
Title IRREDUCIBLE DECOMPOSITIONS OF NON-TYPEI
REPRESENTATIONS

Author(s) 河上, 哲

Citation 大阪大学, 1982, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1666

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



IRREDUCIBLE

NON-TYPEI

DECOMPOSITiONS

  OF

REPRESENTATIONS

Satoshi KAWAKAMI

Faculty of Engineering Science

     Osaka University

       1982



Page

 iii

  iv

  iv

  iv

  iv

   9

  l3

  15

  43

  65

  75

  78

  86

  86

 134

 l34

 l35

Mne

 2

 5

 6

 9

l7

9

13

4

6

6

l2

l7

20

26

l5

l6

 1

Errata Sheet

Error

variaty

tecniques

representatios

trasformation

represeatations

repreaentations

indivisual
uX= indRx

indivisual

for for all

There

H -nvariant
 X
imrnedictely

Proposition 2.4.6.

(1976)

certain

vayiaty

Correction

variety

techniques

]7epresentations

transformation

yepresentations

representations

individual
UX= IndSx, Vn=

individual

for all

These

H -invariant
 X
immediately

Lemma 4.2.4.

(1977)

non-i?egular

variety

Ind G
Kn



To my wife

  Keiko

mi-



ACKNQWLEDGEMENT

     It is my pleasure to thank Pyofessors Masamiehi Takesaki,
                                 'Fujthiro Araki, and Hiroshi Takai for their warJn encourage-

ments and valuable suggestions. • . '
                                       '   ' Special thanks go to Professor Calvin C. Moore for his

invitation and warm hospitality extended to me at University
                                                               'of California in Berkeley, and to Professors Nobuhiko Tatsuuma
                                            'and Takeshi Hirai for their frequent and stimulating dis-

eussions at Kyoto University. .
     My deep gratitudes go to Doctor Yoshikazu Katayama and

Mr. Tsuyoshi KaJ'iwara for their stimulating and fruitful

discussioris, and to Professor Shunsuke Funakoshi for his
                                            'guidance and va!uable suggestions on the present resea?ch.
           '     But above all, rny rnost sincere gratitude goes to Pyofessor
                                               'Osamu Takenouchi, my adviser, whose constant eneouragements,
                                                  'enthusiasm for the present mate?ial, and instructive sug-
                                     'gestions have been most invaluable. - '
                                         '                                                        '

  -"- IZ -



Abstveact

     In this thesis, we study the variaty of irredueible

decompositions of non-type I yepresentations. !t is known
        'that irreducible deeompositions into direct integyals of

non-type I vepresentations aye not unique in geneyal.

Long before examples are known which demonstrate this faet

and these are about regular representations of non-type I

groups.

     In this thesis, we show many other new exarRples of this

non-uniqueness phenomenon of deeompositions not only for

regulaT ]?ep?esentations but also for sorr,e factoy ?epresen-
                                                            '
tations and will make it clear that this phenomenon has some
                                              '
close yelation with ergodie measu?es and cohomology groups

of tvansformation groups. To do this, we investigate cohomo-

logy theoTy for double transformation g]?oups and genepalize

the Maekey's theo?y of indueed represqntations. Furthermore,

we deseribe explicitly the interrelations between deeomposi-

tions and maximal abelian subalgebras from a view point of

operator algeb?as. As an application of our theory, we

obtain some new famiZies of irreducible repBesentations of

certain non--type I groups.
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                        Introduction

     In this thesis, we study the va?iety of irredueible

decompositions of non-type I repnesentations. It is known
                                                    'that irreducible deeompositions into divect integrals of

non--type ! representations aye not unique in geneyal. Long

before, examples are known which demonstrate this fact, and

these are about regular rep?esentations of non-type X groups.

In this thesis, we show many other new examples of this non-

uniqueness phenomenon oÅí deeompositions not only for regular

representations but also fo]? some faetor yepresentations.

We then construct a theory which makes it clea]p that this

phenomenon has some close relation with e?godie measu?es and

eohomology groups of ti?ansformation gyoups.

     This thesis eonsists of five ehapters. Xn chapter I,

under rather systematie ver;sions, we arrange examples

obtained before by sevei?al authors. In chapters II and III,
           '
we investigate cohomology theory for double transformation

groups and geRevalize the Mackey's theory of induced repre-

sentations. These will culminate in the des-eription of our
                                                      'theory oÅí irredueible decompositions of non-type I repyesen-

tations in chapter IV. In ehapte? V, we extend these results

f?orn a view point of operato? algebyas. Now we will explain

                                                tt                                                   'briefly the eontents of eaeh chaptev.

  . Zn chapter I, we study the phenomenon that regular

representations of some non-type ! groups may be decomposed

into direct integ?als of irredueible representations in

completely different ways.
                                                  '
     In l951, H.Yoshizawa first pointed it out about the
            '



free gyoup on two. generators [54]. In the same year, G.W.

Maekey independently showed sirnilan results about some .'

discrete semi-diyeet produet.groups by applytpg the method
      '   'of induced ?epresentations [29]. In l974, M.Saito studied

the elassification of cojugacy elasses of Cartan subgroups

of SL(2, Z) and found that the regular representation of

SL(2,Z) was possible to be decotnposed into ir]?educible
                     'components in infinitely many completely differnt ways [46].

Furthermore, A.A.Kirillov reported in [28] that the phenome-
    '
non occurs even in the ease of the MautneT group which is

not discrete but a simply conneeted solvable Lie group.

     In this ehapter, we first introduce these four examples

under rather systematic versions and offer new othev examples.
                                         '                                              'In section l.l. we deseribe fundamental teehniques whieh are
                             'used to g.tve different decompositions of regular represen-

tations, by using Mackey's method of induced representations
                                             '[30]. In seetion 1.2, we state the criteria of irreduei-

bility and equivaleney of monomial ?epresentations of discrete

groups according to [29]. Using these results, we review

the non-uniqueness phenomenon about individual discrete

groups. In seetion l.3, we generalize the results aboue the

Mautner gipoup obtained by A.A.Kirillov [28] and consider the

oecurrence of the phenomenon in seareh about semi-direct

product groups, which inelude Maekey's examples in some
                                                  /sense [24].
                                                    '     In chapter IZ, we Gxplain the notion of cohomology of

transformation groups [20]. Whis notion appeared in the
                                                   '              'Mackey's works [33], [34], [35] and- its study has been

- 2 -ny



developed by seve?al authors. K.Sehmidt has studied it

related with ergodie theory [45]. Anothe]? way of the develop-

ment was pursued by A.Guiehardet [,l7] and C.C.Moove [37],

[38] who conside]?ed this eohomology as the one eohomology of

locally eompact,groups. Fu?ther, there is a way followed by
                     'G•W.Mackey and A.Ramsay. They have investigated it as a
                '
family of simÅ}larity classes of homomorphisms of a measuvee
 '
groupoid or a virtual group [34], [43], [44].

     In section 2.l, we desevibe elementary properties of
  '
the eohomology of topologieal transformation groups. Propo-

sitions 2.l.1 and 2.1.2 are fundamental and may follow f?om

the results in some of the works by C.C.Moore aRd A.Ramsay.

However, we will add the proofs-for eornpleteness.

     In section 2.2, we introduce double t?ansfo]?mation

g?oups and their cohornology. These veeplaee eertain non-

smooth topologieal transformation groups and their eohomo-
                                      'logy, and play a principal role in our considerations.

     In section 2.3, we state the cohomology subordinate to

measu?es. We often use this eohomology in late]? arguments.

     In seetion 2.4, we study the notion of weak cohomology.

This notion is impo?tant as an index showing the variety of

deeompositions of representations, whieh is one of our main

subjects [27].
                                                          '
     In section 2.5, subgroups of cohornology groups and weak

eohomology gyoups are found in some concrete eases.

     In seetion 2.6, we argue again deeompositions of the

regula]p yepresentation of semi-direct product groups related

with cohomology, as an application of this chapter [24].

     In ehapter III, we investigate gene]?alized indueed

                           -3-



representations for double transformation groups, related

with eohomolpgy and we constyuct families oÅí non-Maekey
                                 'repyesentations of certain non-regular semi-direet product

groups as a generalization of Mackey's rnethod [20]. Applying
       'this consti?uetion to the Mautner group, we obtain a new
             'parametrized famUy of non-Mackey rep]?esentations. The
                    'representations found by L.Baggett form a part of this
               '                  '
           '     In l978, L.Baggett found a family of non-Mackey irreduci-
           'ble representations of the Mautner group via the decornposi-

tions of a generalizd tensor product of some eoncrete repre-
         'sentations [4]. In order to elucidate the rnechanism of his

famUy, we develop a theory of generalized indueed repre-

sentations in this ehapter. In 1976, A.Ramsay turned the

MaekeyVs theory into a representation theo?y of measure

groupoids [44] and obtained a generalization of indueed

representations. Our notion is elose to his but there are
                                               'some differenees. These differences will be seen to be

crueial in the decomposition theory in later chapters. !t
                      'is known that, Åíor a connected and simply conneeted solvable

Lie group G, the]?e exists an algebraic solvable Lie group N G

                             tvN ,-v A                                  = [G,G] = N and G acts on Nwhieh contains G such that [G,G]

(the dual oÅí N) smoothly. L.Pukanszky made an extensive use

of this fact in [41], [42]. We impose a similar assumption

(ee) Åíor nonregular semi-direct product.groups, whiÅëh will be
             '                      'used effeetively as a substitute of the fact above-mentioned.
                                                 '
     In seetion 3.1, fo]? a double transformation group, we

define unitary representations in relation to cohomology,
           '                                   '

                            ts" 4 ,--p



which appear7s as a generaZization oÅí the Mackey's induced

                                                   'representatlons [30], [33]• '
   '     In section 3.2, followi4g the constyuetion in seetion

3.1, we have families of non-Mackey representations of non-

yegular semi-diyect pi?oduct groups satisfying our eondition

(ee). In Theoreem 3.2.6, we show when sueh representations aTe

mutually equivalent, and in Theovern 3.2.7, we give a eriterion

of the irredueibility. In Proposition 3.2.9, we mention a
  'property whieh ehayacte?izes these representations. The
              'results obtained are akin to the reesults in [33] o? [44] but

ouys are more p-necise according to the strong eondition.q.

imposed. Moreove]f', the teehniques employed by L.Baggett [4]

will be better understood from our points of vlew.

     In section 3.3, we apply our geneyal yesults to the

diseyete Mautner group and the Mautne)7 group.

     Mn ehapter IV, we consideve the irreducible decomposi-

tions of type II faetor representations of some non-regular

semi-direet pr'oduet groups [21]. Taking a certain factoy

representation of sueh a group, we show it can be deeomposed

in rnany different ways into direct integrals of irreducible

representations, while the diagonal algebras are spatially

isomorphic ntth eaeh other. The explicit form of the diagonal

algebra is also given.

     The theory of iryeducible deeompositions is based on

the following general result of F.I. Mautner [36]. Let G be

a locally cornpaet group and T be a unitary representation of
G on a separable Hubert sapee 'll-. Suppose that 6'( is an

abelian von Neumann subalgebra in T(G)'. [Dhen, there exists

- 5 '-



a seandaTd rneasu]?e space (Y, v) such that 0L is algeb]?aically

isomorphic with Lco (Y, V) and 7r is decomposed as follows.
            '          '                                          '    '   '     '.'. '' ri S9 .'un dv'cn). , ., .

                                       '   'gXi;O;.?"& g.g .ig.l:ge,dgll's.tg.f:.x v.Iglv?st,aii n(y if ..d

                                         '                                                         '                      '     In chapter IV, we eonsider the i?reducible decomposiqons
                      'of type Zr factor repyesentatioRs of some non-regular semi-
               ttdirect produet group. Xn Theorern 4.l.3, a certain ]pepresen-
eation TX of such a gr?oup G wili be decomposed in an explieit

way to a direct integral of irreducible representations,

each eomponent having a definite form. The corresponding

maximal abelian von Neumann subalgebya in T(G)' is also

described in a eoncrete form.
      '
     It is known that the non-type Vness of a loeally
compaet group or a Cee-algebra is closely related to the non-

smoothness oÅí topologieal transformation groups [12], [15],
                                '[16]. In non-srnooth topologieal transformation groups,
    'there are va?ious kinds of quasi-orbits. Furthermore. the

cohomology gyoup for each non-transitive quasi-o?bit seerns

to be huge, at least it is known to be non-trivial under

some eonditions [38]. The non-uniqueness of decompositions

of a non-type I representation seems to depend deeply on

these two facts. The results in [14] and [50] are certainly
                                            '                                          'connected with the formey, viz. the existence of varlous
              '     '
quasi-orbits and the examples in [28], [29], and seetion l.3
   'also seern to be so intrincieally. The present chapte? is an

atternpt to describe the relation of the non-uniqueness of

                                                '                       '
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deeompositions with the latter phenomenon viz. the non-
           'triviality oÅí cohomology gwoups.

     The decomposition in Theorem 4.l.3 is done by using a

eocyele of the cohomology theo]?y studied in ehapter II, and

it is shown in Proposition 4.2.l that two decompositions are

eompletely different when only the used eocyeles are not

weakly eohomologous, even the diagonal algebyas aye spatially

isomorphic with each other. Thus we may get a large number

of different deeompositions of a given representation into

irpeducible components. To illustrate various possÅ}bilities,

we will give two examples in section 4.3.

     Chapter V is devoted to study representations of
         eecertain C -crossed produets [26]. From a view point of

operator algebras, we will extend the results investigated

in the previous ehapters.

     Foy two elosed subgroups H and K of a loeally compaet

abelian gyoup G, we get a Cee-cr'ossed pr'oduct A = Co(G/H)XyKe
We investigate decompositions of a eertain representation iTO

of A. In section 5.1, we study two families of abelian von
Neumann subaigebras {ozak and ia]b3 in the commuting aigebra

TO(A)' , OZa being assoeiated with the automorphism cta of

TO(A)' , whei?e aGz(K; Gs H), and (Bb with Bb, bEz(Hi;AG,• Kj-).

We will have also some necessary and sufficient conditions
of the maximality of ata and (Bb in orO(A)'. In seetion s.2,

we study decompositions of "O corresponding to e19. To do

this, we study generalized indueed representations of Cee-

crossed products following to chapter III. In seetion 5.3,

using the concept of Heisenberg rep?esentations, we write



down decompositions of
csb in explicit, forms.

            '            'and an application to

loeally compaet group.

 TO co]?responding to the
           '      ' In section 5.4, we show
         '
unitary representations

 above 6rLa and

 some examples

of a eertain

•- 8 .-



               Preliminaries and notations

         '                          '         '
     In the thesis, a representation means a continuous

unitai?y yepresentation pf a locally eompaet group oy a

bounded ee-representation of a CX-algebya. For a represen-

tation T of a locally compaet gyoup G, em is called to be of

type I (resp. type II, type III, and non-type I) if the von

Neumann algebra generated by T(G) is of type I (yesp. type

II, type III, and non-type I). Similar definltions •aye done

                                                          'fo? a repreaentation of a Cce-algebra.
                                                   '
     Through the thesis, when we use a terminology of a

locally compact group or a loeally compact spaee, they are

assumed to satisfy the seeond ax.iom of countability. Further-

more, a Hilbei?t space and a Cee-algebra are also assumed to

     We often treat some semi-dir)eet pr'oduct g]?'oups given

as follows. Let N and K be locally compact abelian gyoups.

K aets on N as an automorphism g]7oup of N and the action is

denoted by Nbz ----> k.zEN for each kEK. Let G be a loeally

eompact g]f)oup whieh is NxK as a topologieal space and whose

multiplieatlon is given by

          (z, k)(z', k') = (z + k.z',k+ k') ,
    '                                      '
for z, z'eN and k, k'eK. This group G is caUed a semi-

direct produet of N with K and denoted by NxsK. We note

that G is a unimodular group. IATe identify the subgroup

{(z,O); zEN} of G with N and the subgroup {(O,k); k6K}of G

with K. We often consider the topological transfor'rnation



group (K;f)), canQnieally obtained for G = NxsK, where 'ift is

the dual group of N and the action of K on the spaee iQ is

given. by, for each keK and x(IG,. . .
                                  '                                    '

. . <z, k•x>=<k.z, x> - .'
        '
- We denote each abelian group of intege]?s, rational

numbe?s, real numbers, and complex numbers by Z, O, iR,
and e respectively. The positve parts of Z, Q, and G?are

written by iN" , QX, and ec+ respectively. One--dimensional

X:. trhUS.bgr,g:e;.ne:I2"lt2.Z dab.2.ltigg bgyroliLp.of complex number.

   ' Othe]? te?minologies and notations mainiy follow Åírom

J.Dixmier's books [8],[9], G.W.Mackey's works [31],[35] and

the monograph [2] by L.Auslander and C.C.Moore.

- IO -



    Chapter I. Decornpositions of regular representations
                                  '                                                        '                  '
     In this chaptei?, we study the phenomenon-that regular

representations of some non-type I groups may be deeomposed
  '
into direct integrals of irredueible ?epresentatioRs in
                                      '                      '                                               'completely different ways.
       '
     In l951, H.Yoshizawa first pointed it out about the
 '                                     'free group on two generators [54]. In the same year, G.W.
                       '
Mackey independently showed similar results about some

discrete semi-direct product groups by applying his method
                           '
of induced representations [29]. In l974, M.Saito studied
                 '
ehe classification of coJ"ugacy classes of Cartan subg?oups
                                                      'of SL(2,Z) and found that the regular repyesentation of

SL(2,rL' ) was possible to be decomposed into irredueible

eomponents in infinitely many eompletely differnt ways [46].

Furthermore, A.A.Kirillov reported in [28] that the phenome-
                                '
non occurs even in the ease of the Mautner group which is
                                                       'not discrete but a simply eonneeted solvable Lie group.
                                                         '     In this ehapteLn, we introduce these fou'r examples
                                              'under rather systematic versions and offer new other examples.

In seetion 1.l, we descr'ibe fundarnental teehniques whieh are

used to give different decompositions of regulav represen-
                           'tations, by using the Mackey's method of induced rep?esen-

ations [30]. In seetion 1.2, we state the criteria of
          'iryeducibility and equivaleney of monomial representations

of discrete groups aeeoyding to [29]. Using these results,
                                        'we review the non-uniqueness phenomenon about individual

diserete groups. In seetion 1.3, we generalize the results

                             - lz -



about the Mautner g)t}oup obtained by A•A.Kirillov [28] and

consider the phenomenon abQut semi-direct product groups,

whieh also includes Mackey's examples in sQme sense.

     I.1. Fundamental techniques by indueed representations

             '                                      '
     Let G be a loeally compact group. Take a closed abelian

subgroup H of G and denote the dual group of H b' y fi. For

a unitary characte? x of H, we. get a unitary.representation
uX of G by uX= Indllx which is the induced representation

of X from H to G, developed by G.W.Mackey [29] [30]. Let X

be the right regula]? rep]?esentation of G and i be the

trivial representation of {e}. Then, by general consider-

ations about induced representations, we see that

         Ag5fie ux d,(k) ' •
where u is a Haar measure of fi. Indeed,

         A g Ind?e}i

                         '                            '           : IndSInd\e}i                                   (by stage theorem)

           : IndSg\l xdp(x) (by Founier transform)

           ct' S# Indfi xdu. (x)
                                   (by Theorem IO.1 in [30])

           = S9fi ux dv (x ).

              '
     Next, ll]ake another closed abelian subgroup K of G and

denote by Vn the unitary representation of G given by Vn =

Indfi n for nGR. Then, by simila? argumentsi, we see that

 '
 ' .i. !; gliK? vnd. (n)

                          - l2 -



where v is a Haar rneasure of 2. .
                                        '
     Therefore.? for two closed abelian subgyoups H and K of

G, we get two deeompositions of the ]7#ght yegulay represen-

tation A of G as

         A f-r Sll uxdu(x) =N {j21 vndv(.n). (.i.i.o

Here we rnust conside? the following preoblems (A) and (B).

     Problem '
     (A) Iyredueibility: When the reepxeesentations UX and

vn (xElfi, nEft) are ii?]?educibZe ?

     (B) Inequivaleney: laThich are unitariZy eguivalent o?
inequivaient among uX and vn (xEHA , neft) ?

                              '

     In the next sections, we stud-y these problerns (A) and

<B) in indivisual cases and show that the formula (l.l.l)

gives indeed different decompositions into iryedueible

rep]?esentations under some situations imposed.

     I.2. Diser'ete groups

                                              '
     For diserete gi?oups, the i?esults obtained by G.W.Maekey

[29] ar)e valuable as criteria fo]? (A) and (B).

                                                     '                                             '                                                  '

     Pyoposition 1.2.1. (Theorem 6' and 7' in [29])

     let G be a loeally eompact group.
     (A) Let H be an open suPgroup of G and UX denote the

representation Indfix of G fo]? a unitary eharacter x oÅí H.

Then uX is irreducible if and only if for each geH one of

                           - 10



tho following statements is true. ,
hEg.iA-'g]H.X 7( g•X On g-iHgnH where cg.x>(h)-.x(ghg-i) Åíoy

 • (io [g-IHg : g-ZHgAHj= co oi? [H : g-IHgAH]= co, wheye

[:.] means the index. ' -
                               tt  ,'(B) Let Hi (i=l,2) be two open subg]?oups of G and uXi'

be the representations Indfi.Xi of G for unita]?y eha]?acte]?s

Xi of Hi (i=i,2). Assume tkat uXi (i=l,2) are irveducibie.

Then uXi is unitaruy equivalent to uX2'if and only if there

exists gcG such that '                            tt                                                   '                                          '     (i) x2=g.xi on g-iHignH2, ' . '
     (ii) [gnvIHIg : g'llsgAH2]<oo and [H2 : g"'IHIgnH2]<co •

                      '                  '         tt        '                                       '      '                                             '     Example I (G.lt"T.Mackey) ' '
     Let G be a semi-di?eet produet group NxsK where N and
K are infiniteiidiseretei{abelian-groups and K acts on N as

                                                  'an automorphism group of N. ' '
                                                    '
     Taking two closed subgroups N and K, we have two deeom-

posltions of the right regular representation A of G

aeeording ,tO ,( si.kli,i,',?i)f;ii/9We;,.(l) ' • ' ,(i•2'i)

where uX=!ndfi x forxeftr, vn=indfi forneQ and u(]?esp. v) is

aHaay measure ofN(resp. K). '                                                       '                                                      '
     G.W.Maekey consWered the foUowing condition(a) -
about the aetion ,oÅí K on N.

                  '
     Condition(a) AII non-trivial orebits of N under the

act ion of K are infinite .'• ' '
      '     '                      '



     PrQposition l.2.2. (.]lemmal,2,3 in g3 oÅí [29]) ,

     (A)(i) TJX is iyreducible if and only if kexf x for

keK distinct from the unit O.

, (ii) Unde]? the conditiQn(.a), Vn is irreducible for

each n{K.
     (B)(i) I"or Xl, X2(ft, UXI is unitarily equivalent to

uX2 if and only if theree exists keK such that X2=k'Xl•

     (ii) Under the condition(a), for nl, n2eG, vni is

unitariiy equivalent to Vn2 if and onZy if nl=n2e

     (iii) uX is never unitarny equivaient to vn for arbitr'ay

            AA•choice of X(N and nEK.

     Proof. This follows di]?eetly f]?om P?oposition l.2.1.

For the detail, see [29]. [Q•E•D•]
                                                '                                      '
     Let <gee denote the multiplicative abelian gvoup of all

positive ?ational numbems. Then Qee acts on O by the multi-

plication as an automorphism group of Q and we have a semi-

direct product g]?oup G = QXsQee. This group G satisfy the

condition(a) and the decompositions (l.2.1) means that the

regular ]?epresentation of G may be decomposed lnto irredueible

pai?ts in two entirely different ways.

     Example r! (H.Yoshizawa)

     Let F2 denote the f-ree gyoup on two generators a and b.
         'Let us now ehoose as H the abelian subgroup of F2 generated

by a and as K the abelian subgyoup of F2 genei7ated by b.

Then, both H and K are isomorphie with Z of integeys so

that the' iT dual groups H and K are isornorphic with the one-

dimensional torus group lr. By general conside?atios in

                           av' l5 --



seetion 1.l, the ptght regular representation x of F2 is

decomposed as - '
           '                  '         x x Sdiv uxdp(x) g S9 vnd.v(.n)

where P is the normalized Haar measure of 'ff and UX = Indfi x

for xEAH and ncAK parametrized with each eiement of - g-.

                        '                  '
                                      '    tt     Proposition l.2.3. ([54.]) ,
     (A) uX and vn are irreducible.

     (B)G) For Xl, X2ea, UXI is unitarily equivalent to

uX2 if and only if Xl = X2-

     (ii) Foy nl, n2GR, vnl is unitarily equivalent to vn2

if and only if n
     (iii) UX is never unitarily equivalent to vn for

                      A 'Aarbitrary ehoice of X6H and neK.
                                        '
     Proof. We give the proof eecording to Proposition l.2.1

different from H.Yoshizawa's method. •
     (A) I7o? each g4H, gMIHgAH = {e} so that [H : g-IHgAH]=co .

Therefore, by (A) in Proposition 1.2.l, UX is ir]pedueible.

Similarly, Vn is irredueible. '
     (B) Suppose UXiis unitarUy equivalent to UX2. Then,

by (B) in Proposition 1.2.1, there should exist geG such
that [H : g-IHgAH]i<oo and x2 = g.xl on g-IHgAH. •Sinee

g-IHg H ={ le }for any geH, the condition [H : g-IHgAH] < co

implies that gEH and so x2 =xl on H. The eoverse is clear.

     (ii) is shown similarly as (i).
     (iii), follows immediately, from the fact that.gAIHgAK ={e}

for any geG. • [Q.E.D.]                                         '
              '
          '
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Therefore, we see that the regular representatiQn of F2 is
                  'also decomposed into ir?edueible pai7ts in two entirely

dif'ferent ways.

     '
              '       '
     Example III (M.Siato)

     Let G be a loeally compaet g]?oup. M.Saito consideyed
a family .g4 of open subgroups of G satisfying the following

                                    'eondition (b). ,                         '
     Condition (b)
     (i) EPor Hl, H2e.gg and geG, if [H2 : g"IHIgAH2]<pa, then

     (ii) For HEszg and geG, gHgb](H yields gEN(H) where N(H)

                                                    'is the noymalizer of H.

     Fo? a unitaivay cha]?acter x of H in s2bed , the representation

IndSX of G is denoted by UX. LHe stated the irreducibility

and equivalency of such representations by his original method

[46]. Here we show them by using P?oposition l.2.l but under

                                             'some yestrictions.
                                                         '     Let .SZS+ denote the subfamily of satisfying that N(H)=H

for H (fszsi+. Then, we get the following.

     Proposition 1.2.4.
     (A) For HEytS+, UX is irreducible for eveyy unitary

                                          'charaeter X Of H.
                     '     (B) IPor unitapy chaBacteys Xi oÅí Hi in .9g+ (i--1,2),

uXi is unitaruy equlvalent to uX2 if and only if there

exis`us gGG such that H2 = g'IHIg and X2 = g'X! On H2•

                                                '        '

                         - l7 -•



 . proof. (A) suppose [H : H(tgMII{g]<oo foy.geG. 1]hen, by
  tt(i) of the condit ion cb ), H<g- iHg and so.. g!lg- i( H. By cii) of

the condition (b), g must be in N(H). Since N(H)=H, we get
gEH. Thelr.efore, for any gfH, [H : Hng-IHg] =oo holds. .[vhis

        'implies that UX Xs ii?yeducible by (A) Qf ProposÅ}tion l.2.1.

' (B) Suppose UX{ is unitarily equivalent to UX2. g]hen,

by (B) of P]poposition 1.2.l, the]?e exists gEG such that (i)
X2 = geXl on g-IHIgAH2 and (ii) [g"-IH2g : g-IHIgaH2]<`o and

[H2:g-IHIgAH2]<pa. 'The first condition in (ii) is equivalent

to the condltion [H2 : HIAgH2gNl]<gb, which implies that .

       -l          by (i) of the condition (b). Similarly, by theHl( gH2g

gggO:il.teO::it-.illl2i)ilg9i), we get H2(g-iHig• .[Phe]?fo?k.;;?D.]

                                              '
                    '                           tt     M.Saito [46] studied the conjugaey classes of Cartan

subgToups of SL(2, ]r) and showed that the family of Cartan

subgroups satisfies the condition (b). Furtherernore, he

pointed out that a Cartan subgroup H satysfying N(H)=H is an

abelian group isomorphie with ZX{Å}l}tand that the eonjugacy

elasses of such gyoups are infinite.

     For such a gyoup H, aceording to seetion 1.1, we get a

decomposition of the regular representation A of SL(2,Z) as

                    '  ' A :;: g.eH UXdp(x). ,' • . • ,,
                                '
Therefoye, by Proposition l.2.4, it is elear that the ]f'egular

representation of SL(2, Z) may be decomposed into irreducible
                        'constituents in infinitely many entirely different ways.

     '
                 '                                       '                                        '             '           '
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     Exarnple IV

     Observing the above three examples, we ean also give

infinitely many entirely diffeyent decompositions of the
                                                           '
yegular represntation of the free group F2 on two generators

as a generalization of Example II.. .
     we consider a family cB+ of subgroups H of F2 satisfying

that

     (i) H is generated by one element of F2e

     (ii) N(H) = He

Then, we get the following.

                                                   '                                                     '                   '     Proposition 1.2.5. (B+ satisfies the eondition (b).
            '

                             '
     For the proof of Pvoposition 1.2.5, we need the following

lemma.

        '     Lemma l.2.6. For gl, g2eF2, if gli = g: for some m,n(Z,
                                                  m!                                                             ntthen there exists kEF2 and m',n'eZ sueh that gl=k and g2=k e
     Proof# Suppose glg2 X g2gl. Then, the equation gl} = g:
    '
would give a relation in F2, whieh contradicts with the freeness

of F2. Therefore, gl and g2 generate an abelian subg?oup of

F2. Since an abeZian subgroup of F2 is generated by one
element, there exists k6F2 sueh that gl = kM'and g2 = kn'

for some m', n'EZ. [Q.E.D.]                                       '                       tt                                       '                                               '                                          '
     Proof of Proposition 1.2.5.
     At fiyst we show that to+ satisÅíies (i) of the eondition

(b). I?o? Hl, H2E<B+ and geF2, suppose [H2 : g-IHIgAH2]<oo.

                           -l9-



               'Then, g-IHIgAH2 f {e}. Hence, there exist non-zero integers

                                'm, n sueh that, g-1' h.Mlg = ,h: rmere hi are, generators of HiCi=l,2).

Therefore, we get (.gWlhlg)M = h:.''By LeJnma 1.2.6, there exists

            'kEF2 such that g-lhlg = kJn'  and h2 = kin'  foy some rn,, ntE I.

                                                   -1By the condition N(H2) = H2, we see that k = h2•,or h2 . Then,
                                          '                          'we get g-IHIgCH2h''' '' '' ''
                  t.t     Next we eheck (ii) oÅí the eondition (b)-. For HE(B+ and
        'gEF2, suppose gHg-i(H. det h be a generdtor of H. [vhen,

ghgtsl = hn for some integer n. By the condition N(H) = H, n

                    'must be Å}1. Hence, we see that gHg-l = H, which implies

                                 '                                                        '                                                      tt             '
           '                                                     '                            '                                       '                                                   '                         '             '     Each subgroup H in 43+ is an abelian group isomorphic

with Z and it is easily verified that the eojugacy classes of
                          'a3+ are infinite. Therefore, by similar arguments as in

                                                'Example UI-, we know that the regular ?epresentation of F2

is decomposed into irreducible components in inflnitely

many entirely different ways.

     1.3. Semi-direet pyoduet groups
                             '            tt                                                  '     X,et G be a semi-direct product group NXsK of N with K

where N and K are both locally compaet abelian groups and

K aets on N as an automorphism group. In this seetion, we

eonsidey i]?redueible decompositions of the rggular yepre-

sentation X of G.

     Applyipg the general consideration in section 1.l, we

get
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         x !-t g:? uxdy(.x) gS.eK vndvcn)

 'where uX = indfix (xefi), vn = indRn (nE2), and v cres.p. v)

is a Haa]7 rneasure of'AN (resp. ft). For the topologieal trans-

formation group (K;fi), let Hx denote the stability group of

                         'K at x(AN. [phen, we get the fQllowipg cz'ite]?iae

    '                    '                                    '                        '     Proposition l.3.1.
     (A)(2) UX is irreducible if and only if Hx = {O}e

     (ii) Vn is iiTredueible if and only if the Haar measuye P

     A  of N is e?godie under the aetion of K.
     (B)(i) If u is a non-transitive measure, uX is never

unitarily equivalent to vn for a?bitrary choice of xeR and

  A
n EK.

    •Proof. The proof wiU be given later in a more general

situation (see "iheo]oem 1.3.3). ' [Q•E•D-]

                  '
     In the case that N and K are discÅ}nete abelian groups,

we caR give a suffieiGnt condition of ergodieity of the
            ,Ameasure v on N undey K.

                                  '
     Lemma l.3.2. LetN and K be diserete abelian gvoups.

If the action of K on N satisfies the conditlon (a) in
seetion 1.2, the Haay measure of it is ergodie under the

                                                        '                                                 '     Proof. Sinee N is a disc]?ete abelian g]?oup, the dual

N of N is a compact gveoup. We denote by Y the noymalized

Haar measu?e of N. Let 6 be a continuous function on N
                        z
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given by 6z.(x) = <z,x> Cx.=AN) for each z6N. ,Then, the. Åíamny

{6z; zeN} is a Q]?thonQi7rnal basis of the Hilbert space L2(]f},p)

of all square intgg]?able functions on Cit' with respeet to u.

Let Lco (f},u) be -.he space of aU essentially bounded Jneasurable

                                       co Ai::i']ilSgf.:.li:•.:,ii?,9i/:x)l-2..,8::,•:Ogl,i..l1..gi:g;);.\e.d?f::e..rge.,

  '                                     'Then, we show that' f= constant (Y-a.a.).'  This wUl establish

the ergodicity of the measuye V under the action of K. Since
lni22-anofi:Ye MeaSUre On fl, Åí bezongs to L2("N,v) and k.f . f

. . , f .L {l g:e6.Fou]?ier eXPanSiOn :..f Z2b-ne...l -

                        '                                                '
                                                 '              '                                              '             '       '     • .a.E([) and Iilll]la.l2<-oe ' , (z.3.o
                     zN .                                    '
By simple calcUlations, we get, for each kGK, ,. ,

      . k'f = ;ltiNa(-k).z6z • in L2-norrn.

          'By the as$urnption that ktf = f in L2-noTm and the uniqueness

of the eoefficients of the Forier expansion, we see that

                                              ' '                      '  ' a.=a( -. k).. . , (l.3.2)
Suppose az 7t O for z f O. Then, the equality (.l.3.2) and '

the eondition (a) stand in eontveaetion with the faet (1.3.1).

Therefore, az must be O for z S O and so we get

                                              '           '          '          f" ao6o in L2-noi?m,
                 '           '
                   , -22-

.



which yields

           '                                    '
                       '          f= ao • (r Y- a.a. ).. / . [Q.E.D.)
                                '
                                                      '                                           '                                  '                                          '     By Lemma 1.3.2, we see that the cyiterion of irr'educi-
bility of Vn (nEfi) in Proposition 1.3.l covers the dise]?ete

                                   'eases described in section l.2 and that Maekey's example

G =Oxs Qee satisfies the conditions in Proposition l.3.l.

     Now, we consider more general cases that Hx is not

necessarily trivi•al ov y is not neeessa]r'ily evgodic.
                              A , W-hen Hx f {O}, for eaeh aseHx, we put '

                           '                             '          L[ Xz ; ooh l = <z,x><h , oo> '

                           '
for (z,h)ENXsHx = Gx. Then, i(X'oo) is a unitary eharaeter

of Gx = NxsHx and. we get a unit,i ry rep]?esentation u(X'to) of

G by

          u(X,`D) = Ind gxL(X'tu)e

By gene]?al eonsiderations of induced representations [30],

we see that UX is decornposed as

          .x ! ff9                  u(X ,co ) dTx(Ck) )

               JHx
         '                             Awhei?e Tx is a Eilaar measure of Hx. ,
 ' When yis not ergodie undey K, we decompose into
                                                   'eygodic measures as

          y = ge p4 d. g)
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where (Z,U) is a standard measure space and pc CCeZ> are
quasi-invariant eygodic measures on fO under the action of

K. Aecordipg to this decornD.Qsition of Y, we get a deeompsi-

tiO ii9i`hi,i.X:e,ri•iiai:,k2,'i"ijg.',i? • 1'., ,• •

                '                                       '
a"d .9 deco:eo:ii,oe,:f, ,:hg.::p,fes?ntation v" of G as

          '                                '
We can give an explieit fo]?m of the component vepresentation
v(n,g) on L2("N,po as follows. Take a iR+-valued Boveel

function pc(k,x) on KxAN sati'sfying for eaeh keK,

 '. pg(k,x)=Ed"{;ii-;-g2-(kvE)(x) (vg-a.a.x)

                                                A\gSr.e.i:':XiEEi2TR.V:c(ilE) fOV each Borei set E in N. Th..,

  '' (vE.n:{lg)(x) = pc(k,x)<z,x><k,n>c(k.x)

                              '                               '                         '                   'for (z,k) (! NXsK=G• '
• Kere, we get irreducible deeompositions of the regular

representation X oÅí a semi-direct product group G = NX sK of

loeally compaet abelian groups N and K as follows. '

                                                     '                    '                        '                               '
     [Vheorem 1.3.3. The reguZar ]?epresentation A of G is

decomposed as '
         )L g gl:l gllll xtJ (- x, cD) dTxc (D)d ,, cx)

           g g: S9 v( n, c) d.( c)d.( n) .
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     cA) u(-X'al) and v('n'C) are irred.ucible representations of

     '

 - (JB) When yc is a non-transitive measure, v(rrn'C) is never

unitariiy equivaient to u(X'oo) for arbit?ayy choice of ne2s

                                            '  , Proof. Mhe irredueibility of U('X'co) follows from general

considerations of indueed representations [30.]. We show the
irredueibiiity of v(n'O. suppose wv((n .;kCl = vEE;kBw fo?

sorrie bounded ope]?atoi? w or} L2(AN,v4). since the set of

           (n,c)           (.z,o) (zEN) generates the maxlrnal abelian vonoperators V
                 co ANeumann algebpa L (N,llc) of all multiplieation operatos in
cC(L2("N,uo), the algebra of all bounded oper'ators on iJ2("N,pc),

the equality vrv[zn•:g)) = vS,zn:oC))w for each zeN'implies that '

W must be a multiplieation operator P(f) (fELco (f),pO). By

simple calculations, we see that '
       '
  ' v[ ,n;BX,(f)vE ,n;.2 - p(k•f)

where (k.f)(X) = f(keX). On the other hand, by the assum--

ption, for each kEK,

           (n, 4)x          V(o,k) p(f)v[o";kC)) - p(f).

[Vherfore, we ge`u, foy each keK,
         '

          ktf=f (Pc-a.ae)•
         '                                  ASince pg is an eygodic rneasure on N, we see that

          f= constant (Vra•a•)•
                                      '
Henoe w must be a eonstant operatoy on L2(f},vc).                                                  This

                                                    '
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implies that'  v('n'C) is an ireeeducible .rep' reesentation of G.
               tt     (B) Let ,N u(X'tu) and N v(n'C) denote the representations

                                   '                           'of the subgroup N of G, given by the x)estrietiQns to N of
u(X,co) hnd.v(-n?g) respectively. These 'r. epresentations of

 '                                'N aye deeomposed as .follows.
      '          '    '                  '          N u(x'es' ,:;l 5iky dvk(y) ,

                tt               '                                '          Nv( n, c): 521 yd "c(y), '

                         t ttwhere vx is the canonical transitive quasi-invariant measure
                          Aconcentrated on OrbKX on N, By the assumption that the
                                          'measure v4 is non-transitive, Pc is never equivaZent to vx
so that N v(n'C) is nevey unitarily equiva' lent to N U(X'oo)

          AA Afoi? any nCK, ><CN, and coEHx [32]. [Vhei?for)e, we get the

                                                             'desired eonelusion. ' . [Q.E.D.]'                                         '  '                                        '          '                                            '                                              '
                     '     Remark l.3.4. [ehe Mautner group is given as a semi-
direct product gyoup Åë2xsj?, of two dimensionai vector

gyoup Åë2 over e with R .'  Applying our ?esult to this
                                              tt   'group, we get the example obtained by A.A.Kirillov ([28]).
                         '
Furthepmore, our result is applieable to the diserete
                                                    '                                           'Mautner group, the discnete Heisenberg group, and the Dixmie?
                                        'group.
                                                     '                 '     Remayk 1.3.5. We ean give other irreducible decomposi-
                                        'tions of the regulai? representation of G = N XsK differeent
                                            'from those in Theo]?em l.3.3. These aree, given with related
                       '                                   '                                         'to cohomolpgy gvoups, which will be deseribed late? (.see
                                                       ttsection 2.6).
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     Chapter !I. Cohomology of transformation groups
                                         '
                                            '          '
               tt                          '     In this chaptey, we explain the notion of cohomology of
                                                     '
transformation groups. This notion appea?ed in the Mackey's

works [33], [34], [35] and its study has been developed by

severaX authors. K.Schmidt has studied it related with
                                                   '             'eygodie theory [45]. Another way of the development was

pursued by A.Guiehardet [l7] and C.C.Moore [37], [38] who

considered this eohomology as the one cohomology of loeally

eompact groups. Furthey, there is a way followed by G.W.Mackey

and A.Rarp-say. [rhey have investigated it as a famUy of

simUarity classes ox" homomorphisms of a measure groupoid or

a virtual gi?ov.nti [34], [43], [44].

     In section 2.l, we desevibe elementary properties of

eohomology of voe. ological transformation gveoups. P?opositions

2.l.l and 2.l.2 a?e fundamenta] and may follow from the

results in some of the works by C.C.Moore and A.Ramsay.

However, we add the proofs for eompleteness.

     In seetion 2.2, we introduee double transformation

groups and their cohomoZogy. These replace certain non-

smooth topological transformation groups and their cohomo-

logy, and play a p]?incipal role in ouy considerations.

     In seetion 2.3, we state the eohomology subordinate to
                                  '                                                  'measures. We often use this cohomology in later arguments.

     In section 2.4, we study the notion of weak cohomology.

This notion is important as an index showing the variety of

deeompositions of representations, whieh is one of our main

subjects.
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     In seetion 2.5, subgroups of eohomology groups and weak

cohomoZogy groups a]?e found in some conerete eases. Mt is
known that H9(zs 'if) and Hg(I s "Ir2) are isomorphic as cohomo-

logy groups as a general statement in [43]. We give here a
                                                     'concrete imbedding of Hg(Z;Vff•J) to Hg( ,I s -k"'2).' This rnakes us

possible to get some conerete coeycles easily.'

  -, In section 2.6, we argue again decompositions of the
                                     'regular representation of a semi-direet product group
                        'related wzth cohornology,as an application of this ehapter

     2.1. Elementp-ry p]?operties • '
                                '
     Let (GsX) be a topological transformation group. The-

action of the group G on the too. oiogieal spaee X is denoted

by (g,x) -----> g,x, whe]?e x - g:x is a homeomorphism of X,

and we suppose "u sat i/ sfi es g2 .(gl. x) = (gl g2 ). x. Let O-L be

a von Neumann algebra on a separable Hilbert spaee. Then we
                            'can define the eohvrimology of (G3X) as follows (see [28], [35],

             '     Let ofU denote the set of unitary oparators of 61L equip-

ped with the Borel strueture generated by the weak oparator

topology. G an- d X have the'canonical Borel stvuctu]?es
                         'induced by thei? topologies. A Borel function C of GXX into
omU is said to be an tStU-valued coeycle, if it satisfies the

eondition

          C(glg2,x) = C(gl,x)C(g2,grx)

          for all gl, g2eG and all xex.



Such cocycles Cl and C2 are said to be eohomologous when

there exists an otU-valued Borel function A on X sueh that
                      ' '                                            '                                           '    ' C2(g,x) -- A(x)eeCl(g,x)A(g.x) ' ' .

          for aU gEG and all xEX.

                             '                      '
It is elear that the above relation of "cohomologous" is an
   '
equivalenee relation. If a cocyele C is cohomologous to the
                                                  '                                                            'one which equals identieaUy the identity oparator of at, C

is said to be an omU-valued eoboundary. We denote the set of
                '          '                                                            'all e" LU•--valued coeycles of (G;X) by ZCR'(G;X), and the set of

all t"LU-valued eoboundayies of (G;X) by Bg-rL(G;X). Moyeover,

let us denote HCS7(G;X) the quotient set of ZCYt(G;X) by the

                      'above equivaÅ}ence ]elation. Mihis is ealled the SZU-valued

cohomology set' of (G;X'). Suppose CB. abeZian. Then, if Cl

               n,and C2 are in ZUX.'a3:X-), so is CIC2 (pointw'z'se product) as

well as Cil, so that• Z5t(C-3X) has an abelian group strv-cture

and rnoreovey Bt7kc-sx) ls a subgroup of zOt(G;x). In this ease,

Hg7kG;x) is regarded as the quotient group of zaL(G;x) by Bat(G;x)

and it is ca]lea' an atU-valued eohomology group oÅí (GsX).

     A topological transformation group (G;X) is said eo be
                                                        'smooth if every o?bit is loeaUy closed in X (see [l2]. [l6]),
                                                            'and effeetive if• eaeh stability group is trivial.

                                                       '
     Proposition 2.1.l. If a topologieal transformation gyoup
 '
(G;X) is smooth and effeetive, then ZCn(G;X) = Bat(G;X) i.e.

HOZ<G;X) is trivial.

     Proof. Since (G;X) is srnooth, thei?e exlsts a Borel

cross seetion c f]?orn the orbit space GNX to X (see [l2]).
                                                   '                                        '
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Then the map th :(g,y)-g.e(y) from Gx(GXX) to X is Borel

and bijective as (G;X) is effective. By the smoothness of

(G;X), GXX is a standard space and so is Gx(GXX). Henee the

inverse of V is Borel. Thus we have a Borel map a from X
  '
to G and a Borel map b from X to a cross seetion of X unde]?
                                                'G such that ip-l(x)=(a(x),b(x)) i.e. x = a(x).b(x) fo]? eaeh

             '           'xEX. For an arbitrary eocyele C(g,x), we put '

            '              '         A(x) = C(a(x),b(x)). • fO; i6;e ,

         '                   '                   'Then A is an atU--valued Borel function on X satisfying

         C(g,x) = A(x)ecA(g,x)
                                           '                 '         Åíor al]. gEG and all xeX. , (2.1.]-)
                                     '
Indeed, observing g.x in two ways, i.e.

                 '           '         g.X = a(g•x)•b(g•x) = a(g.x)eb(x)

         g•x = g (a(x).b(x)) = (a(x)g),b(x),

                                     '                'we have, by the fact that (G;X) is eÅífective,
            '               '
  '     '        '         a(g.x) --- a(x)g and b(g•x) = b(x).
             '         '
Therefore, we get

         A(g•x)

         = C(a(g•x),b(gex))

         = C(a(x)g,b(x))

         = C(a(x),b(x))C(g,a(x).b(x)) `
         = A(x)C(g,x).

                             '
[rhis irnplies (2.l.l), so that C is a cobounda]?y of (G;X).

                                                 [Q.E.D.]
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     When (G;X) is not effective, it is hard to get general

i?esults. Here we only mention the foUowing proposition.

                       '
       '
     Prtoposition 2.l.2. If (G3X) is tJransitive and O-Lls one-

dimensional, then the eohomology group H6i(G;x) is isomoTphie

with X(Go) whlch is the group of all continuous unitary

eharactei?s of some stability group Go•

     Proof. Fix an xoeX and let Go be the stability group

of G at xo. The rnap GDg ---->g.xo gives a Borel isomorphism

from GoXG onto X. Foi? eaeh cocyele C(g,x),

      ' C(glg2,xo) = C(gl,xo)C(g2,xo) fo]r' all gl,g2CGo

                                                         'holds. "lhen the map g --) C(g,xo) f]?orn Ge to T is Borel

homomorphie, the:•nefo]e continuous, wheve T is the one-
dimensional tori':s and oquals citU. So there exists a conti-

                                                 'nuous unita]?y eharacter xc ofnGo sueh that

                           '          C(g,xo) = Xc(g) fo]? all geGo.

In this way we get a map vl : C -----> Xc Åívom ZC'(G;X) to X(Go).

It is verified with no troubZe that this th is homomorphic
and su]?jective. Rest to show is that Kere= BÅë(G;X).                                                      Suppose

                      'that
                                        '
           '
          C(go,xo) = 1 for all goeGo.

                  '             '

             '

          C(gog,xo) = C(g,xo) for" all goeGo and all gEEG,

                                                '
and it follows frorr] this that there exists a Borel function
                       tt
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A on' X sueh that
                                    '                      t/      '
  • .' C(g,Xo) = A(gexo) for' aÅ}1 gEG.
                           '                        '                                         '    '
:e"ha"i  27glgl:.lh,, tgiCG"hth` g,,

                   ee          =C(gl,xo) C(glg,xo) • ' -
                   ee •, '  = A(gl. xo) A( g•( gr xo)) '  '
        '' =A(x) ee A(g.x). ''' '
                                     '                                                '
This implies that C is a coboundary of (G;X) and Kerth (
BC(G;X). As the inv.arse inclusion relation is elear, we

obtam that Kerth = BÅë(G;X). ., . [f2.E.D.]

                                                  '                                         '  '     2.2. Double transformation groups
                                           '                                         '                                                      '
     When (G;X) is not smooth, instead of eonsidering (G;X),

we take a double transformation group (G;Y;H) such that

(G;Y) is smooth and (G;X) ean be looked at as the same with

(G;Y/H) as topological transfo]?ip.ation groups. ' . ,
                                                     '                                                 '                                  '                                        '
     Definitibn 2.2.1. IAIe eall (G;X;H) a double transformation

group if groups G and H act on the same spaee X as topologieal

transformation groups, where the aetions of G and H on X are

denoted by (g.x) -g•x and (h,x) --> x.h, and the following

                                          'conditions are satisfied.
                                    '          '                      '
   (i) (g.x).h = g.(x.h) for all gEG, all heH, and all xeX,
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   (2) the map: (g,x,h) tgex.h from GxXxH to X is continuous.

                                                         '                                         '
     Given a double transfovmation group (G;X3H) and a von

Neumann algebya 6Z, we wUl define an (riEt-valued eocycle,

coboundary, and cohomology of (G;X;H) as follows.

                                                 '               '
     Definition 2.2.2. We eall an CS<U--valued Borel function A

on X an 6ti-valued coeyele of (G;X;H) if

                              ee         A(g x h) = A(g"x)A(x) A(x•h)
                                           '
          for a]l gEG, all heH, and all xeX (2.2.l)

                'is satisfied. .q,uch eocyeles Aland A2 are said to be

eohomologous ii" the-v,'e exist an H-invariant cocyele Bl and a

G-inva]f'iant coeyele B2 such that '

                                 '         A2(X) = Bl(x)Al(x)B2(x) foy all xeX. (2.2.2)
    '
lf a coeyele A is eohomologous to the one which equals

identically the identity operator of 5jZ, we say that A is

                                                  'an urlU; -valued eoboundary of (G;X;H)'. . .

     we denote the set of cocyeies by z(Tl(G;x;H), the set of

cohomology classes by HCR(G;X;H), and the set of eoboundaries

by Btrl(G;x;H). if oL is abelian, they all have abelian group

struetures and Hg"Z(G3x3H) Y zOt(G3x;H)/B61(G3x;H).

     Proposition 2.2.3. I,et (G;X;H) be a double t]?ansformation

group and at be an abelian von Neumann algebra. (G;X) and

(H3X) are supposed to be smooth and effective. Then the

                                            '
 '                         '
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following th?ee abelian gyoups are isomorphic to each other.

          (l) H5Z(Gsx;H)

          (2) HOZ(G;X/H)

          (3) HO((H3GXX)

                                           '       '     Proof. In general, the orbit spaces X/H and GXX may
not be Hausdor.ff. Howeve]7, H5i(G;x/H) and HCR(HsGxx) are
            '
well-defined beeause the definition of a eohomo logy group
                        'depends only on the Borel structure, and we remark that the
                                                 'Borel styuctures of X/H and GXX induced by their topologies

coincide with the quotient Borel struetures by the smoothness

of (H;X) and (G;X) (see [l2]). .
     Let A be an 5.ZU--valued coeycle of (G;X;H). Using this

                                           'A, we de fine C and D by . '
  '                   '  • ' C(g,x) = A(x)A(g•x)ee fo[r gEG and xeX, (2.2.3)
                                                 '          D(h,x) = A(x)eeA(x•h) for hEH and xeX. (2.2.4)

                                         '
Then, the equality (2.2.l) implies that C(g,x) is H-inva-
                                         ']?iant with ]?es] ect to the variable xEX and D(h,x) is G-
                                                    'invayiant with ?espect to xeX. Hence we may regard C as a
                         'eocyele of (G;X/H) and D as a coeycle of (H;GNX) beeause the

coeycle conditions about C and D foUow immediately from

their definitions. The corespondences A ---> C and A oD
induee the isonio' rphism from HCrZ(G;X;H) onto Hut(G;X/H) and

from Hat(G;X;H) onto HOZ(H;GXX). In fact, let tp be the map

A ---->C f]?om ZOZ(G;X;H) to Zbl(GsX/H). Then it is not hard to

see that th is homornorphic and tp-1(Bat(G;X!}I)) = Bat(G;X;H).

Moreover, Proposition 2.1.l together with the a$sumptions
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imply that ip is surjective. [Q.E.D•]

                  '     Remark 2.3.4. Let cr be a group, and G and H be closed

subgroups of G. In this case, we define the actions of G

          '                                                    '                                              '          Gx6xH i) (g,x,hl - h-l•x.geEi. .
                                         '                                                            '                                         '                              '         reThen, (G;G;H) is a double trasformation group satisfying the

assumptions of P?oposition 2.2.3.

     2.3. CohoirLology subordinate to measures

                       '     When a measu]?e is put on the spaee X, we shall considey

the cohomology gyoups of (G;X) and (G;X;H) subordinate to

this measure. Let v be a positive Radon measure on a topolo-

gical space X, and at be a von Neumann algebva. Xn the ease

of a topologicai' in ansformation gyoup (G;X), we shall ehange

                                          'the former dei"inii• ions as follows. .
     Let Cl and C2 be in ZCrL(GsX). [Vhen we say that Cl is

V-eohomologous to C2 if there exists an 5LU-valued Borel

function A on X such that for each geG '

                        -,          C2(g,x) = A(x) Cl(g,x)A(g•x) for v-a.a. xeX.

We denote the set of aU p-cohomology elasses of ZOZ(G3X) by

Hlli(G;x). A eocyele c is said to be a p-cobounda?y if c is u-

cohomologous to the one which equals identically the identity

operatorof at, and we denoee the set of aU v-eobounba]?les of
(G3><) by Bl}(G3X).

     Next, in the case of a double transformation g37oup
                                                '
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(G;X;H), for Al and A2 in ZCZ(G;X;H), we say that Al is V-

   'cohomologous to A2 if there exist an H-lnvariant coeyele Bl
  'and a G-invariant cocycle B2 such that

                   '                                       '   '  • A2(x) = Bl(x)Al(x)B2(x) for v-a.a. xeX.
                                              '
                                          'Th6 set of du u-cohomoiogy ciasses of zat(G;x;H) is denoted

            'by iiff(G;X;H). A u-coboundary is defined in the sarne way as

above, and we denote the set of all U-coboundaries of (G;X;H)

 , Assurning ,(71 abelian, zat, B""p'L and H21 have abelian group
                        '                                                           'struetures and we have HpUZ '-'V  zg7yB5ue as groups in either case.

     Note that the above definitions depend only on the

measure class C(U) of V and not on U itself. Theyefore we
write sometimes Bc(5L (u) and Hcdi (L y). A measure ciass c(y) is

said to be a quasi-orbit if V is quasi-inva]?iant and ergodic

under the •action of G on X.

     P]?oposition 2.3.l. If a topologieal tvansformation group
          '(G;X) is smooth and C(V) is a quasi-orbi-t on X, then
Hg(y)(GsX) is isornoyphie to X(Go) as abelian g?oups where

                                              '               'C-o is some closed subgroup of G. ,
                 '     Pir'oof. By the srnoothness of (G;X), C(l-i) must be a

transitive quasi-o?bit. Therefore there exists an xoeX

sueh that C(y) is concent]?ated on the o]pbit G,xo which is
                                          'isomorphie to GoXG as topologieal t]pansforrnation groups

where Go is the stability g]eoup of G at xo, and such C(P) is

the unique rneasure class which eorresponds to the eanonical

class on GoX G.
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                 c                     (G;X). [Vhen the]?e exists a Borel     Let C be in B                 c( v)
funetion A on X such that fo]? each geG '

                      ee         C(g,x) = A(x) A(gtx) for P-a.a. xeX. (2.3.l)

Now we define eoeyeles Cl and C2 by

                                         '         Cl(g,x) = A(x)eeA(gtx) ' - (2.3.2)
         C2(g,X) = Cl(g,x)eeC(g,x) for geG and xeX. (2.3.3)

11hen, we have, for each geG

         C2(g,x) =l for u-a.a. xeX. (2.3.4)
       '
Suppose that there exists a goEGo sueh that

         C2(go,xo)/l• (2.3•5)
       '

                                                    'The cocycle eondition implies that
                                                      '                                                 '                                              '
         C 2 ( g 2 , g l. x o ) " C 2 ( g l , x o ) ce C 2 ( g l g 2 , x o ) f o -n• a l l g l , g 2 e c- .

1-O/ we define a Borel funetz'on B on G by B(g) = C2(g,xo), we have

                             y.         C2(g2,gfxo) = B(gL) B(glg2)

         for all gl,g2eG. (2.3.6)
According to (2.3.4), for each g2eG

                              '
         B(gl) = B(glg2) for a.a. gzeG

holds beeause C(U) may be considered as the canonical elass

on GoXG. By Fubini's Theorem, we get, for almost all glCG

         B(gl) " B(glg2) for a.a. g2eG.
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Therefore  we have ,
             v
. B(g) =K (constant) for a.a. geG. ' (2.3.7)

                                          '                                                '                                            'However, by (2.3.6) - .
                                                      '                                        '                                     '
          B(gog) = B(go)B(g) for all gcG ',,

                                 t ttholds and B(go.) S Z by (2.3.5), so that we have
                                                           '                                                   '                                                     '  '                                                 tt                                                          '                                         '                                             '                                              '                                                     '         ,B(g) SK for a.a. gEG.
                                      '      '
This faet eontradicts wieh (2.3.7). So we get

          C2(g,xo)=l for aU gEGo. ,

We have already shown in the proof of Proposition 2.l.2 that
this fact implies C2CBÅë(G;X). Since Cl is in BC(G3X) and

BÅë(G3X) is an abelian group, we get CeBÅë(G3X) by (2.3.3)

and so Bg(v)(G;X) C BC(GsX) has been shown. It is clear .

that the inverse inclusion relation holds, so that we have
Bg(y)(G;x) = BÅë(G;x). Hence we get Hg(p)(G;x) = HÅë(G3x)

= X(Go) by Proposition 2.l.2., [Q.E.D.]
                                         '                                               '                                                         '                                                    '                     '                                             '
     Next we shall consider the ease where (G;X) is not'

necessarUy smooth. For a quasi-orbit C(v) on X, w'e often
                    kfind a large group G and its closed subgroup H such that
                                 i.vC(y) ean be identified with the G-quasi-invariant measure
           rvelass on HXG. In this case we have the following theorem.

                             '            '                  '
     Theorem 2.3.2. Let OZ be an abelian von Neumann aZgebra

and let (GsG;H) be a double transformation group where G and
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                                 .ijH aree closed subgroup of a group G and their actions are
                                                           '                                                       Ndefined as in Rernavk 2.2.4. If o is a Haar measure of G and
                                 '                                                       t"tP (resp. V) is a canonical quasi-lnvariant measu]7e on HXG
       tv(]?esp. G/G), then the following th]?ee abelian groups are

isomo]?phic to eaeh othey.
  '

          (l) HgY(G;a;H)

          (2) HIII(G;Hx'G")

          (3) Hv6L(H;"G'/G)

     Proof. This follows f]?om Pvoposition 2.2.3 combined with

some measure theoretie arguments. We omit the details.
               '                            ' [QeE•D•]
                                                 '                                               '

     2.4. Weak cohomology

                                        '
     Let (G;X) be a topological transformation group and eZ

be an abelian von Neumann algeb]?a. Then, we define gtU-vaZued

weak cohomology of (G;X) as follows.

                 '
     Definition 2.4.1 For two 6LU-valued cocycles Cl and C2

of (G;X), we caU that Cl is weakly cohomologous to C2 if
   eeCIC2 is cohomologous to sorne eontinuous homomorphism from
G to 6ZU. We de-n,soCe all OLU-valued weakly cohomologous

elasses of (G;x) by 'H"tR(G;X), which has also an abelian g]?oup

struetUre. We eall f\tft(G;X) OZU-valued vgeak cohomology group.
                                            '   '     Let ZgL(G;X) denote all continuous homomorphisms from G

to oz" and HgL(G;x) be the faetoi? g]?oup of ZOoTZ(G;x) by zgi(G;x)A

                      'Bat(G;X). [Vhen, we see that -
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         'Hv' `x(G;x) . HCi(G;x)/H2}gG;[><)•

                                 '                          '                                                       '     When a positive Radon measure V is put on X, we ean also
define 6ZU-valued weak v-cohornology group Ail'gPp(G;x) of (G;x) by

routine arguments as in section 2.3. '

     Then, we get immediately the following propositions,

according to Proposition 2.l.2 and Pyoposztion 2.3.l.

                               .t                                                           '                   tt t            '                '
     Proposition 2.4.2. Let (G;X) be a transitive topologi-
  '                                            'eal transformation group where G is supposed to be a locUy
             'compaet abelian group. Then, " HÅë(G;x) is triviaz.

                                 '          '      '               '     '
  . P?oposition 2.4.3. Let (G;X) be a smooth topological

transforrnatlon ,g?oup where G is supposed to be abelian.
[Phen, for any quasi--oipbit C(V) on X, "HcÅë (p)(G;X) is t]?ivial.

                       '                                '     Now, let G be a locaily eompact group. Taking two

elosed subgroups H and K of G, we consider a double transfor-

mation group (KsC-;H). Let at be an abelian von Neumann
algebra. Then we can also define dRU-valued weak cohomology
g]?oup ' HVOZ(K;G;H) of (K;G;H) as fOllOWS•

                           '           '               '         '                                     '   , DÅíinition 2.4.4. Iffor two atU--valued eocyeles Al and

A2 Of (K;G;H)s Al is caUed to be weakly eohomologous to
         eeA2 if AIA2 is O-eohomologous to some continuous homomoyphism
from G to 6ZU wbe]?e g is a Haar measure oÅí G. We denote'

all 5LU-valued weakly eohomologous classes by H"iUZ(K;G;H)

and we call it (7LU-valued weak cohomology group of (KsG;H).

                            '                                      '                                        '          '
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     Proposition 2.4.5. Let G be a locally compact abelian

group and Y (resp.v) denote a Haar measure of G/H (resp. G/K).

then, the foUowing three abelian. groups are isomorphie with

eaeh other. •
                                  '
          (1) 'H"C't(K;GsH)

          (2) fiigTt(K;G/H)
               1.t
          (3) fieqv h;G/K)

     Proof. This follows frorn the definition and Theorem

     OuT considerations go on in the situation that G is
abelian and 6Z ls one--diTnensional. Let a be the dual group ,

of G and H'L (resp. KJ') denote the annihilatoi? of the subgi?oup

H (resp. K) of G in AG. we denote by HoC(K;G;H) the factor

        AAgroup of G by GABge(K;G;H). Then, we see that

         "HÅë(K;G3H) ='" HC.(K;G;H)/HoÅë(K;G;H)e

Furthermore, we get the following.

                                '
     Proposition 2.4.6. If K + H is dense in G,

         Hg(K;G;H) .N AG/(KL+Ht).

     proof. zf xEa is written as x(t) = xl(t) x2(t) for

some xle KLand x2EHJ-, it is clear that x is a coboundary

by definition. So we shall show the converse.
     Suppose that for xea, x(t) = E(t)F(t) for almost all

t6G, whei?e E is an H-invariant coeycle and F is an K-invariant

                        '
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?:ilei;leG;lni)g gXetSatiSfieS X(tl+t2)5X((E;l)5xe(E-;5-2 " l for} au

                                             '                     t . tttt ttt        ' E(tl+t2)E'(-E-1[T)E`(E-;2;-Y = iii(ttlfFtt-5:2 F(tl)F(t2)

                                         'for almost all (tl,t2)EG2. Put '

' ' '  Åë(tl,t2) = E(tl+t2)ETr(E-:IT)ETI(E:2T)

                                             '    '   '                                                   'fo]? (tz,t2)EG2-. Then, by the property of E and F, Åë is (K+H)2-

invariant' . since K+H is dense in G, (K+H)2 is also dense

in G2. Henee, (K+H)2 acts on G2ergodicauy. 'Therefore, we get

                                                  '           Åë(tl,t2) = c (constant) foi? a.a. (tl,t2)6G2.

When we put Et = cE and F' = c- F, we see that

                                           ' '
    ' E'(tz+t2) " E'(tl)E'(t2),

           F'(tl+t2) = F'(tl)F'(t2) for a.a. (tl,t2)e G2

                              '
                                                     '                                  '
           X(t) = Et(t) Fi(t) for a.a. tGG. •

By Theorem 5.l in [4Z], there exists xl, x2eG such that xl(t)

= E'(t) and x2(t) = F'(t) for a.a. teG. Moreover, by the
continuity of Xl and X2, Xl must be H-invariant (i.e. xleHTt),

x2 rnust be K-invariant (i.e. X2eK= ), and Å~(t) = Xl(t)X2(t)

                                       Li                                            • [Q.E.D.]for all teG. Therefore, X !nust be in K + H

' The proof of this lernma was suggested by Professor IYI.
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     Remark 2.4.7. Assume that Kk+ H'L is not cLosed in 6.

Then, the indueed Borel struetu?e oÅí a2(KL+Hi) is not standard

so that the eardinal number of Hg(K;G;H) rnust be uncountable

infinity. Therefove, in sueh a case, we can conclude that

                         ttthe cardinal nurnber of HÅë o(KsG;H) is also uneountabZe infinity.

In some indivisual cases, we know that the eardinal number
             'of IIÅë(K;G;H) is uncountable infinity (see [27]) but genei?ai

conside?ations about the weak eohomology group have not yet
                          'been. obtained.

     2.5. Exarr.ples and some caleulations

                                            '
     Here we shall treat the foUowing two transformation

groups.
                                   '
     (a) (Z3ue) where Z is the additve group of integei's and

T is the one-dinG,ensÅ}onal torus.' The action of Z on W is

defined by

                              '                 -•            - ]"n                   C for neZ and gGT.          n.g = e

                        '     (b) (R;T2) where R is the' additive group of real

                                                      '             2numbers and T is the two-dimensional toyus. The action of
R on T2is defined by

                    '
                           2 Tit                                                         2                      it          te(g,n) = (e q,e n) for tER and (g,n)eT.
                                           '
     Now we find the foUowing double tTansformation groups

eorrespondlng to the eases (a) and (b).

                                                 '     (a-l) (ZsR;2vrZ). The actions of 7 and 2TZ on R are

defined by
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          n.z=z+n, for n(Z and zER, ..
. .zt(2Tm) = z+2"m fo]? 2TmE2TZ and zER.
(z;T) =" (Z;R/2TZ) as topological tyansforrnation groups. '

R2 a.gb5eif)ing!ll;bRy2;(.2TZ)2.)' The actions of R and (2.z)2 on

     ' t.(x,y) = (x+t,y+2"t) ,for t(B and (x,y)EB2,

          (x,y).(2Tm,2Tn) = (x+2Trn,y+2zn) •
          for (2Tm,2Tn)E(2Tz)2 and (x,y)ER2.''
                                                        '                               '
(R;T2) g (B;R2;(2Tz)2) as topoiogieai transformation groups•

     Let p,v,or, and B be Haar measures of T, [r2, R, and R2

respectively. Aeeording to Theorem 2.3.2, we get -
                                                     '
     (a-2 ) HS ( z; T) "= Hg( z;B;2TT z) ,

                         '     (b-2) H.C(R3T2) "--'- H8(R;R2;(2Tz)2').

                                           '
     We shall determine a part of these cohomology groups.
Let us define the abelian grou.p ZO and its subgroup Bfl by

     ' ZO = {all T-vlued Borel functions on T}

          B9 = {b(g)szO; there exists an a(g)ezO such that

               b(g) = a(g)Xa(eig) for v-almost all g6mp}

                                              'we denote the quotient group zO/B9 by HR.

                                            '
     Lemma 2.5.1. HpC(Z;T) is isomorphie with Hfl as abelian

     Proof. For C(n,g)eZC(Z;T), we put a(g) = c(l,g)6zO.

Then we have a map th : C ----> a frorn ZÅë(Z;T) to ZO. It is

                                           '
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easily ehecked that this th is an inJ'eetive homomorphism and
ty(ByC(Z;T))CBpO. IAIe show that Q is surjective a-nd V(ByÅë(Z;[r))

= BpO. Let.a6ZO, we constyuet C(n,g) as ÅíoUows. -.

                . n-l  . rr a(eikg) if n)l
                    k=O                                    '' c(n S)=1 '                                         if n= O
                    [ff.no+.i)a(.i("+k)g5 ifn.<vnta.

                         '[Vhen C(n,C) is in ZC(Z;T) and V(C) = a, so ip is surJ'ective.

            oIf b is in B , then this eonstruetion gives a B(n,g) in
BÅë(z;w). Indeed, if b(g) = a(g)Na(eig) for v-azmost all

geT, then, for example, when n 2-1 we see that

                   n--1          B(n,g) = -rr/. b(eikc>
                   k=O
                   n-1                 = -R- a(eikg)vea(ei(k+i)o
                   ktiO
                             '                 = a(g)eea(eing) for) y--a.a. gE[l].
           '
                                                'Therefore th induces an isomorphism ipee fr•om HpÅë(Z;T) onto ,

                '                       '
                                                         '                                                ll     We also take the following abelian groups Z ,                                                   B                                                       and                                                    ot )
HorZ defined by

      zl = {all T-valued Boi?el functions on R with period 2iT}

      Bcti -- {a(z)ezi ; there exists b(z)ezi sueh that '

                     a(z) = b(z) b(z+l) for ct-almost all zgR}

Then it is clear that zO : zi, BvO "=" Bct1, and HuO '.V Hor1.
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     Lemma 2.5.2. (R/Z+2av Z)+Z is a subgroup of HCv(Z;T).

 . . Pro?.fg( xr O, r) ( .A E) R.a:i (g;i;)we de ig n.e.2A l'd )( Zi b y

     '
[vhe set of au a(X'd) with xEB and dez fo]?rns a subgroup of

illi'll'Ji';'zUlige:t,zei,:,::,gl!ieh,:::S.iai:,::.:k,:zz.:se

          b(z)a(X,d)(z) = b(z+1) for or-a.a. zeB• (2e5•1) '

Fo]? Bo]?el funetzons f(z) on R wzth pemod 2T, we adopt L2-morm

ll• ll2 defined by

                                     '. ilfg2=g2oKf(.)l2 d.. • • '

Then, (2.5.l) is equivalent .to-

 . b(z)a(X,d)(z) = b(z+o in L2--norm. (2.s•2)

We have the Fourier expansion of b(z). , ,

  • b(z) = .2,l> bneinZ in L2-norrn. ' (2.s.3)

Then, by (2.5.2) we get'
                                            '
    illlzl bneUei(n+d)Z = Xit}z bneineinz in L?-norm. (2.s.4)

By the uniqueness of the eoefflcients of a Fourier expansion,

          bneiA = bn+dei("+d) for au n6z. (2.s.s)

                       tt
Henee we have
                                                     '                         '
        tt



                ;,1         b. " ,1;,b.+d/// for a]l n6Z. . . (.2.s.6)
                                         '                                                         '
                                                   'On the other hand, '
   , Il 12 bn2= iibii2`,`".

                                                        '
If d f O, this faet cont?adiets (2.5.6). Therefoye d must

be O, and in this case, by (2.5.5), We get

         '
         b eiX = b ein.
          nn
g,i,l,2j,Sig,.:.Z.igz/ebg:)2zl.:..:iilh.2,i.i.;21,1,ggeSi,Z.4sCgew,gghi-al,g..g.,.

                                          '
     Here we note that using this lernma we have the famUy

of representations which L.Baggett has got in [4], and the

aregument in the above is paraZlel with his in soine sense.

But the next proposition will give yise to an essentially

new parametrized family of irreducible representations of

the Mautner group. Let Q be the additive g]eoup of ]?ational

numb e r; s .

     Proposition 2.5.3. (B/Z+2TZ)+Q is a subgroup of HpC(Z;T).

     P]?oof. IPo]? pEN (positive integers), qEZ, and AeB,
we define a"(X,q/P) by

                                          '                    '
         :;t(X,q/P)(.) . ei((q/P)Z-i-A) for) o .<.. z< 2'rr .
                                              -
                                           '
7]hen we a3?e able to extend it to a(X'q/P)EZI. By definition
                                                          ,
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          (.(A,q/p))p . .(px,q).

          /                             'if a(A'q/P)E B&, then (a(A'q/P))P i$ aiso .in Bior, because Bict

                                  'is a group, so that a(PA'q)eB&. This haet impli6s q = o.

                                             '(see the proof of Lemma 2.5.2). In the same way, we have
                                              'XCZ+2TZ. 1]he eonve]?se is t]7ivial. / ' . • [Q.E.D.]
                                    '                                          '                    '                          '                        '           '                             '                            '                                  '            '                      tt                         '                                                      '       '     Where exists a yelation between HÅëp(Z;.T) and }Ig(B;T2),.

                                '                                                        '                   1 ..shown in the next lemma, so that we ean get an information
                                                       ' ttabout HvC(R;T2) from that of Hg(z;T). - ' ,
                                                    '              '     '                               '                                                     '         '                                                  '     Lemma 2.5.4. HS(ZsT) can be irnbedded isomorphieally
       'into HvÅë(R;[r2) as an abelian group. '
               '     proof. instead of H9(z;T) and Hg(B;T2), we take
    'Hg(z;Bs2Tz) and HCB(R.;R2;(2TZ)2)(see (a-2) and (b-2)). Ipor

A(z)(ZC(ZsB;2fiZ), we define a [r=valued Borel function

                                                    'a(x,y) on R2 by

             '                '
          Arv(x,y) - A(x-f.gl)

          tt                  '                               '                                       '                                                    'where fo? yER, y = Y+ [y], O .< -y < 2T, and [y]62TZ. ,
[vhen we have A(x,y)6zC(R;R2s(2Tz)2). In fact, for t(R,
                                               '                                                        '(x,y)ER2, and (2Tm,2Tn) 6 (2T7)2,

            'lv
            A(t.(x,y)e(2Tm,2Tn))

            re          = A((x+2Tm+t,y+2Tn+2nt))
                          ttt tt          = A(x+2Trn+t-2Tl-?y+2Tn+2Tt )

                                '
          = A( x+2 rr m+t -- Åí;(y+2 "t ) +2-lti[y+2 Ty ] )

          = A'(f.(--[y]+[y+2Tt])+(x-JlL57)+2Tm))

                                  2T
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          = A((x-S. g7)'+'f. (-[y]+[y+2Tt]) )A(x-2:.iy)XA(x-ti.l}y+2um)

                                               '          = A ( x+t -8/ y' +'2ff t ) A ( x- 2i/idy ) XA ( x+2 ff m- St y'+'2 'T n )

           A. ev eeN         = A(x+t,y+2Zt)A(x,y)                              A(x+2av rn ,y+2"n)

           tLt tv ltt A.          = A(t.(x,y))A(x,y) A((x,y).(2Trm,2TTn)).

                              'Therefore a map th : A - A'V from ZÅë(Z;R;2TZ) into

                                        'zC(z;n;(2Tz)2) is obtained and it is easuy verified that

                                                   'this map is an injeettve homomorphism.
     '
     Suppose that Al is eohomologous to A2, in otheip words,

there exists a Z-invaviant coeyele B and a 2TrZ-lnvariant

cocyele C sueh thaL.•

                   ce         A2(Z)Al(Z) " B(z)C(z) fov all z6B.

we wiii see that 'B' (x,y) is B-invariant and 8(x,y) is (2ffz)2-

                                              '
invariant and m.oreover

         2Y2(x,y)ai(x,y)ee = B"'(x,y)6'(x,y) for aii (x,y)eB2,

which imply ' Indeed, fov t6R
          2and (x,y)CB

that Al is cohomologous to A2.

, we get

iv
B(t,(x,y))

NB(x+y,y+2Tt)

B ( x+t -2-lly +2 Tt )

B ( x+t -2-i;( y+2 Tt ) +i[ y+2 .t ] S

B(X-iY )

    'B(x-2-l.l;ly-)

J-V

B(x,y),
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and fo[r" (2Tm,2Tn)E(2Tz)2 and (x,y)EB2,

            tv            C((x,y).(2Tm,2Tn))

         '                   '                             '            N          = C(x+2zm,y+2zn)
                       '         tt t          = C(x+27?m-2;fy+2vrn)

           '          . c(x-ti.ili}l37+2Trn) '

          - c(x-21;Y)

            N          ='C(x,y).
                                '                tt                                             '           ', conversely, suppose that llli is cohomoiogous to 1\2.

Let B'(x,y) be an B-invariant cocycle of (R3R23•(2"z)2) and
                               '                       'c'(x,y) be a (2Tz)2-invar)iant one, satisfying

         rv rJ ee          A2(X,Y)Al(X,y) = B'(x,y)C'(x,y) for all (x,y)CIR

We define cocycle B(z) and C(z) of (Z;B;2vrZ) by
                                                    .                               '                                     '  '                                             '        -B(z) -= B'(z,O) aRd C(z) = C'(z,O)                                                foy all z.`R

Then we have

                          '          A2(z)Ai(z)N = fl12(z,o)A'"i(z,o)ee

                     = B(z)C(z) fo? all zeB,

where B(z) is Z-invariant and C(z) is 2TZ-inva]?iant. In

fact, observing that Bi(x,y) is 2TZ-invai?iant with i?espect

to the second va?iable, as Al, A2, and Ct are so, we have

          B(z+n) = B'(z+n,O)

                = BV(z,-2T[n)

                = B,(z,O)

        N -50-
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.



                = B(z)

                     '
and likely

                       '
         C(z+2Tm) = C(z)                              for all zER:

                                       'Therefore Al is eohomologous to A2. . . '
                                   '
     At last, we shall show that Al is ct-eohomologous to A2
if and only if f\l is B-cohomologous to 'A" 2. [eo this end, by

the  fact shown above, it is suffieie ít to show that A(z) = 1

or ew•-alrnost all zER if and only i'f A(x,y) = 1 for
                                                      '-almost all (x,y)ER2. Let us define N, fif, and Ny by • .

        N = { zEB ; A(z) 7( l} ,

        'N" . { (x,y).-R2 s A(x,y) 7S l} ,

                          iv        Ny= { xEil ; (x,y)EN}, fo]p yER.

hen it is verified with no trouble that
  '            '
         or(N) = ct(Ny) for all y R,
                n         B(N) = tsRct(Ny) dct(Y) ,

o that ct(N) = O if and only if B(fif) = O.

    Therefo?e yi induees an lsomorphism thee frorn Hg(ZsR;2TZ)

nto Hg(R;R2;(2TTz)2). .' [Q.E.D.]

    By the above Lemma 2.5.4 and Proposition 2.5.3, we have

he foUowing proposition.

    Proposition 2.5.5. (R/Z+2vZ)+Q) is a subgroup of Hg(R;T

                           '
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2r5-6• Consequences and examples . .
For eiZm-ji6,([IZ;i"3.'IS lg,:,S:bil?:'%O)g.:g(TXZ"8 ,.{

 '                          '                  '           cq(n,z) F e(iq/2)n2eiqnz (.q.z). ,

                                     '                                          '                                               '                       ',i ".`2gig iEkl;gZl+,Q-,:-.i,9:?g, }9"2 , 2-f.,g• 9i i'5&{i[iM.) }j2

induced from the above Aq (q Z), we get .

  • iq(t,(.,y)) = Xq(.,y)Avq(t (.,y))ee
         ''. .(q/2 Z)ix[57+2 Tt ]. (q /8 "2 )i([ 57+2 "t ]-2g7[ y-'+2 Tt ]2)

           for teR, and' (x,y)(R2. (qfz)

                                   '
      (a-4) Q is a suLbgr'oup of "H'C(zsifls2Tz).

      (b-4) Q is a subgroup of ']VIC'(R;B2s(2Tz)2).,

              t tt     Remark 2.5.7. Furthermoye, we note that the weak
                              'cohomology groups HC(z3R;2"z> and HÅë(R;R2;(2TZ)2) have the

cardinal number of uncountable infinity (see [27].).

                   '              '
     2.6. An application to decornpositions of regular

           representations

                                                 '
      In this seetion, we eonslder agatn decompositions of

regular representations of serairdirect product groups related

with the eohomology groups. We assume that all notaions and

situations a]?e similar as described in section l.3.
                                                                 '                   '      Let X be the ?ight regular yepresentation of a semi-direet
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product group G = N*sK where N and K are locaUy eompact abelian

groups. In this section, for simplicity, we assume that the
Haar m6asui?e v of Sl) is invariant under the action of K. Then,

the regular repTesentation X of G may be realized on the
Hub ert space L2 ( f)' xK) as fo ll ows .

          '                                         '                                   '     Le mm a 2 . 6 . 1 . Fo r g( x, t )E L2 (AN xK) , . . J

                  '
                                                     '      ' (X(.,k)g)(X,t) = <Z,X>g(k.X,t--k)

fOY (Z,k)(NxsK=Ge • ''
     proof. For g(g)eL2(G), put (wlg)(g) = g(g-1). [vhen,

Wl is a unitary opereator on L2(G) because G is unlmodulaT.

Let F denote the ?,ourier t?ansforrnation of L2(N) onto L2(f>).

[vake a unitai?y opevator w2 from L2(G) onto L2('NNxK) defined

by W2 = FpmI where I is the identity operator on L2(K) and ,

we identify L2(G) with i.,2(N)&L2(K) and i,2(IG'Å~}o with i[.,2(it)mp

L2(K). Then, we see that W2WIA(z,k)WiW:'is the desived one

by simple calcwiations. , ' [Q.E.D.]
                                                      '     '                      '
     For a cocycle C(k,x)eZC(Ksit), we define a unita?y

rep]?esentation AC of G by, fo]? g(x,t)EL2(f)xK),

           C          (X(.,k)g)(X,t) = C(k,X)<Z,x> g(k.x,t--k)

for (z,k)GNxsK = G. [Vhen, we get the following lemma.

     Lemma 2.6.2. X is unitarUy equivalent to XC.

     Proof. The cocyele C(k,x) may be regayded as an element
of zC(K;RxK). sinee the aetion of K on the space 1fixK is
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smooth and effeetive, wTe see that C(k,x) beeomes a coboundary
in ZC(K;NXK) by Theo?em 2.l.l. Then. theye exists an -g'-valued

Bo]?el funetion B(x,t) on "N' xK such that, for each keK,

                                           tt
     - C(k,x) = E'61-;,V)B(k,x,t-k) - (2.6.l)
                                          '                                                            '     '
for au (x,t)GANxK. 7]ake a unitar)y ope]eato]? w given by, fo]?

g( x,t)E ]]2 (fl,)xK), , , . . .

   .' (Wg)(X,t)=B(X,t)C(X,t). ' ' '
                                                      '
                                 ee 'cThen, it is easy to eheck that W X(z,k)W = A(z,k) by the

equation (2.6.l) and Lemma 2.6.Z. . [Q.E.D.]

                         '
     In section l.3, we gave two kinds of entirely different

decompositions of A related with ergodic measures. Heye we

ean give other many decompositions of X related with the

cohomology group. • -' '
     The Haar measure p on G was decomposed into ergodic

                   'measuveS as •                            '
                                           '                                        '              cge '         P -= tsz yc da(c). . ... . , ,.
                                            '      '
For slmplieity of our ar?guments, we also assurne that all

components vc (geZ) are invariant under the aetion of K.
Then, for a cocycle C(k,x)eZC(K;fi) and n6K, we can define a

Un it ar F Yo ]?r ge P
( :?2 2:7ilVfi :: ,v( C 'n ' g ) of G as fo uows

           (v (( C. ; nk ,) C )g ) (x ) = c(k,x )< k,n ><z ,x >g (k x ) .

                                                            '                           '                    '
     Theorem 2.6.3. The right regular representation A of
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G=NXsK is deeomposed as -
     ,. x tr' SRSill v(c'.?' c) do(oLi.v(n). .

     (A) v(C,n,C) (cEzC(Ksf}),ne'K", l6z) ar,e [l.]r)r'educible.

     (B) v(C'R'C) is unitarily equivalent to v(C',n',C') if

and only if C' = g and C + n is vc--eohomologous to C' + n'. •
     proof. we realize xC on the Hilbert spaee L2(f}xG) as,

for g(x,n)EL2('NXxft), .
  ' (X?.,k)g)(x,n) = C(k,X)<k,n><z,X>g(k.x,n).

Then, by similar arguments as in seetion l.3, we get

          Ac tr g: ll $z v(c, n, 4) d .( c)d.( n).

Sinee A :; >LC by Lemma 2.6.2,

          x =" S: 1[x /'' v(C, n, g) du( c)dv( n) .

                                              '
The pyoperties will be obtained by the modification of the

proof in ThGorem l.3.3. We omit the detai]-.. '  [Q.E.D.]

                                            '
     By Theorem 2.6.3, we see that regulay vepresentations of
some concrete non-type I groups, for example, the diserete '

MauOne? group, the diserete Heisenbevg group, the Mautner

group, and the Dixmie? group, have infinitely many eompletely

different i"oreducible deeompositions. For the detail, see

[24] and [27]. ' '                     '                                   tt
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     Chapter III. Gene]7al-zed induced representations

     In this chapter, we investigate generalized indueed

representations for double transformation groups, related

with cohomology and we eonstyuct famUies of non-Mackey
                                  'repyesenta Pions of certain non-regular semi-direet product

gr)oups as a generalization of Maekey's method. Applying
                                                       '
this construetion to the Mautner gyoup, we obtain a new
                                           'parametrized family of non-Mackey representations, The
                        'representations found by L.Baggett [4] form a part of this

                                           '           '                                  '     Xn l978, L.Baggett found a family of non-Maekey

irreducible representations of the Mautner g?oup via the

decompositions of a generalizd tensor product of some concrete

representations [4]. In order to elucidate the meehanism of

his family, we develop a theo?y of generalized induced repre-

sentations in this chapter. In 1976, A.Ramsay turned the
                   'Mackey's theory into a representation theory of measure

groupoids [44] and obtained a generalization of indueed repre-

sentations. Our notion is elose to his but there a?e some

differenees. These differences will be seen to be crueial

in the deeomposition theory in later chapters. It is known

that, for a eonneeted and simply connected solvable Lie group G,

                   •Nthere exists an algebrale solvable Lie group G which contains

              A. tv A. ,AG such that [G,G] = [G,,G] = N and G aets on N (the dual of N)

smoothly. L.Pukanszky made an extensive use of this fact in

[41], [42]. We impose simUap assumption (ee) for non- '

regular semi-direet product gyoups, which will be used
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effeetively as a substitute of this fact.

     In seetion 3.1, for a double transformation gyoup, we

define unitary representations in relation to cohomology,

whieh appears as a generalization of the MaekeyTs indueed

representations [30], [33].

     In seetion 3.2, following the construetion in section 3.l,

we have families of noR-Maekey yepi?esentations oÅí non-regu].ar
                                  'semi-di]?ect produet groups satisfying a cei7tain condition (ee).

In [Pheorein 3.2.6, we show when sueh repvesentations are mutu-

ally equivalent, and in Theor)em 3.2.7, we give a eriterion
                                             'of the irreducibUity. In Proposltion 3.2.9, we mention

a pyoperty whieh eharacterizes such ]?epresentations. The

?esults obtained are akip to the results in [33] oy [44] but

ou-ps a]?e mone preeise according to the strong conditions

imposed. Moyeover, the techniques employed by L.Baggett [4]
               'will be better understood from"ouy points of view.

     In seetion 3.3, we apply our general resules to the dis-

erete Mautner group and the Mautner g]?oup.

     3.1. A generalization of induced representations

     Let (G;X;H) be a double transformation group. When a
  '
continuous unitary representation L of H on a separable
Hilbert spaee 'tr;g(L) is given, we eonstruet a unitai?y represen-

  '                         'tation of G in the following way. Let a denote the eommuting

algebra of L, in other words, the set of all bounded oparato?s
                                                          'on "s" ,(L) which commute with aU Lh for hSH. We take an 6tU-valued
                                                xcoeyele A(x) of (G;X;H) and denote D(h,x) = A(x) A(x,h). [rhen

D(h,x) is an iftU-valued cocycle of (H;X) which is G-invariant
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with respect to the variable xEX. . • • ,
    'We assume that (H;X) is srnooth. Let u be a quasi-

inva3?iant Radon measure on X/H under the action of G. We .
Z"k.:.gAR,:.g,(:'2.leg,?.egeg,S,et,s,eef,\H.z:: }2t,.o(:sft' be

assume that the]?e exists a Borel funetion Gf(g,k) on Gxx/H

sueh that for each gcG, or(g,1) = a(g,k) for v--almost all

IEx/H. put p(g,x) = 6(g,k), then p(g,x) is a Borel fur}ction

on GYX and H-invai?iant with respeet to the variable xEX.
eon6SI.gh2i denOte the set of au f's satzsfying the fouowing

          '         tt
   ' (l) f is a weakly Boyel function on X with values in 6(L),

                                                   '     (2) f(x.h) == D(h,x)eeLfif(x) foT all xeX and all heH,

                              '     (3 ), gx/ gy f<x) y, 2dp (2) is finit..

                  '
we define the inner product of -S2tA by , .

                                            '     (f;f') ='Six/H(f(X),f'(x)), dp(2) • for f and f,ctSA.

  ttt tThen it is veyified by usual argurnents that -g}A is a Hilbert

space with ( ; ).' ipor each geG, if f<x)e-SA, then '

g([iAi•lllSfg:s;g:.g3i'.z"f )h,:x u'e,:2?.?2p2,?gT:s .gotig have

                                        '              '                     tt           '     Proposition 3.l.1. U (g ----> Ug) is a eontinuous unitary
                                           'i?epr?esentation of G.

     P?oof. [Vhis follows by routine arguments. [Q.E.D.]
               '             '
                                            '     we note that if (Hsx) is effeetive, .6-A is not empty and

          '                                    '                                                           '                                      '



moreovev isomorphic to L2(x/H;tC'(L);u). In fact, by the
                              eJ
assumption that (H3X) is smooth and effective, we ean deeompose

xeX sueh that x = b(x)"a(x) where a is a Borel function from
                    '                      '                                                           'X to H and b is a Bo]?el function frorn X to a cross section
el.l,;ngg;.ih2.:;Ii.g: g.f :•;, ,t2x s.(gl bg,i2ii,Ssi'isvg::g ,.

finite. Put

          .v eeX          f(x) = A(x) L.(.)f(x) fo? xfX,

then w'e get ffCuA. The co?respondence f ---->? induces an

isorr!o]pphism frorp. TiiJ2(X/H3ttg(L);p) onto jtt;A.

                                                 N     Let us eonside]? the case whe]f;e X is a g]?oup G, H is a

                   rv .velosed subg]poup of G, and G is taken to be equal to G.

Then LLhe coeycles A are aU trivial. Let P be the canonical
                             Nquasi-inva]?iant m-easure on HXG. Undene these situations,

the representation U defined in the above reduees to the

ordinary indueed yepresentation of G from L (see [30]). If
                                  t-vwe take G as a elosed subgroup of G, and the eoeycle A to be
                                                           Nt]?ivial, then the above U ipeduces to the restriction of IndliL

                                                             '
to G. ThereÅíore we ean ]?egard the above repr'esentation U as

a " generalized induced rep]?esentation of G frorn L through

(G;X;H) twisted by the eoeycle A", and we denote U by

                                           '     For Ai in z67'(Gsx;H) we denote indfi(v,Ai,L) by uAi(i=i,2).

                                                          '                                            'Then we have the folowing proposition. -'

                                                        '     P]?oposition 3.l.2. If Al is eohomologous to A2, U"Sis

                                             'unitayiiy equivaient to uA2.
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     Proof. From Ai, we get oeU-valued coeycle Di of (H;X) by

                                        '                     '                                                '                       '                                       '                     '         Di(h,x) = Ai(x)eeAi(x,h) foy h'eH and xeX (i=l,2)

                  '                       '            '                                             'Since Al is cohomologous to A2, there exists an atU-valued G-

             'invariant Borel funetion B on X sueh that ' '
                       '                          '                               '                             '                         .t          '         D2(h,x) = B(x)eeDl(h,x)B(x.h) fo]? aU heH and all xEX

               't.eg.Si.,L.,:e, E-hg,:i;-?e,: :.:a:.x zxf.r2gpeed,i2g,",:,."ii.,li,f(;g;'g"'• .

            '                  'example, .. '
             '                                          '                      '    •1                             '             '        ' ?(x.h) ' • ..
                '               '                 x         = B(x"h) f(x.h)

                 X ee ee         = B(x4h) Dl(h,X) Lhf(X)

         = B(x.h) "' Dl (h, x) ec B(x) LXB (x) ec f(x)

                  ee x         = D2(h)X) Lhf(x) for all' heH and all xe>c..
         '             '                                               '                                 'Hence we get a unitary operator w : f(x) -B(x)Xf(x) from

gfytg SA2, and it is easy to see that

        '         '         uAgl= wTXuAg2w for aLIL geG.

This implies that uAiis unitarily,equiva2ent to uA2. [Q.E.D.]
                '                      '
             '                   tt        '                                                     A     As a result of the above p]?oposition, we see that U
                                                       '       '               'is defined essentialy by the eohomology class [A] in ZtTZ(G;x;H)

Suppose that L is a multiplieity free representation of H

and a double transfo?mation group (G;X;H) satisfies the

assumption oÅí Proposition 2.2.3. Then the eleinents of the
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three groups Hat(G;x;H), H5L(G;x/H), and }IgL(H;Gyx), which

correspond one another by Proposition 2.2.3, determine a

generalized indueed rep]eesentation of G up to equivalenee.

     At this moment, we shall look at the representations
eor?esponding to the elements of Hec(G3X/H) somewhat in

detail. [Vake an otU-valued H-invariant eocycle C of (G;X)

derived from a cocycle A by C(g,x) = A(x)A(g•x)ee. IAIe define

a ]?epresentation VC of G as follows. In place of the eondi-

tion (2) in the definition of -{}LA, we put

                                          '                          ee          (2)' f(x`h) = Lhf(x) foip hffH and x6X, and

                        '
leave the other condit.ions behind. We denote the set of
all such f's by "92. Define vg by, for g(}G, '

                                          '          vg : g,)f(x) -p(g,x)i/2c(g,x)f(g•x)e5.

               'It is easily seen that VC(g --Vg) is also a unitary repre-

sentation of G and it is unitarny equivaient to uA. Mor)e-

over, it is verified with no trouble that VCiis unitarily

equivalent to VC2 even if Cl ls "p"-cohomologous to C2.as

elements in zC7i (G;x/H). In the case of Remark 2.2.4, genera-

lized indueed vep?esentations are determined up to equiva-

lence by the mutually eorresponding elements of the eohomo-
logy g]?oups Hgr(G;G,'H), HpO?(G;H G), and H{g(H;G/G) by [Vheorem

2.3.2.

     '

     3.2. Irredueible representations of semi-direct

          product groups

                                     '
     Let G be a semi-diTeet product group NXsK, where K acts
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on N as an automorphism g]?oup. We assume that N and K are

abelian groups. [ehe action is denoted by Ngz --ek-zeN. [Vhe

gi•:g:tioflf ::..l.1:iill,:n.a:.::•:i,(::::,feK) and th. ..,,.-

Then an action of K on the topologieal spaee ' fi, the dual of

N, is defined, for kGK and xert, by .
                                  '                                            '                               '
          <z, k.x>=<k•z, x> for all zeN.
       '
so we get a topologieal transformation gvoup (K;fG). G.w.Maekey

called G = NX sK a "regular" semi-direct pyoduet group when '
   A(KsN) is smooth, and determined all irredueible yepresentations

of such a gDoup. We shall treat mainly the case where G is

not a ]?egulay semi-direet product group, and try to eonst?uet

a famUy of non-Mackey irreducible representations of G. To

do this, our main assumption is this. •'
     (ee) [Vhere is an abelian group ft eontaining K as closed

     subgroup. The group i( acts on 'ft as an automorphism

                                                    rv nv     group and, as such, it is an extention of K. G = NXsK

     is a rggulaT semi-direct produet group. , .

                                                     t.
3.2.l. A construction of representations of G -
     Mrst, we take xcf} and denote by Hx, the stability

group of E( at x, i.e. the set of te'KV such that t•X = X. Hx

                         tvis a closed subgroup of K. Put Gx= NxsHx. We define LX by

 , ' L}z?h) =<Z, x> for all (z,h)CGx.
                                                            '
                                    '                                           '                                                           '                                                 '
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[ehen LX is a unitary charaeter of Gx. K and Hx are elosed

subgroups of g, G and Gx ai?e closed subgroups of a, and so

we get double transformation groups (K;i\sHx) and (GsG"'sGx)

as in Remark 2.2.4. Next, we take a T-valued cocyele A of
   A.(K;KsHx) where T is the one-dirnensional to]pus which equals
ÅëU ={zEÅë;izl = 1} . /If we put .

         "A"(z,t) = A(t) for all (z,t)ecr,
                                                        '     '
         '
then A is a rw-valued eocyc!e of (G3G;Gx). Let Y be a Haar
                              A" .nyxv 'V                                       . Undey theserrteasure of the abelian gToup HxXK = GxXG
preparations, we define a unitary representation u(X'A) =

ind[lx(u,X,i?9 of G, as deseribed in seetion 3.i.i.

                                              '     '                                      '                           '
 ' Remark 3.2.2. Since a unitary eharacter Åë of g is a
cocycle of (K3f(;Hx), we get U(X'Åë). This is a typical

example, and, in the case that G = Zg and therefore K = NK,

U(X'Åë) coineides with the representation obtained by the

Mackey's method. .,
3.2.3. Realization of u(X'A) on L2(HxN'KV ,v)

                                          tu     Lee C(k,t) be a T-valued eocycle of (K;K) defined by
                  eeC(k,t) = A(t)A(t+k) . As C(k,t) is Hx--invayiant with respect

to tCK, we ean rega?d it as a eocycle of (K;HxXK) and when

it is considered in such a way, it is written as C(k,x).
                                tvSince Hx is a clo$ed subgroup of K, there exists a Borel
cross section c : x -e> c(x) from Hxx NK'  to f(. Then, by'

                                                   'routine ayguments, we have the following result.
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3.2.4

Radon

set{

                '
         C(k,ee) --

Then we can also

form.
    yor f(co)G L2

         (U[.Xl"k))

     Define an

        tt
         (tpA)(tt)
               '
and transfey this
    '

               rv         for tEK

yor f(x) E L2(H xx'VK, y) ,

    '' ( u [ .X; Ak )) f ) ( x ) = c ( k, x ) <z , c ( x ) , k> f ( x . k )

                                       '                       '    'for all (z,k)EG. '  -
           '                   '                '                       ',.'  Realization of u(X'A) on L,2(li>T,1I) ,. ,

                                    tv ATIigagOurergifilM2P:.l,?Xo"nttmboX'cXentf;OaMte:XXonKtorObii(i,'?1"tChega

t•xeAN ; tef\i l we define a eocycie c(k,tu) of (K;AN) by

    Let
obtained

C(k,t)

l

       realize the
        A ,v        (N,V)

        '
       f)(to) = C(k,co)<z,tu>f(k.to) fo]? all (z,k)eG.

          '     action of ' rvK on zC (K; fl ;Hx) by

                   '
                '                             rv tv           = A(t +t t) fo ]? tEK and aU t 'e K,

                                        '                               '        aetion to C in ZÅë(KsN). Then we get

 (teC)(k,co) = C(k,t.co)

                        A        and all (k, co ) e KxN.
                              '
          'v be a unitary representation of Z( on L2("','"v)

by putting, for f(co)fL2("N,ir), '

             '                           N (Vtf)(as) = f(t.ed) for teK.

           '                         '         '
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Then we have, for f(tu){iL2(fG,v),

                      '                                                  '          (vtu[>; Ak )) vtee f) ( ed ) = c( k? t• to )<z ,t• tu >f(k• ee )

                   = (u((t.`5i2g"A)f)(oo) for aii (z,k)eG.

Thls fact shows the following lemma.

     Ijemma 3e2•s. u(X'A) is unitar'ily equivalent to u(t'X,t'A)

              t"vfo]? for alZ tEK.

                                t'Lt     Let or be a Haar measure of K. Then we have the following

theorem.

          '     [vheorem 3.2.6. u(Xi'A!) is unita]ony equivalene to

u(X2,A2) if and only i'f x2(e O?bi((x? and A2 is or-cohomologous

to totAl where toe' K" satisfies X2=tov Xl. '
     P]ooof. The "if" part is easily verified by Lemma 3.2.5

and the last assertion in section 3.i. We show the Y'onZy if'S

part. • .
     suppose that vu(Xi'Ai) = u(X2'A2). Then, we have

N u(Xi'AR = N u(X2'A2) which a]f'e restr'ietions to N of

u(Xi'Ai) and u(X2'A2). =Tet

          N u(xtsAL) . IljNl? .dÅíti(.) (i ., L,2)

be the irreducible decompositions of N u(Xl'sAt), the

measures ui being concentrated on Orbg(xi) by the definition
of u(Xi'Al). As such a decomposition of an abelian group is

unique, we have first Orbg(Xl) = Oi?bi((X2). Hence there

            Nexists a toGK sueh that X2 = toe Xl. By Lemma 3.2•5,

                                             '
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u(Xi,Ai) : u(to'•Xi )to'Ai) ;; u(X2, to'Ai) holds, so that we

have u(X,'to'A2).tr- u(X2' A2). Therefore if we show that

:ll ll ' pAl ].[ii :i. i-I A2b .) lll]lil: .e tS .l hat A2 is ct-cohomoio gous to Ai ,

. ,. get.:.iiiC'],g;g,giXgi2i,?k,Åí,sa:tzfid,x2,L2("N•or) and }et

                              ' . u[ .>(; Ak 2) ) = w ee u [ .X; Ak$ ) w fo ]? ai i ( z , k ) e G . ,,

                      '
hFrae: the exPresszons of the operators u[zX;ftl in 3.2.4,. we

      .' <u[.X;8f)(to)=<z,co>Åí(co) , f(to)EL2(G,or), ' .

                                                           '                                         '                                      '
therefore u[zX;AoS) = u[zX;gi) for all z6N, and these operators

gener;ate a maximal abelian von Neumann algebra LOO (AN,1tt) on

L2 (AN,rvv). Then by the condition u[,X;gs)w = wu[.X;g3) for an'

zeN, w must be in Loo(R,'-p'), i.e.-w is equal to a multiplieative

operator S(ed) sueh that IE(oo)l = i. Then we see that, for

f(  es) 6L2  ( fi, !llllu? :x l Xkh,) e) wOf n) ? .?aidBi(" e. )iec,.I (k..) B,.,( k'. .) f(k. .) ,

and on the other hand we get

          (U[ oXI Ak 2) )f) ( co) = 62 (k, ed)f(k' ee),

wheye al and C'" 2 are the canonieal eocyele of (K;1ff) corres-

ponding to ..Ai  and A2.t S 2..We haVil.' fOr eaeh keK' .N

          C2(k,to) " B(oo) Cl(k,ed)B(k• tu) for v-a.a. ooeN.

                             '
[Pake a IV-valued Borel funetion Bo on HxNKf( such that
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go(co) = g(cD) foi? "-almost all u)c'NK, where go is defined by

          E,(.) .i?o(e) ii :2,,Or.:E.[X,l.and tu= t'x, •

      '

[Phen we see that for eaeh kEK ,
                         ee          C2(k,x) = Bo(x) Cl(k,x)Bo(x k) for v-a.a. xEHxxK,

                              '                       '
in other words, C2 is y-eohomologous to Cl. Therefore it

follows that A2 is ct-cohomologous to Al by Theorem 2.3.2.'

                                                  - [Q.E.D.]
                       '            '    '
  .1
     Next we give a necessary and suffÅ}eient condition that
                                                    A;u(X'A) is irreducible. Let OrbK(X) be the set {keXcN : keK .}

and orbnKv(x) be the set {t,xfliN : tGR}, both of them a]?e

COnSi,Ne]?ed aS a topologieal spage with the topology induced

from N.
                                     '

     Theorem 3.2.7. u(X'A) is an irreducible representation

of G if and only if OrbK(X) is dense in Orb/Kv(X).
                                                   tv A     Proof. First, we show the "if" pa]?t. Sinee (K;N) is
                                                    A.smooth, we see that the map th : Hx+t -----> t.X frorn HxXK eo
O]ebi\(x) is horneoi-n.orphic (see[l2]). The set Q-l(OrbK(X)) is

                              IVequal to the orbit of K on H2xK passing the unit element of

HxXK, and it is dense in HxXK by the assumption. Moreover
the actlon of K on HxN"K is equal to the aetion of HxV{x+K

on HxXE( as under a subg?oup. The]?efore the Haar measure v

      A.of HxXK is invaviant and ergodie undev the aetion of K, and
      iv Aso is p on N.
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                                           '     suppose that an operator w on L2(fe,Gli) satisfies

              '                                          '         'u[.X;8w,- wu[.X;",)) - 'for all (z,k)eG.

                                             '                          '                '                       '                               '                                     'Then we get , . '
                               '                     '            '
                            ..         u[i'8w= wu[i,e] .. for aii zeN•,

                                     '      t ttt tt tt ttt t tso that w must be a multiplicative operator fl;(tu) in the same

    'wa'y as in ehe above proof. we observe th gt, for f(co)eL2(NA?<il)

         (U[oXIAk))Wf')(ed) = 6(k,co)BN(k to)f(k•es)

                                     '                       ttt t                                                  '         ( wu [ ,X; ft ]f) ( oo) = S( ed)5(k, ed)f(k, al)
                                            for keK.
                                                '         ..              '                                                '                    '         'Hence we get, for eaeh keK,
                    '
         E(ktee) = B""(to)' for "y-a.a. edgf}.'

                   '
Then
        '          '
                     '         B(os) = constant                            foy v-a.a. coeN,
          t. tt            '                                      '                           '                          '                                    '             'by the ergodicity of Er, so that w must be a scalai? operator
on L2(AN'T,tgl). [vhis fac"t im.plies that u(X'A) is ix'r]educibie.

     The "only if" part is shown in the following way. If
u(X'A) is irreducibie, the measure i]( on iS eo?responding to

u(X'A) must be ergodic and so is y. Moreover, the ergodicity

                        '                                                      '                                           'of v implies that HxXHx+K is a dense subgroup of HxXK and '

so OrbK(X) is dense in Orbi((X) through the homeomorphism th.

     Remark 3.2.8. Tbe action of ? on ZC(K;K"';Hx) induees

naturauy an action of R on HÅë ct(Ksf\;Hx). Let st be a

K-inva?iant Borel subset of N sueh that (K3st ) is essentially
                                                     '                           '
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                                   yvfree i.e. all stability gr'oups Hx of K at X6st are equal to

H. Moreover we assume that K+H is dense in E(. Then the

above two theo?ems assert that the irreducible representations
u(X'A)  of G a]?e par' gleetrized by the orbits of stYHctÅë(K;fU;iSc)

undei? the action of K. '
            '
 . IJet C(ff) be a quasi-orbit for? the aetion of G on fi'

                                  A rvconcentrated on Orbt K"(X) for some XeN, wheye V = Qee(P) for a

Haar measux)e y of Hxx" K' thveough the above map V from HxX ft'

to N. If a T-valued Borel function A on K satisfies the

                                               'eondition that, for• eaeh kfK and heHx,

                              ce• -v          A(k+t+h) = A(k+t)A(t) A(t+h) foy ct-a.a. t(!K,
 '
we call it an or-coeycle of (K;i(sHx). .For an ct-coeycle A, we

can aiso define a unitary ]?epresentation u(X'A) of G in the

same wa.y as above. such u(X'A) is an irredueible repr'esentation

of G x'esti?ieting to C(V) with multiplicity one if it satis-

fies the assumption of Theorern 3.2.7. ConverseLy, we have

                                   'the following proposition.

          '
     Proposition 3.2.9. If U is an irr'edueible ]?ep?esentation

of G restrieting to C(u'") with rp,ultiplieity one, then there

                           Nexists an ct-coeyele A of (K;KsHx) such that U is unita?ily
equivalent to u(X,A). ,

     Proof. By general Tesults [33] about semi-dii7eet

product groups, there exists a T-valued Bo]7el funetion C(k,oo)
     Aon KtfN sueh that
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     (1) for; f(ou)GI,2("N,X),

                                       '                  tt t
          (U(,,k)f) ( tu ) = C(k, to )<z , es>f (k. ou)                                            [f'or (z,k)GG,

             '     (2) for eaeh kl,k2eK, / ' ' -
                           '                                      '
         C(kllk2)al) = C(kl,ee)C(k2,kl.to) for lf-a.a. coeN.

                                        '                              'Take a Borel funetion D(k,t) on Kx"K such that D(k,t) =

C( k,. ., th (e ) ) • When D(k,t) is Hx- invari ant with respeet to

tEK and satisfies, for each kl,k2 K, • •
                                                       '            '
         D(kl+k2,t) = D(k?t)D(k2,kl+t) for ct-a.a. teg.

We choose a Borel cross seetion el: KNf\ ---> ff and replaee

t by k+el(x) (k6K,xEKXi\) in the above exp]?ession. [ehen,

using Fubini's theorem, we see the existence of an

elernent ko in K for whieh, rewriting c(x) instead of

ko+el(x), we can elaim , -  -
fo? almost all xEKN' KV

,

          I)(kl+] 2,e(x)) = D(kl,c(x))D(k2,c(x)+kl) (3.2.I)

                                                      '          fo]? almost all kl,k2GK• ' '
    '
             tPut b(t) = c(t) and a(t) = t-b(t) for t6K. IAIe define a

T-valued Bonl function A(t) on K by

          A(t) = D(a(t),b(t)).
                                        '
Let D(k,t) be a cocyele of (K;K) defined by D(k,t) =
    y,A(t) A(t+k). Then, (3.2.l) implies that '

         tv '' rv          D(k,t) = D(k,t) a.a. (k,t)EKxK.

                     '                                         '
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However, by the faet that D and V DV define the same "continuous"
unitary ]?epveesentation of K on L2(K'" ), we get, for each keK '

          D(k,t) = D(k,t) or-a.a. teK.
                                               '                            '
Therefore we see that, for eaeh keK and each hEHx

          15(k,tl-h) = D(k,t) ct --a.a. t6i(•

                           t.
                                           NThis implies that A is an or-coeyele of (K;K;Hx) and it is

verified with no trouble that U is unitarily equivalent to '

         '                                    '                '                                                   '               '                                                    '        '                                                  '
     Remayk 3.2.IO. By applying general considerations about
                    '
cohomology [43], w"e maty' gGt a" st.nongey resi,.'lt. Undey th"e same

assurp.ption of Theorem 3.2.9, we ean take a "cocycle" A in '
                                                          'ZC(K3f<;Hx) instead of a " ct-eocyele" A as iri [Pheo]f'em 3.2.9.

        '
     3.3. Applieations and Exarnples

            '
     In this sec-vion, following section 3.2 and using the

r)esults in section 2.5, we shall give new families of irre-

dueible represenLvations, whieh are non-Mlaekey yepvesentations,

of the discrete Mautner group and the Mautner group.

Case (a) 3 the discrete Mautner g]?oup.

     Let G be the discrete Mautner gvoup defined to be the

semi-direct product ÅëxsZ'of the additive group Åë of complex

numbers with the additive group Z of integers, wheye the

multiplication is given by '
          (z,n)(z',n') = (z+einzt,n+ni).
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     Corresponding to this.group, we take the universal
 'covering group llg of the motion group, whieh is defined to be

the semi-diyect p?oduct CxsR, wheye R is the additive group

of real numbers and the multiplication is given by
 '           '              ' - • • ' (z,t)(z',.t') = (z+eitz,,t+t,). '

   '    '                    '  '
We i?ega]?d G as a elosed subgroup of G.
             .  , At first, we take x]?E6 sueh that rfR+(positive real

numbers) and

                                 '                                    '         <z, xr>= ei(]7,Z) for aU z(C,

                                                  '                                                     'where ( , ) means the real inner produet in C. Then the
stability group of Rs at Xr is equal to 2TiZ for all rER+.

Let Go denote the semi-dii}eet produet Cx s2TZ, and we take a

unita]?y ehai?acter L]? of Go defined by '
                                     '
          I,i?(z,2Tn) == <z, xr> for all (z,2Tn)(Go.

Next, we take A(X'q)EZÅë(Z;R;2TZ) where AER, qEQ aceording to

(a--3) of seetion 2.5.
                                      '
     Under these preparations, we get a unitary representation
u(i?,X,q) ofGby section 3.2 as - '
                                                 '             '          u(r',X,q) = r.dgo(A(X,q);L]f') . (re,ER,xER,qEQ).

                                                   'As Z+2TZ is dense in R, U(r'X'q) are irredueible by

Theorem 3b2.7 or Remark 3.2.8. Moreover we see that u(r,X,q)

is unitaruy equivaient to u(r''M'q') if and oniy if r=rr,

q=q', and A-X'E Z+2TZ by Theorem 3.2.6 and (a-3) of 2.5.6.
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It is clear that these U(r'X'q) are non-Mackey rep?esen-

tations. When qEZ, they are reduced to those obtained by
L.Baggett [4]. Howeve?, when qfZ, they are "new".

     '
     '                               '
Case (b) ; the Mautner group

     "lhis time, Let G denote the rvlautnev group defined as a
semi-direet produet c2xsR of the two-dimensional vecter

group c2 on eomplex nurnbers wi-th R, where the multiplication

is given by - '
                                      '          (z,w,t)(zr,wr,tt) =/(z+eitzT,w+e2rritwT,t+tf).

                                                      '                                          '
                                               '     Coi?responding to this group G, we pick up the connected

and simply eonneeted 6-dimensional algeb?aic solvable Lie
                                   'gyoup G'" , which is defined as the semi-direct product c2xsR2,

wheioe the multiplieation is given by

     (z,w,t,u)(z',w',t',ui) = (z+eitz,,w+eiUwt,t+t,,u+ur).

     'We imbed G in a as a elosed subgrouo. by the follontng injeetion.

                                  '
                                    N          G)(z,w,t) -----i> (z,w,t,2Tt)EG.

     As in the case (a), we take at first x(r'S)662 such that

                                   '      -l-r, s6R and '
          <(z,w) x(?'S)> = ei(r'Z)ei(S'W) for aii (z,w)6c2.

[rhen the stabnity gx)oup of R2 at x(ii'S) is equal to (2Tz)2 foip

any -?, sER+• Let Go be the semi-di]?ect produet Åë2xs(2Tz)2 of Åë2

with (2Tz)2 and L(r'S) be a unita?y characte]? of Go defined by

     I[J[l;lwS]2.i,m,27n) "<(z,w), X(?'S)> for' (z,w,2Tm,2Trn)tEFGo.

                                                         '
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Next, we take A(X'q)(zÅë(R;R2;(2vrz)2) by (b-3) of 2.s.6 where

     Under these preparations, we get the following unitary

pepresentation of G (see seetion 3.2). ,, . '
             '                                    '          u(ris,X,.q) = !.dgo(A(Xl.g);L(r,s)) ,

                              'where ]?,seB+ , IER, qEQ. '
                               'The u("S'X'q) are i]?reduclble by Theorem 3.2.7 an6 they are

                  '                                                            'non-Maekey representations. Moreovey, U(r'S,X'q) is unitarily

equivaient to u(rt'S''X''q') if and oniy if r=r', s=s' q=q',

and X'AET+2rrZ by Theorem 3.2.6 and (b-3) of 2.5.6. In ease
  'qeZ, we can easily write them in a coneTete foTrn as follows.
     Fo ir f(x,y)c' ]1,2( [O,2 Tr )Å~ [O,2 iT ) )

                   '                                '                   '     (u[E;.s;tXsq)f)(x,y) .
     . .i(q/2 Tr)x[y+2 TTt].i(q/8T2-) ([y+2 iTt]--2y[y+2 Trt]2)

       eiXtei(re-iX,Z)ei(Se-iY,W)f(x+t,y+2Tt) for (z,w,t)eG.

                'It is ve?ified that these are unitarily equivaZent to those

found by L. Baggett[4]. In other eases, namely, qeZ, the
u(r,S) X,q) (r,s E B+, Ae' R, qE Q) are 'r new" represent at iO nS•

                                           '                 'Aceording to 3.2.3 and section 2.5, it is not hai?d to w?ite

down these representations but they are much eompllcated '

than those shown in the above in the case q6Z.
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   Chapter IV. Deeompdsitions of sorne facto]c ree.resentations
                      '
                           '         '
     In this chapter, we consider the irredueible decomposi-

tions of type II factor representations of some non-regular
                                              'semi-direct product groups. Taking a certain factor represen-
                                                    'tation of sueh a group, we show tt can'be deeomposed in many

different ways into direct integ?als of irreducible represen--

tations, while the diagonal algebras are spatially isornorphie
               'eaeh other. The explieit form of the diagonal algebra is

also given.
                    '
     It is well-known that ii)veducible deeompositions of a

non-type I ]?epresentation are not unique in general. Thei?e

are some exam-ples whleh demonstr)ate this faet. There are

about ]?egu]ar repyesentations of certain gyoups, due to H.

Yoshizawa [46], G.bu'. IVTiaekey [29], A.A. Kirillov [28], and M.

Saito [46], as int]eodueed in ehapter I. )iloreover, D4. "lakesaki

[50] and S. Funakoshi [l4] studied decompositions of represen-

tations, i7elated to ergodie measu]ees. ,
     MÅ}he theory o'f irreducible decornpositions is based on

the following general result of F.I. }Cautner [36]. Let G be

a loeally compact group and ff be a unitary representation of
G on a separab]e Hilbert sapce YAb . Suppose that Ln is an

                                      'abelian von Neurp.ann subalgebya in T(G)'. [Vhen, the]?e exists
                                              'a standard measure space (Y, v) sueh that ijJ-L is algeb]?aically

                 coisomorphic with IJ (Y, V) and Tr is decomposed as follows.
 '                                              '
               Tr :. g{yb Tndv( n) .

                           '
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Moreover, Tn is irredueible, for 0-almost all n c-Y if and only
                 '                                   'if Ci. is maximal abelian in vr(G)'.''
                    '     '           '                            '                                              '     In the ehapter, we consider the iv]?educible decompositions
         '                              '                                         '               'of type II factor representations of some non-regula? semi-
                'direct product g]?oup. In Theoveern 4.1.3, a certain repvesen-

tation rrX of sueh a group G wnl be deeomposed in an explicit

way to a direct integraZ of irreducible representations,
                                           'eaeni eomponent having a definite form. The eorresponding to
    'maximal abelian von Neumann subalgebra in rrX(G)' is also

deseribed in a eonerete form. ' -                                            '                                           '                      '     It is known that the non-type I'ness of a loeally
         '                    accom] aet gyoup ore a C -algebra is closely related to the non-
                                           'smoothness of topological tMansformation groups [12], [l5],
          '[l6]. In non-smooth topological t]?ansformation gvoups,

there a?e various kinds of quasi-orbits and the cohomology
                   '                                   'group for eaeh non-transitive quasi-orbit seems to be huge,

at least it is known to be mon-t?ivlal under some conditions
                        '             '[38]. The non-uniqueness oÅ}n decompositions of a non-type I

repyesentation seems to depend deeply on these two facts.

The results in [14] and [50] are certainly eonneeted with
                   '                                           'the fo?mer and the exarnples in [28], [29], and seetion l.3

also seem to be so intrincically. The p]?esent chapter is an
            'attempt to describe the relation of the non-uniqueness of
                                                 'decompositions with the latter phenomenon.

     In ehapter II, we studied the eohomology groups of

double transforemation groups, related with irreducible

repvesentations of some non-regular semi-direct product

group,s. The decomposition in Theorem 4.l.3 is done by using

        '                                        '   '
                                        '      '
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a eocycle of this eohomology theory, and it is shown in

Proposition 4.2.l that two decompositions.are completely

different when the used cocyeles are not weakly cohomologous,

whereas the diagonal algebyas a]?e spatially isomorephic each

other. [Vhus we may get a laz)ge number of different decorn-

positions of a given yepreesentation into irreducible compo-

nents, an observation which wUl be new. To illustrate

vantous possibilittes, we give two examptes in seetion 4.3.
                                            '

     1;.1. Decompositions of iX

     I,et G be a seni-diyeet product gyoup N xsK, where K

aets on N as an autoni-or'phism group. We assume that N and K

are locally ' comJpact abelian groups whieh satisfy the axiom

of seeond countabjlity. The action is denoted by

N-)z---> k.zcN for kcr'-K. The element of G is wrj-tten as

(z, k) (z (- N, keC K) and the multiplication is given by

(z, k)(z', k') = (z+ktz', k+k'). rphen, an aetion of K on
                      Athe topological space N (the dual of N) is defined, for keK
and oo c"SiS, by <z, ktos>= <k,z, ed> for all zeN. So we get

                                       Aa topological transformati.on group (K; N) which satisfy
                                                            '                              -Ak2 '(kle co) = (] lk2 )e oo fov kl, k2 EK and ee eN. G = N xsK is
                                                      AcalÅ}ed a "regulai7" semi-diveect pveoduct group when (Ks N) is
                                   Asrnooth, namely, when eaeh orbit of N under the action of K

is loeally elosed (see [l2]). We treat mainly the case

where G is not a regular semi-diveet product group. However,

we assume the Åíollowing eonditon (ee).

                                                  tv     (X) The]?e is a loealZy compaet abelian group K eontain-

                           '
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ing K as a closed subgroup. The group KN  acts on N as an
                                                           !Ltautomorphism group and, as such, it is an extension of K. G
= N xsNK is a regular semi--direet produ-ct group.

                         '                   ..
  - I"or a unitary character X of N, we Eet a unitaTy repre-
sentation rrX of G, defined by TX = G' Indll ?,<,. whieh is the

restriction to G oÅí the representation of a indueed by x

from N. Let Hx denote the stability g?oup of i( at x and let
   '
T be the one-dimensional torus group. When a T-valued Borel
Åíunctlon A on K'V  satisfies A(k+t+h) = A(k+t)71R: E7A(e+h) for .

             1'L.all kCK, tEK, and h (SHx, we eall it a coeye]e of the
double transfovmation group (K; KN ,'  Hx ) (see seetlon 2.2).
using this eocyele A, we get a cocycle cA of (Hx; i() and a

eocycle DA oÅí (K; K'V ) by
                                           '                                                      '
                                                 '  ' cA(h, t) = ?Y'(E-5rA (t +h) •
                                       '          '           . DA(k, t) - A(e)llr(-E-FIE-5'
                                          1•
                          '      'fo]p heHx ,kEK, and t(! li(. we note that cA(h,t) is K-

invai?iant and DA(k,t) is H -nvayiant with respeet to t("K".
                          X
     In this ehapter, we consider the nepresentation TX of

G and, correesponding to each cocycle A, we give deeomposi-
tions of TX and the abelian von Neumann algebi?a in "X(G)'.

     According to the Maekey's theory of induced r)epresen-

tations [30], we geLu a canonieal decomposition of rrX as

                                               '               '                                       '
                                               '
                                       '           '
                    N          TX = G indiil x

                                         '                    ILt             2: G indg x( zndfirc x) , where Gx= N xs Hx ,
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             -: c- lt n g /r i( S 'E,K" xL ( X) ") d p( ,) )

      . :N=' I Hif x( GI i nd g" )<L( X, n) ) d ,( ,) ,

              '
wheye y is a Haar measure of 'iX x and L(X'n) ( nEfix) is a

unitary eharaeter of Gx, defined by L[zX;hn)) = <z.xXh,n>

                                                       'fo[tf' (z,h) (Gx• -
     Now, we eonside]r) the following pi)oblems.

     (a) How do we get deeompositions of TX which are
         '
completely diffe-oent frorn the above one ?
   'gi...(b ,,l..W2gt.ig-ntge..gii;ii.'i:ig:n?Nournann aigebra .hi.h

                                            '
folloe,vtiniiftgty: We WUi have a r)eaiization of Tx m the

                              ttt
     I)emma 4.l.l. TTX is realized on L2(rt) by

         '
          (vX( ... ,k) g) (t) " <z, teX> g(t+k)

   '                      'for c(t)6L2(KN ) and (z,k) gh c-.' .
     Pi?oof. This follows frorn simple caleulations (see

                   '
     Next, for an a]?bitravy cocycle A oÅí the double t]?ansfor-
rnation g?oup (K3 rr; Hx), a unitary operator >sA on L2(ff) for

h(Hxis defined as follows. Fo]? E(t)cL2(i(), (Xli g)(t) =

cA(h,t)g(t+h). xA is a unitary repyesentatlon of Hx. we

denote by cRA the von Neumann algebva generated by AA for
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  all hEHx •

            ttt                           t.                        '                                    'Tx(Gs, g2TIi:2(ftIl'2' Cr" ZS an abeiian von Neumann aigebra in

            .. .6i...P ::Z,f',dASl.geg,k,g2.an,Zg;ilZ;.i"2.:r2.gp.zi,is,g'X,i:.

                                         '                    '                                   '                  '  show that .• '" ,'                                       '            '                        tt                                  '                          '             tt                      '           .t      '    ' .. Tx(.,k)xA = xlll rrX(,,k) ,• . '' -

                                              '                                        ..               tt                             '  for all (z,k) c' G and qll bi tf' Hx . For g(t)t'r'-- L2(k-'), we have,

                     tt '  on the one hand, - '                                '        '                                     '                    '                        '                           '                          '                 (T>z,k)xl g)(t)

                            '                '               = <z, t•x> (xAg)(t+k)

                      '                                       '               = <z, t•x>cA(h, t+k)g(t+k+h)
                                         tt
               = <z, t•x>cA(h,t)c(t+h+k),

  and on the other hand,

                    (xAh7>.,k)g)(t)

                 '                      '               ; cA(h,t)(ff>.,k)g)(t+h)

                  '               = cA(h,t•) <z, (t+h)-x>g(t+h+k)

               = 'cA(h,t) <z, t•x>g(t+h+k). [Q•E•D•]
                                                        '
       Now, to practice a decomposition of TX aeeording to bl.A,

                      '  we prepare a family of non-Maekey representations u(X,A,n)

  (nEHAx ) of G = N xsK followlng the way in ehapter III. Illet

  il (>< 'n ) ( nEfix ) be un it ary characte]?s of Gx= N xs Hx , de fined by

                                tt                 L5>;hn9 = <z,x> <h,n>
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fo]? (z,h)eGx . The-n we can construct a unitary ?epresen-

tation u(X'A'n> ofGby '
                                    '
       • u ( X) A , n) . I . d GG ( A ; L( X, n) )

                              X
     '              '
 When A is trivial                  ,
              '      , u ( X, A , n) = G il l n d g'" xL ( X, n) .

     Our main theo?em- is the following. It shows an explicit
decomposition of vrX eoy]7esponding to idi in TX(G)', whieh

will offer one answer of (a) and (b).

                    '
     Wheoi'em 4.l.3. Co?responding to fiJzA, the unitayy repre-

sentation TT/X oÅí C-=NxsK is deeomposed as follows.

                   I'"#r}
             TX !.l: //•,,.//'. u(X, A,n) dutn)

       ' viH)< .
                            A-where y is a Haar• rneasu'ee of Hx.

                                                   '
     Before going into ehe proof of the theorem, we will say
about u(X, A)n) in moi)e detail. Define the aetion of K on

K/Hx by k-x = k+t foy keK and x = tEK/Hx. [Fhen, t•x in N
may be written K' .X fo]? x = ieR/Hx because ffx is the stability

group of R at XEf>,. since a cocycle DA(k,t) = A(t)A'(ffifT)

of (Ks K'" ) is Hx--inva]?iant, N DA(ii<,E) = DA(k, t) is a eocycle

of (K; 'K"/Hx). We note that an element of ft can be regarded

                    xvas a coeycle of (K; K3 Hx)•

                  '     I,emma 4.1.4. u(X'A'n) is unitarily equivalent to

u(X,A+ .fi,O .). It ean be ?ealized on L2('KS'/Hx) as follows•
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For g(x)EE L2(g/Hx),

             t tt     ' ( u (( .X;kA ), n ) g ) ( x ) l < z , x • x>ik , n> 'D" A ( k , x ) g ( k , x )

               • • for                                                   '                                 '                             '                 '                                                 '(z,k)GG, where fi is an extension of nEfix to iU.

                                          '                                           '                                '                                       '     Proof. First we identify the representation space of .
u(X)A,n) with ehe space of u(X)A+K,O).. To do this, we have
   '                    .tonly to check that the conditions of a eomplex valued Borel
function' f on ' GN to belong to the sapee of u(X,A,n) and the

                     'spaee of u(X'A+fi' O) are the same ( see section 3.2). '

                           ttIndeed, for (z',h)6Gx and (z,t)EGN , '

                  '
              f((z,,h)(z,t))

            == zJ[li;?ll:A(t)A-rE-Fffjff((z,t))

            = <zt,x> <h, n>A(t)M5'f((z,t))
            - L[.X;9Ag'(A.+n"')(t) A+f'r) t+h)f((z,t)).

                                               '                                          '             '                   'By seetion'  3.1, it is easy to see that u(K'Atfi'O) is

realized on L2(K'" ,/Hx) as the above foi?m. , -- [Q.E.D]
                                                        '
                                        '                                          '                               '                                                        '                                                      '      .t                                          '                                              '     Proof of Theo?em 4.l.3. In order to prove Theorem 4.1.3

we shall take four unitary operators Wl, W2, W3, and W4 in
order and transform the yepresentation space L2(g) to the
                                                        'suitable one. •'                                             '                                              '     In the fiyst place, we put (Wlg)(t) = A(t)g(t) fo]? g(t)(
L2 (•Ks• ) .

                                         '     Next, take a Borel cross section e from "K'/Hx to R.'

                                                 A.Then, by ehoosing suitable Haar measures of Hx and K/Hx, we
can define a unitary operator w2 from L2('K") to I,2(Hx) op

                                           '
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L2(X/Hx) satisfying, for h(Hx and xER/Hx,

               '
           (W2g)(h, x) = g(h + e(x))

for g(t)'(i! L2(Krv).

     '     Further, we denote by W3 a unitary operator FXI from
L2 (Hx)QL2(k"/Hx) to L2(fix)(g}L2(K"/Hx) where F is the Foux'ier

transformation from L2(llx) to L2(fix) and i is the identity

operato]? on L2(ft/H ).
                 X
     Let H'xL denote the annlhilator of Hx in 1(A Then, by

Pontrjiagln's duality, Hi x i•s isomorphic with X/Hi x . Via a
                                  'Bovel er)oss sectioR fi)om 2/Hi x to E(, we can define a Bo]f?el

         "v A iA         n (nEHx) from Hx to K. So, we ean define aextension
unita]?,y operator w4 on L2(fix)xL2(ff/Hx) by

           '
           '          (WLt g) (n, x) -- <e(x) , 'n" > g( n, x)

fo ]:• g( n,x) ({} ij2 ( fi x. ) & L2 ( 'K'V/Hx) .

     Now, we denote by W the ope?ator W4e W3o W2oWl, whiCh
is a unitavey operator from L2(X) to L2(H" x) op L2(K/Hx).

    , Aft er some eale u.1at ions , we get , fo r} T( n) (21p g(x) e I],2( fi )

                                                       X<g}L2 ( KN/Hx) ,

         wAA wF' ; T(n)eig(x)

                -----=> <fh,n>T(n)<Ebg(x)

and

           Xx         wrTr(.,k) w : T(n)<g)g(x) ,

               ) T( n) (ge <k, ?f >< z, x.x> `'DN'A(k, x) c(k x)

               = T( n)(Ep(u (( .X; ft s n) g) (x) ( si ee Le mma 4 .i .4) .

                                          '
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     it is ciear that {wxA wM sheHx} generates an
                             '                 'abelian  von Neumann algePraALoo(fix)eÅëL2("K"/tlx) WhiCh iS

                            . Hence, eorresponding to thisspatiaUy isomo]?phie with gT
                              '!!:;;l:x3:W,g$•i:•:2i!iEl11i,i•gi,l/i.,e:il2•ilml,.Eail•!i:•.9•ifSl:•i.e.aniZ'k•:•CH,g•i

             ... ..
                     '                           '                 ' '
               T}z,k) '?. g;l-x uEzX;Aksl) dv(n)'7 [Q•E•D•]

                   '                              tt                      '
     4•2• Properties of TX and u(X)A,n)

                '
     In this seetion, we investz'gate the properties of the
represe nt at ions TX and u( X' A' n) -of G•! N ys K. In chapter II,

we studied the cohomology grov-p of double transformation
                                                 Ngroups. For the double transfo"emation gvoup (Ks K3 Hx), we

denote the abelian group of all T-valued cocyeles of (K; R; Hx)

        Nby Z(K; K; Hx). A eocycle A is called a eoboundary if there
                       'exist an Hx-invariant cocyele E and K-invariant coeycle F

such that A(t)=E(t)F(t) for almost all tEX. The subgroup
                                                     '                            tv Nof all coboundaries in Z(K3 K; Hx) is denoted by B(K; K; Hx)
Then, we define the eohomoÅ}ogy group H(K; ' R; Hx), as the

                                                    'quotient group of Z(Ks R; Hx) by B(K; R; Hx). sinee the group

                   •Aof unitary characters of R, namaly tt, is considered,as a

                 'tvRubffroup of Z(Ks Ks Hx), we may make the factor group

g/(XAB(K; K"; Hx)), denoyed by Ho(K; 'K' ; Hx). We denote by
                                             '                   '                                                    '
                                           '                                                      '



H" (K3 R3 Hx) the ki-valued weak eohomology group of (K; R; Hx)

                                      A.which is defined by H(K3 R; Hx)/Ho(K; K; Hx). I"o]? the

detail, see ehapter II..

  , By Theorem 3.2.6 and Lemma 4.1.4, we get immediately

the fol]owing pveoposition.

                     '          '            '                                                   '                                   '• '  Proposition 4.2.1. If a cocyele A is not weakly cohomo-

logous to a eoeyele A', then, for any choiee of n and n' in
Ax , u(X'A'n) is nevey unitaruy equivaient to u(X,A')n').

                    '
     Thus, we seg that Theo?em 4.l.3. gives at least as many

completely different decompositions of "X as the elements of
H'" (Ks iLr; Hx). Note that. the abelian von Neumann algeb]?as aCA

ave mutually spatially isomorphie. [rhe emo. hasis may be put

on this faet, as this possibUity has neveri been pointed out

before.

                                                       (x,A,n)     In section 3.2, we studied the ivyedueibUity ofU .

                                                           '                                                 '
     Proposition 4.2.2. If K + H is dense in K"V, 'u(X,A,n)

(n('Hx) are i]:'reeducible yepreseRtations of G.

     "iherefore, we get the following proposition.

                                                   '                         '     Propositlon 4.2.3. If K + H is dense in i(, cTtA is a
maximal abelian subalgebra in TX(GX )' fo? eaeh AEZ(K; X; Hx).

                                           pv     When we take a unitary character 4 of K as a coeyele of
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(K; R3 Hx) and we consider the repyesentation u(X,C,O),

                   (X,4)simply denoted by. U. ., we see the following lemma by

Theo?em 3.2.6 and P?oposition 2.4.6. -
               '             '          '    '                               '  '                ' '                   '    ',, .hge[lil.Il2,"I.i'2; --'UilRi).i:fuyi`a"iiY 9, quiyaleht, t. u(}•ct)

                     '                                  '         '              '                                         '                     t tt tttt      tt                  '                                                   '                                '                                                      '                                         .t.                     '    . Note that u(X,n'") = u(X,O'n) 'foir n Gfix 'wher'Ei ftx)n-sb f'ff'K'N

                                                         '                        '           '            'is a Borel extension map. rpheR, Theovem 4.1.3 asserts that
                                                         '                                      tt ' ''rvXt Kill u(X'fi) dp('n) ' '. '' .'
               h di- --  .. .. JEx ' ''           '                                                       '                                         'by eonsideying the case that a cocycle A is trivial.
     Next, we define unitary repvesentations "T'X and T'N"X of G

=Nx' K as foUows.    s
             efx = ,K,e.. u(x)&) d.(G)

                     JK
            '       tt                            AA A                                         IN.where v is a Haar measure of K and K-)o -), 6 c"K is a Borel
                       t.                                           '                    '                                                  'extension map. •                            '                                  '                      '             rtr-X '.l g:. u(X,C) dy(o

        '              '                            "vwhere y is a Haar measute of K. '

                                  '                                                   '     pyoposition 4.2.5. TX , TNX, and ""'X are mutuaUy

quasi-equivaient. Therefore, TX(G)", T"X(G)t', and ff"X(G)" are

                                                'algebraieally isomorphic each other.

     Proof. This follows immedietely frorn Pyoposition 2.4,6
    '                                                   [Q.E.D]
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    We denote by Loo(KN/Hx) Å~orK a von Neumann algebra obtained

as a ei?ossed product of Lco(X/Hx) with K by the canonieal

aetion ct of K on Lco (R/Hx). Then, we have the following.

     Lemma 4.2.6. TNX(G)" is spatially isomorphlc with

Loo

ir.. .ill?MO![.){.-XiL;i.Ki)?exal]iii.l:IHoxn),L2(K) L2(K/Hx) a. f.ll....

                                    '
     '            f`t'X(.,k) : T(a) (2g> q(x) • '

                                                       '
              pt- ><k,a> T(a) oo <z, x.X>g(k.x)
                                                   '
fo]? (z,k) (E G. ]]ett w be a unita]?y operator FxI from L2(fl)(xF

L2(i{/}i-x) to L2(K)QL2('KV/Hx) where F is the Fouriey t]?ans-

formation from L2(ft) to L/ 2(K). [phen, by simpie eazcuiations,

we get, foxi p(s)f&g(x) EL2(K)ec],2('K"/Hx),

              W or>.,k) Wtc' : p(s) Qbg(x)

            , ."--> p(s+k)Q <z, x.X> F.(k•x).,
                                                    '
It is clear that the set of ipz : x --->(z, x•x>(zeN) generates
an abelian von Neumann algebra LOO(X/Hx) on L2(K/Hx). There-

fo?e, w'e see that W fiX(G)IAIee geneitf'ates Lco(K'"/Hx)Å~ocK. '

                                                 [QeE•D•]

    Lemma 4.2.7. If K+ Hx is dense in NK and KAHx = {O},
Loo (NK/Hx) xorK is a factor. Under these assumptions,

Loo(g/}{x) >(ctK is an injective type II faetor if and only if
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K+Hx .:.?E filli. . . ,
   ,.,.Proof. The assumptions that K + Hx is dense in E\ and

KAHx = {Ol.. means that the aetion o( of K on X/Hx is e?godie

and free. Then, it is clear that Loo(i(/Hx)XctK is a faetor -

under these assumptions [18]. Further, K + Hx = i( if and
                                   '                             NR"ly.lf,t:.e,?cgig".:,;f,f 2.n,E,l•:l,i:.krl:sl`lg2i,:2g"Ifore•

factor. Slnce the measure on g/Hx is K-invariant, Loo(i(/Hx)Å~ctK

must be a ,n  mjeetive yype ii factor (see [6] and [i8i&:E.D.]

                             '                '         '   '                      '                                               '                    '                                                        '
   , Combining Proposition 4.2.5 with Lemma 4.2.6 and Lemma

4.2.7, we get the foUowing theorern. •
                                              '
                     '       '                  '     Theorem 4.2.8. TX(G)" is algebraicaUy isomorphic
                    '                   '                       'with LOO('K"/Hx) xorK. If K + Hx is-dense in i( and KAHx = {O} ,

                                                   'TX is a factor yepresentation. under these assumptions, TTX

is an inJ'ective type U factor representation if and only if
           N

                    '                   '     Remark 4.2.9. We are 'inteyested ln the ease that K + H

is dense in ' K" and not equal to g. Under this situation,
u(X,A'n) is a no.n-Maekey irreducible ]?epresentation of G and TX

is a non-type I representation so that G is not a type I
                                           '                                              tvgroup. Moreover, we have got the result H(K; K; Hx) )
              AHo(K; fi; Hx)C- i</(KÅ}+ H` x) in Proposition 2.4.6. which is

                                                    Nstronger than the general result in [38] that H(K; K3 Hx) X

                                 tv rv{O}. In sorne cases, we know that H(Ks K; Hx) )Q whei?e Q is
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the set of rational numbers (see (a-4) and (b-4) in section

2.5)•

     Remark 4.2.10. By using Theorem 12.! in [30], we can
                              X                               . Let ab be the Borel mapget another deeomposition of T

     N IXvfrom K onto Orbg(X) in N, defined by yi(t) = t.X. Put
v(X't) = ind,G Ng(t) (teg). "ihen, it ls ciear that N'(X,`U)

v(X,t') if and oniy jf t'-t eK + H-x .'  T/ ake a Bor'el eyoss

section c fi?om N K/K to rK. ri=hen, !7,/K -)y- v(X,C('J)) is

measurable and it is seen that

             .,x ), (e v(x,e(y)) dv(y) ,
                - JNK/K
      1
where v is a Haar measure of K'V' /K. x-Å} KIA h'-x = {o], i•v(X,t) =

lndfiV(t) is Mackey irreducible rep-pesentation o!e G. If K + !ue:•x

is dense in g and K + Hxr-' fi, V(X't) (t('KV) are never, unitarily

eq-uivalLen.-t to u(X,A'n) .p/ or whateve]? A <f z(K3 i(3 Hx) anid nEf:)ix•

Wheni, wtnt oL'•$e:ovG these phenon.i..-.An,a f.iooi/nu tiln.e vi/ew• p, oi]i". o-P/

       bl/g:Roup C - aZ, gbera Gf G, it is ea:.sier/ tc unders-i and. X•Ve wilZ

:.hoTrv- it -"-:n the subsequent chapter.

     4.3. Applieations and examples

     Here, we considev the dÅ}scyete Mautner group and "vhe

Mautner group, both of which are non-regular semi-direet

produet groups and satisfy the eondition (-•) in seetion 4.l.

We denote the additive groups of complex numbers, real
        'numbers, rational numbers, and integers by Åë, R, Q, and Z,

respectively.
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     Example 4.3.l: the diserete Maut'ner group

         IV     Let G be the semi-direet product Åë xsR, where the
                                                'multiplications is defined by (z,t)(zt,t,) = (z+eitzi, t+tt)

                                      lvfor z, z'EC and t, ttER. This group G is the universal

covering group of 3-dimensional motion group and a regular

semi-di]f'eet px'oduct group. We take a closed subgr7oup G of
                                                'AlG, given by
              '                                   '              c- F {(z,n) E 2f3 zcÅë and nE Z}.

                      '                 'G = C XsZ-is tle diserete Mautner group.
     We take a unÅ}tary character Xr of C (rER- ), de-{i,n,ed

by < z, xr > = ,ei(r,Z) -{or ze c, where ( , ) me ans the

real inner p]?oduct in C. Tle stability gr'oup ftIr at Xr is

2TZ for all ]7 E R+. Put Go = C >( s2 TZ = Cx2 ri Z. [rhen, tt he

unitary representations ?vr(rE R+) and U(r''q'X) (]? eR+, q, 6Q

X([O,1)) are as follo-vvs.

 '
                          N               Tr'= c- IndGc-xr ,

               u(r,a-,A) . Indg (Aa-;xrxn>L) (see chapter I!I)

                                                           tt
-w''

here nX(XG[O, 1)) a]ee unita]r'y characte]r?s of .P-rrZ, defined

by nX(2 Trn) = e2 ntXn and Aq (q E Q) are coeyeles of (Z3R;2 T/ Z)

     'given in 2.5.6. We know in section 2.5 that Aq is wea-kly

cohomologous to Aq' if and onl•y if q = q'.

     Now, we get, by Theorern 4.l.3,

               .r) :\ (i i) u(r,q, A) dv( A) fo ]r' each qc Q,

where p is the Lebesgue measure of [O, l). Sinee Z+ 2TZ
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is dense in R, u(r'q'A) are irreduclble representations of G

by Theorem 3.2.6. If q f q', U(r'q'X) is never unitarily

equivalent to U(r'q''X') for any X, X'E[O, 1) by Proposition

4.2.l. Moreover, Tr(C-)" is aZgebraically isomorphic with

LOO(T)Å~ctz, so that ffr is an injective type Ill factor repre-

                                              'sentation by Theorem 4.2.8.

     Example 4.3.2: the Mautner group

     Let G denote the Mautney group w'hieh is the semi-direet
p.noduct group c2xsR with the multiplieaeion

       (z,w,t)(z',w',tr) = (z+eitz,, w-e2TTitwt, t+t,)

for z,z',w,w'E C and t,ttE R.

     Associated w-ith this G, we take a 6-di!riensional algebraic
solvable Lie group a- which is the sernl-direct product c•2xsR2

with t•he multiplieat•ion

     (z,w,u,v)(z!,wT,ui,v!) = (z+eiUz!, w+eiVw, u+uT, v+v,).

                                      AeG is rega]?ded as a closed subgroup of G by the imbedding

          G 5> (z,w".)---> (z,w,t, 2TLu)6 Z\.

     We take a unitary chayacter x(r'S) of c2 (r,sE RÅÄ),

de fined b v.

          <(z,w), x(r,S)> . ei(r,Z) ei(S,W)

for (z,w)E c2. The stability group H(r,S) of R2 at x(r,S)

is (2ffz)2 for' au r, sER+. put Go = c2xs(2Tz)2 = c2Å~(2i z)2.

Then the unitary representations rr(r,S) and u(r,S,q,X, co)
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(r,sER+, qEQ, X, co cR) are as foZlows.

               '                         N            T( if' ' S.) , S ,G Indg2 x(17,S)

                                 '           u(r,s,q,X,ee) = Indgo(Aq;x(r,S)Å~.n(X,tu))

                     '
                                'wher'e unitayy eha' i?a&;t•eys n.(A'to) of (2Tz)2 (A,co6B) are

                       tt                                          'defined by .'  .1. . . ..,'
                                      '                                '                                                    '                                           '                         '                 '                  tt          <(2Tm, 2Tn), n.(X,al)> = e2TiXM e2Ticon

                                       '                               '                                        '
for (2Tm, 2rrn) E(2TZ)2 and Aq (q EQ) are coeycles of
                                                     '(R, R2;(' 2Tz)2) eonstructed in seetion 2.s. we note that Aq

is weakly cohomologous to Aq' if and only if q=qi.

     Theorern 4.l.3 asserts that

          .(r,s) z Seio SII> u(r',s,q,x,u)) dy(x) du(,,)

               tt                                            '
for each qEQ, where v is the Lebesgue measure of the interval
[o, l]. since R + (2Tz)2 is dense in R2, identifying the

subgroup {(t, 2T/t)ER2; t(R} with & u(i',S,q,X,ee) are

irreducible reD. resentations oin G by "Å}heoyem 3.2.6. If q. f q',
u(r'S'q'X'co) are never unitarily equivaient to u(r'S,q''X',co')

 fo? arbit?ary ehoice of X,ee,M, and co'CR by Proposit]'on
4.2.1. Therefore, the above decomposition of T(r'S) means

that there are at least as many eompletely different irre-
dueible decompositions of T(r'S) as the elements of Q.

Moreover, T(r'S)(G)" is algebraieally isomorphic with

      'Lco(T2)x BR and so T(i?'S) is an injective type IIoo factor}

                                             'representation of G by Theorern 4.2.8.
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                                     X     Chapter V. Representations of C -erossed produets

                        '
     "Å}his chapter is devoted to study representations of

certain C -crossed products. In the previous chapters, we

Å}nvestigated decompositions of representations of some

non-Tegular semi-direct produet groups, related with a kind

of cohomology group. Xn this chapter, we extend those

Tesults from a view point of operator algebras and show that

the variety of decompositions of a non-type I representation

is conneeted not only with ergodie measures but also with

the cohomology group.

     Foy two elosed subgroups H and K of a locally eompaet

abelian group G, we get a Cee-erossed p?oduet A = Co(C-/H)X yK.

We investigate decompositions of a certain .nepresentation TO

of A. In section 5.1, we find abelian von Neumarm subalgebr•as
aLa and o)b in the eommutjng azgebra ffO(A)' assoeiated with

the automorphisms ora and Bb of TO(A)' whe-re a(z(K; G; H)

and bEz(HJ;6-; KÅ}). we utll have azso some necessary and

sufficient eonditi'ons of the m. aximality of oxa ana' 63b in TrO(A)'.

In section 5.2, we study deeompositions e-T" 7TO corresponding

to ata. To do Lvhis, we study generalized induced representations

    xof C -c-rossed products following to ehapter II]. In section

5.3, using the coneept of Heisenberg rep?esentations, we
write down decompositions o-e TO corresponding to the abovie

dla and asb in expzieit forms. In section s.4, we sbow some

examples and an application to unitary repyesentations of a

certain locaUy compact group.
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     5•l. Abelian subalgebras in "O(A)'

               tt tt     Let G be a ZocaUy eompact second eountable "abelian"
  '
   'group. For a elosed subg]7oup H of G, we ean eonsider two

von Neumann algebras 51<H) and (B(G/H) on the Hilbert spaee
L2(G) of au square summable measurable funetions with

respeet to a Haar measure of G. 6Z(H) is the von Neumann

algebra generated by {Uh ; he H} where U is the regu!ar

representation of G. (B(G/H) is the von Neumann aZgebra
generated by the multiplieation operators p(f) on L2(G)

defined by functions of Lco (G)H, the set of an H-invariant

essentially bounded measurable funetions of G.. •
     For a famUy of closed subgroups'{Hi ; ie r} of G, we

denOte by iYI Hi the closed subgroup of G generated by
tX.fl. ', ,Sivg.ar;;:,-g?r.g ga.:g' ;i g :i i.pam,gne.xi:gb. g:.

algeb-ra ge-nerat'  ed by i<g!777.i. Mi-he folÅ}owi.ng fact of lattice

cor] espondenee about pt(H) and 63(G/H) was obtained by M.

T/akesaki and N. Tatsuurna.

 '                      '
     Lemrp.a 5.Z.I. (Theo?em 4 in [53])

     If {Hi ; iEI} is a family of closed subgroups of G,

then

     (i) i>41iffz(Hi) -cj'<(i\!Hi)

     (ii) i?!eZ(Hi)=(5'Z(i?1 Hi) ' -•

     (i)' iNlgl(B(G/Hi) = (B(G/i?zHi)

            i?I(B(G/Hi) = (B(G/i\zHi)'     (io t
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     For two arbitrary closed subgroups H and K of G, we

denote by 77L(G/K, H) the von Neumann algebra generated by

5L(H) and as(G/K). Then, the following generalized commutation

                                               'relation holds.

     Le.mma 5.l.2. (r"i. Takesaki [52])

              r    '77rc(G/K, H) = 771c}(G/H, K).

                                             '
     We can generalize the ipesult of Lemima 5.l.l as follows.

  .. Proposition 5.l.3. Let {Hi s ieX} and {Ki .: ieX} be
                              --m m   'familÅ}es of elosed subg-w, oups o:•n G, then '

                             '     '
     (i) i>111f}?3••( G/Ki , ft i) = `?7Z( G/ i([liilKi , iV, THi )

                                    - --
     (ii) iAtiM( C-/Ki,Hi) = ilyTL(G/iXevfzKi,i?] ffi)

        '
     Pi?oof. [r/his f,oUows imm-edtately f?o.m L,emma 5.Ll

and Lerrana 5.l.2 btyT sirn.ple caleulations. [Q.E.D.]

     Corollary 5.1.4. Let H anai K be e]osed subg]f'oups of G.

T/ hen
    ,
     (i) g7Z(G/K, H) is a -{aetor ixn anTd only if KAH- = {O} and

K ÅÄ H is dense in G.
                               '
     (ii) (7Z(H) is a maximal abelian von Neumann subalgebra

in ?72)(G/K, H) if and only if K + H is dense in G.

     (iM) (B(G/K) is a rnaximal abelian von Neumann sub-

algebra in 772(G/K, H) if and onZy if KAH = {O}.

                                     '
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     Proof.

     (i) 77Z(G/K, H) is a factor.
                           r     seS==ii;)•IU?(G/K,H)A77Z(G/K,H) = ÅëL2(G)

                           '
     e 7yE( G/K,H)n 77t( G/H,K) = ÅëL2 (G)

     e ?IZ< G/H vK, HA K) = CL2 (G)

                    tt     eHVK = G and HAK= {O}.
                                     '      '     (ii) O't(H) is rnaximal abelian in 7re(G/K, H)

     <fL=i> O"t(H)'A Me(G/K,H) =61(H)

                                 '     e t77Z(G/G,H)'A77re(G/K,H) = M<G/G,}i[)

     e 7l.(G/H,G)A7fTe(C--/K,H) = iVt(G/G, H)

     <f!: l> ?T7.KG/HVK,H) = 772c(G/G,H)

     f=-iri> HVK = G
                           '      '     (iii) (B(G/K) is rnaximal abelian in 773d(G/K,H)

      ft d3(G/K)'A792:(G/K,H) = CZ3(G/K)

      e 'k'2(G/K, {O})'.A •X3•-(C-/K,H) =1271e(G/K,{O})

      <fl => 7?2(G/ {O} ,K) ,A Ci23( G/ -K, H. ) = "h,Z( G/ K, {o} )

      e ?,72L(G/K,KAH)=-cr.•(G/K,{O})

      e KAH- (O]F

    Foy two elosed subgroups H and K of G, we are
                      'irx the following case (ee).
                     '
     (ee) HAK= tO} and H+K is dense in G.

Unde-p the condition (ee), we see that 77}(G/K,H) is a

and that 5t(H) and (S(G/K) are maximal abelian von

subalgebras in 77Z(G/K,H). Moreover, under the

(X), we note that 77Z(G/K,H) is an injeetive type IX

and only if K + H f G. The next examples satisfy
     '          '
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conditlons.

                                                '         '
     Example 5.l.5. Let Z and R denote the additive groups

of integers and real numbers respectively and let e be a positive

irrationa! number.

     (i) G= R, H=eZ, and K= Z. , -
     (ii) G = R2, H = z2, and K = I( x, y) f R2 ; y -- ex}.

        7,o-r two elosed subgroups H and K of G, we get a

double transformation group (K.;G;H) as defined i.n sectlon 2.2.

Let T be the torus group of the cornplex nur,nbers w'lth absolute
                               'value l. When a T-valued Boif}eZ funetlon a(g) on G satisfies

the coeycle cond-ition;

                         '
          a(k + g + h) = a(k ÅÄ g) afE.ra(g. + h)

                                                       '
fo ]7 eae .h k e K, g E G, and h E; H, a(g) is ca]]ed a coe ;v' ele o:,n

(K; G; H) anutg the abelian gr•oup of all suc.h eoeyeles is

denoted by Z(K; C-3 H). A eoeycle al i•s sai,d to be cohomo-

logous to a coezJ-nvle a2 if ther?e exist a K-invariant eoeyeLe

el and an H-invayiant eocycle e2 such that al(g)E[:2-CE;5-
.

= el(g)e2(g) for almost all gEG. iv"urtvhe]?, al, is said to be

w-eallsv+  eohorrilologous to a2 if• ala2 is cohomologous to some

unitary cha-racter o:,n G. We denote by H(Ks G; H) the cohomo-

log.v group of aU cohomologous classes of cocv. cles of (K;G3H)

      Nand by H(K3 G; H) the factor group of all weakly cohornologous

classes of such cocycles.

     For a cocycLe a in Z( K3 G; H), we define an operator p(a)
on L2(' G) by

          (p(a)g)(g) = a(g)g(g) for g(g)eL2(G).

                         -97-



For a bounded operator s on L2(G), we put

                       '           '  '
          cta(s) = p(a)KSp(a)•

Then, cta is an automorphism of the fuU operato-p algebra

6e(.T2(G)).. For an operator p(f) of cZg(G/K), we ge`u

                   '                                        '       - cta(p(f)) = p(a)eep(f)p(a) '

                  = p(E f a)

                  = p(f).

                                               '           '                                  'Thus aa leaves eaeh operator of (B(G/K) invariant and cta((B(G/K))

     Ne xt, we show cta(O'L( H)) C "nee( G/K,H). Let LTh (h E H) be a

gener?aeor of gÅé(H). Then, ora(uh)ed3(G/H)'  and cta(uh)66z(K)'.

    '                                                     '                                                          'Xndeed, on the one hand, for an operator p(f)E(13(G/H) and

                              '
                                              '                                             '                                            '          (cta(uh)p(f)g)(g) '
          = (p(a)eeUhp(a)p(f)g)(g)

          = 5r<-fi.;5-a(g + h)f(g + h)g(g + h)

          = f(g)Er(lgTa(g + h)g(g + h)

         '          = (p(f)p(a)be'Uhp(a)g)(g)

          = (p(f)ora(uh)g)(g).

On the othey hand, for a generator Uk (kGK) of 5Z(K) and an
arbitr'ary g(g) EL2(G),

          (Ukct a(Uh)C )(g)

          = rmg a(g+k+h)C(g+k+h)
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          = E;rig5:a(g + h)g(g + k + h)

          . (cta(Uh)Ukg)(g)'

Therefore, we get

          cta(Uh) E 43(G/H) 'A {J"(.(K) '

                                 T                  - ((B(G/F)V 6"L(K))

                           1                  - 771t(G/H,K)

                  = ln3e(G/K,H).

Henee, (xa(e7L(H-))C77Z(G/K, H). We see now 71}(G/K,H) is cta-

invariant and so asa gives an automorphism of raC-/K,H).

     No w, we def-i ne an aut omo .pphism Bb o f, ML( c- /K,H) fo -r

bEz(HJ'3 a; Ki) as fonows, where a is the dual g-pov.p o:/" G

and y7L and KJ' ar,ethe annii"inators of E• and K in a. T•ake

the i?oux'ier transf,orrn..ati,on F frorrt L/ 2(c-) onto L•2(a-) an,d, f•, oy

a bounded operato]r s on I2(G), put

          g,'(s) = --i,•oso-tr•-, .

                                          'T/hen, F" (s) i,s a boundei operae.o:e on L/ 2(e). T•hrdugh t- h•i/ :. [},(/',

g7.( H) [t s t .i-eans fo y,med ont o (B( 6F/ A'• 'L ) and d3( G/K ) is f. r'anic -fo r' inii.ed

onto Ctrlt(KS) so that n(G/K,H) is t.pansfor,n,i.ed onvo ?77:(6/H-L,K-!-).

Lg.i• rn..i L• arlLy as ir:.v tne case cta, a coezv'e]e b i.n, z(ft'+'L; 6 ; KÅ})

gi,ves rise to ap- automorphism gb of ?7z(a/ltrt K'L) which ieaves

each op.erator of as(6/HÅ}i) invariant. put

          Bb . ",..,-1. gb. 'F".
                   '
                     '
MÅ}hen, Bb is an automorphism of 7?2(G/K,H) whieh leaves each

operator of (R(H) invariant. Then we get the following theorem.
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     Theorem 5.1.6. For a eocycle a in Z(K; G; H), cta is

an automorphism of M(G/K, H) which leaves each operator of
(B(G/K) invariant. A coeycle b in z(H'L; a s KJ-) also gives

      'rise to an auto!norphism Bb of 7TZ(G/K, H) whieh leaves each

                                           '        'operator of 6Z(H) invariant. The covrespondences a=>ora

      ttand b ') Bb a-Te isomoTphisms from z(K; G; H) and z(HL; 6 ; KX)

into Aut 772(G/K,N) of all automorphisms of 7re(C-/K,H) and

satisfy ctaoBb . Bbocta.

 ' p]eoof. The latter I5roperties about cta'and Bb fonow

                                   '              '                                       'immediately from their definitions. [Q.E.D.]
                   '              '                                 '                                                       '
                '                                                         '                                 '                                      '                                   '                                                           '     put crLa = ora(sz(H)) and cgb = Bb(dB(G/K)) for the automor-

           '                                'phisms cta an,d Bb (aEz(K:. G3 H)) and bez(H'L; G- ; K'L)) of

7rL(G/K, H). Then, we get abelian von Neumann subalgebras "
7tLa(Bg"tdfekb:?.?7E(G/K,H) and if ai ; a2, (bz .4 b2), .rfi .` aa2

                                 '                         '

                                                  '     Corollary 5.l.7. If K + H is dense in C-, eaeh di (a6

Z(K3 G; H)) is a rnaxirp-al abeZian s'ubalgebra in nZ(G/K,H-).

                              iAxf KAti' = {o}, eaeh EBP (bez(H ; G ;.K`)) is a maximal

                                       '                                               ttabelian subalgebra in 77}(G/K,H).

     Proof. nÅ}his follows ircimediately from Coro]lary 5.l.4

                            'and Theorem 5.2.6. • [Q.E.D.]                           '

     For a loealZy corripact abelian group G, take and fix two

cZosed subgroups H and K of G. Let Co(G/H) denote the

abelian Cee-algebra of all continuous functions on the Zoeally

compaet homogeneous space G/H vanishing at infinity. Then,
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the canonicai aetion of K on G/H induces an action o# K on

the CX-algebra Co(G/H) as automorphisms and we denote such

an action by y. From the CX-dynamieal system (Co(G/H),K,y),

we get the CX-crossed produet Co(G/H)XyK (see [40]) which we

will denote by A(G/H,K) or abb]?eviatedZy by A, hereafter.
     Let pO be a representation of co(G/H) on L2(G) defined by

          (pO(f)g)(g) . f(g)g(g)

fo]? fGCo(G/H) and gEL2(G), where Gbg --->Eg EG/H is the

eanonieal pyojeetion. Next, we define a unitar}y represen-
tation UO of K on I,2(G) by

                  '          (u2g)(g) = g(g + k)

for k K.
                                                          '     When, it is elear that (pO, UO) is a convariant repre-

                  ee -sentation of the C -dynamical systern (Co(G/h'), K, y). We
denote by TO the representation of the Cee-algebra A natur'ally

defined from this eonvariant representation (pO, UO) [u].

Then, we get the following.

     Proposition 5.I.8.

     (i) TO(A)" = M(G/K,H) and 7TO(A)" = Z<el(G/H,K)

                                      '
     (ii) Under the condition (ee), TO is a facto]? represen-

tation of A and there exist maximal abelian subalgebras eta
                                             'and d3b in TO(A)' parametrized by acz(K;G;H) and bGz(H`;6;k-L).

                             '     (iii) crta are spatially isomoi?phic with each other and

                              co Aalgebraieally isornorphie with L (H , V), where Y is a Haar
rneasure of fi. 43b are spatiauy isomorphic with each other
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and algebraieally isomorphic with Lco(G/K, v), where v is a

Haar measure of the faetor group G/K.

                                                 '                   . ..
•. Due to Proposition 5.l.8, we know that under the

go:s• ;g.i:",;lg,;h.i g2p:. ;;g",tz:. s' :g g.O,;g,,".i' g,s. g.egm2g;;g,lnto'

                                                         'ponding to eaeh maximal abelian subalgebra Ota and (fiP in

TO(A)'. In section 5.2, we shaU describe deeompositions of

T( corresponding to ata. Xn seetion 5. 3, we shall give an

explicit form of the ir]?educible representations of A which

taPoPecRtpr
a#g tjlgiliPOnentS Of decompos:tions of TO corresponding

      '
         '
                             o     5•2. Decompositions of 7T

                                '
     !n this section, we study generalized indueed represen--
tations of Cee-crossed products following to chapter !II, in

order to state decompositions of TO.. The results described

here were obtained by suggestions of T. Kajiwara [27].

     Let G be a loeally eompaet seeond countabZe abelian '

group and (B, G, ct) be a Cee--dynandeaZ system. We take two
closed subgroups K and H of G and denote by ctK and orH of

the autoinorphism ct eonsidered foT the elements of K and H.
     Let (x, v) be a convariant representation on "5) of the

cee-dynamicaz system (B, H, ctH). put 8= X(B)'Av(H)' and

we denote by eU the unitary group of e). Let a(g) be a eU-
                                                          'valued eocyele of the double transformation group (K; G; H).

The definition of cocycles and the cohomologous relation ,

  '
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among them are quite similar to that we have. given for T-

vaZued ease. For the preeise definition, see chapter rl.

We define a cova?iant representation of the Cce-dynamical
system (B, K, ctK) starting from (x, v) and a(g). This

definition is analogous to the group case described in

chapter ZU.
     We denote by g the set of all g's satisfying the

following conditions.

     (1) g is an 't}o-valued BoreZ function on G

     (2) g(g + h) = VftC(g) for every geG and heH.

     (3) gG/H llg(g) ll 2dv(g)<co where v is a Haar measure

of the Åíactor group G/H. ,
     Then, s{} has a Hubert sp5'ee strueture with the norm '

         Iil glli = (,Sl,/H il g(g) jt2 dv([; )) i/? ' ' ,

    For eaeh kE!K, we define an operatoy Uk on S by

          (Ukg)(g) = a(g)a(g + k)Xg(g + k)

for each gES and gEG. By the faet that

      (UkC)(g + h) = a(g + h)a(g + k + h)ceg(g + k + h)

                  = a(g)a(g + k)ceVAg(g + k)

                  " VAa(g)a(g + k)eeg(g + k)

                  - ves(ukg)(g)
                                                         '
foi? eve]?y CEg and hEH, Ukg belongs to tiS. It is cle. ar that

                        - I03 -



Uk is a unitary operator on g. Next, for each yEB, we

define  an operator P(y) on a by - . . ,-' .

, , (p(y)g)(g)=x(ctg(y))g(g) '  . '''  .•
                                        'f6r egeh gf'IZ. and geG. By the fact that ,, ''

,, -. ',.

  ,. (p(y)g)(g + h) = X(ctg+h(y))g(g + h) . ,'1
''  ,, '  , .. =VheeA(ctg(y)) VhVfte;(g) .,•' ,
   ' .. ,, '. , 1' , . .= ves (p(y)g)(g) . .,' i
                                          '                                                     '                                tt                                               t.Igr.e,"e.:X,g,eg.,g:g,&E H.A giy)g beiongs,toS. 'ciea.i,, ,(,)

                                                         1
l.,,.XrgXOZig;'O:.g'g:s,.gX,agl g;.2.io?ga,r:ng.egp'esen- .

a.d sl.ll;Oief'ea:lllliatfOig:gTIS immedZateiY bY ]?outzne arglt::enEt.g.]

                                                         '                          '                                                     '                                  '
                                  '
i.,..g2i!.Xeg;I.gx:tCg;.ig.2,g,elg:aÅ}t':gi.Ign,xf,E2i?sa:i's

denote the above (p, U) by Indll'(a; X,V). When K = G and a

is trivial, IndE (a; X, v) eoincides with the ordinary

induced representation rndfi (X, V).

     Remark 5.2.2. 0ur const?uction is closely related to

Ramsay's indueed representation [44] but in some cases ours

affords finer informations.

                    '                      '                                            '
 ,. We shall develop some generaZ theory of these

                                                 'rep3?esent at ions .
                                         '
                                   '            '
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     Lemma 5.2.3. For two cocycles al and a2 of (K; G; H),
if al is eohomolpgous to a2, XndE(al; X, V) g Indff(a2; x, V).

- Pyoof. This foUows immediately fyorn the definition.
                                                    [Q.E.D]

     Let Hl and H2 be two cZosed subgroups of H such that

HzCH2. We assume henceforth that cocycles of (K; G; H) are

aU T-valued. [Vake a T-valued cocycle a, then vge can regard
                                         'ghlg.g.ig.2 ;gg;gl2.:.f,i.k gi is] gl,".iii,i'',.gxt x2'gl,be

the following stage theorem.

     Proposition 5.2.4. (Stage Theorern) '
     indEi(a; A , V) :'L= rndE2(a; ind:i(A, V))•

     Proof. The proof is carried out by an analogy of the

proof of the stage theorem about oydinary indueed represen--

tations by G.W. Mackey (Theorem 4.l in [30]). We omit the

               '

                                              '
     Remark 5.2.5. This is not the sarne with the stage

theorem of A. Rarnsay [44], because H, Hl, and H2 are not

neeessarily subobjeets of K.

     '
               '
     Next, we shall deseribe the subgroup theorem• Let Kl

be a closed subgroup of K. IATe denote by Gz the closed

subgroup generated by Kl + H in G. A T-valued cocycle a of

(K; G; H) ean be regarded as a cocycle of (Kl; Gl; H) by the

restriction to Gl. Let (A, V) be a cova]?iant ]?ep]?esentation
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of (B, H, ctH). [ehere exists a canonicaz action of G on

Z(Kl; Gl; H) of aU T-valued cocycles of (Kl; Gl; H) and on

:nYd l::r::,g;':g:,;,f''B,go.".::i,l.rz..Gig .

Let G/Gl D t r--> tE'  e G be a Borel cross section from G/Glto G

and v  be  a Haar measure of G/Gl• Then, we get the fOZIOWinFr

     Proposition 5.2.6. (Subgroup Theoi?em)

    (B,Ki,orKi) indE(a;x,v) =rv gSl/GiindHKi(e.a;1;eA,v)dv(t) ,

5...,Pg?OS,'. gCtg.gtjO,gO.i.Z2.WS.?y,t:e :gglg;c2xz2gg,:.g.:;.,

                    '
  . Let a be a cocycle of (K; Gs H) again. Suppose that a
ggVafrol2gl:sfepresentation (X, v) of (B, H, ctH) is deeomposed

       •. (x, v) 2. g9(xcs vg) d.(g) • •

on some measure space (Z,V ). Then, we have the following

proposition by routine arguments.

                        tt t
. Proposition 5.2.7. The field {zx --> IndE(a;'x4, vC)
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is V-rneasurable and
   '     ' indHK(a; x, v) 2 g9indE(a; xC, v4) dv(c).

                                          '                                                       '                             '                                        '
     Now, we shall eonsider the decompositions of the ]?epre-
sentation TO ' given in seetion 5.l. For a locally eompact

second eountable abelian group G, take and fix two closed

subgroups H and K of G. RecalZ that we have denoted by A

the C -crossed product Co(G/H)xy K for the C -dynamieal

system (Co(G/H), K, Y).

     Let (i, I) be the eovariant representation of the Cee-
dynamical system (co(G/H), H, yH) given by i(f) = f(o),

1(h) = 1 , foy every f in Co(G/H) and every h in H. For ae
Z(K; G; H), We get the covariant representation (Pa, ua) of

(Co(G/H), K,y ) by

          (pa, ua) = ind5o}(a; i, i)

where we regarded a as a eoeycZe of (K; G; {O}). rt is

cleave that all cocycles of (K3 G; {O}) are eohomologous to

the trivial one. Therefore, by Lemma 5.2.3, we see that
                '
          (pa, ua) 2. (pO, uO)

for all a (; Z(K; G; H), here the superseript O stands for

the 'trivial coeycle. These eovariant representations define
the class of yepresentations of TrO of A which was just

defined in seetion 5.l.
                                                          '
     Let (i, 4 ) be the one-dimensional covariant represen-
tation of (co(G/H)? H, "I)'where gis in Ci (the dual g?oup

of H). For a G Z(K; G; H), we have a covariant representaion
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[p,[a.; ,`l: ,u[:l[ll g.i::iga;,8'.?,;i,gfi2.`S/,gA'. 5s,I]'.:hXS,,,,.

,e ,.F 2ro,X,f gggg.i.g6g);..Wg.2SV,g.ggY,Yhe,g8erz'z: guR2g.gebra

:tiallii]I'ilii./l'i...?''11,fi1'I'I.,l.lli.li.:iliZ.ilZgitlOg:e]7]eSit,]h.e.i,Oil:!::g

   ' Proof. We consider the covariant representations (pO,'uO)

.an
(g,i)P( ;g,2s.:i.e8ill.pf (Co(G/H), K, y) which defined Tp a.d,

                                                      '   '             .(p o, uO) ' ' ' '
                                                 '         '

             = i n d K{o }( a ; i , ! ) ,

    ' ' g..--- l:gl[Zl gie,n.Hli?}c( )i'dpi)( )c)) by pfoposition s.2.4,

            c. g:zndHK(a;z,4) du(c) 'by proposition s.2.7

                                              tt             = g9(p (a,c), u(a,c )) du (4 ). '

Henee we get

          .o i.. giil ,s[a,il;) dp(c) . ,

It is not difficult to verify that the subalgebra di is
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transformed to OIKH) by the unitary operator which gives the
unitary equivalence between (pO, UO) and (pa, ua) so that

OZ(H) becomes the diagonal algebra of the decornposition.

                                                    [Q.E.D.]

                                  '
     Now, we shall describe the properties of the family of
                                    '{ TS a, g); a E z(Ks G; H) and gE AH }. we note that a unit ary

character of G is a cocycle of (K; G; H). Let g denote a

character which extends C to G.

     Pi?oposition 5.2.9. The representations T(a'C)(aeZ(KsG;H)

and 4Eff) of A have the following pi?operties.

                                              Iv   (i) T(a' g) is unita]r;ily equivalent to 'Tr(a+4,O).

   (ii) T(a'O) is unitarily equivalent to vr(a''O) if and

only if a is eohomologous to a'.

   (iii) If a eocycle a is not weakly cohomologous to a
cocyele a', T(a'C) is never unita]r7ily equiva!ent to T(a',g')

                              Afor ai?bityayy choice of C, C'EH.
          (a ,C )   (iv) g                is irredueible if and onZy if H + K is dense

            '     Proof. The proof goes on by a modification of the
                                                          'techniques described Å}n seetion 3.2. So we omit the detail.
                               '                                                    [Q.E.D.]

     We see that the representation TO of A has been deeom-

posed into a direct integral of T(a'ag) in as many ways as

                                                Nthe ca]pdinal number of the weak cohomology group H(K; G; H).

We note that this faet does not depend on whether the repre-

                         - 109 -



                                                           'sentation TO is type X or not. When TO is a factor represen-

                                                 'tation of A, ali "(a' O are irreducible representations of

                                        '                            'A (see Corollary 5.l.4). . ' -
                                                   '                                                   '                       '                         '                                             '                                                        o     5•3. Further' discussions on the deeomposition ofx . ,

     IAIe denote by Rep G the set of all unitary representations
                                         'of a locally compact group G and by Rep A the set of aZl
non--degenerate X-representations of a Cee-algebra A. ,•

 • .Suppose G be a locaUy compact second eountabZe abelian
g::IPyo'.pLgi lihged.aa:ZgSe.df gybgroup of G and H' be a clo,ed

                                                  '                                                           t..
   . Definition 5.3.l If a unitary representation U of K on

                                     t 1.'g} and a unitary representation V of H on the same spaee

are so related that the Heisenberg commutation relation

                                                  '          UkVw,= <k,to> Vc,,Uk '
     'holds for each keK and eeeH' , we caU the pair (V, U) a
                                    t/t                               tHeisenberg representation of (H , K). We denote by
H-Rep(H' , K) the set of all Heisenberg representatiQns of
(H' , K). For two Heisenberg representations (vl, ul) and

(v2, u2) of (H' , K), we say that (vl, ul) is unitarily

equivaient to (v2, u2) if there exists a unitary operator w

from the representation space of (vi, ui) to the space of

(v2, u2) such that v2 = w vi wce and u2 -- w ui wX.

     Take and fix two elosed subgroups H and K of G. We
               xconstruct the C -dynamieal system (Co(G/H), K,y) and the
 ee
C -algebra A = Co(G/H) XyK, 'as before. '
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                                     A ee     Let HL be the annihilator of H in G and C (HJ-) be the

       XLgroup C -algebra of H. Then, it is weU--known that the!?e
is a bijective correspondenee V.V fTom Rep HL to Rep cee(H`)

sueh that

         V(f) = Srf-f(oo)V( al) dv(co)

for f e Li(H'" , v) where v is a Haar measure of H'L po].
    'Sinee we ean regard the dual of H'L as G/H by pontryagin''s

duality, we see that CX(HL)2Co(G/H) by the Gelfand trans-

formation. Hence we get a bijectionÅës v --> Åë(v) Åíyorn Rep H'"

to Rep Co(G/H). For a Heisenberg yepresentation (V, U) of
(Hi, K), (Åë(V), U) beeomes a eovariant representation of

                                                  ..(do(G/H), K,y ). It is clear that the correspondenee''(v, u) "
                                                           '(Åë(V), U) is bijeetive fi7om H--Rep(Hi, K) to C-Rep(Co(G/H),K,y)

of all covariant representations of (Co(G/H),K,y). Further,

we know that there exists a eanonical correspondence between
C-Rep(Co(G/H), K, y) and Rep A [40]. Then,' we get the

fo!lowlng lemma.

     Lemma 5.3.2. [Vhere is a bijective correspondence
(v, u) --.--> T(V'U) from H-Rep(H-L, K) to Rep A sueh that (Åë (V),TJ)

is the covariant representation of (Co(G/H), K, y) which
defines rr(V'U). [vhe eorrespondence (v, u)--"> T(V'U) is a

one to one map from the set of equivalence classes of
                                                       '                                   'H--Rep(Hj-,K) onto the set of equivalence classes of Rep A.
         '

    We shall say that a Heisenberg representation (V, U) of
           '(H-L, K) is associated with a representation x of A if T(VsU)
            '

                         - lll -



is unitarily equivalent to T.
    '

     ExampZe 5•3•3•
                                                  '                   '                                                   '     (i) A Heisenberg representation (vO, uO) of (H`, K)

associated with the representation iP of A described in

                                                tttsection 5.Z and 5.2 is given as folZows. , '
                    '                                                      '                                                    '                                          '    '                                        '                                                      '• :Epor c(g)eL2(G), - •', ,,' '  .'
                                                '      t. t ttt tt t ..••
 ..'(vO g?(g) F <g, co> g(g) fo]r' each cx)eH-L

and
     '             '                  '                               '     (U8 c)(g) = g(g + k ) for each ke K.
             ttt t             ttt tt
 '-• (ii) The •fol!owing Heisenberg representation (<>O, "uO) of

                         ' (Hi, K) is also associated with the same representation TO.
                                                             tJ                                                       '            '                                       '                                          '       '                                             '     F o r n ( x) e L2 ( GiX) , . .
                                                    '                            t tt t                      '                                tt     (<>g n)(x) = n(x+es ) ' for eateh as6H`
                                  '

and

     ("u kO n)(x) =<k, x> n( x) for eaeh k e K.

         '                   '                             '       '                  '                           '                                                 a     In seetion 5.1, we found abelian subalgebras dr
(aeZ(K; G; H)) and 63b (b6z(H`; a; K;")) in orO(A)'. xn section

                                                  '       '5.2, we got the deeomposition of TO corresponding to Ota as

         T,O )- glllllT (• a,c) dy(c). '

             ' T(a,g ) in hel?e was defined as a covariant ]?epresentation

          ( p( a ,4 ), Ou(a,C )) = zndE(a;,i, g )•
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     Now we will give an explicit form for this component
                               '                          '                                                    tvrepresentation using Heisenberg representations. Let C be a

character of G which is an extension of 4 . [rhe canonical

action of K on the space G/H is denoted by G/H )x-k•xEG/H

for each k E K. For a cocycle a(g) of (K; G; H), we have a
                                              'cocycle ca(k, x) of (K; G/H) by '

          ca(k,g)=a(g)rmg

for every k EK and gE G.

     Proposition 5.3.4. The Heisenberg rep3?esentatlon
(v(a,C), u(a,C)) of (H-L, K) associated with K(a'g) for a(i
      '                  AZ(K; G; H) and 'cEH is given as follows.

     For g(x) e L2(G/H),

     (v.( as ag )g )(x) = <x, .> g (x) for each co e H-L

and

     (uÅía,C)g)(x) = <k,g> ea(k, x)g(k•x) .for each k6 K.

     proof. Let g(a'4) be the representation spaee of the

covariant rep]?esentation (p(a'g), Ou(a'C)) which defines

T(a,g). nÅ}hen, for each q(S(a'g), 1;g becomes H-invariant

and square summable on G/H. [Vherfore, the correspondence
g ----) Zg defines a unitary operator w from S(a'g) onto

L2 (G/H). By simple calculations it is easy to cheek that•

         wp(a,c)wX . Åë(v(a,C))

and

                         - ll3 -



         w Ou(a)C )wee . u(a,C ). , ' [Q.E.D]
                     '                                                         '
                                                          '                   tt t                                         tt     Next, we wilZ see the decor4position of rrO eorresponding

to (Bb.' I,et G/K ) z--->E E!G be a Borbl cross section. we

denote the eanonical action of H-L on the space a/Ki by •

g$•ZOeFa:•iZ,iyl'lil,gi•ize[ao,c?,e,llljllenc,Rgc,ygleb.(i.,),,of.(,ii,s,e;Ki)

                                    tt                                                       'fgr al! as EHTL r and .xe'e.,Then, we get the following'theorem.

                     '                                 '                       '                                             '                                  '     Theoyem 5.3.5. Corresponding to each of the abelian
subalgeb]pas (Bb in TO(A)' (b e z(H'L; 6; K'L)), the represen- ..

tation TO ofA is decomposed as follows. . '

        TO-."- S9/KA.(b,z) d.(.),

                            '                                'where v is a Haar measure of the faetor group G/K and the
Heisenberg repr)esentations (vAT(b,Z), G(b,Z)) of (H-L, K)

associated with the above R(b'Z) (z e G/K) are given

for n( u) 6 L2(a/ K'L) by . ' ,
                        '                                     '  '          (<> [5b 'Z) n )( u) = < 2, al > db (ee, o )n (co .g ) for eaeh ed eH"-

                                  '
                 '          (GÅíb,Z) n)(u) = <k, cr>n (a ) for each k 6 K•

                                      '                                                           '     Proof. Note that the Heisenberg representation (VO, uO)

associated with rO in (i) of Example 5.3.3 was decomposed

into a di]?ect integr7al of the Heisenberg representations as

was shown in Proposition 5.3.4 corresponding to di. If we

                              '
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go over to the dual a of G and take the Heisenberg ]?epresen-

tation (<>O, "uO) in (ii) of Example 5.3.3 instead of (VO, UO),

the desired assertions are immediately obtaÅ}ned. [Q.E.D.]

                                                             '                                            '     Now, we shau describe the properties of AT(b,Z). we

note that we ean ?egard an element of G as a eocyele of

(H ; Gs K ) by the fact that G '-V.-- G as locally corripact groups.

     Propositlon 5.3.6. The representations ?(b,Z) of A •

(b E z(}rL3 G; Ki) and z e G/K) have the following properties.

     (v "n(b,Z) 2 CT<b+IZ,O), wheye G/K E) z->cr {F G is a

BOrei (i. I.]?SSklibeC,toilOli.g unita"uy equivaient to ,trr>(b',o")'if and t' I

only if b is cohomologous to b'.

     (iii) Suppose a cocycle b is not weakly eohomologeus to
a coeyc!e br. [ehen, 4T<b'Z) is never' unitarily equivalent to

n(b',Z') fo-r arbz'trary ehoice of z and z' (! G/K•

     (iv) "g(b,Z) is irredueible if and only if KA H "{Og•

     Px'oof• firake the Heisenbe]eg rep]?esentations (v"(b,Z), Au(b,Z))

assoeiated w-ith Aas(b' Z) and compare them with (v(a,g), u(a)4))

in P?oposition 5.3.4. Then, we see that the formey beeomes
                                       Athe latter' if we exchange tkie -role of G and G. Hence, the
above statements about 'i>(b'Z) are immediate from the properties

of T(a'4) and the duality of G. [Q•E.D]

     Thus, we see that Theorem 5.3.5 gives as many eompleteZy
different decompositiQns of TO as the cardinal number of
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f\(H`; G; KS). .However, it is difficult to find a general

relation between the' family of T(a'C) and the farnily of

                        'R(b,Z). In some concrete cases, we can show that aimost'all
    '                  '"T(b'Z) are not unitaruy equivaient to any u(a'g).' This

        '      '                              '                  '                                                         'will be notieed in the later part of this chapter.'•
                                '                                                        '     When TO is a non--type I facto]r' repi?esentation of A,,TO

           '                           'must be an injective type ZX factor representation. In
                                                        '                                                    'this case, by CorolZary 5.l.4, H + K is not equal to G but ,
is dense in G and HAK= {O).'Therefore, aU T(a'C) and
AT(b?Z) are ' irreducible kepresentations. MoreoveT, it will

be sieen easily that T(O'g) (resp. t}(O'Z)) are neve]r unitarily

                                                  'equivalent to any AiSb,Z) (resp. T(a,4)).

                                            '     when TO is a type z factor representation, all T(a,C)

                              'and AT(b,Z) •'are still irreducible representations but in

this case H(K; G; H) = {o} and H(Ht; "G; K`) = {ok as we b.ave
                                                  '                        tt                                                         '                 'seen in chapter IZ. Therefore, it is no tr'ouble to verify
                                           '                     ttthat all eomponent representations are unitarily equivaZent
and that the deeompositions of TO as given in Theorem 5.2.8

                                        'and Theorem 5.3.5 beeome aU same. . '
     When TO is a type r but not faetor represenation, H + K

is not dense or H A K = {O}. In the first case, none of
 (a,g)T are irreducible representations and in the second
ease, none of "T(b'Z) are ir]?educible• fi(K;G;H) and

fi(rii; AG; KL) rnay or may not be trivial• ' '

                    '

     Rernark 5.3.7. When a cocycle b of (HL; a; KL) is the

triviaZ one, the assertion of Theorem 5.3.5 coincides with

the result obtained by applyipg the subgroup theorem
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ieP]f70i.PnOe:ZtTio?n 5 2 6) tO the covanant representation which

     5.4. Applications and examples

     First we argue the decomposition of representations of

the pair of groups in Example 5.l.5. . ,
                                         '
     Example 5.4.l. rwhe case of G = R, H = eZ, and K = Z.
          x     The C -crossed product A = C(R/e Z)Å~ Z is the irrational
                                        Y
rotation algebra. Let XU (uS R) be unita]?y charaeters of

B defined by xU(t) -- e2TiUt for eaeh t (f R. Then, the dual

group !GN -- {xU; u E R} ean be identified with R as a loeally

compact abelian group. Through this Å}dentification we can
regard the annihilator K-L of K as Z and the annihilator Hi

of H as (1/e)Z.

     For p, q 6 Z, put

                           2          aP(t) = e(i"P/e)t for each t 6 R = G

and

                        2.          bq (u) . ei Te qU fo ]? each u eR = G•

Then, it is not diffieult to eheck that aP6Z(Ks G; H) and bq(f

z(H`; G3 Ki) Åíor every p and qeZ. Further, by similar

teehniques as in chapter II, we see that aP(resp. bq) is

weakly cohomologous to aP' (resp. bq' ) if and only if p = p,

i. ,.tte.Y..rrO s?:.th;hgfi?re,pSel.]t.ag.Z'gg.pO.f,gdO:.LkSl.:::.defined

                                       '                             '             '
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          .o i,;,, gl]i/e .(p.u) q. (pe z) a)

                                                  '
             ;E gli e( q,s) d, , (q E z) - • al)

                                         '      '                           '     (Z) The Heisenberg representations (v(P?U), u(P,U)) of

                                                '(Ht rK) = ((Z 6e)Z, Z) associated witl}. T,(P'U) arg given by,

for e(x)(L ([o, e)),.,.,. . . .. . . . .
                      '          (v,ÅíP,U)g)(x) = e2Ti"'Xg(x) fo]? each to e(1/e )Z

                                             '                   '                                                   '                          t tt             tt                                     '                        '                              '
                                              '                    '                                    '                                       '                                         '                               '      '                                     '                '      '( u,(nP?U)g ) (x) = e2T iUM e(2 TiP/ e) MX .("iP/ e) rn2g (x + In)

                                                  '                  '                         ttt        'fo]? each m 6 Z, where x = [x]+E([x]EeZ, x' [O,e]). '
 '     (II) The Heisenberg repTesentations of (<>(q', S), "u(q,

of (H"",K) = ((1/e)z,z) associated with F,(q' S) are given by,

for n(y) E L2([o, i)),

                                 '
     (<>8q,s)n)(y) . e2TriscD e2Tieqtuy eTriectcD2n(y + ,,)

                                       '                                       '
for each oo e(l/e)Z, and
                                      '                                             '                          '               '     (eliiq,S)n)(y) = e2TiMYn(y) for eaeh m ez.

                             '
      '
     By simple calculations, we can see the fol!owing faets.
Let xV (ve[O, e)) be unita]?y cha]?acters of (l/e)Z given by

<ed , xV> . e2T LV`D fo ]? os e( L/e)z.                                 Then,
                           '     (a) v(p,u) ;., S& xv dv.

                       '                      '     (b) e(o,s) at zexs+n .
                  n e-Z
     (c)' G(q}s) t-be tqi SS xv dv if q /, o,
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}ql appears here as the multiplicity of the representation.
     [Vherefore, we can concLude thae C>(q'S) is never' unitarily

equivalent to T(P'U) for eve?y p eZ, u E [O,l/e) and se[O, l)

if qftz• For q -- i or -l, we know that tF(q'S) is unitaruy

equivalent to T(a'U) for sorne aeZ(HsG;K) and ue[O,l/e).

Note that•TO is an injective type II                                     factor representation                                   l
of A and all T<P'U) and a(q'S) are ii?reClucible ]?epresenta-

tions of A.

     Exarnple s.4.2. The case of G = R2, H. = z2, and K =

                                               -1(x,y)eR2; y=ex}. '
    , In this ease, A = qo(G/H)xyK = C(T2)Å~6R where the

action 6 of B is defined by

     6(t).(x, y) = (x + t, y + et)

for teR and (x, y)E[o, ox[o, 1) ;.r T2.

                                                        '     Let x(U'V) (u, v ( R) be unitary characters of R2 given

by

     <(x, y), x(U,V)> . e2Ti(ux+vy)

for (x, y) E R2. Then, a=ix(U'V)s u, v (R} can be

indent""ied with R2 as a loeany compacu' group. whrough

this identifieation,

                             '     KÅ} = {(u, v) E R23 v k- -( l/ e)u } 2; R

     H` = {(u, v) e R2; u, vE z}.""- z2.

     For p and q e Z, put
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          aP((x, y)) . .-Tip(ey-5g)2

                         'fo ]? (x, y)ER2 whe r,e o .< E < z, and

                        '                     '         bq( (x, y) ) . e-T iq(e y+si )2

   '            '          '                                                'for ' (x, y)6R2. Then, it is no trouble to verify that aPe
            'z(K; G; H)' and b.9 (f z(Hi: "d; K-t) f6T evbry b 'and q c z.

                                     '     Let TO be the rep]?esentation of A as defined in section

5.1. Then, TO is deeomposed as follows. '
                      '    .osg:glle ..(p,u,v) dud. , (x)

                            '       r- S.e.co AEq,S) ds ' . ai)'

                                           tt                              'The diagonal algebra of the decoftiposition (Z) is' OZaP and

                                                           ".the diagonai aig6bra of (u) is asbq. •
 ' (I) The HeÅ}senberg representation (v(P,U,V), u(P,U,V))

                                 'of (HJ',K) = (z2, R) associated with T(P'U'V) is given as

                                         '                                                    '                 'folZows.

     i?or g(x, y)e"T2([o, i)Å~[o, i))?

                             '                                               '                                               '          (V[2;U.sV)g)(x, y) = e2T;ernx .2'Tiny g(., y)

                         tt                                     '
             2for (m, n) 6 Z , and
 '
   (uEP,U,V)g)(x,y) ,. e2TTiut e2Tiveteipe{2[x+t](y-et)+ eEx+t]2}

                         g(x + t, y+ et)

for tER where x+t = x+t + [x+t], O--<x+t4 and [x+t]EZ.

     (II) The Heisenberg representation (v"(q,S), e(q,s))

of (H2,K) = (z2,R) assoeiated with F(q'S)is giv6n as follows.

     For n(z)eL2(R),
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       ({>[i};fi]n)(.) . .2TirriS ."ieq(2nZ+n2)n(.+.+(l/e).)

fo? (rn, n) E z2 and

       (GEq'S)n)(z) = e2"iZt n(z)

for t E; R.
     [Irake the r;el)r'esentation U(P'U) (pEZ and u6[O,l/e)) of Z

in ExampZe 5.4.l. Then we get

          u(P,U,V) cr indE u(P,U+ i/e v)

where Ofvg u+ l/e v<l/e. Henee, we see the following faets.
Let xU (uGR) be unitar)y cha]eaeters oi R given by xU(t)

   2vint

                                              ' ' (a) G(q,s) ='v S.li x" du

          (b) u(O,u,v)lr. 7".S. xu+nÅÄo(v+m)
                         m,n6Z
          (c) u(p,",v) 2. sptll.ee xu .du if p f o

                                                  '
whe]f'e lplappears as the multiplicity of the rep]esentation.

     Ther•ef/ore, we get the faet that for each u, vE[O, l),.
T(P'U'V) is never unitarily equivalent to "(q'S) fo37 arbi-

trary choice of qeZ and sER if p ,S Å}l.
    We note that the representation TO of A is an injective

tYPe IXo, faetor representation and all T(P,U,V) and R(q,S)

                                      'aTe i)?reducible.

     Now, we show an appZication of our results to unitary

representations of eertain Zocally compaet groups.

        tv .v     Let G = N xsK be a regular semi-direet product of N
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     tv tvwith K where N and K are locaUy eompact second coul.itable

                   A.' 'abelian groups and K acts on N as an automorphism group. The
action of fi on N induees the action of KN on fG (the dual of

gl g-s.2.xz":sgfi':#i. Igg".igo,:.:2ii:;.gr,2".;.z:d,.xh!.g.eg"}i.is

is smooth ([12], [16], [32]). reaking a closed subgroup K of
                                                     'i(, we shall considey the closed subgroup G = N xsK of G" = NxsK"'.

     For a unitary character x of N,. we get a unitary represen-

tation TX ofGgiven by , •,
                                           '                 '                                     '                                                          '                    iv '''          TX =G !ndS.X •• ' ' , .
                 '                                  '   '           '                     '                                  ttttWe denote by crX' the Tepresentation of the group Cee--algebra
Cee(G) of G eorresponding to the above representation TX of G'

r

                                            NA[40]. Let Hx denote the stability group of K at XEN.
Then, we have a Cbe-erossed produet AX = Co(NK/Hx)XyK where y

is the eanonieal aetion o!n NK on Co(K'"/Hx). ,T.et TO be the

representation of AX as defined in seetion 5.1. Then, we

get the following proposition.

                    ..
     Propositioni 5.4.3. There exists a homomorphism QX from
Cee' (G) onto AX sueh that Ker, ipX= Ker 6fXand TNrX= TrOoipX. [vhis tpX

                                  XXlnduees a natural correspondence W from Rep A to Rep G ,

whieh has the following properties.

     (i) For each TeRep AX, T(AX)" = yX(T)(G)"

     (ii) IPor T, T' E Rep AX, T; T' if and only if
iyX(•iT-) ;l! kgX(TTT).

 ' (iii) s.ppose .o.---A gil .4dp(c).

                          , - ---1-
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[Vhen,  ,We g 9t ,,x ,N. S<i? yX (") dy (c ). -

         '            '     Proof• !t is not difficult to see that cX(G)/Ker GrXis
                    eeisomorphie with the C -crossed produet Co(OrbKN(X))Å~6K where 6
is the action of g on N and orbi<(X) = {6(t).x3 t E fl3. put

oX(t) =6(t).X for every t e g. Then, ÅëX induces a maD. SX

     tvfrom K/Hx to Orbx(X) whieh is a homeomorphism due to the
regularity of G'V [12]. Through this 5X, the aetion 6 of K is

transfo'Lnmed into the aetion y of K and Co(Orbg(X))Å~6K. is

is- omorphieally transformed to Co(g/-Hx)XyK = AX. Then, we

get a homomorphism ipX from cN (G) onto AX such that IK'er "X

= Ker nyX by eomposing these maps. .
                                                    '
     Si'nce theye exists a canonieal correspondence betwe.. n

Rep G and Rep CX(G), the correspondenee T ---s> uothX from Rep AX

to Rep C-' (G) induces the cor?espondenee YX from Rep AX into

                                            'Rep G.

     Other properties follow imrr,ediately from, the above
               XXdef2'nit•ions of vi: and Y. We omit tihe detail. [Q.E.D.]

                                                          '

     The following eorollary is easily obtaeined.

     Cor'olla]t'y 5.4.4. fiiihe unitary rep?esentation TX of G

have the following properties.
      '     (1) TX(G)" = M(R/Hx, K) and TX(c-)' =Zt2(KN/K, Hx).

     (ii) There exist abelian von Neumann subalgebras
sza andJ.cSb ccin :X(G)' parametrized with aEz(K; f(; Hx) and

     (iii) corresponding to ozP, TX is decomposed as fouows.

                        - 123 -



          TX c! S!.IIilx yX (. •TT (a, c) ) dp( c) .

If K + Hx is dense in i(, ota is rnaximal abelian in TX(G)',and

yX(T(a,g)) are an i]?redueible representations of G.

 ,/ (iv) corresponding to (E}P, rrX is deeomposed as follows.

    . . 'T X .l I<Il/ K y X( ?( b , z )) d .(. ) . - . / ' , ,

                                               tt
!f K A Hx = {O}, esb is rnaximal abelian in TX(G)' and ' ''

yX("7T(b,Z)) are all irredueible yepresentations of G• .' '

  tt
      '                       tt                                               '                            tt
     We note that the assertion (iii) coineides with the .

result described in chapter I!X and that the decomposition
in the " 6ase orfi b = O ae (iv) coineides with the ]Besult

obtained frorn the subgroup theorem of indueed represen-

tations by G.W. Mackey [30]. CoroÅ}lary 5.4.4 shows that

theye are other possibUities of decompositions of the
representation TX of G.
                                         '                                           '                                                      '                                          '                              '
     Example 5.4.5. "ihe discrete MautneT group

     Let a be the 3-dimensional solvable Me g]?oup given as

a semi-direct produet Åë xsR of the additive group C of all

complex numbers with R with the multiplication;

                                    '                     '     (Z, t)(z', t') = (z + eitzt, t ÅÄ t,)

fo]r z, z'EC and t, t'ER. [Vake the closed subgroup G =
         NC XsZ of G = C XsR. This group G is the diserete rVIautner

group.
     Let x4 (c 6 c) be unitary charaÅëters of c given by

xC(z) = ei(Z,g), where ( , ) means the yeal inner product
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of C. iVor ]? ER+ , put

                       '                    •a         Tr = G• !ndc Xr.

                                              '[ffhen, Ti? is an injective type IXI Åíacto]? rep]?esentation of

for eaeh r E R+.
                                              '                                                  '     By Example 5.4.l and Corollary 5.4.4, we get the

                            TfoUowing decompositlons of T-.
                  '         .r• ,2,glll/2.(]r'"lp,u) d. (pGz) a)

            c;;; gll?- tf>(y',q,s) d. (qEz) (]Å})

Observe that the iT(r'P'U) and "(r'q'S) are irreducible
            '
representations of G.•We have moreover the folZowing

propenties.
     (i) If p r" p' (resp. q r" q'), eaeh T(]P,P,U)

(i?esp. "rr(r'q-'S)) is never unitaz}ily eq-uivalent to T(r''P''S)

(rGsp. "T(i",q',S')) fo3f} arbitriary ehoice of u'e[O,l/2rr)

                '(resp. s'e[O,1)). ' '
              c},.(r,p,u) {k 5iltl,,,..xg dc•
     (ii) (a)

                                 i(n+2 it s)          (b) cia(r,O,s) tr. .2t:2z xre .

          (e) e a(r'q's) .- lq}81egs..x4 dg if qf o•

hlenee we see that every ?(r'q'S) except the case of q =Å} 1

is never unitarily equivalent to each T(i7,P,U).

    We note that the deeomposition (XI) of rrr is a newly

obtained one. It was not deseribed in chapter !IX and it
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shows that G has the ir]?educible ]?epresentatÅ}ons such as
TA(r,q,S) With the property (e) of (ii)., We couldn't give an

explicit forrn of Åí(r'q'S), but we know the existenee of such

                                      '                                                   'irreducible representations.

                                '                                         '
     Example 5.4.6. the discrete Heisenberg group
                '                    '     Next. Iet G be the diserete Heisenberg group, defined
          'as a group of matriees :

          G .t. ((i g i); kl Qez a,nd uER} .

We take a layge-T group G given as

          a =. i(it.tlo \)3 2Ez and t, ueR .

         '                                 rvfi]hen, G is a closed subgroup of G whieh is a type I group.
we denote an eiement (i :o 'ai) of' lll as (Q,u,t).

     Put

          N= {(Q,u,O) ; QEZ artd uER}.

                                 tN- OThen, N is a normal subgroup of G. Let X (gER) be a

unÅ}tary character of N given by

                     '          xG((a,u,o)).= eigui

     We define a unita]?y representation Tcr of G by

           O G"O          T =G IndNX•

[Vhen, by Cor,ollary 5.4.4, we get the foUowing decomD.ositions
    UOf T.
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         rrrO ;; l6C u(a,P'A) dx (pEZ) (I)

            2-r jll v(a,q-,r) d,? (aEz) (ir>

                          o     (i) !f u E R X( l/2T)Q, T is an inj eetive type III i" aeto r'
representation of G and u(6'P'X) and v(O'q'r) a]?e irredueible

yepresentaticns of G.
     (ti) u(U'P'X) ls written in an explicit form as foUows•

     yor: g(x) e IL,2([o,2T/o)),

          (u((8:P.;ft)g)(x)

          . eiOUeiQXeiXkeiOPkXeiUPk2/2c(x+k),

-vihere O.<.x+k<2T/a.' If p 'S- p', U(9, 'P'X) is neve]? ub.ita]rily'

eq,uivalent to u(O''P''X') for arbiitrary choiee of o'E R,

.xt E [e,a).

     (i,ii) V(U'q']:') is --f.A]so written 'in an exDlieit zlo:nrn as

z"iollow.q..

     p,oi? g(y)eL2([o,2T)),

          (V kl 8j3; l;3 4)(.v) .

         . eiauefy-keiro eiqgyeiaqe2/21(y+gc),

whe]re O-<- wt'+uÅí<2T. If q i`- q', V(U'q'r) is never unitariZy

equival' ent to v(O''q''Y') for arbitrary choice of o'E R,

]?'e[O, l). -     (iv) If p f Å}l (resp. q / Å}l), U(O'P,X) (resp. v(U,q,r))

iS never unitarily equivalent to v(O',q',r') ( resp.

u(g',P',X') for any ut6 R, qt6 Z, and r'e[O, l) (respe a'6 R,

p'C Z, and X' 6 [O, g)).
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     For the detail, see [22].

     Example 5.4.7. A subgroup of the diserete Heisenberg

group

     T"et H denot- e the subgr•oup of the diserete Heisenber)g

group, de.{ined by

                                      '          ,.[(g,i,i),                         k, 2, me Z} .

Put

           UU             =T - (uER),         IT
               H. -                                                    '                                '          lu( U, P, X) . u( U,P, X) ( pEz, A6R),
                       H
          iv( u,q, 1? --- Hlv( a, q-,r) ( qE z, rE R).

          '
Then, we get the followi,ng results about "vhe unita-Ty represen-

                                                       'tatibn.q. of H.

          :tie .-- ge lu(g,P,X) d" .for eaeh D. Ez

                              '             t-)t,ts"g lv(a,q,r) dr for eaeh qEZ•

 ' (o If oERx(z/2T)Q, lrrU is an injeetive type IIi

factor representation of H and lu(O'P,X) and lv(U,q,r) are

irreducible representaticns of H.
     ai) lu(O,P,X) di.,- lu(U',P',X') if and only if o' - ue

2TZ, p' = p, and xt - xe2Tz + az. Iv(U,q}r) 2. Iv(o',q',r')

                                                 'if and only if a' - ae2TZ, q' = q, and r' - rE Z + (2 T/ u) Z.
Moreover, if q 7( Å}l, each lv(U'q'r) is never unitaruy

equivalent to any of lu(O,P,A). •
        '
         /        '
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     ExamplG 5.4.8. The free group P2 on two generators

     Let F2 be the fyee group generated by two elements a

and b. nihen, there exists a homomorphism Åë from 'b2 onto H
                'sueh that

           Åë(.)- (i i :,)

and

           ,,,,- (s, l 2Å})

  Put
                '          2T-O = TUee• '. (oER.)'
              '                            '
          2u(a,] ,X) . Iu(g,p,X). yi, (p Ez, AeR)

          2v(a,q" r) . lv(g,a" r), ,g (a. 4v z, rE B)."

"lhen, 'vv'e ean i/ nterp]?et• t'ne resu:/ts i, .n Exam-p, le 5.4i•.7 as they

eonce?n the rer.resentations o-e 'eT• p
                                L
     Fi . tr o s h i z a w a [ 5i ] s h o w e d , t h e n o n - u n i q u e n e s s o :? i r -r e d u e i -

ble decompositi•ons of a yep.resentation, and it was about the

re guia]) ]p epyese nt put ion o :7 F' 2 (see se ct fi on 1.2). Our resul {. s

are entirely different from his case. we note that 2TO

is an "inJ'ective" type Ih factor repvesentation of ?H2,

whiÅ}e the regular repyesentat.iLon of F2 is not in.jective but
 '
type III factor representation.

     5.4.9. The Dixmiey gyoup D

     Let D be a 7-dimensional simply eonnected solvable Lie
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group with the multiplieation

          (U,V,x,y,z)(ut,v!,xi,y!,zt)

             . (u+e2TriXut,v+e2TiYvt,x+x!,y+yt,z+z'+xy')

       'for u, vEC and x, y, z(R. D is known to be a non-type Z

group among qvimpZy eonnected solvable Ue groulS as pointed

out by J. Dixmier [8] and so we shall caU P the Dixmier

group. Using the Mackeyts maehine and the results coneeisentng

the discrete Y.eisenbei-?g gi?oup G, we shall zhow that we

obtain a Za.rge number of jrreducible representations of D.

                               '          IMI = {("LiL, v, O, O, O) , u, vEC}

 tt

                           '               '
            '          H= {(O, O, x, y, z) ; x, y, zeR}.
                        '
                                                        'T/hen, Mi is an abelian group is• omorphic Ttgith c2 and 'rt: is the

!"ieisenbe]pg gr• oup. ftI aet"D' on M by the ii.iner autorr,o]f'phism and

D Åëan be -T'ecr•arded a•s M x F-- w'ihiich is a• ir'effu-la-ie sem.i-di i?ect
                       v
                                             'product of r. with H.
                                                '     Let as(S't) (s, tER+) be unitary characters of Mt. gi/ven

    '
                   'by

          <(U, V), co(S,t)> = ei(S,U)ei(t,V)

for (u,v)cc2 = N where ( , ) means the real inner produet

of C• Then, the stability group of H at w(S,t) in Arvl (the

dual of M ) is just the discrete Heisenberg group G. Put
Do = M xsG and define a representation Ow(S't'L) of Do for

                                               '
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 de(S,O ( AM and som,e represent at ion L of G by

                                             .                                         '                             '         Ow[s;g),B- to[e:g))L,•

          '
 Then, we get a unitary representation w(S,t'L) of p by

                                                     '
                        '          w(s,t,L) = I.dB Ow(s)t,L) .
                          o'
           + }?or s, tEB and eER, Put

          3Tr(S,t)O) ,,, w(S,t,I-') when ]L, = ?7a,

          3u(S)t,O,P,X) . w(S,t,L) when L = u(U,P'X)
                                                        ,
          3v(s,t,o,q,r) . w(s,t,L) when L . v( O,q,r),

   '
whe]?e pC Z, XER, qe Z, and rER.
                                         t.                                                   '       '
     Then, we get the foUoici.ng results immediately.

          3T(s)t,a)

           ;Sg 3u(S,t,07P,A) dx ' fo]? each p6z

                                       '           yg.ig 3v(s,t,o,q,r) d]? for each gcZ•

                                           '      (i) IÅí oE-RxQ/2Tr)Q, 3T(S't'a) is an injeetive type

 IIesfaeto? repyesentation of D and 3u(S,t,a,P,X) and
                                            '                                      '                                                 ' 3v(S)t,O,P)r) aye irreducible representatlons of D•

                                            ..      (ii) 3u(S,t,O,P,X) )v.• 3u<S')t',U',P',X') if and only if

 S'=S, t'=t,a'=u, p'=p , and A,•-A627Tz + oz. ' 3v(S,t,g,q,r')gt

 3v(s',t')a',q',r') if and only if s,=s, t'=t, dmu, q'=q,

 and ]?''v EZ + (2rr/6)Z. Moreover, if q f -"', 1. 3v(S,t,6,q)V)

 is never unita?ny equivalent to eaeh 3u(S',V)U',P,X).
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     Here, we note that 3u(S

p E Z, A6R) and v( S,t, O, q, ]?)

                    '
qE Z N{O, Å}l }, r E R) a're new

cible representationc of the

know.

,t, u,P, A) (s,t 6 R+, ueR x (1/2 rr)Q,

(s,t E B+, OERÅ~ (l/2 T) Q,

parametrized families of irredu-

Dixmiey group D so fa? as we
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