<table>
<thead>
<tr>
<th>Title</th>
<th>Scanning Isotope Renogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>梅垣，洋一郎；中西，文子；坂本，良雄</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 22(12) P.1346–P.1352</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1963-03-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/16474</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
SCANNING ISOTOPE RENOGRAM

Yoichiro Umegaki M.D.*
Fumiko Nakanishi M.D.**
Yoshio Sakamoto M.D.**

走査式レノグラム法

（国立がんセンター放射線部）

梅垣洋一郎

（信州大学医学部放射線医学教室）

中西文子

坂本良雄

（昭和38年2月6日受付）

現在腎機能検査法として用いられているアイソトープレノグラム法には種々の欠点があるので、これを改良した走査式レノグラム法を考案した。本装置の特長は次の諸点である。

1) アイソトープの時間的空間的分布を同時に記録分析し得る。

2) 本装置のために特殊コリメータを製作した。これにより腎の位置、深さによる誤差を極少とし、測定結果をより定量的とした。

3) 従来使用されているシンチスキャナーを利用し簡単に安価に製作し得る。

So-called isotope renogram has established its superiority in the study of renal function. It can estimate the function of each kidney independently at the same time. It does not require to collect urines or bloods, and takes only less than half an hour. At present, however, it has many points to be improved. First of all the result is not quantitative. Unless the results of certain clinical tests become quantitative, we can not fully rely on them. disadvantage of the current renogram set may be summarized as follows.

1) It requires to combine a couple of scintillation detector, rate meter and recorder into one set. Each of them needs to have exactly equal characteristics.

2) Collimation and positioning are most important in the procedure of renogram. Many factors have influences on the quantitativeness and repeatability. Individual variation in the position of kidney makes difficult to catch them with narrower collimators. On the other hand, wider collimator cannot discriminate counts from the opposite kidney and body background. On account of these serious difficulties, ordinary renogram set fails to realize a quantitative diagnosis.

3) The sensitivity and spectral characteristics of each scintillation counter must be maintained throughout the measurement. However the changes in sensitivity due to the

* Department of Radiology, National Cancer Center Hospital
** Department of Radiology Shinsyu University Medical school
Fig. 1. Scanning equipment used for isotope renogram.

Fig. 2. A schematic diagram of the equipment used for a scanning isotope renogram.

Fig. 3. The electronic switching device for the alternative recording of both kidneys.

Fig. 4. The electronic recorder used as the slow recorder.

Fig. 5. Scanning over the model kidneys with cylindrical collimator.

Fig. 6. Schematic diagram of the focusing collimator designed in our laboratory F=10cm.
Fig. 7. Isoresponse curves of focussing collimator (transverse axis)

Fig. 8. Isoresponse curves of focussing collimator (longitudinal axis)

Fig. 9. Autoradiograph of the model kidneys
Concentration of 131I
renal pelvis $0.6 \, \mu g/cm^2$
renal parenchyma $0.2 \, \mu g/cm^2$
body background $0.02 \, \mu g/cm^2$

Fig. 10. Scanning over the model kidneys with focussing collimator

Fig. 11. Case I normal kidney
Fig. 12. Case 2. Irradiation nephritis of the right kidney? The left kidney was removed under a diagnosis of the malignant tumor.

Fig. 13. Case 2. Linear scanning of the kidneys in transversal direction.

Fig. 14

Fig. 15
fluctuation of power supply and etc. do not appear equally in both of them.

4) So-called renogram with the ordinary method shows only the sum of counts from blood flow, body background, renal parenchyma, renal pelvis and ureter. It is too difficult and meaningless to analyse it quantitatively.

To acquire useful informations from linear scanings of kidney, the collimator must be designed to have a good resolution. Ordinary cylindrical collimators used in renogram are inadequate for this purpose. On account of their broad collimating angle, they cannot discriminate even counts from the opposite kidney. Fig. 5.

We designed and made a focussing collimator. The structure and isoresponse curve shows the narrow collimation in transverse axis and the broad collimation in longitudinal axis. The narrow collimation is very important to improve the resolution of linear scanning and to discriminate background counts. Broad collimation in longitudinal axis is useful to avoid errors due to malpositioning of kidney.

In order to demonstrate the benefits of this collimator, a couple of model kidney was made and measured with our scanning renogram. This model kidney is made up of renal parenchyma, pelvis ureter and body background. Each component is made of filter papers soaked with proper concentration of 111I. Fig. 10 and 5 shows the results of linear scanning done on this model kidney using the focussing collimator or not. Linear scan with the focussing collimator can discriminate each component clearly. Contrary to it the scan with the cylindrical cone fails to discriminate. Moreover the response of cylindrical cone is highly dependent on the geometrical conditions. This uncertainty in response is one of the cause of unquantitativeness. On the other hand, evidently from the isoresponse curve, the distance is not critical in the scanning with focussing collimator.

Recently an improved type of renogram was devised in our laboratory. This method has solved almost all problems mentioned above.

Method and material

The essential point of our method is the repetition of linear transverse scanning of
both kidneys. The scanning is done with a combination of only one detector and the specially designed focussing collimator. Since the detector is only one, the problem of balancing disappear. An area scanner was modified for this purpose but to only a little extent. The recording system is a combination of fast and slow ones. The fast recorder describe the linear scanning or the spatial distribution of 131I hippuran through the scanning plane. For this purpose, X-Y recorder is the most adequate one. Repeated linear scan be arranged in order holding exactly same co-ordinate. These series of scans are very useful to observe the spacial distribution or movement of RI. The slow recorder describe the uptake and excretion by each kidney separately but in one paper. Using a simple electronic non-contact relay the recording is divided into two sections. During the scanning of right half of body, the counting rate is recorded on the right half of the recorder, and is reversed during the scanning of the other half. The envelope lines in both side are tracing automatically the peak values of renal activity. The discontinuity of the recording seems to be the loss of data however, the adequate scanning speed can minimize it.

Results

Case 1. 38 years old male. Clinical diagnosis: carcinoma of rectum. His rectum was resected 3 years ago. Recently he is suffering from the incontinencia urinæ and the sacra pair. Radiologic examination revealed a metastatic lesion on his sacrum. This was treated with telecobalt irradiation. No pathological change was found in the standard urological examinations.

The renogram is shown in Fig. 11. Both curves are symmetrical and show quite normal uptake-excretion curves.

Case 2. 55 years old male. He was admitted to our hospital with a symptom of hematuria. His left kidney was removed under the diagnosis of malignant tumor. Following this operation he had a course of of X-ray therapy. Afterward he was found to have a slight albuminuria. Isotopic renogram was tried to examine the function of the residual kidney.

The results is shown in Fig. 12. The right side curve corresponding to the function of the right side kidney shows a reduced vascular phase, slow secretary and excretory phase. The hypofunction is evipent compared to case 1 but the extent of it is not so marked. The left side curve shows the absence of kidney or non-functioning kiney.

Fig. 13, Fig. 14 and Fig. 15 show the linear scannings carried out simultaneously. In these scannings the spatial distributions RI and its changes after the injection. At first the curves show single peaks corresponding to the vascular phase in the renal parenchyma. Then the second peak appears and grows up. This corresponds to the activity of the urine excreted into the renal pelvis and the ureter. Thus we can analyze the renal function in two dimensions.

Case 3. 35 years old male. He was admitted to our hospital with a chief complaint of dysuria. Clinical diagnosis is the hydronephrosis of both side kidney due to the
strictura urethrae.

The renogram of left side shows a reduced vascular phase, an abnormally slow secretory phase and a slowly descending excretory phase. This means the hypofunction of left kidney due to the hydrenephrosis. The renogram of right side shows only a vascular phase and means the non-functioning kidney. Intravenous pyelography showed a marked hydrenephrosis in left side and failed to visualize the right side kidney. The results of phenol sulfon phthalein test was as follows.

<table>
<thead>
<tr>
<th>Time</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>0%</td>
</tr>
<tr>
<td>1 hrs.</td>
<td>5%</td>
</tr>
<tr>
<td>2 hrs.</td>
<td>10%</td>
</tr>
<tr>
<td>3 hrs.</td>
<td>17%</td>
</tr>
<tr>
<td>4 hrs.</td>
<td>10%</td>
</tr>
<tr>
<td>5 hrs.</td>
<td>8%</td>
</tr>
<tr>
<td>Total</td>
<td>50%</td>
</tr>
</tbody>
</table>

Case 4. 59 years old male. He was admitted to our hospital with symptoms of hematuria and dysuria. Cystoscopic examinations revealed a carcinoma of urinary bladder. Intravenous pyelography failed to show the excretion from his left kidney. The renogram shows the absence of function in the left side. This condition may be caused by the ureteral obstruction due to the infiltration of carcinoma. The right side shows normal functioning kidney.

Summary

1) Much improved quantitateness in the isotope renogram is obtained with our scanning renogram method.
2) The details of construction are described.
3) Spatial and temporal scanning can be done at the same with our method.
4) 4 cases are presented.