<table>
<thead>
<tr>
<th>Title</th>
<th>Cervical hernias of the lung in congenital biliary atresia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>片山，仁；駿河，敬次郎；木本，龍也；倉繁，徹昭</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 35(9) P.729-P.732</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1975-09-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/16469</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
"Cervical Hernias of the Lung in Congenital Biliary Atresia."

Hitoshi Katayama, M.D.*, Keijiro Suruga, M.D.*, Tatsuya Kimoto, M.D.* and
Tetsuaki Kurashige, M.D.*

*Radiology Department and **Department of Pediatric Surgery, Juntendo University,
School of Medicine. 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113 Japan

Research Code No.: 524

Key Words: Pulmonary apical hernia Biliary atresia, Pediatric lung

先天气道閉鎖症における肺尖ヘルニアについて

片山 仁木本 龍也
順天堂大学医学部放射線科

駒河 敬次郎 倉 繁 徹 昭
順天堂大学医学部小児外科

(昭和50年3月7日受付)
(昭和50年4月9日最終原稿受付)

先天气道閉鎖症の予後不良の原因の一つとしては合併肺感染症がある。1972年～1973年の2年間において先天气道閉鎖症の肺尖ヘルニアの例を含む37例を検討した結果、肺尖ヘルニアを含むものが多く、特に肺尖ヘルニアの診断が重要である。肺尖ヘルニアの診断には、X線診断、CT、MRI等が有用である。肺尖ヘルニアの診断が不明確な場合は、術中診断が必要である。

われわれは肺尖ヘルニアを診断するごとに次のような点に留意した。すなわち、1) 脱出した肺尖ヘルニアを含むものを正確に診断する。2) 脱出した肺尖ヘルニアを含むものを正確に診断する。3) 肺尖ヘルニアを含むものを正確に診断する。

先天気道閉鎖症における肺尖ヘルニアの原因は、肺尖ヘルニアを含むものを正確に診断する。すなわち、1) 肺尖ヘルニアを含むものを正確に診断する。2) Sibson's fascia の先天的脆弱性、3) 本疾患における肺尖ヘルニアの低下的存在、4) ヒルシュブランゲ氏病21例およびその他の肺尖ヘルニアを含むものを正確に診断する。肺尖ヘルニアを含むものを正確に診断する。すなわち、1)肺尖ヘルニアを含むものを正確に診断する。2) Sibson's fascia の先天的脆弱性、3) 本疾患における肺尖ヘルニアの低下的存在、4) ヒルシュブランゲ氏病21例およびその他の肺尖ヘルニアを含むものを正確に診断する。肺尖ヘルニアを含むものを正確に診断する。すなわち、1) 肺尖ヘルニアを含むものを正確に診断する。2) Sibson's fascia の先天的脆弱性、3) 本疾患における肺尖ヘルニアの低下的存在、4) ヒルシュブランゲ氏病21例およびその他の肺尖ヘルニアを含むものを正確に診断する。肺尖ヘルニアを含むものを正確に診断する。すなわち、1) 肺尖ヘルニアを含むものを正確に診断する。2) Sibson's fascia の先天的脆弱性、3) 本疾患における肺尖ヘルニアの低下的存在、4) ヒルシュブランゲ氏病21例およびその他の肺尖HEL

Introduction

Pulmonary complications contributes to the poor prognosis in congenital biliary atresia. For this reason chest roentgenograms were reviewed on children treated for biliary atresia from 1972–1973, with the finding of high incidence of cervical hernia. To our knowledge there has been no previous report
Fig. 1. Roentgenogram showing bilateral hernias (arrows) in female 44 days old, the youngest patient, two weeks before surgery for biliary atresia.

Fig. 2. Chest roentgenogram showing bilateral cervical hernias of the lung in a 3 months old boy, 2 weeks after hepatopancreaticjunal anastomosis.

Fig. 3. Chest roentgenogram showing bilateral herniations of the pulmonary apices, more on the left, in a 5 months old girl. She died later of pneumonia and empyema before surgery. Necropsy disclosed biliary atresia.

Fig. 4. Chest roentgenogram of a 3 months old boy with absence of the right first rib and definite herniation of the right pulmonary apex. Thymic shadow is seen on the right. Previous surgery for imperforate anus and biliary atresia.

on this condition in biliary atresia.

Materials
There were 37 cases treated during this 2 year period. Sixteen were males and 21 females. Ages ranged from one to nineteen months.

Results
Cervical hernias (total 45) were found in 26 of the 37 babies (24 right side and 21 left). They were classified into groups according to size, radioopacity, and height of the lung apex: 1) questionable (9); 2) possible (9); 3) probable (10); and 4) definite (17). Eleven of the 26 had definite hernias (6 bilateral). In 19 bilateral involvement of some degree was found. Representative cases are shown in Figs. 1-4. Appearance of the cervical hernia of the lung was not distinctly related to surgery. It was seen either
preoperatively or postoperatively. Only one patient had an anomaly of the bony thorax (Fig. 4). Clinical correlation of roentgen findings and the pulmonary status of these children was not recorded.

Discussion

Cervical hernia of the lung is rare. Hiscoe and Digman reported 124 cases of pulmonary hernias, of which 33 (24.6%) were cervical. In Fenichel's experience, however, cervical herniation of the lung was not unusual. He collected 19 cases, age 45 to 84 years, with chronic bronchitis and emphysema. Rigden reported a case which presented with coughing.

Cervical hernias usually occur through the superior aperture of the thorax, between the sternocleidomastoid and scalenus anticus muscles, through Sibson's fascia (vertebropleural ligament). The lung protrudes in a superior, medial, and anterior direction. Fallier reported a case of bilateral hernia in a 1-1/2 years old girl, but Van Wezel pointed out the rarity of bilateral cervical hernias. There were 19 bilateral cases in this series. Baldi and Codea described a case of bilateral cervical hernias due to hypoplasia of the ribs. Palazzo described a case of bilateral cervical hernias with multiple congenital anomalies in a 48 days old boy. Siegelman described a case with transient venous occlusion. The definite cervical hernia in a 44 days old girl (Fig. 1) is believed to be the youngest recorded.

With regard to roentgen diagnosis, Fenichel pointed out that the film of the greatest value to demonstrate apical herniation is a lateral neck roentgenogram. Reinhart and Fenichel recommended roentgenogram during the Valsalva maneuver, but this is not possible in infants. Further, in infants, it may not be easy to obtain good lateral neck roentgenograms. We believe that it is important to identify the neck of the hernia, seen as a constriction at the base of the herniated lung tissue. Most of our cases showed equal or increased radiolucency, compared with non-herniated lung. Height of the pulmonary apex is not reliable, except severe cases, because most films of the infants are in lordotic projection. The exact height of the pulmonary apex can be assessed with films made in the anteroposterior projection.

The etiology of cervical hernia of the lung in congenital biliary atresia is not certain. Possibly herniation may be due to increased intrathoracic pressure secondary to abdominal distension, weakness of Sibson's fascia, and decreased muscular tone. The last two possible causes could be due in part to vitamin E deficiency which causes muscular degeneration. Absorption of fat soluble vitamins (A, D, K, & E) may be interfered in congenital biliary atresia.

In reviewing 21 cases of Hirschprung's disease for comparison, only two questionable cervical hernias were detected. In addition, we reviewed 90 cases of other pediatric surgical abnormalities, finding two definite, one probable, and five questionable cases (the two definite cases had necrotizing enterocolitis with abdominal distension). Thus there seems to be high incidence of cervical hernia of the lung in congenital biliary atresia.

Abstract

In reviewing of chest roentgenograms of 37 infants with congenital biliary atresia, there were 45 cervical hernias of the lung in 26 cases. The cause is not clear for this association of herniation of the apex of the lung in such a high proportion of infants with biliary atresia. One of these patients, only 44 days old, is thought to be the youngest yet recorded with this condition.
References