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Abstract

In this thesis, we study the variaty of irreducible
decompositions of non-type I representations. It is known
that irreducible decompositions into direct integrals of
non-type I representations are not unique in general.

Long before examples are known which demonstrate this fact
and these are about regular représentations of non-type I
groups.

In this thesis, we show many other new examples of this
non-uniqueness phenomenon of decompositions not only for
regular representations but also for some factor represen-
tations and will make it clear that this phenomenon has some
close relation with ergodic measures and cohomology groups
of transformation groups. To do this, we investigate cohomo-
logy theory for double transformation groups and generalize
the Mackey's theory of induced representations. Furthermore,
we describe explicitly the interrelations between decomposi-
tions and maximal abelian subalgebras from a view point of
operator algebras. As an application of ourvtheory, we
obtain some new families of irreducible representations of

certalin non-type 1 groups.
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Introduction

In this thesis, we study the variety of irreducible
decompositions of non-type I representations. It is known
that irreducibie decompositions into direct integrals of
non-type 1 repfesentations are not unique in general. Long
before, examples are known which demonstrate this fact, and
these are about regular representations of non-type 1 groups.
In this thesis, we show many other new examples of this non-
uniqueness phenomenon of decompositions not only for regular
representations but also for some factor representations.

We then construct a theory which makes it clear that this
phenomenon has some close relation with ergodic measures and
cohomology groups of transformation grdupé.

This theslis consists of five chapters. In chapter I,
under rather systematic versions, we arrange examples
obtained before by several authors. In chapters II and III,
we investigéte cohomology theory for double transformation
groups and generalize the Mackey's theory of induced repre-
sentations. These will culminate in the description of our
theory of irreducible decompositions of non-type I represen—
tations in chapter IV. In chapter V, we extend these results
from a view point of operator algebras. Now we will explain
briefly the contents of each chapter.

In chapter I, we study the phenomenon that regular
representations of some non-type I groups may be decomposed
into direct integrals of irreducible representations in
completely different ways.

In 1951, H.Yoshizawa first pointed it out about the



free group on two generators [54]. In the same year, G.W.
Mackey independently showed similar results about some
discrete semi-direct product groups by applying the method
of induced representations [29]. In 1974, M.Saito studied
the classification of cojugacy classes of Cartan subgroups
of SL(2, Z2) and found that the regular representation of
SL(2, Z) was possible to be decomposed into irreducible
components in infinitely many completely differnt ways [46].
Furthermore, A.A.Kirillov reported in [28] that the phenome-
non occurs even in the case of the Mautner group which is
not discrete but a simply connected solvable Lie group.

In this chapter, we first introduce these four examples
under rather systematic versions and offer new other examples.
In section 1.1, we describe fundamental techniques which are
used to give different decompositions of regular represen-
tations, by ﬁsing Mackey's method of induced representations
[30]. 1In section 1.2, we state the criteria of irreduci-
bility and equivalency of monomial representations of discrete
groups according to [29]. Using these results, we review
the non-uniqueness phenomenon about individual discrete
groups. In section 1.3, we generalize the results about the
Mautner group obtained by A.A.Kirillov [28] and consider the
occurrence of the phenomenon in search about semi-direct
product groups, which include Mackey's examples in some
sense [247. |

In chapter II, we explain the notion of cohomblogy of
transformation groups [20]. This notion appeared in the

Mackey's works.[33], [34], [35] and its study has been
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developed by several authors. K.Schmidt has studied it
related with ergodic theory [45]. Another way of the develop-
ment was pursued by A.Guichardet [17] and C.C.Moore [371],

[38] who considered this cohomology as the oﬁe cohomology of
locally compact groups. Further, there is a way followed by
G.W.Mackey and A.Ramséy. They have investigated it as a
family of similarity classes of homomorphisms of a measure
gfoupoid or a virtual group [34], [4371, [447].

In section 2.1, we describe elementary properties of
the cohomology of topological transformation groups. Propo-
sitions 2.1.1 and 2.1.2 are fundamental and may follow from
the results in some of the works by C.C.Moore and A.Ramsay.
However, we will add the proofs for completeness.

In section 2.2, we introduce double transformation
groups -and their cohomology. .These replace certain non-
smooth topological transformation groups and their cohomo-
logy, and play a principal role in our considerations.

In section 2.3, we state the cohomology subordinate to
measures., We often use this cohomology in later arguments.

In section 2.4, we study the notion of weak cohomology.
This notion is important as an index showing the variety of
decompositions of representations, which is one of our main
subjects [27].

In section 2.5, Subgroups of cohomology groups and weak
cohomology groups are found in some concrete cases.

In section 2.6, we argue again decompositions of the
regular representation of semi-direct product groups related
with cohomology, as an application of this chapter [24].

In chapter III, we investigate generalized induced
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representations for double transformation groups, related
with cohomology and we construct families of non-Mackey
representations of certain'non—fegular semi-direct product
groups as aAgéneralization of Mackey's method [20]. Applying
this construction to the Mautner_group, we obtain a new
parametrized.family of non-Mackey representations. The
representations found by L.Baggett form a part of this
family.

In 1978, L.Béggett found a family of non-Mackey irreduci-
ble represéntations of the Mautner group via the decomposi-
tions of a generalizd tensor product of some concrete repre-
sentations [4]. In order to elucidate the mechanism of his
family, we developba theory of generalized induced repre-
sentations in this chapter. In 1976, A.Ramsay turned the
Mackey's theory into a representation theory of measure
groupoids [44] and obtained a generalization of induced
representations. Our notion is close to his but there are
some differences. These differences will be Seen to be
crucial in the decomposition theory in later chapters. It
is known that, for a connected and simply connected solvable
Lie group G, there exists an algebraic solvable Lie group G
which contains G such that [5,5] = [G,G] = N and ¢ acts on ﬁ
{the dual of N) smoothly. L.Pukanszky made an extensive use
of this fact in [41], [42]. We impose a similar assumption
(¥) for nonregular semi-direct product groups, which will be
used effectively as a substitute of the fact above-mentioned.

In section 3.1, for a double transformation group, we

define unitary representations in relation to cohomology,

-



which appears as a generalization of the Mackey's induced
representations [30], [33].

In section 3.2, following the construction in section
3.1, we have families of non-Mackey représentations of non-
regular semi-direct product groups satisfying our condition
(¥). In Theorem 3.2.6, we show when such representations are
mutually equivalent, and in Theorem 3.2.7, we give a criterion
of the irreducibility. In Proposition 3.2.9, we mention a
property which characterizes these representations. The
results obtainéd are akin to the results in [33] or [44] but
ours are more precise according to the strong conditions
imposed. Moreover, the techniques employed by L.Baggett [4]
will be better understood from our points of view.

In section 3.3, we apply our general results to the
discrete Mautner group and the Mautner group.

In chapter IV, we consider the irreducible decomposi—
tions of type II factor representations of some non-regular
semi-direct product groups [21]. Taking a certain factor
representation of such a group, we show it can be decomposed
in many different wayé into direct integrals of irreducible
representations, while the diagonal algebras are spatially
isomorphic with each other. The explicit form of the diagonal
algebra is also given.

The theory of irreducible decompositions is based on
the following general result of F.I. Mautner [36]. Let G be
a locally compact group and T be a unitary representation of
G on a separable Hilbert sapce %,. Suppose that 0l is an

abelian von Neumann subalgebra in 7m(G)'. Then, there exists



a standard measure space (Y, v) such that L is algebraically

isomorphic with Lw(Y, V) and 7 is decomposed as follows.

@
T & g ' av(n)
Y,

Moreover, Wn is irreducible for Vv-almost all mne¢Y if and
only if 01 is maximal abelian in m(G)'.

In chapter IV, we consider the irreducible decompositions
of type II factor representations of some non-regular semi-
direct produot_group, In Theorem 4.1.3, a certain represen-
tation WX of such a group G will be decomposed in an explicit
way to a direct integral of irreducible representations,
each component haﬁing a definite form. The corresponding
maximal abelian von Neumann subalgebra in 7(G)' is also
described in a concrete form.

It is known that the non-type I'ness of a locally
compact group or a C*—algebra is closely related to the non-
smoothness of topological transformétion groups [12], [15],
[16]. In non-smooth topologicai transformation groups,.
thefe are various kinds of quasi-orbits. Furthermore, the
cohomology group for each non-transitive quasi-orbit seems
to be huge, at least it is known to be non-trivial under
gsome conditions [38]. The non-uniqueness of decompositions
of a non-type I representation seems to depend deeply on
these two facts. The results in [14] and [50] are certainly
connected with the former, viz. the existenoe of wvarious
quasi-orbits and the examples in [28], [29], and section 1.3
also seem to be so intrincically. The present chapter is an

attempt to describe the relation of the non-uniqueness of
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decompositions with the latter phenomenon viz. the non-
triviality ef cohomology groups.

The decomposition in Theorem 4.1.3 is done by using a‘
cocycle of the cohomology theory studied in chapter II, and
it is shown in Proposition 4.2.1 that two decompositions are
completely different when only the used cocycles are not
Weakly cohomologous, even the diagonal algebras are spatially
isomorphic with each other. Thus we may get a large number
of different decompositions of a given representetion into
irreducible components. To illustrate various possibilities,
we will give two examples‘in section 4.3.

Chapter V 1s devoted to study representations of
certain C*—crossed products [26]. From a view point of
operator algebras, we will extend the results investigated
in the previous chapters.

For two closed subgroups ﬁ and K of a locally compact
abelian group G, we get a C¥-crossed product A = CO(G/H)xyK.
We investigate decompositions of a certain represenfation ﬂo
of A. In section 5.1, we study two families of abelian von
Neumann subalgebras {Olak and &Bb} in the commuting algebra
WO(A)', n? being associated with the automorphism o .of
710(a)", where a €2(X; G; H), and @° with 8P, be z(H ;G; &),
We will have also some necessary and sufficient conditions
of the maximality of @ and @° in 79(a) . In section 5.2,
we study decompositions of 0 corresponding to m?. To do
this, we study generalized induced representations of C*—
crossed products following to chapter III. In section 5.3,

using the concept of Heisenberg representations, we write



down decompositions of ﬂO corresponding to the above m? and
@P in explicit forms. In section 5.4, we show some examples
and an application to unitary representations of a certain

locally compact group.



Preliminaries and notations

In the thesis, a representation means a continuous
unitary representation of a locally compact group or a
bounded ¥-representation of a C¥-algebra. For a represen-
tation m of a locally compact group G, 7 is called to be of
type I (resp. type II, type III, and non-type I) if the von
Neumann algebra generated by m(G) is of type I (resp. type
II, type III, and non-type I). Similar definitions -are done
for a repreaentation of a C¥-algebra.

Through the thesis, when we use a terminology of a
localiy compact group or a locally compact space, they are
assumed to satisfy the second axiom of countability. Further-
more, a Hilbert space and a C¥-algebra are also assumed to
be separable.

We often treat some semi-direct product groups given
as follows. Let N and K be.locally compact abelian groups.
K acts on N as an automorphism group of N and the actlion is
denoted by Naz —> k.z€N for each keK. Let G be a locally
compact group which is NxK as a topological space and whose

multiplication is given by
(z, k)(z', k') = (2 + kez', k + k')

for z, z'eN and k, k'eK. This group G 1s called a semi-
direct product of N with K and denoted by Nx K. We note
that G is a unimodular group. We identify the subgroup
{(z,0); zeN} of G with N and the subgroup {(0,k); keKlof G

with K. We often consider the topological transformation



A N
group (K;N), canonically obtained for G =vNXSK, where N is
: : , , N
the dual group of N and the action of XK on the space N is

given by, for each keK and Xéﬁ,_

<z, kex>=<kez, y>

for zé€N.

We denote each abelian group of integers, rational
numbers, feal numbers, and complex numbers by :Z, o, R,
and € respectively. The positve parts of Z, @, and ﬁeare
written by H¢, ®*, and Kﬁ réspectively. One-dimensional
torus group, namely, thé abelian group of complex numberé
with absolute value 1 is denoted by T.

Other terminologies and notations mainly follow from
J.Dixmier's books [8]1,[9], G.W.Mackey's works [31]1,[35] and

the monograph [2] by L.Auslander and C.C.Moore.
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Chapter I. Decompositions of regular representations

In this chapter, we study the phenomenon that regular
representations of some non-type I groups may be decomposed
iﬁto direct integrals of irreducible representations in
completely different ways.

In 1951, H.Yoshizawa first pointed it out about the
free group on two generators [54]. 1In the same year, G.W.
Mackey independently showed similar results about some
discrete semi-direct product groups by applying his method
of induced representations [29]. In 1974, M.Saito studied
the classificatlion of cojugacy classesmof Cartan subgroups
of SL(2,Z) and found that the regular representation of
SL(2,7Z ) was possible to be decomposed into irreducible
components in infinitely many completely differnt ways [46].
Furthermore, A.A.Kirillov reported in [28] that the phenome-
non occurs even in the case of the Mautner group which is
not discrete but a simply connected solvable Lie group.

In this chapter, we introduce these four examples
under rather systematic versions and offer new other examples.
In section 1.1, we describe fundamental techniques which are
used to give different decompositions of regular represen-—
tations, by using the Mackey's method of induced represen-
ations [30]. 1In section 1.2, we state the criteria of
irreducibility and equivalency of monomial representations
of discrete groups according to [29]. Using these results,
we review the non-uniqueness phenomenoﬁ about individual

discrete groups. In section 1.3, we generalize the results
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about the Mautner group obtained by A.A.Kirillov [28] and
consider the phenomenon about semi-direct product groups,

which also includes Mackey's examples in some sense.

1.1. Fundamental techniques by induced representations

Let G be a locally compact_grbup. Take a closed abelian
subgroup H of G and denote the dual group of H by ﬁ, For
a unitary character X of H, we get a unitary.representation
UX of G by UX= Indgx which is the induced representation
of X from H to G, developed by G.W.Mackey [29] [30]. ‘Let
be the right regular rgpresentation of G and 1 be the

trivial representation of {e}. Then, by general consider-

ations about induced representations, we see that

~ ® X
AE A U7 duly)
H

e
where y is a Haar measure of H. Indeed,

~ G
¥ tnaltnd? 4 (by stage theorem)
H {e}
o G D
& IndH A ydu (x) (by Fourier transform)
= ﬁ IndH xdu (x) (by Theorem 10.1 in [301])

= ngXde).
H

Next, Take another closed abelian subgroup K of G and
denote by V1 the unitary representation of G given by v =

N
Indg n for mnekK. Then, by similar arguments, we see that

A = S? Vndv(n)
s K .

- 12 -



. A

where v is a Haar measure of K.
Therefore, for two closed abelian subgroups H and K of
G, we get two decompositions of the right regular represen-

tation A of G as

>
I

® @
= SA uXau(x) £ QA vlav(n). (1.1.1)
H JK

Here we must consider the following problems (A) and (B).

Problem
(A) Irreducibility: When the representations UX and
n N VAN
V' (x€H, neK) are irreducible ¢
(B) Inequivalency: Which are unitarily equivalent or

A A
X and v (xeH, nek) 2

inequivalent among U
In the next sections, we study these problems (A) and

(B) in indivisual cases and show that the formula (1.1.1)

gives indeed different decompositions into irreducible

representations under gsome situations imposed.

1.2. Discrete groups

For discrete groups, the results obtained by G.W.Mackey

[29] are valuable as criteria for (A) and (B).

Proposition 1.2.1. (Theorem 6‘.and 7' in [291])

let G be a locally compact group.

(A) Let H be an open subgroup of G and UX denote the
representation Indgx of G for a unitary character x of H.

Then UX is irreducible if and only if for each}géH one of



the following statements is true.
- -1
(1) X # geX on g 1HgnH where (gex)()=x(ghg ~) for

heg” THeNH.

1 1

(i1) [g_ng : g “HgnHJ= ® or [H : g “HgnHl= «, where

[ : ] means the index.

(B) Let Hi (i=1,2) be two open subgroups of G and Um
be the representations Indg.xi of G for unitary characters
Xy of Hy (i=1,2). Assume t;at UM (1=1,2) are irreducible.
Then UX'is unitarily equivalent to u*2 if and only if there
exists geG such that

. -1
(l) X2 = g'Xl on g ngnH2:

. -1 R T _ )
(i1) [g Hig : g HgNH,l<~ and [H2 c gz

ngnH2]<m .
Example I (G.W.Mackey)
Let G be a semi—direct product group NXSK where N and
K are infinite"discrete"abelian«groups and K acts on N as
an automorphism group of N.
Takihg two closed_subgroups N and K, we have two decom-
positions Qf the right regular representation A of G

according to (1.1.1) as follows.

R

® ®
A SA UXau (x) Q‘SA vlav () (1.2.1)

N K

/N N
g X forxeN, Vn=Ind§ forneK, and p(resp. v) is

where UX=Ind
A a
a Haar measure of N (resp. K).
G.W.Mackey considered the following condition(a)

about the action of K on N.

Condition(a) All non-trivial orbits of N under the

action of K are infinite.

- 14 -



Proposition 1.2.2. (Lemmal,2,3 in §3 of [29])

(A)(i) UX 1is irreducible if and only if key# y for
kekK distinct from the unit 0.

(ii) Under the condition(a), V" is irreducible for
each neﬁ.

(B)(i) For X1 xzéﬁ, UXl is unitarily equivalent to
UX2 if and only if there exists keK such that Xy=k Xy -
efl, v is

(ii) Under the condition(a), for nl, n2

unitarily equivalent to v'2 1f anad only if n =n,.

1
(iii) UX is never unitarily equivalent to v for arbitray

A N

choice of X€N and TMé€K.

Proof. This follows directly from Proposition 1.2.1.

For the detail, see [29]. [Q.E.D.]

Let Q¥ denote.the multiplicative abelian group of all
positive rational numbers. Then @ acts on @ by the multi-
plication as an automorphism group of @ and we have a semi-
direct product group G = @XS@*. This group G satisfy the
condition(a) and the decompositions (1.2.1) means that the
regular represehtation of G may be decomposed into irreducible

parts in two entirely different ways.

Example II (H.Yoshizawa)

Let F. denote the free group on two generators a and b.

2
Let us now choose as H the abelian subgroup of Fz_generated
by a and as K the abelian subgroup of Fg'generated by b.
Then, both H and K are isomorphic with Z of integers so

that their dual groups H and K are isomorphic with the one-

dimensional torus group I . By general consideratios in

- 15 -



section 1.1, the right regular representation ) of F2 is
decomposed as
G . (® .
A2\ vRauo =) viavim)
T T
where U is the normalized Haar measure of T and UX = Ind% X

A A
for XEH and NEK parametrized with each element of .

‘Proposition 1.2.3. ([541)
(A) UX and Vn are irreducible.

. A X . o . . ’
(B)Y(i) For X XgéH, UM is unitarily equivalent to

l’
Xg. . .
U if and only if Xl = X2.
. . A R . . . n
(ii) For nl’ ﬂ2eK, Vv is unitarily equivalent to V 2
- ) ‘r] =
if and only if 1 n2'

(iii) UX is never unitarily equivalent to v for
arbitrary choice of Xéﬁ and néﬁ.

Proof. We give the proof according to Proposition 1.2.1
different from H.Yoshizawa's method.

(A) For each g¢H, g_ngnH = {e} so that [H : g—ngnH]=m
Therefore, by (A) in Proposition 1.2.1, UX is irreducible.
Similarly, Vn is irreducible.

(B) Suppose UX/is unitarily equivalent to e . Then,
by (B) in Proposition 1.2.1, there should exist geG such
that [H : g—ngnH];<w and X, = geXq on g_ngﬂH. Since

ng H ={e }for any géH, the condition [H :Ag_ngnH] <

-
implies that geH and so X5 = Xq On H. The coverse 1s clear.
(ii) is shown similarly as (i).

(111) follows immediately from the fact that g “HgnK ={e}

for any geG. [Q.E.D.]

- 16 -



Therefore, we see that the regular representation of F2 is
also decomposed into irreducible parts in two entirely

different ways.

Example III (M.Siato)
Let G be a locally compact group. M.Saito considered
a family }4 of'open subgroups of G satisfying the following

condition (b).

Condition (b)

(1) For H,, Hyed and gea, 1f [H, : g 'H gNH,]<®, then

l’
H Cg™lH
L8 18-

(11) For Hed and ged, gHg CH yields geN(H) where N(H)

is the normalizer of H.

For a unitary character X of H in o s the representation

Indgx of G is denocted by UX. He stated the irreducibility
and equivalency of such representations by his original method
[46]. Here we show them by using Proposition 1.2.1 but under
some restrictions.

Let }ﬂ+ denote the subfamily of satisfying that N(H)=H

for H €d+. Then, we get the following.

Proposition 1.2.4.

(A) For H€3d+, UX is irreducible for every unitary
character X of H.

(B) For unitary characters X; of H; in ;4+ (i=1,2),
UX' is unitarily equivalent to,UX2 if and only if there

. e -1 = o
exists geG such that H2 = g ng and X2 = g X1 on H2.

- 17 -



proof. (A) Supposé [H : Hﬂg—lﬁg]<w for geG. Then, by
(1) of the condition&b); HCgflﬂg and.sq’gHg_%:Hw By (ii) of
the condition (b);_g must be in N(H). Since N(H)=H, we get
g€H. Therefore, for any g¢H, [H : Hng_ng] =e2 holds. This
implies that UX is irreducible by (A) of Proposition 1.2.1.

(B) Suppose UXf is unitarily equivalent to UX2. Then,

by (B) of Proposition 1.2.1, there exists ge&G such that (i)

1 1

_ - 5 -1 -
X, = g+X; on g "HygnH, and.(ll) [g7 " Hyg : & "HyghH,J<» and

[H2:qulgﬂH2]<W. " The first condition in (4i) is equivalent

to the condition [H, : HlﬂgHzg_1]<m, which implies that

1 by (i) of the condition (b). Similarly, by the

Cg“lng. Therfore, we

H.Cgl, g
second condition in (ii), we get H2
see that H, = g—l 18- [Q.E.D.]

M.Saito [46] studied the conjugacy classes of Cartan
subgroupé of SL(2, Z) and showed that the family of Cartan
subgroups satisfies the condition (b). Furtheremore, he
pointed out that a Cartan subgroup H satysfying N(H)=H is an
abelian group isomorphic with Z**1} 'and that the conjugacy
classes of such groups are infinite.

For such a group'H, according to section 1.1, we get a

decomposition of the regular representation ) of 3SL(2,Z) as

>
2

o ,
&A vRau(x) .
H

Therefore, by Proposition 1.2.4, it is clear that the regular
representation of SL(2, Z) may be decomposed into irreducible

constituents in infinitely many entirely different ways.
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Example IV

Observing the above three examples, we can also give
infinitely many entirely different decompositions of the
regular represntation of the free group F2 on two generators
as a_generalization of Example IT.

We consider a family 43+ of subgroups H of F2 satisfying
that

(i) H is generated by one element of F,.
(1i) N(H) = H.

Then, we get the following.
Proposition 1.2.5. ff—satisfies the condition (b).

For the proof of Proposition 1.2.5, we need the following

lemma.

Lemma 1.2.6. TFor 81> 8,€F,, 1f g? = gg for some m,né ~Z,

! 1
then there exists k€F2 and m',n'e€Z such that g1=km and g2=kn .

Proof. Suppose g.g, # £,8-. Then, the equation gm = gn
1=2 2=l 1 2

would give a relation in F which contradicts with the freeness

2.’

of Fz. Therefore, g, and 85 generate an abelian subgroup of

F2. Since an abelian subgroup of F, is generated by one

2

1 1
element, there exists kéF2 such that g, = k™ and &> = T

for some m!', n'€Z. [Q.E.D.]

Proof of Proposition 1.2.5.

At first we show that ' satisfies (i) of the condition

(b). For H }%3éd§.aﬂd_géF2, suppose [H2 :vg—1

1> ngnH2]<w.
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1

Then, g ng/\H2 # {e}. Hence, there exist non-zero integers
m, n such that,g_lhig =Ahg where h, are generators of H, (1=1,2).

Therefore, we get (g'lhlg)m =‘hg. By Lemma 1.2.6, there exists
) _ i '

, such that g 1h1g = ¥ and h, = k™ for some m', n'e Z.

we see that k = h, or hgl. Then,

kel

By the condition N(H2) = H

we‘get‘g_lngCH

2’ 2
>

Next we checkk(ii) of the condition (b). For H,é&ﬁ and
BEF,, supposelgHg—lCH. Let h be a generator of H. Then,
vghg_l = h" for some integer n. By the condition N(H) = H, n
must be Il. Hence, we see that_gﬁg_l = H, which implies

geN(H). | [Q.E.D.]

Each subgroup H in (B+ is an abelian group isomorphic
with Z and it is easily verified that the cojugacy classes of
03+ are infinite. Therefore, by similar arguments as in
Example TII, we know that the regular representation of F2

is decomposed into irreducible components in infinitely

many entirely different ways.

1.3. Semi-direct product groups

Let G be a semi-direct product group NXSK of N with K
where N and K are both locally compact abelian groups and
K acts on N as an automorphism group. In this section, we
consider irreducible decompositions of the regular repre-
sentation A of G.

Applying the general consideration in section 1.1, we

- get
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1

= AL UTdRO0 =\, Vodvlin)
N K

A A
where UX = Inadx (XxeN), v = Inain (nek), and u (resp. V)
. . N
is a Haar measure of ﬁ (resp. K). For the topological trans-

N
formation group (K;N), let HX denote the stability group of

A
K at Xe€N. Then, we get the following criteria.

Proposition 1.3.1.

(A)(i) UX is irreducible if and only if Hy = {0 }.

(ii) Vn is 1rreducible 1f and only if the Haar measure U

of ﬁ is ergodic under the action of K. |

(B)(1) If M is a non-transitive measure, UX is never
unitarily equivalent to Vn for arbitrary choice of Xéﬁ and
né%.

Proof. The proof will be given later in a more general

situation (see Theorem 1.3.3). [Q.E.D.]

In the case that N and K are discrete abelian groups,
we can give a sufficient condition of ergodicity of the

N
meagure |1 on N under K.

Lemma 1.3.2. Let Nand X be discrete abelian groups.
If the action of K on N satisfies the condition (a) in
_ AL
section 1.2, the Haar measure of N 1s ergodic under the

action of K.

Proof. Since N 1is a discrete abelian group, the dual
Ve
N of N is a compact group. We denote by U the normaligzed

N Fas
Haar measure of N. Let 52 be a continuous function on N
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given by 6§ (X) = <z,X> (xeR) for each zeN. Then, the family
{SZ; zeN} is a orthqnormal basis gf the Hilbert space L2Qﬁ,u)
of all square integrable‘fﬁnctiqns on ﬁ.with respect to Uu.

Let Lw(ﬁ,u) be the space of all essentially bounded measurable
functions with respect to U. For f in Lm(ﬁ,u), we define the
action of K by (k‘f)(x) = f(keX).

| Suppose that f in LmCﬁ,u) satisfies that k«f = £ (p-a.a.).
Then, we show'that/f = constant (H-a.a.). This will establish
the ergodicity’of the measure U under the action of K. Since
His a finite measure on ﬁ, f belongs to Lg(ﬁ,u) and kef = f

in L2—norm. Let the Fourier expansion of f be
f = ;{:a $ in L2énorm
where
| azg@ and g{%[azgzgm : (1.3.1)

By simple calc&lations, we get, for each k€K,

kef = ZE:a(_k).Zé in Lg—norm.
zeN

N

f in Lz—norm and the uniqueness

I}

By the assumption that k-f
of the coefficlents of‘the Forier expansion, we see that

for each kéX,
8, = 2(_k)ez | (1.3.2)

Suppose a, # 0 for z # 0. Then, the equality (1.3.2) and
the condition (a) stand in contraction with the fact (1.3.1).

Therefore, a  must be 0 for z # 0 and so we get

. 2
f = a060 in L -norm,
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which yields

(H-a.a.). [Q.E.D.]

By Lemma 1.3.2, we see that the criterion of irreduci-
A
bility of v (n€eK) in Proposition 1.3.1 covers the discrete
cases described in section 1.2 and that Mackey's example

G = @XS £* satisfies the conditions in Proposition 1.3.1.

Now, we consider more general cases that H, 1s not
necessarily trivial or u is not necessarily ergodic.

N
When Hy # {0}, for each wely , we put

t"
>
e
I

= <zZ,x7<h,w?

: W
for (z,h)EENXSHX = Gy. Then, L(X’ ) is a unitary character

of G, = NXsH and we get a unitary representation U(X’w) of

X
G by

X

gX0) _ g G (Xw)
Gy
By general considerations of induced representations [30],
we see that UX is decompbsed as
s

\

N
JHy

e

UX U(X:w) dTX(w)

N
where Ty is a Haar measure of Hy.
When uYis not ergodic under XK, we decompose into

ergodic measures as

&)
TR g ugdo(i)
Z
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where (Z,0) is a standard measure space and U, (C€Z) are

C
A :

quasi-invariant ergodic measures on N under the action of
K. According to this decomposition of Y, we get a decompsi-

. . 2.4
tion of the Hilbert space L“(N,H) as

(P
A ~ A
L2 (R, u) % S 12 (R, u)a0(2)
Z :
and a deoomposition of the representation v of G as
(&
7 .

We can give an explicit form of the component representatidn

(n,2). 28 u.) A y
v on L°(N,H;) as follows. Take a K-valued Borel

A ;
function pc(k,X) on KxN satisfying for each kéK,

_ d(keMr) _
(k,x) —~aﬂzﬁ—(x) (Hp-a.a.X )

A
where (kvuc)(E) = uc(k-E) for each Borel set E in N. Then,

for each E(x)eLg(ﬁ,pC),

(V§2j§35><X> = 0 (k,0<2, Xk, WE(kX)

for (z,k) € NX_K = G.
Here, we get irreducible decompositions of the regular
representation A of a semi-direct product group G = NXSK of

locally compact abelian groups N and K as follows.

Theorem 1.3.3. The regular representation A of G is

decomposed as

>
1}3
Cr .

®
gAnﬁX’“>dTquduoﬁ

e
L/'S

&
S V(n’ ©) do(z)dvin).
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w
(A) U(X’ ) and V(n’C) are irreducible representations of

MRS

(B) When Ky is a non-transitive measure,. is never

(X,©)

unitarily equivalent to U ~ for arbitrary cholce of neﬁ,

0N A
X €N, and wéHX.

Proof. The irreducibility of U(X’w)

follows from general

considerations of induced representations [30]. We show the

irreducibility of v("»%), Supiose wvégzig = végjigw for
some bounded operator W on LE(N,Uc), Since the set of

(n,z)
(z,0)

w A
Neumann algebra L (N,UC) of all multiplication operatos in

operstors V (zeN) generates the maximal abelian von

. N
cf(Lg(ﬁ,uC)), the algebra of all bounded operators on Lz(N,Ug),

\
the equality wvinsz) - VS”’E’W for each zéeN implies that
(Z;O> \Z,O)

© A
W must be a multiplication operator p(f) (feL (N,pc)). By

simple calculations, we see that

o - e

where (kef)(X) = £(keX). On the other hand, by the assum-

ption, for each keK,
(n,z)*¥ (n,z) _
Yoy o0V ¢0) = P
Therfore, we get, for each kekK,
kef = T (U;—-a.a.).
/N
Since UC is an ergodic measure on N, we see that

T = constant (Uc—a.a.).

/\
Hence W must be a constant operator on L2(N,u€). This
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implies that V(n’c) is an irreducible representation of G.
U(X’w) and V(n’g)

(B) Let - denote the representations

N N
of" the subgroup N of G, given by the restrictions to N of

(n, )

W ,
AU(X’ ) and V respectively. These representations of

N are decomposed as follows.

e |
N’U(X’m) = SﬁY ave{Y)

e

: ;) '
va(”’w S,\ yau (y)

N
where-\)X i1s the canonical transitive quasi-invariant measure
/N
concentrated on OrbKX on N. By the assumption that the

measure M, is non-transitive, Hr is never equivalent to Vy

so that N V(n’C) is never unitarily equivalent to N U(X’w>
N A '
for any neﬁ, XEN, and wEHX [32]. Therfore, we get the

desired c¢onclusion. . [Q.E.D. ]

Remark 1.3.4. The Mautner group is given as a semi-
direct product group @2XS&3 of two dimensional vector
group 62 over € with K. Applying our result to this
group, we get the example obtained by A.A.Kirillov ([28]).
Furthermore, our result is applicable to the discrete
Mautner group, the discrete Heisenberg group, and the Dixmier
group.

Remark 1.3.5. We can give other irreducible decomposi-
tions of the regular representation of G = N>%K different
from those in Theorem 1.3.3. These are given with related
to cohomology groups, which will be described later (see

section 2.6).
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Chapter II. Cohomology of transformation groups

In this chapﬁer, we explain the notion of cohomology of
transformation groups. This notion appeared in the Mackey's
works [33], [34], [35] and its study has been developed by
several authors. K.Schmidt has studied it felated with
ergodic theory [45]. Another way of the development was
pursued by A.Guichardet [17] and C.C.Moore [37]1, [38] who
considered this cohomology as the one cohomology of locally
compact groups. Further, there 1s a way followed by G.W.Mackey
and A.Ramsay. They have investigated it as a family of
simiiarity classes of homomorphisms of a measure groupolid or
a virtual group [347], [43], [44].

In section 2.1, we describe elementary propertles of
cohomology of topological transformation groups. Propositions
2.1.1 and 2.1.2 are fundamental and may follow from the
results in some of the works by C.C.Moore and A.Ramsay.
However, we add the proofs for completeness.

In section 2.2, we introduce double transformation
groups and their cohomology. These replace certain non-
smooth topoclogical transformation groups and their cohomo-
logy, and play a principal role in our considerations.

In section 2.3, we state the cohomology subordinate to
measures. We often use this cohomology in later.arguments.

In section 2.4, we study the notion of weak cohomology.
This notion is important as an index showing the variety of
decompositions of representations, which is one of our main

subjects.
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In section 2.5, subgroups of cohomology groups and weak
cohomology groups are found in some concrete cases. If is
known that HS(;Z;‘E) and H%(E?;'FQ) are isomorphic as cohomo-
logy groups as a general statement in [43]. We give here a
concrete imbédding of HS(;Z;'K) to H%(&?;'{Z). This makes us
possible to get some concrete cocycles easily.

In section 2.6, we argue again decompositions of the
regular représentation of a semi-direct product group

related with cohomology,as an application of this chapter.

2.1. Elementary properties

Let (G;X) be a topological transformation gfoup, The
action of the group G on the topological space X is denoted
by (g,x) —> g+.x, where x —> g«x is a homedmorphism of X,
and we suppose 1t satisfies gzozgl-x) = (gng)'X' Let (L be
a von Neumann algebra on a separable Hilbert space. Then we
can define the cohomology of (G;X) as follows (see [28], [35],
[451).

Let mP denote the set of unitary oparators of Ol equip-
ped with the Borel structure generated by the weak oparator
topology. G and X have the canonical Borel structures
induced by their topologies. A Borel function C of GxX into

1L

0l is said to be an [ -valued cocycle, if 1t satisfies the

condition

C(glg2ax) = C(glgx)c(g2,gl' X)

for all 81 ggeG and all xé€X.
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Such cocycles Cl and C, are said to be cohomologous when

2

there exists an Gy—valued Borel function A on X such that

C,(g,x) = A(x) € (g,%)A(gx)

for all geG and all xeX.

It is clear that the above relation of '"cohomologous" is an
equivalence relation.  If a cocycle C is cohomologous to the
one which equals identically the identity oparator of (1, C
is said to be an mp—valued coboundary. We denote the set of
all f"-valued cocycles of (G;X) by Zm(G;X), and the set of
all @P—valued coboundaries of (G3;X) by B (G;X). Moreover,
let us denote HG%G;X) the quotient set of Zm(G;X) by the
above equivalence relation. This is called the 69—Valued
cohomology set of (G3;X). Suppose 8l abelian. Then, if C1

and C, are in Z°(G3X), so 1is C,C5 (pointwise product) as
1 £

well as Ci , 50 that Zm(G;X) has an abelian group structure
and moreover ngG;X) is a subgroup of Zm(G;X)._ In this case,
Hng;X) is regarded as the quotient group of Zm(G;X) by Bm(G;X),
and it 1s called an my—valued cohomology group of (G;X).

A topological transformation group (G;X) is said to be

smooth 1f every orbit is locally closed in X (see [12]. [16]),

and effective if each stability group is trivial.

Proposition 2.1.1. If a topological transformation group
(G;X) is smooth and effective, then z0a;x) = BIYG;X) i.e.
B G:X) is trivial.

Proof. Since (G3;X) is smooth, there exists a Borel

cross section ¢ from the orbit space G\X to X (see [12]).
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Then the map ¥ :(g,y)—> g.c(y) from Gx(G\X) to X is Borel
and bijective as (G;X) is effective. By the smoothness of
(G;X), G\X is a standard space and so is GX(G\X). Hence the
inverse of ¥ is Borel. Thus we have a Borel map a from X

to G and.a Borel map b from X to a cross section of X under
G such that w—l(x)=(a(x),b(x)) i.e. x % a(x)eb(x) for each

xeX. For an arbitrary cocycle C(g,x), we put
A(x) = Cla(x),b(x)) for xé€X.
Then A is an @P—valuéd Borel function on X satisfying

Clg,x) = A(x) A(gex)

for all géG and all xé&éX. (2.1.1)

Indeed, observing ge.x in two ways, i.e.

1l

a(gex)+b(x)

Il

a(gex)eb(g-x)
g (a(x)«b(x))

g.X

It
1]

g.X (a{x)g)eb(x),

we have, by the fact that (G;X) is effectiVe,
a(g.x) = a(x)g and b(g-x) = b(x).
Therefore, we get

A(g-x)

C(a(g.x),b(g-x))
Cla(x)g,b(x))
Cla(x),b(x))C(g,al(x) b(x))

A(x)C(g,x).

]

il

This implies (2.1.1), so that C is a coboundary of (G;X).
[Q.E.D.]
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When (G;X) is not effective, it is hard to get general

results. Here we only mention the following proposition.

Proposition 2.1.2. If (G3;X) is transitive and 0lis one-
dimensional, then the cohomology group Hm(G;X) is isomorphic
with X(GO) which i1s the group of all continuous unitary
characters of some stability group GO.
Proof. Fix an XOeX and let GO be the stability group

of G at Xq - The map Gag —> B+Xg, gives a Borel isomorphism

from G\G onto X. For each cocycle C(g,x),
C(glgE’XO) = C(gl’XO>C(g2’XO) for all gl,g2€G0

holds. Then the map g —> C(g,xo) from G, to T is Borel

0

homomorphic, therefore continuous, where T 1s the one-

dimenslional torus and eguals mg. SO there exists a conti-
nuous unitary character Xc of«GO such that
C(g,xo) = Xc(g) for all géG,.

In this way we get a map ¥ : ¢ —> X, from ZC(G;X) to X(GO).

C
It is verified with no trouble that this ¥ 1is homomorphic
and surjective. Rest to show is that KerV = B®(G;X). Suppose

that

C(gO,XO) =1 for all gOEGO.

Then we get

Clgyg,%4) = Clg,xy) for all gy €G, and all g&G,

0

and it follows from this that there exists a Borel function
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A on X such that
C(g,xo) = A(g.xo) for all geG.

Since for each x¢éX there exists gleG such that x = g1° Xg>

we have

C(g,x)

i

C(.gsgl’ XO)

*
C(gy,x%y) Clegys,%4)

il

A(g -xy) Alelg,-x,))

Ax) ¥ a(sex).

il

This implies that C is a coboundary of (G;X) and KerV C
BC(G;X). As the inverse inclusion relation is clear, we

obtain that Xery = BC(G;X). [Q.E.D.]

2.2. Double transformation groups

When (G;X) is not smooth, instead of considering (G;X),
we take a double transformation group (G;Y;H) such that
(G;Y) is smooth and (G;X) can be looked at as the same with

(G;Y/H) as topological transformation groups.

Definition 2.2.1. We call (G;X;H) a double transformation
group if groups G and H act on the same space X as topological
transformation groups, where the actions of G and H on X are
denoted by (g,x) —> g.x and (h,x) —> x-h, and the following

conditions are satisfied.
(1) (gex)eh = ge(x-h) for all geG, all heH, and all x€X,
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(2) the map: (g,x,h) —> g-x-h from GxXxH to X 1s continuous.

Given a double transformation group (G;X;H) and a von
Neumann algebra (1, we will define an '~valued cocycle,

coboundary, and cohomology of (G;X;H) as follows.

Definition 2.2.2. We call an m?—valued Borel function A

on X an (U-valued cocycle of (G3X3H) if

A(g x h) = A(gex)A(X) A(x-h)

for all g€G, all héH, and all xé&X (2.2.1)

is satisfied. Such cocycles A and A are said to be

1 2

cohomologous 1f there exist an H-invariant cocycle Bl and a

G-invariant cocycle B2 such that
Vo= ’
Ag(x; Bl(X)Al(X)BQCX) for all xeX. (2.2.2)

If a cocycle A is cohomologous to the one which eguals
identically the identity operator of 0l, we say that A is

an a?—valued coboundary of (G3;X;H).

We denote the set of cocycles by ZM(G;X;H), the set of
cohomology classes by HUQG;X;H), and the set of coboundaries
by Bﬂ(G;X;H). If g1 is abelian, they all have abelian group

structures and HO(G;X;H) ¥ 2%y x;m) /BN e K H) .
Proposition 2.2.3. Let (G;X3;H) be a double transformation

group and {l be an abelian von Neumann algebra. (G;X) and

(H;X) are supposed to be smooth and effective. Then the
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following three abelian groups are isomorphic to each other.
(1) 8%G;x;H)
(2) B%6;%/H)

(3) B%H;0\X)

Proof. 1In general, the orbit spaces X/H and G\X may
not be Hausdorff. However, HYYG;X/H) and HPYH;G\X) are
well~defined because the definition of a cohomology group
depends only on fhe Borel structure, and we remark that the
Borel structures of X/H and G\X induced by their topologies
coincide with the quotient Borel structures by the smoothness
of (H;X) and (G;X) (see [121). |

Let A be an i--valued cocycle of (G;X3;H). Using this

A, we define C and D by

Cl{g,x) = A(X)A(g-x)* for geG and xeX, (2.2.3)

D(h,x) A(X)*A(X'h) for heH and xeX. (2.2.4)

Then, the equality (2.2.1) implies that C(g,x) is H-inva-
riant with respect to the variable xe€X and D(h,x) 1s G-
invariant with respect to xéX. Hence we may regard C’as a
cocycle of (G;X/H) and D as a cocycle of (H3;G\X) because the
cocycle conditions about C and D follow immediately from
their definitions. The corespondences A —> C and A —> D
induce the isomdrphism from HQRG;X;H) onto HURG;X/H) and
from Hm(G;X;H) onto HM(H;G\X). In fact, let ¢ be the map

A ——> C from Zm(G;X;H) to Zm(G;X/H). Then it 1s not hard to
see that ¢ is homomorphic and w_l(Bm(G;X/H)) = Bm(G;X;H).

Moreover, Proposition 2.1.1 together with the assumptions
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imply that ¥ 1is surjective. [Q.E.D.]

Remark 2.3.4. Let G be a group, and G and H be closed
subgroups of 5. In this case, we define the actions of G

and H on 5 by

1

GXéxHea(g,x,h) —> h"~ «x-gGG.

Then, (G;E;H) is a double trasformation group satisfying the

assumptions of Proposition 2.2.3.

2.3. Cohomology subordinate to measures

When a measure is put on the space X, we shall consider
the cohomology groups of (G;X) and (G;X;H) subordinate to
this measure. Let U be a positive Radon measure on a topolo-
gical space X, and {l be a von Neumann algebra. 1In the case
of a topological transformation group (G;X), we shall change
the former definitions as follows.

Let €, and C, be in z'(G;X). Then we say that ¢, is

H-cohomologous to C2 if there exists an §l°-valued Borel

function A on X such that for each ge&G
Cz(g,x) = A(X)"Cl(g,x)A(g-x) for u-a.a. x€X.

We denote the set of all p-cohomology classes of ZW(G;X) by
H%(G;X). A cocycle C is said to be a u-coboundary if C is u-
cohomologous to the one which equals identically the identity
operatorof (l, and we denote the set of all u-cobounbaries of
(G;X) by Bf}(G;X).

Next, in the case of a double transformation group
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(C3X3H), for A, and A, in z°NG;X;H), we say that Ay is M-

1

cohomologous to A

2

5 if there exist an H-invariant cocycle B

and a G-invariant cocycle B

1
5 guch that

A2(X) = Bl(X?Al(X)BZ(X) for wu-a.a. xeX,.

The set of all M-cohomology classes of ZQ(G;X;H) is denoted
by HS(G;X;H). A U-coboundary is defined in the same way as
above, and we denote the set of all H-coboundaries of (G;X3;H)

by Bﬂ(G;X;H).

Gt

Assuming (l abelian, 2°, Bﬁ, and Hﬁ have abelian group

~

structures and we have H?‘ ZmVBS as groups in either case.

Note that the above definitions depend only on the

measure class C(H) of H and not on ¥ itself. Therefore we

s
C(u)”

sald to be a quasi-orbit if ¥ 1s quasi-invariant and ergodic

write sqmetimes Bg%u) and H A measufe class C(W) is

under the action of G on X.

Proposition 2.3.1. If a topological transformation group

(G3;X) is smooth and C(MH) is a quasi-orbit on X, then

Hg<p)(G;X) is isomorphic to X(GO) as abelian groups where

GO is some closed subgroup of G.
Proof. By the smoothness of (G;X), C(H) must be a

transitive quasi-orbit. Therefore there exists an XOéX

such that C(u) is concentrated on the orbit G.x, which is

0

isomorphic to GS\G as topological transformation groups

where GO is the stability group of G at X4

the unique measure class which corresponds to the canonical

and such C(W) is

class on Gd\G.
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Let C be in Bg( ,(G3X). Then there exists a Borel
u

function A on X such that for each geG
¥
C(g,x) = A(x) A(g-x) for H-a.a. xeX. (2.3.1)
Now we define cocycles Cl and 02 by

o, (g,x) = ACx) T A(gex) (2.3.2)

Cz(g,x) = Cl(g,x)*C(g,x) for geG and xeX. (2.3.3)

Then, we have, for each geG

C,(g,x) =1 for p-a.a. x€X. (2.3.4)
Suppose that there exists a gOéGO such that
Co(gg,%5) # 1. (2.3.5)
The cocycle condition implies that
- * 11 G
Colgy,8y°%g) = Cplgy.xg) Crlgi8y,%y) for all g,,g,¢G.
If we define a Borel function B on G by B(g) = CZ(g’XO)’ we have

¥
C,(g5,8,°%y) = Blgy) B(gig,)
for all g,,8,€GC. (2.3.6)

According to (2.3.4), for each g,€C
B(gl) = B(glgz) for a.a. gléG

holds because C(M) may be considered as the canonical class

on Gd\G. By Fubini's Theorem, we get, for almost all g,€G

B(g,) = B(gys,) for a.a. g,EG.
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Therefore we have
B(g) = K (constant) for a.a. geG. (2.3.7)
However, by (2.3.6)
B(gyg) = B(gy)B(g) for all geG
holds and B(go) # 1 by (2.3.5), so that we have
B(g) # K for a.a. gé€G.
This fact contradicts with (2.3.7). So we get
Cz(g,xo) =1 for all geGj.

We have already shown in the proof of Proposition 2.1.2 that

this fact implies CZGBC(G;X). Since C, is in BC(G;X) and

1
BC(G;X) is an abelian group, we get thBC(G;X) by (2.3.3)

¢
C(u

that the inverse inclusion relation holds, so that we have

C C
c(u c(u

= X(GO) by Proposition 2.1.2. [Q.E.D.]

and so B >(G;X) C BC(G;X) has been shown. It is clear

BG (1 (63%) = BY(a;X). Hence we get H ) (63%) = 1%a;x%)

Next we shall consider the case where (G;X) is not
necessarily smooth. For a quasi-orbit C(u) on X, we often
find a large group 6 and i1ts closed subgroup H such that
C(y) can be identified with the 5-quasi—invariant measure

class on H\ﬁ. In this case we have the following theorem.

Theorem 2.3.2. Let 0l be an abelian von Neumann algebra

and let (G;a;H) be a double transformation group where G and
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H are closed subgroup of a group G and their actions are
defined as in Remark 2.2.4. If o0 is a Haar measure of G and
U (resp. V) is a canonical gquasi-invariant measure on G

(resp. 5/@), then the following three abelian groups are

isomorphic to each other.
(1) HgG;8;H)
(2) Hff(e;H\é)
(3) HMH;G/0)

Proof. This follows from Proposition 2.2.3 combined with

some measure theoretic arguments. We omit the details.

[Q.E.D.]

2.4, Weak cohomology

Let (G;X) be a topological transformation group and 0L
be an abelian von Neumann algebra. Then, we define mp—valued
weak cohomology of (G;X) as follows.

Definition 2.4.1 Tor two my—valued cocycles C, and C

1
of (G3;X), we call that Cl is weakly cohomologous to 02 if

2

Clcz 1s cohomologous to some continuous homomorphism from

G to Y. We denote all my—valued weakly cohomologous

classes of (G3;X) by ﬁm(G;X), which has also an abelian group

structure. We call ﬁm(G;X) Jf—valued weak cohomology group.v
Let Z%%G;X) denote all continuous homomorphisms from G

to o ana H‘(’}(G;X) be the factor group of ZgZ(G;X) by 20(G3XN

B?(G;X). Then, we see that
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Y G;x) = Hm(G;X)/HgL(G;X).

When a positive Radon measure M is put on X, we can also
define mg—valued weak H-cohomology group ﬁﬂ(G;X) of (G;X) by
routine arguments as in section 2.3.

Then, we get immediately the following propositions,

according to Proposition 2.1.2 and Proposition 2.3.1.

Proposition 2.4.2. Let (G;X) be a transitive topologi-
cal transformation group where G is supposed to be a loclly

compact abelian group. Then, ﬁG(G;X) is trivial.

Proposition 2.4.3, Let (G;X) be a smooth topological
transformation group where G 1s supposed to be abelian.

Then, for any quasi-orbit C(H) on X, o )(G;X) is trivial.

¢
C(u

Now, let G be a locally compact group. Taking two
closed subgroups H and K of G, we consider a double transfor-
mation group (X3;G;H). Let Jl be an abelian von Neumann
algebra.  Then we can also define &u—valued weak cohomology
group ﬁm(K;G;H) of (K;G;H) as follows.

Dfinition 2.4.4. For two (U"-valued cocycles A. and

1
A2 of (K3;G3;H), Al is called to be Weakly cohomologous to

*
A2 if A1A2 is O-cohomologous to some continuous homomorphism
from G to mu where o0 is a Haar measure of G. We denote

n/,
all mP—valued weakly cohomologous classes by Ha(K;G;H)

and we call it m?—valued weak cochomology group of (K;G;H).
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Proposition 2.4.5. Let G be a locally compact abelian
group and U (resp.V) denote a Haar measure of G/H (resp. G/K).
then, the following three abelian groups are isomorphic with

each other.

(1) BYK;G;H)
(2) ﬁﬂ(K;G/H)’
(3) #%n;6/K)

Proof. This follows from the definition and Theorem

2.3.2. [Q.E.D.]

Our considerations go on in the situation that G is
abelian and (0l is one-dimensional. Let 8 be the dual group
of G and H'L (resp. KL) denote the annihilator of the subgroup .
H (resp. K) of G in @. We denote by HS(K;G;H) thé factor

A A ¢
group of G by GNB4(K;G;H). Then, we see that

[IH

BC(ks05H) £ mS(k;65m) /8D (K3 65H) .

Furthermore, we get the following.

Proposition 2.4.6., If K + H is dense in G,

~ A L
Hg(K;G;H) £ G/ (x +uY).
/\ .
Proof. If x€G is written as X(t) = xl(t) x2(t) for
some X, € Kland XzéiHL, it is clear that x 1s a coboundary
by definition. So we shall show the converse.
A
Suppose that for xeG, x(t) = E(t)F(t) for almost all

teG, where E is an H-invariant cocycle and F is an K-invariant

- 41 -



cocycle. Since X satisfies x(tl+t2)x(tl)x(tzy = 1 for all

(tl, tZ)EGg, we get

for almost all (t,,t,)€6°. Put
$(61,8,) = ECty+5,)EEDETE,)

for (tl,t2)€G2, Then, by the property of E and F, ¢ is (K+H)2—
invariant. Since K+H is dense in G, (K+H)2 is also dense

in G2. Hence, (K+H)2 acts on Ggergodically. Therefore, we get

- 2
¢(tl,t2) = ¢ (constant) for a.a. (tl,t2)6G .
When we put E' = ¢cE and F' = CF, we see that
Et(ty+t,) = E'(£)E'(£,),
2
1 =
Fi(ty+t,) = F'(5)F (,)  for a.a. (t;,5,) €6

and

X(t) = E'(t) F'(%t) for a.a. tegq.

By Theorem 5.1 in [41], there exists X1 x268 such that Xl(t)
= E'(t) and xg(t) = F'(t) for a.a. t€G. Moreover, by the
continuity of X1 and X5 Xl must be H-invariant (i.e. plefﬁ,
X, must be K-invariant (i.e. X, € kt ), and X(t) = X1 (£)X5 ()
for all t€G. Therefore, X must be in K+ Hl. [Q.E.D.]

The proof of this lemma was suggested by Professor M.

Takesaki.
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Remark 2.4.7. Assume that '+ 55 is not closed in 8.
Then, the induced Borel structure of GY(KL+HL) is not standard
so that the cardinal number of Hg(K;G;H) must be uncountable
infinity. Therefore, in such a case, we can conclude that
the cardinal number of Hg(K;G;H) is also uncountable infinity.
In some indivisual cases, we know that the cardinal number
of %G(K;G;H) is uncountable infinity (see [27]) but general
considerations about the weak cohomology group have not yet

been obtained.

2.5. Examples and some calculations
Here we shall treat the following two transformation
groups.

(a) (Z;7) where Z is the additve group of integers and
T 1s the one-dimensional torus. The action of Z on T is

defined by

ne = eing for neZ and g¢T.

(b) (R;Tz) where R is the additive group of real
numbers and T2 is the two-dimensional torus. The action of

R on Tzis defined by
t«(&E,n) = (elti,ezﬂltn) for teR and (E,n)eTg.

Now we find the following double transformation groups

corresponding to the cases (a) and (b).

(a-1) (Z;R;27Z). The actions of Z and 27Z on R are

defined by
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n.z = z+n for neZ and zeR,

z «(2Tm) = z+27m for 2mme27Z and zéR.
(Z;T) £ (Z;R/21Z) as topological transformation groups.
(b-1) (B;R25(2ﬂ2)2). The actions of R and (27;2)2 on

R2 are defined by
te(x,y) = (x+t,y+27t) for t€R and (x,y)éﬁz,
(x,y)«(2m,27n) = (x+2mm,y+27mn)

for (2mm,2mn)€(272)° and (x,y)ER".

(R;TZ) g'(R;R2;(2WZ)2) as topological transformation groups.

2

Let u,v,a, and B be Haar measures of T, T, R, and R2

respectively. According to Theorem 2.3.2, we get
(a-2) BY(2Z;7) £ HE(2Z;R;272)
U 3 e > > 3
(0-2) 1S(R;1%) 2 HG(R3R%; (212)9) .

We shall determine a part of these cohomology groups.

Let us define the abelian group ZO and its subgroup Bﬁ by

Z0 = {all Tevlued Borel functions on T}
BO_{ £ -0 . 0
0T b(€)éZ"; there exists an a(&)eZ” such that
* .
b(E) = a(&) a(e*d) for H-almost all EGT}

We denote the quotient group ZO/BS by HS.

Lemma 2.5.1. HS(Z;T) is isomorphic with HS as abelian
groups.
Proof. For C(n,E)eZC(Z;T), we put a(g) = C(l,E)EZO.

Then we have a map ¢ : C ;—% a from ZC(Z;T) to ZO. It is
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easily checked that this ¥ is an injective homomorphism and

¢(BE(Z;T))CB8. We show that y is surjective and w(Bﬁ(Z;T))

= BS. Let aéZO, we construct C(n,&) as follows.
nol gy
TT a(e™ &) ifn>1
_ k=0
c(n,g) =<1 if n=0
' -(n+1) . "
TT  a(e™¥)e]  irng-a,
k=0

Then C(n,&) is in ZE(Z;T) and v(C) = a, so Y 1is surjective.
If b is in BO, then this construction gives a B(n,&) in

¥% .
BE(Z;T). Indeed, if b(g) = a(g) a(etg) for u-almost all

£€T, then, for example, when n 21l we see that

n-1 ‘K
B(n,g) = || ble&)
k=0
n-1 .
=TT ate™e) a(et gy
k=0 |
= a(E)*a(eing) for py-a.a. geT.

Therefore ¥ induces an isomorphism Y, from HS(Z;T) onto

H.S. [Q.E.D.]

We also take the following abelian groups Zl, B1 and

(y‘)

HD defined by

Zl = {all T-valued Borel functions on R with period 2w}
1 _ 1 . 1
By = 1a(z)€Z” ; there exists b(z)éZ~ such that
%
a(z) = b(z) b(z+l) for a-almost all z¢R} ,
I _ 1,51
Hy = Z7/Bj.
. 0~ ,1 0 ~_1 0 ~ .1
Then it 1s clear that 2~ = 77, BU = B, and HU = Ha‘



" Lemma 2.5.2. (R/Z+2n Z)+Z 1s a subgroup of Hg(Z;T).

(A,d)ézl

Proof. TFor AéR and d¢Z, we define a° by

a(A’d>(z) = ei(dz+x) for zeR.

The set of all at?»®)

Zl-and we will determine which ones fall in Bé among these

a(x’d)'s.

with AéR and d€¢Z forms a subgroup of

(x,d)_ 41
*TeBy .

Suppose that a Then it implies that there

exists a b(z)GZl such that
(A,d) _ ' .
b(z)a (z) = b(z+1l) for a-a.a. zeR. (2.5.1)

For Borel functions f(z) on R with period 27, we adopt L2-norm

|| - li; defined by

2 2
HfH2 = R qf(Z)(z dz .
_ Jo

Then, (2.5.1) 1s equivalent to
O |
b(z)a< ’d)(z) = b(z+l) in Lg—norm. (2.5.2)
We have the Fourier expansion of b(z).

b(z) = j{j bneinz in L°-norm. (2.5.3)
ned

Then, by (2.5.2) we get

§ : b e:L>‘eel(m+CUZ = g p etfet?  4n Lz—norm. (2.5.4)

n n :
n 7z neZ

By the uniqueness of the coefficients of a Fourier expansion,

i(n+d)
n+d

bnelA = b for all né¢Z. (2.5.5)

Hence we have
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b for all neZ. (2.5.6)

on =]

n+d§

On the other hand,
; 2 ! 1y 2
L\ b |< = b5 <.
n Z! n! 2

If @ # 0, this fact contradicts (2.5.6). Therefore d must

be 0, and in this case, by (2.5.5), we get

ix

in
b e = b e .
n n

2
By the fact Z:Zibni # 0, there exists an n,€Z such that

néZ . .

bn # 0. Hence we have elk = elno, which implies that A€Z+27Z.
0

Conversely, we can check easily that a(x’d)eBé if d = 0 and

NEZ+2TZ. [Q.E.D.]

Here we note that using this lemma we have the family
of representations which L.Baggett has got in [4], and the
argument in the above 1is parallel with his in some sense,.
But the next proposition will give rise to an essentlially
new parametrized family of Iirreducible representations of
the Mautner group. Let § be the additive group of rational

numbers.

Proposition 2.5.3. (R/Z+27Z)+§ is a subgroup of HS(Z;T).

Proof. For peéN (positive integers), q€Z, and )reR,

we define g(l,q/p) by

50,a/P) 5y = 1{a/P)zh) for 0% z< 2.

Then we are able to extend it to a(x,q/p)ézl. By definition,
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(a(2>0/P)yp o (prsad)

Ir 2(0 /Pl tnen (2(*PHP 45 4150 in Bi, because By
is a group, so that a(pX’Q)EB&. This fact impliés q = 0.
(see the proof of Lemma 2.5.2). In the same way, we have

AEZ+2T7Z. The converse is trivial. - [Q.E.D.]

There exists a relation between‘Hg(Z;T) and H%(R;T2),
shown in the next lemma, so that we can get an information

about Hg(R;Tg) from that of HS(Z;T).

Lemma 2.5.4. Hﬁ(Z;T) can be imbedded isomorphically
into H%(R;TZ) as an abelian group.

Proof. Instead of HS(Z;T) and Hg(B;Tg), we take
HC (2;R;272) and Hg(R;RE;(2wZ)2)(see (a-2) and (b-2)). TFor
A(Z)EZC(Z;B;2W?), we define a T-valued Borel function

X(x,y) on R2 by

H

R(x,y) = A(x-55%)

where for yéR, y =y + [y]l, 0 £y < 27, and [y] € 27Z.
Then we have A(X,y)éZC(R;RQ;(2ﬂ2)2). In fact; for teR,
(x,y)st, and (2ﬂm,2ﬂn)é-(2ﬂ2)2,
At (x,y)(2mm,2mm))
= K((X+2ﬂm+t,y+2ﬂn+2ﬂt))
- A(X+2ﬂm+t—§%§¢§?ﬁ?§Ff )

= A(x+2nm+t¥ —l(y+2nt)+—l[y+2wy])
27{ 2

= A(§%(—[y]+[y+2ﬂt])+(x—vl§)+2wm))
o
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W
B
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P
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A(x+t—§ﬁy+2ﬂt)A(x—§Ey) A(X+2wm—§gy+2ﬂn)

I}

~ ~ % o~
A(x+t,y+2TE)A(x,y) A(x+27m,y+27Tn)

Rt (x,y)E(x,7) A((x,y) +(2mm,21n)).

Therefore a map ¢ : A —> X from ZG(Z;R;QWZ) into
ZC(Z;B;(QWZ)2> is obtained and it is easily verified that
this map is an injective homomorphism.

Suppose that Al 1ls cohomologous to A in other words,

2>
there exists a Z-invariant cocycle B and a EWZ—invariant'

cocycle C such that
#
Az(z)Al(z) = B(z)C(z) for all =ze¢R.

We will see that ﬁ(x,y) is R-invariant and C(x,y) is (2ﬂ2)2—

invariant and moreover
Pa™d Vo™ * la ~o 2
As(x,y)A(x,y) = B(x,y)C(x,y) for all (x,y)éR",

which imply that A, 1s cohomologous to A Indeed, for téR

1
and (x,y)éﬁz, we get

o -

fa"s
B(t+(x,¥y))
= g(x+y,y+2ﬂt)
= B(X+t—-ly+2ﬂt)
2T
= B(x+t-ns(y+2mt) il y+2,t7)
27 27 yrem
_ 1
= B(X-;;y)
_ —
= B(x-57y)

= B(x,y),
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and for (2ﬂm,2ﬂn)e(2ﬂ2)2 and (x,y)fﬁz,

C((x,y)(2wm,2mn))
= 8(X+2ﬂm,y+2nn)
- N Sy ey
= C(x+2ﬂm—§Ey+2nn)
- C(x—niy+2mm)
gy Teim
- 1=
= C(X—g;Y)

='6(x,y).

ra'd

Conversely, suppose that A, is cohomologous to A2.

1
Let B'(x,y) be an R-invariant cocycle of (R;R2;(2WZ)2) and

C'(x,y) be a (2ﬂZ)2—invariant one, satisfying
~ r~ * ' ' 2
A2(x,y)Al(x,y) = B'(x,y)C'(x,y) for all (x,y)¢R".

We define cocycle B(z) and C(z) of (Z;R;2TZ) by
B(z) = B'(z,0) and C(z) = C'(z,0) for all z&R.

Then we have

* ~~ r~ *
Az(z)Al(z) = Az(z,O)Al(z,O).
= B(z)C(z) for all ze¢R,
where B(z) is Z-invariant and C(z) is 27Z-invariant. In

fact, observing that B'(x,y) is 2TZ-invariant with respect

to the second variable, as Al, A2, and C' are so, we have

B(z+n) B'(z+n,0)

]

B'(z,-2mn)

B'(z,0)
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= B(z)
and likely
C(z+2mm) = C(z) for all zeR.

Therefore Al is cohomologous to AZ‘
At last, we shall show that Al is a-cohomologous to A2

if and only if Kl is B-cohomologous to A To this end, by

5

the fact shown above, it is sufficient to show that A(z) = 1
I~

for G-almost all zeR if and only if A(x,y) = 1 for

B-almost all (x,y)5R2. Let us define N, ﬁ, and Ny by

N ={ zeR ; A(z) # 1} ,

N { (X,y)682 s Alx,y) # 11},

Ny= { xeR ; (x,y)eﬁ}, for yeR.

Then it is verified with no trouble that

O(N) a(Ny) for all y R,

r

B(N) a(Ny) do(y) ,

JR
so that a(N) = 0 if and only if B(¥) = 0.

Therefore Y induces an isomorphism ¥, from Hg(Z;R;2ﬂZ)

into HS(R;R®;(212)7). [Q.E.D.]

By the above Lemma 2.5.4 and Proposition 2.5.3, we have

the following proposition.

Proposition 2.5.5. (R/Z+27Z)+€) is a subgroup of Hg(R;TZ).
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2.5.6. Conseqguences and examples

(a=-3) (R/Z+27Z)+Q 1is a subgroup of Hg(Z;R;QWZ).

-(1/2)qz”

For example, if we take A%(z) = (qeZ), we get

. 2 .
Cq(n,z) = e(lq/z)n e1ANZ (qge?).

(b-3) (R/Z+27Z)+Q is a subgroup of H%(R;ﬁz;(2ﬂ2)2).
~ ’ o~ . —. 2
If we take A%(x,y) = A%(x-(1/2m)Yy) = o= (172)a(x-(1/2m)y)

induced from the above A% (g Z), we get

T, (x,y)) = A%, A% (x,y))"

_ e(q/ZW)iXE§+2Wt]e(q/8ﬂ2>i([§+2ﬂt]-—237[37+2wt]2)
for teR, and (X,y)€B2. (qe?)
~C
(a-4) ® is a subgroup of H (Z;R;2TZ).
(b-4) @ is a subgroup of ﬁC(R;Rg;(2w2)2).
Remark 2.5.7. Furthermore, we note that the weak

cohomology groups HC(Z;R;2HZ> and HC(Bgﬁzg(ZﬂZ)z) have the

cardinal number of uncountable infinity (see [27].).

'2.6. An application to decompositions of regular

representations

In this section, we consider again decompositions of
regular representations of semi-direct product groups related
with the cohomology groups. We assume that all notaions and
situations are similar as described in section 1.3.

Let X be the right regular representation of a semi-direct

.._52___



product group G = NxSK where N and K are locally compact abelilan
groups. In this section, for simplicity} we assume that the

: A
Haar measure p of N is invariant under the action of XK. Then,

the regular representation A of G may be realized on the

. 2,0
Hilbert space L7(NXK) as follows.

Lemma 2.6.1. For E(X,t)eL2(ﬁxK),
Nz, 1) 8 6t) = <z, X080k X, t-k)

for (z,k)é‘NxSK = G.

Proof. For E(g)éLz(G), put (W, &) (g) = E(g_l). Then,
w1 is a unitary operator on L2(G) because G is unimodular.
Let F denote the Fourier transformation of LZ(N) onto Lz(ﬁ).

Take a unitary operator W, from L2(G) onto L2(ﬁXK) defined

2

by W, = F®I where I is the identity operator on L°(X) and

>

/\ .

we identify L2(C) with L°(N)ELZ(X) and L°(NxX) with L2(H)®
2 ® % )

L"(K). Then, we see that wzwlx(z,k>wlw2 is the desired one

by simple calculations. [Q.E.D.]
C N . .
For a cocycle C(k,x)EZ (K;N), we define a unitary
N
representation A’ of G by, for £(X,t)ELZ(NxK),

”%z,k_)@ (X>t) = C(k,x)<z,x> E(k+X,t-k)

for (Z,k)GNXSK = G. Then, we get the following lemma.

Lemma 2.6.2. X is unitarily equivalent to XC.
Proof. The cocycle C(k,X) may be regarded as an element

A A
of ZC(K;NXK). Since the action of K on the space NxK is
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smooth and effective, we see that C(k,X) becomes a coboundary
in ZC(K;NXK) by Theorem 2.1.1. Then, there exists an T-valued

. A
Borel function B(X,t) on NXK such that, for each k€K,
C(k,x) = B(X,E)B(ksX,t-k) (2.6.1)

‘ A
for all (X,t)ENXK. Take a unitary operator W given by, for

E(x,t)eL’ (NxK),
(WE) (X,t) = B(X,b)E(X,t).

¥
Then, 1t is easy to check that W A( )w = A%Z k) by the
>

Z, K
equation (2.6.1) and Lemma 2.6.1. [Q.E.D.]

In section 1.3, we gave two kinds of entirely different
decompositions of A related with ergodic measures. Here we.
can give other many decompositions of A related with the
cohomology group. )

: N
The Haar measure ¥ on N was decomposed into ergodic

measures as

‘o

po=\ p do(zg).
Szg

For simplicity of our arguments, we also assume that all
components UC (C€7) are invariant under the action of XK.

N\
Then, for a cocycle C(k,X)éZC(K;N) and néK, we can define a

(C,n,T)

unitary representation V of G as follows.

For E(X)ELz(ﬁ;uC),

(Vgg,23€>g)<x> = C(k,x)Xk,n»<z,x7E(k x).

Theorem 2.6.3. The right regular representation ) of
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G = NXSK is decomposed as

®
<KA§9'V(C’n’c) do(z)dav(n).
KJZ |

ne

A

VAN Fal
(A) V(C’n’C) (CeZC(K;N),neK, z€7Z) are irreducible.
1 1 1 1
(B) V(C,n,C) is unitarily equivalent to V(C »n', L) Af
and only 1f &' = T and C + n is M ~cohomologous to C' + n'.

’ AN
Proof. We realize A% on the Hilbert space L2(NXK) as,

for E(x,n)eLz(ﬁxﬁ),
(38, 1B (M = 0l <k, <z XreC o,

Then, by similar arguments as in section 1.3, we get

C

e

A
"

S
g \ v(Cs™ ) qo(zyavin) .
Rz

C

Since A = XY by Lemma 2.6.2,

52

S
J ~

The properties will be obtained by the modification of the

proof in Theorem 1.3.3. We omit the detail. - [Q.E.D.]

By Theorem 2.6.3, we see that regular representations of
some concrete non-type 1 groups, for example, the discrete
Mautner group, the discrete Helsenberg group, the Mautner
group, and the Dixmler group, have infinitely many completely
different irreducible decompositions. For the detail, see

[24] and [27].
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Chapter III. Generalized induced representations

In this chapter, we investigate generalized induced
representations for double transformation groups, related
with cohomology and we construct families of non-Mackey
representations of certain non-regular semi-direct product
groups as a generalization of Mackey's method. Applying
this construction to the Mautner group, we obtain a new
parametrized family of non-Mackey representations. The
representations found by L.Baggett [4] form a part of this
family.

In 1978, L.Baggett found a family of non-Mackey
irreducible representations of the Mautner group via the
decompositions of a generalizd tensor product of some concrete
representations [4]. In order to elucidate the mechanism of
his family, we develop a theofy of generalized induced repre-
sentations in this chapter. In 1976, A.Ramsay turned the
Mackey's theory intq a representation theory of measure

groupoids [447] and obtained a generalization of induced repre-

sentations.. Our notion is close to his but there are some
differences. Thege differences will be seen to be crucial
in the decomposition theory in later chapfers. It is known

that, for a connected and simply connected solvable Lie group g,
there exists an algebraic solvable Lie group G which contains

G such that [&,3] = [G,G] = N and @ acts on N (the dual of N)
smoothly. L.Pukanszky made an extensive use of this fact in
(417, [L42]. We impose similar assumption (¥) for non-

regular semi-direct product groups, which will be used
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effectively as a substitute of this fact.

In section 3.1, for a double transformation group, we
define unitary representations in relation to cohomology,
which appears as a generalization of the Mackey's induced
representations [30], [33].

In section 3.2, following the construction in section 3.1,
we have families of non-Mackey representations of non-regular
semi-direct product groups satisfying a certain condition (¥).
In Theorem'3.2.6, we show when such representations are mutu-
ally equivalent, and in Theorem 3.2.7, we give a criterion
of the irreduciblility. In Proposition 3.2.9; we mention
a property which characterizes such representations. The
results obtained are akin to the results in [33] or (447 put
durs are more precise according to the strong conditions
imposed. Moreover, the techniques employed by L.Baggett [4]
will be better understood from our points of view.

In section 3.3, we apply our general results to the dis-

crete Mautner group and the Mautner group.

3.1. A generalization of induced representations

Let (G;X;H) be a double transformation group. When a
continuous unitary representation L of H on a separable
Hilbert spaoe'%(L) is giveh, we construct a unitary represen-—
tation of G in the following way. Let (¢l dencte the commuting
algebra of L, in other words, the set of all bounded oparators
on %(L) which commute with all Lh for ht¢H. We take an &P—Valued
cocycle A(x) of (G;X;H) and denote D(h,x) = A(X)*A(X-h). Then

D(h,x) is an ("-valued cocycle of (H;X) which is G-invariant
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with respect to the variable xé£X.
We assume that (H;X) is smooth. Let p be a quasi-
invariant Radon measure on X/H under the action of G. We
put ug(E) = p(g-E) for Borel sets E of X/H and let o(g,x) be
a Radon-Nikodym derivative of My by u for each g€G. We
assume that there exists a Borel function g(g,i) on GxX/H
such that for each gea, 0(g,x) = o(g,x) for p-almost all
x€X/H. Put p(g,x) = g(g,i), then p(g,x) is a Borel function
on G¥X ahd H-invariant wiéh respect to the variable x¢€X.
Let-%A denote the set of all f's satisfying the following

conditions.
(1) f is a weakly Borel function on X with values in %(L),
% %
(2) f(x-h) = D(h,x) th(x) for all xeX and all hé€H,

(3) S Nf(x)ﬁ2du(i) is finite.
X/H

We define the inner product of-%A by

(f3f£r) = g (£f(x),f"(x)) dp(i) for f and f'€%§.
X/H

Then it is verified by usual arguments that-%A is a Hilbert
space with ( ; ). TFor each geG, if f(x)&%é, then
p(g,x)l/zf(g.x)é%g, and they have the same norm. So we have
a unitary oparator Ué s f(x) —> p(g,x)l/zf(g.x) onegA.

Proposition 3.1.1. U (g —> Ug) is a continuous unitary
representation of G.

Proof. This follows by routine arguments. [Q.E.D.]
We note that if (H;X) is effective, %? is not empty and
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moreover isomorphic to LQ(X/H;%(L);U). In fact, by the
assumption that (H;X) is smooth and effective, we can decompose
x€X such that x = b(x)+a(x) where a is a Borel function from

X to H and b 1is a Borel function from X to a cross section

of X under the action of H. Let f(x) be an %(L)—valued

weakly Borel function on X/H such that g Hf(x)H2 dp(x) 1is

X/H
finite. Put

¥

Fx) = A(x>*La(X)

f(x) for x&X,

then we get fé%ﬁ. The correspondence T ~—9-? induces an

isomorphism from L2(X/H;%(L);U) onto.%é.
Let us consider the case where X is a group 5, H is a

closed subgroup of 5, and G is taken to be equal to G.

Then the cocycles A are all trivial. Let U be the canonical

gquasi-invariant measure on H\G. Under these situations,

the representation U defined in the above reduces to the

ordinary induced representation of G from L (see [301]). Ir

we take G as a closed subgroup of E’ and the cocycle A to be

~

trivial, then the above U reduces to the restriction of IndgL
to G. Therefore we can regard the above representation U as
a "generalized induced representation of ¢ from L through
(G;X;H) twisted by the cocycle A", and we denote U by
Indg (y.4,L).

For A, in 2°4(G;X;H) we denote Indd(w,A;,L) by UAi(i=1,2).
Then we have the folowing proposition.

Proposition 3.1.2. If A. is cohomologous to A UA’iS

1 2°?

unitarily equivalent to yhz
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Proof. From A,, we get o -valued cocycle Di of (H;X) by
% ,
Di(h,x) = Ai(x) Ai(th) for heH and xeX (i=1,2).

Since A, is cohomologous to A there exists an Jf;valued G-

1 22

invariant Borel function B on X such that
L
D2(h,x) = B(X).Dl(h,x)B(x-h) for all h€¢H and all xe&X.

Let %ﬁLbe the Hilbert space corresponding to Ai' ir f(x)G%Ag

R * (X
then f(x) = B(x) f(x) is in %Azand irl = IfH. 1Indeed, ror
exanple,
/f\:(Xch)
%
= B(x+h) f(xsh)

i

B(x+h) D (h,x) L, £(x)

B(X-h)*Dl(h,x)*B(X)L;B(X)*f(X)

%%
Dg(h,x) th(x) for all héH and all xéX..

. %
Hence we get a unitary operator W : f(x) —> B(x) f(x) from

%Ato 6Ai and it is easy to see that

Az

Ay _ T*
U'l= W Ug W for all geG.

g

This implies that UAIis unitarily equivalent to UA% [Q.E.D.]
As a result of the above proposition, we see that UA
is defined essehtialy by the cohomology class [A] in ZURG;X;H).
Suppose that L is a multiplicity free representation of H

and a double transformation group (G;X;H) satisfies the

assumption of Proposition 2.2.3. Then the elements of the
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three groups HG%G;X;H), HJQG;X/H), and Hm(H;G\X), which
correspond one another by Proposition 2.2.3, determine a
generalized induced representation of G up to equivalence.
At this mbment, we shall look at the representations
corresponding to the elements of Ha(G;X/H) somewhat in
detail. Take an (U-valued H-invariant cocycle C of (G;X)
derived from a cocycle A by Clg,x) = A(X)A(g.x)*. We define
a representation VC of G as follows. 1In piace of the condi-

tion (2) in the definition of %ﬁ, we put
%
(2)' f{x+<h) = th(x) for héH and x€X, and

leave the other conditions behind. We denote the set of

all such f's by %. Define Vg by, for ge&G,

X)1/2

Vg : %af(x) —> po(g, C(g,XM‘(g-X)E%.

It 1is easily seen that Vc(g ——9"V;) 1s also a unitary repre-
sentation of G and it is unitarily equivalent to UA. More—
over, 1t is verified with no trouble that VC/is unitarily

equivalent to cheven if C, is "w"-cohomologous to C2.as

1
elements in ZGQG;X/H). In the case of Remark 2.2.4, genera-
lized induced representations are determined up to equiva-
lence by the mutually corresponding elements of the cohomo-

logy groups H?(G;G;H), Hﬁ%G;H G), and H?(H;G/G) by Theorem

2.3.2.

3.2. Irreducible representations of semi-direct

product groups

Let G be a semi-direct product group NXSK, where K acts
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on N as an automorphism group. We assume that N and K are
abelian groups. The action is denoted by N3z —> k-zeN. The
element of G is written as (z,k) (zeN, keK) and the multi-

plication is given by
(z,k)(z',k") = (z+k z', k+k').

N
Then an action of K on the topological space N, the dual of

N
N, is defined, for k€K and XeN, by
<z, kex> =<k-2, X7 for all zeN.

So we get a topological transformation group (K;§). G.W.Mackey
called G = NXSK a "regular" semi-direct product group when
(K;ﬁ) is smooth, and determined all irreducible representations
of such a group. We shall treat mainly the case where G is
not a regular semi-direct product gfoup, and try to construct

a family of non-~Mackey irreducible representations of G. To

do this, our main assumption is this.

~

(¥) There is an abelian group K containing K as closed
r~~ PN

subgroup. The group K acts on N as an automorphism

group and, as such, it is an extention of K. 6 = NXS%

is a regular semi-direct product group.

3.2.1. A construction of representations of G
A
First, we take XeN and denote by HX, the stability
group of X at x, i.e. the set of t€X such that t-X = X. Hy

is a closed Subgroup of K. Put GX= NXSHX. We define LX by

X =
L(z,h) =<z, X7 for all (z,h)éGX.
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Then XA is a unitary character of GX' K and H, are closed

X
~ ~o
subgroups of K, G and GX are closed subgroups of G, and so
we get double transformation groups (K;K;H,) and (G;é;GX)
as in Remark 2.2.4, ©Next, we take a T-valued cocycle A of

(K;%;HX) where T is the one-dimensional torus which equals

u

¢ ={zeC;lz] = 1} . If we put

A(z,t) = A(t) for all (z,t)€q,

then K is a T-valued cocycle of (G;G;Gx)n Let ¥ be a Haar

measure of the abelian group HX\% z GX\E. Under these

preparations, we define a unitary representation U(X’A) =

Indg (u,X,B@ of G, as described in section 3.1.1.
X .

Remark 3.2.2. Since a unitary character ¢ of % is a

(X,9)

cocycle of (K;%;HX), we get U This is a typilcal

~

example, and, in the case that G = 5 and therefore K = K,
(X5 ¢)

coincides with the representation obtained by the

Mackey's method.

3.2.3. Realization of UUGH) o L2 (HN\ K, 1)

Let C(k,t) be a T-valued cocycle of (K;%) defined by
Clk,t) = A(t)A(t+k)*. As C(k,t) is Hy-invariant with respect
to té%, we can regard it as a cocycle of (K;Hi\%) and when
it is considered in such a way, it is written as C(k,x).
Since HX is a closed subgroup of %, there exists a Borel

cross section ¢ : x —» c¢(x) from HX\% to K. Then, by

routine arguments, we have the following result.
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For f(x) € L2(H£<R,u)

(UK (x) = 0, 1)<z, 0(x) kT (x0k)

for all (z,k)€qG.

A) on 12(R,T)

3.2.14. Realization of U(Xs

~ A
The Borel map ¥ : HX+t —> t.x from HX\K to N induces a

A
Radon measure 7 = Yx(p) on N concentrated on Orb%(x), the
A .
set{ t.xeN ; teX} . We define a cocycle C(k,w) of (K;N) by
C(k,t) = if u)éOrb%(X) and w = t-y
Clk,w) =

1 if éOrbﬁ(X).

A A
Then we can also realize U<X’A) on L2(N,u) in the following
form.

Tor f(w)é& Lg(ﬁ,ﬁ)

(Uggzﬁgf)(w) = C(k,w)<z,w>f(k-w) for all (z,k)eG.
Define an action ofv% on ZC(K;E;HX) by

(t-8)(6') = A(t+t") for t€K and all t'eK,

and transfer this action to C in ZG(K;N). Then we get

(£+C) (k,w) = C(k,tew)

~ N
for teK and all (k,w) €& KxN.

_ . A~ L
Let V be a unitary representation of K on L2(N,p)

AN
obtained by putting, for f(m)éLz(N,u),

(V. £) () = £(t-w) for tek.
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- VAl
Then we have, for f(w)éL2(N,ﬂ),

(VtUgé’i§V§f)(w) Ok, bew)<z, b 0> (k)

= (UggxﬁgA)f)(w) for all (z,k)eEG.

This fact shows the following lemma.

Lemma 3.2.5. y(XA) is unitarily equivalent to U(t'x’t'A)

for for all té%B

Let o be a Haar measure of %w Then we have the following

theoremnm.

Theorem 3.2.6. U<X1’A1) is unitarily equivalent to

ulXzs82) 4¢ ang only if X, € Orbg(X;) and A, is G-cohomologous

2
to tO-Al where toéK satisfies X2 = tO'Xl‘

Proof. The "if" part is easily verified by Lemma 3.2.5
and the last assertion in section 3.1. We show the "only if"
part.

(A g(Xeshy)

Suppose that U Then, We have

U(XI’AI) = N‘U(XZ’AZ) which are restrictions to N of

N
U(XI’AI) and U<X2’Az). Let
&
{U(XL’AL) = SA wdl. (w) (1 = 1,2)
N N i 2

be the irreducible decompositions of N U(XL’AL), the
measures Ui being concentrated on OPbK(Xi) by the definition
of U(XL’Ai). As such a decomposition of an abelian group is

unique, we have first Orbﬁ(xl) = Orbﬁ(Xz). Hence there

exists a toe% such that X2 = tO-Xl, By Lemma 3.2.5,
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U(XlsAl) x> U(téxl >Bpe Ay) z U(XZ’ o Ay) holds, so that we

have U
g (A1) 2 p(XA,)

<x2’t0'Az) 2 y(Xas R2) | mherefore if we show that

implies that A2 is o-cohomologous to Al’

the proof will be complete.

(XaAl )

N\
Let U ana t(%22) pe realized on L2(N,T) and let

A s
W be a unitary operator on L2(N,U) such that

(X,An) _ ¥ (X,A;)
U(Z’k) e W U(Z:k) W fOP all (Z,k)éGo
. (X,A) .
From the expressions of the operators U(z k) in 3.2.4, we
. >
have
AN A
(ng’g%f)(w) = <z,wy(w) f(w)5L2(N,u),
3

therefore U(X’AS) = U(X’Az) for all zeN, and these operators
(z,0 (z,0)

A T
generate a maximal abelian von Neumann algebra L (N,H) on
A ,
L2(R,%). Then by the condition UA)y = wulXR2) porn a1
(z,0) (z,0)
N~ -
zeN, W must be in L®(N,1), i.e. W is equal to a multiplicative

operator g(w) such that lg(w)/ = 1. Then we see that, for

/\N
f(w)ELZ(N,u), on the one hand we get

* (XsAl )

(W U(O,k) W) (w) = B(w)*Gi(k,w)g(k.w)f(k.w),

and on the other hand we get

UiE 22 ey (w) = Cyl,w) P (kew),

-~

where C, and C, are the canonical cocycle of (K;N) corres-

ponding to Al and A2. So we have, for each k€K,

~~ lad * ~ A
02<k’w) = B(w) Cl(k,w)B(k-w) for py-a.a. weN.

Take a T-valued Borel function B on HX\K such that
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~ ~ ~ A b
Bo(m) = B(w) for p-almost all wéN, where B, is defined by

0

B (t) 1f weOrbz(X) and w= t-X,
~ 150 7
Bo(w) =

1 if méOrb%(X).
Then we see that for each kéK
%
Cz(k,x) = Bo(x) Cl(k,X)BO(x k) for up-a.a. x€HNK,

in other words, C2 is wu-cohomologous to Cl‘ Therefore it

follows that A2 is a-cohomologous to Al by Theorem 2.3.2.

[Q.E.D.]

Next we give a necessary and sﬁfficient condition that
U(X’A) is irreducible. Let OrbK(X) be the set {k~Xé§ : ksK§
and Orbg(X) be the set ﬁt.Xeﬁ : t¢R}, both of them are
considered as a topological space with the topology induced

FAY
from N.

Theorem 3.2.7. U(X’A) is an irreducibie representation
of G if and only if OrbK(X) is dense 1in Orbﬁ(x).

Proof. First, we show the "if" part. Since (K;ﬁ) is
smooth, we see that the map ¥ : HX+t —> t X from Hk\% to
Orb%(x) is homeomorphic (see[l2]). The set w_l(OrbK(X)) is
equal to the orbit of K on Hk\% passing the unit element of
Hi(ﬁ, and it is dense in Hi\% by the assumption. Moreover
the action of K on HX(R is equal to the action of HX\HX+K
on Hk\% as under a subgroup. Therefore the Haar measure U
of Hﬁé% is invariant and ergodic under the action of K, and

. ~ A
so 1is U on N.



N . .
Suppose that an operator W on L2(N,u) satisfiles

OGA) - (X A) f
U(Z,O)w = WU(sz) for all (z,k)EG.
Then we get
(X,A) 0 — (X, A)
U(Z,O)W WU(Z,O) for all zeN,

. _ | .
so that W must be a multiplicative operator B(w) in the same

C "
way as in the above proof. We observe that, for f(w)éLg(N,u),

Clic,wB(k w)f(kew)

v U

N

NN
=
}_b
~r
—~
g
1]

B(w)C(k,w)f (ke w) for kek.

—~
=
et

NN

O
v
\/v
)
~
£
~
Il

Hence we get, for each kek,

~ ~ . A
B(k-w) = B(w) for up-a.a. weN.
Then
v ~ A
B(w) = constant for u-a.a. weN,

by ‘the ergodicity of ﬁ, so that W must be a scalar operator

2,0~ R . . (X,A) . . . .
on L7(N,u). This fact implies that U is irreducible.

The "only if" part is shown in the following way. If

o N

U(X’A) is irreducible, the measure U on N corresponding to
U(X’A) must be ergodic and so is U, Moreover, the ergodicity
X\K and
80 OrbK(X) is dense in Orbﬁ(x) through the homeomorphism V.

of ¢ implies that HX\HX+K is a dense subgroup of H

Pa™ ~o
Remark 3.2.8. The action of K on ZC(K;K;HX) induces

naturally an action of X on Hg(K;%;H Let & be a

X)'

A
K-invariant Borel subset of N such that (K;Q ) is essentially
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free i.e. all stability groups HX of E at X€Q are equal to
H. Moreover we assume that K+H is dense in %K. Then the
above two theorems assert that the irreducible representations
U(X’A) of G are parametrized by the orbits of QXH&(K;%;%Q
under the action ofv%.

Let C(H) be a quasi-orbit for the action of G on N
concentrated on Orb%(x) for some XéQ, where o= w*(u) for a
Haar measure U of Hk\% through the above map ¥ from Hf\ﬁ

A ~
to N. If a T-valued Borel function A on K satisfies the

condition that, for each k€K and heHy,
% ~
A(k+t+h) = A(k+t)A(t) A(t+h) for o-a.a. te€K,

we call it an a-cocycle of (K;ﬁ;HX). For an a-cocycle A, we

can also define a unitary representation U<X’A)

of G in the
same way as above. Such U(X’A> is an irreducible representation
of G restricting to C(R) with multiplicity one if it satis-

fies the assumption of Theorem 3.2.7. Conversely, we have

the following proposition.

Proposition 3.2.9. If U is an irreduclble representation
of ¢ restricting to C({1) with multiplicity one, then there
exists an a-cocycle A of (K;ﬁgHX) such that U is unitarily
eguivalent to U(X’A>.

Proof. By general results [33] about semi-direct

product groups, there exists a T-valued Borel function C(k,w)

A
on K«N such that
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(1) for £(w)eL?(W,i),
(U(z,k)f)(w) = C(k,w)<z,w>f(ksw) for (z,k)€Gq,

(2) for each ki ,k, €K,

Fal
C(kl+k2,w) = C(kl,w)C(kg,kl-m) for fi-a.a. weéN.

Take a Borel function D(k,t) on KxK such that D(k,t) =

C(k,V(£)). Then D(k,t) is H,-invariant with respect to

X

t€X and satisfies, for each kl’kE K,

D(ky+k,,t) = D(ky,t)D(k,,ky+t) for a-a.a. teK.

We choose a Borel cross sectlon Cqt K\% _— ﬁiand replace
t by k+cl(x) (keK,xeK\§5 in the above expression. Then,
using Fubini's theorem, we see the existence of an
element ko in K for which, rewriting c(x) instead of

k0+cl(x), we can claim

for almost all XEK\ﬁ,
D(kl+k2,c(x)) = D(kl,c(x))D(kz,c(x)+k1) (3.2.1)
for almost all kl,kgeK.

Put b(t) = c¢(t) and a(t) = t~b(t) for teK. We define a

T-valued Borl function A(t) on K by
A(t) = D(a(t),b(t)).

Let D(k,t) be a cocycle of (K;K) defined by D(k,t) =

A(t) A(t+k). Then, (3.2.1) implies that

D(k,t) = D(k,t) a.a. (k,t)eKxK.
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However, by the fact that D and D define the same "continuous"

unitary representation of K on Lg(f), we get, for each kekK
D(k,t) = D(k,t) a-a.a. téek.

Therefore we see that, for each k€K and each héHX

D(k,t+h) = D(k,t) o-a.a. teK.

This implies that A is an o -cocycle of (K;%;HX) and it is

verified with no trouble that U i1s unitarily equivalent to

U(X’A). [Q.E.D.]

Remark 3.2.10. By applying general considerations about

cohomology L[U43

-

, We may get a s Under the same

nm

assumption of Theorem 3.2.9, we can take a "cocycle" A in

ZC(K;Q;HX) instead of a " a-cocycle™ A as in Theorem 3.2.9.

3.3. Applications and Examples

In this section, following section 3.2 and using the
results in section 2.5, we shall give new families of irre-
ducible representations, which are non-Mackey representations,

of the discrete Mautner group and the Mautner group.

Case (a) ; the discrete Mautner group.

Let G be the discrete Mautner group defined to be the
semi~direct product SXSZ‘of the additive group € of complex
numbers with the additive group 7 of integers, where the

multiplication is given by
(z,n)(z',n") = (z+elnz',n+n').

- 71 -



Corresponding to this group, we take the universal
covering group G of the motion_group, which is defined to be
the semi-direct product CXER’ where R 1s the additive group

of real numbers and the multiplication i1s given by

t

(z,8)(z',61) = (z+ellzr,t4tr).

: ~
We regard G as a closed subgroup of G.

FAY
At first, we take Xréc such that rER+(positive real

numbers) and

i(r,z)

Kz, X'>=e for all ze¢C,

where ( , ) means the real inner product in €. Then the
stabllity group of R at x* is equal to 277 for all PER+.
Let GO denote the semi-direct product CXS2WZ, and we take a

unitary character L” of G, defined by

0

LY(z,2m™) = <z, X*> for all (z,2Tm)éC,.

Next, we take A(A’Q)EZ@(Z;R;2WZ) where A¢R, g€® according to
(a=3) of section 2.5.
Under these preparations, we get a unitary representation

A
U<r’ »a) of G by section 3.2 as

ulrs2,a) o Inng(A(k’q>;Lr) (réR,AeéR,qeq) .
- . '(ra}\vaq) 5 i
As Z2+2nZ is dense in R, U are irreducible by
Theorem 3.2.7 or Remark 3.2.8. Moreover we see that U(P’X’Q)
. . . . (r',A',q") . .
is unitarily equivalent to U > if and only 1if r=r',

a=q', and A-A'€ Z+27Z by Theorem 3.2.6 and (a-3) of 2.5.6.
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It is clear that these U(r,k,q) are non-Mackey represen-

tations. When qg€Z, they are reduced to those obtained by

L.Baggett [4]. However, when qu, they are "new".

Case (b) ; the Mautner group

This time, Let G denote the Mautner group deflined as a

semi~direct product CzXSR of the two-dimensional vecter

group 02 on complex numbers with R, where the multiplication

is given by

t

. oy
(z,w,t)(z',w',t") =.(z+el z',w+e2'1tv

VLt ).

Corresponding to this group G, we pick up the connected

and simply connected 6-dimensional algebraic solvable Lie

group g, which is defined as the semi-direct product szSRZ,

where the multiplication is given by

(zy,w,t,u)(z',w',t',ut) = (z+eltz’,w+eluw‘,t+t',u+u’).

We imbed G in 5 as a closed subgroup by the following injectioﬁ.
n,
G3(z,w,t) —> (z,w,t,2Tt)£G.

s A
As in the case (a), we take at first X(P’S)EEE such that

+
r, séR  and

<(z,w) X(r,s)> = ei(r,z)ei(s,w) for all (z,w)éC2.

2 at X(P’S)

Then the stability group of R is equal to (2W2)2 for

any r, seRt. Let GO be the semi-direct product C2XS(2W2)2 of €2

. 2
with (27Z)° and L(P’S) be a unitary character of G, defined by

0

(I’,S) - (I’ S)
L(Z,W,2ﬂm,2ﬂn) =<(z,w), x*7°7'» for (z,w,2mm,2mn)€G,,.
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Next, we take A(X’q>€Z®(R;RQ;(2wZ)2) by (b-3) of 2.5.6 where
AeR and ge€9.

Under these preparations, we get the following unitary
representation of G (see section 3.2).

U(I‘,S,)\,Q) - Indg (A(}\’Q);L(r’s>)
0

3

where r,seR+, AER, QeqQ.

The U(T>55%3) 416 sppeducible by Theorem 3.2.7 and they are

U(P>S;A:q)

non-Mackey representatibns. Moreover, is unitarily

1 1 1 1
equivalent to U(P »8',Atal) if and only if r=r', s=s' q=q’',
and MA'M€Z+27Z by Theorem 3.2.6 and (b-3) of 2.5.6. 1In case
g€Z, we can easily write them in a concrete form as follows.

For f(x,y)eL2<[o,2w)x[O,2ﬂ>)

(U$T25250) £y (x,y)

_ Jila/em)xly+2mt]_i(q/87°) ([y+amt]-2y[y+2mt]?)
ixtei(re_ix,Z)ei(sefiy,w)

e f(x+t,y+2mt) for (z,w,t)eq.

It is verified that these are unitarily equivalent to those
found by L. Baggett[l4]. 1In other cases, namely, qfZ, the
'U(P’S’A’Q) (r,séﬁﬁ+,l€ﬁ,q5Q) are "new" representations.
According to 3.2.3 and section 2.5, it is not hard to write

down these representations but they are much complicated

than those shown in the above in the case qe€Z.
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Chapter IV. Decompositions of some factor representations

In this chapter, we consider the irreducible decomposi-
tions of type II factor representations of some non-regular
semi~direct product groups. Taking a certain factor represen-
tation of such a group, we show 1t can be decomposed in many
different ways into direct integrals of irreducible represen-
tatidns, while the diagonal algebras are spatially isomorphic
each other. The explicit form of the diagonal algebra is
also given.

It is well-known that 1rreducible decompositions of a
non-type I representation are not unigue in general. There
are some examples which demonstrate this fact. There are
about regular representations of certain groups, due to H.
Yoshizawa [46], G.W. Mackey [29], A.A. Kirillov [28], and M.
Saito [U46], as introduced in cﬁapter I. Moreover, M, Takesaki
{501 and S. Funakoshi [14] studied decompositions of represen-
tatlions, related to ergodic measures.

The theory of irreducible decompositions is based on
the following general result of F.I. Mautner [36]1. Let G be
a locally compact group and 7 be a unitary representation of
G on a separable Hilbert sapce 4%. Suppose that (L is an
abelian von Neumann subalgebra in W(G);. Then, there exists
a standard measure space (Y, v) such that {1l is algebraically
isomorphic with ﬁn(Y, V) and 7 1s decomposed as follows.

® n
(L= T 'dv(n)
JY »
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Moreover, m)

1s irreducible for v-almost all n €Y if and only
if (1 is maximal abelian in w(G)'.

In the chapter, we consider the irreducible decompositions
of type II factor representations of some non-regular semi-
direct product group. In Theorem 4.1.3, a certain represen-
tation wX of Such a_group‘G will be decompbsed in an explicit
way to a direct integral of irreduciblé representations,
each component having a definite form. The corresponding to
maximal abelian von Neumann subalgebra in #X(G)' is also
described in a concrete form. |

It is known that the non-type I'ness of a locally
compact group or a C*—algebra is closely related to the non-
smoothness of topological transformation groups [12], [157,
[16]. 1In non-smcoth topologlical transformation groups,
there are various kinds of quasi-orbits and the cohomology
group for each non-transitive quasi-orbit seems to be huge,
at least it is known to be non-trivial under some conditions
[387. The non—uniqueneés of decompositions of a non-type I
representation seems to depend deeply on these two facts.
The results in [14] and [50] are certainly connected with
the former and the examples in [28], [29], and section 1.3
also seem to be so intrincically. The present chapter is an
attempt to describe the relation of the non-uniqueness of
decompositions with the latter phenomenon.

In chapter 1T, we studied the cohomology groups of
double transformatidn groups, related with irreducible
representations of some non-regular semi-direct product

groups. The decomposition in Theorem 4.1.3 is done by using

- 76 -



a cocycle‘of this cohomology theory, and it 1is shown in
Proposition 4.2.1 that two decompositionsrare completely
different when the used cocycles are not weakly cohomologous,
whereas the diagonal algebras are spatially isomorphic each
other. Thus we may get a large number of different decom-
positions of a given representétion into irreducible compo—
nents, an observation which will be new. To illustfate

various possibilities, we give two examples In section 4.3.

}.1. Decompositions of =X

L.et G be a semi-direct product group N xSK, where K
acts on N as an automorphism group. We assume that N and K
are locally compact abelian groups which satisfy the axiom
of second countability. The action is denoted by
N>»z-~+kez €N for k€ K. The element of G is written as
(z, k) (z€ N, k&€ K) and the multiplication is given by
(z, K)(z', k') = (z+k«z', ktk'). Then, an action of K on
the topological space ﬁ (the dual of N) is defined, for k €K
and meéﬁ, by <z, kewp= <ke+z, w> for all zeN. So we get
a topological transformation group (K; Q) which satisfy
1 k2<SK and wéﬁ. G =N XSK is

/N
called a "regular" semi-direct product group when (X; N) is

kgv(klaw) = (klkz)-w for k

A

smooth, namely, when each orbit of N under the action of K

is locally closed (see [12]). We treat mainly the case

where G 1s not a regular semi-direct product group. However,

we assume the following conditon (%®).

o~

(¥) There is a locally compact abelian group K contain-
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A~

ing K as a closed subgroup. The group K acts on N as an
automorphism group and, as such, 1t 1s an extension of K. G

~

= N XSK is a regular semi-direct product group.

For a unitary character X of N, we get a unitary repre-
sentation mX of G, defined by X = Ind§<x which 1s the

G
restriction to G of the representation of G induced by ¥

from N. Let HX denote the stability group of K at x and let
T be the one-dimensiconal torus group. When.a T-valued Borel
function A on K satisfies A(k+t+h) = A(k+t)A(E)A(t+h) for
all keX, tésﬁ, and h €Hy , we call it a cocycle of the
double transformation group (K; X; Hy ) (see section 2.2).

Using this cocycle A, we get a cocycle CA.of (HX; %) and a

cocycle ph of (K; K) by

ch(n, t) = E(EVA(t+h)
Pk, t) = A(L)E(EFRY

for heH, , kekK, and t K. We note that C™(h,t) is K-

invariant and DA(k,t) is Hx—nvariant with respect to t ¢X.
In this chapter, we cbnsider the representation X of

G and, corresponding to each cocycle A, we give decomposi-

X and the abelian von Neumann algebra in mX(Q)"'.

tions of
According to the Mackey's theory of induced represen-
tations [30], we get a canonical decomposition of X as

follows.

X - G
il G’IndN X
= Indé (Inde>O where G,= NXx H
G GX N 2 X s X2



; g% onm

S lInd’ ( I du(n))
Lo \ N 7
% (g ral 1) auem

; o (x>1) Ty
where u is a Haar measure of Hy and L7’ ( né€Hy) is a
unitary character of Gy , defined by LE?’Q% =  <Lz,X>Xh,n>

for (z,h)eéGX.

Now, we consider the following problems.

(a) How do we get decompositions of 7X which are
completely different from the above one 7
(b) What is the abelian von Neumann algebra which

gives rise to each decomposition 7

At first, we will have a realization of 7% in the

following way.

Lemma 4.1.1. X is realized on L2(i) by
(rl, 1y () =<z, %> E(t+k)

for g(t) ¢ L°(X) and (z,k) €c.
Proof. This follows from simple calculations (see

[30]). [Q.E.D.]

Next, for an arbitrary cocycle A of the double transfor-
mation group (K; K; Hy), & unitary operator Aﬁ on Lg(ﬁ) for
h €H, is defined as follows. For £ty e 12 (K), (xﬁ £)(t) =
CA(h,t)E(t+h). M ois a unitary representation of Hy . We

denote by mﬁ the von Neumann algebra generated by lﬁ for
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all héHX

Lemma 4.1.2. Gﬁ is an abelian von Neumann algebra 1in
7X(G)' on LZ(K).
Proof. Since HX is an abelian subgroupvof E, it 1is

clear that QA is'abelian. Therefore, it 1s sufficient to

show that

y A A
™0 M = Pn T,k

for all (z,k)€ G and all hé€éH For g(t)€<L2(ﬁ), we have,

X
on the one hand,

(%, 1oyhp ) (8)

<z, tx> (pg) (E+k)

<z, tx>cM(h, t4Kk)e(t+k+h)

<Z,.tﬁ(>CA(h,t)g(t+h+k),

Sl

and on the other hand,

¥y 1E) (4)
= CA(h,t)(wézjk)g)(t+h>
= cMn,e) <z, (64R)X> g (bHhik)
= ctn,e) <z, tx > £(t+nik). [Q.E.D.]
Now, to practice a decomposition of X according to mA,
we prepare a family of non-Mackey representations U(X’A’n)

/\ N
(r]éHX ) of G = N >%K following the way in chapter III. Let

A
r,O6n) ( néHy) be unitary characters of Gy= NxHy, defined by

L6 = <z,x> <nh,n>
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for (z,h)fEGX - Then we can construct a unitary represen-

o
tation UM oF g by

plX A Ind (a;5,0%6 M)y

X

When A 1is trivial,

gOGA, M) L 1nat ,Ox>™

Gl 7 Gy
Our main theorem is the following. It shows an explicit

X

decomposition of T corresponding to mﬁ in WX(G)', which

will offer one answer of (a) and (b).

Theorem 4.1.3. Corresponding to mA, the unitary repre-

sentation m& of G=NxSK is decomposed as follows.
, ‘&
R Eﬂ, g AT du(n)
Jiy
/\ .

where Y 1s a Haar measure of HX.

Before going into the proof of the theorem, we will say

A,n)

about U(X’ in more detail. Define the action of K on

K/H, by k-x = Kt for k €K and x = tek/Hy. Then, t.x in N
may be written x»X for x = EEER/HX because HX is the stability
group of K at X eN. Since a cocycle DA(k,t) = A(t)A(t+k)
Hy-invariant, BA(k,E) = DA(k, t) is a cocycle

of (K; %/HX). We note that an element of % can be regarded

of (XK; K) is

as a cocycle of (K; K; HX).

Lemma 4.1.4. U(X’A’n)

(X A+7,0)

is unitarily equivalent to

It can be realized on Lg(ﬁ/HX) as Tollows.
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For &(x)e€ Lz(K/HX),

WO ey () = <z, 100, DB 0GR 8GR
’ for

rad . N\ ~~
(z,k) €G, where n is an extension of n €Hy to K.

Proof. First we 1dentify the representation space of

gOGA, M) (X,A+7,0)

with the space of U To do this, we have

only to check that the conditions of a compléx valued Borel

function £ on G to belong to the sapce of U(X’A’n)

A+7, Q)

and the
space of U(X’ are the same ( see section 3.2).

Indeed, for (z',h)éGX and (z,t)é@,

£((z',h)(z,t))

(X, M)

- L(Z',th(t)AZt+h)f((Z,t>)

I

<z',X> <h, N> A(L)A(T+h)f((z,t))

(X,0)*
(z',h)

= T (A+) (5 (AFR) (E+n) £ ((z,t)).

By section 3.1, it is easy to see that gOGA+T, 0)

realized on Lg(ﬁ/HX) as the above form. [Q.E.D]

Proof of Theorem 4.1.3. 1In order to prove Theorem 4.1.3,

we shall take four unitary operators W W W and WLl in

12 722 73°
order and transform the representation space LE(K) to the
suitable one.

In the first place, we put (WlE)(t) = A(t)E(t) for E(t)E
L2 ().

Next, take a Borel cross section ¢ from K/HX to K.
Then, by choosing suitable Haar measures of HX and K/HX , wWe

can define a unitary operator W, from Lg(ﬁ) to L2(HX)®

2
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L2(K/HX) satisfying, for h €H, and Xézﬁ/HX,

ror E(t)€ L ().

Further, we denote by W3 a unitary operator F®&I from
LZ(HX)®1?(K/HX) to LZ(ﬁX)®L?(§/HX) where F is the Fourier
transformation from LZ(HX) to L2(ﬁ&) and I 1s the identity
operator on Lg(ﬁ/HX).

Let H; denote the annihilator of H  in K. Then, by

A
Pontrjiagin's duality, H; is isomorphic with K/H& Via a
A I~
Borel cross section from K/H; to K, we can define a Borel

~ A A
extension 0 (neEHX) from H; to K. So, we can define a-

unitary operator W, on Lg(ﬁx)@>L2(§/HX) by

for E(n,x) € Lg(ﬁx) & LQ("‘K/HX).

Now, we denote by W the operator wuo W which

2

Jo Wyo0 W,

~ N o~
is a unitary operator from L°(K) to LZ(HX)QDLz(K/HX).
After some calculations, we get, for 1(n)®E&(x)e L2(ﬁ2

2

wxﬁ W t(mes(x)

— <h,n > T(MY®E(x)

and

X % .
Wi,y W0 t(mee(x)
S M@K, F>< 2z, xX>DMk,x)E(k x)

= T(nxg(ng’ﬁgn)g)(x) (see Lemma U4.1.4).
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%
It is clear that {WAA W ;116}1 generates an

5 |
abelian von Neumann algebra L* (H )@)ELE(K/H ) which 1is

spatially iscomorphic w1th m. Hence, corresponding to this
algebra, we can decompose the Hilbert space LZ(ﬁ )é?Lg(ﬁ/HX)
to S@ %p du(n) where u is the Haar measure of HX and %ﬁ is

constantly equal to 12 (K/H ). By this decomposition, we get,

A @
A= A A <h, N> dAw(m)
JHy
and
X T XA,
T(z,k) = 'ﬁ (z ks dul(n) . [Q.E.D.]
X

n
L.2. Properties of 7% and U(X’A’ )

In this section, we investigate the properties of the

81 e 6 = NxK. In chapter I,

representations WX and U
we studiled the cohomology group of double transformation
groups. For the double transformation group (K; ﬁ; HX), we
denote the abelian group of all T-valued cocycles of (K; ﬁ; HX)
by Z(K; K; HX); A-cocycle A 1s called a coboundary if there
exist an HX—invariant cocycle E and.K—invariant cocycle F
such that A(t)=E(t)F(t) for almost all t € K. The subgroup
of all coboundaries in Z(K; K; HX) is denoted by B(K; ﬁ; HX)
Then, we define the cohomology group H(K; ﬁ; HX), as the
guotient group of Z(XK; ﬁ; HX) by B(K; K; HX). Since}the group
of unitary charactérs of K, namély %, is considered as a

subgroup of Z(K; K H ) we may make the factor group

K/(K NB(K; K; H,)), denoyed by Hy(K; B; H)). e denote by
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ﬁ(K; K; HX) the T-valued weak cohomology group of (K; K; HX)
which is defined by H(X; &; HX)/HO(K; g HX). For the
detail, see chapter IT. |

By Theorem 3.2.6 and Lemma 4.1;&, we get immediately

the following proposition.

Proposition 4.2.1. If a cocycle A is not weakly cohomo-

logous to a cocycle A', then, for any choice of n and n' in

2 p(xA,m) OGA',NY)

X s is never unitarily equivalent to U

Thus, we see that Theorem 4.1.3. gives at least as many

X as the elements of

completely different decompositions of 7
ﬁ(K; K HX). Note that the abelian von Neumann algebras ﬂA
are mutually spatlally isomorphic. The emphasis may be puﬁ
on this fact, as this possibility has never been pointed out
before.

In section 3.2, we studied the irreducibility of UlXs8sM)

Proposition 4.2.2. If K + HX is dense in ﬁ,'U(X’A’n)

~

(n Eﬁk) are irreducible representations of G.
Therefore, we get the following proposition.

Proposition 4.2.3. If K + H  1s dense in %, 0 is a

maximal abelian subalgebra in nX(G)' for each A € Z(K; K; HX).

When we take a unitary character ¢ of K as a cocycle of



(K; K; HX) and we consider the representation U(X’C’O),

X
simply denoted by U( ’C), we see the following lemma by

Theorem 3.2.6 and Proposition 2.4.6.

, , v .
Lemma 4.2.4. U(X’C) is unitarily equivalent to U(X’C )
if and only if C' - L€K™ + H; )
Note that U(X’n) = U(X’O’n) for n éﬁx where ﬁxan~>ﬁeK

is a Borel extension map. Then, Theorem 4.1.3 asserts that
X
mo= Kﬁ v
JHy

by considering the case that a cocycle A 1s trivial.

&

(X’n);du(n)

; ~ X ~
Next, we define unitary representations 7 and ﬂx of G
= NxSK as follows.
, {® &
= 1% av(e)
JKk
A A ~ &
where v is a Haar measure of K and K?0 — ¢ €K is a Borel

extension map.

®
~X X,¢t
i = SQ U< >7) dy(z)
K
) . )
where y 1s a Haar measure of K.
Proposition 4.2.5, ﬂX , %X, and X are mutually

quasi-equivalent. Therefore, ﬂX(G)", ﬁX(G)", and %X(G)" are
algebraically isomorphic each other.
Proof. This follows immedictely from Proposition 2.4.6

[Q.E.D]
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We denote by Lm(ﬁ/HX) XK a von Neumann algebra obtained
as a crossed precduct of Lm(K/HX) with K by the canonical

action o of K on Lm(R/HX). Then, we have the following.

Lemma 4.2.6. ﬁX(Gf'is spatially isomorphic with
L (K/HX) XuK'
Proof. mX is realized on LZ(K) LE(K/HX) as follows.

For t(o)e&(x) € L°(R)@1°(R/m),

s

k) T(0) ®E(x)

3

><k,0> 7(0) ® <z, x-X>&(ksx)

for (z,k) € G. Let W be a unitary operator F®I from Lg(ﬁ)®
LE(K/HX) to LQ(K)ébLz(ﬁ/HX) where F is the Fourier trans-—
formation from L2(ﬁ) to L2(K). Then, by simple calculations,

we get, for o(s)®c(x) eL?(K)@Lg(K/HX),

WAL, gy W op(s) ®E(x)

5> p(stk)® <z, xX> &(k-x).

It 1s clear that the set of wz i x —><z, x-X>(z € N) generates

an abelian von Neumann algebra Lm(ﬁ/HX) on LQ(K/HX). There-—
~ * co , A

fore, we see that W WX(G)W generates L (K/Hy) XK.

[Q.E.D.]

Lemma 4.2.7. If K + HX is dense in K and KnHy = {0},
Lw(K/HX) XuK 1s a factor. Under these assumptions,

Lw(ﬁ/HX) X K is an injective type II factor if and only if
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Proof. The assumptions that K + HX is dense in K and
K/\HX = {0} means that the action o« of K on K/HX is ergodic

and free. Then, it is clear that L”(K/HX) X 4K is a factor

~

under these assumptions [18]. Further, K + HX = K if and

only if the action o of K on K/HX is transitive. Therefore,
K + HX + K if and only if'Lm(ﬁ/HX) x,K is a non-type I

factor. Since the measure on K/H. is K-invariant, Lm(ﬁ/HX)XdK

X
must be an injective type II factor (see [6] and [18]).

[Q.E.D.]

Combining Proposition 4.2.5 with Lemma 4.2.6 and Lemma

4.2.7, we get the following theorem.

Theorem 4.2.8. WX(G)" is algebraically isomorphic

with L(K/H,) X K. If X + Hy is-dense in K and KnHy = {0} ,
WX is a factor representation. Under these assumptions, WX
is an injective type II factor representation if and only if

X + HX # K.

Remark 4.2.9. We are interested in the case that XK + HX

2

i1s dense in K and not equal to K. Under this situation,

U(X,A,n) X

is a non—Mackey irreducible representation of G and 7
is a non-type I representation so that G is not a type I
group. Moreover, we have got the result H(K; K; HX):>

HO(K; ﬁ; HX)S %/(Kl+ H?) in Proposition 2.4.6, which is
stronger than the general result in [38] that H(X; K; Hy) #

{0}. 1In some cases, we know that ﬁ(K; ﬁ; HX)ZDQ where § is
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the set of rational numbers (see (a-4) and (b-4) in section

2.5).

Remark 4.2.10. By using Theorem 12.1 in [30], we can
get another decomposition of WX. Let ¥ be the Borel map

~ . N
from X onto Orbﬁ(X) in N, defined by ¢(t) = t+«X. Put

v(%) = mnaly(e) (c€K). Then, it is clear that vF)
V(X’t') if and only if t'-t €K + HX . Take a Borel cross
section ¢ from X/K to K. Then, K/K 9y——>V<X’C<y)> is
measurable and it is seen that

e & e sy

JK/K

where v is a Haar measure of R/K. If KF\HX = {0}, V(X’t>
Indgw(t) is Mackey irreducible representation of G. If K + HX
is dense in K and K + HX# %, \/T(X’t> (tei%) are never unitarily

N\

L(X,A,D I .
U< A1) for whatever A€ Z(K; K; H_,) and nEHX.

equivalent to ¥
When, we observe these phenomena from the view polint of

group C - algbera of G, 1t is easier to understand. We will

63}
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4.3, Applications and examples

Here, we consider the discrete Mautner group and the
Mautner group, both of which are non-regular semi-direct
product groups and satisfy the condition (¥) in section U4.1.
We denote the additive groups of complex numbers, real
numbers, rational numbers, and integers by €, R, €, and Z,

respectively.



Example 4.3.1: the discrete Mautner group
Let G be the semi-direct product C XSB, where the

multiplications is defined by (z,t)(z',t') = (z+elt

z', t+t")
for z, z'€¢€ and t, t'e€R. This group G is the universal
covering group of 3—dimensional motion group and a regular
semi-direct product group. We take a closed subgroup G of

~

G, given by
G={(z,n)€§; z € € and neZ}.

G =0 XSZ~is the discrete Mautner group.

We take a unitary character ¥ of ¢ (reER+ ), defined
by <z, X°> = ei(r,z) for z €€, where ( , ) means the
real inner product in €. The stability group Hr at Xr is

27Z for all reRT. Put G, = € X 277 = €x27Z. Then, the

0
unitary representations ﬁr(ré¢R+) and U(r,q,k) (r<§R+, qge€q,

A€[0,1)) are as follows.

plrsas ) Ind, (Aq;XrXﬂA) (See chapter ITII)

where nK(K €[0, 1)) are unitary characters of 27Z, defined

e2™AN ing ad (ad€ Q) are cocycles of (Z;R;27Z)

by nt(2m) =

given in 2.5.6. We know in section 2.5 that A9 is weakly
1

cohomoleogous to A4 if and only if q = q'.

Now, we get, by Theorem 4.1.3,

1

1 .
= g@ plrsa, A du(A) for each qe€ @,
0

where u is the Lebesgue measure of [0, 1). Since Z + 27Z
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is dense in R, U(r,q,l) are irreducible representations of G
by Theorem 3.2.6. If g # q', U(r,q,l) is never unitarily
eguivalent to U(r,q',A') for any X, A'€[0, 1) by Proposition
4.2,1. Moreover, Trr(C—)" is algebraically isomorphic with

Lw(T)x(xZ, so that 7° is an injective type IIl factor repre-

sentation by Theorem 4.2.8.

Example 4.3.2: the Mautner group
Let G denote the Mautner group which is the semi-direct

product group C2><SR with the multiplication

t L2mit

i i
(z,w,t)(z',w',t') = (z+e”"2', w+ , T+t ')

for z,z',w,w'€ € and t,t' €R.
Associated with this G, we take a 6-dimensional algebraic
solvable Lie group ¢ which is the semi-direct product szsﬁz

with the multiplication

\ iu L iv .
(z,w,u,v)(z',w',u',v') = (z+e*"z', w+e™ 'w, utu', v+v').

G is regarded as a closed subgroup of g by the imbedding

Go(z,w,t)—>(z,w,t, 27%) €G.

We take a unitary character X(r,s) of 02 (r,se¢ R+),

defined by

<lzywy, x(Tas)> o Hrsa) J1(s,0)

for (z,w)€ €°. The stability group g(rs8) or B2 at x(¥s8)

is (27Z)° for all r, s€R . Put G, = C2XS(2WZ)2 = C2X(2ﬂ2)2.

0
(I’,S) U(ras>QS>‘aw)

Then the unitary representations = and
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(r,s €R+ q€eR, A, w€R) are as follows.
>

lodd

Tr(r,s) _ IndG X(r,s)
G C

g(rss,a,2,w) _ Indg (a8, x(rss) (A0,
0

where unitary charaeters n(k,w) of (2WZ)2 (A, w€R) are

defined by
<(2mm, 2m), n(k,w)> - g2miAm 2wiwn
for (2wm, 2mn) €(2ﬂZ)2 and A% (g €€) are cocycles of
(R, RZ;(ZﬂZ)z) constructed in section 2.5. We note that Ad
1
is weakly cohomologous to A% if and only if g=q'.

Theorem 4.1.3 asserts that

14

1 (1
L(rss) &@ Se (75,8090 g1 qu(w)

JO 0
for each q € @, where p is the Lebesgue measure of the interval

[0, 1]. Since R + (2WZ)2 is dense in R2, identifying the

2 U(r,s,q,l,w)

subgroup {(t, 2mt) ER"; t€R} with R, are

irreducible representations of G by Theorem 3.2.6. If g # q',

U(I"SDQ’A"(D) U(Pﬁsbq'Jk'ﬁw')

are never unitarily equivalent to

for arbitrary choice of A,w,A', and w' €R by Proposition

(r,s)

4,2.1. Therefore, the above decomposition of = means

that there are at least as many completely different irre-

W(r’s) as the elements of €.

ducible decompositions of
Moreover, w(r’s)(G)" is algebraically isomorphic with
L“(T2)>(BR and so ﬂ(r’s) is an injective type II. factor

representation of G by Theorem 4.2.8.
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#
Chapter V. Representations of C -crossed products

This chapter is devoted to study representations of
certain C*—crossed products. In the pfevious chapters, we
investigated decompositions of representations of some
non-regular semi-direct product groups, related with a kind
of cohomology group. In this chapter, we extend those
results from a view point of operatcr algebras and show that
the variety of decompositions of a non-type I representation
is connected not only with ergodic measures but also with
the cohomology group.

For two closed subgroups H and K of a locally compact
abelian group G, we get a C¥-crossed product A = CO(G/H)XyK.
We investigate decompositicns of a certain representation 70
of A. In section 5.1, we find abelian von Neumann subalgebras
m? and ﬁb in the commuting algebra WO(A)' associated with
the automorphisms o% and Sb of WO(A)! where a €Z(K; G; H)
and b<€Z(HL;§; KL). We will have also some necessary and
sufficient conditions of the maximality of & and @P in WO(A)'.
In section 5.2, we study decompositions of 0 corresponding

to (1.

To do this, we study generalized induced representations
of C*—crossed products following to chapter III. In section
5.3, using the concept of Helsenberg representations, we

write down decompositions of 0 corresponding to the above

& and Gp in explicit forms. In section 5.4, we show some

examples and an application to unitary representations of a

certain locally compact group.
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1
5.1. Abelian subalgebras in WO(A)

Let G be a locally compact second countable’"abelian"
group. For a closed subgroup H of G, we can consider two
von Neumann algebras fU(H) and ®(G/H) on the Hilbert space
L2(G) of all square summable measurable functions with
respect to a Haar measure of'G; (I(H) is the von Neumann
algebra generated by {Uh ; hé H} where U is the regular
representation of ¢. ®&(G/H) is the von Neumann algebra
generated by the multiplication operators f(f) on LZ(G)
defined by functions of Lm(G)H, the set of all H-invariant
essentlally bounded measurable functions of G.

For a family of closed subgroups‘{Hi s 1€ I} of G, we
denocte by 'N/ Hi the closed subgroup of G generated by
.U Hi' Si;E%arly, for a family of von Neumann algebras
%n; ; 1eI} on LZ(G), we denote by jg;ﬁ% the von Neumann
algebra generated by .&} M, . The fgllowing fact of lattice
correspondence about &jé) and B(G/H) was obtained by M.

Takesaki and N. Tatsuuma.

Lemma 5.1.1. (Theorem 4 in [53])
Ir {Hi 3 1 GI} is a family of closed subgroups of G,
then
(1) VvV IqH)) =0V H)
iel ieT

(11)  NH) =0 N H)

i€l iel
(i) V B(G/H,) =BG/ N H,)
1€T1 + ier *
(11)'  NGe/Hy) =BG/ V H,).
1€T i€eT
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For two arbitrary closed subgroups H and X of G, we
denote by M(G/K, H) the von Neumann algebra generated by
0(H) and B(G/K). Then, the following generalized commutation

relation holds.

Lemma 5.1.2. (M. Takesaki [52])

1
M G/K, H)Y =M(G/H, K).
We can generalize the result of Lemma 5.1.1 as follows.

Proposition 5.1.3. Let {H, ; 1€I}and {K, ; 1e€I} be
families of closed subgroups of G, then
(1) VW(G/K,,Hy) = TG/ N K, V H)
. 1 . 1 . 1
1€l iel 1eT

(11)  /\TG/X, ,Hy) = M(G/ V Ky, N EH)

H,
s - . i

1€l iel iel
Proof. This follows immediately from Lemma 5.1.1

and Lemma 5.1.2 by simple calculations. [9.E.D.]

Corollary 5.1.4. Let H and K be closed subgroups of G.
Then,

(1) M(G/K, H) is a factor if and only if KNH = {0} and
K + H is dense in G.

(i1) (U(H) is a maximal abelian von Neumann subalgebra
in M(G/K, H) if and only if K + H is dense in G.

(iii) ®B(G/K) is a maximal abelian von Neumann sub-

algebra in M(G/K, H) if and only if KNnH = {0}.
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Proof.
(1) MmM(G/K, H) is a factor.

EM(G/K,H) A\M(G/K,E) = €2

(@)
= MG/K,ENMG/H,K) = €2 4,
S ME/HVE, HNK) = €2 4,
&SHVEK = G and HAK = {0].

(i1) (U(H) is maximal abelian in MG/X, H)
&> (UH) NM(G/K,H) =0(H)

&= MC/C,H) NM(G/K,H) = 7(GC/G,H)

L=> M(G/H,G) NM(c/K,H) = ®a/a, H)k

&> M(G/HVK,H) = M(G/G,H)

é=> HVK = G

(iii) @3(G/K) is maximal abelian in 7(G/K,H)
&> B(G/K) NI(G/K,H) = B(G/K)

& p(a/k, {01) 'nPHG/K,H) = M(G/K,{10})
&= PG/ {0} ,K)NU(G/K,H) = M(G/XK, {0})
&=> WG/K,KNH) = B(a/K,{0})

& XANH = {0} [Q.E.D.]

For two closed subgroups H and K of G, we are interested

in the following case (¥).

(#) HANK = {0} and H + K is dense in G

|

Under the condition (¥), we see that W{G/X,H) is a factor

and that U(H) and 3(G/K) are maximal abelian von Neumann

subalgebras in T G/K,H). Moreover, under the condition

(*¥), we note that G/K,H) is an injective type II factor if

and only if K + H # G. The next examples satisfy such
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conditions.

Example 5.1.5. Let Z and R denote the additive groups
of integers and real numbers respectively and let 6 be a positive
irrational number.

(i) G =R, H=06Z, and K = 2.
2 2

(11) G = R°, H=2°, and K = {(x, y)€R® ; y = 0x}.
For two closed subgroups H and K of G, we get a
double transformation group (K;G;H) as defined in section 2.2,
Let T be the torus group of the complex numbers with absolute
value 1. When a T-valued Borel function a(g) on G satisfies

th

]

cocycle condition;
alk + g + h) = a(k + g)a(g) a(g + h)

forveach k€K, g€G, and h€H, a(g) is called a cocycle of
(K; G; H) and the abelian group of all such cocycles is
denoted by Z(K; G; H). A cocycle aq is said to be cohomo-
logous to a cocycle as if there exist a K-invariant cocycle
e, and an H-inveriant cocycle e, such that al(g)égTET

= el(g)ez(g) for almost all g €G. Further, ay is said to be
weakly cohomologous to &5 if algg 1s cohomclogous to some
unitary character of G. We denote by H(K; G; H) the cohomo-
logy group of all cohomologous classes of cocycles of (K;G;H)
and by g(K; G; H) the factor group of all weakly cohomologous
classes of such cocycles.

For a cocycle a in Z( K; G; H), we define an operator p(a)

on L2(G) by

(p(2)E)(g) = alg)elg) for £(g) €L2(G).
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For a bounded operator S on LZ(G), we put
0®(3) = p(a)*Sp(a).

Then, o? is an automorphism of the full operator algebra

i(LZ(G)). For an operator p(f) of B(G/K), we get
a*(p(£)) = p(a)*p(£)p(a)
= p(a T a)
= p(f).

Thus o2 leaves each operator of B(G/XK) inVariant and o (@(G/K))
CMG/K,H).

Next, we show o®(QUH)) CHKG/K,H). Let U, (h€H) be a
generator of (UH). Then, o®(U_)€B(G/H) and aa(Uh)edz(K)'.
Indeed, on the one hand, for an operator p(f)€d3(G/H) ahd

£(g) € L2(a),

(U p(£)E) (8)

(p(a)*U, p(a)p(£)E) ()

I

a(glalg + h)f(g + h)E(g + h)
= f(gla(glalg + h)eg(g + h)
= (p(f)p(a)*U, pr(a)E)(g)

= (e (D)a*(U)E) ().

On the other hand, for a generator Uk (k€ XK) of SU(K) and an

arbitrary £(g) € L°(G),

(U0 (U, )E) (g)

= a(gtk)a(g + kK + h)é(g + k + h)
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aigia(g + h)g(g + k¥ + h)

a
(a® (U, U, E) (8).
Therefore, we get

o®(U,) € B(G/H) 'N GUE)
(B(G/H)V LK)
M(G/H,K)
M(G/K,H).

]

Hence, o (C1(H)) CM(G/K, H). We see now TH{G/K,H) is a®-
invariant and so o gives an automorphism of M G/X,H).

- o a . b s s

Now, we define an automorphism B~ of M(G/X,H) for
. rut. A 1 AN -
b €Z(H7; G ; K ) as follows, where G is the dual group of G

S § . ok ‘s o A

and H and X are the annihilators of H and K in G. Take
4+ 3 o PR - - 1-2 : -
the Fourier transformation F from L°(G) onto L

a bounded operator S on L7(G), put

~
F(S) = FeSeF
~ . 3 L "2/\ 1 et =
Then, F(38) 1s a bounded operator on L°(G). Through this F,
0i(H) 1is sTormed onpo<B(G/I ) and @B3(G/K) is transformed
A
ontoli(K ) so that M(G/K,H) is transformed onto WKC/TL ).

s . . P . : L e
Similarly as in the case o a cocyele b in Z(E~; G ; K™)
y 3 o > >
. . . . %o AN S .
gives rise to an automorphism B~ of M G/H, K ) which leaves

AN B . -
each operator of B(G/H™) invariant. Put

80 =

Y

“togPa F.

Then, Bb is an automorphism of T G/K,H) which leaves each

operator of OU(H) invariant. Then we get the following theoremn.
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Theorem 5.1.6. For a cocycle a in Z(X; G; H), a? is
an automorphism of M(G/K, H) which leaves each operator of
®(G/K) invariant. A cocycle b in Z(H"; 6 ; K7) also gives
rise to an automorphism Bb of M(G/X, H) which leaves each
operator of JU(H) invariant. The correspondenées a-?da

and b’—aﬁb are isomorphisms from Z(K; G; H) and Z(H ; ¢ 5 K)
into Aut M(G/K,H) of all automorphisms of M(G/X,H) and

satisfy aaoeb = Bboaa.

Proof. The latter properties about o? and Bb follow

immediately from their definitions. [Q.E.D.]

Put m? = aa(MAH)) and EP = BbQB(G/K)) for the automorQ

a Bb

‘ N
phisms o and (a € 2(K; G; H)) and beZ(EY; G 3 k&)) of

M(G/K, H). Then, we get abelian von Neumann subalgebras‘

81 £
(by # by), OU° # @

~
c

®® and ®° in M(G/K,H) and if a, # a
CRRRP
(&~ # B,

Corollary 5.1.7. If K + H is dense in G, each (f (ae
Z(XK; G; H)) is a maximal abelian subalgebra in ﬂKG/K,H).
If KNH = {0}, each o (béEZ(Hi; G s K7)) is a maximal
abelian subalgebra in M(G/K,H).

Proof. This follows immediately from Corollary 5.1.4

and Theorem 5.1.6. ,. [Q.E.D.]

For a locally compact abellan group G, take and fix two
closed subgroups H and K of G. Let CO(G/H) denote the
abelian C¥-algebra of all continuous functions on the locally

compact homogeneous space G/H vanishing at infinity. Then,
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the canonical action of K on G/H induces an action of K on
the C¥-algebra CO(G/H) as automorphisms and we denote such
an action by Y. From the C¥-dynamical system (CO(G/H),K,Y),
we get the C¥-crossed product CO(G/H)XYK (see [40]) which we
will denote by A(G/H,K) or abbreviatedly by A, hereafter.

Let po be a representation of CO(G/H) on L2(G) defined by

(p2()E)(g) = £(&)E(g)

for T €C,(G/H) and E€LP(G), where G 5g — > €G/H 1s the
canonical projection. Next, we define a unitary represen-

tation P of K on L2(G) by
0 -
(UE)(8) = E(g + k)

for k K.

Then, 1t is clear that (OO, UO) is a convariant repre-
sentation of the C*—dynamical system (CO(G/H), K, y). We
denocte by WO the representation of the C*—algebra A naturally
defined from this convariant representation (po, UO) [111].

Then, we get the following.

Proposition 5.1.8.
(1) 79a)' =m(e/K,B) and 70(a)" = 7(c/H,K)

(ii) Under the condition (¥), “O is a factor represen-
tation of A and there exist maximal abelian subalgebras ﬂa
. .
and.mp in ﬂO(A) parametrized by a€¢Z(XK;G;H) and bGZ(HL;ﬁ;k*).
(i1i) ¢ are spatially isomorphic with each other and
w A )
algebraically isomorphic with L (H , ¥), where U is a Haar

A
measure of H. &f are spatially isomorphic with each other
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and algebraically isomorphic with L*(G/K, y), where v is a

Haar measure of the factor group G/K.

Due td Proposition 5.1.8, we know that under the
condition (¥) the representation 70 of A is decomposed into
a direct integral of irreduciblekrepreséntatiohs corres-—
ponding to each maximal abelian subalgebra % and &? in
TTO(A)'. In section 5.2, we Shall describe decompositions of
w0 corresponding to m?. In section 5. 3, we shall give an
explicit form of the irreducible representations of A which

appear as components of decompositions of 70 corresponding

to (F and ﬁb.

5.2. Decompositions of 70

In this section, we study generalized induced represen-
tations of C*-crossed products following to chapter III; in
order to state decompositions of ﬂo. The results described
here were obtained by suggestions of T. Kajiwara [27].

Let G be a locally compactksecond countable abelian
group and (B, G, o) be a C¥-dynamical system. We take two

K H of

closed subgroups K and H of G and denote by o and a
the automorphism ¢ considered for the elements of K and H.
Let (X, V) be a convariant representation on i% of the
C*-dynamical system (B, H, o). Put &= A(B) NV(H) and
we denote by eu the unitary group of &. Let a(g) be a cP-
valued cocycle of‘the double transformation group (K; G; H).

The definition of cocycles and the cohomologous relation
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among them are quite similar to that we have given for T-
valued case. For the precise definition, see chapter II.
We define a covariant representation of the C¥-dynamical
system (B, K, aK) starting from (A, V) and a(g). This
definition is analogous to the group case described in
chapter IIT.

We denote by % the set of all &€'s satisfying the

following conditions.

(1) £ is an gb—valued Borel function on G
(2) g(g +h) = Vﬁg(g) for every g €G and h € H.

(3) g Hg(g)l{zdv(é)<m where y is a Haar measure
G/H

of the factor group G/H.

Then,-% has a Hilbert space structure with the norm

defined by

= S (&) JPd ('))1/2
met = (G/H le(g)"av(g .

For each k&KX, we define an operator Uk on‘g by
(U,8)(g) = algla(g + k)*E(g + k)

for each ge% and g €G. By the fact that

(U, e)(g + h) = a(g + hla(g + k + h)*¢(g + k + h)

]

a(gla(g + k)*Vﬁg(g + k)

Via(gla(g + k)*g(g + k)

]

VE(U, £)(g)
for every £€f and h €H, U £ belongs to %. It is clear that
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U, is a unitary operator on'gd Next, for each y €B, we

k
define an operator p(y) on %,by

(p(y)E)(g) = A(ag(y))g(g)

for each EE’%- and g €G. By the fact that

(p(y)E)(g + h) = Ao, (¥))E(g + h)

]

Vﬁx(qg(y)) v, VEe(g)

It

VE (p(y)E) (&)

for every ge% and héH, p(y)E Dbelongs to‘g. Clearly, p(y)

is a bounded operator on‘%.~

Proposition 5.2.1. (p ,U) is a convariant represen-
tation on %.of the C*-dynamical system (B, K, uk).
Proof. This follows immediately by routine arguments

and simple calculations. [Q.E.D.]

This construction is a generalization of Takesaki's

induced convariant representation studied in [51]. We

K
H

is trivial, Indg (a; X, V) coincides with the ordinary

denote the above (P, U) by Indy: (a; A,V). When K = G and a
induced representation Indg (A, V).

Remark 5.2.2. Our construction is closely related to
Ramsay's induced representation [44] but in some cases ours

affords finer informations.

We shall develop some general theory of these

representations.
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Lemma 5.2.3. For two cocycles a; and a, of (K; G; H),

R

if a

K .
1 IndH(az, A, V).

is cohomologous to a,, Indg(alg A, V)
Proof. This follows immediately from the definition.

[Q.E.D]

Let Hl and H, be two closed subgroups of H such that

HfCH2.

all T-valued. Take a T-valued cocycle a, then we can regard

We assume henceforth that cocycles of (K; G; H) are

this a as a cocycle of (K; G Hi) (i =1, 2). Let (A,V) be
H

a covariant representation of (B, H & l). Then, we get

l)
the following stage theorem.

Proposition 5.2.4. (Stage Theorem)

K Hy
Ind;; (a3 A, V) & Ind, (a; Ind, “(x, V)).
Hy 2 Hy

Proof. The proof 1s carried out by an analogy of the

K
H

proof of the stage theorem about ordinary induced represen-
tations by G.W. Mackey (Theorem 4.1 in [30]). We omit the

detail. [Q.E.D.]

Remark 5.2.5. This is not the same with the stage
theorem of A. Ramsay [44], because H, H,, and H, are not

necessarily subobjects of K.

Next, we shall describe the subgroup theorem. Let Kl
be a closed subgroup of K. We denote by Gl the closed
subgroup generated by Kl + H in G. A T-valued cocycle a of
(K; G; H) can be regarded as a cocycle of (Kl; Glg H) by the

restriction to Gl‘ Let (A, V) be a covariant representation
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of (B, H, aH). There exists a canonical action of G on

Z(Kl; G H) of all T-valued cocycles of’(Kl; G H) and on

1} 13
Rep B of all representations of B defined, for each g € G,

by
(gea)(g') = alg + g") for all g'& G,
and

(ge2)(y) = A(ag(y)) for all y € B.

Let G/Gl = t-¥~>% € G be a Borel cross section from G/Glto G

and v be a Haar measure of G/Gl' Then, we get the following.

Proposition 5.2.6. (Subgroup Theorem)

K

Ky IndHl(G.a;%-x,v)dv(t)

, K
Ind . (aj;A,V) 2~
(B,XK ,0 T)177H SG/Gl

Proof. This also follows by the modifications of the
proof of the subgroup theorem of G.W. Mackey in [30].
[Q.E.D.]

Let a be a cocycle of (K; G; H) again. Suppose that a
covariant representation (A, V) of (B, H, aH) is decomposed

as follows.
®
(A, V) 2 gzuc, v°) dv(z)

on some measure space (Z,V ). Then, we have the following

proposition by routine arguments.
Proposition 5.2.7. The field {Z3Z —> Indg(a; 3%, V&)
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is V-measurable and

® z z
Indg(a; AT, V) dav(g).

Indg(a; A, V) = %z

Now, we shall consider the decomposiftions of the repre-
sentation 0 given in section 5.1. For a locally compact
second countablé abelian group G, take and fix two closed
subgroups H and K of G. Recall that we have denoted by A
the C*-crossed product CO(G/H)xY K for the C*—dynamical
system (CO(G/H), K, Y).

Let (1, I) be the covariant representation of the C¥-
dynamical system (CO(G/H), H, YH) given by 1(f) = £(0),
I(h) =1, for every f in CO(G/H) and every h in H. For ae
Z(K; G; H), We get the covariant representation (pa, U%) or

(Cyle/H), K,Y ) by
(02, U?) = Ind%o}(a; 1, I)

where we regarded a as a cocycle of (K; G; {0}). It is
clear that all cocycles of (K; G; {0}) are cohomologous to

the trivial one. Therefore, by Lemma 5.2.3, we see that

(6%, %) = (%, U9

for all a € Z(X; G; H), hefe the superscript 0 stands for
the trivial cocycle. These covariant representations define
the class of representations of “O of A which was Jjust
defined in section 5.1.

Let (1,Z ) be the one-dimensional covariant represen-
tation of (C,(G/H), H, ¢5.where Cis in ﬁ (the dual group

of H). For a & Z(X; G; H), we have a covariant representaion
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(D(a,C), plastly _ Indg(a; 1,0 of (C,(G/H), K, y). This
(p(a’c), U(a’C)) defihes the representation'n(a’c) of A [11].
For a € Z(K; G; H), we have got the abelian subalgebra
o€ in m0(A)  described in section 5.1. Let u be a Haar
measure of ﬁ. Under these preparations, we get the following

maln theorem.

Theorem 5.2.8. ‘Corresponding to each m?, the represen-

tation 0 of A is decomposed as follows.

&
T 0 :_:S/ﬁn(a’c) dulz).

Proof. We consider the covariant representations (DO, U

%)
and (D(a’ Q, U(a’C)) of (COCG/H), K, Y) which defined P and

ﬂ(a,C) respectively.

R
N
©
(W)
w
(@}
o
g

K
Ind.@}(agl s, I)

k3

Indg(a; Ind?o}(l, 1)) by Proposition 5.2.4

1K

X <
Indy(a; g,ﬁ(l, z) au ()

1?

5>
gﬁlndg(a;l , ) du(o by Proposition 5.2.7

D
=g (3% pl@: %)y ).
H
Hence we get

&
° gg £2:5) g u()
H

It is not difficult to verify that the subalgebra m? is
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transformed to JUH) by the unitary operator which gives the
unitary equivalence between (po, UO) and (pa, U%) so that
((H) becomes the diagonal algebra of the decomposition.

[Q.E.D.]

Now, we shall describe the properties of the family of
A
{,éa,g); a € Z(K; G; H) and geI{I. We note that a unitary
character of G is a cocycle of (K; G; H). Let T denote a

character which extends T to G.

Proposition 5.2.9. The representations ﬂ(a’C)(aEZ(K;G;H)
VAN
and tgH) of A have the following properties.
La+t ,0)

{a's0)

(1) (a0
(850)

is unitarily equivalent to

(ii) is unitarily equivalent to if and
only if a 1s cohomologous to a'.
(iii) If a cocycle a is not weakly cohomologous to a

1 1
W(a’;) is never unitarily equivalent to ﬂ(a o)

cocycle a',
A
for arbitrary choice of g, C'¢éH.
(iv) T#a,z) is irreducible if and only if H + K is dense
in G.
Proof. The proof goes on by a modification of the

technliques described in section 3.2. So we omit the detail.

[Q.E.D.]

We see that the representation 0 of A has been decom-

(a,2) in as many ways as

posed into a direct integral of 7
the cardinal number of the weak cohomology group ﬁ(K; G; H).

We note that this fact does not depend on whether the repre-
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sentétion 0 is type I or nqt. When ﬂo‘is a factor répreseh—
tation of A, all T#a’ % are irreducible representations of
A (see Corollary 5.1.4).
5.3. Further discussions on the decomposition of ﬂo
We denote by Rep G the set of all unitary representations

of aklocally compact group G and by Rep A the set of all
non-degenerate *—represehtations of a C*—algebra A.

| Suppose G be a locally cbmpact second countable abelian
group.  Let K be a closed subgrodp of G and H' be a closed

A
subgroup of the dual G of G.

Definition 5.3.1 If a unitary representation U of K on
1
% and a unitary representation V of H on the same space

are so related that the Heisenberg commutation relation

U v, =<k,w> VU

k k

holds for each keK and weH', we call the pair (V, U) a
Heisenberg representation of (H', K); We denote by
H—Rep(H', K) the set of all Heisenbérg representations of
(H', K). For two Helsenberg representations (Vl, Ul) and

2 U2 ! 1 1, . . .
R ) of (H, K), we say that (V-, U~) is unitarily

(Vv
equivalent to (Vz, U2) if there exists a unitary operator W
from the representation space of (Vl,‘Ul) to the space of

2 1 2 1

2 2 _ * _ ¥
(VE, U°) such that V- = W V- W and U° =W U™ W .

Take and fix two closed subgroups H and K of G. We
%
construct the C -dynamical system (CO(G/H), K, Y ) and the

%
C -algebra A = CO(G/H)XyK, as before.
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A %
Let H" be the annihilator of H in G and C (H") be the
%
group C -algebra of H. Then, it is well-known that there
~ ¥
is a biljective correspondence V—V from Rep H™ to Rep C (HL)

such that
V(f) = S%Lf(w)V(Uﬁ v (w)

for f E.Ll(HL, V) where v is a Haar measure of HJ'[loj.

Since we can regard the dual of H~L as G/H by Pontryagin’'s
duality, we see that C*(HL)QzCO(G/H) by the Gelfand trans-
formation. Hence we get a bijection¢ ; V— ¢ (V) from Rep im
to Rep CO(G/H). For a Heisenberg representation (V, U) of
(HL, K), (¢(V), U) becomes a covariant representation of
(Cé(G/H), K,y ). It is clear that the correspondence (V, U) f
(¢(V), U) is bijective from H-Rep(H', K) to C—Rep(CO(G/H),K,y)
of all covariant representations of (CO(G/H),K,Y). ‘Further,
we know that there exists a canonical correspondence between
C—Rep(CO(G/H), K, v) and Rep A [40]. Then, we get the

following lemma.

Lemma 5.3.2. There i1s a bijective correspondence

(V,0)

(v, U) — from H-Rep(HL, K) to Rep A such that (¢ (V),U)

is the covariant representation of (CO(G/H), K, v) which
(V,U). LV,0) is a

defines T The correspondence (V, U) —>»

one to one map from the set of equivalence classes of

H—Rep(HL,K) onto the set of equivalenbe classes of Rep A.

We shall say that a Heisenberg representation (V, U) of

(HL, K) is associated with a representation m of A if ﬂ(V’U)
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is unitarily egquivalent to .

Example 5.3.3.

(i) A Heisenberg representation (VO, UO) of (H%, X)

assoclated with the represéntation Tp of A described in

section 5.1 and 5.2 1s given as follows.

For &(g) € L2(G),

,(VO £)(g) <g, wd> &£(g) for each weH"

and

(ULO{ £)(g) t(g + k¥ ) for each k €K,

. N A
(1i) The .following Heisenberg representation (VO, UO) of
L

(H7, K) is also assoclated with the same representation ﬂo.

For n(x) 6L2(é\),

(@]

(7

o M(X) = n( x+w ) for each w&H'

and

(GSC M) (x) =<k, x> n{x) for each k € K.

In section 5.1, we found abelian subalgebraS'a?
A
(2 €2(X; G; H)) and @° (bez(H*; G; k%)) in n(a)".

In section
5.2, we got the decomposition of ﬂo corresponding to m? as

0 ®
T Sﬁﬂ(a’c) du(z).

s

7#a’c) in here was defined as a covariant representation

(p(a,c)’ OU(a’E)) = Indg(a; 1,8).
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Now we will give an explicit form for this component
representation using Helsenberg representations. Let 7 be a
character of G which is an extension of £ . The canonical
action of K on the space G/H is denoted by G/H > x —> k+x€G/H
for each k € K. TFor a cocycle a(g) of (K; G; H), we have a

cocycle ca(k, x) of (K; G/H) by
c®(k, g) = a(g)alg + k)

for every k € K and g € G.

Proposition 5.3.4. The Heisenberg representation
(v(@s8)  y(a 8y or (gt K) associated with (%2 %) for a€

VAS
Z(K; Gy H) and z €H is given as follows.
For E(x) € L°(G/H),

L

(Wsa’c)i)(x) <X,u 7 £(x) for each wéH

i

and

i

(Uéa,ﬂg )(x) = <k, c > c®(k, x)E(k-x) . for each k € K.

(a,z) be the representation space of the

Proof. Let
covariant representation (O(a’C), OU(a,Q)) which defines
ﬂ(a’C). Then, for each Elégéa’c), T& becomes H-invariant
and square summable on G/H. Therfore, the correspondence

E — EE defines a unitary operator W from %(a;. t) onto

L2(G/H). By simple calculations it is easy to check that:
%
wo (B 0)y® o (v(@st),

and
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w Ouast)y® - ylat), [Q.E.D]

Next, we will see the decomposition of 0 corresponding
to éﬁ. Let G/K > z-—e-E &€ G be a Borel cross section. We
L A : '
denote the canonical action of H on the space G/KL by
L

A A . A
G/K30 —> w-cEG/KLfor each weH-. A cocycle b(X) of (HigG;K )

N\
defines a cocycle d°(w, o) or (HY; G/kY) by

e, %) = bl X)B(XF @Y

FAY .
for a1l w € H'L and x €G. Then, we get the following theorem.

Theorem 5.3.5. Corresponding to each of the abelian
1 €L A
subalgebras(ﬁb in 7P(A) (b € Z(H ; G; KL)), the represen-

0

tation m~ of A 1is decomposed as follows.

@
Trog S "}r(b’z) av(iz)
G/K '

where v is a Haar measure of the factor group G/K and the
A A

Heisenberg representations (V(b’z), U(b’z)) of (HL, K)

associated with the above %(b,z) (z € G/K) are given

for n(o) é'Lz(a/KL) by

252 1) (o) = <3, wy a®(w, 0)n(o ) for each wei
and

2(b,z)

(Go""" n)(o) =<k, 0pn(@) for each k € K.

Proof. Note that the Heisenberg representation (VO, UO)
associated with 0 in (i) of Example 5.3.3 was decomposed

into a direct integral of the Heisenberg representations as

was shown in Proposition 5.3.4 corresponding to m?. If we
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go over to the dual T of G and take the Helsenberg represen-
. A0 A0, s . 0 0
tation (V°, U”) in (ii) of Example 5.3.3 instead of (V , U"),

the desired assertions are immediately obtained. (Q.E.D.]

A
Now, we shall describe the properties of W(b’z). We

note that we can regard an element of G as a cocycle of
L A 1 Q
(H7; G; K7) by the fact that G & G as locally compact groups.

Ab,z)

Proposition 5.3.6. The representations T of A

(b € Z(Hl; @; K*) and z € G/K) have the following properties.

(1) ~(p,2) A ng+z,0), where G/K ® z—Z € G is a

Borel cross section.

h . E 1 ’
(ii) %(b’o> is unitarily equivalent to:a(b 50) if and

only if b is cohomologous to b'.

(1ii) Suppose a cocycle b is not weakly cohomologous to

Then, Xb,2)

a cocycle b'. b is never unitarily egquivalent fto

A(b',z") P . .
m for arbitrary choice of z and z' € G/K.

%(b,z) is irreducible if and only if KN H = io0}.

(6,2)  (b,2),

(1v)
. A
Proof. Take the Heilsenberg representations (V

associated with b, 2 (a,g)’ U(a>€))

and compare them with (V

in Proposition 5.3.4. Then, we see that the former becomes
A

the latter if we exchange the role of G and G. Hence, the

AMb,z)

above statements about 7 are immediate from the properties

of m(2:%) and the duality of G. [Q.E.D]

Thus, we see that Theorem 5.3.5 gives as many completely

different decompositions of 0 as the cardinal number of
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ﬁ(HL; 6; Kl). However, it is difficult to find a general

relation between the family of ﬂ(a,C) and the family of

#(b,z)' In some concrete cases, we can show that almost all

A ;
ﬂ(b,z) are not unitarily equivalent to any 74a,§). This

will be noticed in the later part of this chapter.

When ﬂQ is-a non-type I factor representation‘of A, ﬂQ
must be an injective type II factor representation. 1In
this case, by Corollary 5.1.4, H + K is not equal to G but
is dense in G and H N K = {0f. Thefefore, a1l 7m(8L) apg
%(b,z) are irreducible representations. Moreover, it will
be seen easily that w0, %) (resp. %(O’Z>) are never unitarily

equivalent to any ng’z) (resp. ﬂ(a,c))'

When TP is a type I. factor representation, all ﬂ(a,C)

and %(b,z) ‘are still irreducible representations but in
this case H(K; G; H) = {0} and H(Hl;k@; K*) = {0} as we have
seen in chapter II. Therefore, it is no trouble to verify
that all component representations are unitarily equivalent
and that the decompositions of‘ WO as giVen ih Theorem 5.2.8
and Theorem 5.3.5 become all same. |

When qP is a type I but not factor represenation, H + K
is not dense or H N K = {O}. In the first case, none of

1#&,;) are irreducible representations and in the second

Nb,z)

case, none of are irreducible. ﬁ(K;G;H) and

oLl A L -
H(H"; G; K7) may or may not be trivial.
L A 3
Remark 5.3.7. When a cocycle b of (H ; G; K7) is the

trivial one, the assertion of Theorem 5.3.5 coincides with

the result obtained by applying the subgroup theorem
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(Proposition 5.2.6) to the covariant representation which

defines ﬂo.

5.4, Applications and examples

First we argue the decomposition of representations of

the pair of groups in Example 5.1.5.

Example 5.4.1. The case of G = R, H = 6Z, and K = Z.

1]

%
The C -crossed product A C(R/SZ)XYZ is the irrational

rotation algebra. Let X% ( u € R) be unitary characters of

e2Trlut for each t & R. Then, the dual

R defined by X'(t) =
group 8~= {xu; u € R} can be identified with R as a locally
compact abelian group. Through this identification we can
regard the annihilator K" of K as Z and the annihilator H'

of H as (1/86)Z&.

For p, 9 € Z, put
o (irp/8)t°
a*(t) = e for each t € R = G

and

iﬂequ2

q A
b=(u) = e for each u ¢ R = G.

Then, it is not difficult to check that apéZ(K; G; H) and pe
Z(H'; @; Kl) for every p and q ¢ 2. Further, by similar
technigues as in chapter II, we see that ap(resp. bq) is
weakly cohomologous to ap' (resp. bq') if and only if p = p!
(resp. g = q').

Let 0 be the representation of A on L2(R) as defined

in section 5.1. Then, P is decomposed as follows.
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1/ _
e &e APsw) gy (p € Z) (I)

~ Jo

~ \X Na,s)

= \g 79 ds (q € 2) (I1)
0 .

(I) The Heisenberg representations (v(P2%), y(P>wy ¢

(H",K) = ((1/8)Z, Z) associated with n(P,u) are given by,

for &x) € L2([0, 8)),
(Vép’u)i)(X) = ezﬁﬂuxg(x) for each w €(1/A)Z

and

(Ur(np’u)g)(.x) - e2Tr:i_mn e(2‘ﬁip/9)mx e(ﬂip/é)ng(m)

for each m € Z, where x = [x]+x([x]€6Z, X [0,0]).
. Al A
(II) The Heisenberg representations of (V(q’ s), U(q’ S))
s)

of (H",K) = ((1/8)Z,Z) associated with %(q, are given by,

for n(y) € L2([0, 1)),

(702800 (y) = 2Tise (2Ti0auy em100% s
for each w € (1/9)Z, and

(Géq’s>n)(y) = e2vimyn(y) for each m € Z.

By simple calculations, we can see the following facts.
Let xv (ve[O, 6)) be unitary characters of (1/9)Z given by

(o, X' = g2mive for weé(l/6)2. Then,

6
(a) viPsW o Sea xV av.
O .
() §0050) 5 705
ne’z
N 6
(c) v(d>8) = lqf Sea x' dv  if q # 0,
0



ja| appears here as the multiplicity of the representation.

7 (a,s)

Therefore, we can conclude that is never unitarily

equivalent to n(P,u) for every p €Z, u € [0,1/8) and s€[0, 1)
: £ _ " 2(a,s) . . .
if g #t1. For g =1 or -1, we know that 7 is unitarily
equivalent to n(a,u) for some a€Z(H3;G;K) and uel0,1/8).

Note thatrﬂo

is an injective type II1 factor representation
of A and all ng’u) and %<q’s) are i1rreducible representa-

tions of A.

Example 5.4.2, The case of G = R, H = 2°, and K =
{ (x,y)€R%; y=ox}. |
In this case, A = Cy(G/H)x K = C(T?)x4R where the

action 8 of R is defined by

§(t)e(x, y) = (x +t, y + 6t)

for t€R and (x, y)e[0, 1)x[0, 1) = T2.
oo u,v) : 2 .
Let X (u, v € R) be unitary characters of R™ given

by

(x, ¥), X(u,v)> - e2ﬂi(ux+vy)

~
for (x, y) € R2. Then, G = {X(u,v); u, v €R § can be
indentified with R2 as a locally compact group. Through

this identification,

L

K 2

{(u, v) ER"; v =-(l/8)u} ~ R

U

L

H

{(u, v) €R%; u, vez}sz°

For p and g € Z, put
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p _ -ﬂip(ey—i)2
a”* ((x, y)) = e
for (x, y)€R2 where 0 <X <1, and
Tiq(8y+%)°
b3((x, y)) = e TITIHL

for (x, y)ER2. Then, it 1s no trouble to verify that aPé&
Z(X; G; H) and b € z(H": G; X) for every p and q € Z.
Let ﬂo be the representation of A as defined in section

5.1. Then, WO is decomposed as follows.

e |

70 2 j S @ n(P>WY) gugy (I)
0Jo

zj@%‘m) ds (II)

P
The diagonal algebra of the decomposition (I) is ?  and

. Q
the diagonal algebra of (II) is @b

(I) The Heisenberg representation (V(p,u,v)’ U(PaU,V))

2 (p,u,v)

of (HY,K) = (Z%, R) associated with T is given as

follows.
For £(x, y)eLZ([0, 1)x[0, 1)),

<V<§1’E’V)g)(xs y) = eEﬂiemx eEﬁiny

E(X: Y)

for (m, n) € Zg, and

(Uép,u,v>£)<x,y) . G2miut 2mivet ip6{2[x+tI(y-8¢)+ 6 [x+t 12}

E(x +. £, y + 6t)
for t € R where x + t = x+t + [x+t], 03x+t<l and [x+t] € 2.
- Y o S A
(II) The Heisenberg representation (V(q’ >, U(q,s))

of (Hi,K) = (Zg,R) associated with ?(q’s)is given as follows.

For n(z)€EL®(R),
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o >
@200y (2) = 2T TEOARRZHNT), (4 1ni(1/0)m)

for (m, n) € 22 and

e it
(0{%:%)ny(z) = 2™ f(z)
for t € R.
Take the representation U(p,u) (p€Z and uel0,1/6)) of Z

in Example 5.4.1. Then we get

g(Psu,v) Indg y(p,ut(1/6)V)

where 0<£u+(1/9)v<l/6. Hence, we see the following facts.

Let Xu (u eR) be unitary characters of R given by Xu(t)

= ezﬂinJC for t € R.

(oo

(2) GMﬁ>s§e£*w

[oe]

(b) U(O,u,v)g S"@ Xu+n+6(v+m)
m,n&’z

(c) ulPsWV)g lpﬂqe XY du if p £ O

o

“h

where |p|appears as the multiplicity of the representation.
Therefore, we get the fact that for each u, vé[0, 1),
ﬂ(p,u,v) is never unitarily equivalent to ?(q,s) for arbi-
trary choice of g€ and s €R if p # I1.
We note that the representation ﬂo of A is an injective

(p,u,v) 4 2(a,s)

type II, factor representation and all 7
are irreducible.
Now, we show an application of our results to unitary

representations of certain locally compact groups.

Let G = N xsﬁ be a regular semi-direct product of N
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~r

with K where N and K are locally compact second couptable

abelian groups and K acts on N as an automorphism gfoup. The

action of K on N induces the action of XK on ﬁ (the dual of

N) as a topological transformation group and the regularity

of G means that the topological transformation group (K; §)

is smooth ([12], [16], [32]). Taking a closed subgroup K of

K, we shall consider the closed subgroup G = N XSK of G = ngﬁ;
For a unitary character X of N, we get a unitary represen-

tation 7% of G given by

X - e}
T a IndNX.

rad

We denote by wxythe representatioﬁ’of the group C¥-algebra
C*(G) of G corresponding to the above representation X of G?:
[40]. Let Hy denote the stability group of K at ¥ eﬁi

Then, we have a ¢*-crossed product AX = CO(K/HX)XYK where vy
is the canonical action of K on CO(K/HX). Let 10 be the
representation of AX as defined in sectioh 5.1. Then, we

get the following proposition.

Proposition 5.4.3. There exists a homomorphism WX from
C*(G) onto AX such that Ker wX= Ker T and #X= “OOWX. This wX
induces a natural correspondence ?X from Rep AX to Rep G
which has the following properties.

(1) For each me Rep AX, ﬂ(AX)” = Wx(w)(G)"

(ii) For T, T' € Rep AX, T & 7' if and only if

Wx(ﬂ) o~ WX(H‘).

L o (® ¢
(iii) Suppose 7 2 7 du(g).
Z
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Th t
en, we ge ~ ® x ¢
o>\ ¥ (m) au(g).

Z

Proof. It is not difficult to see that C*(G)/Ker X 41s
isomorphic with the C*—crossed product CO(OrbK(X>>X§K where §
is the action of X on N and OrbK(X) = {d(t)ax; t € ﬁ}. Put
¢X(t) = §(t)+X for every t € K. Then, ¢X induces a map $X
from %/HX to OrbK(X) which is a homeomorphism due to the
regularity of ¢ [12]. Through this 5X, the action § of K is
transformed into the action Y of K and CO(Orbﬁ(X))X5K is
isomorphically transformed to Co(ﬁ/HX)XYK = AX. Then, we
get a homomorphism wx from C*(G) onto AX such that Ker wX
= Ker %X,by composing these maps.

Since there exists a canonical correspondence between
Rep G and Rep C*(G), the correspondence ;>ﬂ°wx from Rep AX
to Rep C*(G) induces the correspondence yX from Rep AX into
Rep G.

Other properties follow immediately from the above

definitions of wx and WX. We omit the detail. [Q.E.D.]
The following corollary is easily obtained.

Corollary 5.4.4. The unitary representation WX of G
have the following properties.
‘ X 1] ~ X 1 ~
(1) T(G) = m(K/HX, K) and m (G) =(K/K, HX).
(ii) There exist abelian von Neumann subalgebras
X 1 A
m? and @P in ™ (G) parametrized with a € Z(K; K; HX) and
A 1L
b €Z(Hy; K3 K7).

X
(iii) Corresponding to m?, T 1is decomposed as follows.
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@
e S oX(r(8:8)y au(o).
HX )

~

X 1
If K + HX is dense in K, m? is maximal abelian in 7T (G) and
X ,
Y (ﬂ(a’g)) are all irreducible representations of G.
X
(iv) Corresponding tocﬁp, T 1s decomposed as follows.
x99 x
T & gN ¥ (%(b,z)) dv(z).
K/K

If X nH, = {0}, &°

X .
¥ (%(b,z)) are all irreducible representations of G.

X 1
is maximal abelian in 7 (G) and

We note that the assertion (iii) coincides with the
result described in chapter III and that the decomposition
in the case of b = 0 at (iv) coincides with the result
obtained.from the subgroup theorem of induced represen-
tations by G.W. Mackey [30]. Corollary 5.4.4 shows that
there are other possibilities of decompositions of the

RO X
representation 1 of G.

Example 5.4.5. The discrete Mautner group
Let § be the 3-dimensional solvable Lie group given as
a semi-direct product € XSR of the additive group € of all

complex numbers with R with the multiplication;
(z, t)(z', t') = (z + eltz', t +tt)

for z, z'€ € and ¢, t' € R. Take the closed subgroup G =
€ x_Zof G=Cx_R. This group G is the discrete Mautner
group.

Let XE (z € €) be unitary characters of € given by

Xg(z) = el(Z’C), where ( , ) means the real inner product
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of €. TFor r € R+, put

G .r
C .

r X

™ = o Ind

Then, ¥ is an injective type IIl factor representation of G
for each r € R+.
By Example 5.4.1 and Corollary 5.4.4, we get the

following decompositions of wr.

/2
W \@ P(ToPsW) gy (pez) (1)
l /\('rv Q) .
~\g T\T95) 45 (geZ) (I1)
0

Observe that the ﬂ(r’p’u) and %(r,q,s) are irreducible
representations‘of G. sWe have moreover the following
properties.

(i) If p # p' (resp. g # q'), each ﬂ(r’p’u)

Alr

1
(resp. 7 ,q,s)) is never unitarily egulvalent to ﬂ(r,p »8)

(Wes /\(rbq'DSY) 1 - 2 £ 1 I
e . T ) for arbitrary choice of u'el[0,1/27)

@ =z
X  4ac.
[tEr

i(n+2ws)
(0) %(P,O,S)g E% e .
nez

(resp. s'e[0,1)).

ie

(13) (a) o |ntFePow

® .z
(e) Alr,a,s) 5 pjg X~ dazg if g # 0.

A
Hence we see that every alr,a,s)

except the case of g =+ 1
is never unitarily equivalent to each ﬂ(r’p’u).
We note that the decomposition (II) of T is a newly

obtained one. It was not described in chapter III and it
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shows that G has the irreducible representations such as
?(r,q,s) with the property (c) of (ii). We couldn't give an

%(r,q,S),

explicit form of but we know the existence of such

irreducible representations.

Example 5.4.6. the discrete Helsenberg group
Next, let G be the discrete Heisenberg group, defined
as a group of matrices

I ku
G = Oll);k,QeZandu€R .
001

We take a larger group G gilven as

~ 1 tu

G = 01 2); §€Z and t, ueR
001

Then, G 1is a closed subgroup of G which is a type I group.

1 tou .
We denote an element (O 1 Q) of G as (Q,u,t).
001

Put
N = {(0,u,0) ; QeZ and ueR).

~ o}
Then, N is a normal subgroup of G. Let X (gé€¢R) be a

unitary character of N given by
g .
x ((2,u,0)) = 74,

We define a unitary representation m° of G by

o G o
T = IndNX .
G
Then, by Corollary 5.4.4, we get the following decompositions

o}
of m .

- 126 -



[y
7% = g; ul@:252) gy (pez ) (D
0
/
y j; v(0,a,7) 4. (aez ) (II)
0

o
(i) If ce R\(1/21)Q, ™ 1is an injective type IIl factor

(o,q,r)

representation of G and U(O’p’k) and V are irreducible

representations of G.

(1i) U(O’p’X) is written in an explicit form as follows.

For &£(x) éL?([O,2ﬂ/O)),

(U§92P20E) ()
. . . . . 2
- elcu61Qxelkkelcpkxelcpk /2g(§¢E),

U<g:p:k)

where 0 < x+k<2n/c. If is never unitarily

U<G!’p"A'

~ O
e
u..

itrary choice of o'€R,

-
O
K
ey
3
O
|,_|

equivalent to
Ate[0,0).

(1ii1) V<0’q’r> is also written in an explicit

o

o

follow

[4)]

2
For t(y)eL(L0,2m)),

SHGRRIICE

SRR . .2
iou iyk iro equyelGQQ /EC(

= € y+09)3

V(O§Q:r)

where 0 £ y+gg <2m. If g # q', is never unitarily

1 1 ot L .
('5a',r") for arbitrary choice of o¢'€ R,

equivalent to V
r'e[0, 1).
(iv) If p # *1 (resp. q # +1), U'TPsA) (pesp. v(9:a,7),
- (g'sa',r")
is never unitarily equivalent to V'9 ? 2 ( resp.
U(O”’p'jx‘) f 1 ] 1 [
or any g'€ R, q'€ Z, and r' €[00, 1) (resp. ¢'€ R,

p'e Z, and X' g [0, g)).
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For the detail, see [22].

Example 5.4.7. A subgroup of the discrete Heisenberg
group
Let H denote the subgroup of the discrete Heisenberg

group, defined by

1k
H:{(Ol ); k,Q,méZ}.
00

|._|N>':.__§

Put

o]

l']T = ‘Tfo (U GR)a
H
1U<0>p))‘-> = IU(G’p:)\) ( péz’ AfR),
E
1,(0,q,7) PAWQﬂ” ( q€Z, reR).

H
Then, we get the following results about the unitary represen-

tations of H.

1 g

I gg@ lU(G’p’A) d A for each pe 2
1

=Se Iy(o,a,r) 4. for each g e 2.

1 0
(1) If ceR\(1/2m)@, ~7 is an injective type II,

(0,q,7)

A o es o oot amg L7700, D,A 1
factor representation of H and U( sP5 A) and 7V are

irreducible representations of H.
(11) tyloPsn) o 150024 5r 4ng only if o - o €
217, p' = p, and A' - Ae27Z + oz. Lylo®LT) 4 lylot,al,rt)
if and only if o' - ce2nZ, g' = q, and r' - ré€Z + (2n/0)Z.
Moreover, if q # :1, each 1y(0,a,7) 55 pever unitarily

equivalent to any of 1U(O’p’}‘).
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Example 5.4.8. The free group F2 on two generators

Let F, be the free group generated by two elements a

2

and b. Then, there exists a homomorphism y from F2 onto H

such that
1 1 0
pla) = 0 1 ©0
0O 0 1
and
1 0 0
V(b)) = 0 1 1
0 0 1
Put
219 = 1%y (c €R)
25(0,0,A8) _ (0,0, (p€2Z, A€R)
gv(o,q,r) - lV(O,Q,l”)Qw (q €2, réﬂ).l

Then, we can interpret the results in Example 5.L4.7 as they

ble decompositions of a representation, and it was about the

regular representation of F2 (see section 1.2). OQur results
. s . . L. 2

are entirely different from his case. We note that ng

is an "injective! type IIl factor representation of Fg,
while the regular representation of F2 is not injective but

type I1., factor representation.

1

5.4.9. The Dixmier group D

Let D be a 7-dimensional simply connected solvable Lie

- 129 -

H. Yoshizawa [54] showed, the non-unigqueness of irreduci-



group with the multiplication

(u,v,x,y,z)(u',v',x",y',z")

i 2mi
= (u+e® TEar vre” Ty xaxt  yty 2tz xy )

for u, veC and x, y, z€R. D is known to be a non-type I
group among simply connected solvable Lie groupSas pointed
out by J. Dixmier [8] and so we shall call D the Dixmier
group. Using the Mackey's machine and the results concerning
the discrete Heisenberg group G, we shall show that we

obtain a large number of irreducible representations of D.

Put

M= {(u, v, 0, 0, 0) , u, vec}
and

H = {(O, 0, x, v, z) 3 X,V, z€R }.

. _ . . . 2 -
Then, M is an abelian group isomorphic with € and H 1s the

‘

Heisenberg group. acts on M by The inner agutomorphism and

¥
-

D can be regerded as M x_H which is a regular semi-direct
product of M with H.

Let w(SsF) (s, t e RT) ve unitary characters of M given
by

L(u, v), w(s,t) S = oils,u) 1(t,v)

for (u,v)EC2 = N where ( , ) means the real inner product

N\
of £. Then, the stability group of H at ©'5°%) in M (the

dual of M ) is just the discrete Heisenberg group G. Put

OW(S’t’L> of D, for

D. = M XSG and define a representation 0

0
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(s,t) . % ;
w " £ M and some representation L of G by

0.,(s,t,L) (s,t)
W 2 V> = 3 1,
(u,v;q) lu,v) g
. . (s,t,L)
Then, we get a unitary representation W of P by
W(s,t,L) TnaP Ow(s,t,L) )
D .
0
+
For s, t¢€R and ceR, Put
3p(s,t,0) (s, ,L0) When L = 77,

3U(S:t302p:>\) = W(S,t,L) When L = U(O'sp:u)\)’

3V(S)t.’o—}q3r) = qus,t,L) When L = VKOJQSr),

where pe Z, A€R, q&¢ Z, and r €R.

Then, we get the following results immediately.

3ﬂ(53t36)
g 2 -

g;E% jU(S"”O’p’A> dx for each p¢ Z
0

~ (L 3.(5,8,0,4,r)

—\@ TV TR dr for each g e 7.
0

(1) If oeR (1/2m)g, 37 5:%59) 1o an injective type

II4factor representation of D and 3U(s,t,0,p,x)

EV(S;t:G:p:P)

and
are irreducilible representations of D.

1 1 14 1 ?
(11) 3ulss>ts0,p.0) o 3u(87,87,0"50"4") 56 1hg only if

s'=s, t'=t,o'=0, p'sp , and A'-A€27Z + OZ. 3V(S’t"f’:qsf’)g

1 1 ¥ 1 k]
3v(S 3t 50,0 ,P ) if and only if S"—‘S, t1=t’ (5'::0: q|=q’
and r'-r € + (2n/0)Z. Moreover, i1f q # X1, 3V(S’t’g’qﬂr)

| 1 1
is never unitarily equivalent to each 3U(S »th,0 ,p,k)_

- 131 -



Here, we note that 3U‘(S’t’0’p’>‘) (S,tER+,G€:R\(l/2”ﬂ‘)Q,
p €2, MR) and V(s’tf"’q’r) (s,t €RT, TeR\ (1/2M)Q,
g Z\{0, 1}, r €R) are new parametrized families of irredu-
cible representationsof the Dixmier group D so far as we

know.
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