

Title	The Structure and Localization of IP3 Receptor in Oocytes and eggs of Xenopus and its function in Egg Activation
Author(s)	粂, 昭苑
Citation	大阪大学, 1992, 博士論文
Version Type	VoR
URL	https://doi.org/10.11501/3064559
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

[18]-

氏 名 **桑** 昭 **苑**

博士の専攻分野の名称 博 士 (理 学)

学位記番号第 10489 号

学位授与年月日 平成 4 年 12 月 21 日

学 位 授 与 の 要 件 学位規則第4条第1項該当

理学研究科 生物化学専攻

学 位 論 文 名 The Structure and Localization of IP3 Receptor in Oocytes

and eggs of Xenopus and its function in Egg Activation

(アフリカツメガエルの卵の活性化における IP。 受容体の役割

-IP3 受容体の構造と機能の解析)

朗

(主査) 論文審査委員 教授 浅野

> (副査) 教 授 松代 愛三 教 授 中村 隆雄 東京大学教授 御子柴克彦

論文内容の要旨

受精あるいはその後の形態形成において、イノシトールリン酸、代謝回転が関与することがいくつかの実験系で示唆されている。受精時の情報伝達については、精子と卵との相互作用によりホスホリパーゼCが活性化され、細胞膜リン脂質の微量成分であるホスホチジルイノシトール4、5-二リン酸(PIP2)より水溶性のイノシトール三リン酸が水解され、細胞内 Caストアより Ca を放出させる。細胞内の遊離 Ca²+ の増加は卵の活性化、そしてそれに続く発生プログラムの引き金となることが、いくつかの動物種で示されている。最近、マウス小脳よりIP3 受容体 cDNA がクローニングされ、cDNA トランスフェクション実験により、IP3 依存性カルシウムチャンネルであることが明らかにされている。

本研究は、卵の活性化において、IP3 による細胞内遊離 Ca²⁺ の調節が情報伝達経路として関与する可能性を検討するために、アフリカツメガエルを材料に、IP3 受容体に注目して解析を行った。

まず、アフリカツメガエル卵母細胞の IP3 受容体の cDNA をクローニングし、その全塩基配列を決定したところ、マウス小脳 IP3 受容体とアミノ酸レベルにおいて約95%のホモロジーを有し、マウス小脳 IP3 受容体と同様に IP3 同様に IP3 依存性カルシウムチャンネルであることが強く示唆された。培養細胞 NG108-15へのトランスフェクション実験により、この分子の IP3 結合活性がが確認された。得られた cDNA 塩基配列に基いて Xenopus IP3 受容体に対する特異抗体を作成し、免疫組織化学的手法を用いて、Xenopus 卵母細胞及び未受精卵における IP3 受容体の細胞内局在を明らかにした。すなわち、1、卵母細胞において IP3 受容体は表層、そして細胞質内部の全域に発現がみられ、特に動物極においておおく発現する。2、in vitroでプロゲステロンにより成熟した卵においては、IP3 受容体は全細胞の表層部に多く発現し、そして細胞質内については動物極の yolk free patch に局在する。3、未受精卵においては、動物極の細胞質内部に IP3 が局在する。そして全細胞との表層部に sharp な染色像として検出された。4、受精卵ではIP3受容体の局在する構造がくずれ、表層部の染色像が不明瞭になる。IP3 受容体が動物極に局在することは、精子が動物極より進入し、精子進入点からの Ca 波の発生とよく対応する。また、成熟卵および未受精卵の表層における局在、及び受精時における局在の変動について、XenopusIP3 受容体に対して特異性の高い抗体を用いて明らかにし

た報告はこれが最初である。

またIP3 受容体に対する特異的 Antisense oligonucleotide を用いた阻害実験では、Antisense oligonucleotide を注射した卵は sense oligonucleotide 注射した卵に比べ IP3 による卵の活性化が阻害された。このことより卵の活性化には IP3 受容体が必須である。

論文審査の結果の要旨

動物の卵の受精から発生までに細胞内 Ca^{2+} 濃度の一過的な上昇が必要なことはよく知らされている。本研究は,I P_3 受容体のクローニング,構造決定と機能の測定,抗体の作成などを行ったのちに,アンチセンス核酸の注入が,この受容体の発現と卵の活性化を阻害することを見いだし,この過程がイノシトールトリリン酸(IP_3)受容体を介した反応であることをはっきりと示したものである。よって本論文は,博士(理学)の学位論文として十分価値あるものと認める。