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ABSTRACT

We carry out canonical quantization of Witten’s string field theory in a mid-
point time formalism. In this formalism, the string interaction is represented as
a local interaction, and one can apply the canonical quantization procedure. A
path integral with respect to the momentum in phase space can be performed
after the Batalin-Vilkovsky gauge fixing procedure to get a naive Lagrangian
path integral. The kinetic term of the string, when rewritten in the mid-point
time coordinates, contains an apparently divergent expression. A prescription
is given to regularize it by discretizing the string. We calculate the equal time
commutation relation of string fields, and the theory is shown to coincide with
the one which is expected in the formal Lagrangian path integral quantization

that has been conventionally used.
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1. Introduction

The string or the superstring theory is expected as a candidate of unified
theory which governs all the matter and geometry. Each of excitation modes
of a string corresponds as an elementary particle, and all the interactions of
elementary particles are simply represented by processes of joining and splitting
of strings. Particularly, the gravity is included in the theory of closed string
which contains a massless spin-2 particle in the spectrum. Further, the spectrum
of an open string contains the Yang-Mills field in its massless sector. Green
and Schwarz have shown the superstring theory with the gauge group SO(32) or
Eg x Ey is free from chiral gauge and gravitational anomalies.” For these reasons,
the superstring theory is considered to be the most promising candidate of a

unified theory including renormalizable quantum gravity.

There have been many developments in string theory in recent years. Most
of them, however, are performed with the first quantized approach, for example,

the Polyakov path-integral formalism ™

and the first quantized operator formal-
ism which is studied as two-dimensional conformal field theory. In the Polyakov
formalism, S-matrix is represented as a path integral where one sums up all pos-
sible trajectories( weighted by an exponentiated action ) of a string( worldsheet
) in space-time with a given boundary condition. In this summation we have
to sum over all possible worldsheet topologies as well. However, within the first
quantized approach alone, the weight of each topology cannot be determined a
priori. While, a theory of second quantized string( string field theory ) can handle
this problem of relative weights. The string field theory must be also useful for
studying non-perturbative effects of strings. The bosonic string theory is known
to be consistent only in critical dimension D = 26. For a superstring, the critical
dimension is D = 10. Since our real world has space-time dimensions four, the
extra 22 (or 6) dimensions must be compactified on the Plank length scale. The
first quantized treatment gives us only little information on non-perturbative

effects such as compactification.



The second quantization of string was first carried out by Kaku and Kikkawa
in the light-cone gauge.'” The interactions of strings are introduced by construct-
ing five types of vertices which represent joining and splitting process of strings.
In this gauge, quantization can be carried out by the canonical formalism, and
the theory is a consistent field theory which satisfies unitarity. However, Lorentz
covariance is not manifest in the light-cone gauge. A manifestly covariant theory
of a free string was first given by Siegel™ by use of the BRST® method. The
interactions of covariant string field theories have been later introduced in two

fashions.

(1) A natural extension of the light-cone gauge interaction, in other words, a
joining and splitting type interaction, has been introduced by Hata, Itoh, Kugo,

! and closed™ strings are con-

Kunitomo and Ogawa. Theories of both open®
structed. Their theories involve an unphysical string width parameter a, which
plays a role similar to the momentum p; in the light-cone gauge string field the-
ory. This unphysical parameter, however, causes some troubles in the theory,
e.g., introduction of « gives rise to a divergence in loop amplitudes and causes

the breakdown of unitarity at the loop level in closed string theory.

(ii) An interaction vertex on which three strings shares their mid-points was
introduced by Witten.™ There is no need to bring any unphysical parameter
because all strings have the same width 7 in this theory. At first the theory
of an open string was constructed. Recently, the field theory of a closed string
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was constructed by introducing a non-polynomial interaction.” ™" However, the

non-polynomial theory cannot reproduce a correct loop amplitude.

As mentioned above, covariant string field theory appears to be plagued with
some problems about quantization in an essential way . One source of these
problems is absence of the canonical formalism. In most works on the string
field theory, the quantization procedures are based on a formal Lagrangian path
integral formalism, in which, one simply mimics the perturbation method by

regarding the kinetic energy as an unperturbed term and the interaction as the



perturbed one. In such an approach one can not ensure consistency of theories
with the canonical formalism. There is, in general, no guarantee that this leads
to the correct Feynman rulés. In some cases even in ordinary local field theories,
such a naive prescription fails to yield the correct canonical representation of
the path integral. A well-known example is the Lee-Yang term in a non-linear
o-model. Without the Lee-Yang term, the unitarity for the non-linear o-model is
broken at loop levels. Similarly, the problem of unitarity breaking of closed string
theory might have an origin in the absence of the canonical formalism. Hata"?
resolved the problem by adding terms which recover the BRST invariance of
path integral of string field by using the Batalin-Vilkovisky methods."® He has
obtained unitary amplitudes of a closed bosonic string at the loop-level.

Some attempts in the canonical formalism are performed for free string.m_lsl

However, the canonical quantization of an interacting string has not been car-
ried out in a satisfactory fashion. The main difficulty lies in the non-locality of
interaction. The non-locality arises from the displacement of the center of mass
coordinates of three interacting strings. However, the mid-points of three strings
are connected one another. The purpose of this paper is to show that, the diffi-
culty for Witten’s string field theory can be overcome by employing the mid-point
time formalism. After rewriting the interaction term by using the mid-point coor-
dinates, the interaction of strings become local. Hence we can carry out canonical
quantization. As a by-product, it turns out that the Batalin-Vilkovisky gauge-
fixing procedure is greatly simplified in the mid-point time formalism as com-
pared with the standard approach. In particular, the quantum correction which
1s necessary in the center of mass coordinates does not arise. When rewritten in
the mid-point coordinates, the kinetic term of the string contains an apparently
divergent expression. This divergence is regularized by discretizing a string. Un-
der the regularization, we can show that the equal time commutation relation of
the string fields in the mid-point coordinates is equivalent to the one which is

expected in the formal Lagrangian path integral.

The rest of this paper is organized as follows. In section 2, we review the first



quantization of a string and Witten’s string field theory. In section 3, the mid-
point coordinate of a string is introduced. We show that Witten’s interaction
of open strings is local in the mid-point coordinates. We shall find a divergence
in the kinetic term of the string field, which is regularized later by discretizing
the string. In section 4, we proceed canonical quantization by constructing the
canonical representation of the path integrals and find that the result coincides
with the formal configuration-space path integrals which have been convention-
ally used without justification. In this section we find that the gauge-fixed action
does not need no quantum correction when we carry out the Batalin-Vilkovsky
gauge-fixing procedure. Further we study the canonical commutation relation of
the string with discretization of the string coordinates. We thereby clarify the
physical meaning of the divergence in the string kinetic term. The last section is

devoted to conclusions. Some appendices are added.

2. Review of Witten’s String Field Theory
2.1 FIRST QUANTIZATION

In this section, we briefly review the first quantization of an open string. The

action describing a propagation of an open string is

1 oo T
S = “Tea dT/ dax/——gg"'baaX"abX”nu,,, (2.1)
— 00 o
where 7,, =diag(—,+,"--,+) is the metric of 26-dimensional space-time and ¢

is the metric of the two-dimensional worldsheet. The symbols 7 and (0 < o < 7)
denote time and space coordinates of two-dimensional worldsheet, respectively.

. The solution to the equation

o=

In the present paper, we set the parameter o/ =

of motion following from (2.1) represented as

I
XH — P I3 . An  _inr )
(r,0) =z +py7 +1 nééo e cosno (2.2)



provided with the boundary condition

Ea(;'ﬂ| ~0 (2.3)

o=0,7

where zf) = % foﬂ' doX*(0,0) is the center of mass coordinate of the string at

7 =0 and p} is the total momentum of the string. In the following, we suppress

space-time Lorentz indices whenever no confusion occurs.

The momentum conjugate to X(r,0) is

6S
P(T, 0') :gz—a_)_(.—
ar

1 —in
= [PO + Zane T cosna] .
nF£0

(2.4)

From now on, we only consider the fields on the 7 = 0 slice of worldsheet.

X (o) =zg +V2 Z T, COS N,

n>0
. (2.5)
P(o) = [po + \/§an cos na] ,
n>0
where
o = ——(an — o) antan).  (26)
n = = \Up — Q_yp), n = —=\ly T &_p). .
V2n SV
After the first quantization, the commutation relations are given by

[X*#(0), Py(o")] =in",é(c — o), (2.7)

which leads
[xmapn] = 16mn, [am7 an] = m6m+n,0- (2'8)

To fix the reparametrization freedom of the action, we choose the so-called

conformal gauge gap = €®nup(Mab =diag(—1,1)). A covariant first quantization
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with the gauge-fixing has been carried out by Kato and Ogawa[w]

by using
the BRST formalism. For gauge-fixing, we introduce Faddeev-Popov ghosts and

anti-ghosts:

co(a) =co+ Z Cp COS N0,

n#0
o) = —i Z cp sinno,
n#0
—1 i (2.9)
bo(o) = — Z by sinno,
n#0
b -1 b b
1(o) = - g—{—z n COSNO |,
n#£0
which obey the anti-commutation relations
{b1(0),¢%(0")} = 8(a — o),
{bo(0),c}(c")} = 6(c — o), (2.10)

{bma Cn} = 6m+n,0-

Because of the relation {bg, cp} = 1, the Fock vacuum of the ghost and anti-ghost

system is doubly degenerate with the vacua |+ ) and | — ) defined as

| +)=0, bo|+)=0, (n>0)
(2.11)
col+)=0, bol+)=]-)

and

| =)=0, by]=)=0, (n>0)
(2.12)
bl=)=0, col=)=I+)

6



Their inner products are given by

(+1+)=(=1-)=0  (+]-)=(-I+)=1  (219)

We assign ghost numbers to all state and operators. The ghost number is defined

by the eigenvalue of operator

1
Ny = 3lco, bo] + > (c-nbn = b_ncn). (2.14)
n>0
The ghost c*(o) has Ny = 1 and the anti-ghost b,(¢0) has N, = —1. The states
| + > and | — > have N, = +-12— and Ny = ——%, respectively. The generator of the
BRST transformation is given by

1 1
QB — _5 Z P O Cep—m - —}—5 Z(n — m) : C_nC-mbn+m : +cp, (215)

m,n m,n

Because of the invariance of theory, part of the Fock space is redundant. Hence
we must reduce the Fock space into the subspace spanned by all physical states

satisfying the condition:
QBI(I)phys.> =0. (2.16)

This equation expresses a quantum version of reparametrization invariance of the
string worldsheet. The subspace of |<I>,,;,,y3‘> in the Fock space is shown to contain

no negative norm state.

2.2 STRING FIELD AND THE ACTION

In this subsection, we briefly review the construction of string field theory. In
second quantized theory, a wave functional of the first quantized theory becomes
an operator which creates or annihilates a string. Since a wave functional of
string is a functional of X (¢),b(c) and (o), the string field is a functional of

them also, which we express as ®(X (o), b (o), (s)). A convenient expression of
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the string field is given by a state vector in the first quantized Fock space, which

is related with the functional representation by
®(X(0),bo(0),c"(0)) = (X(0), bo(0), *(0)|B). (2.17)

The state (X(0),b(0), c’(o)| is an eigenstate of X (o), bo(o) and c®(o). The open
string fields have two indices of the Lie algebra( O(n) or Sp(2n)) attached at two
edges of a string, i.e., open string fields are matrix valued. In free theory, the

string field satisfies the equation of motion
Qp|®) =0. (2.18)

The action of the free string field theory is constructed to provide (2.18). The
Lagrangian density of the free string field theory is given by

L=3(X(7 —0),—c(m —0),b(r — 7)) x Qpd(X(0),c(a),b(c)) (2.19)

in the coordinate representation. Reversing of orientation (¢ — 7 — o) defines

charge conjugation, or, transposition of matrix indices of string field. Our string
field is "real” in the sense ® (X (0),¢(0),b(0)) = (X (7 —0), —c(x—0),b(r—0)).

The Lagrangian density (2.19) can be written in the Fock representation as
L = (V|®)Qp|®). (2.20)

where |<I>> is assumed to have ghost number N, = ——%. The two string vertex

(V4| is defined by the following connection condition:
(1l (XD (o) = Xz~ 0)) =0,
(Vo] (W (o) + (7 —0)) = 0, (2:21)
(Val(8V(0) = (7 — 0)) = 0.
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In the Fock representation, the expression of (Vg[ is given by

(Val =1 = |2{ = [(c{" + )

X exp Z( )" (1) (2 cg,l)b,(,z) -~ nbg)cgz)]]

n>0

(2.22)

As is easily confirmed, <V2| has no ghost number. Some other properties of two
string vertex are listed in appendix C. The reality condition is expressed in the

Fock representation

1) = (a]@) (2.23)

Now we can write down the gauge invariant action of string field theory. In
the following, we expand string field as |<I>> = b0|¢(0)> + |¢(0)>. Further, the fields
|¢(0)> and lgl)(o)) are expanded as follows:

16©) Z |4)8, (2.24)

and

() Z AYy, (2.25)

where the summations cover all possible particle modes signified with A. We set

the grade of a state |A) as

—1,(]A) is fermionic) if Ny(A) =32 mod 2

(=)= : (2.26)
1,(JA) is bosonic) if Ny(A)=1 mod2

The component fields qﬁ(:) and zpf) have no ghost number Ny, which is indi-
cated with the superscript (0). Since total fields |®) have N, = —1, the state
|A) in (2.24) has N; = +1. Similarly, the state |A) in (2.25) has Ny = —1. After

9



second quantization, the component fields become creation-annihilation opera-
tors of the excited particle modes. The local mode expansions of the first few

lower mass states for ¢-field and -field are as follows:

167) =+ Yo(z) + o ] + YAu(z) + b_yc] + YD() + - -+,
(2.27)

|'(,/)(0)> = ib——ll + >B(:p) I

Obeying the definition by Kato and Ogawa, 1l the BRST charge can be ex-

panded in powers of ghost zero modes as
QB = oo L*C + M %%y + QF° (2:28)

where

1 1
LEKO — _ §p2 -3 E C QO — E i nc_pby : +1,
n#£0 n

MEO — E P NC_pnCp
n

KO 1 (2.29)
QB = 5 Z Z P 0n—mQmCey -
n#0 Z::g
1
+ 3 Z Z (n—m):cpCombpim : -
nf0 m#0
n+m#0
By using this expansion, the Lagrangian density turns out to be
Lino. =(V2|b0|¢(0)> LK) ¢(0)> _ (Vzlb0|¢(°)> M1(0|¢(0)>
(2.30)

+2(Va|bo ) QFC 16,

In the above expression, we have carried out some partial integrations. (See ap-

pendix C.) By using (2.27), we can obtain local field expression of the Lagrangian

10



density as

Limn, =¢(w)(%32 +1)b(z) + %A“(z)OZA,,,(:c) _ D(m)(%a2 —1)D(z) + -

+ B(z)? — 2B(2)0, A" (z) + - - .
(2.31)

where the fields ¢(z),A*(z),D(z) and B(z) are tachyon, massless vector field,

massive scalar field and auxiliary field, respectively.

The first term in (2.30) can be written as <V2|bo|A>LKOIB>¢:))¢S:). In the
following, we use matrix notation as (L%9),, = <V2Ib0|A>LKO|B ). For instance,
(LKO),, = 1(8% —m?)1,, if A is an index associated with the state |4 > whose

2

mass is m*. For the detail of this notation, see the appendix A. By using this

matrix representation, (2.30) can be written as
(0) < (0) (0) < (0) ), ~K ()
‘Cin”' :¢A (LAO)AB¢B - w,q (AJI\O)AB¢B + 2¢A (Q%O)AB"/)B (2'32)

The action has a gauge invariance under the transformation é |<I>> =Q B]A),
where |A> is a gauge parameter which has ghost number N, = —%. The trans-
formation can be written in terms of component fields as

© _r-1/02sKO AKO
6¢A =IAB (M ' )BCPC - (Qé )Bc/\c)

(2.33)
(0)

5"7bA ZI;BI((LKO)BCAC + (ng)Bcpc),

where the gauge parameter |A) is expanded as [A) = bo|A)A, + |A)p,. The
coefficients A4 and p,4 are c-number parameters. Insertion of I™! is necessary
for the indefinite metric of the first quantized Fock space. ( For the definition of

I"! and justification of this insertion, see Appendix A.) If we expand

JAY = bob_i] +)A(@) + -, (2:34)

11



the gauge transformation (2.33) can be expressed as

§A,(x) = O\(z) + - -

. (2.35)
6B(x) = 50°A(x) + -

whose massless sector coincides with Yang-Mills gauge transformation of particle

gauge field theory.

The invariance can be fixed by using the Siegel gauge condition b0|<I>> =0.""

In terms of component fields, this condition can be reduced to 1/)(:) =0.

In free case ( ¢ = 0 ), the gauge fixing procedure can be performed as was
shown in Refs. [18]{19]. In the following, we briefly describe the procedure.
First, we replace the gauge parameters with the Faddeev-Popov ghosts. Then,

the transformation (2.33) can be replaced by the BRST transformation

© v R (1)
6¢A = IAB} [('Z\II O)BC¢C - (QQO)BCQSC ]6,

(2.36)
(0) - ; (1) ~ I 1)
6py = I [(L5)pete +(Q5%)acte e
where ¢ is a Grassmann odd parameter which has Ny = —1. qb(:) and 1/)(;) are the

components of Faddeev-Popov ghosts which have ghost number N, = 1 since the
total ghost number of b0|A>¢(A1) + |A>7,Z):) is —1. According to the ordinary BRST-
gauge fixing procedure, we add the gauge fixing term L and the Faddeev-Popov

ghost term Lpp to the gauge invariant action. The additional terms are

(0)

z)

= 2BV, ¢ (2.37)

(-1)
Lrp+ Ler =6(-2¢, "I,z

— 26 ((LF0) udy +(OK0),atpy)

where qb(A—l) and Bi:) are anti-ghosts(/N, = —1) and Nakanishi-Lautrap fields(NV, =
0), respectively. The coefficient —2 is a matter of convention. Their BRST

12



transformations are

(2.38)

We set even ghost number component field to be bosonic and odd ghost number

component field to be fermionic.

This procedure fixes the gauge freedom under the transformation (2.33).

However, the added action has the same type gauge invariance, i.e.,

(1) _ - .
6, :IABI [(‘MI\O)BcPIc - (ng)Bc)‘lc]’

(1)

8,

(2.39)
=T (5O o A+ (059) 00

This indicates the gauge transformation (2.33) has zero modes, in other words,
the gauge symmetry is reducible. To fix this invariance, we have to introduce new
ghosts d)iz) and 7,bf:). Then, we repeat the same procedure as above. Eventually,

it is necessary to introduce an infinite series of the BRST auxiliary fields listed

below.
comp. field Ny of |A> BRST transformation
80 (020 o LN (@5t
WO (20 —fon IHERO) 60" +(QF)enl ] (240)
¢(:) (n <0) 3—n Br“)
B”(n<0) 3-n 0

n (=7=D) )

As the result, we add to the action the terms 6(—-2(—)"¢, I,p%, ). By this

gauge fixing procedure, we can obtain a gauge fixed action for a free string theory

13



such as

() © n o™ K (m)
‘Cfil‘ed =¢A (LKO)AB¢B +2Z(_) ¢A (LI O)AB¢B

n>0
(¢) KO (0) (=n) ]\0 n) (n)
— 9, (M5O, +23 (=)0, (QE) astry =2 B Ly,
n2>0 n>0
(2.41)
or, in a more compact form,
Lizea =(Valbo|$)LC|8) — (Valbolp ) M O[p©)
(2.42)

+2(Valboly ) QEC|6) — 2(Valbo| B) 1)

where

n=—0oo

Z |60, o) = ZW |B) =" |Bt"). (2.43)
n=0

If we substitute the equation of motion of B-fields, (2.41) and (2.42) reduce to

Lrizea = Y (=), " (LK0), .8, = (Valbo|$) 50| ) (2.44)

Consequently, a gauge fixed action can be obtained from gauge-invariant action

by setting 1 = 0 and removing the constraint for ghost number of component

fields.

We introduce an interaction of string fields by adding a term to (2.20). As
mentioned in the introduction, there are two ways to introduce interactions.
In Witten’s string field theory, open string interaction can be described by the
connection of three strings as shown in Fig. 1. This connection condition is

realized by the three string vertex (V3| which satisfies
V(X (o) = X0HD(x — ) =0,
(Val(cP(0) + T (x - 0)) = 0, (2.45)
(BIO(@) - b —0)) =0,  (0<o<3)

14



where r(= 1,2, 3) denotes the channel of participating strings and X () represents

X @), The three string vertex can be expressed in a Fock space representation:

3 o0
1
<V3| =1 <+|2<+l3<+|exp ['2’ Z Z ;zN:nSn n exp [ Z Zbr Ncrrfm n

r,s=1mmn>0 r,s=1 m>o
(2.46)

where N7¢ and N[J . are constant coefficients ( for the definition, see the next

cmn
section ). If we assume that the rule for the gauge-fixing procedure explained

above can be applied to the interacting case, we can guess a gauge-fixed action

Lfized =(Valbol¢)Ll¢) + 2gg<V3|b0|¢>bo|<i5>bol<15>7 (2.47)

which is obtained from the gauge invariant action by setting 1» = 0 and removing
the constraint of Ny. In interacting case, it is not clear whether the gauge-fixing

procedure works well. We discuss the problem later in section 4.

2.3 FORMAL LAGRANGIAN PATH INTEGRAL QUANTIZATION

[6—8]

In the former works, a generating functional of string scattering ampli-

tudes is evaluated by using the formal Lagrangian path integral

WJ] = / dqsei/ ﬁf"“”i/ d‘“‘b, (2.48)

where J is an external source of string field. Shifting the string field ¢ to ¢ —
—%—L_IJ and integrating out ¢ from the path integral, we can obtain a generating

functional of string field theory as

: 29 .6 .6 ) . 1.4
i | de—=f, pe(—t—)(—i—)(—i—) —z/dw—JL J
W[J].—:./\/e/ 34BN 6T, 6Jp 0Jc’ x e 4 (2’ |
49

where N is a constant and f,;. is a matrix representation of three string ver-

tex(defined in Appendix A). We can obtain Green functions or scattering ampli-

tudes from the functional (2.49). For example, the propagator of string field is

15



shown to

(P64 = (=i i WL
. (2.50)
= ';‘6m+n,0(L—1)AB + (loop effect).

Similarly, scattering amplitudes of strings can be obtained.

Now we comment on the problem of non-locality of vertex. Originally, the
path integral is formulated based on canonical formalism. Path integral must be

defined in phase space as

WJ] = /dndgsei/(m - +i/J¢-, (2.51)

where II is the momentum conjugate to ¢ and H is the hamiltonian density. In
most cases, we can obtain (2.48) from (2.51) after integrating out II. In such
cases, these two formalisms are shown to be equivalent. However it is known
that, if the interaction term contains time derivatives, II-integration generates
some non-trivial terms. A well-known example is the Lee-Yang term in non-
linear ¢ model. In string field theory, the situation is worse than the non-linear
o model by the following reason. The three string vertex (2.46) contains pg in
the exponent. The zero mode py of string momentum is a derivative with respect
to center of mass of the string, and it is regarded as a generator of translation
of the string. This interaction is non-local because the centers of mass of three
strings sit on different places from one another. As a result, (V3] contains infinite
orders of the derivatives, especially of the time derivatives. Clearly, in so far as
we stick at the center of mass time formalism, we cannot apply the canonical
quantization procedure to the string field theory. However, this non-locality is
spurious, because all points Xj(o)(r = 1,2,3) of three strings are connected
locally in Witten’s three string vertex. Especially, all mid-points X(o = ) of
three strings are connected one another. (See Fig. 1.) We expect that, if we

express the three string vertex in the mid-point coordinates instead of the center
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of mass coordinates, the vertex no longer contains any derivative with respect to

the mid-point coordinates.

Usefulness of the mid-point coordinates was first pointed out by Witten him-
self in his paper with respect to superstring field theory. f20] Explicit rewriting of
and further studied by Maifies

[21] [22]

the vertex was first carried out by Morris,

and the present author."™

Difficulty concerning non-locality can be avoided by
employing the mid-point coordinates. In the next section, we develop the mid-

point coordinate formalism.

3. Mid-point Coordinates
3.1 MID-POINT COORDINATES

Usually, coordinates and momenta of first-quantized string are expanded
around the center of mass as reviewed in section 2. In this representation, an

independent set of canonical variables of string coordinates and momenta. is given
by
. i
coordinates: g and z,, = E(an —a_y),
1 (3.1)
V2

momenta: po and p, = (an +a—p),

where n runs over positive integers. Now we change the zero modes of coordinates

from zg to z1 = X(%). This change is realized by the unitary operator U

U =exp [ipo(-”to - ”CI)}

T
= exp [ - i\/é])() E Zy COS n—]
n>0 2 (32)

= exp [po Z n cos ng] .
o n 2
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then
UlzoU = 2y,
(3.3)
Ute,U = z,,.
According to this transformation of coordinates, we must transform momentum
as pn = Utp,U. We can consider that this transformation is a canonical one and
that 7,2, and po,pp are new canonical variables. In the same manner, we can
define creation-annihilation operators associated with the new set of coordinate

and momentum, i.e.

am = UlanU = ayy — Po COS mg— (3.4)

which commute with 27 = X (). Now, an independent set of coordinates and

momenta is
1

coordinates: zjand z, = (Gn — G—n),
\/'zn
1 (3.5)
momenta; po and p, = —ﬁ(dn + G—p).

Their commutation relations have the same form as the ones for the center of

mass coordinates, z.e.,

[&ma&n] = m6m+n,0 s [:cIaPO] =1 (36)

In terms of the new coordinates, the normal mode expansions of string coordi-

nates become

X(o) =21+ \/§Z Zp(cosno — cos nz),
n>0 2

- (3.7)
P(o) = ! [Wpoé(a - —2—) + \/_2_215,, cos nd] .

T
n>0

The Fock vacuum which is annihilated by & is related to the Fock vacuum which
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is annihilated by «a as
(0] = (O|Ut
(3.8)

. 1 1 1
= <0| exp [ — 5(?0)2 Z = cos? ng] X exp [ — Po Z — @y COS ng]
n>0 n = n>0 n

The p? term in the first exponent arises from normal ordering of U and the
coefficient diverges when the summation is carried out. However this divergence

is regularized by using the method in the next subsection.

Similarly, ghosts and anti-ghosts can be rewritten as

(o) =c; + Z cp(cosno — cos ng-),
nF#0 ~

co)=—i Z ¢y sin no,

n#0

bo(o) :—:—r—z- Z by sin no, (3.9)
n#0

b1(0o) =;1r- [Wboé(a - —g) + Z by cos ncr] ,
n#0

({i)mvcn} - 6mn ) {bO,C]} = 1)

where b, = by, — bg cos m7. This rewriting is realized by the unitary operator

0= e-—bo(co —cr) exp [bo En:cn cos n—g], (3.10)
and
UTCOU = ¢y,
Ule,U = cp, (3.11)
0,0 = b,



The Fock vacuum is related to the one in the center of mass coordinates as

(+|=(¥IUt

= <-J;-|exp [— bo Z Cn cosng-].

n>0

(3.12)

3.2 THREE STRING VERTEX IN MID-POINT COORDINATES

In this subsection, we rewrite the three string vertex by using the mid-point
coordinates. First we will consider the bosonic coordinates part of the vertex.
To this end, we substitute (3.4) and (3.8) to (2.46). After substituting, we can

obtain
(Val =1 (Fla(Fl3(F1eV (@), (3.13)

where V(&) is given as the sum of following three terms,

ow"): 3 Z > Z Ny,

m>0 n>0r,s=1

3
O(ph) : E Zpg NG + Z Cos mng,fn - 6"3;11— cos ng—]&z

r,s=1n>0 m>0

3
O(p?) : -;— Z popy [ NG +22N§n cosn— + Z Zcosm —N; = cosng

r,8=1 n>0 m>0 n>0

1 o
-6 = cos? n—]
HZ;B n 2

(3.14)
We will demonstrate that both O(p!) term and O(p?) terms vanish.
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We start from the definition of N,
2 2
In|z— %]+ 1n]z ~ 2*| - gln lz(z — 1)| — gln |2(2 — 1)]

= —6”{2 %e“”’f'(z)"f’(g)’ cos(no,(z)) cos(nog(Z)) — 2max(§,(z),§3(2))}

n>1

+2 ) Ny e Erme() cog(ng,(2)) cos(may(£)) — %gr(z) — ggs(s),
n,m2>0

(3.15)
where we use the definition of Witten’s vertices by Suehiro.”” The symbols
£r(z) and o,(z) are two dimensional space- and time- coordinates of the r-th
string. The indices r,s denote channels of three strings. They take values 1,2,3
corresponding to the position of z and Z. (See Fig. 2.) The complex coordinate

z is related to the coordinate on complex p-plane as

- 2 (Z+1)(Z+2)(z—l)+(22_2+1)3/2
P(Z)—-ln 3\/5 2(22_1) ;

dp(2) _ Viz—2z0)(z = 23)
dz z(z—1) ’

(3.16)

iw/3

20 = €

The solid line of Fig. 2. denotes the branch cut of (3.16). The coordinates ¢, and

o, are related to p as

a;G +imbey, if (Im(p)>0), 0>o0,>m,

plz) = _ . (3.17)
arGr —méy3, if (Im(p)<0), -—-nm>0,2>0,
where
CT = 67‘ + 107, a;=l,ap=1,a3 = —1. (318)
We choose the points Z, on z-plane which correspond ¢, = —oo(r = 1,2, and 3)

as Z1 = 1,Z3 = 0, and Z3 = —oo, respectively. First we check O(p!) term. We
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will prove

3

1
E E po [Nos + E cos 771%]\7,’;;"’“ — 8" = cos n—g] = 0. (3.19)
r=1n>0 m>0 - n

From (3.15), we can obtain

2 2
In|zg — 2|+ In|z0 — 2*| - §l11 |z0(z0 — 1)| — gln |2(2 = 1)]

=2] Z cos m%N,ﬁfne"S’(g) cosnog(%)

m,n>0

(3.20)

1 : 2
-8 Z ;e"{“(z) cos n% cosnos(Z) — ;3-{5(2)]

n>0
by z — zp. The symbol z is the interacting point of three strings defined as
(r(20) = %t for r = 1,2,3. Because the LHS does not depend on the index r, if
we multiply it by p{ and sum up with respect to r, the LHS of (3.20) vanishes
owing to momentum conservation ) pf =0, i.e.,

0= ZP(TJ[ Z Cosmg-Nf,,ile"E“(‘:) cosnos(%)
T

m,n>0

(3.21)
TS Z le"fs(g) CcOSs 'n,l)r— CcOs 710’3(5) - %fs(é)]

n 2
n>0

Picking up the terms proportional to cosno(Z) in (3.21), we can confirm the

O(p!) term vanishing.

In O(p?) term, we find a divergence. In order to evaluate the divergences,
we regularize the commutation relations of first quantized operator by the point-
splitting method as follows.

[A(r,0),B(7' = §,0")] ifr>7
A(r,0),B(r',0")] — 3.22
A(T, ), B( ) [A(T — 6,0), B(r', 0")] ifr<t (3.22)
In the following, we work in Wick-rotated two-dimensional space where 7 is

replaced with i7. Under the regularization, the O(p?®) divergence coming from
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normal ordering of U amounts to

1 1 1 1
527 cos2 ng— =325 cos? 72127-6-”’6, (3.23)
n>0 n>0

where § is the small number introduced in (3.22). The definition of & also should

be replaced as
Oy — Po COS ng — @y — pp COS nzzr—e_"‘s. (3.24)

Now we are prepared to the evaluation of O(p?) term.

= Z pops [N +QZ cosn et

r s=1 n>0
1
+ Z Z cosm eT™NTS cos ng- — & Z - cos? n2 e ns]
m>0n>0 n>0
(3.25)
From the definition of N;*  we can obtain
0= Zpo 0+ Z Ny, cos n-— + Z Ny, cos n; —né
n>0 n>0
(3.26)
+ Z Zcosm NTS Y L Z 1 cos? nee™™ 4 g5]
2 n 2 3
m>0n>0 n>0

by z — 29 and Z — Z(20,6), where Z(zg, ) is defined by ((Z(zp,8)) = % -6
The LHS of (3.26) vanishes by the same reasoning for the case of (3.19).

The vanishing of zero mode for the ghost part of the vertex can be proved by
the same manner as above. After substituting b,, = b + bg cos m% and (3.12)

to (2.46), the ghost part of the vertex is given by

(Flexp [ Z Z B N o]

r,s=1m,n>0

(3.27)

3
Xexp[z Zbocosm NS¢ ZbTchcosn-g].

r,s=1 m>2(()) r=1 n>0
n
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The calculation is easier than that in coordinate part because the exponent con-
tains at most the linear term in the zero mode by. From now on, we will demon-

strate that

0= Z N3 cos m — bp5 COS ng. (3.28)
m2>0

From the definition of N2

cmn

—zigzziii(dzf))(dzs))”

:%{9(53(5) — fr(z)) Z —n{(s(2)=C(r(2)) _ 9(§ (2) — 63(5)) Z e—n((r(z)_gs(g))}

n>0 n>0

& 5 s onG(2) 4 me(?)

3 m>0
n>1
(3.29)
we can obtain
brs —inm[2,(s(n%)) _ % zm7r 2en(
0= o 2 /2e6s( - ZN” [2ents(?) (3.30)
n>0 s m20

by setting z — zg. The LHS of (3.30) vanishes due to 3_5(20) = 0. Picking up the
terms proportional to encs(i ), we get
0= 5_75_6—2'7171’/‘2 _ a_: Z N e etmm/2

*r a§1n>0

(3.31)

We can confirm (3.28) from the real part of (3.31) and a2 = 1.

Now the three string vertex in the mid-point coordinate representation no

longer contains any derivative, i.e.,

3 00
(Val =1 (Flao{Ha(Flexp [5 Z Z i N exp [ D > b Nisach
rs—1n1n>0 r,8s=1m,n>0

We have obtained a local vertex of strings.
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3.3 BRST CHARGE IN MID-POINT COORDINATES

Let us turn our eyes to the BRST charge (2.15) in the kinetic term in the

mid-point coordinates. It can be rewritten as
Qp=ciL+ Mby+ K + crbpJ- — bocrJ4,

where

L =g5(0)32 + 09, + L,

S - T
O =g E @k cosn—,
’ 2

n#0
LI - 1 . & N e Z . i) . 1
—_— e —2— . __nCl’n . T . 'I"l,C_,n, n o+ + 9
n#0 n#£0

K =k"9, + K',

™ s
u.__'E :~u S U
BV = —1 G, sinn E Cm SINM

n#0 ~ m#0
1
- - -
K =-- E § AUp—m A Can
#0
oA

+ % 27&: Z (n—m) : conCombutm :
n

0 m#o
n+m#0

™
!

- cpcosn—1L" :

n 2 )

n#0

. .7
M= E ney Sin N E Cm SINM S,
- 2 2

m

™
J+ = — chn cos n;)- , J_=— chn cOs n_i’

n>0 n<0

.] :-]+ + -]__,
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(3.34)

(3.35)

(3.36)
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where 0 = ip denotes the derivative with respect to the mid-point coordinate.

The coefficient §(0) in L means a divergence of one-dimensional é-function, z.e.,
s .9 T
zcos2 ng = Z:sm~ ng = 76(0). (3.38)
n n

This divergence of the kinetic term comes from the é-function in P(c). Note that

QB contains the term 7 [ doc®(o)P(0)*.

4. Quantization of String Field in Mid-Point Time Formalism
4.1 GAUGE INVARIANT ACTION AND GAUGE FIXING

In the following, we use matrix representation based on the Fock space of the
mid-point coordinates. The variables used in this section are written by those
of the mid-point representation. By using them, we can write down the gauge
invariant action of string field theory in the mid-point formalism. If we expand

string field as in section 2, the Lagrangian density turns out to be

(0) (0) (0) (0) 0y, . (0)
Eim). =¢A LAB¢B - ,(/)A ‘A‘{I’AB,(/JB + 21/),4 (I\ - J+)AB¢B
(4.1)
2g ©) ,(0) 0
+ ?fABC¢A ¢B ¢C .
The interaction in (2.32) is local with regard to the mid-point, in particular, to

the mid-point time coordinate. Therefore, the string field can be considered as a

set of infinite component Klein-Gordon type fields.
As same as in section 2, the action is invariant under the gauge transformation

(0)

0,

(0)

o,

:I;E.l [MBcpc - (I( - J+)BC)\C] ) ( )
4.2

—_ ' - (0) (0)
=I Lo + (K + J-)pope + 0Fpen(@. Ao +Ac, )]

The invariance can be fixed by using Siegel-like gauge condition bgl@) = 0, or,

1/)? = 0. Although this equation is same expression as the ordinary Siegel gauge,
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the meaning of by is not the derivative with respect to ¢y but the derivative with
respect to cy. In other words, ¥-components in our expansion are proportional to
¢y while those in the center of mass expansion are proportional to ¢y. Remarkably,
owing to the vanishing of "mid-point of ghost” ¢; on three string vertex, the -
component of string field does not present in the interaction term. Owing to this
situation, the problem of gauge fixing in interacting case is easier than the center

of mass representation. We will discuss it in the next subsection.

In free case ( ¢ = 0 ), the gauge fixing procedure can be performed in the
similar way as in section 2. As the result of the gauge fixing procedure, we can
obtain a gauge fixed action for a free theory. If we assume that the procedure
can be applied in the interacting case, we can obtain a gauge-fixed Lagrangian

density in the following compact form:

Liizea =(Valbo|¢)L|$) — (Valbo|yp ™) A |5 ()
+ 2(Valbo [ )(K = J4)|) + 2(Valbo| BY|b) (43)

2
+ 5 (Valbol)bol4bole),
where

6) = Z 6™, ) Zw‘" ),|B) = Z|B-n> (4.4)

n=—00 n=0 n=0

By using the matrix notation, we (4.3) is expressed as

(n) (—n) (0) (0)
»Cfixed =Z(_)n¢A LAB¢B - ¢A ]\"{ABd)B
n

m, (-m) (-n) (n)
+QZ¢A (I\ - J+)AB¢B _ZZBA IAB'I‘/JB (4.5)

n>0 n>0

2g (O] (171) (n)
+ fAEC Z ¢ ¢ 6l+m+n0

l,m,n

Here we point out that the Fock vacuum in the mid-point coordinates is not
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the solution of the equation of motion

Lig) =0. (4.6)

The vacuum in the center of mass representation |0) is a solution of (4.6) if it

has a momentum p? = 2. Any basis vector in the Fock space
Oy Oy *** Qe [0) (4.7)

can be a solution if an appropriate mass-shell-condition is satisfied. As is easily

understood, our vacuum |(~)> can not be a solution of (4.6), neither any other state
By Gy Gy [0) (4.8)

can. If we express (4.7) by using the mid-point coordinates, we shall find an
infinite order of derivatives. This fact indicates the solution of the equation of

motion in the mid-point coordinates representation is a non-local configuration.

4.2 GAUGE FIXING IN INTERACTING CASE

In this subsection, we carry out the gauge-fixing of interacting string field
theory. First, we comment on the difficulty of gauge-fixing in interacting case.
For the case of g # 0, first we introduce the BRST transformation of component

fields in the gauge invariant action as

) _ (1) - (1)
§p, = I Myotp, — (K — J4) e, e

0) — 1) - (1) (0 (1) 1) (0
6’(/),4 = IAB} [LBC¢C + (I‘ + J—)Bcwc +ngCD(¢C ¢D + ¢C ¢D )] 6’

(1) _ (CORNCY
6¢A = gIABIfBCD¢C ¢D €, (49)

(-1) (0)
6¢, "= B¢,

§4.) = 68" = 0.

The additional terms in the first stage of gauge-fixing for the Lagrangian density
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are easily obtained as

(-1) (0)
Lrp+ Lor =6(=2¢, "Lz, )
(0) (0)
= - 2BA IAB,()[)B

(4.10)
(~1) (1) . (1)
- 2¢A (LAB¢B + (A + J“)AB’lpB )

(-1) (0) (1) (-1) (1) (0)
+2ngBC(¢A ¢B d)C + ¢A ¢B ¢C )'
The first stage Lagrangian density LD = Lino. + Lrp+ LarF is a part of the full
Lagrangian density L f;zcq., Which is given by setting all fields having superscript
(n)(Jn| > 1) to zero. Naively we guess that £(1) has the second stage BRST

transformation as follows:

(1) - (2) - (2)
6,¢A = IAL:?l [MBC¢C - (I‘ - J+)BC¢C ]e

(1) _ (2) - (2) (2) ,(0) ©) (2)
8, =TI [Lpet, +(K+J)pety + 0fscn(dy 6, + 0, b, )]e.

(0) - (2 (-1 (-1 (2
6I1/)A = gIA;fBCD(¢C ¢D + ¢c ¢D )6. (4.11)
(-2) (=1)
§'¢, =B, e
54, =8¢, =8¢, =8B, =8B =0
A straight-forward calculation gives
(® (@ (-1 (0 (-1 (2)

6,£(1) = _zngBCBA ¢B ¢C - 2.(j‘fABC‘BA ¢B ¢C . (4'12)

Clearly, £(1) is not invariant under the transformation (4.11). To recover the

invariance, we must add the term

(-1 ,(-1) ()
Lodd. = 2g.fABC¢A ¢B ¢c . (413)
After adding (4.13), L1 becomes invariant when we carry out the transforma-
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tions (4.9) and (4.11) simultaneously, i.e.,

(6+6)LW + Loga) = 0. (4.14)

Repeating this procedure, we can obtain (4.5). The additional term (4.13) is
interpreted as an anti-ghost — anti-ghost — ghost interaction. Such a term can
not be generated in the procedure discussed in the previous subsection.

=" are performed

Some works about the gauge-fixings of string field theory 2o
by the Batalin-Vilkovisky methods (A short review is given in Appendix D).

Hereafter, we apply this procedure to our mid-point formalism.

At the first step, we construct an extended action which contains all fields,
ghosts, and their anti-fields which are assigned for each field. The fields and

anti-fields in string field theory are as follows:

(-n-1)

field ¢,  antifield (¢, )" = I,y

B ¥

(4.15)

(=n=1)

field . anti-field ()" = I, ¢

The field and its anti-field have the same indices of the Fock space and the
opposite statistics of each other. The anti-fields ¢(A—n) and ¢:—n)(n > 0) are
different from the anti-ghost introduced in the above discussion. The anti-fields

will be replaced by anti-ghosts as seen below.

The string field theory is an example of infinite order reducible theory. The
gauge generators of all stages have the same form which can be written as

(1) (n+1)

¢y b,
(n) _ . _

Z, = %a LK = J4)os oM, ~ (416)
m\ - (0) . 0) U

¢A IAC:'l [LCB + ngDB¢D + .qu'BDg/)(D ] IAcl(A + J_)CB

As is easily confirmed, the action (4.1) is invariant under the transformation

54 .
<5¢(0)> = Z() (dy(l) 5 (417)
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and the generators Z, have zero eigenvalue vectors such as
ZOZI:‘Z]ZZ:"'=Z11.Zyz+]="’=0. (418)

The gauge-fixed action must satisfy the conditions listed in Appendix D. The

naive extended action

(

n -n (n} (=n) __ ()
S::/d.’l: |:¢( )LAB¢ ¢A )AIAB¢1(13 +2¢A (A +']‘)AB¢B:|

29 ® ,(m ,(n) (419)
+Z fAchS ¢ ¢ 6l+m+n07

l,mn

satisfy all the conditions listed below.

(i) If we set all anti-fields( 45(:) and 1/1(;) (n < 0)) to be zero, it reduces to

classical gauge-invariant action (4.19).

(ii) It satisfies the master equation which is represented as

"‘Z{ 4 &S §S 1 &S

~(S,S =0.
( )= ¢(n) Ls 5D + 5y 42 g (4.20)

6<I> 6@*

The proof of (4.20) is straightforward due to the nilpotency of Qg and the prop-

erty of three string vertex.

(iii) The second derivatives of S are gauge generators as written symbolically,

66,5

—— e A
e Zn"p. (4.21)

Remarkably, the action needs no quantum correction because of the equality

66,5 5,8,5 665 |
6@/16@* Z AB 6¢(n)6¢( n—1) + 61/)§‘n)5¢(3—n—1)} - 0' (422)

This is just the RHS of O(®) of the equation (D10). As is easily confirmed,

we can set all quantum corrections W,(n > 0) to be zero. As is pointed out
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19 . . .
by Thorn™” , in the center of mass coordinate, (4.22) is not zero because the
. . . . (n)  (—-n-1) (1) (1)
interaction term contains the terms proportional to ¢, 9, X (¢, or ")
Hence, the quantum correction is necessary in the center of mass coordinate. The

mid-point coordinate is useful also in this point.

In the next, we introduce the auxiliary fields listed in Fig. 3. The ghost

numbers of the associated states with each component field are as follows:

comp. field Nyof the state |A)
anti-ghost C_’;_An) (n>0) % +n
C':b_:) (n > 0) % +n
extra-ghost C;j(n) (n>0) —3—s-n
c;." (n20) 3 _s5-mn (4.23)
(s=1,3,5,--+)
extra-anti-ghost C_';f(—") (n > 0) J+s+n
C_’;j(_n) (n > 0) 3+s+n
(s=2,4,6,--)

where < s > denotes the number of primes. Adding to it, we introduce the
Lagrange multipliers for each auxiliary fields. Each of the component fields of
the Lagrange multiplier has the same index A and the opposite sign ghost number

with the associated auxiliary field.

For the gauge-fixing, we choose so called gauge fermion. The gauge fermion

¥ must satisfy the conditions

516,
§CTVECT | o=,

rank =My — Mpy1 + Mpya — -+, (4.24)

— _n)

where m, is the number of gauge parameter at the n-th stage, and Ci =
~(—n)  =(-n) (n) (n) ()
{C¢A )C'(/)A }703 = {d)A ﬂl)A }
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The RHS of (4.24) is an infinite number, however, which can be evaluated
(D) and z/)(n“) The number of ¢(n+l)

is equal to the one of q& " because both are number of the states |A> which
ntl) .,

as follows. m, is equal to the number of ¢,
have ghost number Ng =n + . Hence the number of 1/) in m, cancels with
the number of ¢ .+ in mpy1. Such subtractions are repeated successively. As
the result, the RHS of (4.24) is the number of ¢(An+l), or the one of zb:"). The
simplest Structure of the gauge fermion which satisfies (4.24) is the product of

(n-1)
Y,

for the condition for extra-ghost and extra-anti-ghost. Hence, we can choose the

and C¢ " for any positive integers n. The above discussion is applicable

structure of the gauge fermion ¥ as

(n—1) J(n—1) [n—-1) (-
T=>"y, IABC¢B +ZC¢A L,Cyy +> Cy L,C4"

n>0 n>0 n>0 (4.25)
N /AT Yo IIABC”“( "y
n>0 n>0

The gauge-fixing condition is of the form

L A

ol Tt T
R ov ov (4.26)
5C' = SC = SCmi =-:-=0.

From (4.25) and (4.26), we can confirm that all extra-ghosts and extra-anti-
ghosts are eliminated by the gauge-fixing conditions. The conditions eliminate
C’:/Zi, similarly. For example, the conditions & E = 0 eliminate An and C'( ), and
%—, = 0 eliminate C’fb_:) and C_'g:"). Under the choice of the gauge fermion (4.25),

the anti-fields are replaced as

<¢(An>) _ AB¢( n-1) 60 ~0

5 el
O (4.27)
(n) (~n~1) oV = (=n)
(v, ) =lwts = um = LG,

As a consequence, we obtain the gauge-fixed action (4.5) after we replace ¢(-")

=(—n)
with C¢ )



constraints) as follows:

—n)

27r5(0)Z ou T Tls,
5(0)ZH P (E)aedl

)

o, m6(0)—= 0
WGy T 55757 s
4.32)
n 6 0 n (
I RN i Ui iy B
n>0
_Z¢(") ( n)
n>0
Z fABc¢(l)¢(m)¢(n)6l+m+n 0
lm,n
where
(—n) )
C, 5(0)@0),,31 I,
AR + T D — T+ —-—-kﬂe")qu( . (4.33)

6(0)

+2(=)"I,,B. ",

In the above calculation, we have used the commutation relations in the Appendix
B.
From now on, we calculate the constraint algebra by using the Poisson bracket

§,46,B 6B 64
5% oI, 5%; §II; (4.34)

{A,B}pp. = — ()=

where 6y and 6, represent a left- and right-derivative, respectively. The symbols
Il; and ®; denote general momenta and coordinates, respectively. The primary

constraints (4.31) generate two series of secondary constraints such as

(n) (n)
Cs, =v¢, =

(—n) (—n)
C4 C ~

A A

(4.35)

All of the above four series of constraints are second-class. Poisson brackets
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between them are

(657 @),C57 ()} 5. =(=) " 6mnband(z — ),

(02 (), Cay " ()} .. =2=)" B us8(x — y), (4.36)

any others =0.

Since the determinant of their Poisson bracket matrix is constant, it decouples

from path-integral. The canonical path integral then can be written as

/ duy exp [i/d:v(ﬂqsq-ﬁ 4+ My + 3B — H)| x 8(I1y)6()8(ILE)6(C)  (4.37)

where

dy = D DI Dy DI, DBDIIp. (4.38)

The integrations for II4,,I1,,B and II g can be performed and the result amounts

to

n (™ (- 2g . (0 (m) (n) |
[ Poep[S (16 Lands " + LY Funody b 6 Smanol- (4.39)
n

lL,m.n

Except for the treatment of §(0) in L,,, for which we see below, the formula
(4.39) is a well defined path integral, namely the measure is defined according to

the canonical rule.

Once the path integrals are written we can transform back to the represen-
tation of the center of mass coordinates from the mid-point coordinates. If we

substitute Gy, = am — po cosm, the kinetic operator L can be written as
1, 1 ~
L= ——-2-p ) Z POy L — Z tne_pby ¢ +1. (4.40)

In the above calculation we use a formula 76(0) — 3°, cos?nf = 1 which is

derived from (3.38). If we replace b, with b, (4.40) turns out to be the same
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form as the kinetic operator LX© in the conventional Lagrangian quantization

approach of string field theory. (el

The vertex can be rewritten similarly in term
of usual center of mass coordinate. Here we do not rewrite the ghost part of the
vertex, however, the form of it is same as the one in the center of mass coordinate
if we replace b, with b, after the gauge-fixing. The Feynman rule then coincides
with the one in the formal Lagrangian path integral method. The above result
is plausible if we consider that the divergent coefficient of the kinetic term can
be properly regularized. If we are permitted to be optimistic, we can conclude
that the canonical quantization of Witten’s string field theory reproduces the
same results as the naive Lagrangian path integral method. However, from a
more severe point of view, we need to know the physical interpretation of the

divergent coefficient of the kinetic term. In the next subsection, we will come to

this question.

4.4 DISCRETIZED STRING
Let us consider a divergent coefficient of the kinetic term which is written as

Té n —n
-3 %(—)"&ﬁl 1,00, . (4.41)

n

Potting, Taylor and Velikson ™ regularize this divergence by (-function method -
and set 6(0) = 0. Then, only first order derivatives are present in their theory.
However, it is unsatisfactory since their regularization changes the dynamics of

string field theory from Klein-Gordon type to Dirac type.

In order to regularize this divergence, we apply the discretized approach of
strings.”™ ®? A discretized string becomes a one-dimensional lattice with N + 1

points. (See Fig. 4.) Integrations are replaced to summations, and é-functions
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to Kronecker-§ symbols, i.e.,

1 1 &
— [ do — Z
4 / N+1:.3 (4.42)
!
W(S('Jnvﬂ' - %77) = (N + 1)bpn'.

Accordingly, the divergence of kinetic term is regularized as
1
—g5(0)6¢a¢ ~ —(N +1)20¢04. (4.43)

In this discretized approach, the string field is expressed as a function having
N +1 arguments, i.e., ¢ = ¢(X(0), X (F7), X(F7), - X(r)). We postulate that

the integration measure of string coordinates is expressed as

N
px =[] d}f(%ﬂ'). (4.44)

n=0

We have two choices of zero mode of string coordinates. We use the term ”zero
mode” for the coordinate which indicates the location of whole string. In the
first choice, we can choose the mid-point 27 = X(J) as the zero mode. The
fluctuation around the mid-point is described by X'(f7) = X(§7) —X(5). The
transformation of integral variables affects the integration measure through the

Jacobian factor
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exclude X'(%)

A(X(0), X (), X(5),- - X(m))

X(5 X'(0) X'(gm - X'(Zgtw) X'(m)
X(0) ( 0 1 0 0 0 \
X(%m) 0 0 1 0 0
(4.45)
det X(lzr_) 1 -1 -1 -1 -1
XA o 0 0 1 0
x(x  \ o0 0 0 .- 0 1/
= 1.
Then the integration measure is equal to
DX = dx;DX'. (4.46)
where
il n
DX' = H CZ_YI(NW). (4.47)
In the second choice, we can choose the center of mass xg = NITI' > X(§m)

as the zero mode. The fluctuation around the center of mass is described by

X(%m) = X(%m) — zo. Since all of X(%7) (0 < n < N) are not independent,
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we can exclude X (%) from Xs. The Jacobian factor becomes

exclude X (%)

a(X(O)a-X('}V_W)a e 7X(%)a o X(ﬂ')) a

w0 X(0) X(gm) - X(E§m) X(n)
[ 1 N 1 1 1
X(0) N+1 N+l TNWN+1 T TN AN \
1 1 1 N 1
X(xm) N¥i “Nf1 WA N1 TN (4.48)
det : '
(N~ N
X(%Ftm) N}i-l “N1+1 ——N}H N+ "Wiu_l
- 1 1 1 1 N
X(m) \N+1 “N+1 T N¥1T TN+1 N+1 )
1
N+ 1
Then (4.44) can be written as
DX = (N +1)PdzyDX (4.49)
where D = 26 is the space-time dimension and
N n
DX = g ch(J\—rw). (4.50)
n#—gi

Since we can easily confirm DX’ = DX, these two integration measures ( dzy and
dzy ) differ by the factor (N + 1) which arises from the Jacobian. The factor

N +1 becomes 76(0) in continuous limit.

We consider what follows from the difference of the two measures in coordi-

nate space representation. Due to the factor obtained above, the second order
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derivative term in the action

N+1 -
/ deoDX'[ — == 04(z1, X')08(z1, X")] (4.51)
in the center of mass coordinates turns out to be
/ derDX' [~ = Los(er, X")ag(ar, X1). (4.52)
(N +1)P-12 ’ ’

The tildes mean change of orientation of string. In the Fock space representation,
the integration of nonzero mode DX’ is replaced by the summation of the Fock
space indices. By assuming the time-component of z; as the canonical time, we
can introduce the momentum conjugate to ¢ as

1

Mz, X'") = N EDp1

O0(z1,X") + ( no derivative term). (4.53)

Calculating canonical equal time commutation relations with use of Dirac bracket

as in the previous section, we obtain
[9(e1, X'), 808(ur, V)| oy = i(N + 1P718(37 - GO~ 7)), (454)

where the LHS contains a divergent factor. However, this factor can be attributed
to the Jacobian factor due to the transformation from the mid-point é-functional

to the center of mass é-functional, 7.e.,
(N +1)P-18(z7 — 7)86(X' - ¥') = 6(z¢ — 30)8(X - ¥). (4.55)

Eventually, we obtain a commutation relation of string field in the center of mass

coordinates as
($(20, X), oy, V)] g_ o = i8(T0 — TI6X — 7). (4.56)

The origin of the divergent factor is given as follows. The center of mass is
the coordinate which is obtained from integration through a whole string. In
contrast, the mid-point coordinate X (%) is a measure zero coordinate. The ratio

of the weights between two coordinates is the origin of the divergence.
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Now let us come back to the continuous theory. We have the commutation
relation (4.56) in the center of mass coordinate. It can be written in the Fock

state representation as

(n)

[¢ '(20), O, (yo)]l g0 = 6minol 16(z0 — W) (4.57)

The above commutation relation leads to the free propagator

ST - p =i -y
_ s in(z~y), 458
(To. ()85 W) = Libmans | oyp oy (4.58)
where m(A) is the mass of the mode |A> Since L,, = p + m2(ANI,,,

above result coincides (2.50). The discussion given at the end of the previous

subsection has been now justified.

5. Conclusions

We have quantized Witten’s string field theory in the canonical formalism by
using the mid-point time variable and discretization of the string coordinates, and
clarified that the formal path integral approach leads to correct Feynman rules.
We emphasize here that the ordinary center of mass time formalism, due to non-
locality of the vertex, does not define a simple canonical momentum conjugate to
the string field @, while in our formalism the canonical momentum can be defined
as (4.30) because the vertex is local. The path integral measure for string field @
is then well defined. Starting with this ( mid-point time ) canonical formalism and
changing the representation from the mid-point back to the center of mass normal
mode expression, we have reproduced the perturbative string theory which have
been conventionally used. Another advantage of the mid-point time formalism
is that, the gauge-fixing procedure become simple even for interacting strings
since the interaction term contains only the component fields which survive after
gauge-fixing. In particular, unlike to the center of mass coordinates, there is no

quantum correction to the action with our definition of fields and anti-fields.
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To apply our mid-point formalism to other string field theory is a highly
non-trivial problem. A closed strings have no special point like a mid-point.
The interaction of closed strings may occur at any point on a string. It is not
clear which zero mode of a string one should use to make the string interaction
local. The situation is the same with HIKIKKO’s open string field theory. In
particular, a recently proposed non-polynomial theory for closed stringlg—u] 18
inevitavly non-local since the number of interacting points of a string on the
n-string vertices is not one. However, the absence of canonical quantization of
closed string field theory is a more serious problem which should be resolved,
because none of manifestly covariant closed string field theory gives us a correct
amplitude at loop-level. The work by Hata!"” produces a correct loop-amplitude.
The additional terms in his work can be considered as a generalization of the
Lee-Yang term. These terms may come from the path-integration over string

field momenta if one finds a suitable canonical formalism of closed string field

theory. This problem seems to be a worthwhile issue to investigate.

Finally we comment on Witten’s superstring field theory. Because the ver-
tex of the interaction of Ramond — Ramond — Neveu-Schwarz superstring is
necessary to multiply a pre-factor which contains a derivative, the interaction of
superstring is a derivative coupling interaction after rewriting in the mid-point
coordinates. Hence the canonical momentum contains a non-linear term aris-
ing from the interaction term even in the mid-point coordinates. Does the term
generate any non-trivial result such as the Lee-Yang term? This will not be a
problem. The derivative is only first order, and the integration of momenta may

be performed without any trouble. This subject is now in study.
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APPENDIX A

Matrix Representation of First Quantized Operator

We express the matrix element of an operator O as
OAB = <V2|b0|A>OIB> (Al)

The symbol A runs through all Fock space vectors. We select the basis of Fock

state vectors as
A4 = M(A)ag, - by by - cnrel + ) (42)

where the state |A) has ghost number Ny(A) = —J + K + 3.
The normalization constant A(A) satisfies the following conditions.

(i) The reality of X is decided to satisfy (V3|A) = (|A))! = (A| For this

condition, A takes a real or pure imaginary value.
(i) We choose Re(A(A)) > 0,Im(A(A)) > 0, as a convention.

(iii) If we define a state |A) as
IA> = /\(A)a& e afzbnl T bmccml T chl + >7 (A3)

only a nonzero inner product with |A) is (A]by|A). We decide the absolute value
of A in such a way as |<V2|bg|A>|fi>| becomes one and [A(A4)] = |M(A)|. As the
result, (Vz|bo|A)|A) = £1 or =i.

Under this definition, the matrix element O, can be written in more natural

form

O,» = { — A|O|B). (A4)

where | — A) is obtained from |A) by replacing |+) with |— ). Matrix element has
a nonzero value only when Ny(O) + Ny(A) + Ny(B) —1 = 0 or (=)9+4+8 = 1,
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The general inner product of string fields ¢, and ¢, is expressed by matrix

representation as
(ValbolA)p ,O| B, = (Valbo|A)O|B)p yip,, ()P4 EHO) (A5)
If ¢ is tp-field (then, (—=)¥4 = —(=)4), the sign factor of (A5) is 1. In the case of

¢-feld((—)?4 = (—)4), it is ()4

The matrix element for O = 1 in (A5) becomes
I,= <V2|b0|A>|B> = <V2|b0|A>IA>6AB (A6)

The inverse matrix of I, is

-1 _ 1

aB = W‘SAB (A7)

which satisfies

Lol =6, I, =6

AB” BC

(A8)

AC*

Through this paper, repeated indices A, B are summed up. The inverse matrix

-1 : .
I satisfies a very useful formula:

01710, =(00"),,. (A9)

AB" B¢

The proof of (A9) is obvious once we notice
1 (Va|bo]4) = 1.

in the space spanned by the state excited from | + > Multiplying (A10) by
(V2]bo| BYO from left, and by O'|C') from right, we can obtain (A9). As is easily

understood, I™! is an indefinite metric matrix of the first quantized Fock space.
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We express three string vertex with the same manner.

<V3|b0 |A>(10Ab0 IB>‘PBb0 |C>‘Pc

(All)
=(ValbolA)bo| BYbo|C ) 4050 (—)PAEBHE) (—)pm(CHD),
If all ¢’s are ¢-fields, (A11) reduces to
fapc®a®se (A12)
where
Fase = (V3lA)|B)IC)(—)AC. (A13)

In the above we have used (—)¥4 = (=)4 and (=)4+8+C = 1.

APPENDIX B

Commutation Relations in Mid-Point Coordinates

In this appendix, we will calculate some commutation relations between the
operators in the mid-point coordinates. The BRST charge in the mid-point
coordinate can be expanded as (3.33). In order to satisfy the nilpotency of the
BRST charge, we have to show the following formulas:

(1) [L,K]=LJy+ J_L,
(2) K*4+ ML ={J,, K},
(3) [K,M] =M1/,

(4) [L,M] = —{K,J}.

In the following, we confirm these commutation relations. The calculations are

46



easily performed by using the well-known relation
[L7°,Q5°1 =0,
(M5, Q5% =0,
(Q~§O)2 — —-MKOLKO.
Note that our operators can be expressed as

LI — LI(Ol p=o

a,b—a,b

. 7r
K' = Q%OI p=0 +: En:cn cosn§L' i,

a,b—a,b

The equation(1) can be expanded in powers of 9" as

(1-a) (L KN=L'J +J_-L,
(1- b) [Lla kﬂ] + W”,I\’I] = J¥,
(1-¢) [F kY] = ﬁ;—oz.]n’“’.

(B1)

(B2)

By using (B2), we can easily obtain (1—a). The proof of (1—b) can be performed

straightforwardly. In order to obtain (1 — ¢), we need a regularization. The LHS

of (1 — ¢) can be written as

[i/dazo"zf‘ coslobd(o — g), —i/da'Z&;’n sinma'ch sinno'§(o’ — —g) ,
n m n

which becomes

(B3)

! . ! . ! T 1T wp
/da/da ;[—ncosnasmna]zn:cn sinno §(o — —2—)6(0 —~§)77“ . (B4)

After making partial integration with respect to ¢', we obtain

1 ' / / T ;7 T v
——é/da/da zn:ncn cosno 6(c — o' )é(o — é—)wé(a —5)77“ )

The above result reduces to ﬁégln’“’ J.
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We can prove the other commutation relations

(2 —a) (K" + ML = {J,,K'},
(2-10) {K',k*}+ MO* =0
(2—¢) {k*, K"} + 76(0)"* M =0
(3—a) [K',M] = MJ,

(4 —a) [L',M] = —{K',J}.

(4 — b) [¢*, M] = —{k*, J}.

in the same manner. In the calculation, we use (B1). Since the formula (B1)works

only in D = 26, our BRST charge is nilpotent only in a critical dimension, too.

APPENDIX C

Properties of Two String Vertex

The first quantized operators have the following partial integration laws on

the two string vertex (V5|

(Val(@) + & (—m =0,
(Va|(38) - 8P (—)m =0,

(C1)
(Val(e) + 2 (=M = 0,
(Val(p® + p®) =0,
which lead the equalities:
(VI — 1) =,
(Val (MO + MB) =,
, (1) _ 4(2)
WiJy —J) =0,
(Val(Jx ) ()

(Vo)(EW + K@) =0,
(Va|(eW 4 ¢y = o,
(Va(k — k3 = 0.

48



By using (C2), we can calculate the transposition of matrices in appendix A as

OAB = @BA(—')O'B-‘-O-{-B (03)
where
(Val(0®) - 0P = 0. (C4)
APPENDIX D

Review of the Batalin-Vilkovisky Method

In this appendix, we shortly review the method to obtain the gauge fixed
quantum action developed by Batalin and Vilkovisky. bl

1. Irreducible Theories

We consider a classical action S(¢) of the field ¢4(4 = 1,2, -+, N), which is

gauge invariant under the transformation
664 = RAN, (D1)

where the coefficients R{l(i = 1,2,---,m) may be functions of ¢, and ); are

arbitrary parameters. The invariance generates the Noether identities

6rS(9)
0da

Ri=0. (D2)

First we consider the case of irreducible theory( R# are linearly independent one

another, hence, rankR’%lqn.__o = 0. Because of this invariance, the rank of the

Hessian of S(¢) (rank%% .

the equation of motion derived from L£(¢).

) is not N but N —m, where ¢y is a solution of
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We enlarge the space of fields from ¢4 to 4 = {¢4,C;} adding the ghost
field C;. Further we assign the anti-field &% for each field ® 4. The anti-field %
has an opposite grade against ®4. The classical limit of the action is realized

by the limit ®* = 0. Hence, the action S must satisfy the boundary condition
S(®,®* =0) = S(¢). One more boundary condition for S is

616, S(®, o) A
et Nk B = R4, D3
6(]5;160, P*=0 ( )
6:618
624693 |5,
N + m (where @ is a solution of the equation of motion derived from S). The

which guarantees the rank of the Hessian of S (rank ) to be equal to

essential condition for the action is so called master equation, i.e., (S,S) = 0.

The symbol ( , ) is the anti-bracket defined by

§;A8,B 6,A6,B

(4 B)=2. 55, 58; ~ 507 o8;° (D4)

Further we introduce some auxiliary fields, namely anti-ghost C; and Lagrange
multipliers 7; and add the terms C}=; to the action. Even after adding the terms,
the action satisfies the master equation. The additional term C?¥r; will become
a gauge fixing term (7; X (gauge fixing condition)) as seen below. For the gauge-
fixing, we introduced so called gauge fermion ¥ which has ghost number —1. The
gauge-fixed partition function is obtained by

&

Zy = /D@exp [%W(cb,cb* =<3 (D5)
(]

where W is the quantum action which is expanded as

W=58+) W"W,. (D6)

n>0

When we change the gauge fermion ¥ — ¥ + §¥, the partition function (D5)
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changes Zy — Zy + 6Z as

8§ 6

62 = 64 6®%

exp [iVV(@, @*)]
h d

s (D7)
5%

Hence, the path integral (D5) is invariant under the change of ¥ if W satisfies

the equation

6 & [z .
—exp | -W(&,d") =0, (D8)
6P 4 6% h Py
or,
1 o 0O W
= = ith——.
2(W,W) “5<I>A6<I>j‘ (D9)
The equation (D9) is expanded in powers of h as
(S,5) =0
. 6:6;S
(W1, 8) =igg s 53,
oWy 1
(WZ’ ) 6@ 6@* - 5(14 1, |2 1)7
(D10)

68 Wy 1 v
(Wy, S) = W g(Wm,Wn_m),

The classical part(O(h?)) of (D10) is just the master equation. By solving the
equation(D10) order by order, and choosing the gauge fermion ¥, we can obtain
the correct quantum action. We choose ¥ as 45 to be gauge conditions. Namely,

the gauge fixing term is given by

o
mﬂ'l. (D].l)
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The kinetic term of ghost—anti-ghost system is given by

C; [ dahd RA} cj, (D12)

5Ci64 7 | lgoo

which is obtained from ¢% RAC; by substituting ¢% = $%. Since the ghost—anti-
AY EPa= %3

ghost system has no gauge invariance, the condition

=m (D13)

rank {
d*=0

= R
6C0¢ 4 J]

must be satisfied. Note that m is the number of C;, C; pairs.
2. Reducible Theories

Hereafter we consider the case when Rfl obeys some linear relations,s.e.,

RAZP, =0.  (1<ig<mo,1<i <my) (D14)
for the zero eigenvalue vector Z;. If Z; are linearly independent, the theory is
called first-stage reducible. In such cases, we have to enlarge the space of fields as
® = {4, Cy, Cy1} because the ghost Cy is now a gauge field. C} is the second-stage
ghost which has ghost number 2. Similarly to (D3), the boundary condition for

the action is

§6,S(, &%)

= Z%b. . D15
6C5 i, 6C1i lgemo " (B15)

For the gauge-fixing, we need three pairs of auxiliary fields,
C_'O,ioa 70,40 C~vl,i] s T,019 Ci,il ’ ﬂ-ll,il’ (D16)

where C; are anti-ghosts for the ghosts C;. The field C! is the extra-ghost which

is necessary because the first stage anti-ghost Cy is also a gauge field. Now the
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condition for the gauge fermion (D13) is extended as

6[57\11 A
rank————R* = mg — my,

6Coi0004 °|5,

6167-\11 10
rankmzl’jl 2, = mi, (D17)

. 86,0
rankZ°, ——————| = my,
1,1 500’1'056'1”.1 s 1

where Z; is left zero eigenvalue vector of the kinetic operator of ghost, i.e.,

i 60
RY  =o0. (D18)

L1 6Ci0664 2| peo

The another condition comes from counting of the degree of freedom of gauge

field. Although the field ¢4 has the degree of freedom N, its mg — mj(not my)

components are redundant. Namely, the gauge fixing condition % = 0 should

fix mg — m1 gauge freedom of ¢. This condition can be written as

5,6,
8Co,i, 604

rank

=mpy — mj. (D19)

The theory is called L-th order reducible if there are the zero eigenvalue
vectors such as

le(l’ZQZ; = ZQZ;Z;;Z == ZL—I:'i:fZL:‘i—l = 0. (DQO)

In such a case, we must introduce a series of ghosts Cy,Ch,---,C and their

anti-field. The master equation and the boundary conditions are the same with

irreducible ones. Moreover, the boundary conditions for ghost fields are as follows

616, 5(2, @) i
— tn 1. < <
6Cn_1* 1507“7” q)‘=0 Zzn (1 _— n Pl L) (D21)

in—

For the gauge-fixing, we must introduce auxiliary fields listed below.
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(i) anti-ghosts and extra-ghosts.

6_’07
C’lv Cia
C,,C3,CY (D22)

~ ava "
03, C3, Cg y V3

(ii) Lagrange multipliers
70,
!
71,7,
Mo, Thy Ty, (D23)

! 1 ni
T3,T3, 3,3

The additional terms are the products of an anti-field of a ghost in the list (i)

and the associated Lagangean multiplier in the list (ii), namely,
Cimo + Cimy + C* ' + Cohmo + Chrmly + Co* ) + -+ - (D24)

The conditions for gauge fermion are of the form

616,
rank OIS = M Ml +Mp_g —Mmy_3+ -+, (D25)
n n—1
and
816,
rankéc_’<s—1>5(}<s> = M= M1 + Mp—z = Mag + 0, (D26)
n-—1 n

where the superscripts < s > denote the number of primes.
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Figurel.

Figure2.

Figure3.

Figure4.

FIGURE CAPTION

The connection of three string on Witten’s three string vertex.

z-plane of the conformal mapping of three string vertex. The symbols
21, Zy, Z3 are places of strings at the infinite past. z9 and 2z are interacting

points(o = 7).

A Table for ghosts and anti-ghosts. The fields introduced at the same
stage( ghost, anti-ghost, extra-ghost, and extra-anti-ghost ) are listed in a
horizontal line. The numbers under the component fields denote the ghost
number of the state |A). The sum of the ghost number of two component

fields connected by an arrow is —1.

Descretized string. The area 0 < ¢ < 7 divides to N + 1 points.
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