<table>
<thead>
<tr>
<th>Title</th>
<th>N-isopropyl-p-iodoamphetamineの体内分布に関する実験的研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>星, 博昭; 陣之内, 正史; 渡辺, 克司; 上田, 孝; 山口, 忠敏</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 47(3) P.497-P.514</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1987-03-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/16680</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
N-isopropyl-p-iodoamphetamine の体内分布に関する実験的研究

宮崎医科大学放射線科学教室（主任：渡辺克司教授）
星 博昭 陣之内正史 渡辺 克司

同 眼科学教室
上 田 孝

同 衛生学教室
山 口 忠 敏

（昭和61年6月23日受付）
（昭和61年9月8日最終原稿受付）

Biodistribution of N-isopropyl-p-iodoamphetamine
Hiroaki Hoshi*, Seishi Jinnouchi*, Katsuki Watanabe*, Takashi Ueda**
and Tadatoshi Yamaguchi***
*Department of Radiology, **Department of Neurosurgery, ***Department of Hygiene
Miyazaki Medical College

Research Code No.: 701

Key Words: N-isopropyl-p-iodoamphetamine, Biodistribution, Autoradiography

Biodistribution of N-isopropyl-p-iodoamphetamine (IMP) was studied experimentally for evaluating the usefulness of this radiopharmaceuticals for cerebral perfusion scintigraphy. IMP labeled with radioactive iodine (I-125, I-131), was injected intravenously in awake animals.

The activity in the brain of male ddY mice injected 3.7kBq (0.1μCi) of I-125 IMP reached 8.0 (%Dose/g) at 10 min. after injection and it was almost constant till 120 min. Activity in the lung and heart was the highest just after injection, and rapidly decreased in the constant level lasting 30 min. to 120 min. Activity in the liver increased slowly and reached peak level at 60 min. Autoradiograms of male ddY mice injected 1.85MBq (50μCi) of I-131 IMP showed almost same activity in the spinal cord as the brain.

Activities of I-131 IMP in normal brain of Sprague-Dawley rats injected 7.4MBq (200μCi) of I-131 IMP were 2.68—3.2 (%Dose/g) in the cerebral cortex and 0.59—0.66 (%Dose/g) in the white matter at 1 min. after injection. Activities in the cerebral cortex were slightly increased at 60 min. after injection and the activities in the white matter increased markedly at 60 min. and 6 hrs. after injection. The cerebral cortex to white matter ratios were about 5 at 1 min. or 10 min. and about 1 at 50 min. or 6 hrs. after injection. Autoradiograms of normal and ischemic rat brain showed local cerebral blood flow image, but the contrast between the gray matter and the white matter decreased at 60 min. or 6 hrs.

Our study on the biodistribution of IMP showed the usefulness of this agent in cerebral perfusion imaging, and may be informative for the interpretation of images.

I. はじめに

脳血流量を測定する実際的方法には、Ketyらの理論を基盤として、不活性ガスである¹³⁵-I-trifluoroiodomethane を静注後にオートラジオグラフィを行って求める方法が報告されており①，その後より簡便な¹⁴C-antipyrine を用いる方法が開発された②。しかし，¹⁴C-antipyrine を用いる局所脳血流量（LCBF）測定法は，CBF 値がやや低く算出されることが判明し③，さらに正確に測定できる方法としてUszlerら④，Sakuradaら⑤により¹²³I-iodoantipyrine，¹¹C-iodoantipyrine（IAP）を用いる方法が開発された。これらの方法で利用される
IMP の体内分布に関する実験的研究

物質は、いずれも Blood-brain barrier（BBB）を容易に通過し、この性質を利用して LCBF を測定する方法である。一方、臨床的に LCBF を測定する方法としては、不活性ガスである 133Xe または 111mKr を静注、動注あるいは吸収させて測定する方法が普及している 19-22。また、血管内、Lassen らによりリング型カメラを用いて Single Photon Emission CT（SPECT）像を得ることにより LCBF を算出する方法も開発されている 23-24。

この場合、111mKr では、動注法でなければならないこと、133Xe では、γ 線エネルギーが低いために深部の放射能の検出が劣り、空間分解能が劣ることが難点である。また、検出器としてはいずれの場合もリング型カメラを必要とし、通常のカメラ回転装置による SPECT では測定できないことも欠点として挙げられる。

Winchell ら 25 は、BBB を容易に通過し、脳細胞の機能、代謝に関与する物質であるアミノ酸類に着目し、脳血流測定に適した物質を探索すべき動物実験を行った。この結果、40種類のアミノ酸類の中から N-isopropy-l-p-idoamphetamine（IMP）が脳血流測定用物質として最も有効であることを報告した。25 で標識された IMP は、その後脳血流シンチグラフィー用放射性医薬品として臨床応用もなされており、広くその有用性は認められつつある 26-28。

静注された IMP は血流に応じて速やかに脳内へ移行し、一定時間後でとまるため、その初期分布は LCBF を表すとされている 29。しかし、IMP の静注後の体内分布と挙動、脳組織内分布の詳細についてはなお不明な点が多い、そのためにわれわれは、IMP を用いた脳血流シンチグラフィの所見を解釈するための基礎となる正常分布を明らかにすべく、マウス、ラットを用いて、IMP 投与後の全身および脳内の経時的分布について検討した。

II. 方 法

1. IMP の標識法

和光純薬（株）に依頼して合成した IMP を Carlsson ら 30 の方法に準じた Na*1 の同位体交換反応により標識した。すなわち、IMP 10-20mg を硬質ガラス管（φ=0.9cm、L=12cm）に封入し、酢酸 10μl、Cu（I）nitrate 液（Cu2+、50μg）5μl、放射性ヨード（Na1*1 carrier free）5×185MBq（2×5mCi）を d e H2O で洗い込み、全量を 0.5ml にして封管する。時々振拌しながら、油浴中 20°C で 2 時間加熱する。室温で放冷後、反応液を展開洗浄 31（メタノール：クロロフォルム：酢酸＝15：85：1）にて thin-layer chromatography（Merk 社製）により展開し、薄層クロマトスキャナーより Rf=0.55 のスポットに放射能の 95% 以上の存在を確認した。その後、ヨウ化ナトリウム溶液（10μg/ml）0.1ml、2N 水酸化ナトリウム 1ml を加え充分振盪後、エーテル 1ml を加え抽出（2×3 回）、エーテル層を集めた d e H2O 1ml で水洗後、エーテル留去、結晶を得た（放射化学的収率 85% 以上）、0.3N 塩酸を加えた後、沈殿を生じない程度に 0.3N 水酸化ナトリウムを加え中和、生理的食塩水で希釈して、0.37MBq/ml（10μCi/ml）(131I-IMP)、37MBq/ml（1mCi/ml）(131I-IMP) に調整した。

2. マウスによる体内器官分布測定

ddY マウス（雄 20-30g）の尾静脈より 131I-IMP 3.7kBq（0.1μCi）を静注し、1分、5分、10分、15分、20分、24時間、24時間切片、ただちに、脳、肺、肝、腎、心、腎臓を摘出し各臓器の放射能を測定した。各測定のおもな部位はアラカワウェル型時点マウント（ARC601）にて 1分間の計測を行った。重量は Digibalance GD200（Shimadzu）にて測定した。各臓器の活性は放射能に応ずる各臓器分布の百分率（%Dose）を臓器の重量で除した値（%Dose/γ）に換算した。

3. マウスによる全身オートラジオグラフィ

ddY マウス（雄 20-30g）の尾静脈より 131I-IMP 1.85MBq（50μCi）を静注し、1分、10分、60分、6時間後にクロロフォルムにて屠殺し、ただちに CMC 包埋の後に 80°C にて凍結した。

切片作成はオートライオトーム（－20°C）でほぼ中央部の矢状断面および冠状断面を 10μm の厚さにて切片を作った。切片は、－20°C で 2 時間乾燥させ、市販乳剤フィルム（Kodak OM-1）にカセテ内で密着させ、1～5 日間に至る後観察した。

4. 尿中、便中排泄率測定
Sprague-Dawley rat（雄300g）の尾静脈より 125I-IMP 3.7×10^3Bq（0.1μCi）を静注し、24時間、48時間の値に便を採取した。開口はアプロテックウェル型ガススクリューラング（ARC601）にて1分間の計測を行い、投与量に対する割合を計算した。

5. ラットによる脳オートラジオグラフィ

Sprague-Dawley rat（雄250〜300g）の尾静脈より 131I-IMP 5.4MBq（200μCi）を静注し、1分、10分、60分、6時間後に断頭した。ただちに頸部から摘出し、CUM包埋後、−80℃にて凍結させ、オートライオトーム（−20℃）にて40μmの厚さの連続切片を前頭葉領域より標的レベルまで冠状断にて作製、切片厚は40μmに設定し、切片は2日間〜20℃で保存後、片面乳剤フィルム（Kodak OM-1）にカセット内で密着させ、5〜7日間露出後で現象した。得られたオートラジオグラムは、大脳皮質、大脳基底核、中脳、橋の主な核の黒化度をDensitometerで測定し、フィルムへの露出期間と 131Iの黑化度曲線よりactivity/gの値を計算し、さらにラットへの 131I-IMP の投与量から％Dose/gの値に換算した。

6. 131Iによる黒化度曲線

131I 74k3q/g（2μCi/g）の肝ペーストを先の脳オートラジオグラフィにおける切片作成と同様な方法で作製した。これを、脳の片面乳剤フィルム（Kodak OM-1）にカセット内でマウントし、一定期間経過後、同時に現象した。すなわち、フィルムへの露出時間を変えることにより、131Iの減衰曲線から求めた24時間マウント時における相対的activity濃度に換算し、フィルムの黒化度を対比した。フィルムの黒化度はDensitometerにて測定した。

7. 脳虚血モデルラットの脳オートラジオグラフィ

Sprague-Dawley rat（雄250〜300g）3 匹をネンプタール麻酔下で頸動脈を剣離し、1 匹は右頸動脈よりリビオドール0.1mlを動注し、1 匹は0.2mlを動注した。また、さらに1 匹は左頸動脈を剣離後、右頸動脈よりリビオドールを0.3ml動注し、計3 匹の脳虚血モデルを作成した。リビオドール投与1 時間後、ラットが充分に覚醒した後に、尾静脈より 125I-IMP 200μCiを静注し、1分後に断頭し、前述と同様な方法でオートラジオグラムを作製した。リビオドール0.2ml投与ラットにおいては、投与直後にSOFTEX（CMBW-2）にて頭部の軟X線撮影を行った。

III. 結 果

1. マウスによる 125I-IMP の体内臓器分布測定

マウスを用いた脳内IMP分布の経時的変化をFig. 1に示す。静注直後から急激な activityの増加がみられ、10分後にpeak値（％Dose/g）を達した。その後2時間まではほぼ一定値を示し、6時間後に約1/3に減少した。肺、肝におけるIMP分布の経時的変化をFig. 2に示す。肺においては静注直後に高値を示し、その後急激に低下、30分から120分まではほぼ一定であった。また、肝における静注後のactivity増加は比較的ゆるやかで、60分にてpeak（10.8％Dose/g）に達し、その後
はゆるやかに低下した。腎、心、脾の activity の経時的変化を Fig. 3に示す。腎では、5 〜 10分に peak（18.4% Dose/g）がみられ、その後やや低下し、30分〜60分の間はほぼ一定の分布を示した。心では肺と同様に静注直後に高値を示し、その後30分までに急速な低下を示した。脾における activity の変化は、肝に類似し、30分〜60分後にpeak（8.1% Dose/g）を示し、その後ゆるやかに低下した。

2. マウスによる全身オートラジオグラフィ

131I-IMP 静注1分、10分、60分、6時間後のオートラジオグラフィ矢状断像を Fig. 4 (a)〜(d)に冠状断像を Fig. 5 (a)〜(d)に示す。体内臓器分布測定の結果と同様に、IMP 静注1分後には、大脳に強い分布がみられ、腎器にも同程度の集積がみられる。この時点では肺や心および筋肉にも高い分布がみられる。また、腎への分布も著明であるが、肝への分布は低い。IMP静注10分後では大脳、腎臓への集積は静注1分後の像とはほとんど変化なく、筋肉、心の集積がやや低下し、肝や唾液腺への分布が亢進している。腎への分布も増加し、胃や小腸などの消化管壁にも分布がみられ、一部は胃内腔へ排泄されている像も認められる。IMP 静注1時間後においては、筋肉への分布はさらに低下し、肺、肝、腎、唾液腺への集積が比較的強いため、腎への集積も強く、腎盂内へ排泄されている。
象も観察され、胃壁の分布は低下し、胃内容物へのRI移行もみられる。IMP静注6時間後には、全体的にactivityは低下したが、甲状顔には強い集積が認められた。

3. 尿中、便中排泄率
IMP静注後24時間における尿中、便中排泄率は、それぞれ、63.5%、1.3%で、48時間後における尿中、便中排泄率は、それぞれ、66.4%、3.4%であった。

4. ラットにおける131I-IMPの脳内分布
131Iの肝ベストを1～16日間経過し、kBq/cm²を相対的な一日当たりのactivityに換算して、得られた黒化度と対比した結果をFig.6に示す。さらに、オートラジオグラムの黑化度よりactivity値(%)Dose/gに換算した大脳皮質、白質領域、基底核、中脳、橋の主な神経核における、IMP分布の一覧表をTable1に示す。大脳皮質領域は、静注1分で2.68～3.22(%)Dose/gの値を示し、経時的には大きな変化はみられなかったが、静注60分にてやや高値を示した。大脳基底核や中脳、橋の核では静注1分で2.0(%)Dose/g前後を示し、内側膝状体、下丘は3.0(%)Dose/g前後とやや高値であった。経時的変化は、大脳皮質と同様であった。内包や脳梁などの白質は、静注1分では0.5(%)Dose/g前後と低く、静注1時間以後に約2.0(%)Dose/gに上昇した。静注6時間の値を1分の値と比較してみると、大脳皮質領域は6時間後では低下しているが、基底核領域では内側膝状体を除きほぼ同程度、中脳では下丘を除きすべて6時間後の方が上昇していた。

昭和62年3月25日 (57)
Fig. 5a–d Autoradiograms in the coronal section of mice body showing the distribution of I-131 IMP at 1min. (a), 10min. (b), 80min. (c), 6hrs (d). after injection.

Table 1 Activity of cerebral structures in normal rat brain (n=3). Values are percent dce per gram:mean±s.d.)

<table>
<thead>
<tr>
<th>Structures</th>
<th>Time after injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 min.</td>
</tr>
<tr>
<td>(Superficial cerebral structures)</td>
<td></td>
</tr>
<tr>
<td>Gray matter</td>
<td></td>
</tr>
<tr>
<td>Frontal cortex</td>
<td>2.69±0.64</td>
</tr>
<tr>
<td>Parietal cortex</td>
<td>3.22±1.03</td>
</tr>
<tr>
<td>Occipital cortex</td>
<td>2.68±0.96</td>
</tr>
<tr>
<td>Cingulate gyrus</td>
<td>3.20±0.96</td>
</tr>
<tr>
<td>White matter</td>
<td></td>
</tr>
<tr>
<td>Corpus callosum</td>
<td>0.66±0.27</td>
</tr>
<tr>
<td>(Deep cerebral structures)</td>
<td></td>
</tr>
<tr>
<td>Caudate-putamen</td>
<td>2.16±0.87</td>
</tr>
<tr>
<td>Amygdala</td>
<td>1.24±0.43</td>
</tr>
<tr>
<td>Anterior thalamus</td>
<td>2.46±1.02</td>
</tr>
<tr>
<td>Dorsolateral thalamus</td>
<td>2.54±0.87</td>
</tr>
<tr>
<td>Medial geniculate body</td>
<td>2.79±0.74</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>1.66±0.48</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>1.64±0.81</td>
</tr>
<tr>
<td>Internal capsule</td>
<td>0.59±0.25</td>
</tr>
<tr>
<td>(Midbrain and Pons)</td>
<td></td>
</tr>
<tr>
<td>Inferior colliculus</td>
<td>3.08±1.2</td>
</tr>
<tr>
<td>Pontine gray</td>
<td>1.76±0.65</td>
</tr>
<tr>
<td>Reticular formation</td>
<td>1.53±0.65</td>
</tr>
</tbody>
</table>

大脳皮質領域と白質領域における分布の経時的変化をFig. 7に示す。大脳皮質では60分でやや高く、白質では10分までに比べ60分以後が上昇している。大脳皮質と白質のactivityの平均値の比を経時に示したもののがFig. 8である。静注1分、10
IMPの体内分布に関する実験的研究

分では皮質と白質の比は約5とコントラスト良好であるが、60分以後は低下し約1と均等になった。

ラット脳の主な4カ所のレベルの冠状断面像をFig.9に示す。また、それぞれの部位に対応したラット脳のIMP静注1分後のオートラジオグラムをFig.10(a)〜(d)に、10分後の像をFig.11(a)〜(d)に、60分後の像をFig.12(a)〜(d)に、6時間後の像をFig.13(a)〜(d)に示す。IMP静注1分後に早くも大脳皮質、基底核領域、中脳（特に、内側膝状体、下丘）へ著明な分布がみられる。

静注10分後の像は、1分後の像とはほとんど変わらない。静注60分後には、白質のactivityが増加し、大脳皮質や基底核、中脳を含めて均一なimageとなっている。静注6時間後には、さらに均一なimageとなり、大脳皮質と白質のactivityはほぼ

Fig.6 Density-activity curve obtained by I-131.

Fig.7 The time activity curves in the gray and white matter.

Fig.8 The gray matter to white matter activity ratio with time course.

Fig.9 Atlas of rat brain in the 4 different frontal section.

CC: Corpus callosum
CP: Caudate-putamen
Am: Amygdala
Tv: Ventral thalamus
Tp: Posterior thalamus
Co: Optic chiasma
Gm: Medial geniculate body
Fo: Fornix
Hf: Hippocampus
Hy: Hypothalamus
Ca: Internal capsule
Pf: Parafascicular nucleus
Cl: Inferior colliculus
Rf: Reticular formation
P: Pons
同程度となっている。
5. 脳虚血モデルラットによるIMP脳内分布
リビオドール1ml 投与のラット、0.2ml 投与
のラット、0.3ml 投与のラットの脳オートラジオ
グラムをそれぞれFig. 14 (a)～(c) に示す。0.1
ml 投与のラットでは後頭葉を中心とした皮質下

Fig. 10a～d Autoradiograms in the frontal section of rat brain showing the
distribution of I-131 IMP at 1min. after injection.
Fig. 11a~d Autoradiograms in the frontal section of rat brain showing the distribution of I-131 IMP at 10min. after injection.

Fig. 12a~d Autoradiograms in the frontal section of rat brain showing the distribution of I-131 IMP at 60min. after injection.
Fig. 13a–d Autoradiograms in the frontal section of rat brain showing the distribution of 1-131 IMP at 6 hrs after injection.

(a): 0.1 ml of lipiodol into right carotid artery.

(b): 0.2 ml of lipiodol into right carotid artery.
IMP 分布が低下し、0.2ml 投与ラットでは右大脳半球全体の IMP 分布が低下していた。0.3ml 投与ラットでは、左脳動脈側枝のためリビオドール両側へ流入し、大脳皮質全体の IMP 分布が低下していた。0.2ml と 0.3ml 投与ラットでは、反対側の海馬や間脳、中脳領域の IMP 分布は、全体に不均一な像であった。Fig. 15 にリビオドール0.2ml 投与ラットの頭部断X線写真を示す。右脳底動脈付近に点状のリビオドール（矢印）が散在している。

IV. 考 察

脂溶性物質は容易に BBB を通過するが、このような物質には、不活性ガスやカフェイン、アルコール、ステロイドなど各種の薬剤がある。IMP も脂溶性物質に属し、1 回の循環ではほぼ完全に脳内へ取り込まれる。このことは、一側頸動脈内へ IMP を動注した場合、反対側脳半球の IMP 分布が全くみられないことから裏付けられている。従って IMP 静注後数時間の脳内分布は、LCBF に一致していると考えられる。

血中の放射能は、マウスのオートラジオグラム上では IMP 静注 1 分にてすでにほぼ消失している。Rapin らも実験において、血中 activity の消失曲線は 3 相に分けられ、静注 1 分以内では急速な activity 低下があり、4 分後ではわずかに存在する activity（8,000cpm/ml）はほぼ定常状態となり、その半減期は約 10 時間であったと報告している。すなわち、静注された IMP は急速に血中から消失し、肺に分布すると同時に、脳、脊髄に分布する。我々のマウスによる実験でも、静注された IMP の脳への分布は急速で、1 分にて 60%、5分にて 90% 以上の気腫を示し、10 分後には peak に達した。その後、120 分まではほぼ一定の分布を示した。Knust らのマウスを用いた実験結果でも、IMP 静注 30 分後には peak を示し、240 分までほぼ一定の activity（11%Dose/g）を示したと報告している。ラット、猫および人においても、IMP の脳への分布は急速であり、数時間その脳内分布は変化しないことは既に多くの研究者により報告されている。

脳組織に対する IMP の取り込み機序については、これまでいくつかの報告がなされてきた。すなわち 1. 頚部内外液の pH と酸化還元、2. 非特異的神経受容体への接合、3. 細胞内での非脂溶性物質への代謝などが考えられている。アミノ酸の pH の変化により異化し非脂溶性となる。血中 pH より細胞内 pPH が十分に低いとき、一担
trapされたIMPはイオン化し、細胞内へ取り込まれた状態となる。しかし、これだけではIMPが細胞内へ蓄積に取り込まれるかを説明できない。この点について、Winchellらは[1]は、主に非特異的神経受容体への結合により細胞内へ取り込まれるのではないかと述べている。ただし、ラット脳を用いたin vitroの実験にて、神経受容体に接合するserotoninやnoradrenalineの取り込みが、IMPの存在により抑制されることを示し、IMPの神経受容体への親和性を示唆している。

オートラジオグラフィでは、大脳、小脳、ののみならず、脳幹への集積も同等程度に認められたが、このことに関する報告はまだみられず。しかし、IMPがBEPを容易に通過することを考えると、脳内での神経受容体に分布することは容易に考えられることで、今後神経変性疾患の臨床応用も可能になるのではないかと考えられる。

肺へのIMP分布は、他臓器と大きく異なっている。静注直後に高集積を示し、その後速やかに低下して、30分後より120分までにゆるやかな低下を示し、比較的安定した値を保っている。このこととは、静注されたIMPの全量が直ちに肺全体に運ばれ、なんらかの機構により大量のIMPが肺に一担trapされ、その後再び血中へ放出される過程が存在することを示し、肺において静注後10分頃にpeakがみられるのも、このことに関係していると思われる。Holmanらは[2]はこれらの実験において、肺のIMP分布は静注後15分から60分間はほぼ一定であるが、わずかに上昇傾向がみられるのは肺からのIMP放出のためであると説明している。

ところで、肺へのIMP集積機能についてRahimianら[3]、Touyaら[4]は、IMPが肺のアミノ酸のレセプターに接合する可能性を挙げている。特に、肺へのIMP取り込みはketamineにより抑制されることからレセプターへの接合によって取り込まれる機能を強く考えている。

肝におけるIMP分布の特徴は、投与後の早期は比較的ゆるやかな上昇を示し、約60分後にはpeakに達し、その後120分から6時間まではゆるやかに低下することにある。このことについてHolmanら[5]は、投与早期の肝へのuptakeに加えて、その後にはIMPの代謝物が肝へ集積しているためではないかと考えている。

IMPにamp:amineそのものの代謝と異なり、peraの位置にヨードが存在するため、p-hydroxylationは阻害され、N-dealkylation、β-hydroxylationによって分解されると考えられている[6]。そしてN-dealkylationされた、主に肝のミトコンドリアで、酸化生っ脱アミノ化が行われ、p-iodophenylacetoneとなり、さらにp-iodobenzoic acid、p-iodohippuric acid、p-iodobenzoylglucuronic acidに代謝される。また、β-hydroxylationが起これば、p-iodonorephedrineやN-isopropyl-p-iodophedrineとなると想定されている。Wuら[7]はラットの実験で尿中に排泄された代謝産物を調べ、p-iodoamphetamine、IMP自体、p-iodohippuric acid、p-iodobenzoic acid等が排泄されたと報告している。

投与したIMPの脳内分布を画像化するためにIMPが一定時間、同一部位に留まることが必要であるが、IMPの代謝産物であるp-iodonorephedrineは、BEPを通過することなく神経受容体内に留まる物質の一つとされられている[8]。

腎には、オートラジオグラフィでみると静注10分後に腎皮質へ強い集積がみられ、60分後では腎盂への挿出像も認められた。IMPの尿中排泄率は高く、Wuらは、24時間後の尿の排泄率は投与量の38％（ラット）であったとし、われわれの結果では63.5％であった。また腎盂からの挿出は24時間で13.5％であったが、われわれの行ったIMP投与10分後のオートラジオグラフィの像をみると、10分後に腎盂への挿出値と腎内容物に混在したSIの存在が示された。また、唾液腺、腸管にも分布がみられ、これが薬便中への挿出されるものと思われる。

6時間後のオートラジオグラフィで甲状腺への強い集積がみられたが、これはIMP投与後標識がはずれて無機ヨード化した[9]が、甲状腺へ取り込まれたものと考えられ、臨床用では前処置としての甲状腺ブロックが必要であることを示している。
Sakuradaらは、⁴¹C-IAPを用いてラット脳の
LCBFを算出しているが、大脳皮質では1.39～
2.05 (ml/g/min.）であり、基底核領域では、0.50～
1.73 (ml/g/min.) とやや低く、内側膝状体、下
丘が2.02～2.46 (ml/g/min.) と高値を示していた
と報告している。また白質領域では3.40～0.49
(ml/g/min.) と低値を示していた。Goldmanらは,
1-buty1-3-phenylthiurea を用いて、同様にラッ
t 脳の LCBF を算出しているが、彼らによれば
大脳皮質で1.63～1.96 (ml/g/min.)、基底核領
域でもほぼ同程度で前視床や内側膝状体、下丘が
高くったと報告している。われわれの結果でも、
静注1分後のオートラジオグラムでは、Sakuradaら
の結果と類似しており、静注10分後では白
質が相対的に低い分布を示すことを除き IMP
の分布は⁴¹C-IAP と同様に LCBF を示すものである
と考えられる。この点については、Learらも、
⁴¹C-IAP 及び IMP を同時に投与してオートラジ
オグラフィを行い、両者が類似した像であったと
報告している。

大脳皮質～白質比は静注早期では約5 であったが、
⁴¹C-IAP および 1-buty1-3-phenylthiurea によ
る脳血流測定値では約3～4 であり、IMP の
比の方がやや高い値を示すようである。Rapin
らはラット脳オートラジオグラフィよりみた
IMP の分布は、白質の実際の血流分布よりも低
くなると報告し、この原因として2つの可能性を挙
げている。すなわち、1. 脳への血流分布は、多く
は灰白質から灌流された後に白質へ流入するため
灰白質への IMP 収穫導が相対的に多くなるこ
と、2. IMP の血液～脳の分配係数が灰白質と白
質で異なり後者においては前者より低いこと、な
どの可能性を挙げている。しかし、上記以外に
IMP が接合すると思われる非特異的神経受容体
が白質領域では少ないためという可能性もあると
われわれは考えている。

IMP 静注60分後についてみてみると、大脳皮
質への IMP 分布は、静注1分での平均3.1 (％
Dose/g) に比べ3.5 (％Dose/g) とやや上昇した。
大脳基底核領域、中脳でも下丘を除き同様の傾向
であり、これは IMP の再循環による trap ではな
いかと思われる。Rapin らもわれわれと同様の
結果であり、3 分と60分を比較して後者がやや高
値を示したと報告している。IMP 静注後6時間で
は、静注1分比べて大脳皮質ではやや低下、基底
核領域ではほとんど変化なく、中脳では上昇し
た。ただし、血流の高い内側膝状体、下丘では低
下した。これらのことはオートラジオグラムでも
観察されるように IMP 静注早期に低い分布を示
した領域は経時に上昇し、静注早期に高かった
領域は徐々に低下し、全体的にコントラストの低
下した像となったことを示している。Rapin らは、
ラット脳オートラジオグラフィで静注1時間
以後には分布像が変化することを示し、肺からの
IMP 再循環による影響と、一担 trap された脳内
の IMP が拡散するためと述べている。静注早期
で高い分布を示した領域が経時に低下するの
は、血流が多いため取り込まれた IMP またはそ
の代謝産物が、再び血中へ放出される量も血流比
列するためではないかと思われる。Holman
らは灰白質～白質の分布比が IMP 静注24時間
後には逆転することを示しており、このような考
え方を支持する実験結果であると思われる。

以上のことから、脳内 IMP の分布は全体とし
ては一定時間変化状態に保たれるが、白質領域の
activity は経時的に増加する傾向があり、脳血流
分布像として評価できるのは比較的早期に限られ
ているといえる。

脳虚血モデルラットを用いた実験では、脳虚血
位と思われる領域に IMP 分布の欠損がみられた
ほか、脳虚血部位の広いラットでは反対側の海馬や
間脳、中脳領域にも IMP の不均一な分布がみら
れた。これは広範囲な脳虚血では特定血管の支配
領域のみならず脳全体への影響があり得ることを
示していると考えられる。すなわち、臨床例
でも crossed cerebellar diaschisis などのremote
effect が検出されている42 のに対応する所見であ
る。

IMP による脳血流シンチグラフィは、広く普及
している回転型カメラでも SPECT 象が得られ、
リングスカメラを必要とする¹³³Xe ガス法に比
べて臨床的有用性が高い。また、ボジトリオン CT で

(66)
も血流計測は可能であるが、この場合は特別
の装置、医薬品を必要とし、日常的に行い得る検
査とはならない。さらに IMP は通常用いられて
いる核医学イメージング装置にて施行可能であ
り、臨床的にも虚血性脳病巣のみならず他の多くの
脳血管障害、脳腫瘍、てんかんなどの脳疾患に
おける脳血流評価の有力な手段となり得るもので
ある。

V. 結 論

IMP の体内および脳内分布について実験的に
検討し、以下の結果を得た。

マウスによる実験では、
1. IMP 静注後脳への分布は、10 分にて peak
(8% Dose/g) に達し 120 分まではほぼ一定値を示した。

2. 前・心体は、投与直後に強い集積を示し、其
の後急速に低下し、肝、腎への分布は、短くや
かに増加したが、いずれも 30～120 分まではほぼ一定
であった。

3. 腦への分布は、5～10 分で peak を示し、そ
の後低下して 30～120 分まで一定であった。

4. オートラジオグラフィーの結果も前記の脳器
分布変化と同様であり、更に薬剤への集積もみら
れた。

ラットにおいては、
1. 大脳皮質では、IMP 静注 1 分後で、
2.68～3.22 (% Dose/g) の分布を示し、60 分でや
や高値を示した。

2. 大脳基底膜、中脳では、1 分で 2 (% Dose/g)
前後を示し、内側膝状体、下丘がやや高かった。

3. 白質領域では、1～10 分で約 0.5 (% Dose/g)
を示し、60 分後には約 2 (% Dose/g) に増加した。

4. 大脳皮質・白質の分布比は、10 分までは約
0.05 であり、60 分後に低下し約 1 となった。

大脳半球の脳虚血モデルラットにおいては、
虚血部位の IMP の取り込みは低下し、虚血範囲
のないものでは、反対側の海馬や脳間、中脳領域
の血流分布も不均一であった。

以上、IMP による脳血流計測法の確立および検
査所見の解釈に必要な基礎的事項を得るべく、
IMP 静注後の転時的な体内分布および脳内分布を
明らかにした。

本稿を終えるにあたり、終始本実験に多大な御親父をいただきました厚く感謝申し上
す。また、御協力いただきました教室員各位、山田直子さん、田代幸子さん、丸田美子さん
心よりお礼申し上げます。

本論文の一部は、第 21 回日本核医学会九州地方会、
第 45 回日本放射線学会総会、第 112 回日本医学放射線学
会九州地方会において発表した。

文献
1) Kety, S.S.: The theory and applications of the
exchange of inert gas at the lungs and
issues Pharmacol Rev., 3: 1～41, 1951
2) Landau, W.M., Freygang, W.H., Roland, L.P.,
Sokoloff, L. and Kety, S.S.: The local circula-
tion of the living brain: Values in the unanesthet-
ized and anesthetized cat. Trans Am. Neurol.
Assoc., 80: 125～129, 1955
3) Reivich, M., Jehle, J., Sokoloff, L. and Kety, S.
S.: Measurement of regional cerebral blood
flow with antiptpyrine. 14C in awake cats. J. Appl.
Physiol., 27: 290～300, 1969
4) Eklöf, B., Lassen, N.A., Nilsson, L., Norberg,
K., Siesjö, B.K. and Torp, P.: Regional cere-
bral blood flow in the rat measured by the
tissue sampling technique: A critical evalua-
tion using four indicators C+, antiptpyrine, C+,
Scand., 91: 1～13, 1974
5) Eckman, W.W., Phair, R.D., Fenstermacher, J.
D., Patlak, C.S., Kennedy, C. and Sokoloff, L.:
Permeability limitation in estimation of local
brain blood flow with 14C antiptpyrine. Am. J.
Physiol., 229: 215～221, 1975
6) Uszler, J.M., Bennett, L.R., Mena, I. and Cled-
dorf, W.H.: Human CNS perfusion scanning with
131I-iodoantiptpyrine. Radiology, 115: 197
200, 1975
7) Sakurada, O., Kennedy, C., Jehle, J., Brown,
J.D., Carbin, G.L. and Sokoloff, L.: Measure-
ment of local cerebral blood flow with iodo
14
C) antiptpyrine. Am. J. Physiol., 234: H59～H66,
1978
8) Lassen, N.A., Harkin, L. and Paulson, O.:
Regional cerebral blood flow in stroke by
133Xenon inhalation and emission tomography.
Stroke, 12: 284～283, 1981
9) Uemura, K., Kamio, I., Miura, Y., Miura, S. and
Tomonaga, S.: Tomographic study of
regional cerebral blood flow in ischemic cere-
brovascular disease by 133Xe intrarterial infusion and HEADTOME. J. Comput. Assist. Tomography, 6: 677–682, 1982

12. 松田れは：133Xe吸入法による局所脳血流測定に関する研究。日本医放会誌, 43: 328–348, 1983

17. 星, 仏心, 諸, 木村, 木村, 木村, 木村, 杉本, 杉本: 脳血管障害に対する133XeおよびCTとの比較一, 腦医学, 22: 1485–1493, 1985

21. 壁谷, 光, 二村, 一, 鳥井, 邦, 鈴木, 織, 本: N-Isopropyl-p-[131I] Iodoamphetamine (IMP) のSPECT像による脳血管障害の局所脳血流の評価一IMPの副変数採取等に133Xe動注法による脳血流量の比較一, 日本医放会誌, 45: 1135–1141, 1985

22. 坂之内, 通じ, 石, 博, 通じ, 石, 原田, 田上, 星, 木村, 木村: 脳血管障害におけるIMP SPECT 133XeおよびX線CTとの比較一, 腦医学, 23: 869–876, 1986

795–799, 1982

photon emission computed tomography.

(70) 日本医学会誌 第47巻 第3号