract(candidate, cycle, type) AcceptCandidate(candidate)

count «— bit_count(cur) else

/I Dominance checking AddH istory(type, count, cur)

prev «— History(type, count) Check Pattern(candidate, cycle + 1)

if prev # null andprev # cur then RemoveHistory(type, count, cur)
skip «— true end if

end end if

/I Advanced dominance checking
for n < count + 1 to Slot,,q. dO
prev «— History(type,n)
if prev # null and(prev&cur) # cur then
skip «— true
end i
end for
for n « count — 1 downtol do
prev < History(type,n)
if prev # null and(prev&cur) # prev then
skip «— true
end i
end for
end foreach

Figure 4.13: Dominance and advanced dominance checking.

4.6. OPERATION SHUFFLING FOR MULTIPLE DATA CLUSTERS 63

assignment andd are not appropriate because they are inconsistent withisenyr assign-
ment of three ALU operations has to dominate assignment@fowl two ALU operations and
has to be dominated by assignment of four ALU operations. iDating means that slots to
which a fewer operations are assigned should be includddtste which more operations are
assigned. In this example of Fig. 4.12, three ALU operativage to be issued from a set of
slots which are used for four ALU operations (this constransatisfied in all candidates in
this example), and a set of slots used for one or two ALU opmrathas to be subset of a set
of slots used for three ALU operations. In the mathematicéhtion, the slot assignment has
to satisfy the constraint

wherei, j is the number of operations ar{ is a set of slots used fdroperations.

4.5.3.4 Algorithm for dominance and advanced dominance che cking

Figure 4.13 shows the dominance and the advanced domin&eckiceg algorithm. A gen-
eratedcandidate, which is a combination of assignment for each cycle, is kbéavhether
conditions of the heuristics are fulfilled for all operatitypes in eachycle. OpeTypes is a
set of operation types that a VLIW processor supports, &iad,,... is the number of slots in
the processorExtract(cand, cyc,t) extracts an assignment in cyelge from candidateand
and returns slots to which operation typés assigned in the assignmentur is a bit string
in which each bit corresponds with a slot; a bit is true whemasponding slot is used in the
cycle. count is the number of true bits inur, which is one of keys of the history tablgrev

is a bit string representing slots used in the previous eydBy comparingur andprev, the
dominance checking is done. By bitwise AND of the two bitrgjs, the advanced dominance
checking is done. If all conditions are fulfilled, the nextleyof the candidates is checked. If
it is the final cyclecandidate is accepted as a result of this algorithm AyceptCandidate().

4.6 Operation shuffling for multiple data clusters

So far in the approach of operation shuffling, the assumptias that all the LO clusters were
within one data cluster. This section describes an overoigvow to apply this approach when
the architecture supports multiple data clusters. Sincéda WLIW processor leads to drastic
increase of complexity of interconnect and size of the degsster file, some VLIW processors
have clustered register files. In data clustered VLIW preoes smaller register files signif-
icantly benefit energy reduction [58], though an inter-tdusopy operation is required to be
added to transfer data across the border of data clustenge Such a data clustered VLIW
processor is commonly used, this section also describesratign shuffling approach to treat
VLIW processors with multiple data clusters.

In order to combine both data and LO clusters, this thesipgwes the following approach:
First the data clustering (partitioned data register filed eluster copy operation insertion) is
applied and then within these constraints, LO clusterirdy@veration shuffling is applied. Such
a phase ordering is both energy efficient and also scalaliéege architectures like [39] [40].
Qualitatively, we can see that the register file energy conion is more than the energy con-
sumption of the LO clusters, hence by focusing on the highergy bottleneck first and then

64 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

applying the LO clustering will lead to better overall eféocy. Moreover, this approach avoids
any side-effects that can arise by LO operation shufflingciviciould potentially affect the data
clustering phase. As a consequence of this approach, inpgr@tion shuffling approach pre-
sented in this thesis, the operations will only be shufflethinithe boundary of a data cluster.
Which implies that the data clustering constraints areated, if we shuffle the operation and
reassign it another LO cluster which resides in another datster. Another consequence, is
that we need to keep the size of an LO cluster to be smallerdhanual to the size of a data
cluster. Therefore, this thesis assumes only LO clustershwieside in a data cluster.

Now, in order to optimize a schedule for data clustered VLIVdgessors, the operation
shuffling described in the previous sections is performedawh data cluster separately. Under
this policy, no inter-cluster copy operation is needed t@bded since operations are moved
within the data clustering constraints. Hence, there iseréopmance loss nor any interference
with the data clustering phase. This idea is relativelyightfiorward, but it has still important
meaning because most VLIW processors have multiple dashechu

4.7 Experimental results

This section describes experimental results, which shaivttie proposed operation shuffling
algorithm works properly and the heuristics make compateti complexity much smaller.

The energy that this thesis focuses on is the energy consimtad LO buffers and ITCs.
Since they consist of register file like storage, Wattch pomedel[53] has been used and
300MHz clock frequency in an 0.18» technology node is assumed. Energy estimation is
performed using the equation shown below [13]:

Ero = Z{ELBZ' - Cactv; + Errei - C}, (4.5)

whereFE; z; andE;r¢; are energy per access of LO buffer and ITC of LO clusteespectively.
Cuactv; is the number of accesses to LO buffer of the clustemdC is the number of total
execution cycles during loop executiort; z; and E;r¢; are estimated from the width and
depth of LO buffer and ITC by using/attchpower model, and’actv; andC are obtained by
instruction level simulation in CRISP framework.

Note that, this thesis refers energy reduction asdifferencebetween energy consumed in
optimized LO clusters for an initial schedule and the minimenergy consumed in optimized
LO clusters for operation shuffled schedules. In the expemis) five kinds of VLIW processor
targets are used:

1. 4 slot heterogeneous single data cluster
2. 8 slot heterogeneous single data cluster
3. 10 slot heterogeneous single data cluster
4. 8 slot homogeneous single data cluster

5. 2 data clusters, with 5 heterogeneous slots per dataeclust

4.7. EXPERIMENTAL RESULTS 65

Table 4.1: Slot capability of 8 slot het'TabIe 4.2: Slot capability of 10 slot heterogeneous

erogeneous VLIW processor. VLIW processor.

Slot 0[1]2[3[4[5]6]7] St 0[1]2[3[4[5]6]7]8]9
alu x| x [* | * | % | % | * [* alq : : : : : :
shift * * shift

mult/div * * mult/div * *

fp alu * | % * | * fp alu . * | k| * * | x| %
fp mult/div || * * fp mult/div || * . * .
load/store || * | * | * | * [* |+ | % |* load/store L ol
branch « | % | % | % |%|% |« ||| branch

Table 4.4: Slot capability of 2 data cluster 5-5 slot
Table 4.3: Slot capability of 4 slot het-heterogeneous VLIW processor.

erogeneous VLIW processor. Slot 0/1]2]|3]4]5]6]7]|8]9
Slot 0/1/2|3 Data cluster 0 1
alu ol Bl R cluster copy|| * *
shift * alu * | % | % | % x | x| * | *
mult/div * shift * *
fpalu 1 mult/div * *
fp mult/div || * fp alu * | * * | *
load/store * fp mult/div * *
branch * load/store * *

branch * * * * * * * * * *

Table 4.1, Table 4.2, Table 4.3, and Table 4.4 show slot gkiyat§ 8, 10, 4, and 5-5 slot
heterogeneous VLIW processors, respectively. For ingtatie 8 slot heterogeneous VLIW
processor can issue an load/store operation from all skdtde the 10 slot heterogeneous
VLIW processor can issue from only the second and sevents. slo

Note that this thesis introduces three approaches:

1. global approach (full search without any heuristics)
2. exhaustive exploration (global approach + Section 4a8d Section 4.5.2)
3. exploration with heuristics (exhaustive explorationecton 4.5.3).

In this experiments, onlgxhaustive exploratioandexploration with heuristicare compared.

It is believed that it is straight forward to evaluate the é&f@s of heuristics to shuffle one basic
block at a time (Section 4.5.1) and heuristics to limit thentxer of basic blocks (Section 4.5.2).
These are reasonable heuristics, as many researchershphyed these in the past [42]; [56].

4.7.1 Potential gain of operation shuffling

First, the feasibility of the operation shuffling methodgjoand its potential gain of energy
reduction are examined. Table 4.5 shows energy reductiongayation shuffling on the

66 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Table 4.6: Operation shuffling on
multiple BBs (MPEG2 Encoder@8
Table 4.5: Energy reduction for MPEG2 ens|ot Hetero).

coder on 8-slot Hetero VLIW. # Shuff.| Energy | Energy| Shuff.
Initial Energy (mJ) 25.22 BBs (mJ) Red.| Cycles
Maximum Energy (mJ) 26.53 (Initial) | 25.22 —1 0.0%
Minimum Energy (mJ) 19.11 1 19.11| 24.2%| 46.7%

- — — 2 19.09| 24.3% | 50.4%

| Reduction (Initial-Minimum)| 24.2% | 3 18.86| 25206 | 5419

4 18.84| 25.3% | 56.5%

5 18.81| 25.4% | 59.0%

most cycle-consuming basic block for MPEG2 encoder bendkoraan 8-slot heterogeneous
VLIW processor. By applying the exhaustive explorafi¢exploring all the alternatives) about
29400 schedules are generated, which have various valeeeafy. Among these alternatives,
the best candidate is picked which achieves maximum enewyyction (refer to Fig. 4.6 (b)).
The best candidate, in this case, is a modified schedule vdrm@sgy consumption is reduced
by up to 24.2% compared with the initial schedule. The bestluBter configuration in this
case is: two clusters of two slots and six slots, which havéuffers whose depth of 110 and
25 instructions, respectively.

Next, operation shuffling is performed not only on the mogh#icant basic block but also
on the other significant basic blocks (based on heuristissrdeed in Section 4.5.2). Table
4.6 shows results of operation shuffling on multiple basacks for MPEG2 encoder on the
8-slot VLIW processor. The first and second columns show timber of shuffled basic blocks
and estimated energy, respectively. The third column até& energy reduction compared to
the initial energy. The fourth column represents how margcaton cycles are shuffled, i.e.
how many execution cycles the shuffled basic blocks contibu These results indicate that
energy reduction is going up when the number of applied bdasiuks is increasing. It becomes
saturated after a few basic blocks are applied, which cor€0%6 to 60% of the total execution
time.

The potential gain of energy reduction with LO cluster gatien is up to 63%, as shown in
[13]. This experimental results expose the gain can be ingatdurthermore up to 25.4% by
the proposed operation shuffling.

4.7.2 Quality of pruning heuristics

This section evaluates the quality of the heuristics (8ee¢ti5.3) both in terms of the achievable
energy efficiency and also in terms of reduction in the seapette.
Table 4.7 shows the results of exhaustive exploration aptbeation with the heuristics for

3Theglobal approacthas not been compared with a scheme which shuffles for eaithtidask, since we can
imagine how huge the exploration space of ¢fabal approachwould become. And also, even after introducing
the heuristic to limit shuffled basic blocks (Section 4.5 exploration space is still big, as shown in the
exploration space of the exhaustive exploration in Table 4 herefore, the proposed heuristics introduced in
Section 4.5.3 are still required.

4.7. EXPERIMENTAL RESULTS 67

Table 4.7: Minimum energy comparison between exhaustiydoeation and with heuristics
(Single BB).

Architecture | Benchmark Exhaustive Expl with Heuristics BB

Expl. Energy] Expl. Space | Energy size

Space Red. (Red.) Red. (Deg.)

8 slot Hetero | MPEG2 encoder 117600 17.8%| 12600 (89.3%) 17.8% (0.0%) 2
8 slot Hetero |gsm encoder 117600 11.7% 8400 (92.9%) 11.6% (0.1%) 2
8 slot Hetero |adpcm decoder|| 1835008 1.0%| 168 (99.9%)| 0.0% (1.0%) 7
8 slot Homo |g721 decoder 114688 2.9%| 224 (99.8%)| 2.8% (0.1%) 6
8 slot Homo |g721 encoder 229376 5.0% 56 (100.0%)| 5.0% (0.0%) 5
10 slot Hetero| g721 decoder 6480 1.7% 60 (99.1%)| 1.2% (0.5%) 6
10 slot Hetero|g721 encoder 15552 2.2% 12 (99.9%)| 0.0% (2.2%) 5
10 slot Hetero| gsm encoder 1800 10.5% 360 (80.0%)| 10.5% (0.0%) 2
5-5 slot Heteroadpcm decoder 960/ 0.8% 30 (96.9%)| 0.8% (0.0%) 7
5-5 slot Heterog721 decoder 480 2.3% 60 (87.5%)| 0.5% (1.8%) 6
5-5 slot Hetergsha 9216 1.2% 24 (99.7%)| 0.0% (1.2%)| 12

some benchmarks and architectures. The third and fifth asdushow the size of exploration
space (i.e. generated schedules) of exhaustive explotatind exploration with heuristics,
respectively. In the fifth column, the reduction of explavatspace is also shown. The fourth
and sixth columns indicate the maximum energy reductiorr aveinitial schedule among
schedules generated by exhaustive exploration and exigloraith heuristics, respectively.
The sixth column also shows the degradation of energy dffigieThe seventh column shows
the size of basic block that is shuffled. In this experimehtofathe proposed heuristics are
applied (Sections 4.5.1, 4.5.2 and 4.5.3) and the operatiorffling is applied to the most
significant basic block. In summary, Table 4.7 shows thatettidoration space reduction is
around 90%, and energy reduction values of exhaustive efdo and with heuristics are
almost the same; degradation of less than 1% on average. thisriable, it is clear that the
proposed heuristics obtain near optimal solution with gigantly reduced exploration space.

As described in Section 4.5.3, the proposed heuristics eveldped under the hypothesis
that it is better to make a frequently used cluster smallerTdble 4.7, exploration with the
heuristics generates a little worse results in some cages.iSbecause the heuristics omit too
much exploration space. Nevertheless, the degradatioesofts, i.e. difference between the
energy reductions, is still small and reduction of explamtime is much more valuable: we
can optimize more basic blocks in the saved time.

In order to confirm that the difference in energy reductiotwaan exhaustive approach and
heuristic approach is noticeable small, the operationféhgfis applied not only to the most
significant basic block but also to the following significdrasic blocks as indicated already
with the heuristics of Section 4.5.2. Figure 4.14 shows apamson of exhaustive exploration
and exploration with the heuristics for multiple basic tHecin Fig. 4.14, two lines represent
energy reduction of the two exploration ways and bars regpresccumulated exploration space,
i.e. the total number of generated patterns. Because oijileston of the exploration space,
operation shuffling is performed only on 30 basic blocks mekhaustive approach. The figure
shows that the proposed heuristics can reduce explorapacesby more than 90% without

“the exhaustive exploration in Table 4.7 also does shufflimgéch basic block (not ttigdobal approach.

68 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

35 T T T T T T T 4e+06
i . .
20 degradation ofl.ff) ___________ | 350406
- T E Reduction: Exhausti
. - Energy Réduction: with Hedristics === | { 3e+06
S 25t -7 Accum. Exp. Space: Exhaustive ——
S 4 Accum. Exp. Space: with Heuristics 9
s ," T 25et06 8
§ 20 Exploration Space t;/:)
i 0,
3 reduction of 89.1% | 26+06 %
i 15+ Exploration Space / S
s reduction of 90.1% 1 1.5e+06 u%
c
]
1 1e+06
41 500000
0
0 10 20 30 40 50 60 70 80

of Shuffled Basic Blocks

Figure 4.14: Efficiency of the heuristics (epic@8 slot Homo)

significant degradation of quality of results, only 1.8%.028 over 29.9%), after shuffling of
30 basic blocks. The proposed heuristics reduce more tHgEnod@xploration space, while the
energy reduction is almost the same. This figure also shaat#ith heuristics can achieve better
result of 30.2% after shuffling 79 basic blocks, with stillrathan 80% less computational time
than exhaustive exploration of 30 basic blocks. The exinauskploration would surpass the
heuristics if the same amount of basic blocks are shufflediekier, the computational effort
for it is beyond the realistic limits. Though explorationtiwthe heuristics requires operation
shuffling of more basic blocks to achieve the same qualityhefaxhaustive exploration, the
size of total exploration space is still much smaller thamakhaustive exploration.

Figure 4.15 shows a comparison of distribution in the exation space between exhaustive
exploration and with the heuristics. The x-axis represt#rgeriod of estimated energy; from
minimum to maximum estimated energy of exhaustive explamas divided into ten periods
(period 1 to period 10). Generated schedules are countedembthe periods, and the y-axis
represents the percentage of distribution for each peridtie figure also shows distribution
of random exploration, in which schedules are randomlyctetefrom the result of exhaustive
exploration but the number of selected schedules is the sartiee heuristics.

In Fig. 4.15, the black bar (heuristics) almost always highan other bars in period 1 to 4.
This means that the proposed heuristics mainly generatgyeeéicient schedules rather than
the exhaustive exploration or the random exploration. Tigigre implies that the proposed
heuristics can efficiently omit the part of the exploratigm@ase that is less relevant as opposed
to random selection approach.

4.7. EXPERIMENTAL RESULTS 69

35 T T B T T T T T T T T
Exhaustive zxssz
Heuristic m———

30 Random o . i

Distribution (%)

1 2 3 4 5 6 7 8 9 10
<— Low Energy High Energy —

Figure 4.15: Frequency distribution of energy of generatetedules (adpcm decoder@8 slot
Hetero).

4.7.3 Evaluation on multimedia benchmarks and different ar chi-
tecture flavors

In order to evaluate the proposed operation shuffling medlogy and to examine how much
potential gain realistic applications have, the methogdwpie applied to multimedia benchmarks
[59] and for different architecture flavors as describediearFigure 4.16 shows comparison
of energy reduction between architectures. From this figweecan say that energy reduction
is notable in a homogeneous architecture, but a heterogsrachitecture has still a good
reduction.

Figure 4.17, 4.18, 4.19, 4.20, and 4.21 show the results eiggrreduction for 8 slot het-
erogeneous, 10 slot heterogeneous, 8 slot homogeneoust Hesérogeneous, and 5-5 slot
heterogeneous VLIW processors, respectively.

In these figures, the x-axis represents the percentage cfitare cycles which are consumed
by shuffled basic blocks, and y-axis represents estimatexdjgiof LO buffers (smaller number
implies higher efficiency). Each line for a particular bemark indicates that, as more basic
blocks are shuffled, the energy consumption decrease® speration shuffling is applied on
more basic blocks. Itis to be noted that the lines for a paldicbenchmark do not reach 100%
consumed cycles on x-axis. This is because, in a partic@acthmmark not all basic blocks
are shuffled and only basic blocks that can be mapped on toQhdusters are considered
[52]. For instance, basic blocks that are not in a loop bodyasic blocks that are too large to
store in the loop buffers are not mapped on to the LO clustéos.example, in Fig. 4.17 for
‘MPEG2 encoder’ benchmark, about 60% of basic blocks arepmémn to the LO clusters,

70 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

|

%
[

35 T T T T T T T T T
- 8 slot Hetero =3
S 30 r 10 slot Hetero m - 7
~— . N Ky
c 25 8 slot Homo i g ;‘ i
2 4 slot Hetero o |
S 20 5-5 slot Hetero ,. ; -
g |
e 15 N .
> &
) K
= o
L o o
{ESE: §
©
e
"

o O B

adpcm decode W—
blowfish encode
g721 decode
g721 encode
gsm encode
mpeg2 encode

Benchmarks

Figure 4.16: Energy reduction of all benchmarks.

T T T T
100
90 =
< g
S
= 380 | adpcm decode ——— b
580 [adpcm decode” 1 2 blowfish encode -
2 blowfish encode --- w cipeg e
w cjpeg L epic i
70k Jgpig ’] 70 g721 decode --——-
g721 decode ———- g721 encode -----
g721 encode ----- gsmencode -
gsmencode - 60 | mpeg2 encode - 1
60 | mpeg2 encode - 1) sha e))
sha oo
L . L 0 20 40 60 80 100
0 20 40 60 80 100

Consumed cycles by operation shuffled BBs (%)
Consumed cycles by operation shuffled BBs (%)

Figure 4.18: Energy reduction by shuffling

Figure 4.17: Energy reduction by Shumin%perations in multiple BBs (10 slot Het-
operations in multiple BBs (8 slot Hetero).ero)

4.7. EXPERIMENTAL RESULTS

71

100

©
o
T

adpcm deéédé
blowfish encode
cjpeg -

adpcm decode
blowfish encode --------

‘ cipeg
epic

Energy (%)
o]
o
Energy (%)
o]
o

L o L epic i
70 g721 decode ----- 70 g721 decode -----
g721 encode g721 encode
gsmencode - gsmencode -
60 mpeg2 encode - 1 60 mpeg2 decode - 1
sha P)) mpegZ encode B))
0 20 40 60 80 100 0 20 40 60 80 100

Consumed cycles by operation shuffled BBs (%) Consumed cycles by operation shuffled BBs (%)

Figure 4.19: Energy reduction by shuffling=igure 4.20: Energy reduction by shuffling
operations in multiple BBs (8 slot Homo).operations in multiple BBs (4 slot Hetero).

adpcm decode

70 + cjpeg 1
epic
g721 decode
g721 encode -----
60 | gsmencode ----- 1

mpeg2 encode -~~~))

0 20 40 60 80 100
Consumed cycles by operation shuffled BBs (%)

Figure 4.21: Energy reduction by shuffling operations intipi¢ BBs (5-5 slot Hetero).

72 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

and by shuffling these basic blocks about 20% of the energdisaed.

It is also to be noted that the x-axis does not represent thebeu of operation shuffling
but the percentage of shuffled execution cycles over thé @atcution cycles. For example
of ‘epic’ in Fig. 4.17, the energy seems to be decreased bytalfi? at the point of 92% on
x-axis. This is because there are a lot of insignificant blalsicks that consumes less execution
cycles in this case. By shuffling these basic blocks the gneag be decreased, however, the
shuffled execution cycles does not change so much since tiebegion for execution cycles
is not so much in the basic blocks. Even though over 100 bdsakb are shuffled, the total
execution cycles of these basic blocks is only about 1%. Kewedhe depth of LO buffer
is managed and decreased by shuffling operations for the bhsiks; since a too deep LO
buffer causes the increase of its power, the shuffling leadle energy reduction even if the
contribution of execution cycles is not high. For examplabbve case, after shuffling the 100
insignificant basic blocks, the depth of the deepest LO buff@nged from 72 to 45, and it
reduced the power of the buffer by 26%.

As it can be observed from these figures, for some benchmarlexgy reduction is not
notable even though most of the basic blocks are shuffledeXample, in ‘adpcm decoder’ in
Fig. 4.17, though almost all of the execution cycles arefdifthe energy reduction is limited
to less than 6%. The reason is most probably because instrletel parallelism (ILP) in such
benchmarks is low (less than 1.5 operations per cycle). &wrlLP applications, the initial
LO cluster generation and the corresponding schedule eadyr very efficient. The available
freedom to optimize LO clusters is already used by the LOtelusptimization procedure (refer
Fig. 4.6). By further shuffling operations with in a cycleetenergy efficiency cannot be
improved further, unless the shuffling algorithm is applieer the cycle boundaries. This does
not imply that low ILP is a limitation of the proposed methddit that the initial schedule is
already optimized by the LO cluster optimizer. Further dsgion a relation between ILP and
energy reduction appears in Section 4.7.5.

On the contrary, too high ILP would not be beneficial for operashuffling as the freedom
of operation shuffling is limited if all slots are full. Then,is limited in terms of gain by
operation shuffling, however, having all the slots full isealdy much beneficial in terms of
performance and energy; it is an ideal schedule that a cemgtivays pursues. The proposed
operation shuffling achieve a further reduction on the enthrgt a compiler missed optimizing.

Sometimes energy reduction gets worse when a certain bl is shuffled. This is be-
cause the heuristics omit the best schedule candidate. \Wowhbe degradation is still small
compared with overall energy reduction. Therefore, theopsed operation shuffling method-
ology and heuristics are very beneficial for energy redunctio

As described in Section 4.6, for a data clustered architectperation shuffling methodology
is applied to a schedule per each data cluster. In Table d.8ritries corresponding &5 slot
Heterocorrespond to a clustered VLIW architecture with 2 datateliss with 5 slots in each
cluster. From the results it can be seen that by applyingatiper shuffling for each data cluster,
relatively significant energy can be further reduced. Nbg& the energy reduction in this table
refers toadditionalreduction over LO cluster optimizer in Fig. 4.6.

4.7. EXPERIMENTAL RESULTS

73

Table 4.8: Relation between energy reduction and shufflekksy

Architecture |Benchmark IPC | Energy Redct.Shuff. Cycles
8 slot Hetero |adpcm decode|1.48 5.6% 99.9%
8 slot Hetero |blowfish encod¢2.06 9.2% 31.3%
8 slot Hetero |cjpeg 1.38 2.8% 22.7%
8 slot Hetero |epic 2.02 24.1% 92.4%
8 slot Hetero |g721 decode |1.20 14.1% 75.1%
8 slot Hetero |g721 encode |[1.24 18.5% 73.1%
8 slot Hetero |gsm encode |2.19 19.7% 72.2%
8 slot Hetero | MPEG2 encode3.00 27.6% 73.5%
8 slot Hetero |sha 2.61 3.4% 94.1%
10 slot Hetero| adpcm decode | 1.48 9.9% 99.9%
10 slot Hetero| blowfish encodg2.12 10.5% 32.3%
10 slot Hetero| cjpeg 1.39 4.6% 55.0%
10 slot Hetero| epic 2.03 18.6% 92.9%
10 slot Hetero|g721 decode |1.19 6.9% 76.4%
10 slot Hetero|g721 encode |1.27 16.8% 73.5%
10 slot Hetero|gsm encode |2.24 16.2% 73.5%
10 slot Hetero| MPEG2 encode4.22 1.0% 67.0%
10 slot Hetero| sha 2.61 2.9% 94.4%
8 slot Homo |adpcm decode|1.48 9.3% 99.9%
8 slot Homo | blowfish encodel.94 2.5% 29.9%
8 slot Homo |cjpeg 1.35 6.2% 21.7%
8 slot Homo |epic 2.03 30.7% 92.9%
8 slot Homo |g721 decode [1.18 16.8% 76.2%
8 slot Homo |g721 encode |1.26 19.3% 72.9%
8 slot Homo |gsm encode |2.30 24.6% 74.5%
8 slot Homo |MPEG2 encode3.06 28.0% 75.8%
8 slot Homo |sha 2.61 6.0% 94.1%
4 slot Hetero |adpcm decode|1.44 8.5% 99.9%
4 slot Hetero |blowfish encode¢l.97 3.1% 36.7%
4 slot Hetero |cjpeg 1.34 12.2% 56.7%
4 slot Hetero |epic 2.06 10.2% 93.9%
4 slot Hetero |g721 decode |1.17 7.9% 76.8%
4 slot Hetero |g721 encode |1.26 12.1% 73.8%
4 slot Hetero |gsm encode |1.98 2.1% 76.2%
4 slot Hetero | MPEG2 decodel.55 3.9% 70.0%
4 slot Hetero | MPEG2 encode?2.30 2.6% 88.3%
4 slot Hetero |sha 2.15 0.0% 95.2%
5-5 slot Heteroadpcm decode | 1.44 5.8% 99.9%
5-5 slot Heteroblowfish encode¢l.97 2.2% 36.7%
5-5 slot Heterocjpeg 1.36 9.4% 56.2%
5-5 slot Heteroepic 1.84 6.9% 92.8%
5-5 slot Heterog721 decode |1.15 7.9% 77.0%
5-5 slot Heterog721 encode |1.25 8.1% 74.0%
5-5 slot Heterogsm encode |2.48 8.0% 73.5%
5-5 slot HeteroMPEG2 decodel1.56 5.8% 52.4%
5-5 slot Heterosha 2.16 0.0% 95.5%

74 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

4.7.4 Discussion on operation shuffling over cycle boundari es

The shuffling over the cycle boundaries should achieve moeegy gain. A method proposed
in this thesis only moves an operation within cycle bourekariThe method already vyields
a good result as shown in the previous sections, howeveanite improved furthermore by
allowing move across the cycle boundaries. Some operatiansnove to another cycle un-
less the data dependency between related operations &edolHence, there would be more
opportunities to optimize operation scheduling for enegtjiciency.

The complexity of the shuffling over the cycle boundaried,viibwever, become too high
since an operation has more freedom to move not only to diffeslots but also to different
cycles. To manage this problem, another new and differegardéihm (heuristic) is needed
to efficiently prune the exploration space. However, thgppsed heuristics, which limit the
exploration space during operation shuffling within a cyadan be utilized for exploration
space reduction of shuffling over the cycle boundaries.itimaly, it is a realistic assumption
that an operation can also move to a different issue-slohvitraoves to another cycle. Then,
after moving to different cycles, the same technique fofffihg within a cycle can be used.

To further improve the effectiveness of shuffling over theleyooundaries, a software multi-
threading approach would be beneficial, which combinesipialindependent loops into one
loop to improve performance [60]. Since independent loapsraegrated into one loop, each
operation has less dependency for each other in the loop.gites an operation more freedom
to move to different cycles and consequently more oppadar energy reduction.

Shuffling operations over the cycle boundaries is, howdseypnd the scope of this thesis
and it will be addressed in the future work.

4.7.5 Relation between ILP and energy reduction

Table 4.8 shows the detailed result which contains IPCr(iotbn per cycle) as well as the
energy reduction. This thesis refers to an average IPC dMeasic blocks in an application as
anoverall IPC The overall IPC represents a characteristic of targetiegjbn well.

Figure 4.22 shows a relation between the overall IPC andribegg reduction. The x axis
represents the energy reduction due to operation shuffliiige y axis represents the overall
IPC multiplied by the percentage of shuffled cycles. The I®€caled with the shuffled cycles
since the energy reduction is assumed to be small when owigyeles are shuffled even if
the IPC is large. Though it seems there could be a correldtgiween IPC and the energy
reduction, this is not the case. In Fig. 4.22, we can see jwsiak correlation between IPC and
the energy reduction.

There would be other metrics for IPC; Fig. 4.23 explains ¢hversions of IPC that are
referred in this thesis. Ahuffled IPCis an average IPC over basic blocks that are shuffled.
An LO buffered IPCis an average IPC over basic blocks that are running on LGbuffhe
shuffled IPC also shows a characteristic of application,éwas it can change depending on
how many basic blocks are shuffled. Therefore, the shufflednitght be an extreme value if
only few basic blocks can be shuffled due to the explosion pfagation space, ex. ‘MPEG2
encoder’ on 10 slot heterogeneous as discussed later.a8ynthe LO buffered IPC can vary
depending on which basic blocks are decided to be stored ibuff@r. Since an algorithm
that chooses basic blocks to be stored in LO buffer [52] isisiee to a configuration of target

4.7. EXPERIMENTAL RESULTS 75

IPC * %Shuffled Cycle

0 5 10 15 20 25 30 35
Energy Reduction (%)

Figure 4.22: Relation between overall IPC and energy reolnictue to shuffling.

VLIW processor architecture, the LO buffered IPC is also embugh to be a representative
characteristic of application. Hence, the overall IPC isdugh order to examine a relation
between ILP and the energy reduction. Note also that there &ronger correlation than the
overall IPC even if another IPC is employed.

One of reasons of the weak correlation is assumed that thalianergy is already good;
the energy gain is not notable in such a case in spite of ld&*@e For example, the energy
reduction of ‘sha’ is not so high, 3.4% in 8 slot heterogersgavhile the overall IPC is 2.61.
This is because the initial energy is already good; in the cdssha’, a schedule generated by
a compiler (‘Initial Sched.” in Fig. 4.6 (b)) is very similém a schedule that is to be generated
by the proposed heuristics (the best of ‘slot activation’inf Fig. 4.6 (b)). Since the energy of
these two schedules are compared, the energy reductiohmetable. However, the large IPC
actually yields larger variations of schedules; the eneegluction over the maximum energy
is examined, rather than the energy reduction over thalm@hergy. Table 4.9 shows the result.
As shown in the table, the energy reduction over the maximnengy is 12.3% in this case.
Though it is believed that a larger IPC leads to a larger Vianaf energy, the energy reduction
over the initial energy, which is more important than theugttbn over the maximum energy
from a practical viewpoint, has no direct relation to the IMOwever, this does not mean to
degrade the value of the proposed method. Though there #&sstaing correlation between ILP
(IPC) and the energy reduction, the proposed method shieaes significant energy reduction
in most of cases.

Note that ‘MPEG2 encoder’ on 10 slot heterogeneous is aedrcase, where the energy
reduction is limited to 1.0% while the overall IPC is 4.22.i3'Is because the most significant
basic block in the case contains 9 operations and they cachleelsled in one cycle. Therefore,
IPC of the basic block is 9.0, however there are not so muadbm left to shuffle operations

76 CHAPTER 4. OPERATION SHUFFLING ALGORITHM

can vary among VLIW configurations

can change due to \ not shuffled due to the
the complexity ™|, <» €xplosion of exploration space
‘/ .
\ Basic Blocks
Operation shuffled \

not selected to be stored
in LO buffer due to the

LO buffered IPC size of basic block, etc.
Shuffled IPC

running on LO buffer

Overall IPC

Figure 4.23: Various versions of IPC.

Table 4.9: Energy reduction for sha on 8-slot Hetero VLIW.

Initial Energy (mJ) 0.177
Maximum Energy (mJ) 0.195
Minimum Energy (mJ) 0.171
Reduction (Initial-Minimum) 3.4%
Reduction (Maximum-Minimum) 12.3%

(9 operations out of 10 slots), and consequently it lead®tem much energy reduction.

4.8 Conclusion

This chapter presented an optimization flow of LO clusteregation on heterogeneous VLIW
architectures and also proposes heuristics to decreasethef the exploration space. Though
LO cluster generation has a potential gain of energy redonaif up to 63% as shown in [13],
the experimental results of this section reveal that thia gan be improved furthermore up
to 27.6% in 8 slots heterogeneous VLIW processor by usingtbposed operation shuffling
algorithm. On the assumption that an LO buffer consumes 2@% of total processor energy
[8] [12], the reduction achieved by the proposed algorithighthlook not so big, however,
other processor components (ex. register files, data cachasalso be optimized for energy,
as shown in [12]. Therefore, the author believes the apjrbas significant impact on energy
efficiency. The results also show that a homogeneous actinieehas more potential gain than
a heterogeneous architecture. The proposed algorithmosigppwide range of heterogeinity
while the previous method [14] supports only limited ran§eterogeinity. The experimental
results also indicate that the proposed heuristics dedbtieeduce the exploration search space
by about 90%, with comparable results, with differencesestlthan 1% on average, to full
search.

Note that the proposed operation shuffling approach woukldmeapplicable to other multi-
dimensional architectures. In principle, the operatioafimng would be applied to array style
of architectures like ADRES [61], a coarse-grained recamfijle array architecture coupled
with VLIW processor developed in IMEC, while the proposedtimoel currently targets on a

4.8. CONCLUSION 77

linear (one-dimensional) style of VLIW processor. In suchuti-dimensional array processor,
a similar approach to LO cluster can be applied in order taceduffer access and activation
of processing elements. Since the number of processingealsnis, in general, not smaller
than typical VLIW processors, clustering for coarse-geaircontrol would also be important.
Then a change of scheduling like the operation shuffling ddd effective on energy reduc-
tion. To apply the proposed operation shuffling to other iecture, it would be needed to
change a cost function which estimates energy for a giveedidb and architecture. Then by
a similar approach to the proposed operation shuffling cautibeed and a similar heuristic to

the proposed heuristics would also be feasible.

78

CHAPTER 4. OPERATION SHUFFLING ALGORITHM

Chapter 5

Efficient energy reduction method

The previous chapter describes an operation shuffling étgorwhich explores assignment of
operations for each cycle, generates various scheduldsg\aiuates them to find an energy
efficient schedule. This approach can find energy efficiem¢dales, however, it takes a long
time to obtain the final result.

In this chapter, an efficient method to directly generateraargy efficient schedule without
iterations of operation shuffling is described. In the pregub method, a compiler schedules
operations using the result of the single operation shygffiia a constraint. This chapter also
proposes some optimization algorithms to generate an gredfigient schedule for a given LO
cluster configuration. The proposed method can drasticatiyice the computational effort
since it performs the operation shuffling only once.

This chapter first analyzes the results of operation shgffind then proposes an efficient
method to directly generate an energy efficient schedulelwtan reduce the exploration space
furthermore.

The experimental results show that comparable energy tieshucan be achieved by using
the proposed method while the computational effort can teaed significantly over the con-
ventional operation shuffling described in Chapter 4.

5.1 Problem and motivation

Figure 5.1 (a) shows an overview of an operation shufflingr@g@gh proposed in Chapter 4.
An initial scheduleis first obtained by compilation of thapplicationon the specifiedrchi-
tectureof target processor by usingtargetable VLIW C compilefTheinitial schedules then
further analyzed by achedule analyzewhich generateactivation informatiornof slot. Here
the schedule analyzegenerates all possible operation-shuffled schedulesdjiot.activation
info) for a basic block, according to theachitecture informatior(target processor). Finally,
an LO cluster optimizefinds the most energy efficient LO cluster configuration focleac-
tivation information, and reports amptimized LO cluster configuratioand estimated energy
corresponding it. In this approach, the basic blocks aredidered based on their weight (sig-
nificance). Operation shuffling is first performed on the nighificant basic block. The cost
of previous basic blocks’ shuffled schedule is kept into aotevhile performing the shuffling

79

80

CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

@ Application(C)
info.

@ Application(C)
info.

Trimaran

retargetable C compiler

Initial Sched.

Trimaran

retargetable C compiler

Initial Sched.

Post Compilation

Post Compilation

sched. analyzer+

sched. analyzer+ | <
slot = slot
activation 5 activation
info o info
< §
LO cluster |Power LO cluster |Power
optimizer |Model optimizer |Model
LI o LI A
I [Choose JIIIITE N
Optimized Estimated |[] for next iteration Optimized Estimated
LO clust. cfg. Energy > (next basic block) LO clust. cfg. Energy
Choose the MOSt] .
energy efficient 1y Trimaran

LO clust. cfg. retargetable C compiler

Energy Efficient
Sched.

(b) proposed method

(a) conventional method

Figure 5.1: Overview of an LO cluster configuration improvarhphase (a) in the conventional
way, (b) in the proposed method.

5.2. OVERVIEW OF THE PROPOSED METHOD 81

on the following basic block. Therefore, we can obtain thetlsehedule and optimized LO
cluster configuration after shuffling all basic blocks. Sdmeeristics are also proposed, which
reduce the complexity of the search space by about 90%.

The approach can find energy efficient schedules; up to 30%0dfuffer energy can be
reduced as shown in Chapter 4. The approach, however,altdsta long time to obtain the
final result, even if the heuristics are applied. in experitagit usually takes thirty minutes but
some large applications take a few days.

5.1.1 Analysis of existing operation shuffling approach

First the LO cluster configuration obtained using the openaghuffling is evaluated. Here basic
blocks are shuffled one by one for all basic blocks. We cadl dimiproactshuffling all BBs In
this experiments, three realistic kinds of VLIW processogets are used:

1. 8 slot heterogeneous
2. 10 slot heterogeneous
3. 8 slot homogeneous

Table 4.1 and Table 4.2 show slot capability of 8 and 10 slteéregeneous VLIW processors,
respectively.

Table 5.1 shows the optimal LO cluster configuration for samohitectures and benchmarks,
and the number of shuffled basic blocks needed to find the eoafign. In Table 5.1, the
third column shows the optimal cluster configuration olkediby the operation shuffling. Each
number corresponds to a slot and represents the identificafi LO cluster. For example,
"01222222" represents the first and second slots fodroluster GandLO cluster Irespectively,
and the rest of slots (from slot 3 to 8) for® cluster 2 The fourth column shows the number
of shuffled basic blocks to find the cluster configuration. &oample of adpcm decoder on
8 slot heterogeneous VLIW, the optimal cluster configurati@as obtained after shuffling the
second basic block. From this table, we can find that optitoater configurations are different
for applications and architectures. This results also stpjhe motivation to introduce the
operation shuffling.

In Table 5.1, we see that after one basic block is shuffledyptienal LO cluster configuration
is found in almost all cases. Even if more than one basic bisdhuffled, the best cluster
configuration is not changed.

5.2 Overview of the proposed method

This section describes a new more efficient method to gemaragnergy efficient schedule in a
short time. The proposed method performs the operatiorflgtgifor the most important basic
block and considers the result of the shuffling as a constfairother parts of the code. This
makes the computational effort much smaller than the carwesd approach which performs
operation shuffling for all basic blocks.

82

CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Table 5.1: Optimal cluster configuration and the number gtineed basic blocks to find the

configuration.

architecture| benchmark cluster config.| #required BBs
8 hetero adpcm decode | 01222222 2
8 hetero blowfish encode 01223323 1
8 hetero cjpeg 01122222 1
8 hetero epic 01122222 1
8 hetero g721 decode 01122222 1
8 hetero g721 encode 01222222 1
8 hetero gsmencode 01122222 1
8 hetero mpeg2 encode | 00111111 1
8 hetero sha 01223323 1
10 hetero | adpcm decode | 0123100100 1
10 hetero | blowfish encode 0123401444 1
10 hetero | cjpeg 0123301000 1
10 hetero | epic 0123021000 50
10 hetero | g721 decode 0123300000 1
10 hetero | g721 encode 0123000010 4
10 hetero | gsmencode 0120311333 1
10 hetero | mpeg2 encode | 0012200222 1
10 hetero | sha 0123401455 1
8 homo adpcm decode | 01222222 1
8 homo blowfish encodeg 01112222 1
8 homo cjpeg 01122222 1
8 homo epic 00111122 1
8 homo g721 decode 01122222 1
8 homo g721 encode 01222222 1
8 homo gsmencode 01122222 1
8 homo mpeg2 encode | 00112222 1
8 homo sha 01223333 1

Figure 5.1 (b) shows an overview of the proposed method. irttethod, it first applies
the operation shuffling to the most significant basic blocker the VLIW compiler runs
again with the obtained LO cluster configuration from thet fogeration shuffling. Since the
optimal LO cluster configuration is supposed to be found m fibst operation shuffling, an
energy efficient schedule can be obtained without furtheragon shuffling if the compiler
can efficiently schedule for the given LO cluster configumatas a constraint. So we now need
an adapted version of the scheduling technique that camgocate constraints.

5.3 Scheduling for a given LO cluster configuration

This section proposes algorithms to change slot assignofieperations in the end of schedul-
ing phase. A top-level description of the scheduling phasesitlined in Algorithm 2. An

5.3. SCHEDULING FOR A GIVEN LO CLUSTER CONFIGURATION 83

Algorithm 2 Relevant phases in compiler back-end.

Schedule and allocate (blogk)
ComputeAnalysisInfo();
ScheduleOps(block);
RegisterAllocation();
Reschedul®perations()

}

application is translated into a control flow graph composttlocks Each block can be a
basic block, hyper block or a super block, and schedulingpisedone block at a time. Each
block is annotated with analysis information like livenes®l operation priorities irfCom-
pute Analysisinfo(). In ScheduleOps() each operation is assigned to a certain cycle and a
certain slot. Once the operations are scheduled, the datelfles, constants and other data
structures) are allocated to registerslegisterAllocation().

Reschedul®perations()changes the assignment of operations after the registarasibn
phase. Here all optimization techniques have been apphiédheere is still enough freedom to
change the operation assignment for improving the eneffggiegicy.

An outline of the rescheduling phase is shown in Algorithm 3.

5.3.1 Algorithm to try to fill an inefficient cluster

The first algorithm tries to move operations to a cluster thased inefficiently. The inefficient
cluster means a cluster that is not full but not empty; i.e dluster has to be activated in the
cycle, however, there is a free slot in the cluster. Theeeftr fill the free slot with an operation
is more power efficient if a cluster where the operation igiolly assigned can be inactivated
by this move.

Figure 5.2 (a) shows an example of this move. In this exantpére are two LO clusters,
LCO and LC1, and assume LCO is lower power than LC1. Though bhtsters have to be
activated in the original assignment, LCO can be inactivaiece all operations assigned to
LCO can be moved to LC1. This move is energy efficient even drafjons move to larger
power cluster, since only one cluster needs to be activdtedthe move. Figure 5.2 (b), (c),
and (d) are also the same kind of example. Algorithm 4 shovedgorithm to fill an inefficient
cluster. In this algorithm, we search all clusters for anffinient cluster. If an inefficient
cluster is found, i.e. a cluster that is not empty but nowftilled, then we search for a cluster
which can provide operations to fill the inefficient clustadacan be empty if it provides the
operations. All conditions are fulfilled, then this algbnt tries to move operations to fill the
inefficient cluster ilMove Ops bw_Clusters()

84 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Algorithm 3 Reschedule operations between LO clusters.

Reschedul®perations(block)
Build_ClusterList(Clust);
Calc ClusterSize(Clust, Size, NumSlot, Depth);
if (block runs on LO Buffery
Calc ActiveCyclein_Cluster(Clust, block, ActiveCycle);
foreach (cycle in block)
Sort Clusterby_Size(Size, Clust, ActiveCycle);
Calc FreeSlotof_Cluster(Clust, cycle, block, FreeSlot);
Try_To_Fill _Inefficient Cluster(Clust, cycle, block, NumSlot,
FreeSlot, ActiveCycle);
Try_To_Move_To_ShallowerCluster(Clust, cycle, block, NumSilot,
FreeSlot, ActiveCycle);
Try_To_Move_To_Wider_Cluster(Clust, cycle, block, NumSilot,
FreeSlot, ActiveCycle);

Original Assignment Improved Assignment
u O v v 0o v 0 0 » O v v u v n 0
o o o o o o o (] o o o o o o o (=]
— —* —* [~ [— ~ — — — —* [~ —* — ~ —
[l N w B ()] (o] ~ o] [N w S a1 (2] ~ o

Low power cluster
—2

(Scé) @)(®) T (—: Q000

@)(®) T (50(13 ;; 0000

©) LCC; ©) — (—: Q00

©) LCC; @)(®) — (—d: Q000
T
OGO T - [LII0000

Figure 5.2: Examples of rescheduling algorithm.

5.3. SCHEDULING FOR A GIVEN LO CLUSTER CONFIGURATION 85

Algorithm 4 Try to fill an inefficient cluster.

Try_To Fill _InefficientCluster(Clust, cycle, block, NumSlot, FreeSlot, Activ@€)y
for (h =0 .. NumClust-1){
if (FreeSlot[h]> 0 and FreeSlot[h}¥ NumSlot[h]X
for (j = Num_Clust-1 .. 0¥
if (j = h) continue;
if (FreeSlot[h]> (NumSlot[j] - FreeSlot[j])X
if (ActiveCycle[h] > Depth[h]}
/[do nothing
} else{
moved = MoveOps bw_Clusters(cycle, Clust, j, h, block);
if (moved> 0) {
if (FreeSlot[h] = NumSlot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved,;
FreeSlot[j] += moved,;
if (FreeSlot[j] = NumSilot[j]) ActiveCycle[j]--;
if (FreeSlot[h] = 0) break;
333883

5.3.2 Algorithm to try to move operations to a shallower clus ter

The second optimization algorithm tries to move operatittna shallower cluster. Here a
shallower cluster means a cluster with the same width bt shillower depth (i.e. low power
cluster). Even if there is no more inefficient cluster, by imgvoperations from a larger cluster
to a smaller cluster, the energy efficiency can be improvetiédnmore. Figure 5.2 (e) shows an
example of this case. In this example, there is no inefficbugter any more; i.e. all clusters
are empty or completely filled with operations. However, LRds to be activated while a
smaller cluster LCO is inactivated. By moving all operati@ssigned in LC1 to LCO, the larger
power cluster LC1 can be inactivated instead of LCO. Aldwrnt shows an algorithm to move
operations to such a shallower cluster. In this algorithrfirst searches for an empty cluster.
Then for the cluster the algorithm searches for a largertetushich contains operations. If
a cluster which satisfies all conditions is found, the aldponi tries to move operations using
Move Opsbw Clusters()

Note that the algorithm useésctiveCycleto keep track of the number of activated cycles for
each cluster in order to avoid exceeding the depth of givestet configuration. It sometimes
restricts the freedom of rescheduling, however, extrenmeenotration on a single cluster makes
the depth of LO cluster deeper and consequently leads isem@aenergy.

5.3.3 Algorithm to try to move operations to a wider cluster

As the third optimization, this section proposes an alfomnithat tries to move operations to
a wider cluster. It could happen that the total power of dtstvhich are full with operations
is larger than the power of an empty cluster. Figure 5.2 (vshthis case. In this example,

86 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Algorithm 5 Try to move operations to a shallower cluster.

Try_To_Move To_ShallowerCluster(Clust, cycle, block, NumSlot, FreeSlot, Activd€)y
for (h =0 .. NumClust-1){
if (FreeSlot[h] = NumSilot[h]¥ /* empty */
for (j = Num_Clust-1 .. h+1)
if (NumSlot[j] = NumSilot[h] and Size[j}> Size[h]X
if (FreeSlot[j] = 0){
if (ActiveCycle[h] > Depth[h]}
// do nothing
} else{
moved = MoveOps bw_Clusters(cycle, Clust, j, h, block);
if (moved> 0) {
if (FreeSlot[h] = NumSilot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved,;
FreeSlot[j] += moved;
if (FreeSlot[j] = NumSilot[j]) ActiveCycle[j]--;
break;

P

LCO and LC1 are full with operations and LC2 is completely &ndhen there is no further
improvement for the last two optimization algorithms. Wswase the power of LCO and LC1
(P, and Py, respectively) is less than the power of LG2). However, if the total power of LCO
and LC1 is larger than LC2 (i.d% + P, > P,), moving all operations to LC2 is beneficial. Al-
gorithm 6 shows an algorithm to selectively move operatioreswider cluster. This algorithm
first searches for an empty cluster. Then for that clusteik@s a combination of full clusters
whose number of operations is less than the width of the emlpster. If the total power of
clusters is larger than the empty cluster, it tries to moverations to the empty cluster. Appar-
ently this problem to make a combination of clusters whichtfie limit of width and power is
known as a knapsack problem, and consequently it is an NPgnablem. The proposed non
greedy technique does not care abosla capabilitywhen making a combination of clusters;
some operations might not move to the new cluster in casenthalot in the cluster can issue
the operations. Hence, the proposed algorithm does nai pyiisue an optimum combination.
However, it yields enough quality of solution with much redd computational effort.

5.4 Experimental Results

This section describes experimental results, which shavaipplicability of the proposed
method.

Table 5.2 shows the comparison of the proposed method anegticional methods for one
benchmark (g721 decoder on 8 slot homogeneous VLMYnolithic LO uses a monolithic
LO cluster with initial schedule. Imnitial, LO clusters are generated for an initial schedule.
Shuffling all BBsshuffles all basic blocks, arhuffling 1 BBs a result after shuffling only one

5.4. EXPERIMENTAL RESULTS

87

Algorithm 6 Try to move operations to a wider cluster.

Try_To_Move To_Wider_Cluster(Clust, cycle, block, NumSlot, FreeSlot, Activd€)y
for (h =0 .. NumClust-1){
if (FreeSlot[h] = NumSilot[h]} /* h is empty */
powerh = size[h];
powermov = 0;
MOV = §);
for (j = Num_Clust-1 .. 0}
if (j = h) continue;
if (NumSilot[j] < NumSilot[h]X
powerj = size|[j];
opsj = width[j] - free[j];
if (FreeSlot[j] = 0){
if (Free[h] > |[MOV| + opsj){
powermov += powelrj;
MOV +=|;
333;
if (power_mov > powerh){
if (ActiveCycle[h] > Depth[h]X
/[do nothing
} else{
for (each k in MOV){
moved = MoveOps bw_Clusters(cycle, Clust, k, h, block);
if (moved> 0) {
if (FreeSlot[h] = NumSilot[h]) ActiveCycle[h]++;
FreeSlot[h] -= moved,;
FreeSlot[k] += moved;
if (FreeSlot[k] = NumSlot[k]) ActiveCycle[K]--;
333888

88 CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

Table 5.2: Comparison of estimated energy (9721 decodet@Bismo).

Method Energy Exploration| Approx. Time

(mJ) (%) Effort (sec)
Monolithic LO 2.8912 312.0% C 20
Initial 0.9268 100.0% c 20
Shuffing 1 BB | 0.9021 97.3% 224s+c 30
Shuffling all BBs| 0.7815 84.3% 60696s+cC 2600
Proposed 0.8003 86.3% 224s+2C 50

basic block. InProposedoperation shuffling is performed for only the first basicdid@nd op-
erations are re-scheduled for the obtained LO cluster corgtgn. The second column shows
the estimated energy for a optimal solution obtained by @aethod and the third column pro-
vides the relative energy ovhnitial . In the fourth column, exploration effort is representes
computational effort of single compilation ands effort of evaluating a candidate in operation
shuffling. In this experiment, compilation for this examga&es 20 seconds while shuffling of
60696 patterns takes 43 minutes; iceis 20 second and is 0.043 second. The fifth column
shows approximate exploration time calculated usingcthads. Note that the experimental
environment is Fedora Core 3 on Pentium 4 3.2GHz with 4096 Mfnory.

Though the energy d®roposeds little worse tharShuffling all Bbgonly 2%), the proposed
method significantly reduces the exploration space; it iab0 times faster thaBhuffling all
BBs The proposed method takes almost the same exploratiorasriie mere greedyhuffling
1 BB. However, it clearly achieves less energy (factor of 11%).

Compared witiMonolithic LO, Initial achieves less energy consumption, however, the result
shows thatnitial is not so energy efficient without the proposed method noradjma shuffling.

Figure 5.3 shows a comparison of energy for various comiginatof benchmark applica-
tion and processor architecture. In most of cases, the peapmethod achieves less energy
than Shuffling 1 BBand smaller than eveBhuffling all BBSn some cases. The reason why
the proposed method surpas&uuffling all BBswvould be because of the heuristics used in
Shuffling all BBsan optimal schedule might be omitted $thuffling all BBswhile the pro-
posed scheduling algorithm has a chance to generate anadgtiiredule that is missed by the
heuristics.

On the contrary, in some combinations the proposed metheddsynot so good result. This
result can be seen in Fig. 5.3 where the results of most oftbearks on 10 slot heterogeneous
VLIW show the proposed method does not handle energy gaficieutly. This is because
moving operations to another cluster is difficult due to #hat capabilityin heterogeneous
VLIW processors even if there is a free slot in the destimatiluister, as discussed in Sec. 5.3.
The architecture of 10 slot heterogeneous VLIW that is usethis experiment has limited
capability for a slot, as shown in Table 4.2.

Furthermore, energy reduction is not obtained in a case evtier first operation shuffling
does not yield the optimal cluster configuration (see Tallg. T his happens in epic on the 10
slot heterogeneous VLIW. Since the rescheduling algorithperformed on a not optimal clus-
ter configuration, the generated schedule is not so enefigieet. These might be a limitation

5.5. CONCLUSION 89

of the proposed method. However, in most of the cases thésesypport the feasibility of the
proposed method; the energy reduction of the proposed mé&thwtable compared with other
scalable methods. The average energy reduction of the pedpoethod ove8huffling 1 BBs
11% in 8 slot heterogeneous and 9% in 8 slot homogeneous VitBsegsors.

5.5 Conclusion

This chapter presented an efficient method to generate ag\eefficient schedule. Based on
the analysis of characteristics of energy efficient LO @usionfiguration obtained from the
operation shuffling, it is found that the optimal LO clusten&iguration is fixed after the first
iteration of operation shuffling. Therefore, in the propbseethod, the operation shuffling is
performed only once for the most significant basic block ambmpiler schedules again for
the obtained cluster configuration. The proposed methodbames a compiler technique of
scheduling for a given LO cluster configuration with an opierashuffling framework. Some
algorithms to schedule for a given cluster configuration@gosed. The proposed method
can drastically reduce the computational effort by a facfds0, hence it improves the design
productivity of low energy embedded systems.

CHAPTER 5. EFFICIENT ENERGY REDUCTION METHOD

90

o
[e) o o o o
s o) o) 2 2 2)
— het het
o o pu g 1] o - - [} o (5} o -
= = o = [}) T P -+ +]
2 o o o T [} o T - [} 2 2 o
— i
S ® =] 5} o o — [} o
o <) o T —_ — o
— (S m (S © © o (S
5] ® (S (5] (=2 (S (S (0] =] (S (S} —
el _ — - _ [6) —
Qo ® = = Q [} = = [N [} ® - . +— [}
£ [} [} 3] o ® [} [} T =]) [} [} °
S - =] o c Is} o o Is} - o =] T Q
o [} o o) o - o o o o [0} Q Q Q
o o o < [} [} o o — [} o o o o [}
=] o < [} [b=l =] < [} b=l o} < [} ©
® Q [} o = = 8 o © ® = Q () o ® =
[} — — = o o} — — [9) o [} — — o o
© £ o~ ~ o Q = ~ o~ = Q = o~ 1N = a
< 7} ~ ~ — h=] 7] ~ ~ a h=] @ ~ ~ a h=]
" [©0 ©0 ©0 Qa © ©0 ©0 ©0 [5) © ©0 ©0 ©0) <
pssodo.d , , , , , , , , , , ! ! ! ! !
| - - . . - . . - . . - . . . - L %os
N N N N =N N N N N N N Ny N N N N
sqg ||e 8ul|inys m kN N kN kN N &y kN kN oy kN kN N N N N &y
KN L N N L | N KN | N KN | N N L |
| | N N | N N | N N | N N N | N
g8 | 8ul|4nusg & & & & & & & 8 & & 8 o 8 & 8 N %L
: 4 o | uy| uy| | ay uy| u| ay uy| o uy uy| oy | ay
letiiu| @ | N = = KN A K | A KO N A N s N A
I A A A A S A &3 S A I S A I A - %08
K NN Ny KN K Ny Ny K Ny KN K Ny N KN NN NI
Ky vAH my uy .y LN =y (N LN uy LN LN - uy Y LN
KN N K| N KN N N rN N N KN N K] N KN N
AN N N N N N N N N N N N N N N NH- %G8
N N Nl = N NN Nl N NN N Nl A ! N N NN o
N N N N N
Sy Y =y R N 0 M o 1 B Sy - = R Y| 0
| | | | | KN S| N NN | N KN | il N3 N
KN KN Ny Ny KN NN (AN N i Ny N} KN Ny Ni| Ny N N
N N N A K Ky K Ry Ky K K N Ny K K Ny
N H N =i L o & (N LN N [N VAN SR &OO
N KN N N KN KN K | N KN KN N = K KN KN
8 a8 N o a8 = = N o I =8 = = N a8 o
i~ N < < N | | N | N N | N < < A
K N g NN N | N NN | NN K Ny NN KN N N
8 S — bH RE g b SE Ay L - %56
KWM WM WM KMM N 3 mM kmM | ARy S K Ny Ny N |
N N N N N N N N N P N N P P N N
& N &y &y N B &y & B &y CAH B &y &y N A
%001
%G01

Comparison of energy reduction.

(%) A84au3

Figure 5.3

Chapter 6

Conclusion and future work

In this chapter, the conclusion of this thesis and the futwoek are described.

6.1 Conclusion

This thesis describes a low power design method for embesidgdms using VLIW processor.

VLIW processors are known as an effective solution for endeedsystems which require
both of high performance and low energy, however, there do¢ @ architectural parameters
to be decided by designers. Since these parameters sigtlifiedfect the performance and
area, it is required to perform the design space exploratibere designers evaluate many
architectures to determine the optimal parameter set. Merveesigning a VLIW processor
was very complex, and consequently time consuming and-proore. Hence, design space
exploration on VLIW processors could not have been perfarsdficiently so far.

The first part of this thesis describes a VLIW processor gaier method. Chapter 3 pro-
poses a synthesizable HDL generation method for configaeindblW processors, which sup-
ports a flexible architecture model, especially in dispeighules. Experimental results shows
that the proposed method can generate a VLIW processor fioighdevel description, which
is 80% to 90% smaller than HDL description. And also, the gatien time of HDL description
is sufficiently short, that is from 2 to 15 seconds. Since tec#ication description supports
a wide range of dispatching rules and the amount of desoripsi sufficiently small, it is pos-
sible to generate a wide range of fine-quality VLIW processara short time. Note that a
simplecopy and paststrategy can be employed during preparation of the procesgsaxifi-
cation description. Hence, the actual effort that desigmave to describe is much smaller
than the manual design of HDL. Though a generated VLIW pramelsas not been compared
with a manually designed VLIW processor yet, it is assumatlttie quality of generated HDL
description is almost the same as that of manually desigrigid #escription as discussed in
Section 3.7.1.2. Therefore, the proposed method can signtfiy improve the design produc-
tivity of VLIW processors. This work is reported in [1] and][2

The second part of this thesis discusses a low power methodLftw processors. The
energy breakdown of VLIW processors indicates that the pootleneck of VLIW processors
is in the instruction memory hierarchy (e.g. instructiotcfg. An LO buffer and an LO cluster
architecture have been proposed to reduce the energy ims#teiction memory hierarchy.

91

92 CHAPTER 6. CONCLUSION AND FUTURE WORK

However, the result of LO cluster generation is sensitivbéschedule of the target application.

Chapter 4 describes an operation shuffling algorithm foroupment of energy efficiency of
LO cluster. Since an LO cluster configuration is very sewmsito operation scheduling, various
schedules are generated and evaluated in order to obtaiptiamabschedule. In the proposed
algorithm, by shuffling all basic blocks iteratively, engrgonsumption can be reduced sig-
nificantly. To reduce the size of the exploration space, shegistics are also described in
Chapter 4. The experimental results show that the proposexhtion shuffling algorithm suc-
cessfully reduces energy consumption in various VLIW pssces including heterogeneous
VLIW processors as well as homogeneous VLIW processorss Whik is reported in [3] and
[4].

Since the simple operation shuffling takes huge amount o guen if the above heuristics
are applied, a more efficient method to find a low energy operatchedule is described in
Chapter 5. Based on the analysis of characteristics of gregfigient LO cluster configuration
obtained from the operation shuffling, it is found that theimpl LO cluster configuration is
fixed after the first iteration of operation shuffling. Thered, in the proposed method, the
operation shuffling is performed only once for the most digant basic block and a compiler
schedules again for the obtained cluster configuration.eSaigorithms to schedule for a given
cluster configuration are described in Chapter 5. By exiplgithe scheduling algorithms, a
compiler can generate a low energy schedule in a straigtdiorway. The experimental result
shows that the proposed method can generate energy eficieatiules with 50 times shorter
exploration time.

Figure 6.1 shows a contribution of the proposed operatioifflahg method. As discussed in
Section 4.1 using Fig. 4.2, the instruction memory hiergnaias still a power bottleneck after
applying some conventional optimization algorithms. Ti@ecluster reduces the energy by up
to 67% and the proposed operation shuffling improves it &mtiore by about 30%. Then the
total energy is 62% smaller than the energy before optinamat In Fig. 6.1, the contribution
of operation shuffling might look not so notable, howevehestprocessor components such
as the data memory and the data path will also be optimizédetmore as indicated in [62].
Then the instruction memory hierarchy needs to be optimagain and the proposed method
acts the significant role in the energy efficiency.

6.2 Future work

The future work includes the following items.

6.2.1 Future work on VLIW synthesis

The input of the VLIW processor generation method is in higheel than RTL, however, it
still requires complicated description. Especially, deti@ing and describing resource groups
that are required for a target architecture is tedious andblesome work. A simpler input
description helps a designer and improves the design ptodydurthermore.

And also, the quality of generated VLIW processor would beroved furthermore. The
decoding logic now is large and complicated. It is becausepitoposed method supports

6.2. FUTURE WORK 93

100.0%

90.0%

80.0%

Reduction of 62%

70.0%

60.0%

—
[} .
% 50.0% D-Cache
o []1-Cache
40.0% [Register File
C
30.0% +— {1} — Boe
20.0% I il I
10.0% I
0.0% T T I
Before Op- After Conven- After LO Clus- After LO Clus-
timizations tional Optimiza- tering tering & Opera-
tions tion Shuffling

Figure 6.1: Power reduction by the proposed method.

a wide variety of dispatching rules. However, when a didpatg rule is not complex, for
instance, no FU sharing, the decoding and dispatching tande simplified. Simpler logic is
very beneficial in terms of area, delay time, and power conpion.

6.2.2 Future work on operation shuffling

The future work on operation shuffling includes operationfimg across cycle boundaries.
An algorithm proposed in this thesis only moves an operatighin cycle boundaries. The
algorithm already yields a good result as shown in this thdsowever, it can be improved
furthermore by allowing move across the cycle boundariesmé operations can move to
another cycle unless the data dependency between relageatiops is violated. Hence, there
would be more opportunities to optimize operation schedyuior energy efficiency.

The shuffling over the cycle boundaries should achieve moeegy gain. The complexity
of the shuffling over the cycle boundaries will, however, dree too huge since an operation
has more freedom to move not only to different slots but atsdifferent cycles. To manage
this problem, another new and different algorithm (heig)ss needed to efficiently prune the
exploration space.

In principle, the proposed heuristics, which limit the eoqaltion space during operation
shuffling within a cycle, can be utilized for exploration spaeduction of shuffling over the
cycle boundaries. Intuitively, it is a realistic assumptibat an operation can also move to a
different issue-slot when it moves to another cycle. Thé&eyanoving to different cycles, the
same technique for shuffling within a cycle can be used. Hethi® thesis started with the
topic of shuffling within a cycle.

A preliminary experiment shows a result supporting a prosg®at the shuffling over cycle
boundaries yields more energy gain; for example in a cageetiergy is reduced by 10.3%

94 CHAPTER 6. CONCLUSION AND FUTURE WORK

by the shuffling over cycle boundaries, while the shufflinghivi a cycle only yields 4.9% of
energy reduction in the same case.

Further improvement in the effectiveness of shuffling over tycle boundaries would be
achieved with a software multi-threading approach wouldéeeficial, which combines mul-
tiple independent loops into one loop to improve perforngaj@®]. Since independent loops
are integrated into one loop, each operation has less depeyndor each other in the loop.
This gives an operation more freedom to move to differentasyand consequently more op-
portunity for energy reduction.

Another category of future work is operation shuffling oneatlarchitectures. In principle,
the proposed operation shuffling would be applied to arrghe sif architectures like ADRES
[61], a coarse-grained reconfigurable array architectotgled with VLIW processor devel-
oped in IMEC, while the current target of the proposed metisaal linear (one-dimensional)
style of VLIW processor. In such a multi-dimensional arraggessor, a similar approach to
LO cluster can be applied in order to reduce buffer accessaatidation of processing ele-
ments. Since the number of processing elements is, in gdenetamaller than typical VLIW
processors, clustering for coarse-grained control woldd Be important. Then a change of
scheduling like the operation shuffling would be effectiveemergy reduction. To apply the
proposed operation shuffling to other architecture, it widag needed to change a cost function
which estimates energy for a given schedule and architeciuren by a similar approach to the
proposed operation shuffling can be utilized and a similariséc to the proposed heuristics
would also be feasible.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

Y. Kobayashi, S. Kobayashi, K. Okuda, K. Sakanushi, Xelehi, and M. Imai, “Syn-
thesizable HDL generation method for configurable VLIW mssors,” in Proc. Asia and
South Pacific Design Automation Conference (ASP-DAC), $p-846, Jan. 2004.

Y. Kobayashi, S. Kobayashi, K. Sakanushi, Y. Takeuchd B. Imai, “HDL generation
method for configurable VLIW processor,” IPSJ Journal, 48).no.5, pp.1311-1321,
May 2004. (in Japanese).

Y. Kobayashi, M. Jayapala, P. Raghavan, F. Catthoor,NMnbinai, “Operation shuffling
for low energy 10 cluster generation on heterogeneous VLIEpssors,” in Proc. IEEE
3rd Workshop on Embedded Systems for Real-Time MultimeBi&T{Media 2005),
pp.81-86, Sept. 2005.

Y. Kobayashi, M. Jayapala, P. Raghavan, F. Catthoor, Mnémai, “Methodology for
operation shuffling and |0 cluster generation for low endrgterogeneous VLIW proces-
sors,” ACM Trans. on Design Automation of Electronic Sysserfto appear).

J. Ganssle and M. Barr, Embedded Systems Dictionary, ®8lbks, 600 Harrison Street,
San Francisco, CA 94107 USA, 2003.

M. Johnson, Superscalar Microprocessor Design, Rreritall, Inc., 1991.

J.A. Fisher, “Very Long Instruction Word Architecturesd the ELI-512,” in Proc. the
10th Annual Symposium on Computer Architectures, pp.180;-1983.

L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccariand R. Zafalon, “A power
modeling and estimation framework for VLIW-based embedsiestems,” in Proc. IEEE
International Workshop on Power And Timing Modeling, Opiation and Simulation
(PATMOS), IEEE, Sept. 2001.

L.H. Lee, B. Moyer, and J. Arends, “Instruction fetch emereduction using loop caches
for embedded applications with small tight loops,” in Prbod@| Symp. on Low Power
Electronic Design (ISLPED), pp.267—269, Aug. 1999.

R.S. Bajwa, M. Hiraki, H. Kojima, D.J. Gorny, K. Nitta, .AShridhar, K. Seki, and
K. Sasaki, “Instruction buffering to reduce power in praa@s for signal processing,”
IEEE Trans. VLSI Syst., vol.5, no.4, pp.417-424, Dec. 1997.

95

96

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

N. Bellas, I. Hajj, C. Polychronopoulos, and G. StanmulArchitectural and compiler
support for energy reduction in the memory hierarchy of hpghformance microproces-
sors,” in Proc. Int'l Symp. on Low Power Electronic DesigB8I(PED), Aug. 1998.

A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, Tndé& Aa, M. Jayapala,
F. Catthoor, D. Verkest, G. Deconinck, H. Coporaal, F. Rglzerd J. Carrabina, “Power
breakdown analysis for a heterogeneous NoC platform rgnaimideo application,” in

Proc. IEEE 16th International Conference on Applicatipesfic Systems, Architectures
and Processors (ASAP), pp.179-184, July 2005.

M. Jayapala, F. Barat, T. Vander Aa, F. Catthoor, H. @oagl, and G. Deconinck, “Clus-
tered loop buffer organization for low energy VLIW embedgedcessors,” IEEE Trans.
Computers, vol.54, no.6, pp.672—-683, June 2005.

M. Jayapala, T. Vander Aa, F. Barat, F. Catthoor, H. Gaph and G. Deconinck, “LO
cluster synthesis and operation shuffling,” in Proc. IEEtedmational Workshop on Power
And Timing Modeling, Optimization and Simulation (PATMQ$)p.311-321, IEEE,
Sept. 2004.

T. Pering, T. Burd, and R. Brodersen, “The simulatiod awaluation of dynamic voltage
scaling algorithms,” in Proc. Int'l Symp. Low Power Eleatios and Design (ISLPED),
pp.76—81, Aug. 1998.

F. Catthoor, F. Balasa, E.D. Greef, and L. Nachtergaglestom Memory Management
Methodology: Exploration of Memory Organization for Emioed Multimedia System
Design, Kluwer Academic Publisher, 1998.

W. Tang, R. Gupta, and A. Nicolau, “Power savings in edd® processors through
decode filter cache,” in Proc. Design Automation and Testumopge (DATE), March
2002.

G.R. Uh,Y. Wang, D. Whalley, S. Jinturkar, C. Burns, &hcao, “Effective exploitation
of a zero overhead loop buffer,” LCTES '99: Proc. the ACM SIGIN 1999 workshop
on Languages, compilers, and tools for embedded systeni€)-gl9, ACM Press, 1999.

J.W. Sias, H.C. Hunter, and W. mei W. Hwu, “Enhancingddmuffering of media and
telecommunications applications using low-overhead ipegbn,” in Proc. 34th Annual
Int’l Symp. on Microarchitecture (MICRO), Dec. 2001.

G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A, KifliLiem, and P.G. Paulin,
“Embedded software in real-time signal processing systé&masign technologies,” Proc.
IEEE, vol.85, no.3, pp.436—454, March 1997.

J. Sato, A.Y. Alomary, Y. Honma, T. Nakato, A. Shiomi, Nikichi, and M. Imai, “PEAS-
I: A hardware/software codesign system for ASIP develogthdBICE Trans. Funda-
mentals, vol.E77-A, no.3, pp.483—-491, Mar. 1994.

BIBLIOGRAPHY 97

[22] J.H. Yang, B.W. Kim, S.J. Nam, J.H. Cho, S.W. Seo, C.HuRyt al, “MetaCore: An
application specific DSP development system,” in Proc. @esiutomation Conference
(DAC), pp.800-803, June 1998.

[23] J. Yang, B. Kim, S. Nam, Y. Kwon, D. Lee, J. Lee, C. Hwangl -¥e, S. Hwang, |. Park,
and C. Kyung, “MetaCore: An Application-Specific ProgranimeaDSP Development
System,” IEEE Trans. VLSI Syst., vol.8, no.2, pp.173-18iA2000.

[24] G. Ezer, “Xtensa with user defined DSP coprocessor raictatectures,” in Proc. 2000
IEEE International Conference on Computer Design: VLSI onfputers & Processors,
pp.335-342, Sept. 2000.

[25] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: Astiinction set description lan-
guage for retargetability and architecture explorati@gsign Automation for Embedded
Systems, vol.6, no.1, pp.39-69, Sept. 2000.

[26] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: Atimstion set description lan-
guage for retargetability,” in Proc. Design Automation @aence (DAC), pp.299-302,
June 1997.

[27] G. Hadjiyiannis, P. Russo, and S. Devadas, “A methaglplior accurate performance
evaluation in architecture exploration,” in Proc. Desigatédmation Conference (DAC),
pp.927-932, June 1999.

[28] A. Fauth, J. Van Praet, and M. Freericks, “Describingtinction set processors using
nml,” in Proc. European Design and Test Conference, pp 508-March 1995.

[29] J. Van Praet, G. Goossens, D. Lanneer, and H. De Manirtictson set definition and
instruction selection for asips,” in Proc. 7th IEEE Int. Synon High-Level Synthesis,
May 1994.

[30] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusdd. Wahlen, A. Wieferink,
and H. Meyr, “A novel methodology for the design of applicatispecific instruction-set
processors (ASIPs) using a machine description langu#geE Trans. Computer-Aided
Design, vol.20, no.11, pp.1338-1354, Nov. 2001.

[31] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISAnachine description language
for cycle-accurate models of programmable DSP archite¢tur Proc. Design Automa-
tion Conference (DAC), pp.933-938, June 1999.

[32] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Eoyation for Embedded Proces-
sors with LISA, Kluwer Academic Publishers, Boston, 2002.

[33] P. Mishra, A. Kejariwal, and N. Dutt, “Rapid exploratiof pipelined processors through
automatic generation of synthesizable RTL models,” in Piglth IEEE International
Workshop on Rapid Systems Prototyping, pp.226—232, Jugg&.20

98 BIBLIOGRAPHY

[34] P. Grun, A. Halambi, N. Dutt, and A. Nicolau, “RTGEN - algarithm for automatic
generation of reservation tables from architectural dpsons,” IEEE Trans. VLSI Syst.,
vol.11, no.4, pp.731-737, Aug. 2003.

[35] P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-drivexploration of pipelined embed-
ded processors,” in Proc. International Conference of VD8kign, pp.921-926, Jan.
2004.

[36] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and Acdau, “"EXPRESSION: A
language for architecture exploration through compilerigator retargetability,” in Proc.
Design, Automation and Test in Europe (DATE), pp.485—49@ard 1999.

[37] M. Kandemir, M.J. Irwin, G. Chen, and I. Kolcu, “Comptguided leakage optimization
for banked scratch-pad memories,” IEEE Trans. VLSI Sysi.13, no.10, pp.1136-1146,
Oct. 2005.

[38] Texas Instruments, “TMS320C6000 CPU and instructetrreference guide,” Oct. 2000.
[39] Silicon Hive. http://www.silicon-hive.com/.
[40] Clear Speed. http://www.clearspeed.com/.

[41] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, and émdwood, “Lx: A technology
platform for customizable VLIW embedded processing,” imd®rint’l Symp. on Com-
puter Architecture (ISCA), pp.203—-213, June 2000.

[42] A.Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, &dafalon, “Energy estimation
and optimization of embedded VLIW processors based ornuastn clustering,” in Proc.
Design Automation Conference (DAC), pp.886—891, June 2002

[43] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, &dZafalon, “An instruction-
level methodology for power estimation and optimizatioreofbedded VLIW cores,” in
Proc. Design, Automation and Test in Europe (DATE), p.1128ch 2002.

[44] K. Okuda, S. Kobayashi, Y. Takeuchi, and M. Imai, “A silator generator based on con-
figurable VLIW model considering synthesizable HW desaoiptand SW tools genera-
tion,” in Proc. the Workshop on Synthesis And System Integneof Mixed Information
Technologies (SASIMI), pp.152-159, April 2003.

[45] T. Maeda, J. Sato, Y. Takeuchi, and M. Imai, “A genenatmethod for an interrupt con-
troller in application specific instruction-set processdesign,” Technical Report of IE-
ICE, VLD2001-118, vol.101, n0.468, pp.39—44, Nov. 200h. Japanese).

[46] M. Itoh, Y. Takeuchi, M. Imai, and A. Shiomi, “Syntheslzle HDL generation for
pipelined processors from a micro-operation descriptiiCE Trans. on Fundamentals
of Electronics Communications and Computer SciencesE88LA, no.3, pp.394-400,
March 2000.

BIBLIOGRAPHY 99

[47] M. Itoh, A. Shiomi, J. Sato, Y. Takeuchi, and M. Imai, teessor generation method for
pipelined processors in consideration with pipeline hdgdnPSJ Journal, vol.41, no.4,
pp.851-862, Apr. 2000. (in Japanese).

[48] A. Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, @M. Imai, “Effectiveness of the
ASIP design system PEAS-III in design of pipelined processm Proc. Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.64%&®b. 2001.

[49] J.L. Hennessy and D.A. Patterson, Computer ArchitecttA Quantitative Approach,
Morgan Kaufmann Publishers, Inc., California, 1990.

[50] J. Monteiro, S. Devadas, P. Ashar, and A. Mauskar, “8ahleg techniques to enable
power management,” in Proc. Design Automation ConfereB&C)), pp.349-352, June
1996.

[51] N. Vijaykrishnan, M. Kandemir, M.J. Irwin, H.S. Kim, We, and D. Duarte, “Evaluat-
ing integrated hardware-software optimizations using iiethenergy estimation frame-
work,” IEEE Trans. Comput., vol.52, no.1, pp.59-76, Jart20

[52] T. Vander Aa, M. Jayapala, F. Barat, G. Deconinck, R.Wexeins, F. Catthoor, and
H. Coporaal, “Instruction buffering exploration for low ey VLIW with instruction
clusters,” in Proc. IEEE Asia and South Pacific Design AutbomaConference (ASP-
DAC), pp.825-830, IEEE, Jan. 2004.

[53] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framerk for architectural-
level power analysis and optimizations,” in Proc. Int’l Synon Computer Architecture
(ISCA), pp.83-94, June 2000.

[54] P.O. de Beeck, F. Barat, M. Jayapala, and R. LauweréR|SP: A template for re-
configurable instruction set processors,” in Proc. Inteomal Conference on Field Pro-
grammable Logic and Applications, pp.296—-305, Aug. 2001.

[55] Trimaran, “Trimaran: An infrastructure for research instruction-level parallelism.”
http://www.trimaran.org/.

[56] A. Gordon-Ross and F. Vahid, “Frequent loop detectisimg efficient nonintrusive on-
chip hardware,” IEEE Trans. Comput., vol.54, no.10, pp3:2A215, Oct. 2005.

[57] D.C. Suresh, W.A. Najjar, F. Vahid, J.R. Villarreal,ca@. Stitt, “Profiling tools for hard-
ware/software partitioning of embedded applicationsPmoc. Language, Compiler and
Tool Support for Embedded Systems (LCTES '03), pp.189-108¢ 2003.

[58] S. Rixner, W.J. Dally, B. Khailany, P. Mattson, U.J. Kap and J.D. Owens, “Register
organization for media processing,” in Proc. Int’l Symp.High-Performance Computer
Architecture (HPCAG), pp.375—-386, Jan. 2000.

[59] MediaBench. http://cares.icsl.ucla.edu/MediaB#&nc

100 BIBLIOGRAPHY

[60] D.P. Scarpazza, P. Raghavan, D. Novo, F. Catthoor, aniRest, “Software simultane-
ous multi-threading, a technique to exploit task-levelflatism to improve instruction-
and data-level parallelism,” in Proc. IEEE InternationaiMshop on Power And Timing
Modeling, Optimization and Simulation (PATMOS), pp.12+-&pringer Verlag LNCS,
Sept. 2006.

[61] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauvugse“Exploiting loop-level
parallelism on coarse-grained reconfigurable architestursing modulo scheduling,” in
Proc. Design Automation and Test in Europe (DATE), pp.2%9353/1arch 2003.

[62] L. Benini and G. De Micheli, “System-level power optiation: Techniques and tools,
ACM Trans. on Design Automation of Electronic Systems,¥ah0.2, pp.115-192, April
2000.

Appendix A

BNF of processor specification
description

This chapter shows BNF of the processor specification desmni described in Chapter 3.

<InstructionSetSpec> ::= 'mod’ <modName> ’ {
<DeclarationPart>
<BehaviorPart>
<modName> ::= <identifier>
<DeclarationPart> ::= <OperationWidthDecl> <SlotDecl> < PipelineStageDecl>

<DesignPriorityDecl> <ResourceDeclPart>
<ResourceGroupDeclPart> <OperationTypeDeclPart>

<OperationDeclPart> <OperationGroupDeclPart> <lODecl> <InterruptDecl>

<OperationWidthDecl> ::= ’operation _length’ <OperationWidth> ;'

<OperationWidth> ::= <NaturalNumber>

<SlotDecl> ::= ’slots’ ’ {' <SlotNames> "' }' ')

<SlotNames> ::= <SlotName> { ' <SlotName> }

<SlotName> ::= <Identifier>

<PipelineStageDecl> ::= <StageDecls> <BuildStageDef> <D ispatchStageDef>
<DecodeStageDef> <RegisterBypassDef> <MemoryBypassDef >
<DelaySlotDef> <DelaySlotNum>

<StageDecls> ::= 'stages’ ’ {" <StageName> { '’ <StageName> yor

<StageName> ::= <lIdentifier>

<BuildStageDef> ::= 'build _stage’ <StageName> ';’

<DispatchStageDef> ::= ’dispatch _stage’ <StageName> '}

<DecodeStageDef> ::= 'decode _stage’ <StageName> '}’

<RegisterBypassDef> ::= 'use _register _bypass <YorN> '}’

<MemoryBypassDef> ::= 'use _memory_bypass <YorN> '}

<DelaySlotDef> ::= 'use _delayed _branch’ <YorN> ';

<DelaySlotNum> ::= 'num _delayed _slots’ <NaturalNumber> "}

<YorN> := 'yes’ |'no’

<DesignPriorityDecl> ::= ’'priority’ <DesignPriority> ’; ’
<DesignPriority> ::= <String>

<ResourceDeclPart> ::= { <ResourceDecl> }
<ResourceDecl> ::= 'resource’ <ResourceName> ['’ <Resou rceUsageDef>] {
'model’ <FHMModelName> '}
for _simulation’ ’ {' <FHMParameterDef> ' }' '}
‘for _synthesis’ ’ {' <FHMParameterDef> ' }' '}
BURE

101

102 APPENDIX A. BNF OF PROCESSOR SPECIFICATION DESCRIPTION

<ResourceName> ::= <ldentifier>

<ResourceUsageDef> ::= 'program _counter’ |'instr _memory’ |'data _memory’ |
‘register file’ |'status _register’ |fetch _register’ |
'instr _register’ |'flag _register’ |'plain _register’

<FHMParameterDef> ::= 'design _level' <FHMDesignLevel> ';’

‘parameter’ <FHMParameter> ’;’
<FHMModelName> ::= <String>

<FHMDesignLevel> ::= <String>
<FHMParameter> ::= <String>
<ResourceGroupDeclPart> ::= { <ResourceGroupDecl> }
<ResourceGroupDecl> ::= ’'resgroup’ <ResourceGroupName> {
['member ' <ResourceNames> ;' |
['read _access’ '’ <ResourceNames> ')]
[‘'write _access’ ' <ResourceNames> ;']
<ResourceNames> ::= <ResourceName> { ') <ResourceName> }
<ResourceGroupName> ::= <ldentifier>

<OperationTypeDeclPart> ::= <OperationTypeDecl>

{ <OperationTypeDecl> }

<OperationTypeDecl> ::= 'opetype’ <OperationTypeName> ’ {

{ <FieldDef> }

il }Y !;1
<OperationTypeName> ::= <Identifier>
<FieldDef> ::= <VLIWInstDelimiterFieldDef> |

<OperandFieldDef> |<OpecodeFieldDef> |<ReservedFieldD ef>

<VLIWInstDelimiterFieldDef> ::= 'terminate flag’ <BitRange>

<FieldName> '}
<OperandFieldDef> ::= 'operand’ <BitRange> <FieldName> ’ Vv
<OpecodeFieldDef> ::= 'opecode’ <BitRange> <FieldName>
['=" <BinaryConstant>] ';
<ReservedFieldDef> ::= 'reserved’ <BitRange> <FieldName >
<FieldName> ::= <ldentifier>

<OperationDeclPart> ::= { <OperationDecl> }
<OperationDecl> ::= 'operation’ <OperationName> "’

<OperationTypeName> ' {’

{ <OpecodeDef> } <Format>' }' '/
<OperationName> ::= <ldentifier>
<OpecodeDef> ::= (‘opecode’ |reserved’) <FieldName> '=' <BinaryConstant> ’;’
<Format> := 'format’ ’ {' <ElementList> ’ Py
<ElementList> ::= <Element> { ') <Operand> }
<Element> ::= <Identifier> | ” ' <Identifier> * "’

<OperationGroupDeclPart> ::= { <OperationGroupDecl> }

<OperationGroupDecl> ::= 'opegroup’ <OperationGroupNam e> "' {
<OperationName> { '/’ <OperationName> }
’ }l !;1

<OperationGroupName> ::= <Identifier>

<lODecl> ::= <TopModuleNameDef>
<ClockPortDef> <ResetPortDef> <UserPortDefs>

<TopModuleNameDef> ::= 'top _module’ <TopModuleName> "’
<TopModuleName> ::= <ldentifier>

<ClockPortDef> ::= 'clock _port’ <PortName> '}

<ResetPortDef> ::= 'reset _port’ <PortName> '}’

<UserPortDefs> ::= <UserPortDef> { <UserPortDef> }
<UserPortDef> ::= 'port’ [<BitRangeDef>] <PortName> '’ {

‘direction’ ('in’ |['out’ ['inout’) '}’
‘connect _to’ <Destination> '}

[N
’

<Destination> ::= 'internal _controller’ |<ResourceName> ' <PortName>
<PortName> ::= <Identifier>

103

<InterruptDeclPart> ::= <ResetInterruptDecl>
[<NMIDecl>]
[<ExternalinterruptDecl>]

{ <InternallnterruptDecl> }
<ResetInterruptDecl> ::= 'reset _interrupt’ <InterruptName> "’ {
<InterruptCauseCondition>
U
<NMIDecl> ::= 'nonmaskable Jinterrupt’ <InterruptName> '’ {

<InterruptCauseCondition>
<ExternallnterruptDecl> ::= 'external _interrupt’ <InterruptName> '’ {
<InterruptCauseCondition>
[<InterruptMaskCondition>]
’ }l !;1
<InternalinterruptDecl> ::= 'internal -nterrupt’ <InterruptName> "’ {
‘cause _condition _type’ ('decode _error’ |'instr
[<InterruptMaskCondition>]
Ty
<InterruptCauseCondition> ::= 'cause _condition’ ’ {
‘port’ <PortName> '}’
‘active _value’ <BitLiteral> '}’

[ERE NI
’

<InterruptMaskCondition> ::= 'mask _condition’ ’ {
'mask _register’ <ResourceName> '}
'mask _bitpos’ <NonNegativelnteger> '}’
‘active _value’ <BitLiteral> "}’

S URE
<InterruptName> ::= <ldentifier>
<BehaviorPart> ::= <InterruptDefPart>

<CommonStageDef>

<DispatchTable>

<OperationDefPart>
<InterruptDefPart> ::= { <InterruptDef> }
<InterruptDef> ::= 'catch _interrupt’ <InterruptName> ' {

<VariableDeclPart>
<InterruptDefExpressions>
il }! Y;Y
<InterruptDefExpressions> ::= { <InterruptDefExpression> }
<InterruptDefExpression> ::= <Assignment> |
<ConditionalAssignment>

<CommonStageDef> ::= 'common _pre _dispatch’ ’ {
<CommonStageDesc>

<CommonStageDesc> ::= <VariableDeclPart>
<MicroOperationDescriptionPart>

<VariableDeclPart> ::= { <VariableDecl> }

<VariableDecl> ::= <WireDecl>

<WireDecl> ::= 'wire’ [<BitRange>] <WireName> ';

<WireName> ::= <ldentifier>

<DispatchTable> ::= 'dispatch _table’ ' {
<S-OGTable>
<S-RGTable>
<OG-RGTable>
’ }! Y;Y
<S-OGTable> ::= ’slot _opegroup’ * {’
{ <S-OGRelation> }

<S-OGRelation> ::= "’ {' <S-OGPair> { '’ <S-OGPair> Yy
<S-OGPair> := <SlotName> "' <OGDef>
<OGDef> ::= <OperationGroupName> |'null’

<S-RGTable> ::= ’slot resgroup’ ' {’
{ <S-RGRelation> }

_specific’) 'y

104 APPENDIX A. BNF OF PROCESSOR SPECIFICATION DESCRIPTION

’ }! v;v
<S-RGRelation> ::= <SlotName> "' <RGs> '}
<RGs> := <ResourceGroupName> { ' <ResourceGroupName> }

<OG-RGTable> ::= 'opegroup _resgroup’ ' {
{ <OG-RGRelation> }

JURR
<OG-RGRelation> ::= <OperationGroupName> "’

<ResourceGroupName> { '’ <ResourceGroupName> Py
<OperationDefPart> ::= { <OperationDef> }
<OperationDef> ::= 'micro _operation’ <OperationName> 'on’

<ResourceGroupName> ’ {’
<OperationBehaviorDesc>
<OperationBehaviorDesc> ::= <GlobalVariableDeclPart>
<VariableDeclPart>
<MicroOperationDescriptionPart>

<GlobalVariableDeclPart> ::= { <GlobalVariableDecl> }
<GlobalVariableDecl> ::= 'extern’ <VariableDecl>

<MicroOperationDescriptionPart> ::= { <MicroOperationDescription> }
<MicroOperationDescription> ::= 'stage’ <StageNumber> ’ DL

<StageVariableDeclPart>
<Expressions>

UK

<StageNumber> ::= <NaturalNumber>

<StageVariableDeclPart> ::= <VariableDeclPart>

<Expressions> ::= { <Expression> }

<Expression> ::= <Assignment> |<ConditionalAssignment>
<ConditionalFunctionalExecution> |<Internallnterrupt >

<Conditionallnternallnterrupt>
<Assignment> ::= <LeftSide> '=’ <RightSide> '}

<LeftSide> ::= <VariableName> |<VariableNameSet> |'null '
<RightSide> ::= <BitwiseAND> |<BitwiseOR> |<BitwiseNOT> |<Comparison> |
<Aggregation> |<ResourceRef> |<BitSelect> |<RangeSelec t> |

<BinaryConstant> |
<VariableRef>
<BitwiseAND> ::= <VariableRef> '& <VariableRef>
<BitwiseOR> ::= <VariableRef> '|' <VariableRef>

<BitwiseNOT> ::= ™ <VariableRef>

<Comparison> ::= <VariableRef> <RationalOperator> <Bina ryConstant>

<RationalOperator> ::= '==" |'I=’

<VariableRef> ::= <VariableName> |<FieldName>

<VariableName> ::= <WireName>

<VariableNameSet> ::= ’ <’ <VariableName> { '’ <VariableName> o>

<Aggregation> =’ <’ <VariableRef> { ' <VariableRef> o>

<ResourceRef> ::= <ResourceName> '’ <FunctionName> '(’ [<Parameters>] ')

<FunctionName> := <Identifier>

<Parameters> ::= <Parameter> { ' <Parameter> }

<Parameter> ::= <VariableRef>

<BitSelect> ::= <VariableRef> [<NonNegativelnteger> ’ T

<RangeSelect> ::= <VariableRef> <BitRange>

<ConditionalAssignment> ::= <LeftSide> '=" ’(" <BitVaria bleRef> ') '?’
<VariableRef> '’ <VariableRef> '}

<BitVariableRef> ::= <VariableRef>

<ConditionalFunctionalExecution> ::= <LeftSide> '=" T <BitVariableRef> " '?’
<ResourceFunctionDef> ;'

<ResourceFunctionDef> ::= <ResourceName> '’ <FunctionN ame> (" [<Parameters>] ')

<Internalinterrupt> ::= 'throw’ <InterruptName> '}’

<Conditionallnternallnterrupt> ::= [<BitVariableRef > T 'throw’ <InterruptName> ’;’

Appendix B

Processor description for the
proposed VLIW generation method

This chapter shows a sample of processor specificationigéearof VLIW processor shown
in Section 3.7.2 that is designed based on the proposedroesgroup assignment algorithm.
Since it is too long (11664 lines), this chapter only showssxarerpt from it.

1 mod CPU {

2 operation_length 32;

3 slots { slotl, slot2, slot3, slot4 };
4 stages { IF, ID, EXE, MEM, WB };
5 build_stage IF;

6 dispatch_stage ID;

7 decode_stage ID;

8 use_register_bypass no;

9 use_memory_bypass no;

10 use_delayed_branch yes;

11 num_delayed_slots 1;

12 priority "Area";

13 resource PC : program_counter {

14 model "/workdb/peas/pcu”;

15 for_simulation {

16 design_level "Behavior";

17 parameter "bit_width=32 increment_step=8 adder_algorit hm=cla";
18 ¥

19 for_synthesis {

20 design_level "Synthesis";

21 parameter "bit_width=32 increment_step=8 adder_algorit hm=cla";
22 J

23 k%

24 resource IR : instr_register {

25 model "“/basicfhmdb/storage/register";

26 for_simulation {

27 design_level "Behavior";

28 parameter "bit_width=128";

29 J

30 for_synthesis {

31 design_level "Synthesis";

32 parameter "bit_width=128";

33 J

34 %

35 resource IMAU : instr_memory {

36 model "“/workdb/peas/imau”;

37 for_simulation {

38 design_level "Behavior";

39 parameter "bit_width=128 address_space=32";
40 }

105

106 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

41 for_synthesis {

42 design_level "Synthesis";

43 parameter "bit_width=128 address_space=32";
44 j

45 k%

46 resource DMAU : data_memory {

a7 model "“/workdb/peas/dmau”;

48 for_simulation {

49 design_level "Behavior";

50 parameter "bit_width=32 address_space=32 access_width= 8"
51 J

52 for_synthesis {

53 design_level "Synthesis";

54 parameter "bit_width=32 address_space=32 access_width= 8"
55 h

56 }

57 resource GPR : register_file {

58 model “/basicthmdb/storage/registerfile";

59 for_simulation {

60 design_level "Behavior";

61 parameter "bit_width=32 num_register=32 num_read_port= 8 num_write_port=4";
62 ¢

63 for_synthesis {

64 design_level "Synthesis";

65 parameter "bit_width=32 num_register=32 num_read_port= 8 num_write_port=4";
66 h

67 %

68 resource ALUO {

69 model “/basicthmdb/computational/alu”;

70 for_simulation {

71 design_level "Behavior";

72 parameter "bit_width=32 algorithm=cla";
73 ;

74 for_synthesis {

75 design_level "Synthesis";

76 parameter "bit_width=32 algorithm=cla";
77 h

78 %

79 resource EXTOO0 {

80 model "“/basicfhmdb/computational/extender”;
81 for_simulation {

82 design_level "Behavior";

83 parameter "bit_width=16 bit_width_out=32";
84 h

85 for_synthesis {

86 design_level "Synthesis";

87 parameter "bit_width=16 bit_width_out=32";
88 J

89 }

90 resource ALU1 {

91 model "/basicfhmdb/computational/alu”;

92 for_simulation {

93 design_level "Behavior";

94 parameter "bit_width=32 algorithm=cla";
95 J

96 for_synthesis {

97 design_level "Synthesis";

98 parameter "bit_width=32 algorithm=cla";
99 J

100 }

101 resource EXTO1 {

102 model "/basicthmdb/computational/extender”;
103 for_simulation {

104 design_level "Behavior";

105 parameter "bit_width=16 bit_width_out=32";
106 %

107 for_synthesis {
108 design_level "Synthesis";

107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

h
h
resource ALU2 {

model "/basicfhmdb/computational/alu’;

for_simulation {

design_level "Behavior";

parameter "bit_width=32 algorithm=cla";
h
for_synthesis {

design_level "Synthesis";

parameter "bit_width=32 algorithm=cla";
h
h
resource EXTO02 {

model "/basicthmdb/computational/extender”;

for_simulation {

design_level "Behavior";

parameter "bit_width=16 bit_width_out=32";

h
for_synthesis {
design_level "Synthesis";

parameter "bit_width=16 bit_width_out=32";

I
h
resource MULO {
model "/basicthmdb/computational/multiplier”;
for_simulation {
design_level "Behavior";

parameter "“bit_width=32 algorithm=seq adder_algorithm=

h
for_synthesis {
design_level "Synthesis";

parameter "bit_width=32 algorithm=seq adder_algorithm=

I
h
resource MUL1 {
model "/basicfhmdb/computational/multiplier";
for_simulation {
design_level "Behavior";

parameter "bit_width=32 algorithm=seq adder_algorithm=

h
for_synthesis {
design_level "Synthesis";

parameter "bit_width=32 algorithm=seq adder_algorithm=

o

resource DIVO {
model "/basicfhmdb/computational/divider";
for_simulation {
design_level "Behavior";

parameter "bit_width=32 algorithm=seq adder_algorithm=

f(‘)r_synthesis {
design_level "Synthesis";

I8
h
resource DIV1 {

model "/basicfhmdb/computational/divider";

for_simulation {

design_level "Behavior";

h
for_synthesis {
design_level "Synthesis";

h

parameter "bit_width=16 bit_width_out=32";

parameter "bit_width=32 algorithm=seq adder_algorithm=

parameter "bit_width=32 algorithm=seq adder_algorithm=

parameter "bit_width=32 algorithm=seq adder_algorithm=

cla

cla

cla

cla

cla

cla

cla

cla

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

data_type=two_complement";

108 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

177 %

178 resource SFTO {

179 model "/basicfhmdb/computational/shifter";
180 for_simulation {

181 design_level "Behavior";

182 parameter "bit_width=32 amount=variable";
183 h

184 for_synthesis {

185 design_level "Synthesis";

186 parameter "bit_width=32 amount=variable";
187 h

188 ;

189 resource SFT1 {

190 model "/basicfhmdb/computational/shifter";
191 for_simulation {

192 design_level "Behavior";

193 parameter "bit_width=32 amount=variable";
194 h

195 for_synthesis {

196 design_level "Synthesis";

197 parameter "bit_width=32 amount=variable";
198 h

199 };

200 resource SFT2 {

201 model "/basicfhmdb/computational/shifter";
202 for_simulation {

203 design_level "Behavior";

204 parameter "bit_width=32 amount=variable";
205 h

206 for_synthesis {

207 design_level "Synthesis";

208 parameter "bit_width=32 amount=variable";
209 h

210 }

211 resource EXT1 {

212 model "/basicthmdb/computational/extender”;
213 for_simulation {

214 design_level "Behavior";

215 parameter "bit_width=28 bit_width_out=32";
216 ;

217 for_synthesis {

218 design_level "Synthesis";

219 parameter "bit_width=28 bit_width_out=32";
220 h

221}

222

223 resgroup RGO1ASFT {
224 member : SFTO;

225 read_access : GPR.data_out0, GPR.data_outl;

226 write_access : GPR.r_sel0, GPR.r_sell, GPR.data_in0, GPR .w_sel0, GPR.w_enh0;
227 }

228 resgroup RGO2ASFT {

229 member : SFTO;

230 read_access : GPR.data_out2, GPR.data_out3;

231 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_inl, GPR w_sell, GPR.w_enbl;
232}

233 resgroup RGO2BSFT {

234 member : SFT1,;

235 read_access : GPR.data_out2, GPR.data_out3;

236 write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_inl, GPR .w_sell, GPR.w_enbl;
237 }

238 resgroup RGO3BSFT {

239 member : SFT1,;

240 read_access : GPR.data_out4, GPR.data_out5;

241 write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2, GPR w_sel2, GPR.w_enb2;
242 %

243 resgroup RGO3CSFT ({
244 member : SFT2;

109

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

read_access : GPR.data_out4, GPR.data_out5;

write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2,

h
resgroup RGO4CSFT {
member : SFT2;
read_access : GPR.data_out6, GPR.data_out7;

write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3,

h
resgroup RGO1AALU ({
member : ALUO, EXTOO;
read_access : GPR.data_out0, GPR.data_outl;

write_access : GPR.r_sel0, GPR.r_sell, GPR.data_in0,

h
resgroup RGO2AALU {
member : ALUO, EXTOO;
read_access : GPR.data_out2, GPR.data_out3;

write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1,

h
resgroup RGO2BALU {
member : ALU1, EXTO1,
read_access : GPR.data_out2, GPR.data_out3;

write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1,

-------- snip --------
resgroup RGO3CMEM {
member : ALU2, EXT02, DMAU;
read_access : GPR.data_out4, GPR.data_out5;

write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2,

h
resgroup RGO4CMEM {
member : ALU2, EXT02, DMAU;
read_access : GPR.data_out6, GPR.data_out7;

write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3,

h
resgroup RGO1ANOP {
read_access : GPR.data_out0, GPR.data_outl;

write_access : GPR.r_sel0, GPR.r_sell, GPR.data_in0,

h
resgroup RGO2ANOP {
read_access : GPR.data_out2, GPR.data_out3;

write_access : GPR.r_sel2, GPR.r_sel3, GPR.data_in1,

h
resgroup RGO3ANOP {
read_access : GPR.data_out4, GPR.data_out5;

write_access : GPR.r_sel4, GPR.r_sel5, GPR.data_in2,

h
resgroup RGO4ANOP {
read_access : GPR.data_out6, GPR.data_out7;

write_access : GPR.r_sel6, GPR.r_sel7, GPR.data_in3,

j

GPR

GPR

GPR

GPR

GPR

GPR

GPR

GPR

GPR

GPR

GPR

w_sel2,

w_sel3,

.w_selO,

w_sell,

w_sell,

w_sel2,

w_sel3,

.w_selO,

w_sell,

w_sel2,

w_sel3,

GPR.w_enb2;

GPR.w_enb3;

GPR.w_enb0;

GPR.w_enb1,;

GPR.w_enb1;

GPR.w_enb2;

GPR.w_enb3;

GPR.w_enb0;

GPR.w_enb1;

GPR.w_enb2;

GPR.w_enb3;

110

APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

opetype R_R{
opecode [31:26] opecode__;
operand [25:21] rsO;
operand [20:16] rs1;
operand [15:11] rd;
opecode [10:0] func;

h

opetype R_K
opecode [31:26] opecode__;
operand [25:21] rsO;
operand [20:16] rd;
operand [15:0] const__;

opetype L_S{
opecode [31:26] opecode__;
operand [25:21] rsO;
operand [20:16] rd;
operand [15:0] const__;

opetype B{
opecode [31:26] opecode__;
operand [25:21] rsO;
opecode [20:16] fld_20_16;
operand [15:0] const__;

h

opetype J{
opecode [31:26] opecode__;
operand [25:0] const__;

h

opetype JR{
opecode [31:26] fld_31_26;
operand [25:21] rsO;
opecode [20:11] fld_20_11;
opecode [10:0] func;

h

opetype LHI
opecode [31:26] opecode__;
opecode [25:21] fld_25_21;
operand [20:16] rd;
operand [15:0] const__;

h
operation ADD : R_R{
opecode opecode__ = "000000";
opecode func = "00000100000";
h
operation ADDU : R_R({
opecode opecode__ = "000000";
opecode func = "00000100001";
h
operation ADDI : R_K
opecode opecode__ = "001000";
h
operation ADDUI : R_{{
opecode opecode__ = "001001";
h
operation SUB : R_R{
opecode opecode__ = "000000";
opecode func = "00000100010";
h
operation SUBU : R_R{
opecode opecode__ = "000000";
opecode func = "00000100011";
h
operation SUBI : R_{{
opecode opecode__ = "001010"

5

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

operation SUBUI : R_I{

opecode opecode = "001011"
I
operation MULT : R_R({

opecode opecode__ = "000000";

opecode func = "00000011000%;
h
operation MULTU : R_R{
opecode opecode__ = "000000";
opecode func = "00000011001";
h
operation DIV : R_R{

opecode opecode__ = "000000";
opecode func = "00000011010";
I
operation DIVU : R_R{
opecode opecode__ = "000000";

opecode func = "00000011011";

operation AND : R_R{
opecode opecode__ = "000000";
opecode func = "00000100100%;
h
operation ANDI : R_K

opecode opecode__ = "001100%
h
operation OR : R_R{

opecode opecode__ = "000000";

opecode func = "00000100101";
h
operation ORI : R_K

opecode opecode = "001101"
operation XOR : R_R{

opecode opecode__ = "000000";

opecode func = "00000100110%;
%
operation XORI : R_K{

opecode opecode = "001110%
operation SLL : R_R{

opecode opecode__ = "000000";

opecode func = "00000000000";
%
operation SRL : R_R{

opecode opecode__ = "000000";

opecode func = "00000000010";
h
operation SRA : R_R{
opecode opecode__ = "000000";
opecode func = "00000000011";
h
operation SLLI : R_K

opecode opecode__ = "010000";
h
operation SRLI : R_I{

opecode opecode__ = "010001"
h
operation SRAI : R_{{

opecode opecode__ = "010010"
operation SLT : R_R{

opecode opecode__ = "000000";

opecode func = "00000101010%
I
operation SGT : R_R{

opecode opecode__ = "000000";

opecode func = "00000101011";

111

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

h

operation SLE : R_R{
opecode opecode__ = "000000";
opecode func = "00000101100%

operation SGE : R_R{

opecode opecode__ = "000000";
opecode func = "00000101101";
h
operation SEQ : R_R{
opecode opecode__ = "000000";
opecode func = "00000101110";
h
operation SNE : R_R{
opecode opecode__ = "000000";
opecode func = "00000101111";
h
operation SLTI : R_K
opecode opecode__ = "011010%
h

operation SGTI : R_I{

opecode opecode = "011011"%
h
operation SLEI : R_I{

opecode opecode = "011100%
operation SGEI : R_K

opecode opecode__ = "011101"
h
operation SEQI : R_K

opecode opecode__ = "011110%
h
operation SNEI : R_I{

opecode opecode = "011111"%
h
operation LHI : LHI{

opecode opecode__ = "001111"

opecode fld_25_21 = "00000";
h
operation LB : L_S{

opecode opecode__ = "100000";
h
operation LH : L_S{

opecode opecode__ = "100001";
h
operation LW : L_S{

opecode opecode__ = "100011"
h
-------- snip --------
operation SGTU : R_R{

opecode opecode__ = "000000";

opecode func = "00000111011";

operation SLEU : R_R{
opecode opecode__ = "000000";
opecode func = "00000111100";

h

operation SGEU : R_R{
opecode opecode__ = "000000";
opecode func = "00000111101";

h

opegroup OG_SFT {
SLL, SRL, SRA, SLLI, SRLI, SRAI

h

opegroup OG_ALU {
ADD, ADDU, ADDI, ADDUI, SUB, SUBU,
SUBI, SUBUI, AND, ANDI, OR, ORI,
XOR, XORI, SLT, SGT, SLE, SGE,

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

SEQ, SNE, SLTI, SGTI, SLEI, SGEI,
SEQI, SNEI, SLTU, SGTU, SLEU, SGEU
h
opegroup OG_JMP {
BEQZ, BNEZ, J, JAL, JR, JALR
h
opegroup OG_MEM {
LB, LH, LW, LBU, LHU, SB, SH, SW
h
opegroup OG_MUL {
MULT, MULTU
I
opegroup OG_DIV {
Div, DIVU, MOD, MODU
h
opegroup OG_NOP {
LHI
h
top_module CPU,;
clock_port CLK;
reset_port Reset;
port [31:0] InstAB {
direction out;
connect_to IMAU.addr_bus;
h
port [127:0] InstDB {
direction in;
connect_to IMAU.data_bus;
h
port [31:0] DataAB {
direction out;
connect_to DMAU.addr_bus;

I
port [31:0] DataDB {
direction inout;
connect_to DMAU.data_bus;
I
port DataReq {
direction out;
connect_to DMAU.req_bus;
h
port DataAck {
direction in;
connect_to DMAU.ack_bus;
h
port [3:0] DataWm {
direction out;
connect_to DMAU.w_mode_bus;
I
reset_interrupt reset{
cause_condition {
port Reset;
active_value '1’;

I
h
common_pre_dispatch {
stage 1 {
wire [31:0] current_pc;
wire [127:0] inst;
current_pc = PC.read();
inst = IMAU.read(current_pc);
null = IR.write(inst);
null = PC.inc(); };
stage 2 {};
h

112 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

767 dispatch_table {
768 slot_opegroup {

769 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_JM P};

770 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_AL U}

771 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_MU L};

772 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_DI V};

773 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_ME M};

774 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_SFT, slot4: OG_NO P};

775 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_SF T}

776 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_AL U}

777 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_MU L};

778 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_DI V};

779 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_JMP, slot4: OG_NO P};

780 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_SF T}

781 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_JM P};

782 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_AL U}

783 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_MU L};

784 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_DI V3

785 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_ME M};

786 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_ALU, slot4: OG_NO P};

787 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_SF T}

788 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_JM P};

789 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_AL U}

790 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_MU L};

791 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_DI V};

792 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_ME M};

793 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MUL, slot4: OG_NO P},

794 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_SF T}

795 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_JM P};

796 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_AL U}

797 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_MU L};

798 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_DI V3

799 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_ME M};

800 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_DIV, slot4: OG_NO P},

801 {slotl: OG_SFT, slot2: OG_SFT, slot3: OG_MEM, slot4: OG_SF T}

802 - snip (a total of 1565 patterns) --------

803 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_SF T}

804 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_JM P};

805 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_AL U}

806 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_MU L};

807 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_DI V3

808 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_ME M};

809 {slotl: OG_NOP, slot2: OG_NOP, slot3: OG_NOP, slot4: OG_NO P};

810 b

811 slot_resgroup {

812 slotl: RGO1ASFT, RGO1AJMP, RGO1AALU, RGO1AMUL, RG0O1ADIV, RGO01AMEM, RGO1ANOP;
813 slot2: RGO2ASFT, RG02BSFT, RG02AJMP, RG02BIJMP, RG02AALU, RGO02BALU,
814 RG02AMUL, RG02BMUL, RGO02ADIV, RG02BDIV, RG02AMEM, RGO02H, RG02ANOP;
815 slot3: RGO3BSFT, RGO3CSFT, RG0O3AJMP, RG0O3BJMP, RG0O3CJMP, RGO03BALU,
816 RGO3CALU, RGO3AMUL, RG0O3BMUL, RGO03ADIV, RG03BDIV, RG03AEM,
817 RG03BMEM, RGO3CMEM, RGO3ANOP;

818 slot4: RGO4CSFT, RGO4AIMP, RG04BIJMP, RGO4CJIMP, RGO4CALU, RG04BMUL,
819 RGO04BDIV, RGO4AMEM, RG04BMEM, RG0O4CMEM, RGO4ANOP;

820 b

821 opegroup_resgroup {

822 OG_SFT: RGO1ASFT, RG02ASFT, RG02BSFT, RG0O3BSFT, RGO3CSFT RGO4CSFT;
823 OG_JMP: RG01AIJMP, RG02AIJMP, RG02BJMP, RG03AJMP, RG03BIJMRGO3CJIMP,
824 RG04AIJMP, RG04BIMP, RGO4CJIMP;

825 OG_ALU: RGO1AALU, RG02AALU, RG02BALU, RGO3BALU, RGO3CALURGO4CALU;
826 OG_MUL: RG01AMUL, RG02AMUL, RG02BMUL, RGO3AMUL, RGO3BMBRG04BMUL;
827 OG_DIV: RGO01ADIV, RG02ADIV, RG02BDIV, RGO3ADIV, RG0O3BDIV , RG04BDIV;
828 OG_MEM: RGO01AMEM, RG02AMEM, RG02BMEM, RGO3AMEM, RGO3BRIEOBCMEM,
829 RG0O4AMEM, RGO4BMEM, RGO4CMEM,;

830 OG_NOP: RG0O1ANOP, RG02ANOP, RGO3ANOP, RG0O4ANOP;

831 h

832 };

113

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

micro_operation SLL on RGO1ASFT {
wire [31:0] source0;
wire [31:0] sourcel,;
wire [31:0] result;

stage 2 {
source0 = GPR.readO(rs0);
sourcel = GPR.readl(rsl);
h
stage 3 {

wire [4:0] shamt;

shamt = sourcel[4:0];
result = SFTO.sll(source0, shamt);

h
tage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);
I

h

micro_operation SRL on RGO1ASFT {
wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;

stage 2 {
source0 = GPR.readO(rs0);
sourcel = GPR.readl(rsl);
h
stage 3 {
wire [4:0] shamt;
shamt = sourcel[4:0];
result = SFTO.srl(sourceO, shamt);
h
tage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);
h

-------- snip --------

micro_operation SRAlI on RGO1ASFT {
wire [31:0] result;
wire [31:0] source0;

wire [4:0] shamt;

stage 2 {
source0 = GPR.read0(rs0);
shamt = const__[4:0];

%
stage 3 {
result = SFTO.sra(source0, shamt);

stage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);
h
h
micro_operation SLL on RGO2ASFT {
wire [31:0] source0;
wire [31:0] sourcel,;
wire [31:0] result;
stage 2 {
source0 = GPR.read2(rs0);

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

sourcel = GPR.read3(rsl);

h
stage 3 {
wire [4:0] shamt;
shamt = sourcel[4:0];
result = SFTO.sll(source0, shamt);
%
tage 4 {
%
stage 5 {
null = GPR.writel(rd, result);

-------- snip --------
micro_operation SRAI on RGO2ASFT {

wire [31:0] result;
wire [31:0] source0;

wire [4:0] shamt;

stage 2 {
source0 = GPR.read2(rs0);
shamt = const__[4:0];

h
stage 3 {

result = SFTO.sra(source0, shamt);
}.

tage 4 {

h

stage 5 {

null = GPR.writel(rd, result);

_};

micro_operation SLL on RGO02BSFT {

wire [31:0] source0;
wire [31:0] sourcel,;
wire [31:0] result;
stage 2 {
source0 = GPR.read2(rs0);
sourcel = GPR.read3(rsl);

h
stage 3 {
wire [4:0] shamt;
shamt = sourcel[4:0];
result = SFTO.sll(source0, shamt);
h
tage 4 {
h
stage 5 {
null = GPR.writel(rd, result);

-------- snip --------
micro_operation SRAI on RGO02BSFT {

wire [31:0] result;
wire [31:0] source0;

wire [4:0] shamt;

stage 2 {
source0 = GPR.read2(rs0);
shamt = const__[4:0];

h
stage 3 {
result = SFTO.sra(source0, shamt);

e

114 APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER&N
980 stage 4 { 1048 wire [31:0] result;

981 % 1049 wire [31:0] source0;

982 stage 5 { 1050

983 null = GPR.writel(rd, result); 1051 wire [4:0] shamt;

984 h 1052 stage 2 {

985 }; 1053 source0 = GPR.read4(rs0);

986 micro_operation SLL on RGO3BSFT { 1054 shamt = const__[4:0];

987 wire [31:0] source0; 1055

988 wire [31:0] sourcel; 1056 %

989 wire [31:0] result; 1057 stage 3 {

990 stage 2 { 1058 result = SFTO.sra(source0, shamt);
991 source0 = GPR.read4(rs0); 1059 ;

992 sourcel = GPR.read5(rsl); 1060 stage 4 {

993 h 1061 ;

994 stage 3 { 1062 stage 5 {

995 wire [4:0] shamt; 1063 null = GPR.write2(rd, result);
996 1064 }

997 shamt = sourcel[4:0]; 1065 };

998 result = SFTO.sll(source0, shamt); 1066 micro_operation SLL on RGO4CSFT {
999 % 1067 wire [31:0] source0;

1000 tage 4 { 1068 wire [31:0] sourcel;

1001 Y 1069 wire [31:0] result;

1002 stage 5 { 1070 stage 2 {

1003 null = GPR.write2(rd, result); 1071 source0 = GPR.read6(rs0);

1004 Y 1072 sourcel = GPR.read7(rsl);

1005 }; 1073 ;

1006 -------- snip -------- 1074 stage 3 {

1007 micro_operation SRAI on RGO3BSFT ({ 1075 wire [4:0] shamt;

1008 wire [31:0] result; 1076

1009 wire [31:0] source0; 1077 shamt = sourcel[4:0];

1010 1078 result = SFTO.sll(source0, shamt);
1011 wire [4:0] shamt; 1079 Y

1012 stage 2 { 1080 tage 4 {

1013 source0 = GPR.read4(rs0); 1081 ;

1014 shamt = const__[4:0]; 1082 stage 5 {

1015 1083 null = GPR.write3(rd, result);
1016 L 1084 h

1017 stage 3 { 1085 };

1018 result = SFTO.sra(source0, shamt); 1086 -------- snip --------

1019 ; 1087 micro_operation SRAI on RGO4CSFT {
1020 stage 4 { 1088 wire [31:0] result;

1021 } 1089 wire [31:0] sourceO;

1022 stage 5 { 1090

1023 null = GPR.write2(rd, result); 1091 wire [4:0] shamt;

1024 Y 1092 stage 2 {

1025 }; 1093 source0 = GPR.read6(rs0);

1026 micro_operation SLL on RGO3CSFT { 1094 shamt = const__[4:0];

1027 wire [31:0] source0; 1095

1028 wire [31:0] sourcel; 1096 }

1029 wire [31:0] result; 1097 stage 3 {

1030 stage 2 { 1098 result = SFTO.sra(source0, shamt);
1031 source0 = GPR.read4(rs0); 1099 Y

1032 sourcel = GPR.read5(rsl); 1100 tage 4 {

1033 ; 1101 ;

1034 stage 3 { 1102 stage 5 {

1035 wire [4:0] shamt; 1103 null = GPR.write3(rd, result);
1036 1104 IS

1037 shamt = sourcel[4:0]; 1105 };

1038 result = SFTO.sll(source0, shamt); 1106 micro_operation BEQZ on RGO1AJMP {
1039 ; 1107 wire [31:0] temp_pc;

1040 stage 4 { 1108 wire [31:0] offset;

1041 ; 1109 wire [31:0] source0;

1042 stage 5 { 1110 stage 2 {

1043 null = GPR.write2(rd, result); 1111 wire [31:0] ext_Const;

1044 } 1112 wire [1:0] zero2;

1045 }; 1113 wire [29:0] temp_offset;

1046 -------- snip -------- 1114

1047 micro_operation SRAI on RGO3CSFT { 1115 source0 = GPR.read0(rs0);

115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

ext_Const = EXTO00.sign(const__);
zero2 = "00%
temp_offset = ext_Const[29:0];
offset = <temp_offset, zero2>;
temp_pc = PC.read();

h

stage 3 {
wire cond;
wire [31:0] target;
wire [3:0] flag;

cond = source0 ==

"00000000000000000000000000000000";

<target,flag>
= ALUO.add(temp_pc, offset);
null = [cond] PC.write(target);
I
tage 4 {
stage 5 {
I
h
micro_operation BNEZ on RGO1AJMP {
wire [31:0] temp_pc;
wire [31:0] offset;
wire [31:0] source0;
stage 2 {
wire [31:0] ext_Const;
wire [1:0] zero2;
wire [29:0] temp_offset;

source0 = GPR.read0(rs0);
ext_Const = EXTO00.sign(const__);
zero2 = "00%
temp_offset = ext_Const[29:0];
offset = <temp_offset, zero2>;
temp_pc = PC.read();

I

stage 3 {
wire cond;
wire [31:0] target;
wire [3:0] flag;

cond = source0 !=

"00000000000000000000000000000000";

<target,flag>
= ALUO.add(temp_pc, offset);
null = [cond] PC.write(target);
h
tage 4 {
I
tage 5 {
I
I
micro_operation J on RGO1AIJMP {
wire [31:0] temp_pc;
wire [31:0] offset;
stage 2 {
wire [1:0] zero2;
wire [27:0] ext_const__;

temp_pc = PC.read();
zero2 = "00";
ext_const__ = <const__, zero2>;
offset = EXT1.sign(ext_const_);
h
stage 3 {
wire [31:0] target;

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

wire [3:0] flag;

<target, flag>
= ALUO.add(temp_pc, offset);
null = PC.write(target);

h
tage 4 {
h
tage 5 {
h
h
micro_operation JAL on RGO1AJMP {
wire [31:0] link;

wire [31:0] temp_pc;

wire [31:0] offset;
stage 2 {

wire [1:0] zero2;

wire [27:0] ext_const__;

temp_pc = PC.read();

zero2 = "00";

ext_const__ = <const__, zero2>;
offset = EXT1.sign(ext_const_);

link = PC.read();
h
stage 3 {
wire [31:0] target;
wire [3:0] flag;

<target, flag>
= ALUO.add(temp_pc, offset);
null = PC.write(target);
h
tage 4 {
h
stage 5 {
wire [4:0] reg_num;

reg_num = "11100"%
null = GPR.writeO(reg_num, link);

-------- snip --------

micro_operation ADD on RGO1AALU {
wire [31:0] sourceO;
wire [31:0] sourcel;
wire [31:0] result;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.readl(rsl);
stage 3 {

wire [3:0] flag;

<result, flag>

= ALUO.add(source0, sourcel);

h
tage 4 {
stage 5 {
null = GPR.writeO(rd, result);
h
I
micro_operation ADDU on RGO1AALU {
wire [31:0] sourceO;
wire [31:0] sourcel;

116

APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

wire [31:0] result;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.readl(rsl);

stage 3 {
wire [3:0] flag;

<result, flag>
= ALUO.addu(source0, sourcel);
h
tage 4 {
stage 5 {
null = GPR.writeO(rd, result);
h
I
micro_operation ADDI on RGO1AALU {
wire [31:0] result;
wire [31:0] source0;
wire [31:0] sourcel;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<result, flag>
= ALUO.add(source0, sourcel);
h
tage 4 {
stage 5 {
null = GPR.writeO(rd, result);
h
I
micro_operation ADDUI on RGO1AALU {
wire [31:0] result;
wire [31:0] sourceO;
wire [31:0] sourcel;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<result, flag>
= ALUO.addu(source0, sourcel);
h
tage 4 {
stage 5 {
null = GPR.writeO(rd, result);

-------- snip --------
micro_operation ADD on RGO02AALU {
wire [31:0] sourceO;
wire [31:0] sourcel;
wire [31:0] result;
stage 2 {
source0 = GPR.read2(rs0);
sourcel = GPR.read3(rsl);
h
stage 3 {
wire [3:0] flag;

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387

<result, flag>
= ALUO.add(source0, sourcel);
h
tage 4 {
stage 5 {
null = GPR.writel(rd, result);

----- snip --------

micro_operation MULT on RGO1AMUL {

j

wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;
stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.read1(rsl);

stage 3 {
wire [63:0] tmp_result;

tmp_result
= MULO.mul(source0, sourcel);
result = tmp_result[31:0];
stage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);
h

micro_operation MULTU on RGO1AMUL {

8

wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;
stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.read1(rsl);

stage 3 {
wire [63:0] tmp_result;

tmp_result
= MULO.mulu(source0, sourcel);
result = tmp_result[31:0];

stage 4 {
h
stage 5 {

null = GPR.writeO(rd, result);
h

micro_operation MULT on RGO2AMUL {

wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;

stage 2 {
source0 = GPR.read2(rs0);
sourcel = GPR.read3(rsl);
stage 3 {

wire [63:0] tmp_result;

tmp_result
= MULO.mul(source0, sourcel);
result = tmp_result[31:0];
h

117

1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

stage 4 {
h
stage 5 {

null = GPR.writel(rd, result);

-------- snip --------
micro_operation DIV on RGO1ADIV {
wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;
wire [31:0] mod_result;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.readl(rsl);
h
stage 3 {

wire div_flag;

<result, mod_result, div_flag>
= DIVO0.div(source0, sourcel);
h
tage 4 {
I
stage 5 {
null = GPR.writeO(rd, result);

h
I
micro_operation DIVU on RGO1ADIV {
wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;
wire [31:0] mod_result;

stage 2 {
source0 = GPR.read0(rs0);
sourcel = GPR.readl(rsl);
I
stage 3 {

wire div_flag;

<result, mod_result, div_flag>
= DIVO0.divu(source0, sourcel);
h
tage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);

h
I
micro_operation MOD on RGO1ADIV {
wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] result;
wire [31:0] div_result;

stage 2 {
source0 = GPR.readO(rs0);
sourcel = GPR.readl(rsl);
I
stage 3 {

wire div_flag;

<div_result, result, div_flag>
= DIVO0.div(source0, sourcel);
h
tage 4 {
h
stage 5 {
null = GPR.writeO(rd, result);

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

----- snip --------

micro_operation LB on RGO1AMEM {

k

wire [31:0] sourceO;
wire [31:0] sourcel;
wire [31:0] addr;
wire [31:0] result;

stage 2 {

source0 = GPR.read0(rs0);

sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<addr,flag>

= ALUO.add(source0,sourcel);

h
stage 4 {

wire addr_err;
<result, addr_err> = DMAU.Ib(addr);

h
stage 5 {
null = GPR.writeO(rd, result);

J

micro_operation LH on RGO1AMEM ({

k

wire [31:0] sourceO;
wire [31:0] sourcel;
wire [31:0] addr;
wire [31:0] result;

stage 2 {

source0 = GPR.read0(rs0);

sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<addr,flag>

= ALUO.add(source0,sourcel);

h
stage 4 {

wire addr_err;
<result, addr_err> = DMAU.lIh(addr);

h
stage 5 {
null = GPR.writeO(rd, result);

J

micro_operation LW on RGO1AMEM ({

wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] addr;
wire [31:0] result;

stage 2 {

source0 = GPR.read0(rs0);

sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<addr,flag>

= ALUO.add(source0,sourcel);

h
stage 4 {

wire addr_err;
<result, addr_err>
= DMAU.load(addr);

118

APPENDIX A. PROCESSOR DESCRIPTION FOR THE VLIW GENER@&N

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591

h
stage 5 {
null = GPR.writeO(rd, result);
h
I
micro_operation LBU on RGO1AMEM {
wire [31:0] source0;
wire [31:0] sourcel;
wire [31:0] addr;
wire [31:0] result;

stage 2 {

source0 = GPR.read0(rs0);

sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<addr,flag>

= ALUO.add(source0,sourcel);

stage 4 {

wire addr_err;
<result, addr_err>
= DMAU.lbu(addr);

h
stage 5 {
null = GPR.writeO(rd, result);
h
h
micro_operation LHU on RGO1AMEM {
wire [31:0] sourceO;
wire [31:0] sourcel;
wire [31:0] addr;
wire [31:0] result;

stage 2 {

source0 = GPR.read0(rs0);

sourcel = EXTO0O0.sign(const_);
h
stage 3 {

wire [3:0] flag;

<addr,flag>

= ALUO.add(source0,sourcel);

h
stage 4 {

wire addr_err;
<result, addr_err>
= DMAU.lhu(addr);

h
stage 5 {
null = GPR.writeO(rd, result);
h
I
micro_operation SB on RGO1AMEM {
wire [31:0] data;
wire [31:0] base;
wire [31:0] offset;
wire [31:0] addr;
stage 2 {
data = GPR.read0(rd);
base = GPR.read1(rs0);
offset = EXT00.sign(const__);
h
stage 3 {
wire [3:0] flag;

<addr, flag>
= ALUO.add(base,offset);

h
stage 4 {
wire addr_err;
addr_err = DMAU.sb(addr,data);

stage 5 {
h
micro_operation SH on RGO1AMEM {
wire [31:0] data;
wire [31:0] base;
wire [31:0] offset;
wire [31:0] addr;
stage 2 {
data = GPR.read0(rd);
base = GPR.read1(rs0);
offset = EXT00.sign(const__);
h
stage 3 {
wire [3:0] flag;

<addr, flag>
= ALUO.add(base,offset);
h
stage 4 {
wire addr_err;
addr_err = DMAU.sh(addr,data);
h
tage 5 {
h
h
micro_operation SW on RGO1AMEM {
wire [31:0] data;
wire [31:0] base;
wire [31:0] offset;
wire [31:0] addr;
stage 2 {
data = GPR.read0(rd);
base = GPR.readl1(rs0);
offset = EXTO00.sign(const__);
h
stage 3 {
wire [3:0] flag;

<addr, flag>
= ALUO.add(base,offset);

stage 4 {
wire addr_err;
addr_err = DMAU.store(addr,data);

