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マーケット・マイクロストラクチャー・ノイズの
系列相関の推定

大 屋 幸 輔

概 要

金融市場における資産価格の高頻度観測データが利用可能になり，資産価格形成メカニズ
ムの解明がより一層進展することが期待されている。しかしながら経済理論的な解明が進
展をとげる一方で，統計的分析においては大標本にもとづく漸近理論が必ずしもうまく適
用できていない状況に直面している。高頻度観測においては，大数の法則が適用できる状
況にあるにも関わらず実際には高頻度観測にもとづくデータによる推定量のばらつきは極
めて大きく，安定的な推定値を得ることができない。このような状況が生じる理由を簡明
に表現したものが，観測対象の価格系列はなんらかの観測誤差を含んで観測されている，
とする考え方である。この観測誤差とは具体的には，約定価格がビッドで約定するかアス
クで約定するかによって，不規則におこるノイズのように振舞うこと（ビッド・アスク・
バウンスとよばれる）に起因するものと考えられている。マーケット・マイクロストラク
チャー・ノイズは初期の研究においては，時間に関して独立，あるいは無相関であること
が仮定されていたが，その性質上，必ずしも独立ではなく従属性があることが指摘されて
いる。この従属性の構造が特定化できれば，投資家の発注行動の分析にも有用と考えられ
る。本稿ではマイクロストラクチャー・ノイズにおける系列相関を検証するために，その
自己相関の推定方法を提案し，その推定量の漸近分布を導出した。さらにモンテカルロ実
験により，推定量の経験分布をもとめ，漸近分布による近似の精度を確認した。その結果，
推定量の分布は自己回帰係数が 1に近い値のときを除いて，導出された漸近分布によって
正確に近似できることが確認された。

JEL classification: C13; C22; D49

Keywords：高頻度観測;マーケット・マイクロストラクチャー・ノイズ;系列相関;漸近分布

1 イントロダクション

金融市場における資産価格の高頻度観測デー

タが利用可能になり，資産価格形成メカニズム

の解明がより一層進展することが期待されてい

る。しかしながら経済理論的な解明が進展をと

げる一方で，統計的分析においては大標本にも

とづく漸近理論が必ずしもうまく適用できてい

ない状況に直面している。

高頻度観測においては，大数の法則が適用で

きる状況にあるにも関わらず実際には高頻度観

測にもとづくデータによる推定量のばらつきは

極めて大きく，安定的な推定値を得ることがで

きない。このような状況がなぜ生じるのかを簡

明な形で表現したものが，観測対象の価格系列

はなんらかの観測誤差を含んで観測されている，

とする考え方である。この観測誤差とは具体的

には，約定価格がビッドで約定するかアスクで

約定するかによって，不規則におこるノイズの

ように振舞うこと（ビッド・アスク・バウンス
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とよばれる）に起因するものと考えられている。

マーケット・マイクロストラクチャー・ノイズ

は初期の研究においては，時間に関して独立で

あることが仮定されていたが，その性質上，必

ずしも独立ではなく従属性があることが指摘さ

れている。その相関構造を明らかにすることが

できれば，投資家の発注行動を解明する手がか

りとなることが期待される。

次節では観測価格とMMSノイズに関して概

説をあたえる。第 3節では，MMSノイズが存

在しているとき，その自己相関を推定する方法

を提案し，推定量の漸近分布を導出する。第 4

節ではMonte Carlo実験によって推定量の経験

分布をもとめ，導出された漸近分布による近似

精度を確認する。

2 観測価格とモデル

分析対象である資産の価格は次の連続確率過

程に従うとする。

dP∗t = σtdBt (1)

ドリフトはゼロ，σt は漸進的可測，Btは標準ブ

ラウン運動とする。また以下，特に断らない限

り価格とは資産の対数価格をさすことにする。

観測は時刻 [0, T ]の間で時刻 ti, (i = 0, 1, . . . , n)

においておこなわれるものとする。これらの観

測時刻は 0 = t0 < t1 < t2 < · · · < tn = T であり，

[0, T] を n分割するものである。また観測時点

間隔を Δi = ti − ti−1 とあらわす。

時点 ti における価格は以下の形で観測されて

いると仮定する。

Pti = P∗ti + εti (2)

ここで P∗ti は真の価格，Pti は観測価格，εti は観測

誤差で，マーケット・マイクロストラクチャー・

ノイズ（以下，MMSノイズ）とよばれる平均ゼ

ロの確率変数である。

2.1 RV とMMSノイズ

MMSノイズに対して以下の仮定をおく。

仮定 2.1.

(a) εti ∼ i.i.d.(0, σ2
ε)

(b) P∗ti と εti は独立

(2)からあきらかなように真の価格を直接観測

することはできない。また価格過程 (1)は連続

であるのに対して，MMSノイズは離散観測に

ともなってあらわれている。

Integrated Variance (IV)の推定量として代表的

な Realized Volatility (RV)は

RV =

n∑
i=1

(
ΔPti

)2
=

n∑
i=1

(
Pti − Pti−1

)2 (3)

と定義される。ここで高頻度観測の状況を考え

るために観測区間 [0, T]の分割数 nを無限にす

る極限を考える。分割数 nが無限に大きくなる

と観測時点間隔はゼロへ収束していく。実際，

高頻度観測データ系列においては，非常に小さ

い時間間隔で大量のデータを観測していること

になる。

観測された価格データが (2)に従っていると

き，RV は漸近的に以下のように表現される。

RV =

n∑
i=1

(
ΔP∗ti + Δεti

)2
=

n∑
i=1

(
ΔP∗ti

)2

+ 2
n∑

i=1

ΔP∗tiΔεti +

n∑
i=1

(
Δεti

)2

→
∫ T

0
σ2

t dt + 2 lim
n→∞

n∑
i=1

σ2
ε,

ただし T は固定, n→ ∞ (4)

上式の右辺第 2項の σ2
ε 大きさは O(1)であり，

第 2項は nが大きくなると発散していく。従っ
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て RVは右辺第 1項の真の IVへ収束しない。す

なわち高頻度観測の状況では，MMSノイズか

らの変動によって，RV全体が支配されるように

なり，RVが不安定な推定値を与えることになる

のである。

2.2 系列相関をもつMMSノイズ

これまでMMSノイズ自体は独立，あるいは

無相関な系列で E[εtεs] = 0, (t � s)と仮定して

おこなわれる研究が多かった。しかし εtは単な

る平均ゼロのノイズではなく，マーケット・マ

イクロストラクチャーという具体的発生理由を

もったノイズである。外国為替市場や株式市場

などでは売買されている対象の買値と売値が同

一ではなく，その差であるビッド・アスク・ス

プレッドが存在している。従って観測している

約定価格は買い約定と売り約定との間を振動し

ているようにみえる状況が見受けられる。また

大量の売り注文を出す投資家は，一度に注文を

出すことでマーケットインパクトを引き起こす

ことを避けるために，分割注文を出すことも考

えられる。その場合，約定価格はある程度同じ

価格で観測される，いわゆるクラスタリングが

生じているようにも見える。これらはMMSノ

イズ εt の変動パターンの例であるが，いずれに

せよ，その変動に独立性を仮定するのは現実的

ではない。

以下では εt に対して 1階の自己回帰モデルを

仮定し，そのモデルのパラメータを推定するこ

とで，MMSノイズの従属性，自己相関について

考察をおこなう。

AR(1)-MMSノイズ

先に定義した観測時間間隔 Δi, (i = 1, . . . , n) に

おいて，最小時間間隔を hm = mini Δi，さらに

ci = Δi/hmとする。このときMMSノイズ εti に

対して以下の AR(1)を仮定する。

仮定 2.2.

εti = ρεti−hm + eti , eti ∼ i.i.d(0, σ2
e),

σe � 0, E[e4
ti ] = ησ

4
e , E[e6

ti ] < ∞ (5)

ただし εti は P∗ti と独立であり，| ρ |< 1とする。

eti が正規分布に従う場合は η = 3である。

この仮定のもと，ti−1 = ti − Δi = ti − cihmであ

ることから εti は

εti = ρεti−hm + eti = ρ
2εti−2hm + ρeti−hm + eti

= ρciεti−cihm +

ci∑
k=1

ρci−keti−(ci−k)hm

= ρciεti−1 +

ci∑
k=1

ρci−keti−(ci−k)hm

と表現され，確率変数 εti の自己共分散関数を

γ(s) = Cov[εtiεti−shm ]と定義すると (5)のもとで

以下のようにあらわすことができる。

γ(s) = Cov[εtiεti−shm ] = ρsγ(0), s ≥ 0 (6)

MMSノイズ εti が観測可能な変数であれば AR

モデル (5)の係数の推定は容易だが，εti は観測

できない潜在変数であり，通常の方法でのパラ

メータ推定は困難である。

次節では Ubukata and Oya (2007)でもちいら

れたアプローチを採用し，(5)のパラメータ推定

の方法を提案する。

3 推定量と漸近分布

時点 ti でのリターンは，観測価格 Pti の差分

ΔPti = Pti − Pti−1 で定義される。このリターンに

対して，隣り合ったリターンの積 ΔPtiΔPti−1 は以

下のように分解できる。

ΔPtiΔPti−1 = ΔP∗tiΔP∗ti−1
− ΔP∗tiΔεti−1

− ΔεtiΔP∗ti−1
+ ΔεtiΔεti−1 (7)
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Ubukata and Oya (2007)では，真の価格系列の特

性である独立増分性，真の価格系列とMMSノ

イズの独立性から，複数の資産価格間の共分散

推定量のバイアスに関する考察をおこなってい

る。ここでの 1変量の観測価格系列に対しても

同様な議論が展開でき，(7)の期待値は

E[ΔPtiΔPti−1 ] = E[ΔεtiΔεti−1 ]

= E[εtiεti−1 ] − E[εtiεti−2 ]

− E[εti−1εti−1 ] + E[εti−1εti−2 ]

= γ(ci) − γ(ci + ci−1)

− γ(0) + γ(ci−1)

= −γ(0)(1 − ρci)(1 − ρci−1 ) (8)

と表現できる。さらに時点 ti のリターンと時点

ti−2 のリターンの積 ΔPtiΔPti−2 の期待値は

E[ΔPtiΔPti−2 ] = E[ΔεtiΔεti−2 ]

= γ(ci + ci−1) − γ(ci + ci−1

+ci−2) − γ(ci−1)

+ γ(ci−1 + ci−2)

= −γ(0)ρci−1 (1 − ρci )(1 − ρci−2 )

(9)

となる。観測時間間隔は一般には一様に同じで

はないため，(8)，(9)自体をその標本モーメント

から求めるのことはできない。そこで同じ観測

間隔幅の区間を集め，その区間に対するリター

ンの積による標本モーメントにより区間の長さ

別に上記の期待値を求めるなどのアプローチが

考えられるが，単純化のため，以下では観測時

間間隔を一定（Δi = hm）として分析をおこなう。

このとき ci = 1となっている。観測時間間隔を

等間隔とすることは必ずしも一般的ではないが，

現在，実際に利用できる東証一部上場企業の株

価データのタイムスタンプは 1分間隔が最小で

あり，取引が十分におこなわれている銘柄にお

いては 1分間隔でサンプリングされた観測系列

に欠損値が生じることは少ないので分析目的上

は十分であると考えられる。

あらためて先のリターンの積の期待値を T (1)，

T (2)とすると

T (1) = E[ΔPtiΔPti−1 ]

= −γ(0)(1 − ρ)2 (10)

T (2) = E[ΔPtiΔPti−2 ]

= −γ(0)ρ(1 − ρ)2 (11)

であり，ρ = T (2)/T (1)となっていることがわか

る。

一般に E[ΔPtiΔPti−k ]は

T (k) = E[ΔPtiΔPti−k ] = −γ(0)ρk−1(1 − ρ)2, k ≥ 1

となる。ただし T (0)に関しては便宜上，T (0) =

E[(Δεti )
2]とする。

(10)，(11)の標本モーメントをそれぞれ

T̂ (1) =
1
n

n∑
i=2

ΔPtiΔPti−1 (12)

T̂ (2) =
1
n

n∑
i=3

ΔPtiΔPti−2 (13)

とする。このときこれらの標本モーメントの比

によって定義された ARモデルの係数 ρの推定

量に関して以下の定理が成り立つ。

定理 3.1. 観測価格 Ptiは (2)，真の価格 P∗ti は (1)，

MMSノイズ εti は (5)に従っているとき，仮定

2.2のもと ARモデル (5)の係数 ρの推定量を以

下の T̂ (1)と T̂ (2)の比によって定義する。

ρ̂ =
T̂ (2)

T̂ (1)
=

∑n
i=3 ΔPtiΔPti−2∑n
i=2 ΔPtiΔPti−1

(14)
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このとき ρ̂は ρの一致推定量であり，その漸近

分布は

√
n(̂ρ − ρ) → N(0, σ2

ρ), (n→ ∞)

σ2
ρ =

2(1 + ρ)(3 − ρ)
(1 − ρ)2

(15)

となる。

証明. 仮定よりT (1) � 0である。ρ̂に対してTay-

lor展開を適用する。

ρ̂ =
T̂ (2)

T̂ (1)
=

T (2)
T (1)

+

(
−T (2)

T (1)
1

T (1)

) ⎛⎜⎜⎜⎜⎜⎜⎝ T̂ (1) − T (1)

T̂ (2) − T (2)

⎞⎟⎟⎟⎟⎟⎟⎠
+ op(1)

= ρ +
1

T (1)

{
( T̂ (2) − T (2) )

− ρ( T̂ (1) − T (1) )
}
+ op(1) (16)

E[ T̂ (1) ] = T (1) + o(1)，E[ T̂ (2) ] = T (2) + o(1)

より ρ̂の分散は

Var[ ρ̂ ] = E[
(̂
ρ − ρ)2 ]

=
1

T (1)2

{
Var[ T̂ (2) ]

−2ρCov[ T̂ (2), T̂ (1) ]

+ ρ2Var[ T̂ (1) ]
}
+ o(n−1)(17)

上式右辺の { }の中は O(n−1)で n→ ∞のとき，
Var[ ρ̂ ]はゼロに収束する。従って ρ̂は ρの一

致推定量である。√
n
(̂
ρ − ρ)の漸近正規性に関しては次のとお

りである。仮定の下，Anderson (1971)の Theo-

rem 8.4.2より T̂ (1)と T̂ (2)に関する漸近正規性

が成立する。

D =

⎛⎜⎜⎜⎜⎜⎜⎝ D1

D2

⎞⎟⎟⎟⎟⎟⎟⎠ = √n

⎛⎜⎜⎜⎜⎜⎜⎝ T̂ (1) − T (1)

T̂ (2) − T (2)

⎞⎟⎟⎟⎟⎟⎟⎠
d→ N(0,Ω), Ω =

⎛⎜⎜⎜⎜⎜⎜⎝ ω11 ω12

ω21 ω22

⎞⎟⎟⎟⎟⎟⎟⎠
Ωの各要素ω11，ω12 = ω21，ω22は Appendixの

(30)，(31)，(32)で与えられる。

この T̂ (1)と T̂ (2)の漸近正規性と (16)より，

推定量 ρ̂に関する漸近分布を得る。

√
n
(̂
ρ − ρ) =

1
T (1)

{√
n( T̂ (2) − T (2) )

− ρ√n( T̂ (1) − T (1) )
}

=
1

T (1)

(
−ρ 1

)
D

d→ N(0, σ2
ρ) (18)

σ2
ρ =

1
T (1)2

( ρ2ω11 − 2ρω12

+ ω22 ) =
2(1 + ρ)(3 − ρ)

(1 − ρ)2

(19)

�

定理 3.1で示された係数推定量 ρ̂の一致性お

よび漸近正規性より，MMSノイズに自己相関が

存在しているかどうかは，帰無仮説 H0 : ρ = 0

を検定することで検証可能になる。

4 Monte Carlo 実験

この節では前節で導出したMMSノイズが従

うARモデルの係数 ρの推定量 ρ̂の特性をMonte

Carlo 実験により考察する。時点 ti での観測価

格 Pti は，真の価格 P∗ti とMMSノイズ εti の和と

して観測されているとする。

Pti = P∗ti + εti

真の価格系列と確率ボラティリティの系列の生

成には Zhang, Mykland and Aït-Sahalia (2005)で
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もちいられたHeston (1993)による確率ボラティ

リティモデル (20)，(21)を採用する。

dP∗t = (μ − σ2
t /2) dt + σtdW (1)

t (20)

dσ2
t = κ(α − σ2

t ) dt + γσtdW (2)
t (21)

W (1)
t ，W (2)

t はそれぞれ標準ブラウン運動でそれ

らの相関は ρW とする。また条件 2κα ≥ γ2 を

仮定する。パラメータ (μ, κ, α, γ, ρW) は Zhang,

Mykland and Aït-Sahalia (2005)と同じ ( 0.05, 5,

0.04, 0.5, -0.5)とした。

MMSノイズ εti の生成には以下のAR(1)をも

ちいる。

εti = ρεti−h + eti , eti

∼ i.i.d.N(0, σ2
e), E[e4

ti ] = 3σ4
e , (22)

(22)の hは観測時間間隔（秒単位）をあらわし

ている。一日のボラティリティを推定する状況

を想定し，日中の取引時間は東京証券取引所の

取引時間 4時間 30分（270分＝ 16200秒）とし

た。真の価格系列は 1秒ごとに (20)と (21)から

生成し，その観測時間間隔は等間隔で hとする。

RV への MMS ノイズの影響をみるために

εti の標準偏差 σe/
√

(1 − ρ2) を 0.05, 0.005 と

する。この標準偏差の設定は実際の MMS ノ

イズの大きさを反映する必要がある。Hansen

and Lunde (2006) によれば，分析の対象とさ

れた銘柄に対して，Noise-to-Signal 比は (1 観

測あたりの平均 MMSノイズの分散)/(1日平均

IV)=(min,max)=(0.0002,0.006) であることが報

告されている。ここで設定されたパラメータの

もと IV = 2.75であり，εti の標準偏差を 0.05と

したときのNoise-to-Signal比は 0.0009となり現

実的なMMSノイズの大きさを表している。一

方で標準偏差を 0.005としたときはMMSノイ

ズの影響はほとんどない状況となっている。

図 1はMMSノイズに系列相関がない（ρ = 0）

状況で RV をプロットした Volatility Signature

Plotである。横軸は観測間隔 hで左に行くほど

時間間隔が短くなっている。また図中の実線は

真の IV を示している。εt の標準偏差の大きさ

が 0.05のときは観測間隔 hが短くなるほど RV

の値が大きくなっており，観測間隔 hを大きくす

るにつれて真の IVのまわりでばらついている様

子がみてとれる。一方で εt の標準偏差が 0.005

のときにはノイズの影響は微小で観測間隔 hが

大きくなる（標本サイズが減少する）につれて

RV のばらつきが顕著になることがわかる。た

だしノイズの影響がある上の図と比較するとそ

のばらつきの程度は大きくはない。

次に MMSノイズが従う ARモデルの係数 ρ

の推定量 (14)の性質をみていく。観測間隔 hは

1秒，真の AR係数 ρは (-0.9, -0.6, -0.3, 0.0, 0.3,

0.6, 0.9) とした。MMS ノイズが RV の挙動に

影響をあたえる状況を考察対象とするため，εt

の標準偏差の大きさを 0.05とした。このように

設定された各値のもとでの 10000回データを生

成し，ρの推定を (14)によっておこない推定値

ρ̂(i), (i = 1, . . . , 10000)を得た。表 1は実験結果の

要約である。表中の平均，標準偏差，MSEはそれ

ぞれ実験によって得られた ρ̂(i), (i = 1, . . . , 10000)

の標本平均，標本標準偏差，標本MSEである。

また Var/σ2
ρは標本分散と漸近分散の比である。

16200個のデータから得られた係数推定値は

定理 3.1によって示された漸近特性をほぼ満足

するものとなった。四分位点は推定量の経験分

布を ρの真値と推定量の漸近分散の平方根（標準

誤差）で標準化したものに関して求めたもので

ある。標準正規分布に関して，25%点，50%点，

75%点のそれぞれは-0.674，0.0，0.674であり，

推定量の経験分布は漸近分布に比べて若干，裾

が厚いが ρ = 0.9のとき以外は全般的に漸近分

布での近似は良好であることがわかる。ρ = 0.9

のときの分布はその右裾が厚くなっており，推

定値が 1を超える頻度が少なくないことが図 3

から確認できる。いわゆる Unit rootの状況に近
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図 1: 観測時間間隔 hと RV の挙動

表 1: 実験結果の要約

四分位点
S D(εt) ρ 平均 標準偏差 MSE Var/σ2

ρ
25% 50% 75%

−0.9 −0.899833 0.003681 0.000014 1.0160 −0.6514 0.0231 0.7255
−0.6 −0.599909 0.008311 0.000069 0.9940 −0.6614 −0.0058 0.6914
−0.3 −0.299884 0.013287 0.000177 1.0460 −0.6906 −0.0051 0.6975

0.05 0.0 −0.000020 0.019810 0.000392 1.0600 −0.6996 −0.0267 0.6873
0.3 0.300343 0.030893 0.000954 1.0790 −0.6960 −0.0060 0.7076
0.6 0.601105 0.058774 0.003456 1.1660 −0.7166 0.0025 0.7226
0.9 0.952642 0.346757 0.123012 2.4410 −0.8201 0.0305 1.0138
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図 3: ρ = 0.9

づいていることがその原因と考えられる。

5 結語

本稿では高頻度に観測される資産価格のデー

タを利用する際に，Integrated Volatility の代表

的な推定量である Realized Volatilityの漸近挙動

が不安定になる主な原因と考えられているマー

ケット・マイクロストラクチャー・ノイズ（MMS

ノイズ）に焦点をあてた。このMMSノイズは

ビッド，アスクそれぞれでの約定が不規則に観

測されることで生じると考えられるが，それら

の時系列構造（時間的な従属性）が明らかになれ

ば，投資家の注文メカニズムに何らかの規則性

をみいだすことが可能になる。本来この MMS

ノイズは観測されない潜在変数であり，その時

間的な従属構造を明らかにすることは容易では

ない。本稿では価格プロセスの独立増分性を使

うことで，MMSノイズの時間的な従属性を検

討することが可能であることを示した。導出さ

れた推定量はMMSノイズ自体の存在を前提と

しているが，ノイズ自体が存在しているかどう

かは Volatility Signature Plotによって確認可能

である。またMMSノイズ系列が従うモデルと

して本稿で採用したモデルは AR(1)であるが，

MMSノイズの自己相関がプラスなのか，マイ

ナスなのか，それはどのような状況で生じるの

か，といった分析目的からは十分であると考え

られる。ただし推定量の導出のために，観測時

間間隔は等間隔であると仮定したが，より広範

囲な応用を念頭に置けばこの仮定を必要としな

い推定量とその漸近分布の導出が必要となる。

この点に関しては，実際の高頻度観測の約定価

格データの分析とあわせて別の機会に論じるこ

とにする。　

（大阪大学大学院経済学研究科教授）

参考文献

[1] Anderson, T.W. (1971), The Statistical Analy-

sis of Time Series, John Wiley & Sons.

[2] Fuller, W.A. (1976), Introduction to Statistical

Time Series, John Wiley & Sons.



　

16oya : 2008/4/3(14:38)

March 2008 マーケット・マイクロストラクチャー・ノイズの系列相関の推定 － 237 －

[3] Hansen,P.R. and A.Lunde (2006), ”Realized

Variance and Market Microstructure Noise,”

Journal of Business and Economic Statistics,

vol.24, No.2,127-161.

[4] Heston, S.(1993), ”A Closed-Form Solution

for Options with Stochastic Volatility with Ap-

plications to Bounds and Currency Options,”

Review of Financial Studies, 6, 327-343.

[5] Ubukata, M. and K.Oya (2007), ”Test of Un-

biasedness of the Integrated Covariance Esti-

mation in the Presence of Noise,” Discussion

Papers in Economics and Business, 07-03, Os-

aka University.

[6] Zhang, L., P.A. Mykland and Y. Aït-Sahalia

(2005), ”A Tale of Two Time Scales: Deter-

mining Integrated Volatility with Noisy High-

Frequency Data,” Journal of the American Sta-

tistical Association, vol.100, No.472, 1394-

1411.

Appendix

ここでは定理の証明に必要な事項をまとめる。

(5)より確率変数 Δεti は以下の線形過程として

表現することができる。（ただし ci = 1）

Δεti = εti − εti−1 = εti − εti−cihm

= (1 − Lcihm ) εti =
1 − Lcihm

1 − ρLcihm
et

= (1 − Lhm )
∞∑
j=0

ρ jet− jhm =

∞∑
j=0

a jet− jhm ,

a j =

⎧⎪⎪⎨⎪⎪⎩ 1 f or j = 0

ρ j−1(ρ − 1) f or j ≥ 1

|ρ| < 1より

∞∑
j=0

|a j| = 1 +
|ρ − 1|
1 − |ρ| < ∞

であり a j は絶対総和可能な列である。ただし，∑∞
j=0 a j = 0である。

Δεti の自己共分散関数 T(k)

T (0) = E[(Δεti )
2] = E[ε2

ti] − 2E[εtiεti−1 ]

+E[ε2
ti−1

] = 2(γ(0) − γ(1))

= 2(1 − ρ)γ(0) (23)

T (k) = E[ΔεtiΔεti−k ] = γ(k) − γ(k + 1)

− γ(k − 1) + γ(k)

= − (1 − ρ)2ρk−1γ(0), k ≥ 1 (24)

ただし γ(k) は εti の k 次の自己共分散関数で，

γ(k) = ρkγ(0)である。

以下，推定量 ρ̂の漸近分散の導出に必要な結

果をまとめる。

∞∑
k=−∞

T (k)2 = T (0) + 2
∞∑

k=1

T (k)2

= (1 − ρ)2γ(0)2

{
4 + 2

1 − ρ
1 + ρ

}
(25)

∞∑
k=−∞

T (k + 1)T (k − 1)

= T (1)2 + 2T (2)T (0) + 2
∞∑

k=1

T (k + 2)T(k)

= (1 − ρ)2γ(0)2

{
(ρ − 1)(3ρ + 1) + 2

1 − ρ
1 + ρ

}
(26)
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∞∑
k=−∞

T (k + 2)T(k − 2)

= T (2)2 + 2T (3)T (1) + 2T (4)T (0)

+ 2
∞∑

k=1

T (k + 4)T(k)

= (1−ρ)2γ(0)2

{
ρ2(ρ − 1)(5ρ − 1) + 2ρ2 1 − ρ

1 + ρ

}
(27)

∞∑
k=−∞

T (k)T (k − 1)

= 2T (1)T (0) + 2
∞∑

k=1

T (k + 1)T(k)

= (1 − ρ)2γ(0)2

{
4(ρ − 1) + 2ρ

1 − ρ
1 + ρ

}
(28)

∞∑
k=−∞

T (k + 1)T(k − 2)

= 2T (2)T (1) + 2T (3)T(0) + 2
∞∑

k=1

T (k + 3)T (k)

= (1 − ρ)2γ(0)2

{
4ρ2(ρ − 1) + 2ρ

1 − ρ
1 + ρ

}
(29)

̂T(1)のモーメント

(12)の定義より T̂ (1)を以下のように分解する。

T̂ (1) =
1
n

n∑
i=2

{
ΔP∗tiΔP∗ti−1

− ΔP∗tiΔεti−1

− ΔεtiΔP∗ti−1
+ ΔεtiΔεti−1

}

= A0 + A1 + A2 + A3

A0 =
1
n

n∑
i=2

ΔεtiΔεti−1 ,

A1 =
1
n

n∑
i=2

ΔP∗tiΔP∗ti−1
,

A2 = −1
n

n∑
i=2

ΔP∗tiΔεti−1 ,

A3 = −1
n

n∑
i=2

ΔεtiΔP∗ti−1

̂T(1)の期待値

A0以外はその期待値はゼロであることにより以

下を得る。

E[T̂ (1)] = E[A0] =
1
n

n∑
i=2

ΔεtiΔεti−1

=
n − 1

n
{−γ(0) + 2γ(1) − γ(2)}

= −γ(0)(1 − ρ)2 + O(n−1)

= T (1) + O(n−1)

̂T(1)の分散

A0以外のそれぞれの分散の大きさは以下のよう

になる。

Var[A1] =
1
n2

n∑
i=2

{E[(ΔP∗ti)
2] E[(ΔP∗ti−1

)2]}

=
1
n2

n∑
i=2

O(n−2) = O(n−3)

Var[A2] =
1
n2

n∑
i=2

{E[(ΔP∗ti)
2(Δεti−1 )2]

=
1
n2

n∑
i=2

O(n−1) = O(n−2)

Var[A3] = O(n−2)

また Cov[A2, A3] 以外の共分散はゼロで，

Cov[A2, A3]については

Cov[A2, A3] =
1
n2

n∑
i=2

E[(ΔP∗tiΔεti−1 )(Δεti+1ΔP∗ti )]

=
1
n2

n∑
i=2

E[(ΔP∗ti )
2]E[Δεti−1Δεti+1 ]

= O(n−2)
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となる。

A0 の分散に関しては以下のとおり（詳細は

Fuller(1976)の Theorem 6.2.1.）。

lim
n→∞ n Var[A0] = (η − 3)T (1)2

+

∞∑
k=−∞
{T (k)T (k) + T (k + 1)T (k − 1)}

= (η − 3)T (1)2 +

∞∑
k=−∞
{T (k)2

+ T (k + 1)T (k − 1)}

= (1 − ρ)2γ(0)2

⎧⎪⎪⎨⎪⎪⎩(η − 3)(1 − ρ)2

+ (ρ − 1)(3ρ + 1) +
8

1 + ρ

⎫⎪⎪⎬⎪⎪⎭
以上より，̂T (1)の分散に関して次の (30)を得る。

lim
n→∞ n Var[T̂ (1)]

= (1 − ρ)2γ(0)2

⎧⎪⎪⎨⎪⎪⎩(η − 3)(1 − ρ)2

+ (ρ − 1)(3ρ + 1) +
8

1 + ρ

⎫⎪⎪⎬⎪⎪⎭ (30)

̂T(2)のモーメント

T̂ (1)と同様に

T̂ (2) =
1
n

n∑
i=3

{
ΔP∗tiΔP∗ti−2

− ΔP∗tiΔεti−2

− ΔεtiΔP∗ti−2
+ ΔεtiΔεti−2

}
= B0 + B1 + B2 + B3

B0 =
1
n

n∑
i=3

ΔεtiΔεti−2 , B1 =
1
n

n∑
i=3

ΔP∗tiΔP∗ti−2
,

B2 = −1
n

n∑
i=3

ΔP∗tiΔεti−2 , B3 = −1
n

n∑
i=3

ΔεtiΔP∗ti−2

̂T(2)の期待値

E[T̂ (2)] = E[B0] =
n − 2

n
{γ(2) − γ(3)

− γ(1) + γ(2)}
= −γ(0)(1 − ρ)2ρ + O(n−1)

= T (2) + O(n−1)

̂T(2)の分散

T̂ (1) と同様に Var[B1] = O(n−3)，Var[B2] =

O(n−2)，Var[B3] = O(n−2)，また Cov[B2, B3]以

外の共分散はゼロで，Cov[B2, B3]については

Cov[B2, B3] =
1
n2

n−2∑
i=3

E[(ΔP∗tiΔεti−2 )(Δεti+2ΔP∗ti )]

=
1
n2

n−2∑
i=3

E[(ΔP∗ti)
2]E[Δεti−2Δεti+2 ]

= O(n−2)

となる。さらに B0 の分散に関しては下記のと

おりである。

lim
n→∞ n Var[B0] = (η − 3)T(2)2

+

∞∑
k=−∞
{T (k)2 + T (k + 2)T (k − 2)}

= (1 − ρ)2γ(0)2

⎧⎪⎪⎨⎪⎪⎩(η − 3)(1 − ρ)2

+ ρ2(ρ − 1)(5ρ − 1) − 2(ρ − 1)2 +
8

1 + ρ2

⎫⎪⎪⎬⎪⎪⎭
となる。以上より T̂ (2)の分散に関して (31)を

得る。

lim
n→∞ n Var[T̂ (2)]

= (1 − ρ)2γ(0)2

⎧⎪⎪⎨⎪⎪⎩(η − 3)(1 − ρ)2

+ ρ2(ρ − 1)(5ρ − 1) − 2(ρ − 1)2 +
8

1 + ρ2

⎫⎪⎪⎬⎪⎪⎭(31)
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̂T(1)と ̂T(2)の共分散

共分散Cov[Ai, Bj], (i, j = 0, . . . , 3)でゼロとなら

ないのは，Cov[A0, B0]，Cov[A2, B2]，Cov[A2, B3]，

Cov[A3, B3]であり，それぞれは以下のとおりで

ある。

lim
n→∞ n Cov[A0, B0] = (η − 3)T (2)T (1)

+

∞∑
k=−∞
{T (k)T (k − 1) + T (k + 1)T (k − 2)}

= (1 − ρ)2γ(0)2

⎧⎪⎪⎨⎪⎪⎩(η − 3)(1 − ρ)2ρ

+ 4(ρ − 1)(1 + ρ2) + 4(2 − ρ) − 8
1 + ρ

⎫⎪⎪⎬⎪⎪⎭

Cov[A2, B2] =
1
n2

n∑
i=3

E[(ΔP∗tiΔεti−1 )(ΔP∗tiΔεti−2 )]

=
1
n2

n∑
i=3

E[(ΔP∗ti )
2]E[Δεti−1Δεti−2 ]

= O(n−2)

Cov[A2, B3] =
1
n2

n−2∑
i=2

E[(ΔP∗tiΔεti−1 )(Δεti+2ΔP∗ti )]

=
1
n2

n−2∑
i=2

E[(ΔP∗ti )
2]E[Δεti−1Δεti+2 ]

= O(n−2)

Cov[A3, B3] =
1
n2

n−1∑
i=2

E[(ΔεtiΔP∗ti−1
)(Δεti+1ΔP∗ti−1

)]

=
1
n2

n−1∑
i=2

E[(ΔP∗ti−1
)2]E[ΔεtiΔεti+1 ]

= O(n−2)

以上より，̂T (1)と T̂ (2)の共分散に関して (32)を

得る。

lim
n→∞ n Cov[T̂ (2), T̂ (1)]

= (1 − ρ)2γ(0)2
{
(η − 3)(1 − ρ)2ρ

+4(ρ − 1)(1 + ρ2) + 4(2 − ρ) − 8
1 + ρ

}
(32)
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Estimation of Autocorrelation of Market Microstructure Noise

Kosuke Oya

Accurate estimation of a volatility of financial asset is much important since a variety of fi-

nancial tradings require it. The standard estimator of the integrated volatility of the asset price

is a realized volatility. We expect that the realized volatility will be accurate one when we

use a high frequency data since the sample size is quite large. However, the realized volatility

does not give a reliable estimate due to the market microstructure noise in practice. Although

this microstructure noise is considered as an independently distributed random variable in an

early stage of the research, it is well known that the microstructure noise is time-dependent.

The structure of such time-dependence is helpful for the analysis of the investors trading

strategy. In this paper, we suppose that a simple autoregressive model for the microstructure

noise and propose to estimate the parameter of the autoregressive model of the noise process.

We also show the asymptotic normality of the estimator. We conduct a series of Monte Carlo

experiments to see the properties of the estimator. It is confirmed that the empirical distribu-

tion of the estimator is well approximated by the asymptotic distribution derived in this paper

except the case of the autoregressive parameter is close to unity.

JEL Classification: C13; C22; D49

Key words: Hight Frequency Data; Market Microstructure Noise; Serial Correlation; Asymp-

totic Distribution


