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Preface

R.A.Fisher and C.R.Rao tried to refine and compare more asymptotic efficiency of
the asymptotic efficient estimators with the lower bound of the asymptotic variance that
is equal to the inverse of Fisher information I(θ) (say). Fisher(1925) introduced the
concept of the information loss by the difference between the total information and the
information of the estimator in order to obtain more efficient estimator among the exactly
or asymptotically efficient estimators. He calculated the asymptotic information loss in
multinomial case, but there existed some confusions in it. Rao(1961) discussed the various
concepts of the asymptotic second order efficiency in general and, particularly, completed
the way of Fisher’s evaluation of the difference between the likelihood score function and
the estimator in multinomial case which is called the Rao’s definition of the asymptotic
second order efficiency. Then, he suggested that Rao’s amount of second order efficiency
could be equal to Fisher’s information loss under some regularity conditions.

B.Efron(1975) showed that these amounts of second order efficiency derived from dif-
ferent motivations are equal in the curved exponential family with regularity conditions
for continuity. He proved that this common amount are characterized by the statistical
curvature ΓS(θ) (say) of curved exponential family, and showed that the information loss
defined by Fisher is asymptotically and geometrically specified to be I(θ)ΓS(θ)

2 for the
maximum likelihood estimator. Furthermore he showed by a counterexample that the
above two amounts could be different in the multinomial case treated really by Fisher
and Rao.

In this thesis, we shall mainly consider the exact information loss for the fixed sample
number n in order to investigate the reason why Efron’s statistical curvature is inevitable
for the asymptotically information loss of maximum likelihood estimator. And we shall
give relationships between the former classical likelihood theories and the later recent in-
formation geometry by the circular mechanism in the two dimensional curved exponential
family.

We shall describe the construction in this thesis as follows: First of all, we shall prepare
some definitions and notations (Chapter 1), and we shall briefly survey a history about
the information loss by Fisher, Rao, and Efron (Chapter 2). Next, we shall explain the
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exponential family and the curved exponential family in general (Chapter 3). And, by
restricting the curved exponential family with the two dimension, we shall demonstrate
mainly

1. the contradictory demand on Efron’s counterexample,

2. the exact information loss in Fisher’s circle model,

3. the circular mechanism.

In Chapter 4, we shall investigate Efron’s counterexample in detail, show some prop-
erties when the counterexample would hold, and prove that there exists a contradictory
demand in the counterexample. Thus we shall obtain that Efron’s counterexample does
not hold.

In Chapter 5, we shall consider Fisher’s circle model as the model for investigating
the exact information loss and demonstrate the exact information loss in detail, so that
we have one characteristic which the conditional variance of the likelihood score function
given the maximum likelihood estimator reduces the conditional variance of the length
given the angle. This implies the visualization of exact information loss. We shall also
consider the asymptotic result based on the exact information loss.

In Chapter 6, we shall investigate the relationship between the mathematical curvature
and the statistical curvature in the curved exponential family, so that we shall obtain the
circular mechanism which is an algorithm to obtain the statistical curvature and the
center of osculating circle with the radius of its inverse by using derivatives to second
order of log-likelihood function. This implies the necessary of the statistical curvature as
a signpost from the ordinary likelihood estimation theory to the information geometry.

In appendices, we shall add some explanations for the convex conjugate on the expo-
nential family, for the information circle which was defined by Efron(1978), and for the
fundamental of Amari’s framework.

This thesis has been typeset by using LATEX and the figures in the thesis have been
drawn by using GNUPLOT3.5+3.1.2.

Etsuo Kumagai

November, 1996
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Chapter 1

Preliminaries

Let (Rk, Bk) be a Borel measurable space in the k dimensional Euclidean space and let a
parameter space Θ be an open subset of Rr, where r < k. Let Π := {Pθ | θ ∈ Θ} be a family of
probability measure on Bk. We assume that Π is dominated by a σ−finite measure µ. By the
lemma of Halmos-Savage(1947), there exists a probability measure P0 such that P0 is equivalent
to Π, that is, Π ∼ P0. P0 is called the pivotal probability measure. By the Radon-Nikodym
derivative of Pθ with respect to P0, we shall describe its derivative as follows :

f(x : θ) =
dPθ

dP0
, θ ∈ Θ.

For an observation X with distribution Pθ, let T = T (X) be an estimator of θ which is a
measurable function from Rk to Θ. Then is holds that P T

θ � P T
0 for the measure on (Rr, Br)

induced by T . Thereby there exists

g(t : θ) =
dP T

θ

dP T
0

, θ ∈ Θ.

Here we have the following lemma :

Lemma 1.0.1 (Inagaki(1983)) For the above f(x : θ) and g(t : θ), let

h(x : θ | t) ≡



f(x : θ)/g(t : θ) if T (x) = t and g(t : θ) > 0,
1 if T (x) = t and g(t : θ) = 0,
0 otherwise.

Then it holds that

f(x : θ) = g(t : θ)h(x : θ | t), a.s. [Pθ]. ✷

Let X be a random vector which is identically independent distributed (i.i.d.) with the
probability (density) function f(x : θ). For the joint probability (density) function

fn(x : θ) :=
n∏

j=1

f(xj : θ),

1



CHAPTER 1. PRELIMINARIES 2

since, in the statistical inference, we regard fn(x : θ) as the function of θ which represents the
degree of likelihood of the parameter θ for the observation x, we call it the likelihood function

Ln = Ln(θ |x) ≡ fn(x : θ).

And the log-likelihood function is defined by

�n(θ |x) ≡ logLn(θ |x) =
n∑

j=1

�(θ |xj) =
n∑

j=1

log f(xj : θ).

Let a estimator Tn = Tn(X) be a random variable. The (unknown) parameter θ of the distri-
bution of X is estimated by the estimator Tn. We shall enumerate the definitions about the
estimator Tn as follows :

(Unbiased Estimator) the expectation of Tn is equivalent to the parameter θ, that is,
Eθ[Tn] = θ.

(Efficient Estimator) For the Fisher information I(θ), the variance of Tn is equivalent to
(nI(θ))−1, that is, n I(θ)Vθ(Tn) = 1.

(Consistent Estimator) Tn convergences to θ in probability, that is, for any ε > 0,

lim
n→∞Pr

θ
{ |Tn − θ| ≥ ε } = 0 (∀θ ∈ Θ).

(Asymptotically Normal Estimator)
√
n(Tn − θ) converges to the normal distribution in

law, that is, for any θ and any z,

lim
n→∞Pr

θ

(√
n(Tn − θ)
σ(θ)

≤ z

)
= Φ(z),

where Φ(z) is the standard normal distribution and σ(θ) is the asymptotic variance.

(Asymptotically Efficient Estimator) Tn is asymptotically normal with the asymptotic
variance I(θ)−1, that is,

√
n(Tn − θ)→ N(0, I(θ)−1) in law (n→∞).

(Maximum Likelihood Estimator) The maximum likelihood estimator θ̂ is a point of Θ
such that

�n(θ̂ |x) = max{ �n(θ |x) : θ ∈ Θ }.



Chapter 2

History of information loss

We shall show a history of some authors with respect to the information loss.

2.1 Fisher’s information loss

Fisher(1925) described about the loss of information as follows :

When the sets of samples which for one value of θ have the same value of ∂ logLn/∂θ,
have no longer the same value for other values of θ, there exists no sufficient statistic,
and some loss of information will necessarily ensue upon the substitution of a single
estimate for the original data upon which it was based. (in section 11)

This may mean that if there exists a sufficient statistic, then, for any element x1 of the subset
{x : ∂ logLn/∂θ1 = C1} ( C1 is a constant), there exists a constant C2 such that ∂ logLn/∂θ2 =
C2 for a different value θ2 from θ1, so that there shall exist no information loss by the substitution
of a single estimate for the original data which it was based.

And Fisher denoted the total loss of information in the maximum likelihood estimator θ̂ as
follows :

if now ∂ logLn/∂θ̂ = 0, then to a first approximation

∂ logLn

∂θ
= (θ − θ̂)

∂2 logLn

∂θ2 ,

and the variance of ∂ logLn/∂θ in a set of samples for which θ̂ is constant, will be
given by the variance of ∂2 logLn/∂θ

2 within the set multiplied by (θ− θ̂)2, or the total
loss of information will be given by the general variance within such sets multiplied
by V (θ̂). (in section 11)

This may mean that the total loss of information for the maximum likelihood estimator θ̂ is
approximately given by

V (θ̂) · V
[
∂2 logLn

∂θ2

∣∣∣∣∣ θ̂
]
.

3



CHAPTER 2. HISTORY OF INFORMATION LOSS 4

Fisher calculated this loss for the maximum likelihood estimator θ̂ in the large samples concretely
under the multinomial distribution as follows : For the sample which consists of observed num-
bers x1, . . . , xs in categories in which the expectations are m1, . . . ,ms, if the expectations are
functions of θ, then it holds that

logLn =
s∑

j=1

xj logmj + c0,

∂ logLn

∂θ
=

s∑
j=1

xj
ṁj

mj
,

∂2 logLn

∂θ2
=

s∑
j=1

xj

(
m̈j

mj
− ṁ2

j

m2
j

)
,

where the dot notation means the differentiation with respect to θ and c0 is a constant which is
independent of θ, so that the loss of information in large samples is represented by

∑s
j=1

1
mj

(
m̈j − ṁ2

j

mj

)2

∑s
j=1

ṁ2
j

mj

− 1
n

s∑
j=1

ṁ2
j

mj
−



∑s

j=1
ṁj

mj

(
m̈j − ṁ2

j

mj

)
∑s

j=1

ṁ2
j

mj




2

,(2.1.1)

where n =
∑s

j=1 xj =
∑s

j=1 mj .

2.2 Rao’s second order efficiency

Let ITn be the information for a statistic Tn. For Fisher’s proposition about the information
loss, first of all, Rao(1961) investigated a sufficient condition for the convergence of (ITn/n) to
the Fisher information I(θ), as the sample size n→∞ as follows:

∣∣∣∣ 1√
n

(
d logLn

dθ

)
− a − b

√
n(Tn − θ)

∣∣∣∣ → 0

in probability, where a, b are constants which may depend on θ. This proposition itself was first
derived from Doob(1934). He defined this as the new definition of the asymptotic efficiency. This
is called the first-order efficiency. Under the first-order efficiency, he proposed the second-order
efficiency E2 as the minimum asymptotic variance of

d logLn

dθ
− √

n a − b n(Tn − θ)− λn (Tn − θ)2(2.2.1)

when minimized with respect to λ. Rao calculated the second-order efficiency E2 for some
various estimators based on the multinomial distribution. Let πj = mj/n and pj = xj/n for the
previous notations.
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Method of Estimation Estimating equation E2

maximum likelihood
∑s

j=1 pj
π̇j
πj

= 0 E2(m.l.)

minimum χ2 ∑s
j=1 π̇j

p2
j

π2
j

= 0 E2(m.l.) + ∆

minimum modified χ2 ∑s
j=1 π̇j

πj
pj

= 0 E2(m.l.) + 4∆

Haldane’s minimum discrepancy Dk
∑s

j=1 π̇j
πk

j

pk
j

= 0 E2(m.l.) + (k + 1)2∆

minimum Hellinger distance
∑s

j=1 π̇j
p

1
2
j

π
1
2
j

= 0 E2(m.l.) + 1
4∆

minimum KL separator
∑s

j=1 π̇j log
(πj
pj

)
= 0 E2(m.l.) + ∆

In the above table, E2(m.l.) is

E2(m.l.) =
µ02 − 2µ21 + µ40

µ20
− µ20 − µ2

11 + µ2
30 − 2µ11µ30

µ2
20

,(2.2.2)

where

µik :=
s∑

j=1

πj

(
π̇j

πj

)i(
π̈j

πj

)k

.

And ∆ is

∆ =
1
2

s∑
j=1

(
π̇j

πj

)2

− µ40

µ20
+

1
2
µ2

30

µ2
20

.

Rao asserted that the minimum variance of (2.2.1) would be same as the limit of (nI(θ)− ITn),
that is,

lim
n→∞(nI(θ)− ITn) = E2(2.2.3)

under some regularity conditions. Note that E2(m.l.) of maximum likelihood estimator is equiv-
alent to Fisher’s information loss (2.1.1).

2.3 Efron’s information loss

Based on Fisher’s information loss and Rao’s second-order efficiency, Efron(1975) restarted the
information loss by a geometric view point based on the curved exponential family. He defined
the statistical curvature for the density f(x : θ) at θ as follows : for the log-likelihood �(θ |x) =
log f(x : θ),

ΓS(θ) ≡



det

(
E �̇(θ |x)2 E �̇(θ |x) �̈(θ |x)

E �̈(θ |x) �̇(θ |x) E �̈(θ |x)2 − I(θ)2

)

I(θ)3




1
2

.
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Using the statistical curvature ΓS(θ), Efron showed the asymptotic information loss of the
maximum likelihood estimator θ̂ in the curved exponential family as follows :

lim
n→∞(nI(θ)− Iθ̂) = I(θ) ΓS(θ)2.(2.3.1)

This representation is equivalent to Fisher’s and Rao’s representations (2.1.1), (2.2.2) in the
multinomial distribution, but Efron’s contribution is that he asserted a new view-point for the
(asymptotic) information loss by bringing the geometrical curvature into the statistical problem.
Also, by restricting the distribution to the curved exponential family, he made Fisher’s argument
for the information loss be simple as follows : for an estimator Tn of parameter θ, the exact
information loss is

nI(θ)− ITn = ETn

[
V
[
�̇n(θ |x)

∣∣∣ Tn

] ]
,(2.3.2)

where �n(θ |x) means the log-likelihood for the n joint density and where the expectation in
the right-hand side means the expectation by the marginal probability (density) function of Tn.
Combining (2.3.1) and (2.3.2) implies that

lim
n→∞ Eθ̂

[
V
[
�̇n(θ |x)

∣∣∣ θ̂ ] ] = I(θ) ΓS(θ)2.

In this relation and (2.2.3), Efron attempted to show the counterexample with respect to the
maximum likelihood estimator θ̂ of the trinomial distribution. We shall treat this counterexam-
ple in Chapter 4.



Chapter 3

Exponential family

We shall explain the definitions and properties of the exponential family and the curved expo-
nential family.

3.1 Exponential family

Let p0(x) be a pivotal probability (density) function for the random vector X in Rk. Let α be
a parameter on Rk and the parameter space A is defined as follows :

A :=
{

α ∈ Rk :
∫

exp{〈α, x〉} p0(x) dx <∞
}
.

Note that if the pivotal is discrete then the above integration means the summation. We shall
call A the parametric space. It is easy to check that the parametric space A is convex. For A,
we shall define the density of exponential family as follows :

f(x : α) = exp{〈α, x〉 − ψ(α)} p0(x),

where ψ(α) is the cumulant generating function, that is,

ψ(α) = log
∫

exp{〈α, x〉} p0(x) dx.

Since the parametric A is determined by the existence of the moment generating function for
p0(x), we have the interchangeability of integration and differentiation with respect to α, so
that the derivatives of

∫
f(x : α) dx = 1 are

0 =
∫
(x−∇ψ(α)) f(x : α) dx,

0 = −∇′∇ψ(α) +
∫
(x−∇ψ(α)) (x−∇ψ(α))′ f(x : α) dx,

where ∇ means the derivative with respect to α and ′ means the transpose. Thereby the
expectation and variance are

E[X] = ∇ψ(α) and V [X] = ∇′∇ψ(α).

7



CHAPTER 3. EXPONENTIAL FAMILY 8

Let β be the expectation and let Σ the variance matrix, that is,

β(α) = ∇ψ(α) and Σ(α) = ∇′∇ψ(α).

When α = 0, they are equal to ones of p0(x), that is, β(0), Σ(0) are the expectation and the
covariance of p0(x), respectively. Let B be the space of β(α), that is,

B = {β(α) : α ∈ A}.

Though A is convex, B is not convex always. For this example, see Efron(1978). In order to
escape a confusion, we shall not treat the trivial case which the variance V [X ] is zero. Then,
since the second derivative of ψ(α) is positive definite, it holds that ψ(α) is strictly convex, so
that the correspondence between A and B is one-to-one.

Since the log-likelihood is

�(α |x) = 〈α, x〉 − ψ(α) + log p0(x),

the derivatives with respect to α are

∇�(α |x) = x − β(α),
∇′∇�(α |x) = −Σ(α).

And the expectations and variances are

E[∇�(α |X) ] = 0, E[∇′∇�(α |X) ] = −Σ(α),
V [∇�(α |X) ] = Σ(α), V [∇′∇�(α |X) ] = 0,

and the covariance is
Cov[∇�(α |X), ∇′∇�(α |X) ] = 0.

Thereby the Fisher information is

I(α) ≡ V [∇�(α |x) ] = E[−∇′∇�(α |x) ] = Σ(α),

so that I(α) is positive definite.

We shall consider the maximum likelihood estimator(MLE) of exponential family for n i.i.d.
observations. Since the MLE is determined by ∇�n(α |x) = 0 given the observation x, there
exists α̂ such that

nxn − nβ(α̂) = 0,

where xn =
∑n

j=1 xj/n. (See Theorem 7.1.3 in Appendices.) Thus the MLE is α̂ = β−1(xn).
Since there exists only one x which satisfies ∇�n(α̂ |x) = 0 given α̂, there does not exist the
information loss in this situation.
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3.2 Curved Exponential family

We shall consider the curved exponential family which the exponential family is restricted as
follows : the parametric α is restricted by the parameter θ as

{α(θ) : θ ∈ Θ} ⊂ A.

Note that Θ ⊂ Rr. This probability density function is represented by

f(x : α(θ)) = exp{ 〈α(θ),x〉 − ψ(α(θ)) } · p0(x).(3.2.1)

As the same way, we have the expectation and variance as follows :

β(θ) = β(α(θ)) = E[X ] = ∇ψ(α(θ)),
Σ(θ) = Σ(α(θ)) = V [X] = ∇′∇ψ(α(θ)).

The following relationship, which is one of the most characteristic property in the curved ex-
ponential family, is important which is derived by the differentiation of β(θ) with respect to θ
:

β̇(θ) = Σ(θ) α̇(θ),(3.2.2)

where the dot notation means the differentiation with respect to θ. And the relationship guar-
antees the local interchangeability between α̇(θ) and β̇(θ) at θ. The differentiations of log-
likelihood, that is, �(θ |x) = log f(x : α(θ)), with respect to θ are

�̇(θ |x) = 〈α̇(θ), x− β(θ)〉,
�̈(θ |x) = α̈(θ)′ [ Ir ⊗ {x− β(θ)} ] − 〈α̇(θ), β̇(θ)〉,

where the notation ⊗ means the Kronecker product. These differentiations imply the following
relations;

E[ �̇(θ |X) ] = 0,

E[ �̈(θ |X) ] = −〈α̇(θ), β̇(θ)〉 = −α̇(θ)′Σ(θ) α̇(θ),
V [ �̇(θ |X) ] = E[−�̈(θ |X) ] = α̇(θ)′Σ(θ) α̇(θ),
V [ �̈(θ |X) ] = α̈(θ)′ [ Ir ⊗Σ(θ) ] α̈(θ),

Cov[ �̈(θ |X), �̇(θ |X) ] = α̈(θ)′ [ Ir ⊗Σ(θ) ]




α̇(1)(θ)
...

α̇(r)(θ)


 ,

where
α̇(j)(θ) :=

∂ α(θ)
∂θj

, that is, α̇(θ) =
[
α̇(1)(θ) · · · α̇(r)(θ)

]
.

The Fisher information is
I(θ) = α̇(θ)′Σ(θ) α̇(θ),

so that I(θ) is also positive definite.

We shall consider the maximum likelihood estimator of curved exponential family for n i.i.d.
observations. Since the MLE is determined by the likelihood equation �̇n(θ |x) = 0 given the
observation x, there exists θ̂ such that

n 〈α̇(θ̂), xn − β(θ̂)〉 = 0.
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For x which satisfies �̇n(θ̂ |x) = 0 given θ̂, we shall define a subset L(θ̂) as follows :

L(θ̂) = {xn : �̇n(θ̂ |x) = 0 }.

In the curved exponential family, L(θ̂) is orthogonal to α(θ̂), that is,

α̇(θ̂) ⊥ {xn − β(θ̂) } for any xn ∈ L(θ̂).

The orthogonality is a characteristic in the curved exponential family.

We shall show the lemmas with respect to the MLE θ̂ in the curved exponential family. In
general, we need to assume the following regularity conditions (For example, see Inagaki(1990)):

1. The parameter space Θ is an open (connected) set in Rr.

2. The support {x : f(x : α(θ)) > 0} of f(x : α(θ)) does not depend on θ.

3. The joint density fn(x : α(θ)) is three times continuously differentiable with respect to θ.

4. For a neighborhood U(θ) of any θ ∈ Θ, there exists a function u(x : θ) ≥ 0 such that

|�(3)(τ |x)| ≤ u(x : θ) and E[u(X : θ) ] <∞,

where τ ∈ U(θ) and �(3)(·) means the third differentiation.

5. For any θ ∈ Θ, there exists the Fisher information I(θ) which is positive definite and finite.

The following theorem is known with respect to the maximum likelihood estimator :

Theorem 3.2.1 (Cramér) Under the regularity conditions, the maximum likelihood estimator
(MLE) θ̂ is an asymptotically normal estimator with the asymptotic variance I(θ)−1, that is,

√
n(θ̂ − θ)→ Nr(0, I(θ)−1) in law (n→∞).

In the curved exponential family, the above regularity conditions are satisfied. Thus, by the
above Cramér Theorem, we have the following corollary :

Corollary 3.2.1 The MLE θ̂ in the curved exponential family is always an asymptotically effi-
cient estimator. ✷



Chapter 4

Comment on Efron’s
Counterexample

4.1 Introduction

Efron(1975) showed by a counterexample that Fisher’s information loss and Rao’s second-order
efficiency could be different in the multinomial case treated really by Fisher and Rao.

Our aim of the present chapter is to point out that we could not construct the valid form
and explicit representation of Efron’s counterexample because the contradictory demands are
carried on the curved exponential family.

4.2 Efron’s counterexample

We consider the trinomial distribution as the exponential family. Let β1, β2 be the probability
of category 1, 2 and let the domain of parameter β = (β1, β2)′ be

D =

{
β =

(
β1

β2

)
: 0 < β1, 0 < β2, β1 + β2 < 1

}
,

where the probability of category 3 is β3 = 1− β1 − β2. For n independent trials, let n1, n2 be
the number of occurrence of category 1, 2, where the number of occurrence of category 3 is

n3 = n− n1 − n2.

Then, we regard the probability function

βn1
1 βn2

2 (1− β1 − β2)n−n1−n2

as the following two dimensional exponential family :

fn(x : α) = exp[ n{〈α, x〉 − ψ(α)} ]

where X = (X1, X2)′ is the vector of observation ratios of category 1, 2 :

x1 =
n1

n
, x2 =

n2

n
,

11
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α = (α1, α2)′ is the vector of natural parameters :

α1 = log
β1

1− β1 − β2
, α2 = log

β2

1− β1 − β2
,

and
〈α, x〉 = α1 x1 + α2 x2

denotes the inner product of vectors α, x. We note that

ψ(α) = log(1 + eα1 + eα2)

is a convex function, the expectation parameter is

β = E{X} = ∇ψ(α) =




∂ψ(α)
∂α1

∂ψ(α)
∂α2


 =




eα1

1 + eα1 + eα2

eα2

1 + eα1 + eα2


 ,(4.2.1)

and nΣ is the covariance matrix of n (X1, X2)′ :

Σ = ∇β = ∇′∇ψ(α) =

[
∂2ψ(α)
∂αi∂αj

]
i, j = 1, 2

=

(
β1(1− β1) −β1β2

−β1β2 β2(1− β2)

)
= Σ(β),(4.2.2)

which is positive definite. Thus, we see that there is the one-to-one correspondence between the
natural parameter α and the expectation parameter β.

Now, we define the curved exponential family as the exponential family with the expectation
parameter vector indexified by one parameter :

β(θ) =

(
β1(θ)
β2(θ)

)
∈ D, for θ ∈ Θ,

which is assumed to belong to the C1 class with respect to θ. According to the one-to-one
correspondence between α and β, the natural parameter vector α is also indexified with the
same parameter θ, which is denoted by {α(θ) : θ ∈ Θ}. Then, we have the following fundamental
equation :

β̇(θ) = Σ(θ) α̇(θ),(4.2.3)

where the dot mark means the differentiation with respect to θ, and Σ(θ) = Σ(β(θ)) in (4.2.2) :

Σ(θ) =

(
β1(θ)(1− β1(θ)) −β1(θ)β2(θ)
−β1(θ)β2(θ) β2(θ)(1− β2(θ))

)
.(4.2.4)

In the sequel, we set up the Efron’s counterexample which is a curved exponential family
with the following special parameterization : We consider a union of half-lines emanating from
the center point c = (−√2,−1)′, and denote the one through a point β0 = (1/3,1/3)′ by L0
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and the one with the angle θ from L0 by Lθ . The angle between L0 and the x1 -axis is equal
to A0 :

A0 = arctan
1 +

1
3√

2 +
1
3

.

We see that the parameter space Θ is located in such a way as :

Θ ⊆ {θ : θL < θ < θU},
with

θL := arctan(1/(1 +
√
2))−A0, θU := arctan(

√
2)−A0.

Let us denote the unit directional vector of Lθ and the unit vector orthogonal to it by φθ, ϕθ,
respectively :

φθ :=

(
cos(θ +A0)
sin(θ +A0)

)
, ϕθ :=

(
− sin(θ +A0)
cos(θ +A0)

)
,

where
〈φθ, ϕθ〉 = 0 for any θ ∈ Θ.

Let ρθ be the unit directional vector of Σ(θ)ϕθ :

ρθ =
Σ(θ)ϕθ

|Σ(θ)ϕθ|
,(4.2.5)

where the notation | · | means the Euclidean distance, and let Bθ be the angle between ρθ and
the line Lθ :

cosBθ = 〈ρθ, φθ〉.(4.2.6)

Efron(1975) defined a curved exponential family by the following parameterization of the
expectation parameter β(θ) :

β(θ) := β(0) +
∫ θ

0
hτ ρτ dτ(4.2.7)

where
hτ =

|β(τ)− c|
sinBτ

.

Note that hθ is defined such that the infinitesimal variation of the angle of β(θ) is equal to 1 :∣∣∣β̇(θ)∣∣∣ sinBθ

|β(θ)− c| = 1,(4.2.8)

which is the necessary condition for β(θ) to be on the line Lθ and equivalently, to justify the
above parameterization.

Since hθ and ρθ include β(θ), we have the simultaneous differential equations of β(θ) :

β̇(θ) = hθ ρθ.(4.2.9)

which, together with (4.2.3), implies

β̇(θ) ∝ Σ(θ)ϕθ, α̇(θ) ∝ ϕθ.

(See the figure 4.1.) By the last fact, it is easy to see the following theorem.
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Theorem 4.2.1 Under the Efron’s parameterization, the following three conditions are equiva-
lent : for any θ, 


(C1) β(θ) ∈ Lθ,
(C2) 〈α̇(θ), β(θ)− c〉 = 0,
(C3) {β : 〈α̇(θ), β − β(θ)〉 = 0} ⊆ Lθ.

Efron asserts that β(θ) is on the line Lθ. Therefore, it follows from the definition of the
maximum likelihood estimator (MLE) θ̂ :

〈α̇(θ̂), x− β(θ̂)〉 = 0,

that the observation ratio vector x is on the line Lθ̂. Then, the slope of the line

x2 − c2
x1 − c1

,

is irrational, which does not allow for the line Lθ̂ to have any other observation ratio vector on
the same line because of the rationality. Hence, it follows that the MLE θ̂ corresponds to the
observation vector x by one to one and that

E[ X | θ̂ ] = X, V [ X | θ̂ ] = 0.

The vanish of the conditional variance of the observation given the MLE means that the informa-
tion loss is not equal to the statistical curvature. This is the result of the Efron’s counterexample.

However, it may be difficult to obtain the explicit form of the solution β(θ) of the differential
equations (4.2.9), which is written down in detail as follows:

(
β̇1(θ)
β̇2(θ)

)
=

√√√√√√√√√√√√

(β1(θ)− c1)2 + (β2(θ)− c2)2

1−



〈φθ,

(
β1(θ)(1− β1(θ)) −β1(θ)β2(θ)
−β1(θ)β2(θ) β2(θ)(1− β2(θ))

)
ϕθ〉∣∣∣∣∣

(
β1(θ)(1− β1(θ)) −β1(θ)β2(θ)
−β1(θ)β2(θ) β2(θ)(1− β2(θ))

)
ϕθ

∣∣∣∣∣




2

×

(
β1(θ)(1− β1(θ)) −β1(θ)β2(θ)
−β1(θ)β2(θ) β2(θ)(1− β2(θ))

)
ϕθ∣∣∣∣∣

(
β1(θ)(1− β1(θ)) −β1(θ)β2(θ)
−β1(θ)β2(θ) β2(θ)(1− β2(θ))

)
ϕθ

∣∣∣∣∣
.

4.3 Contradictory demand

Our aim is to show that the definition (4.2.7), which is derived from the simultaneous differen-
tial equations (4.2.9), is necessary but not sufficient for the parameterization to be justified and
thus, that the three conditions (C1), (C2), (C3) are shown to be equivalent under the parame-
terization, but any one of them is not shown to hold.
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Theorem 4.3.1 The Efron’s parameterization is contradictory to the demand that β(θ) is on
the line Lθ.

Proof : Recall (4.2.5) and (4.2.9) :

β̇(θ) = hθ ρθ, with ρθ =
Σ(θ)ϕθ

|Σ(θ)ϕθ|
.(4.3.1)

Suppose β(θ) be on the line Lθ, we have

β(θ) := c + rθ

(
cos(θ +A0)
sin(θ +A0)

)
= c + rθ φθ,

where rθ be a positive function which belongs to the C1 class and r0 := |β(0)− c|. Then, the
tangent vector of β(θ) is the first derivative of β(θ) with respect to θ, that is,

β̇(θ) = ṙθ φθ + rθ ϕθ.(4.3.2)

Therefore, from the comparison between (4.3.1) and (4.3.2), we have that

hθ =
√

r2
θ + ṙ2

θ ,

ρθ =
ṙθ√

r2
θ + ṙ2

θ

φθ +
rθ√

r2
θ + ṙ2

θ

ϕθ,(4.3.3)

and from (4.2.6) that

cosBθ = 〈ρθ,φθ〉 =
ṙθ√

r2
θ + ṙ2

θ

,

sinBθ =
rθ√

r2
θ + ṙ2

θ

.

This leads to the alternative representation of ρθ (4.3.3) as follows :

ρθ = cosBθ φθ + sinBθ ϕθ(4.3.4)

=

(
cos(Bθ + θ +A0)
sin(Bθ + θ +A0)

)
= φθ+Bθ

.

Consequently, from ρθ of (4.3.1) and (4.3.4), we have the following identity :

ρθ =
Σ(θ)

|Σ(θ)ϕθ|
ϕθ = φθ+Bθ

for any θ ∈ Θ.

Since ϕθ, φθ+Bθ
belong to the unit circle S1 = {u ∈ R2 : |u| = 1}, the type of the variance

matrix Σ(θ) must be as shown :

Σ(θ)
|Σ(θ)ϕθ|

=

(
cos(π

2 −Bθ) sin(π
2 −Bθ)

− sin(π
2 −Bθ) cos(π

2 −Bθ)

)
=

(
sinBθ cosBθ

− cosBθ sinBθ

)
.(4.3.5)
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By the comparison of elements of Σ(θ) in (4.2.4) and (4.3.5), we have


β1(θ)(1− β1(θ)) = β2(θ)(1− β2(θ)),

β1(θ)β2(θ) = −β1(θ)β2(θ).
(4.3.6)

This leads to the possible values of β(θ) :

β(θ) =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
,(4.3.7)

and then, to the contradiction : Σ(θ) = 0. Thus, we conclude that β(θ) is not on the line Lθ

for all θ ∈ Θ. ✷

Theorem 4.3.1 means that Efron’s counterexample is invalid as the counterexample which at-
tempts to demonstrate the gap between the information loss and the sufficiency with respect to
the maximum likelihood estimator in discrete distributions.



C
H

A
P

T
E

R
4.

C
O

M
M

E
N

T
O

N
E

F
R

O
N

’S
C

O
U

N
T

E
R

E
X

A
M

P
L
E

17

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1

c=(-√2, -1)

θ
x1-axis

x2-axis

A0=arctan
1+1/3
√2+1/3

ϕθ

(
1
3

, 
1
3
)

β(θ)

Lθ

L0

F
igure

4.1:
F
igure

of
C
ounterexam

ple



Chapter 5

Exact Information Loss in Fisher’s
Circle Model

5.1 Introduction

The circle model is the simplest and best one in order to illustrate the information loss, and thus,
is often referred to in many papers. However, these amounts with respect to the distribution of
the length given the angle are calculated asymptotically but not exactly. Also the distribution
of the angle given the radius is well known in detail as the von Mises distribution. The main
purpose of the present chapter is to calculate the distribution of the length given the angle in
detail, which enable us to have the exact theory of the information loss by using the conditional
variance, and to refine the geometric structure and asymptotical relation between information
loss and statistical curvature.

5.2 Fisher’s circle model

Two dimensional random vector X = (X1,X2)′ is distributed to the normal distribution with
mean vector α and covariance matrix I, the unit matrix, i.e., N2(α, I). Its density function is
written in the exponential type :

f(x : α) = exp
{
α1x1 + α2x2 − 1

2
(α2

1 + α2
2)
}

ϕ(x1)ϕ(x2)

= exp
{

α′x− 1
2
|α|2

}
p0(x),(5.2.1)

where ϕ(x) is the density function of the standard normal distribution and p0(x) is the pivotal
density function :

ϕ(x) =
1√
2π

exp

(
−x2

2

)

p0(x) = f(x : 0) = ϕ(x1)ϕ(x2).

18



CHAPTER 5. EXACT INFORMATION LOSS IN FISHER’S CIRCLE MODEL 19

Let us consider the Fisher’s circle model defined by the above normal family with mean vector
α on a circle :

α = α(θ) = ρe(θ), e(θ) =

(
cos θ
sin θ

)
.

where the radius ρ is known and the angle θ is unknown in Θ = [0, 2π) , denoting a vector with
length 1 and angle θ by e(θ). Then, we have the simplest curved exponential type of density :

f(x : α(θ)) = exp

{
ρe(θ)′x− ρ2

2

}
p0(x).

Denote the differential with respect to θ by ” ˙ ”, for example, as follows :

ė(θ) =
∂

∂θ
e(θ) =

(
− sin θ

cos θ

)
=

(
cos(π

2 + θ)
sin(π

2 + θ)

)
= e(

π

2
+ θ)

ë(θ) =
∂2

∂θ2
e(θ) =

(
− cos θ
− sin θ

)
= −e(θ).

The derivatives up to the second order of the log-likelihood with respect to θ are :

∂

∂θ
log f(x : α(θ)) = ρ ė(θ)′x = ρe(

π

2
+ θ)′x,

∂2

∂θ2
log f(x : α(θ)) = ρ ë(θ)′x = −ρ e(θ)′x.

These expectations are :

E

{
∂

∂θ
log f(X : α(θ))

}
= ρ2 e(

π

2
+ θ)′e(θ) = 0,

E

{
∂2

∂θ2
log f(X : α(θ))

}
= −ρ2 e(θ)′e(θ) = −ρ2.

Therefore, we have the Fisher information I(θ) = ρ2, which is independent of θ.

Let us transform the statistic vector X to length and angle (R, T ), R ≥ 0, T ∈ θ in the
polar coordinates :

X =

(
X1

X2

)
=

(
R cosT
R sinT

)
= R e(T ).(5.2.2)

Then, we have the joint density function of (R,T ) :

fθ(r, t) ≡ r

2π
exp

{
ρ r cos(t− θ)− r2

2
− ρ2

2

}
.(5.2.3)

Since, for m = 0, 1, 2, . . .,
∫ 2π

0
cos2m t dt =

1
22m 2mCm 2π,∫ 2π

0
cos2m+1 t dt = 0,
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by the term-wise integral of the series of a exponential function :

ea cos t =
∞∑

m=0

am

m!
cosm t,

we have the modified Bessel function :

I0(a) =
1
2π

∫ 2π

0
ea cos t dt

=
∞∑

m=0

am

m!
1
2π

∫ 2π

0
cosm t dt =

∞∑
m=0

a2m

(2m)!
1

22m 2mCm

=
∞∑

m=0

(
a

2

)2m 1
m!Γ(m+ 1)

,

where 2mCm means the combination of 2m things m at a time and Γ(·) is the gamma function.
In the similar way, the joint density fθ(r, t) is decomposed into the sum of even terms and the
one of odd terms in the expansion of the exponential function of its cross term :

fθ(r, t) =
r

2π
exp

{
−r2

2
− ρ2

2

} ∞∑
m=0

(ρ r cos(t− θ))2m

(2m)!
(5.2.4)

+
r

2π
exp

{
−r2

2
− ρ2

2

} ∞∑
m=0

(ρ r cos(t− θ))2m+1

(2m+ 1)!

≡ f e
θ (r, t) + f o

θ (r, t) (say).

These are represented as Poisson mixture distributions of chi-distributions as follows :

f e
θ (r, t) =

∞∑
m=0

exp

(
−ρ2

2

) (
ρ2

2

)m

m!
1

Γ(m+ 1)2m+1
2 r2m+1 exp

(
−r2

2

)

· 22m 1
2mCm

1
2π

cos2m(t− θ)

=
∞∑

m=0

qm χ2m+2 22m 1
2mCm

1
2π

cos2m(t− θ),(5.2.5)

f o
θ (r, t) =

ρ√
2π

∞∑
m=0

exp

(
−ρ2

2

) (
ρ2

2

)m

m!

· 1

Γ(2m+3
2 ) 2

2m+3
2

2 r2m+2 exp

(
−r2

2

)
cos2m+1(t− θ)

=
ρ√
2π

∞∑
m=0

qm χ2m+3 cos2m+1(t− θ),(5.2.6)

where {qm} is the Poisson probability function of Po(λ) :

qm = exp(−λ)
λm

m!
, λ =

ρ2

2
,
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and the density function of the chi-distribution of degree of freedom m, χm, is :

2
1

Γ(m
2 )2

m
2

rm−1 exp

{
−r2

2

}
.

Denote the log-likelihood function by

�(θ) ≡ log fθ(r, t),

then we have :

�̇(θ) = ρ r sin(t− θ),
�̈(θ) = −ρ r cos(t− θ).

Therefore, it follows from the likelihood equation �̇(θ) = 0 that the angle T is the maximum
likelihood estimator of θ. By the facts that∫ 2π

0
ρ2 r2 sin2(t− θ) f o

θ (r, t) dr dt = 0

and
∫ 2π

0
ρ r cos(t− θ) f e

θ (r, t) dr dt = 0,

we have, again, the Fisher information in the following two ways :

I(θ) = E{(�̇(θ))2} = ρ2
∫ ∞

0

∫ 2π

0
{r2 − r2 cos2(t− θ)} f e

θ (r, t) dt dr

= ρ2
∞∑

m=0

qm
1

Γ(m+ 1)2m+1

∫ ∞

0
2r2m+3 exp(−r2

2
) dr

−ρ2
∞∑

m=0

qm
1

Γ(m+ 1)2m+1

∫ ∞

0
2r2m+3 exp(−r2

2
) dr

·22m 1
2mCm

1
2π

∫ 2π

0
cos2m+2(t− θ) dt

= ρ2
∞∑

m=0

(2m+ 2) qm − ρ2
∞∑

m=0

(2m+ 1) qm = ρ2.

I(θ) = −E{�̈(θ)} =
∫ ∞

0

∫ 2π

0
ρ r cos(t− θ) f o

θ (r, t) dt dr

=
∞∑

m=0

∫ ∞

0
exp

{
−r2

2
− ρ2

2

}
(ρr)2m+3

(2m+ 1)!
dr

1
2π

∫ 2π

0
cos2m+2(t− θ) dt

=
∞∑

m=1

(2m) exp

(
−ρ2

2

) (
ρ2

2

)m

m!
= 2

∞∑
m=0

mqm = 2λ = ρ2.

The marginal density function of length R which is independent of θ is easily obtained by the
integration of a periodic function :

h̃(r) =
∫ 2π

0
fθ(r, t) dt = r exp

{
−r2

2
− ρ2

2

}
1
2π

∫ 2π

0
exp{ρ r cos t}dt

= r exp

{
−r2

2
− ρ2

2

}
I0(ρ r) =

∞∑
m=0

qm χ2m+2.(5.2.7)
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The last equation means that R is distributed with the non-central chi-distribution with degree
of freedom 2 and non-central parameter ρ2 : R ∼ χ2(ρ2). Therefore the conditional density of
angle T given length R is well known to be one of von Mises distribution M(θ, ρr) :

g̃θ(t | r) = fθ(r, t)
h̃(r)

=
exp{ρ r cos(t− θ)}

2πI0(ρ r)
,(5.2.8)

which implies the ancillarity of R to θ.

5.3 The conditional density of length R given angle T

Although we have the properties of the conditional distribution of angle T given length R
from many studies of von Mises distribution, we have little about properties of the conditional
distribution length R given angle T . Our main purpose in this chapter is to investigate exact
and asymptotic properties about the Fisher informations of the marginal distribution of angle
T and the conditional distribution of length R given it.

Lemma 5.3.1 For any nonnegative integer k and real number u, let

Hk(u) =
∫ ∞

0
eur rk e−

r2

2 dr.

Then, the following equations holds :

Hk(u) = u Hk−1(u) + (k − 1)Hk−2(u), for k ≥ 2,(5.3.1)
H1(u) = 1 + u H0(u) = ϕ(u)−1{ϕ(u) + uΦ(u)},(5.3.2)
H0(u) = ϕ(u)−1Φ(u),(5.3.3)

where ϕ(u) and Φ(u) are the standard normal density and distribution functions, respectively,
and H1(u) is remarked to be the moment generating function of the chi-distribution with degree
of freedom 2.

Proof : Equation (5.3.1) is easy to be seen by integral by part.
Equation (5.3.3) is shown as follows :

H0(u) =
∫ ∞

0
eur e−

r2

2 dr = e
u2

2

∫ ∞

0
e−

(r−u)2

2 dr

=
√
2πe

u2

2 {1− Φ(−u)} = ϕ(u)−1 Φ(u).

Equation (5.3.2) follows from equations (5.3.1) and (5.3.3). ✷

Now, we have the marginal density of angle T and the conditional density of length R given
T , as follows :

gθ(t) ≡
∫ ∞

0
fθ(r, t) dr

= exp

{
−ρ2

2

}
1
2π

∫ ∞

0
exp{ρ cos(t− θ) r} r exp

{
−r2

2

}
dr
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=
1
2π

exp

{
−ρ2

2

}
H1(ρ cos(t− θ)),(5.3.4)

hθ(r | t) ≡ fθ(r, t)
gθ(t)

=
exp{ρ r cos(t− θ)} r exp{− r2

2 }
H1(ρ cos(t− θ))

.(5.3.5)

Theorem 5.3.1 Let a = ρ cos(t − θ). Then the following representations are obtained of the
conditional mean and variance of length R given angle T :

E[R |T = t] =
∫ ∞

0
r hθ(r | t) dr = H2(a)

H1(a)
,(5.3.6)

V [R |T = t] = 1 +
1

H1(a)
−
(H0(a)
H1(a)

)2

≤ 1.(5.3.7)

Proof : It is easy to check the equation of conditional mean.
Since

E[R2 |T ] =
∫ ∞

0
r2 hθ(r|t) dr =

H3(a)
H1(a)

,

we have, from (3) of Lemma 5.3.1,

V [R |T = t] = E[R2 |T = t]− (E[R |T = t])2 =
H3(a)
H1(a)

−
(H2(a)
H1(a)

)2

=
a{aH1(a) +H0(a)}+ 2H1(a)

H1(a)
−
(
aH1(a) +H0(a)

H1(a)

)2

=
H1(a) + 1 + 2aH0(a)

H1(a)
− 2aH1(a)H0(a) +H0(a)2

H1(a)2

= 1 +
1

H1(a)
−
(H0(a)
H1(a)

)2

.

On the other hand, we see, by Cauchy-Shwartz’s inequality,

H1(a)2 =
(∫ ∞

0
ear r e−

r2

2 dr

)2

≤
∫ ∞

0
ear e−

r2

2 dr

∫ ∞

0
ear r2 e−

r2

2 dr

= H0(a)H2(a) = H0(a){aH1(a) +H0(a)}
= {H1(a)− 1}H1(a) +H0(a)2.

That is,
H1(a) ≤ H0(a)2.

This leads to the following inequality :

V [R |T = t] = 1 +
1

H1(a)
−
(H0(a)
H1(a)

)2

≤ 1. ✷
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Theorem 5.3.2 According to the factorization of joint density fθ(r, t) into the marginal gθ(t)
and the conditional hθ(r|t) :

fθ(r, t) = gθ(t)hθ(r | t),(5.3.8)

the Fisher information of joint density is decomposed into the sum of those of marginal and
conditional densities :

If = Ig + Ih,(5.3.9)

where each Fisher information is independent of parameter θ :

If = ρ2,

Ih = ρ2 ET {sin2(T − θ)V [R |T ]}
= ρ2 exp(−ρ2

2
)
1
2π

·
∫ 2π

0
sin2 t

[
1 +

1
H1(ρ cos t)

−
(H0(ρ cos t)
H1(ρ cos t)

)2
]
H1(ρ cos t) dt.

Proof : The existence of the moment generating function H1(u) for any real number u
guarantees the exchangeability of the differential and integral in the following way :

∂

∂θ
log gθ(t) =

Ḣ1(ρ cos(t− θ))
H1(ρ cos(t− θ))

=
∫∞
0 exp{ρ r cos(t− θ)} ρ r sin(t− θ) r exp{− r2

2 } dr
H1(ρ cos(t− θ))

=
∫ ∞

0
ρ r sin(t− θ)hθ(r | t) dr = E[�̇(θ) |T = t].

The last equation shows that the differential of log-likelihood of the marginal distribution of
angle T is equal to the conditional mean of that of the joint distribution given T . This leads to

∂

∂θ
log hθ(r | t) = ∂

∂θ
log fθ(r, t)− ∂

∂θ
log gθ(t) = �̇(θ)− E[�̇(θ) |T ].

Therefore, we have

Ih(θ) = ET

{(
∂

∂θ
log hθ(r | t)

)2
}
= ET {V [�̇(θ) |T ]}

and
If (θ) = Ig(θ) + Ih(θ).

Now, we already obtained the Fisher information of the joint density If (θ) = ρ2 in the
previous section. By the equation

�̇(θ) = ρ r sin(t− θ),

we have the Fisher information of the conditional density hθ :

Ih(θ) = ET { ρ2 sin2(T − θ)V [R |T ] }.
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The last equation of Ih in this theorem follows from the formula (5.3.4) and the equation (5.3.7).
At last, three informations If (θ), Ig(θ), and Ih(θ) are independent of θ, so that the proof is
completed. ✷

Fisher proposes to utilize the difference between the Fisher informations of the original
density of sample and the marginal density of an estimator in order to evaluate the efficiency of
the estimator, and Fisher called it the information loss of the estimator. Theorem 5.3.2 means
that the information loss of T is equal to the Fisher information of the conditional density of R
given T . On the other hand, we have the corresponding expansion of the marginal density of T
by the term-wise integral of the expansion of joint density (5.2.4),

gθ(t) =
∫ 2π

0
f e

θ (r, t) dr +
∫ 2π

0
f o

θ (r, t) dr ≡ ge
θ(t) + go

θ(t),(5.3.10)

where

ge
θ(t) =

∫ 2π

0
f e

θ (r, t) dr =
∞∑

m=0

qm 22m 1
2mCm

1
2π

cos2m(t− θ)

go
θ(t) =

∫ 2π

0
f o

θ (r, t) dr =
ρ√
2π

∞∑
m=0

qm cos2m+1(t− θ).

This formula (5.3.10) enables us to calculate the main part of the information loss in Theorem
5.3.2.

Lemma 5.3.2 The main part of the information loss is calculated as follows :

E{ρ2 sin2(T − θ)} = 1− exp

(
−ρ2

2

)
.

Proof : Since ∫ 2π

0
cos2(t− θ) go

θ(t) dt = 0,

we have

E{cos2(T − θ)} =
∫ 2π

0
cos2(t− θ) ge

θ(t) dt

=
∞∑

m=0

qm 22m 1
2mCm

1
2π

∫ 2π

0
cos2m+2 t dt

=
∞∑

m=0

qm 22m 1
2mCm

2−2(m+1)
2(m+1)Cm+1

=
∞∑

m=0

qm
2m+ 1
2(m+ 1)

= 1− 1
2λ

∞∑
m=0

qm+1 = 1− 1− e−λ

2λ
,

and thus,

E{sin2(T − θ)} = 1− e−λ

2λ
=

1
ρ2

{
1− exp

(
−ρ2

2

)}
.

This leads to the conclusion of the lemma. ✷
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Theorem 5.3.3 The exact information loss is calculated as follows :

Ih = If − Ig

= 1− exp

(
−ρ2

2

)
+

1
2
ρ2 exp

(
−ρ2

2

)

− ρ2
∫ 2π

0
sin2 t

(
Φ(ρ cos t)

ϕ(ρ cos t) + ρ cos tΦ(ρ cos t)

)2

g0(t) dt,

where
g0(t) = gθ(t) |θ=0 = ϕ(ρ sin t) {ϕ(ρ cos t) + ρ cos tΦ(ρ cos t)}.

Proof
It is easy to see that the equation of g0(t) means the last equation about the marginal density
at θ = 0. Therefore, the equation

1
2π

∫ 2π

0
sin2 t dt =

1
2
,

and Lemma 5.3.2 lead to
∫ 2π

0
ρ2 sin2 t

[
1 +

1
H1(ρ cos t)

]
g0(t) dt = 1− exp

(
−ρ2

2

)
+

1
2
ρ2 exp

(
−ρ2

2

)
.

The last term of the information loss follows from the fact that

H0(ρ cos t)
H1(ρ cos t)

=
Φ(ρ cos t)

ϕ(ρ cos t) + ρ cos tΦ(ρ cos t)
.

Hence, we have the result of the theorem. ✷

This theorem is one of our main object that the exact information loss for one sample is shown,
by which we obtain the asymptotic information loss of maximum likelihood estimator of θ on n
i.i.d. samples in the next section.

5.4 Asymptotic information loss and statistical curvature

Let X1 = (X11,X21)′, . . . ,Xn = (X1n,X2n)′ be i.i.d. random vector samples from the Fisher’s
circle model. The joint density function is rewritten in the exponential type :

n∏
i=1

f(xi : α(θ)) = exp

{
n ρe(θ)′ xn − n

ρ2

2

}
n∏

i=1

p0(xi),

where

xn =
1
n

n∑
i=1

xi =

(
x1n

x2n

)
.

Then, new random vector

Y n ≡
√
n Xn =

1√
n

n∑
i=1

Xi
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is normally distributed with mean vector

αn(θ) ≡ ρne(θ), ρn ≡
√
n ρ,

and covariance matrix I. Let us transform Y n to length and angle (Rn, Tn), Rn ≥ 0, Tn ∈ θ
in the polar coordinates :

Y n =

(
Y1n

Y2n

)
=

(
Rn cosTn

Rn sinTn

)
= Rn e(Tn).

Then, we have the joint density function of (Rn, Tn), the marginal density of Tn, and the
conditional density of Rn given Tn in the same way as in the previous sections by taking ρn in
place of ρ :

fnθ(r, t) =
r

2π
exp

{
ρn r cos(t− θ)− r2

2
− ρ2

n

2

}
,(5.4.1)

gnθ(t) =
1
2π

exp

{
−ρ2

n

2

}
H1(ρn cos(t− θ)),(5.4.2)

hnθ(r|t) =
exp{ρnr cos(t− θ)} r exp{− r2

2 }
H1(ρn cos(t− θ))

.(5.4.3)

It is easy to check that the likelihood equation is

�̇n(θ) =
∂

∂θ
log fnθ(Rn, Tn) = ρn Rn sin(Tn − θ) = 0,

and thus Tn is the maximum likelihood estimator of θ.

Theorem 5.4.1 Let an = ρn cos(Tn − θ). Then the conditional variance of length Rn given
angle Tn is

V [Rn |Tn] = 1 +
1

H1(an)
−
(H0(an)
H1(an)

)2

→ 1 a.s., as n→∞.(5.4.4)

Proof
Since

Rn√
n

e(Tn) =
1√
n

Y n = Xn → ρe(θ) a.s., as n→∞,

we have
Rn√
n
→ ρ, Tn → θ, a.s., as n→∞.

and thus,
an →∞, a.s., as n→∞.(5.4.5)

Lemma 5.3.1 and Theorem 5.3.1 follows that the conditional variance is rewritten as follows :

0 ≤ 1− V [Rn |Tn] ≤
(H0(an)
H1(an)

)2

=
(

Φ(an)
ϕ(an) + an Φ(an)

)2

,
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and furthermore, that the last term is bounded by a−2
n when an > 0 :

(
Φ(an)

ϕ(an) + an Φ(an)

)2

≤ a−2
n , for an > 0,(5.4.6)

where an > 0 a.s. (as n → ∞) is guaranteed by (5.4.5). This proves the conclusion of the
theorem. ✷

Theorem 5.4.2 The asymptotic information loss is

Ihn = ETn{ ρ2
n sin2(Tn − θ)V [Rn |Tn] } → 1, as n→∞.(5.4.7)

Proof : By Lemma 5.3.2, we see that the main part of information loss converges to 1 as
n→∞ :

E{ρ2
n sin2(Tn − θ)} = 1− exp

(
−ρ2

n

2

)
→ 1.

Let us show that the remain part
∫ 2π

0
ρ2

n sin2(t− θ) {V [Rn | t]− 1} gnθ(t) dt

converges to 0.
As n→∞, the marginal distribution of Tn converges to the distribution concentrated at θ.

In fact, we see the marginal density of Tn :

gnθ(t) = ϕ(ρn sin(t− θ)) {ϕ(ρn cos(t− θ)) + ρn cos(t− θ)Φ(ρn cos(t− θ))}(5.4.8)

→
{

0, if t �= θ,
∞, if t = θ.

At the same time, we see
ρ2

n gnθ(t)→ 0,

outside the neighborhood of θ. Therefore, for any ε neighborhood U = (−ε+ θ, θ+ ε), we have

0 ≤
∫

Uc
ρ2

n sin2(t− θ) {1− V [Rn|t]} gnθ(t) dt

≤
∫

Uc
ρ2

n gnθ(t) dt → 0 as n→∞,

because of the finiteness of the integral range : U c ⊂ [0, 2π). On the neighborhood U , it holds
that

an = ρn cos(t− θ) > 0,

and thus, from both the inequality (5.4.6) and the convergence (5.4.8) that

0 ≤
∫

U
ρ2

n sin2(t− θ) {1− V [Rn | t]} gnθ(t) dt

≤
∫

U
tan2(t− θ) gnθ(t) dt → 0 as n→∞,

so that the proof is completed. ✷
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It is well known that the maximum likelihood estimator Tn has the asymptotic consistency and
normality, that is,

Tn → θ and
√
n (Tn − θ)→ N(0, I(θ)−1) as n→∞.

In fact, by using both the Fisher information

I(θ) =
1
n

Ifn = ρ2

and Theorem 5.4.2, the information of Tn is equal to I(θ) asymptotically :

ITn =
1
n

Ign(θ) =
1
n
(Ifn − Ihn) → ρ2.

This is the first-order efficiency of maximum likelihood estimator.

5.5 Mathematical curvature and Statistical curvature

Let ΓM (θ) be the mathematical curvature of curve b(θ) = (b1(θ), b2(θ))′, θ ∈ Θ :

ΓM (θ) ≡ ḃ1(θ)b̈2(θ)− ḃ2(θ)b̈1(θ)(√
ḃ1(θ)2 + ḃ2(θ)2

)3 =
det

(
ḃ(θ) : b̈(θ)

)
| ḃ(θ) |3 ,(5.5.1)

with (
ḃ(θ) : b̈(θ)

)
≡
(

ḃ1(θ) b̈1(θ)
ḃ2(θ) b̈2(θ)

)
.

On the other hand, the statistical curvature in the curved exponential family

f(x : α(θ)) = exp
{
α(θ)′ x− ψ(α(θ))

}
p0(x)(5.5.2)

is represented as follows :

ΓS(θ) ≡
(

α̇(θ)′Σ(θ) α̇(θ) α̈(θ)′Σ(θ) α̈(θ) − (α̇(θ)′Σ(θ) α̈(θ))2

| α̇(θ)′Σ(θ) α̇(θ) |3
) 1

2

,(5.5.3)

=

∣∣∣ det (Σ(θ)
1
2 α̇(θ) : Σ(θ)

1
2 α̈(θ)

) ∣∣∣∣∣∣Σ(θ)
1
2 α̇(θ)

∣∣∣3 .

Efron showed that the information loss defined by Fisher is asymptotically and geometrically
specified to be I(θ) ΓS(θ)2. In the Fisher circle model, the parametric α(θ) is equal to the mean
vector µ(θ) = ρe(θ) and the covariance Σ(θ) is equal to I, the unit matrix, by comparing two
densities (5.2.1) and (5.5.2). The mathematical curvature (5.5.1) of mean curve µ(θ), letting
b(θ) be µ(θ) in (5.5.1), coincides with the statistical curvature (5.5.3) :

ΓM(θ) = ΓS(θ) =
det (µ̇(θ) : µ̈(θ))

| µ̇(θ) |3 =
det (ρ ė(θ) : ρ ë(θ))

| ρ ė(θ) |3 =
1
ρ
.
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And the Fisher information loss is

I(θ) = α̇(θ)′Σ(θ) α̇(θ) = µ̇(θ)′ µ̇(θ) = ρ2.

Then, by using Efron’s representation I(θ) ΓS(θ)2 and Theorem 5.4.2, the information loss is
asymptotically represented as follows :

1 = I(θ) ΓS(θ)2 = I(θ) ΓM (θ)2 = ρ2
(
1
ρ

)2

.(5.5.4)

This result is very particular, because the information loss is able to be asymptotically repre-
sented by either of curvatures. But, they are different in general. We shall demonstrate it by a
simple example on Fisher circle model.

Let X = (X1, X2)′ be distributed to the Fisher circle model with the covariance matrix σ2I,
that is,

X ∼ N2(µ(θ), σ2I),

where µ(θ) = ρe(θ) and σ is a positive constant. The density of X is rewritten in the exponential
type :

f(x : α(θ)) = exp
{(

1
σ2

)
µ(θ)′x− 1

2σ2
|µ(θ)|2

}
p0(x).(5.5.5)

The mathematical curvature of mean vector µ(θ) is

ΓM (θ) =
det (µ̇(θ) : µ̈(θ))

| µ̇(θ) |3 =
1
ρ
.

On the other hand, since the parametric in the density (5.5.5) is α(θ) = (1/σ2)µ(θ) and the
covariance matrix is Σ(θ) = σ2 I, the statistical curvature is

ΓS(θ) =
det

(
Σ(θ)

1
2 α̇(θ) : Σ(θ)

1
2 α̈(θ)

)
|Σ(θ)

1
2 α̇(θ) |3

=
det

(
1
σ µ̇(θ) : 1

σ µ̈(θ)
)

| 1
σ µ̇(θ) |3 =

σ

ρ
.

The Fisher information is

I(θ) = α̇(θ)′Σ(θ) α̇(θ) =
1
σ2

µ̇(θ)′ µ̇(θ) =
ρ2

σ2
.

Hence, we obtain the asymptotic representation of information loss as follows :

1 = I(θ) ΓS(θ)2 =

(
ρ2

σ2

) (
σ

ρ

)2

.

Meanwhile

I(θ) ΓM (θ)2 =

(
ρ2

σ2

) (
1
ρ

)2

(�= 1)

except for σ = 1. That is, this example shows that the curvature used in the asymptotic
representation of the information loss is the statistical curvature, but not the mathematical
curvature.



Chapter 6

The Circular Mechanism

6.1 Introduction

Efron defined the statistical curvature ΓS(θ) and showed that the asymptotic information loss of
maximum likelihood estimator (MLE) θ̂ is represented by the product of the Fisher information
and the statistical curvature square, that is,

lim
n→∞Eθ̂

[
V
[
�̇n(θ) | θ̂

] ]
= I(θ) ΓS(θ)2,

where the expectation in the left-hand side means the expectation by the marginal probability
(density) function of θ̂. Here we shall investigate the statistical curvature not in the information
loss but itself in detail. In order to do it, we restrict the curved exponential family to one with
the two dimensional.

In this chapter, we aim to grasp relationships between the former classical likelihood theories
and the later recent information geometry by the ”circular mechanism” in the two dimensional
curved exponential family, where the circular mechanism is an algorithm to describe the os-
culating circle with the radius |ΓS(θ) |−1 by using derivatives to second order of log-likelihood
function.

We shall expose the mathematical curvature and the statistical curvature of the natural
parameter vector indexed by the parameter θ in the curved exponential family. And we shall
define the circular mechanism as the relationship between the frame of the traditional likelihood
theory and the frame of the information geometry and prove some properties of the circular
mechanism.

6.2 Mathematical and statistical curvatures in curved expo-
nential family

For vectors x,α in the two dimensional Euclidean space R2 :

x =

(
x1

x2

)
, α =

(
α1

α2

)
,

31
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set the transpose and length of x :

x′ = (x1, x2), |x | =
√

x2
1 + x2

2,

respectively, and the inner product of x,α :

〈α, x〉 = α1x1 + α2x2.

Let two dimensional random vector X = (X1,X2)′ be distributed to a curved exponential
distribution with the density :

f(x : α(θ)) = exp{ 〈α(θ),x〉 − ψ(α(θ)) } p0(x),

where p0(x) is the pivotal density function ψ(α(θ)) is the cumulant generating function. Let us
consider the natural parameter curve {α(θ) : θ ∈ Θ} in the natural parameter space A. Suppose
the following conditions :

(C1) The parameter space Θ is a compact subspace of R1.

(C2) If θ1 �= θ2 for θ1, θ2 ∈ Θ, then α(θ1) �= α(θ2).

(C3) The curve α(θ) is twice continuous differentiable with respect to θ in the interior of Θ.

(C4) The second differentiation of α(θ) is not the zero vector 0 and not parallel to the first
differentiation.

(C5) ψ(α) is strictly convex.

The following lemma is well-known and easy to see :

Lemma 6.2.1 (1) The expectation of X is :

β(θ) = β(α(θ)) = E[X ] = ∇ψ(α(θ)).

(2) The covariance matrix of X is positive definite :

Σ(θ) = Σ(α(θ)) = V [X] = ∇′∇ψ(α(θ)).

(3) Let the dot notation ” ˙ ” mean the differentiation with respect to θ. Then,

β̇(θ) = Σ(θ) α̇(θ).(6.2.1)

Let the log-likelihood be denoted by :

�(θ |x) = log f(x : α(θ)).

Then, the derivatives to the second order with respect to θ are

�̇(θ |x) = < α̇(θ), x− β(θ) >,(6.2.2)
�̈(θ |x) = < α̈(θ), x− β(θ) > − < α̇(θ), β̇(θ) > .(6.2.3)

These differentiations imply the following relations;
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Lemma 6.2.2 The expectations and covariances of (6.2.2) and (6.2.3) are

E[ �̇(θ |X) ] = 0,

E[ �̈(θ |X) ] = −α̇(θ)′Σ(θ) α̇(θ),
V [ �̇(θ |X) ] = α̇(θ)′Σ(θ) α̇(θ) = E[− �̈(θ |X) ],
V [ �̈(θ |X) ] = α̈(θ)′Σ(θ) α̈(θ),

Cov[ �̇(θ |X), �̈(θ |X) ] = α̇(θ)′Σ(θ) α̈(θ).

Thus the Fisher information is :

I(θ) = α̇(θ)′Σ(θ) α̇(θ),

and is positive definite and finite, because Σ(θ) is positive definite.
Now, let us consider the curvature of the natural parameter curve {α(θ) : θ ∈ Θ} in A. The

mathematical curvature ΓM (θ) (say) of the curve α(θ) is defined by :

ΓM (θ) =
|det (α̇(θ) : α̈(θ)) |

|α̇(θ)|3 =
|α̇1(θ)α̈2(θ)− α̇2(θ)α̈1(θ)|

|α̇1(θ)2 + α̇2(θ)2| 32
,(6.2.4)

where the notation ( : ) means the matrix making from two vectors, that is, for any two vectors
a = (a1, a2)′, b = (b1, b2)′,

(a : b) =

(
a1 b1
a2 b2

)
.

It is easy to see :

ΓM(θ)2 =
α̇(θ)′ α̇(θ) α̈(θ)′ α̈(θ) − { α̇(θ)′ α̈(θ) }2

{ α̇(θ)′ α̇(θ) }3 .

This is also represented by the inner product as follows :

ΓM (θ)2 =
〈 α̇(θ), α̇(θ) 〉 〈 α̈(θ), α̈(θ) 〉 − 〈 α̇(θ), α̈(θ) 〉2

〈 α̇(θ), α̇(θ) 〉3 .(6.2.5)

On the other hand, Efron(1975) defined the statistical curvature ΓS(θ) (say) of the log-likelihood
function �(θ |x) in general, as follows :

ΓS(θ)2 =
V [ �̇(θ |X) ]V [ �̈(θ |X) ] −

{
Cov[ �̇(θ |X), �̈(θ |X) ]

}2

{
V [ �̇(θ |X) ]

}3 .

By Lemma 6.2.2, it is also represented in the curved exponential family, as follows :

ΓS(θ)2 =
α̇(θ)′Σ(θ) α̇(θ) α̈(θ)′Σ(θ) α̈(θ) − {α̇(θ)′Σ(θ) α̈(θ)}2

{α̇(θ)′Σ(θ) α̇(θ)}3 .(6.2.6)

Let a new inner product 〈〈 , 〉〉 be

〈〈α(θ), α(θ) 〉〉 = 〈α(θ), α(θ) 〉Σ(θ) = α(θ)′Σ(θ)α(θ).
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Then the statistical curvature (6.2.6) is also represented by the new inner product as follows :

ΓS(θ)2 =
〈〈 α̇(θ), α̇(θ) 〉〉 〈〈 α̈(θ), α̈(θ) 〉〉 − 〈〈 α̇(θ), α̈(θ) 〉〉2

〈〈 α̇(θ), α̇(θ) 〉〉3 .(6.2.7)

By the comparison of (6.2.5) and (6.2.7), we can understand that the statistical curvature of
the log-likelihood function �(θ |x) has formally a similar representation with the mathematical
curvature of the curve α(θ). But there exists essentially a structural gap between the statistical
curvature ΓS(θ) and the mathematical curvature ΓM(θ). We shall describe it in detail as the
following section.

6.3 Circular mechanism

In the two dimensional curved exponential family, the log-likelihood function has the circular
mechanism that derives the statistical curvature and the center of osculating circle. We shall
describe the circular mechanism as follows :

Circular Mechanism Let us consider the following two equations of x = (x1, x2)′ under a
fixed parameter θ :

�̇(θ |x) = 0,
�̈(θ |x) = 0,

although the first one is, usually, well known as the likelihood equation of parameter θ under
a given observation x. The solution c(θ) (say) implies the center of osculating circle and the
length between the center and the expectation parameter leads to the statistical curvature ΓS(θ).

We shall investigate relationships as the structure between the mathematical curvature and
the statistical curvature in the circular mechanism by the following various cases. These case-
studies shall elucidate the connection of two curvatures step by step.

(Case 1) V [X ] = I2

Theorem 6.3.1 If the variance matrix is V [X ] = I2, then the two equations in the circular
mechanism are, for a fixed parameter θ,

�̇(θ |x) = 〈α̇(θ), x− b−α(θ)〉 = 0,
�̈(θ |x) = 〈α̈(θ), x− b−α(θ)〉 − 〈α̇(θ), α̇(θ)〉 = 0,

where b is a constant vector. Thus, for the solution c(θ) in the circular mechanism, the point c(θ)
is the center of osculating circle at α(θ) and the length between the center and the expectation
parameter leads the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x).

Proof : This case is the simplest case. By Lemma 6.2.1, it holds that there exists a vector b
such that

ψ(α(θ)) =
|α(θ)|2

2
+ 〈α(θ), b〉,
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so that the expectation parameter is β(θ) = α(θ) + b. We shall consider the solution c(θ) in
the circular mechanism. Since the first equation is represented by

〈α̇(θ), x− b−α(θ)〉 = 0,

there exists r such that
x− b−α(θ) = rS(

π

2
)α̇(θ),

where S(·) is the rotation matrix in the two dimensional space, that is,

S(η) =

(
cos η − sin η
sin η cos η

)
, ∀η ∈ [0, 2π).

By substituting this into the second equation,

r 〈α̈(θ), S(
π

2
)α̇(θ)〉 − 〈α̇(θ), α̇(θ)〉 = 0,

so that we obtain the solution in the circular mechanism :

c(θ) = b + α(θ) +
〈α̇(θ), α̇(θ)〉

〈α̈(θ), S(π
2 )α̇(θ)〉 S(

π

2
)α̇(θ)

= β(θ) +
〈α̇(θ), α̇(θ)〉

det (α̇(θ) : α̈(θ))
S(

π

2
)α̇(θ).

Thus the length between c(θ) and β(θ) leads the statistical curvature, that is,

| c(θ)− β(θ) |2 =
〈α̇(θ), α̇(θ)〉2

{det (α̇(θ) : α̈(θ))}2 〈α̇(θ), α̇(θ)〉 =
1

ΓS(θ)2
(6.3.1)

by the definition (6.2.6). Since β(θ) = α(θ)+b, the mathematical curvature ΓM (θ) of the curve
α(θ) is equal to one of the curve β(θ), that is,

ΓM(θ)2 =
α̇(θ)′ α̇(θ) α̈(θ)′ α̈(θ) − { α̇(θ)′ α̈(θ) }2

{ α̇(θ)′ α̇(θ) }3 ,

so that the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x) is equivalent to the
mathematical curvature ΓM(θ) of the curve α(θ). Thus the point c(θ) becomes the center of
osculating circle at α(θ). ✷

(Case 2) V [X ] = σ2I2

Theorem 6.3.2 If the variance matrix is V [X ] = σ2I2, then the two equations in the circular
mechanism are, for a fixed parameter θ,

�̇(θ |x) = 〈α̇(θ), x− b− σ2 α(θ)〉 = 0,
�̈(θ |x) = 〈α̈(θ), x− b− σ2 α(θ)〉 − 〈α̇(θ), σ2 α̇(θ)〉 = 0.

Thus, for the solution c(θ) in the circular mechanism, the point c(θ)/σ is the center of osculating
circle at σ α(θ) and the length between c(θ) and β(θ) leads the statistical curvature ΓS(θ) of the
log-likelihood function �(θ |x).
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Proof : If σ = 1, then this is the same with Theorem 6.3.1, so we may assume that σ �= 1.
Since V [X] = σ2I2,

ψ(α(θ)) =
σ2 |α(θ)|2

2
+ 〈α(θ), b〉,

so that the expectation parameter is β(θ) = σ2 α(θ) + b. We shall consider the solution c(θ) in
the circular mechanism. Here we shall convert the formulations of the above two equations as
follows :

�̇(θ |x) = 〈σ α̇(θ),
1
σ
(x− b)− σ α(θ)〉 = 0,

�̈(θ |x) = 〈σ α̈(θ),
1
σ
(x− b)− σ α(θ)〉 − 〈σ α̇(θ), σ α̇(θ)〉 = 0.

The first equation implies that there exists r such that

1
σ
(x− b)− σ α(θ) = r S(

π

2
)σ α̇(θ).

By substituting this into the second equation,

r 〈σ α̈(θ), S(
π

2
)σ α̇(θ)〉 − 〈σ α̇(θ), σ α̇(θ)〉 = 0,

so that we obtain the solution in the circular mechanism :

c(θ) = b + σ2 α(θ) + σ
〈σ α̇(θ), σ α̇(θ)〉

〈σ α̈(θ), S(π
2 )σ α̇(θ)〉 S(

π

2
)σ α̇(θ)

= β(θ) + σ
〈σ α̇(θ), σ α̇(θ)〉

det (σ α̇(θ) : σ α̈(θ))
S(

π

2
)σ α̇(θ).

Thus the length between c(θ) and β(θ) leads the statistical curvature, that is,

| c(θ)− β(θ) |2 = σ2 〈σ α̇(θ), σ α̇(θ)〉2
{det (σ α̇(θ) : σ α̈(θ))}2 〈σ α̇(θ), σ α̇(θ)〉 =

σ2

ΓS(θ)2
(6.3.2)

by the definition (6.2.6). (Compare this with the length (6.3.1) of Case 1.) In other words,
the length square between c(θ)/σ and β(θ)/σ is exactly the inverse of ΓS(θ)2. Since β(θ) =
σ2 α(θ)+ b, the mathematical curvature of the curve α(θ) is not equal to one of the curve β(θ).
But the mathematical curvature of the curve σ α(θ) is equal to one of the curve β(θ)/σ, that
is,

ΓM(θ)2 =
1
σ2

α̇(θ)′ α̇(θ) α̈(θ)′ α̈(θ) − { α̇(θ)′ α̈(θ) }2
{ α̇(θ)′ α̇(θ) }3 ,

so that the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x) is equivalent to the
mathematical curvature ΓM (θ) of the curve σ α(θ). Thus the point c(θ)/σ becomes the center
of osculating circle at σ α(θ). ✷

(Case 3) V [X ] = Σ
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Theorem 6.3.3 If the variance matrix is V [X ] = Σ, then the two equations in the circular
mechanism are, for a fixed parameter θ,

�̇(θ |x) = 〈α̇(θ), x− b−Σα(θ)〉 = 0,
�̈(θ |x) = 〈α̈(θ), x− b−Σα(θ)〉 − 〈α̇(θ), Σ α̇(θ)〉 = 0.

Thus, for the solution c(θ) in the circular mechanism, the point Σ− 1
2 c(θ) is the center of os-

culating circle at Σ
1
2 α(θ) and the length between c(θ) and β(θ) leads the statistical curvature

ΓS(θ) of the log-likelihood function �(θ |x).

Proof : If Σ = σ2I2, then this is the same with Theorem 6.3.2, so that we may assume that
Σ �= σ2I2. Since V [X] = Σ,

ψ(α(θ)) =
α(θ)′Σα(θ)

2
+ 〈α(θ), b〉,

so that the expectation parameter is β(θ) = Σα(θ) + b. We shall consider the solution c(θ) in
the circular mechanism. Here we shall convert the formulations of the above two equations as
follows :

�̇(θ |x) = 〈Σ1
2 α̇(θ), Σ− 1

2 (x− b)−Σ
1
2 α(θ)〉 = 0,

�̈(θ |x) = 〈Σ1
2 α̈(θ), Σ− 1

2 (x− b)−Σ
1
2 α(θ)〉 − 〈Σ 1

2 α̇(θ), Σ
1
2 α̇(θ)〉 = 0.

The first equation implies that there exists r such that

Σ− 1
2 (x− b)−Σ

1
2 α(θ) = r S(

π

2
)Σ

1
2 α̇(θ).

By substituting this into the second equation,

r 〈Σ 1
2 α̈(θ), S(

π

2
)Σ

1
2 α̇(θ)〉 − 〈Σ 1

2 α̇(θ), Σ
1
2 α̇(θ)〉 = 0,

so that we obtain the solution in the circular mechanism :

c(θ) = b +Σα(θ) +Σ
1
2

〈Σ 1
2 α̇(θ), Σ

1
2 α̇(θ)〉

〈Σ 1
2 α̈(θ), S(π

2 )Σ
1
2 α̇(θ)〉

S(
π

2
)Σ

1
2 α̇(θ)

= β(θ) +Σ
1
2

〈Σ 1
2 α̇(θ), Σ

1
2 α̇(θ)〉

det
(
Σ

1
2 α̇(θ) : Σ

1
2 α̈(θ)

)S(π
2
)Σ

1
2 α̇(θ).

Thus the length between c(θ) and β(θ) leads the statistical curvature, that is,

| c(θ)− β(θ) |2 =
〈Σ 1

2 α̇(θ), Σ
1
2 α̇(θ)〉2{

det
(
Σ

1
2 α̇(θ) : Σ

1
2 α̈(θ)

)}2 〈〈S(
π

2
)Σ

1
2 α̇(θ), S(

π

2
)Σ

1
2 α̇(θ)〉〉

=
1

ΓS(θ)2
〈〈S(π

2 )Σ
1
2 α̇(θ), S(π

2 )Σ
1
2 α̇(θ)〉〉

〈Σ 1
2 α̇(θ), Σ

1
2 α̇(θ)〉

(6.3.3)

by the definition (6.2.6). (Compare this with the length (6.3.2) of Case 2.) In other words, the
length square between Σ− 1

2 c(θ) and Σ− 1
2 β(θ) is exactly the inverse of ΓS(θ)2. Since β(θ) =
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Σα(θ)+ b, the mathematical curvature of the curve α(θ) is not equal to one of the curve β(θ).
But the mathematical curvature of the curve Σ

1
2 α(θ) is equal to one of the curve Σ− 1

2 β(θ), that
is,

ΓM(θ)2 =
α̇(θ)′Σ α̇(θ) α̈(θ)′Σ α̈(θ) − {α̇(θ)′Σ α̈(θ)}2

{α̇(θ)′Σ α̇(θ)}3 ,

so that the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x) is equivalent to the
mathematical curvature ΓM(θ) of the curve Σ

1
2 α(θ). Thus the point Σ− 1

2 c(θ) becomes the
center of osculating circle at Σ

1
2 α(θ). ✷

From the above three cases we shall obtain a relation between the statistical curvature and the
mathematical curvature as follows :

Theorem 6.3.4 If the variance matrix V [X ] does not depend on the parameter θ, that is,
V [X ] = Σ, then the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x) is equal to
the mathematical curvature ΓM (θ) of the curve Σ

1
2 α(θ). ✷

(Case 4) V [X ] = Σ(θ)

Theorem 6.3.5 If the variance matrix is V [X] = Σ(θ), then the two equations in the circular
mechanism are, for a fixed parameter θ,

�̇(θ |x) = 〈α̇(θ), x− β(θ)〉 = 0,
�̈(θ |x) = 〈α̈(θ), x− β(θ)〉 − 〈α̇(θ), Σ(θ) α̇(θ)〉 = 0.

Thus, for the solution c(θ) in the circular mechanism, the length between c(θ) and β(θ) leads
the statistical curvature ΓS(θ) of the log-likelihood function �(θ |x).

Proof : If the variance Σ(θ) does not depend on the parameter θ, this is the same with
Theorem 6.3.3, so we may assume that the variance depends on the parameter θ. Then the
cumulant generating function ψ(α(θ)) may be not expressed by α(θ) explicitly, but we can use
the differential relation (6.2.1) :

β̇(θ) = Σ(θ) α̇(θ).

We shall consider the solution c(θ) in the circular mechanism. Here we shall convert the formu-
lations of the above two equations as follows :

�̇(θ |x) = 〈Σ(θ)
1
2 α̇(θ), Σ(θ)

1
2 (x− β(θ))〉 = 0,

�̈(θ |x) = 〈Σ(θ)
1
2 α̈(θ), Σ(θ)−

1
2 (x− β(θ))〉 − 〈Σ(θ)

1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉 = 0.

The first equation implies that there exists r such that

Σ(θ)−
1
2 (x− β(θ)) = r S(

π

2
)Σ(θ)

1
2 α̇(θ).

By substituting this into the second equation,

r 〈Σ(θ)
1
2 α̈(θ), S(

π

2
)Σ(θ)

1
2 α̇(θ)〉 − 〈Σ(θ)

1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉 = 0,
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so that we obtain the solution in the circular mechanism :

c(θ) = β(θ) +Σ(θ)
1
2

〈Σ(θ)
1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉

〈Σ(θ)
1
2 α̈(θ), S(π

2 )Σ(θ)
1
2 α̇(θ)〉

S(
π

2
)Σ(θ)

1
2 α̇(θ)

= β(θ) +Σ(θ)
1
2

〈Σ(θ)
1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉

det
(
Σ(θ)

1
2 α̇(θ) : Σ(θ)

1
2 α̈(θ)

)S(π
2
)Σ(θ)

1
2 α̇(θ).

Thus the length between c(θ) and β(θ) leads the statistical curvature, that is,

| c(θ)− β(θ) |2 =
〈Σ(θ)

1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉2{

det
(
Σ(θ)

1
2 α̇(θ) : Σ(θ)

1
2 α̈(θ)

)}2 〈〈S(
π

2
)Σ(θ)

1
2 α̇(θ), S(

π

2
)Σ(θ)

1
2 α̇(θ)〉〉

=
1

ΓS(θ)2
〈〈S(π

2 )Σ(θ)
1
2 α̇(θ), S(π

2 )Σ(θ)
1
2 α̇(θ)〉〉

〈Σ(θ)
1
2 α̇(θ), Σ(θ)

1
2 α̇(θ)〉

(6.3.4)

by the definition (6.2.6). (Compare this with the length (6.3.3) of Case 3.) In other words, the
length square between Σ(θ)−

1
2 c(θ) and Σ(θ)−

1
2 β(θ) is exactly the inverse of ΓS(θ)2. ✷

In Theorem 6.3.5, we do not insist that the solution c(θ) implies the center of osculating circle,
because there exists the fatal difference as the structure between the statistical curvature of the
log-likelihood function �(θ |x) and the mathematical curvature.

Theorem 6.3.6 If the variance V [X] depends on the parameter θ, the statistical curvature of
the log-likelihood function �(θ |x) is different from the mathematical curvatures of the curves
α(θ), β(θ), and Σ(θ)

1
2 α(θ).

Proof : Under this condition, the statistical curvature of the log-likelihood function �(θ |x) is
also represented by

ΓS(θ) =
det

(
Σ(θ)

1
2 α̇(θ) : Σ(θ)

1
2 α̈(θ)

)
∣∣∣Σ(θ)

1
2 α̇(θ)

∣∣∣3
by easy calculations. Thus it is clear that this curvature is different from the mathematical
curvature of the curves α(θ) and β(θ). Then what we must consider is the case of curve
Σ(θ)

1
2 α(θ). Since the variance depends on the parameter θ, the derivatives of the curve are

∂

∂θ

{
Σ(θ)

1
2 α(θ)

}
= Σ̇(θ)

1
2 α(θ) + Σ(θ)

1
2 α̇(θ),(6.3.5)

∂2

∂θ2

{
Σ(θ)

1
2 α(θ)

}
= Σ̈(θ)

1
2 α(θ) + 2 Σ̇(θ)

1
2 α̇(θ) + Σ(θ)

1
2 α̈(θ).(6.3.6)

We shall investigate whether the above first equation (6.3.5) is equal to Σ
1
2 α̇(θ). If the first

equation (6.3.5) is not equal to Σ
1
2 α̇(θ), then it is obvious that ΓM (θ) �= ΓS(θ).

Assume that ∂/ ∂θ Σ(θ)
1
2 α(θ) = Σ

1
2 α̇(θ), that is,

Σ̇(θ)
1
2 α(θ) = 0.
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In this case the determinant of Σ̇(θ)
1
2 must be zero. Since

∂

∂θ

{
Σ̇(θ)

1
2 α(θ)

}
= Σ̈(θ)

1
2 α(θ) + Σ̇(θ)

1
2 α̇(θ) = 0,

the second equation (6.3.6) is

∂2

∂θ2

{
Σ(θ)

1
2 α(θ)

}
= Σ̇(θ)

1
2 α̇(θ) + Σ(θ)

1
2 α̈(θ).

Here suppose that Σ̇(θ)
1
2 α̇(θ) = 0. Then it holds that

Σ̇(θ)
1
2 (α(θ) : α̇(θ)) = 0 that is, det (α(θ) : α̇(θ)) = 0,

so that α(θ) is parallel to α̇(θ). Thus there exists k such that α̇(θ) = k α(θ), so that

α(θ) =

(
α1(θ)
α2(θ)

)
=

(
exp{k θ + a1}
exp{k θ + a2}

)
,

where a1, a2 are constants. This implies that the curve α(θ) is a straight line, so that the
condition Σ̇(θ)

1
2 α̇(θ) = 0 contradicts the assumption (C4) of curve α(θ). Thus

Σ̇(θ)
1
2 α̇(θ) �= 0,

so that the second equation (6.3.6) is

∂2

∂θ2

{
Σ(θ)

1
2 α(θ)

}
= Σ̇(θ)

1
2 α̇(θ) + Σ(θ)

1
2 α̈(θ) �= Σ(θ)

1
2 α̈(θ).

Therefore the mathematical curvature ΓM(θ) of the curve Σ(θ)
1
2 α(θ) is not equal to the statis-

tical curvature ΓS(θ) of the log-likelihood function �(θ |x) even if Σ̇(θ)
1
2 α(θ) = 0. The proof is

completed. ✷

A key in Theorem 6.3.6 is that the variance structure changes locally by the point of parametric
α(θ). As we see in Theorem 6.3.4, if the variance does not depend on the parameter θ, then
the variance structure does not change by the point of parametric α(θ), that is, the variance
structure is constant globally.

In the frame of the traditional likelihood estimation theories, since the variance changes by
the point of α(θ), the curve α(θ) on the likelihood can not be regarded continuous ordinarily
against the curve on the mathematical curvature. This is the reason why we purposely describe
the statistical curvature as the statistical curvature of the log-likelihood function �(θ |x). This
localization implies the information geometry like Amari’s frame(1985) based on the Fisher
information I(θ) as the local metric in the differential geometry. Thus we obtain that the
circular mechanism is also a connection between the frame of the traditional likelihood estimation
theories and one of the information geometry.
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6.4 Some properties of circular mechanism

We shall show some properties with respect to the circular mechanism. Let

L(θ) = {x : �̇(θ |x) = 0 }
be a subset for any fixed θ. As a geometrical interpretation of the solution c(θ) in the circular
mechanism, we have the following lemma :

Lemma 6.4.1 If the point x satisfies that

�̇(θ |x) = 0 and �̈(θ |x) = 0,

then it approximately holds that
x ∈ L(θ) ∩ L(θ + δ)(6.4.1)

where θ + δ belongs to a neighborhood of θ.

Proof : From the first equation �̇(θ |x) = 0 and (6.2.2), it holds that x ∈ L(θ), that is,

x− β(θ) ⊥ α̇(θ).

For any θ+δ in a neighborhood of θ, we consider �̇(θ |x). Under the second equation �̈(θ |x) = 0,
we have

�̇(θ + δ |x) = �̇(θ |x) + δ �̈(θ |x) +O(δ2) = O(δ2),

so that it approximately holds that

x− β(θ + δ) ⊥ α̇(θ + δ).

That is, (6.4.1) holds by ignoring the second and higher terms of δ. ✷

This lemma means that the point c(θ) in the circular mechanism is less variation in the neigh-
borhood with respect to L(θ).

We shall define a pseudo-length, circle, and semi-line in the circular mechanism as follows :
Let r(x, β(θ)) be a pseudo-length such that

Σ(θ)−
1
2 (x− β(θ)) = r(x, β(θ))

S(π
2 )Σ(θ)

1
2 α̇(θ)∣∣∣Σ(θ)

1
2 α̇(θ)

∣∣∣
for any x ∈ L(θ). It holds that r(c(θ), β(θ)) = 1/ΓS(θ), and we have the angle ξ(θ) such that

e(ξ(θ)) =

(
cos ξ(θ)
sin ξ(θ)

)
=

Σ(θ)−
1
2 β(θ)−Σ(θ)−

1
2 c(θ)∣∣∣Σ(θ)−

1
2 β(θ)−Σ(θ)−

1
2 c(θ)

∣∣∣ ,
where ξ(θ) ∈ [0, 2π). Thereby the following circle and semi-line are defined by regarding the
point Σ(θ)−

1
2 c(θ) as the center;

B(c(θ)) =
{
Σ(θ)−

1
2 c(θ) +

1
|ΓS(θ)| S(t)e(ξ(θ)) : t ∈ [0, 2π)

}
,(6.4.2)

L(c(θ))+ =
{
Σ(θ)−

1
2 c(θ) + r e(ξ(θ)) : r ∈ [0,∞)

}
.(6.4.3)

We shall prepare the following lemma in order to obtain the next theorem:
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Lemma 6.4.2 In the curved exponential family, the variance matrix Σ(θ) does not depend on
the parameter θ if and only if the pivotal probability (density) function p0(x) is the normal
density.

Proof : The sufficiency is trivial. We shall demonstrate the necessity. By Lemma 6.2.1,
ψ(α(θ)) satisfies the following differential equation :

∇′∇ψ(α(θ)) = Σ.

Thereby we have

ψ(α(θ)) =
1
2
α(θ)′Σα(θ) + 〈α(θ), b〉 + C,

where b is a constant vector and C is a constant. Thus the moment generating function by the
parameter α(θ) of p0(x) is

exp
{
1
2
α(θ)′Σα(θ) + 〈α(θ), b〉 + C

}
.

By substituting α(θ) = 0, it holds that the constant term C is zero, so that, by the relation
between the moment generating function and the distribution, p0(x) is the density of the normal
distribution with the expectation b and the variance Σ. The proof is completed. ✷

The following theorem is important for giving some significances to the quantities with
respect to the circular mechanism.

Theorem 6.4.1 If the pivotal probability (density) function in the two dimensional curved ex-
ponential family is the normal density, then, for the curve Σ

1
2 α(θ),

1. The mathematical curvature ΓM (θ) is equivalent to the statistical curvature ΓS(θ).

2. The point Σ− 1
2 c(θ) is the center of curvature.

3. B(c(θ)) is the osculating circle at Σ
1
2 α(θ).

Proof : From Lemma 6.4.2, the variance matrix Σ does not depend on θ. Thus, by Theorem
6.3.4, the first result holds, so that it is easy to check the second and third results. The proof is
completed. ✷

For the quantities (6.4.2) and (6.4.3) of a simple circular mechanism, see Figure 6.1.



CHAPTER 6. THE CIRCULAR MECHANISM 43

-2-10123456

-4
-3

-2
-1

0
1

2
3

c(
θ)

B
(c

(θ
))

{α
(θ

)}

α(
θ)

L
(c

(θ
))

+

Figure 6.1: Figure of Simple Circular Mechanism
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Appendices

7.1 Convex Conjugate

We shall describe some basic properties about the convex conjugate and Legendre transformation
based on Rockafellar(1970).

Let ψ be a function such that

ψ : Rk −→ R ∪ {±∞},

where k is an integer. The epigraph of ψ, denoted by epi(ψ), is defined as follows;

epi(ψ) = { (α, a) | α ∈ Rk, a ∈ R, a ≥ ψ(α) }.

The function ψ is defined to be convex on Rk if the epigraph epi(ψ) is convex as a subset of
Rk+1. Note that a function ψ is concave if epi(−ψ) is convex. And the effective domain of a
convex function ψ on Rk, denoted by dom(ψ), is defined by

dom(ψ) = {α | ∃a such that (α, a) ∈ epi(ψ) } = {α | ψ(α) < +∞}.

Note that this domain is convex. A convex function ψ is proper if dom(ψ) is non-empty and the
restriction of ψ to dom(ψ) is finite. The closure cl(ψ) of a convex function ψ is defined by

cl(ψ)(α0) = lim inf
α→α0

ψ(α).

A convex function ψ is said to be closed if cl(ψ) = ψ. Therefore the following lemma is known
(see Rockafellar, page 51);

Lemma 7.1.1 The following three properties are equivalent;

(a) ψ is a closed proper convex function.

(b) {α | ψ(α) ≤ a } is closed for any a ∈ R.

(c) epi(ψ) is a closed set in Rk+1. ✷

44
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Any affine function η on Rk is represented by

η(α) = 〈α, z〉 − b, for z ∈ Rk, b ∈ R,

where the notation 〈 , 〉 means the usual inner product in the Euclidean space. Then we have
the theorem (See Rockafellar, page 102);

Theorem 7.1.1 A closed proper convex function ψ is the pointwise supremum of the collection
of all affine functions η such that η ≤ ψ. ✷

This theorem implies the following corollary (See Rockafellar, page 103);

Corollary 7.1.1 Given any proper convex function ψ on Rk, there exists some z ∈ Rk and
b ∈ R such that ψ(α) ≥ 〈α, z〉 − b for every α. ✷

We shall consider the set {(z, b)} such that

ψ(α) ≥ η(α) = 〈α, z〉 − b for epi(ψ).

Since that ψ(α) ≥ η(α) for any α is equal to that

b ≥ sup{〈α, z〉 − ψ(α) | α ∈ Rk},

by defining the function ψ∗ as follows

ψ∗(z) = sup
α
{〈α, z〉 − ψ(α)},

the set {(z, b)} we desire consists with the epigraph of ψ∗. Actually, the function ψ∗ is the
pointwise supremum of

η∗(z) = 〈α, z〉 − a such that (α, a) ∈ epi(ψ).

The function ψ∗ is called the conjugate of ψ and it is easy to check that ψ∗ is a closed proper
convex function. Since the function ψ is the pointwise supremum of

η(α) = 〈α, z〉 − b such that (z, b) ∈ epi(ψ∗),

it holds that
ψ(α) = sup

z
{〈α, z〉 − ψ∗(z)},

so that the conjugate ψ∗∗ of ψ∗ is ψ. It is known that the inequality

〈α, z〉 ≤ ψ(α) + ψ∗(z), for any α,z,

holds for any proper convex function ψ and its conjugate ψ∗. This inequality is called Fenchel’s
inequality.

Let a proper convex function ψ be essentially smooth if it satisfies the following three con-
ditions for the interior S of dom(ψ);

(a) S is not empty.

(b) ψ is differentiable throughout S.
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(c) limj→∞ |∇ψ(α)| = +∞ whenever α1,α2, . . . is a sequence in S converging to a boundary
point α of S.

Hereafter, we assume that the above three conditions are satisfied when we consider the differ-
entiability of ψ. Note that the notation ∇ψ(α) means the gradient of ψ at α, that is,

∇ψ(α) =
∂

∂α
ψ(α).

The following theorem is known (See Rockafellar, page 242);

Theorem 7.1.2 Let ψ be a convex function, and let α be a point where ψ is finite. If ψ is
differentiable at α, then it holds that

ψ(α1) ≥ ψ(α) + 〈∇ψ(α), α1 −α〉, for any α1.

✷

Also we have that the gradient mapping ∇ψ : α → ∇ψ(α) is continuous on the set of points
where ψ is differentiable.

Now we shall consider the Legendre transformation. Let ψ be a differentiable real-valued
function on an open subset S of Rk. The Legendre conjugate of (S, ψ) is defined to be (SL, ψL)
where

SL = ∇ψ(S), ψL(αL) = 〈(∇ψ)−1(αL), αL〉 − ψ((∇ψ)−1(αL)),

and where (∇ψ)−1(αL) = {α | ∇ψ(α) = αL}. The Legendre transformation is defined by the
transformation from (S, ψ) to the Legendre conjugate (SL, ψL) when the latter is well-defined
(that is, single-valued). For a convex case, the following theorem is known (See Rockafellar,
page 256);

Theorem 7.1.3 Let ψ be any closed proper convex function such that the interior S of dom(ψ)
is non-empty and ψ is differentiable on S. The Legendre conjugate (SL, ψL) of (S, ψ) is then
well-defined. Moreover, SL is a subset of dom(ψ∗), and ψL is the restriction of ψ∗ to SL. ✷

Since the gradient mapping ∇ψ is continuous, under the change of variables z = ∇ψ(α), by
Theorem 7.1.3, it holds that

ψ∗(∇ψ(α)) = 〈α, ∇ψ(α)〉 − ψ(α).

If the gradient mapping ∇ψ is one-to-one, then it holds that

ψ∗(z) = 〈(∇ψ)−1(z), z〉 − ψ((∇ψ)−1(z)).

7.2 Information circle

We shall point out that the osculating circle B(c(θ)) in the circular mechanism is different from
the information circle which Efron(1978) showed. The definition of information circle is that,
for any fixed α0 ∈ A and a constant d ≥ 0,

CA = {α ∈ A : I(α0 ‖α) = d },
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where
I(α0 ‖α) =

∫
log

f(x : α0)
f(x : α)

f(x : α0) dx

is the Kullback-Leibler information. We shall show its counterexample by Fisher’s circle model.
Fisher’s circle model is the two dimensional normal distribution with the expectation β(θ) =
ρe(θ) and the variance I2 where e(θ) = (cos θ, sin θ)′ and ρ is a positive constant. Then the
density is represented by

f(x : θ) = exp

{
〈β(θ), x〉 − |β(θ) |

2

2

}
· 1
2π

exp

{
−|x |

2

2

}
.

Note that α(θ) = β(θ). Since the center of curvature is, by Theorem 6.3.1 in the circular
mechanism, c(θ) = 0 for any fixed θ, the osculating circle B(c(θ)) is equivalent to the original
expectation circle, that is, the radius is ρ. On the other hand, the information circle of α0 = 0
for α(θ) is

I(0 ‖α(θ)) =
|α(θ) |2

2
=

ρ2

2
(�= ρ).

thus the information circle is not equivalent to the osculating circle except for ρ = 2.

7.3 Fundamental of Amari’s frame

We shall explain the fundamental of Amari’s frame(1985). In general, we assume that the
parametric space A is a subset of Rk, that is, α = (α1, . . . , αk)′. As a set of density f(x : α),
let S = { f(x : α) } be a statistical model parameterized by α. Then Amari said

When the density f(x : α) is sufficiently smooth in α, it is natural to introduce
in a statistical model S the structure of an k− dimensional manifold, where α
plays the role of a coordinate system. (page 12)

And he assumed the following regularity conditions :

1. All the f(x : α)’s have a common support so that f(x : α) > 0 for all x.

2. Let �(α |x) = log f(x : α). For every fixed α, k functions in x

∂

∂αj
�(α |x), j = 1, . . . , k

are linearly independent.

3. The moments of random variables (∂/∂αj) �(α |x) exist up to necessary orders.

4. For any measurable function a(x, α),

∂

∂αj

∫
a(x, α) f(x : α) dx =

∫
∂

∂αj
a(x, α) f(x : α) dx.
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Let Tα(S) be the tangent vector space at α ∈ S. By the second regularity condition, the bases
of Tα(S) are represented as the following vectors

∂j = ∂j �(α |x) =
∂

∂αj
�(α |x), j = 1, . . . , k ,

that is, any element A of Tα(S) is

A =
k∑

j=1

Aj ∂j =
k∑

j=1

Aj ∂j �(α |x).

The manifold S is called a Riemannian space if the inner product 〈A, B〉 of two tangent vectors
A,B ∈ Tα(S) is defined. Then their inner product is defined by the following :

〈A, B〉 = E


 k∑

i,j=1

Ai Bj ∂i �(α |x) ∂j �(α |x)

 .

Hence the inner product of the two basis vectors ∂i and ∂j is

gij(α) = 〈∂i, ∂j〉 = E[ ∂i �(α |x) ∂j �(α |x) ].

k2 quantities gij(α) are called the metric tensor, so that the manifold S with the metric g = {gij}
becomes the Riemannian manifold (S, g). The matrix (gij(α)) is known in statistics as Fisher
information matrix. Thus the statistical model S is regarded as Euclidean space locally and as
Riemannian manifold globally. This is the fundamental of Amari’s framework.

Thereby, in Amari’s framework, we may need to consider the local behavior of f(x : α) at
α under the metric g, since the metric g changes with the point α. In the exponential family,
Fisher information matrix is represented by I(α) = Σ(α). If the variance matrix is constant as
we considered some cases in the circular mechanism, then the metric g is constant in Amari’s
framework, so that the statistical model S is regard as Euclidean space globally.
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