
Title
Studies on Scalability Improvement Techniques
for the Internet with Access Manager and
Performance Manager

Author(s) Kadobayashi, Youki

Citation 大阪大学, 1997, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3129355

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

コ

Doctoral Thesis

Studies on Scalability Improvement Techniques for

the Internet with Access Manager and Performance

Manager

Youki Kadobayashi

April17, 1997

Department of Informatics and Mathematical Science

Osaka University

Doctoral Thesis

Studies on Scalability Improvement Techniques for

the Internet with Access Manager and Performance

Manager

by

Youki Kadobayashi

Submitted to the Department of Informatics and Mathematical Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at

Osaka University

April 1997

Thesis Supervisor: Hideo Miyaharaヲ Professor

Copyright @ 1997 by Youki Kadobayashi. All rights reserved. No part of this
dissertation rnay be reproduced in any form by any electronic or mechanical means

(inchding photocopying, recording?or information storage andmmval)without
permission in writing frorn the author.

Abstract

Protocols and software systems that constitute computer networks have been facing the

scaling and management problems. Scalability can be limited by improperly designed

protocols or inappropriate use of protocols. Protocols and systems that do not impleｭ

ment automatic con五guration and diagnosis lead to management overhead. These two

problems may result in computer networks that cannot scale, or large computer networks

that cannot be managed.

In this dissertation we examine the problems in scalability and manageability of comｭ

puter networks that are based on TCP /IP protocol suite. A number of solutions are

proposed to these problems. The essence of the ideωis to deal with transient failure in

some part of networks by transparently introducing new functions into networks.

A new approach for improving scalability and manageability of information access

was introduced , which is based on the concept of “access manager". Its implementation

inside distributed 五le system was presented. Experimental results show that the proｭ

posed approach eliminates many of the scaling and management problems that existing

information access systems face.

A general method for automatic detection of network performance problems was

proposed. A data collection and processing architecture to monitor network performance

is described. Experiments with a prototype system show that the proposed techniques

can reduce the management overhead in large computer networks.

11

Ackno"W ledgll1ents

1 would like to thank my supervisor, Professor Hideo Miyahara, for his help and encourｭ

agement during the course of my research. 1 am indebted to Associate Professor Suguru

Yamaguchi, for giving me all the great opportunities to work with a number of gifted

people, and for sharing his far-sighted vision with us.

1 would also like to thank the various members at the Nara Institute of Science and

Technology for their assistance and advice during my stay at NAIST: thanks are due

to Professor Heiichi Yamamoto, Kazumasa Kobayashi, Tomomitsu Baba and Kiyohiko

Okayama.

1 have benefited a great deal from the stimulating discussions with knowledgeable

and insightful people at the WIDE project: Professor Jun Murai (医Keioり)， S 山u叩mu Sa訂組n

(NEC) , う Ats凶hi Onoe (Sony) , 0悶nu Nakamura (Keio) , Yoichi Shinoda (JAIST) , Hiｭ

royuki Kusumoto (Keio) , Akira Kato (University ofTokyo) and Hideki Sunahara (NAIST).

My life a鉛s a researcher di凶d not begin without many people who have been at the

Mi)

with.

Finally, 1 would like to thank my parents and my wife Rieko for their love and support

during my studyヲ and for making life more pleasurable.

III

Contents

1 Introduction

1.1 Evolution of Internetworking Technology

1.1.1 Early History .

1.1.2 Recent Trends in Internetworking Software .

1.1.3 Recent Trends in Internetworking Devices

1.2 Research on the Scalability of Networking Software and Hardware

1.2.1 Scalability of Client-Server Model . .

1.2.2 Network Scalability and Network Performance

1

2

2

3

6

8

8

9

1.3 Organization of Dissertation .. 9

2.3 Access Manager .

2.4 Design of an Access Manager

2.4.1 Accessing from Clienも.

2.4.2 Accessing File Servers

2.4.3 File Naming .

2.4.4 Security

2.4.5 File Sharing

2.4.6 Caching

lV
V

2 Access Managers for Scalable Information Access in the Internet 11

2.1 Introduction.................................. 11

2.2 Problems of Information Access in the Internet. 13

14

16

17

17

18

19

19

20

2.4.7 Cache Consistency

2.4.8 Load Balancing

2.4.9 Server Selection

2.5 Implementation . .

2.5.1 Implementation Overview

2.5.2 User-level NFS Server

2.5.3 File Handle

2.5.4 NFS-FTP Gateway

2.5.5 Exception Handlers .

2.5.6 Scheduling Facilities

2.5.7 Resource Managers .

2.5.8 Debug and Administrative Facilities .

2.6 Evaluation.

2.7 Discussion

2.8 Summary

n
u
-
-
1
i

っ
“
っ
“
民

υ

ハb

ケ
I
Q
U

公
u
o
u
-
-
1
i

っ
“

q
J

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3.4.4 Sharing Fault Information with Other Threads . 44

3.5 Evaluation . 45

3.6 Discussion 45

3.7 Related Work 46

3.8 Summary 47

4 A N etwork Performance Management System for Maximizing the Scal-

ability of Networking Devices

4.1 Introduction.

3 Improving A vailability of Information Access in the Internet

3.1 Introduction.

3.1.1 Failure Modes of the Internet

3.2 Utilizing Alternative Servers

3.2.1 Utilizing Alternative Servers with Access Manager .

3.2.2 Integration of Access Manager into Existing Services

3.2.3 Describing Alternative Servers . . .

3.2.4 Volumes for Describing Alternative Servers .

3.3 Technical Challenges in Implementation Method .

3.4 Implementation of Server Switching .

3.4.1 Event-driven Implementation

3.4.2 Fault Detection with ICMP

3.4.3 Fault Detection with Timer

F
O
v
h
u
n
h
u
n
R
u
n
y
n
υ
1
i

唱

i
q
4
q
L
q
d

司
、U

組
処

3

3

3

3

3

4

4

4

4

4

4

4

4

4.1.1 Performance Management in the Internet .

4.2 Network Management Technologies .

4.3 Performance Management Procedures .

4.4 A Network Performance Management System

4.4.1 Functions

4.4.2 Module Organization

4.4.3 Data Structure

4.5 Implementation of the System

4.6 Discussion

4.7 Evaluation.

4.8 Summary

9

9

1

3

5

7

8

8

9

0

1

2

4

4

4

5

5

5

5

5

5

5

6

6

6

6

5 Conclusions and Further Work

5.1 Lessons Learnt

5.2 Summary of Contributions

5.3 Future Work. . . .

7

7

8

9

ρ
O
R
U

ハo
n
h
u

Vl
Vll

List of Tables

3.1 TCP connection failure rates.

3.2 Meanings of each variable in struct tcpstat.

4.1 Comparison of MIB-II and enterprise MIB. .

4.2 Information provided by common diagnostic tools. .

4.3 Comparison of lexical simplicity.

Vlll

37

38

54

54

62

List of Figures

2-1 A protocol translation engine. 18

2-2 Representation of network topology in the domain name system. 22

2-3 A sample priority con五guration 日e. . 22

2-4 Internal structure of the cluster server. 23

2-5 The file handle data structure. . 26

2-6 Control flow of NFS read request in the cluster server. 29

3-1 The formula for calculating Pt ・・ 37

3-2 Transparent introduction of access engine. 40

3-3 The use of alternative servers in sendmail. 41

4-1 The structure of ipsh. . . 59

4-2 The data format of ipsh. 60

4-3 Periodic measurements of reachability and delay variance. . 63

4-4 Monitoring availability of web servers. 65

1X

X

Chapter 1

Introduction

The integration of computer and communication technologies has had a profound impact

on the way people communicate. Computer networks have been the essential infrastrucｭ

ture in scientific and commercial fields , and their interconnection is ever accelerating to

form a global communication infrastructure, the Internet. In the future , many of the

day-to-day activities may be closely tied to such an ubiquitous computer network.

This dissertation examines two of the most fundamental problems in large computer

networks: scalability and manageability. Previous work succeeded to solve these problems

to some extent , at certain layers of the OSI reference model. The work described in this

dissertation attempt to address these problems from the perspective of the application

layer.

Scalability is an essential property to construct computer networks of arbitrary size.

Since scalability of a computer network is closely tied to its underlying architectural

components, improperly designed protocols or inappropriate use of protocols may lead

to bottlenecks that limit the computer network to scale up beyond certain threshold.

Manageability is a key to maintain and operate large computer networks. Forthcomｭ

ing installation of computer networks to consumer equipments demand simple, failureｭ

resilient , and secure networks. Technology developments are expected to enable adminｭ

istrators manage computer networks in scalable way. Protocols and systems that do

1

not con五gure and diagnose themselves will need large number of administrators, hence

limiting the scalability of the network.

In the rest of this chapter, we look at the development of internetworking technology

and the research on scalability and manageability of internetworks from both software

and hardware perspective.

1.1 Evolution of Internetworking Technology

1.1.1 Early History

Internetworking technology, which signifies sheer aggregation of technologies that make

it possible to interconnect different kind of networking devices and software suite, has

its roots in a single computer network that are intended to support research activities.

Sometime around 1967う a project was initiated もo connect timesharing computer systems

through communication systems at leading universities and research institutions under

the sponsorship of Advanced Rese伺倒a剖1

Newman, Inc. developed the first packet switch called Interface Message Processor, or

IMP. Following the success of interconnecting several nodes with IMP, the ARP ANET

grew rapidly, connecting more than 100 hosts in 1977.

The growth of the ARP ANET and the emergence of disparate local area networking

devices stimulated technology development for interconnecting networks with diflferent

transmission schemes. ARP A then initiated internetworking project to establish a model

and a set of rules which will allow data networks of diverse hardware technologies to

be interconnected[3]. The internetworking project 1羽d the basis of today's Internet ,

includi時 IP (Internet Protocol) [4] and TCP (Transmission Control Protocol) [5J. IP

specification defined standard procedures to translate packets between networking devices

with different restrictions (e.g. , maximum transmission unit). IP also introduced the

concept of global address space , that makes the Internet look like single large cloud

surrounding users. TCP was carefully designed so that virtually any number of logical

2

connections between communication peers can be multiplexed on the Internet.

Due to its global addressing and 珂at communication model, the Internet required addiｭ

tional developments that complement its model, including protocols for: 1) a凱1巾∞mo凶y

削山

Oぱf the Internet , 3) gracefully degrading performance without suddenly falling into nonｭ

operational state, 4) globally naming hosts on the Internet without single point of failure ,

and 5) implementing security framework without relying on single cryptographic techｭ

nology. Many universities and research institutions have contributed to these technology

developments and standardization activities, which resulted in key routing protocols like

BGP[6] and OSPF[7], network management protocols like ICMP[8] and SNMP[9], and

name resolution protocols like DNS[10] and LDAP[ll]. These standard protocols, comｭ

bined with TCP and IP protocols, are collectively called TCP /IP protocol suite

1.1.2 Recent Trends in Internetworking Software

Before 1990's, TCP /IP protocol suite was available only on Unix, VMS and other highｭ

end operating systems. Its limited availability con五ned internetworking technology into

higher education and research areas. However, as soon as the TCP /IP protocol suite was

made readily available on commodity platforms like Windows and Macintosh, the techｭ

nology transfer to mass market had begun quickly. The emergence of WWW browsers on

commodity platforms further accelerated mass deployment of internetworking technology.

Throughout the technology developments in the TCP /IP protocol suite, scalability,

simplicity and manageability issues have been the major concern, since the Internet has

been expanding at the pace nobody has initially intended , and since the technological

spectrum of the Internet is very wide. Although worldwide Internet scenario was alｭ

ready envisioned and talked about in the 1980's, there still remains many scalability and

manageability issues today.

3

N etwor king So武ware for Mass Deployment

Delivering advanced software and hardware technologies to commodity platforms require

significant amount of engineering, and often paradigm shift , since system designers cannot

expect users to understand detailed internal workings of the system. Networking software

and devices are no exception.

Current status of the system , either failing or normal, must be presented to users

in easily understandable form , such as status indicators. More detailed informatﾏion on

failure can be encoded in diagnostic code, which remote operators can use to perform

simple diagnostics over phone line. Several dozens of configuration options and diagnostic

commands, usually available in laboratory environments, are not necessary in commodity

products that are sold in bulk.

The ability to simplify administrative and troubleshooting tasks, collectively called

manageability in this dissertation, is an important property that any networking software

or hardware must possess.

Networking software that are intended to be used in the Internet environment must

cope with the growth of client installations and the increase in round trip delay.. The

system must not suddenly stop working when the number of clients exceeds certain

threshold, or when several hundred milliseconds are added to the round trip time. There

have been several commercial protocols and commercial networking software that behave

exactly like this, due to their ftawed design.

The TCP /IP protocol suite is one of few exceptions that have been carefully designed

with scalability as the primary goal , so that although the performance degrades 制 the

scale of the Internet becomes larger, the Internet itself does not stop functioning. It

IS lmportant to 同ain such scalability not only in TCP /IP protocol suite but also in

匤ternetworking software built on top of it.

Scalability in Internetworking Software

Scalability of internetworking software can be evaluated with the following criteria:

4

• the maximum number of clients one server can serve within acceptable response

time,

• the maximum number of clients that can be multiplexed onto 1Mbps line with

acceptable response time ,

• the maximum of allowable round trip time between server and c1ient for acceptable

response tíme,

• and the maximum number of clients entire system can serve within acceptable

response time. There may be several servers in the system.

Also, since internetworking usually involves cooperation between multiple adminisｭ

trative domains, the software must allow cooperation of clients and servers that have

different naming authority or numbering authority, different access restriction policy, or

different security policy.

Manageability in Internetworking Software

In this dissertation , we quantify manageability of internetworking software with the folｭ

lowing criteria:

• Number of users that can be served by single system administrator within tolerable

turn around time (U / A ratio). Here , we define turn around time of a system adｭ

ministration job as the time required to satisfy user request for the internetworking

software since the request was issued.

• Number of systems running the internetworking software that one system adminisｭ

trator can manage (S / A ratio). If the total time required to co凶gure ， monitor and

troubleshoot these systems exceed the total time that can be allocated to the speｭ

cific internetworking software, we can say that these systems are not rnanageable

by one adrninistrator.

5

• Number of times that the internetworking software can work around with random

combination of failure in lower layers of the TCP jIP protocol stack and in the

cooperating machines. This criterion is usually called failure resilience.

• Number of times that configuration changes in the cooperating machines can be

made transparent to users. Systems with this property are said to be network

tr ansparen t.

• Number of times that security incidents in other administrative domains can be

prevented from propagating into the administrative domain that has been running

the internetworking software.

Although 咜 is possible to further elaborate evaluation criteria for manageability, only

these five criteria are defined in this dissertation for simplicity.

1.1.3 Recent Trends in Internetworking Devices

The hardware technologies that are designed for internetworking purposes must also proｭ

vide for management issues and scaling issues in the Internet. Among these issues, the

manageability issue has been half solved by implementing SNMP, a protocol for netｭ

work management. By implementing SNMP on every routers, switches, bridges and on

general-purpose computers, administrators can monitor status of each hardware compoｭ

nent from central location without any human intervention. Since hardware support is

provided for network management , it is the software's role to improve manageability of

internetworking devices.

The rapidly growing population of users , together with the emergence of traffic inｭ

tensive applications for the masses, called for networking industry's focus on scalability

issues in internetworking devices.

6

Scalability in Internetworking Devices

Since networking devices are getting faster every year, the Internet could be made scalｭ

able just by interconnecting fast networking devices with routers , where IP packets are

processed and forwarded in software. However, the performance bottleneck of today's

internetworks are routers.

IP packet processing, when implemented in software, can easily saturate bus backｭ

plane of router hardware, since only simple processing are necessary at routers. Since

bus backplane is shared among all high speed links attached to the router, the total

bandwidth requirements for the bus can easily exceed the maximum bandwidth that can

be achieved by the bus (e.g ・， 2Gbps).

In response to this scalability problem of router hardware, many hardware devices

have been developed to improve packet processing speed. Many of these devices process

most of IP packets in hardware, thus 0血oading software overhead in IP packet processing.

Two key technologies used in these devices are multistage switch and associative

memory. Multistage switches, such as butterfly switches and banyan switches, convey

IP packets directly from input port to output port , thus eliminating the shared bus

bottleneck. Content addressable memory, which is a kind of associative memory, makes

it possible to translate IP address into switch circuit number without software overhead.

These two technologies, widely used in today's commercial routers and switches, proｭ

vide scalability in aggregate bandwidth.

However, once bus bottleneck is eliminated, high speed links such as FDDI or ATM

will be the next bottleneck. Emerging high speed links, such as HIPPI-64 or OC-48 ATM

may be able to saturate today's improved routers and switches. After all , the scalability

problem persists somewhere in the Internet.

The key to maximizing scalability of internetworking devices lies in appropriate techｭ

niques for detecting performance bottleneck. Since the Internet consists of diverse netｭ

working technologies and can be configured in arbitrary topology, sophisticated techｭ

niques must be developed and established to automatically detect performance bottle-

7

neck.

1.2 Research on the Scalability of Networking Soft-

ware and Hardware

Scalability of networking software and hardware has never acquired so much interest

as it acquires today, both from the research community of internetworking technology

and from the industry. Since most of the networked applications did not demand much

bandwidth, their scalability was not a serious problem. However, the advent of tra血c

intensive applications like WWW browsers and video-conferencing tools changed the

situation completely, giving acute impact on research activities on internetworking.

1.2.1 Scalability of Client-Server お1:odel

Networking software that are based on client-server model have most limited scalability,

since the processor cycles, 1/0 bandwidth and the network bandwidth of servers can be

easily consumed by a large number of client requests that attempt to transfer dlata in

bulk.

Several studies on caching in the client-server model have been done to explore its

scalability. Numerous early work on this subject have been done within the context of

distributed file system , since it was the only tra伍c-intensive networking software based

on the client-server model , before recent inception of the web.

A trace-driven simulation study by Blaze and Alonso[12] reported that relatively small

client-side cache on disk storage (ranging from 64Kbytes to 512Kbytes) can reduce the

traffic between client and server by 60% to 90%. Danzig et al.[13] observed that 30-50%

of the Internet backbone traffic were redundant transfer of same files via FTP protocol.

Possibility of alternative architectures have been explored to break the inherent botｭ

tlenecks in the client-server model, namel}ら 1/0 ， 1同work ， and processing bottlenecks at

server. Hartman and Ousterhout prototyped a distributed file system that stripes file

8

over multiple serve判14]. Anderson , Patterson et al. proposed a new approach called

server 一less network 五創le s勾ysはt仇加e白n瓜I

Recent progress in c∞ompu凶te位r architecture may totally eliminate the three bottlenecks

i白n terms of hardware. Research on scalable multiprocessor architectures, most notably ccｭ

NUMAヲ made it possible to break the memory bottleneck, which was the major obstacle

for realizing scalable systems in traditional SMP architecture. Combined with multiple

1/0 channels, processors and scalable networking devices like ATM, advanced parallel

systems may be able to realize scalable server.

1.2.2 Network Scalability and Network Performance

Many research activities and associated standardization efforts are ongoing to explore ,

establish and implement universal methods for measuring scalability of various networkｭ

ing devices. Scott Bradner of Harvard University established the Network Devices Test

Lab, a facility for measuring performance of networking devices under various circumｭ

stances. The techniques established by the Bradner's group is being standardized at the

benchmark methodology working group of the IETF. Murayama developed DBS[16] , a

distributed benchmark tool, that makes it possible to measure performance of networking

devices under realistic workloads, from the perspective of internet transport layer.

It is also important to assure the performance of operational internetworks by makｭ

ing various measurements in operational en vironments and collecting statistics therein.

The operational statistics working group of IETF attempts to standardize measurement

methods. Some of the internet exchange points perform measurements of route stability

and end-to-end performance[17]

1.3 Organization of Dissertation

The rest of the dissertation is organized as follows:

Chapter two introduces a new approach for achieving scalability and manageability

9

in information access software, based on the concept of access manager. The design and

experimental implementation based on this approach , the cluster server, is presented.

Chapter three discusses service availability problem and its solution with access manｭ

ager approach. Limitations of current networking software implementations are deｭ

scribed, followed by the description of implementation framework that overcomes their

limitations.

Chapter four proposes a new method to identify performance bottlenecks in the Interｭ

net. A data collection and processing architecture for monitoring network performance is

presented , that makes it possible to identify failing or saturated network devices without

manager's attendance.

Chapter five summarizes the contributions of this research and outlines the future

work.

10

Chapter 2

Access Managers for Scalable

Inforrnation Access in the Internet

This chapter introduces a new approach for information access based on the concept of

access manager. The design and experimental implementation based on this approach ,

the cluster server, is presented. Experimental results from its deployment at several

universities and research institutions suggest that the access manager contributes to

scalability and manageability in the information access application.

2.1 Introduction

As has been discussed in chapter one , the user spectrum of the Internet is no longer limited

to people within higher education and research community. However, existing tools and

services assume user's knowledge about network con五guration and service policy, which

makes it dif五cult for casual users to access wide variety of services in the Internet. Among

these services, this work focuses on problems that have been occurring and will occur

when cωual users attempt to access information services. Other services such as remote

computation services and remote printing services are not considered here , since that

kind of services are not universally available to everyone in the Internet.

11

Existing information retrieval clients require users to specify logical location of inｭ

formation servers when accessing remote information in the Internet. There are many

potential problems that will arise when casual users use this kind of software. More

speci五cally， there are potential security problems when users mistakenly execute proｭ

grams with Trojan horse built in. The possibility of encountering this problem will be

greater than before , since casual users will not be able to tell servers carefully replicated

by malicious organizations from original servers built by some university or company.

There is another problem of increased communication cost that might occur if users

without network topology information mistakenly access servers far apart. Also, casual

users may not be able to adapt to diverse access methods that are necessary to access

various information in the Internet.

In this chapter, the concept called “access manager" is introduced. Access rnanager

makes various cornplexities invisible from users and presents simple “resources" ・ By

advertising itself as server to clients and advertising itself as client to servers, access

manager can be transparently introduced between client and server, making it possible

to introduce additional functions into simple client-server software.

The following functions can be implemented in access manager: cope with diverse

access methods and present simple access interface to user, choose optimal servers based

on either subnetwork trouble information, network topology inforrnation, cost or a.dminｭ

istrative policies, minirnizes potential security risks, and cache retrieved inforrnation to

reduce redundant network tra伍c. These functions would contribute to the scalability

and manageability of the Internet. By consolidating these complex functions into one

particular component, it is made possible to improve information access architecture,

while at the same tirne keeping clients and servers simple.

ln this chapter, the design and implementation of access manager inside distributed

五le systern is described. The applicability and the effectiveness of access manager is

ven五ed through the implementation and experimental results.

12

2.2 Problems of Information Access in the Internet

Existing tools require users to understand network topology, scheduled network outages,

availability of equivalent servers, credibility of each server, usage policies of each server,

and detailed service pricing. Casual users may have difficulty in understanding these

detailed operational information, thereby experiencing problems described below:

1. Security issue. Casual users may not be able to tell credible organizations from

malicious organizations. They may not be able to tell “infected" or “contaminated"

program from original program that are not tampered. Since distributed document

indexing service is widely used in these days , it is really easy to replicate some useful

programs from the Internet , embed Trojan horse in them and advertise changed

programs at the distributed document indexing service. Being Internet so large,

some cases have been reported so far and at least one security advisory was issued

for a speci五c case[18].

2. Cost issue. Existing information access software require users to specify logical

location of servers like hostname or IP address. Such an approach rules out any

opportunity to facilitate alternative servers that provide same contents. These

servers, often called mirror servers, are intended to minimize response time from

nearby users and 0血oad access to particular server. By requiring users to directly

specify one particular server, existing software are introd ucing possibility that caｭ

sual users incorrectly specify servers that are far apart from user ,s location. Subｭ

optimal selection of server without appropriate knowledge incur increase in access

cost. If data transmission at the backbone are charged by distance or by tra伍c

volume, the irnpact of suboptimal selection would be much higher.

3. Rαilure issue. Even when alternative servers are prepared for failure resiliency,

casual users may not know the availability of such alternative servers. It is not

realistic to assurne that users keep track of alternative server,s location and its

contents.

13

4. Diverse interflαce issue. Since various operating systems and server software are

deployed in the Internet , there can be many access methods to information stored

at information servers. Casual users may have di伍culties in understanding diverse

access methods.

5. Policy issues. Although some of the information servers are made accessible from

the Internet , their usage policy may vary. Some information servers are intended

to serve local community, such ぉ university students or subscribers to particular

commercial network, and access from far distant location might be discouraged

un]ess other servers become totally unavailable. However, it has been di:fficult to

enforce this kind of policy on existing software.

If some system could guide casual users to right places, user environments would be

more secure, information access would be cheaper, and response time would be shorter

than that of today's Internet , thereby contributing to scalability of the Internet. If some

system could guide casual users to alternative servers before accessing servers in :failing

subnetwork, network failure would be invisible to users while making the Internet more

manageable. By making scheduled network outages transparent to users, system manｭ
agers and network operators can recon:figure their systems and networks for improvement

at any time.

Information access software may work without solving these problems, but these probｭ

]ems make information access cumbersome from user's point of view and unmanageable

from manager's point of view. If these problems persist , the worst scenario is that every

user must become Internet expert. Internet , ultimately intended to be a mere communiｭ

cation medium , must solve these problems and present simple interface to users.

2.3 Access Manager

This work attempts to address issues described in the previous section by introducing

access manager mto existing simple information access software. Access manager can

14

make the following improvements:

• Hide operationαl complexities from users. Since access manager can select approｭ

priate server among other alternatives, any users can facilitate sparsely distributed

equivalent servers without understanding network topology and server usage policy.

.]\ぬれmize the αvαilability of service. Since users can be transparently guided to

alternative servers upon subnetwork failure near the primary server, the availability

of service perceived by users can be much improved.

• Minimize differences in αccess method. Slight differences in access method , such

as differences of database name or 五lename ， can be made transparent at access

manager.

• Reduce lαtency αηdαccess cost. By selecting nearest server and by caching retrieved

information, access manager can contribute to faster , cheaper access and reduced

network tra:ffic.

• Reduce security risk. Since maliciously replicated and disguised servers can be

avoided a priori by applying access control at the access manager, administrators

can reduce the security risk of accidentally installing Trojan horse at casual user's

computers.

It's possible to achieve the same improvements by implementing similar functions

inside client software, but the client-side approach is limited in that all applications

must be upgraded to change its behavior like server selection algorithm, failure detecｭ

tion techniques and caching algorithm. Such an assumption, that all client software in

entire computers can be upgraded , is not realistic in today's Internet , since the Interｭ

net comprises of multiple administrative domains and deployed operating systems are

truly diverse. Implementing similar functions in server side does not make sense, since

unavailable server cannot instruct users to go to alternative servers.

15

One important property that are required to achieve improvements described above

are location transparency. Location transparency means that location changes of parｭ

ticular resource are invisible from user's point of view. This work selected NFS for

experimental implementation, since NFS 五lenames do not contain either hostname or IP

address, hence achieving location transparency.

2.4 Design of an Access Manager

This work designed and implemented an access manager inside distributed file system.

Many of the existing applications built on top of distributed file system can benefit from

improvements that are made possible by access manager. The implementation deslCribed

in this chapter also makes it possible to extend small-scaled distributed 五le systems to

much larger scale.

There are similar system called AFS , that extends file system to networks larger than

local area networks such as campus networks and further supports their interconnection

by grouping all servers in each organization into an aggregate , which is called “cell" in the

AFS terminology. However, AFS lacks location transparency for inter-cell access in that

it requires users to specify hostnames. Lacking location transparency, AFS does not hide

operational complexities from users and may not be able to maximize the availability

of service. Although AFS does not meet our goal, AFS is much more richer in its

functionality compared to this implementation because it is a full-featured commercial

product.

In this work, an access manager for distributed file system is designed and a prototype

for evaluation purposes are implemented. The prototype, called cluster server, has been

implemented as an NFS server, thereby providing uniform ﾎnterface for use in both local
area network and wide area network.

16

2.4.1 Accessing from Client

Many of the file systems used in local area networks adopt a common file system interface

called vnode interface[19]. Vnode interface comprises of primitive ope凶ions like open,

read, write and close. Since many of the applications are built on top of file systems ,

that are in turn based on vnode interface , access manager for distributed file systems

must be able to interface with vnode. The cluster server was designed to be compliant

with NFS protocol う which complies to vnode interface , thereby making the system widely

applicable. In fact , the cluster server is designed to be visible simply as another server

of NFS protocol.

2.4.2 Accessing File Servers

Although it is possible to communicate with distant file servers with NFS protocol, it

makes access latency much worse than other protocols, since NFS cannot cope with large

round trip delay of packets. Since round trip delay of packets are usually ten to hundred

times larger in wide area networks compared with local area networks, adopting NFS for

wide area access is not realistic. The cluster server attempts to address this problem by

adopting NFS for access from local clients, and by using other protocols (e.g・， FTP) for

access to distant 五le servers. By implementing FTP for wide area access , most of the

public 五le access can benefit from caching, server selection and other features that are

made available at the cluster server.

The design of the cluster server is based on the idea of protocol translation engine,

as depicted in Figure 2-1. A protocol translation engine comprises of: stub modules

for diverse protocols that have different delay, bandwidth or processing requirements,

cache modules for accommodating with disparate protocol granularity, and translation

modules for converting commands and data representation between these protocols. The

implementation of protocol translation between NFS and FTP is described in Section

2.5.

17

Protocol La

Protocol Lb

Protocol Wa

Protocol Wb

WAN protocol stub

WAN protocol cache

LAN-WAN protocol converter

LAN protocol cache

LAN Drotocol stub

Figure 2-1: A protocol translation engine.

2.4.3 File Naming

Cluster server achieves location transparency by encapsulating location information and

other administrative information into volume configuration file. A volume in cluster

server represents a collection of equivalent part of file system tree in equivalent servers.

Volume con五guration file is designed to contain various administrative information" such

as location of alternative servers , administrative contact person for each server, names

of the top directory within each server where equivalent information are made availｭ

able, slight differences in access methods such as username and pωsword ， and policy

information such that access to particular server is discouraged in the 0伍ce hours.

Volume configuration file makes it possible to transparently switch to alternative

servers upon subnetwork failure and to select optimal server based on network topology

or on accumulated statistics on server response time.

There are several approaches for sharing name space among users. One approach ,

implemented in Prospe叫20]， is that each user constructs his own name space on s1印ed

resources and makes the name space sharable to other users. Another approach is that

18

users share single name space. Since it is di伍cult to comprehend non-uniform name

space built on top of shared name space, a single shared name space is chosen for the

cluster server.

The name space provided by the cluster server comprises of name spaces presented

by each volume and single glue of these name space at the top directory. This kind of

name space glue is very similar to mount operation provided in conventional Unix 五le

systems.

2.4.4 Security

Volume con五guration files are intended to be administered by the cluster server's adｭ

ministrator, where it is possible to prohibit access to carefully disguised servers that are

built for malicious intent. Although techniques are not established to identify servers

with carefully tampered programs or documents, it may be technically feωible to idenｭ

tify them, given that there are many established algorithms to verify integrity of remote

files. For example, there are established techniques and their implementations to comｭ

bine secure hash functions [21]. Also, since digital signatures are commonly used in the

Internet ヲ efforts are under way to build software framework that automates verification of

software integrity[22]. Data integrity services, with help from widely available certificate

authorities ヲ can actively and automatically identify tampered software, enabling autoｭ

matic generation of the list of malicious or infected servers. Once such list of servers is

made available, administrator can prohibit access to them by instructing access manager

not to do so.

2.4.5 File Sharing

Distributed file system must define the behavior for resolution of readjwrite contention.

In particular, files must not be destroyed by simultaneous writes by multiple clients.

Also, integrity of accessed file must be ensured by locking file or by making separate

copy for simultaneous modi五cation by other clien ts. This kind of operations that ensure

19

consistency of file contents are called consistency control operations.

Although consistency control operations are effective in local area networks, its ex.ｭ

tension to wide area networks may incur signi五cant increase in access latency, hence

impairing scalability of the service. Consistency control between clients require at least

three phぉes of interaction between clients or between clients and servers, which results

in unacceptably large response time in situations where clients and servers are far apart.

In clustcr server, it was decided not to implement write operation and consistency

control, since this work focuses on issues in information access. Changes to files are

assumed to be made directly at the file server, where locking and other consistency control

functions can be implemented in much simpler way. The cluster server invalidates cache

when changes are made at the file server.

2.4.6 Caching

Cluster server caches file and directory information in the disk storage, aiming at shorter

access time and reduced redundant tra伍c. Alternative methods such as caching 創es at

clients are considered but not adopted since clients can be disk-less workstations or mobile

computers with limited disk capacity. Memory caching of entire files and directories

are not attempted, since memory caching may not be able to provide su伍cient room:
1

potentially causing thrashing. Previous trace-driven simulation study by Blaze et al.[12]

revealed that relatively small client-side cache on disk storage (ranging from 64Kbytes

to 512Kbytes) can reduce network tra伍c by 60% to 90%.

2.4.7 Cache Consistency

Since the cluster server does not support write operation , the only operation required

to achieve cache consistency is cache invalidation. When change notification process

is running at the file server, cluster server can simply invalidate cached counterpart of

notified files or directories. AIso, the cluster server perform heuristic consistency control

using FTP protocol. Cluter server compares current directory information with that of

20

previous access remaining in the cache, discarding files if file size changed and discarding

directories if su bdirectories are removed.

2.4.8 Load Balancing

Although tra伍c and processing load on file servers can be reduced by performing caching

at the cluster server , the cluster server in turn can be overloaded by overwhelming access

by a number of clients. In this case, it would be effective to divide clients into several

clusters, and then serving each cluster with one cluster server. The division of cluster

might have impact on cache hit rate , and therefore one may want to define parent server

for all cluster servers. However, previous simulation study by Muntz et al.[23] using AFS

shows that implementing caching mechanism in hierarchical f，ωhion does not improve

cache hit rate so much; they report that only 7% improvement are observed in the case

of 80Mbytes of cache. For this reason, hierarchical caching was not adopted in the cluster

server.

τraffic and processing load that are concentrated on the cluster server may not be the

big problem in current Internet , where wide area links are much slower than local area

links. The processing bandwidth required on the cluster server is nearly equal to that of

NFS server.

2.4.9 Server Selection

The cluster server can select optimal server based on network topology and geographical

information stored in the domain name server. Network topology information cons�ts

of the name of network organization, geographicallocation within the network, and ISO

country code. These information are stored as a resource record called GTR record in

the domain name system, as shown in Figure 2-2. Administrators can ex.press server

selection policy based on network organization, geographical location and country code.

The priority con五guration file , shown in Figure 2-3, describes server selection policy.

Cluster server sorts list of servers in each volume based on the priority configuration file.

21

」 一一」

・E璽ー曹司E・・・・・・・・・・ . 冒

0.0.221. 163. in-addr.arpa. TXT "GTR=Nara-WIDE-JP"

0.0.1.133.in-addr.arpa. PTR osakau-net.osaka-u.ac.jp.

TXT "GTR=Osaka-SINET-JP"

Figure 2-2: Representation of network topology in the domain name system.

[- user p問ram

[_ -libc

r-- ~ -- ~ -- ~ --- -1- 二一---------
i 勾stemC1llintdace

:一eり吋 s山一
: l 月む!?tcode l

L Tc l

resource managers

cache ~anager

P

A

p

a

守
J
D

且

Y
J

-

T

J

ｭ

E

-

E

n
u
y
J
n
u

T
4
7
4
T

よ

P
A

U
開

γ
i
u
W
I
d

-
-
-
ｭ

o
o
a
E
μ

y

y

k

D

k

k

a

I

p

o

o

s

w

J

T

i

m

i

n

u

-

-

n

n

n

n

n

o

o

o

o

o

-

-
占
・
可
4

・
可
ム
・
可
ム

-
1
4

σ
o
σ
o
σ
b
σ
o
σ
o

e

e

e

e

e

r

r

r

r

r

'-proto汁elector

N FS server stub
ー 「

event dispatcher

protocol アle伽

円P内stem

FTP client stub

Figure 2-3: A sample priority configuration file.
local area networks Internet

2.5 Implementation
Figure 2-4: Internal structure of the cluster server.

2.5.1 Implementation Overview as NFS-mounted directories.

The cluster server performs protocol translation between NFS and FTP, because 五le

servers on the Internet do not provide information service via NFS and because clients

can access information in the Internet transparently by extending NFS to the Internet.

Translation of these two protocols are not feasible task however, since NFS is connectionｭ

less, stateless protocol built on top of UDP and FTP is connection-oriented, stateful

protocol built on top of TCP.

This implementation experimented with translation of protocols that are based on

completely different models. Although the implementation was not easy and the resulting

code is far from elegant , the experiment has shown that such translation can be done

with careful design of intermediate data representation and with some tradeoffs.

The implementation of the cluster server is based on non-preemptive threads, where

each interaction with clients or servers is implemented in a thread. It required comｭ

pletely different coding style, such as event-driven representation of stateful protocols.

In particular, it was difficult to implement FTP with threads, since the socket programｭ

ming interface does not take the case of asynchronous communication into account. The

The cluster server is implemented in the user space, not in the kernel space, so that

the software can be ported to many of the operating systems based on U nix. Since the

cluster server works a.s a server speaking NFS protocol, it must coexist with NFS server

running in the kernel. This coexistence was accomplished by binding the cluster server

to UDP port different from kernel NFS server. Performance may also be a potentia1[

problem since protocols running in the user space usually involves extra buffer copying

overhead compared with servers in the kernel. However, several benchmarks revealed

that running the server in user space does not exhibit major performance penalty, since

disk Ij 0 seems to be the performance bottleneck in the system.

Binding of the cluster server and the c1ient machines are accomplished with modified

version of mount program , since most of the ordinary mount programs available on

many operatmg systems are not capable of specifying the UDP port number. The mount

program is the only component that needs to be replaced. After the completion of

mount system call, directories beneath the mount point can be accessed in the same way

22
23

programming experience gained through this implementation suggests that the socket

programming interface must be revised to support asynchronous interaction with TCP

connections.

The NFS protocol module of cluster server was generated with the stub generator

for Sun冶 remote procedure call. In the generated stub routines, code fragments were

added to create FTP threads on cache misses. Attempts were made to accelerate the

performance of NFS protocol module by maintaining in-memory copy of recently used

directory information and file information.

Volumes are represented to users as a directory directly beneath the mount point.

Volume configuration file , that has the same filenames as volume, contain administrative

information that are intended to implement security, policy and optimal server selection.

Server selections are accomplished by preprocessing volume configuration files , sorting

the list of servers described according to GTR records, with perl scripts that are capable

of accessing domain name system.

Files and directories are cached in a dedicated disk partition for later reuse. Files

are kept intact in the cache, since storage allocations are performed by Unix file systelll.

Directories are not created exactly like the server; they are converted to unique identiｭ

fiers within the belonging volume and directories that have identifiers as their name a.re

created. The mapping of name space to flat identifiers was motivated by its potential to

adapt to alternative 五le servers having different name space. This capability is not fully

exploited in this implementation however.

Cluster server implements a technique called connection caching, which attempts to

accelerate access to file servers by maintaining unused but active connections for a short

period of time. By reusing connections already open, it is possible to avoid several steps

of FTP login sequences and three-way handshakes that are required for establishing TCP

connection.

Figure 2-4 shows a detailed overview of the internals of cluster server, whose cωompo

nent“s ar閃e described in the following sections.

24

2.5.2 User-level NFS Server

Our implementation of user-level NFS server is based on that 0ぱf unぱfs吋d[24] and amd

sion 5.3[ロ25司]ト. Our implementation i巳s dωi百'erent from unf sd i凶n that unf sd cannot c∞oeぽeXl店S

with the kernel NFS server, while ours can, although some additional commands were

necessary on each client machine. Cluster server is also di百'erent from amd in that our

implementation interprets and handles incoming NFS requests itself, while amd handles

them uninterpreted , trying to be reliable NFS request forwarder. However, these differｭ

ences do not mean functional superiority of our implementation since these predecessors

serve their own purpose, which is different from that of the cluster server.

We have developed a separate mount protocol named CS protocol from scratch, since

the mount protocol described in the NFS protocol specification has been already used by

rpc .mountd and therefore mount requests cannot be caught by or forwarded to user-level

NFS server. Due to this incompatibility, we had to develop a separate mount and umount

command specifically for the cluster server. By specifying the port number of the cluster

server in addr argument of the mount system call, operating system kernel associates

particular mount point with the cluster server.

User-level NFS server establishes relationship with clients as follows. First , the server

creates an UDP socket for RPC and associates the service dispatch procedure with the

(pro勾gra、刀αm η α me町3 υ切附e肝7問orηL rηZ削t

upon remote procedure call to the RPC address (NFS_PROGRAM, NFS_ VERSION).

Next , the server associates another service dispatch procedure with the RPC address

(CS_PROGRAM, CS_ VERSION) so that mount requests can be forwarded to this pro-

cess.

A client first contacts the server via CS protocol to obtain port number of the NFS

service socket. Next , the client issues another RPC to obtain the file handle of the

mount point , which is then used to construct arguments for mount system call. The

kernel then associates the specified mount point with (socket αddress， file hαndle) pair so

that su bsequent access to filesystem beneath it wiU be forwarded to the cluster server.

25

typedef struct wf_fh {
long world_id;
long vol_id;
union {

} u;

char
} wf_fh;

struct {
long
long

} u_file;
struct {

u_dir_id;
u_file_id;

long u_parent_id;
long u_child_id;

} u_dir;

padding[16];

Figure 2-5: The file handle data structure.

2.5.3 File Handle

Since the file handle is a primary means used to perform operations on 五les and directoｭ

ries on the NFS server, it must be guaranteed to be unique. In other words, an individual

file in a filesystem must be uniquely distinguished with a file handle. Unlike other imｭ

plementations, it was difficult task to assure uniqueness of the file handle since we could

not rely on inode numbers or other host-specific ID allocation mechanism; transparent

server-switch would be otherwise impossible. Therefore, we had to develop a mechanism

in the cluster server, that maps pathnames into file handles.

Our file handle consists of four elements: magic number, volume ID , directory ID ,

and 五le ID , each occupying four bytes (see Figure 2-5) ・ An unique volume ID is assigned

by a perl script when the volume is 五rst introduced into the system. Cluster server

allocates a directory ID from volume's ID-allocation bitmap, when a new sub-directory

is seen. File ID is generated from filename with 32-bit CRC algorithm, that obviates the

necessity of name-to-ID mapping table, while maintaining consistency and minimizi:ng

the likelihood of file ID collision.

26

2.5.4 NFS-FTP Gateway

All network events are detected using select system call and then handled at the disｭ

patcher. UDP and TCP events are handled on a 五rst-come first-serve , non-preemptive

basis う and RPC events are immediately dispatched to stub functions.

Stub functions for NFS and CS protocols are generated using rpcgen[26]. NFS stub

functions constructs internal data structure from the file handle, then forwards incoming

requests to the protocol selector, that selects a protocol switch from available ones. The

selection is based on the volume ID and possibly other policy information found on

the volume data structure. The protocol selector then dispatches the request to the

corresponding function pointed by the protocol switch.

If volume ID is zero, the protocol selector dispatches the request to the root files)引em ，

where other volumes are joined together and form an independent namespace. Current

implementation provides a flat namespace where all volumes are glued , thereby forming

a directory directly beneath the mount point of cluster server, where all volumes are

visible as sub-directories.

If the volume ID in the file handle is not zero and the FTP 五lesystem is selected, cache

management file system is invoked, where availability of cached directories or files are

checked. In case of cache miss, corresponding delegate function is called via the protocol

selector, that causes actual file transfer to take place.

FTP 五lesystem implements three delegate functions: ftp_mount for the lookup fault

on the root filesystem , ftp_readdir_miss for readdir fault , and ftp_read_miss for read fault.

Basically, ftp_mount and ftp_readdir_miss does the same thing: open new FTP connection

if not available, request a directory listing, receive and parse the listing, and convert it

into internal data structure. The only difference of these two are that ftp_mount must

interface with the root filesystem. Ftp_read_miss is different from these functions in that

it must accept a new data connection to initiate the file transfer. Figure 2-6 illustrates

the control flow in the cluster server.

The FTP delegate functions request the timeout scheduler to call the timeout function

27

so that the client kernel wiII receive an error status for nfs_read and nfs_readdir if one

second elapses before the completion of requested transfer , thus avoiding the kernel thread

to block on a slow file transfer. After the file or directory transfer completes, these
requests succeed.

2.5.5 Exception Handlers

Two functions are defined to send and receive ICMP packets. Icmp_send constructs an

ICMP packet and then sends it to the specified address. Icmp_recv receives an ICMP

packet and interprets it as follows. If the packet is an ICMP echo reply and it is a

response to the previously sent ICMP echo packet , RTT is computed from the tinle

stamp and it is refiected to the server statistics. If the packet is either ICMP network

unreαchαble or host unreαchαble ， and if it contains an original IP header with correct

source and destination , the corresponding server is marked unreachable and all threads

accessing the server is notified.

Upon receiving TERM or INT signal , all threads are notified of the service shutdown,

and all connections and log files are closed. After all connections are assured to be closed,

the daemon terminates.

2.5.6 Scheduling Facilities

The network event dispatcher serves both TCP and UDP socket events on a first-come

first-serve , non-preemptive basis. It also contains severallines of code for signal mぉking ，

RPC sockets, thread scheduling and timeout scheduling, since the function embraces tlhe

main loop. This code was derived from amd version 5.3.

The thread scheduling facility is also based on the amd implementation. Threads can

be blocked and resumed with sched_task and wakeup functions without requiring an

individual stack for each thread , since the scheduler implementation is bωed on the idea
of continuation, as in [27].

Timeout scheduler maintains timeout events sorted by the time of call, and provides

28

nfs__:read NFS stub

Protocol selector

cmfs read Cache manager
,

ftp_rea_~_miss j FTP protocol

v

Figure 2-6: Control fiow of NFS read request in the cluster server.

three major functions to manipulate and access this data structure: timeou t_set, timeｭ

out_clear and softclock. Timeout_set inserts the requested timeout event to the appropriate

place in the list. Timeout_clear cancels previously requested timeout. Softclock removes

timeouts older than or equal to the current time and invokes callback function with corｭ

responding closure, returning the number of seconds to the next timeout. Softclock is

called from the network event dispatcher to compute how long it can block on the select

system call.

The status of each thread is scanned every minute to detect frozen threads. If a

thread is fiagged as erroneous, give_up entry in the thread data structure is invoked. If

a thread is marked as risky, idle field in the thread data structure is incremented. If the

idle field exceeds time to live constant , the connection used by the thread is marked timed

out and then the give_up entry is invoked. The idle field is cleared every time the thread

is activated , hence active threads can be distinguished from inactive or frozen threads.

2.5.7 Resource Managers

Cluster server implements fundamental resource managers for connection, server, volume ,

directory and 五le.

29

Connection manager detects inactive connections with idle field in the connection data

structure - as is done with threads - along with the storage allocationj deallocation

functions for the data structure. Connection manager scans across all connections every

minute; if a connection is not used by any thread, idle field is incremented. If the idle

field exceeds time to live constant , the connection is closed. This pool of idle connections

enable us to share connections between different threads , so that file access requests to

the same server can be satisfied quickly.

Server manager interacts with the Domain Name System[28, 29] and manages each

server's error state information, along with the storage for server data structures. If a

server is flagged as unavailable for some reason , server manager requests timeout scheduler

so that the status will be cleared 12 hours later and then its reachability is tested agai:n

with ICMP echo.

Volume manager allocatesjdeallocates connection, directory ID and the volume data

structure. Volume manager limits the number of connections allocated to one volume,

since the total number of file descriptor is limited by the operating system. Directory ID

is aUocated using an ID allocation bitmap, which is maintained for each volume so that

uniqueness of a directory ID is guaranteed within a volume.

Directory manager maintains directory information on both memory and disk. Onｭ

memory cache is expired when its idle 五eld increments to the time to live constant , as

is done in connection manager. When searching a directory and the on-memory cache

misses, directory information is fetched from the disk. If the time stamp of the fetched

directory is older than two days before , the information is marked as obsolete so that

filesystems can update it. The cache manager filesystem calls the delegate function if the

directory is flagged as obsolete.

File manager provides memory allocation functions , lookup functions and cache manｭ

agement functions for file data structures.

30

2.5.8 Debug and Administrative Facilities

Cluster server implements a logging facility independent from syslog, since syslog canｭ

not separate the output of a specific daemon from others, that makes inspection of debug

output cumbersome.

Cluster server incorporates a continuous event-trace mechanism, that collects all

nfs_read and nfs_readdir requests, and the completion of file transfer so that various asｭ

pects of wide area file access can be measured: arrival rate of requests , spectrum of

users, predictability of file access and cache miss rate , for example. Trace data is kept

in memory, where each event occupies 44 bytes in the current implementation. They are

flushed onto the local disk every minute. Stored event occupy 36 bytes for each. The

traces are sent to our statistics program at Osaka University via e-mail once per day,

while at the same time locally maintained data is erぉed to conserve disk space. The

extra mechanism does not impair the performance of the file sharing service provided by

the cluster server, since operations required for each event are few pointer traversal and

register jmemory assignments.

The current implementation of cluster server accepts connection to TCP port 8002 via

telnet so that internal data structure can be inspected while the file transfer and other

network activities are present , which cannot be easily achieved with existing debuggers.

For example, internal data structure for network connection , thread , directory，五le ， and

file handle can be examined from a terminal using telnet.

2.6 Evaluation

Through the implementation of cluster server, it has been verified that most of the imｭ

provements can be achieved by access manager as initially intended. The implementation

of cluster server demonstrated that it is possible to hide operational complexities from

users by selecting appropriate servers. The availability of service has improved at experｭ

iments performed at several participating organizations. This experiment is described

31

in the next chapter. Protocol translation and simple name space translation performed

at the cluster server demonstrated that it is possible to minimize difference in access

method at access manager. Caching and topology-based server selection made access

latency smaller at severallab-based measurements. Security issues are not addressed in

this implementation.

2.7 Discussion

Although the access manager approach turned out to be e百'ective ， there are severallim-.

itations and issues that need to be addressed. Since most of client access goes through

access manager, access manager can be the performance bottleneck depending on the

application. For example , it is not realistic in today's hardware architectures to relay

very high speed information flow at the application layer, because shared bus is not fast

enough to relay bulk tra伍c that demands very large bandwidth. Also, access manager

can be the single point of failure if clients cannot adapt to failure. However, the impad

of these problems may vary depending on future developments on computer architecture.

For instance, commodity products are emerging that realize very high speed data trans.ｭ

fer using memory crossbar, eliminating the bottleneck of shared bus. Server hardware is

getting more robust with the advent of hot-pluggable processor modules and advanced

multiprocessor operating systems that tolerate failure in subsystems.

Someone might prefer to re-design distributed filesystem for large scale internetwork:s

from ground up. There have been several research efforts along this direction, for example

Echo file system[30]. While that would be more straight approach for realizing globally

scalable filesystem , their deployment overhead would be much larger. We took differｭ

ent approach , since we intended to explore the possibility of transparently introducing

additional functions into existing services with minimal overhead and minimal changes ..

The rapid growth of the web diminished the impact of this implementation, since the

web defined HTTP as the new standardized protocol for accessing distant information,

making FTP and NFS obsolete. Due to the location-dependent model deployed by the

32

web, most of the techniques proposed in this chapter, particularly those techniques for

improving availability and access latencyヲ cannot be applied to the web. However, some

of the techniques proposed in this chapter are applicable to the web. For example, efforts

are under way to establish caching proxy for the web[31].

Recently introduced programming languages, such as Java[32] and Obliq[33] that

support migration of code fragments across internetworks ヲ can be the alternative way

for incorporating intelligence into internetworking software. If these mobile code can

be automatically downloaded to every client , and if extension of client internetworking

software can be accomplished without compromising security, internetworking software

can be made more malleable.

2.8 Summary

A new approach for information access based on the concept of access manager is preｭ

sented. Access manager can be introduced transparently into internetworking software,

by advertising itself as a client to servers and as a server to clients. Access manager is

intended to hide operational complexities of accessing geographically dispersed resources

from users. It can be used to address diverse issues such as security, cost , policy, service

availability, and interface uniformity. Through its implementation and experiments in

the Internet , its ability to solve these problems has been demonstrated.

33

34

Chapter 3

Irnproving A vailability of

Inforrnation Access in the Internet

This chapter examines the implementation method of networking software for the Interｭ

net. The failure at the transport layer was measured and analyzed , which turned out to

be unacceptably high. In traditional software implementation method , the availability of

services cannot be improved further , since failure at the transport layer is made visible to

users. In this chapter, we tackle this specific problem with access manager. Through the

deployment of cluster server, we verified improvements to the availability of information

access. The implementation method for increasing availability is described.

3.1 Introduction

In the gateway model of the Internet architecture[34], each layer of the protocol stack imｭ

plements distinct reliability functions. The protocol stack as a whole provides reliability

of end-to-end data stream , by combining these reliability functions.

TCP /IP protocol suite , based on the gateway model, provides reliability 0ぱfendι-ぺtω0-吃引引e白en

data stream to some extent , but it does not guarantee end-to-end availability of service.

Our measurement in some organizations in the Internet revealed that the probability

35

of failure in TCP connection establishment ranges from 5% to 20%. Since TCP is the

most commonly used transport protocol by many networked applications, and since most

of networked applications barely rely on reliability functions of the transport layer , failure

at the transport layer will be directly visible to users. As a result , users will not be able

to connect to servers, having difficulty in accomplishing their own task. For example,

users will not be able to access necessary information, or users will not be able to send

mail.

Since the availability of service is unacceptably low in the Internet , the Internet needs

substantial development for its deployment as a new communication infrastructure. A

mechanism is needed to improve the availability of service. Furthermore , such mechanism

should be applicable to as many applications as possible.

In previous chapter, we introduced access manager, where various functions can be

added to existing client-server applications in a transparent manner. Access manager can

be used to improve the availability of service , by having alternative servers on distant

locations and by switching to one of them upon failure.

In this chapter, we describe new implementation method of networking software that

facilitates the use of alternative servers. We intended to improve availability by estabｭ

lishing techniques for constructing alternative servers and by establishing mechanism for

facilitating the use of alternative servers. Using this implementation method, server seｭ

lection and server switching functions are implemented inside cluster server, the access

manager built on top of distributed file system. Through the operational experiment in

the Internet for two and a half months, we verified that availability of service can be

im proved by access manager.

3.1.1 Failure Modes of the Internet

TCP is the important transport protocol in the TCP jIP protocol suite , on which many

standard application-layer protocols like TELNET (remote login) and SMTP (mail deｭ

livery) rely on.

36

Table 3.1: TCP connection failure rates.

Organization Failure rate (%) Days measured Connections total
NAIST 4.9
UEC 8.6
U. of Tokyo 19.1
Company 1 5.6
Company 2 14.6

p_t = Ctcps_drops + tcps_conndrops

+ tcps_timeoutdrop + tcps_keepdrops)
/ tcps_closed

52

11

86

27

141

Figure 3-1: The formula for calculating Pt.

1,817,927
558,071

28,488
228,282
108,879

The failure probability of the Internet is considered equal to the failure probability of

TCP, assuming that networked applications does not fail. In other words, the availability

of service from user's viewpoint equals with the reliability of TCP connections.

In operational networks, there are high probability of failure in TCP connection esｭ

tablishment and abrupt disconnection of TCP connections. We made several measureｭ

ments on errors occurring at TCP in several organizations including Nara Institute of

Science and Technology, the University of Electro-Communications, and the University

of Tokyo. Since destination hosts are limited in the case of TELNET and FTP, we have

chosen WWW, which connects to various computers in the Internet. Measurements were
made on the WWW proxy server using netstat -s (Table 3.1).

Measurement results show that the sum of TCP connection drops and failure in

establishing TCP connections ranges from 5% to 20%. This probability of failure at the

transport layer, Pt, can be computed by dividing total number of dropped connections by

total number of closed connections (including drops). The formula for calculating Pt is

shown in Figure 3-1. The variable in Figure 3-1 can be obtained by struct tcpstat inside

the operating sy悦m kernel[35]. The meanings of each variable is shown in Table 3.2.

Such an unacceptably high connection failure rate stems from the way the Internet

37

Table 3.2: Meanings of each variable in struct tcpstat.

N ame of variable Meanings

tcps_drops number of connections dropped after SYN

tcps_conndrops number of connections dropped before SYN

tcps_timeoutdrop number of connections dropped due to retransmission timeout

tcps_keepdrops number of connections dropped due to keepalive timeout

tcps_closed closed connections (including drops)

is constructed. The path between any two hosts usually consists of many routers, implyｭ

ing that the reliability of transport connections between the two hosts depends on the

reliability of each router in the path. If any of the router in the path stops functioning ,

then the path will be disconnected unless all routers in alternative path is functioning

properly. This kind of failure can be reduced to some extent by making the network

吋ightly connected" in the sense of graph theory.

The another reason for high failure rate is the architectural nature of routing protocols.

Routing protocols used in today's Internet assume that advertised routes are equally

credible. Since they don't have any provision for human errors or bugs in routing protocol

implementation, new and illegal routes can be easily installed into each router, making

some part of the Internet unreachable from the other. This kind of problem is unavoidable

in today's Internet unless new failure-resilient routing protocols are standardized and

widely deployed.

Since network layer does not guarantee end-to-end reachability, TCP cannot guaranｭ

tee connection establishment. TCP may su:ffer from connection drops when destination

host does not respond or when it is restarted.

3.2 Utilizing Alternative Servers

As has been discussed in previous section , the most widely used transport protocol in

the Internet does not guarantee enough availability. Since many networked applications

38

are built on top of TCP, the availability of service is unacceptably low. We attempt to

apply access manager approach to improve the availability of service.

Our method assume that two or more servers with the same content are available at

geographically distant location. If alternative servers were unavailable for speci五c servlce,

its availability cannot be improved. We also assume that these alternative servers have

nearly equivalent contents, updating each other if necessary. Since alternative servers

are widely available in information access services, this research attempts to improve

availability of information access services.

3.2.1 Utilizing Alternative Servers with Access Manager

Access manager resides between servers and clients, relaying their requests and responses

at the application layer. Access manager keeps track of the status of each server so that

properly functioning server can be selected.

Access manager can improve the availability of service in the following situation:

troubles in the network component that are close to server, or troubles occurring inside

the server. Access manager may not be able to improve availability when some network

component fails near the client side, since client beneath the failing component cannot

communicate with access manager. This problem can be eliminated by placing access

manager near the client.

To minimize the e:ffect of failure , the following requirements must be satis五ed:

1. Provide the same contents at the original server and at the alternative servers by

replicating contents from the original server,

2. Minimize server down-time by detecting failing components as early as possible,

3. Avoid selecting the inaccessible server by sharing fault information with other conｭ

nections. Fault information can be obtained through interaction with the failing

server.

4. Maximize server availability by detecting recovery from failure as early as possible.

39

iij . ad. jp.

iij . ad. jp. P&

P
A
-
-
J

1
J

・

d

、

G
aa

-
-1
J

・

1
J

・

1

・

1

・

1
4

・

1
-
-

・

4
i

q
M
q
M

n

n

ハ
V

ハ
V

ハ
U

4
l
企

4
l
占

V
A
V
A

M
U
M
U

client server

Figure 3-3: The use of alternative servers in sendmail.

3.2.3 Describing Alternative Servers

server2

The technique of alternative server is commonly used in sendmail[36], the de-facto stanｭ

dard mail delivery system for the Internet. For each mail domain , primary mail server

and one or more secondary mail servers can be defined , and preference for each mail

server can be given. These information are stored in the name server for the Internet ,

the Domain Name System[10, 28 , 29]. For example, records shown in Figure 3-3 describe

that two mail servers are defined for iij. ad. jp domain, and themail server named

ns . iij . ad. jp has higher preference than ns 1. iij . ad. jp.

We consider application of similar techniques to the information access service. In

information access service, it is common to replicate a set of contents to improve average

response time from various part of the Internet. Replicated contents are usually placed

at distant sites. If alternative servers are defined for each file , the total amount of inforｭ

mation that must be stored in the name server becomes unacceptably huge. Therefore,

there must be some mechanism for reducing the amount of alternative server information.

client

Figure 3-2: Transparent introduction of access engine.

8ince conventional implementation method of networking software cannot satisfy

these requirements , a new method for implementing networking software is needed to

reahze an access manager that can improve availability. Its detail is described in Section

3.4.

3.2.2 Integration of Access Manager into Existing Services

By making the service interface of access manager the same as that of existing server,

it became possible to incorporate access manager into existing networked applications

without making major changes (Figure 3-2).

For example, the cluster server provides NF8 as access interface to clients, and it

selects properly functioning server when it relays initial access request to server. Since

server switching function is implemented inside cluster server, it is effective on many of

existing services that are bui1t on top of filesystem , such as FTP server and 8MB server.

By stacking existing networked applications on top of the service interface provided by

the access manager, it becomes possible to improve the availability of service on existing

networked applications.

3.2.4 Volumes for Describing Alternative Servers

We use volumes to briefly describe alternative servers for a set of files. Here, we define

volume as a part of 五lesystem provided at the file server. Contents of volumes are

replicated on one or more file servers in the Internet. The substance of volume can be

described by the list of 五le servers that provide the same set of files and the path path

names in each file server.

By describing alternative servers for a set of 五les ， the total amount of alternative server

information can be made small. The administrative overhead of maintaining volume

40 41

is considered to be minimal, since volume information is common to all organizations

connected to the Internet. In other words, it can be put under centralized administration,

alleviating the need for each administrator to repeatedly configure each access manager.

3.3 Technical Challenges in Implementation Meth.od

In conventional implementation method for networking software, only one thread is runｭ

ning inside one process, which connects to client or server. In other words, the entire

process is dedicated to interaction with the communication peer. Any fault on the conｭ

nection or on the network are detected using retransmission timer or keepalive timer in

the operating system. Most of implementations terminate process when it encounter any

fault , requiring users to restart the session.

There are following problems in this implementation method. First う users must exｭ

plicitly reconnect to the same server, or switch to alternative server upon failure. Second,

since the operating system tries to retransmit request for 15 minutes by default , the usｭ

ability of the system may be considered quite bad. Third , there are no provision for

sharing the fault information among processes that access the same server. Fourth, reｭ

covery from failure cannot be detected without explicit retry request from users.

Therefore, the conventional implementation method for networking software does

not satisfy requirements described in Section 3.2.1. There is a need to establish new

implementation methods for networking software that can solve these problems.

3.4 Implementation of Server Switching

The cluster server attempts to solve the problems that are inherent in conventional impleｭ

mentation method, by implementing networking software in a totally di宜'erent method.

The implementation method described in the following sections can satisfy requirements

described in Section 3.2.1.

3.4.1 Event-driven Irnplementation

Since access manager relays client-server interactions at the application layer, it must

be capable of handling application layer protocols, while at the same time sensing any

symptom of failure. If the application layer protocol use TCP as its transport , failure

must be detected while TCP packet processing is in progress.

To maximize server availability by early detection of failure , the connect and accept

system calls must be processed in non-blocking fashion. The connect and accept system

calls usually make the entire process block while the connection is being established. In

this blocking mode of connection establishment , it is impossible detect failure without

relying on the failure detection algorithm implemented inside the kernel.

The cluster server handle TCP connections in a event-driven fashion , using socket

and ioctl system calls. A thread is associated with each TCP connection. All events are

handled through one central event loop, for example: arrival of data on TCP connections,

arrival of UDP packets, receipt of signals and expiry of timer. This event-driven structure

makes it possible to detect failure while TCP connections are being established.

3.4.2 Fault Detection with ICMP

Failure in the Internet can be categorized as failure beneath network layer and failure in

the application layer. They can be further categorized as transient failure and long-term

failure.

Failure beneath the network layer can sometimes be identified by ICMP packets.

RFC1812[37] requires routers to send an ICMP destinαtioη unreaclゆle packet to the

source address whenever the next hop to the destination of the processing packet has one

or more troubles beneath the network layer. By collecting ICMP packet, cluster server

is capable of detecting failure on the path to the server and is capable of switching to

the alternative server. However, since the delivery of ICMP packets are not guaranteed

at the network layer, cluster server cannot totally rely on ICMP for detecting troubles.

The cluster server is capable of distinguishing transient failure from long-term failure ,

by performing reachability test at the network layer after certain time has elapsed since

the first observation of the trouble. The reachability test is the same as the standard

ping program. If the cluster server receives response, it switches back from the alternative

server to the original server, assuming that the trouble was transient one. If reachability

test failed , it assumes that the problem will persist for a while. In this case , it schedules

reachability test again after certain time.

3.4.3 Fault Detection with Timer

Whenever any trouble occur at the application layer , the cluster server detects them by

monitoring activities on each connection. An activity timer is kept for each connection ,

which is cleared whenever the thread associated with the connection issues an access

request or receives an response. If there were no response for two minutes, the connection

is closed , assuming that some trouble hぉ happened on the connection or on the server

process. In the mean time , reachability test is performed at the network layer.

If a new connection is needed to relay an access request , and if the reachability to the

server is verified , the cluster server attempts to establish connections without switch:ing

to alternative servers. If the reachability test fai led , it switches to an alternative server.

By detecting failure without relying on TCP connection time-out , it is made possible

to detect failure early, and to minimize the period of service unavailability.

3.4.4 Sharing Fault Information with Other Threads

To minimize the attempt to connect to inaccessible servers, fault information, obtained

through ICMP and timer, is stored as flags in the data structures for servers and conｭ

nections. The server data structure makes it possible to accumulate past failures and to

share failure information among many connections to the same server.

44

3.5 Evaluation

In this section we evaluate the improvements made to the availability of service by statisｭ

tics obtained through operation of the cluster server. Measurements were made for 74

days, since January 18, 1996 to March 30, 1996, at the Nara Institute of Science and

Technology.

Attempts were made to establish 2284 FTP control connections during the meaｭ

surement period. 5184 FTP data connections were established. Of the FTP control

connections, 119 connection establishments were denied at the application layer for a

number of reasons: FTP server was improperly configured, or the number of active conｭ

nections exceeded allowable maxﾏmum. 8 control connections could not be established

because the server does not respond at the transport layer. Of FTP data connections,

42 data connections were terminated during the data transfer. There were 15 failures

on the name resolution due to the failure near the name server, making it impossible

to obtain IP address from hostname. Of these troubles, the cluster server made 181

attempts to switch to alternative server. Among these, 5 attempts failed since all servers

were inaccessible.

The probability of failure in this measurement is Pt = 5/2284 三 0.0022 . In other

words, the availability of service achieved by the cluster server is more than 99%. If

alternative server was not used, the probability of failure would be Pt 二 186/2284 ， or

92%.

We can conclude that the availability of service can be improved with access manager.

3.6 Discussion

If the availability of service can be improved without the access manager, the architecture

of information access would be m uch sim pler. However, if server selection was incorpoｭ

rated into the client , the client has to implement server selection algorithm and protocols

for failure detection.

45

The drawback of this client-extension approach is that client software becomes comｭ

plex, since many of the functions embodied at the cluster server must be implemented

in it. For example, it is difficult to share the current status of each server by exchangｭ

ing availability information across several subnetworks. lt might be difficult to improve

server selection algorithm by totally replacing the client software.

Access manager makes it possible to extend the information access architecture withｭ

out making client software complex. Furthermore , access manager is well suited to comｭ

mon Internet subscriber model う where each Internet service provider needs to improve

reliability of services and to improve the overall performance, while at the same time

making the configuration of clients and servers simple. By sharing volumes among all

access managers, the configuration tasks for using alternative servers are reduced to the

mmlmum.

The techniques illustrated in this chapter assume that the resources can be replicated

and that they can be handled in an aggregated fashion. The availability of such resources

would be improved by the application of access manager approach.

However, if the contents provided by the service changes so fast that their replicat:ion

1.0 alternative servers generate huge amount of traffic, then the use of alternative servers

may not be realistic.

Security issue is not considered in this approach. If con五dential information are

replicated, the risk of security incidents increases, since it may be difficult to secure all

of the alternative servers. This risk can be reduced by establishing methods for securing

servers and data transmission between servers.

3.7 Related Work

Other distributed 五le systems that implement some facility for using alternative servers

are AFS from Transarc[38] and ServerGuard from Auspex[39]. OSF DCEjDFS is the

same as AFS. In AFS , alternative servers cannot be placed across different cells (the

AFS terminology for administrative domain). In other words, AFS cannot improve the

46

availability of service across wide area networks. ServerGuard aims at transparent faiト

over to the other server upon failure on the active server. There are no provision for

server switching when the failure occurred in the Internet.

Many software have been developed for performing replication from the primary server

to mirrored servers, most notably mirror , rdist[40], and sup[41].

Several studies have been done to analyze the inherent instability in the Internet

routing protocols. Chinoy[42] analyzed dynamics of routing information in the US backｭ

bone. He reports that 3% of connected organizations experience more than 10 transitions

within 12 hours. IEPG (Internet Engineering and Planning Group) issued an advisory

on 山bilizi時 routes[43].

Many effo巾 are being done to stabilize routes. Route dampening algo出hm[44]

has been developed for suppressing advertisement of unstable routes in BGP. Tada[45]

developed a system for detecting unstable routes , changes in interface status and changes

made to router con五guration.

Research ef宜foωrt匂s have been made to design new rout川ting protocols that ar陀emoωre failureｭ

resilient. Perlman[46同] proposed a new rOl

state within 五n凶it“e time period. In the new routing protocol, even if incorrect routes

are advertised or misbehaving routers are installed into the network, the protocol can

recover to the normal state after the source of the problem (malfunctioned routers or

misconfigured routes) are removed from the internetwork

3.8 Summary

This chapter first pointed out that most of networked applications are built on top of

TCP, and that the reliability of TCP is less than 90% on average. As a result , the

availability of service perceived by users are unacceptably low.

Access manager can improve the service availability by transparently interposing itｭ

self into clients and servers. However, existing implementation method for networking

software does not satisfy technical requirements for solving this particular problem.

47

A new implementation method for networking software was developed for this purｭ

pose. This method makes it possible to detect failure in its early phase, to share failure

information , and to recover from failure. The implementation of cluster server was deｭ

scribed.

Through the operation of cluster server in the Internet , its ability to improve the

availability of service in real-world environments has been verified.

48

Chapter 4

A Network Perforrnance

Managernent Systern for

Maxirnizing the Scalability of

N etworking Devices

This chapter proposes commonly applicable techniques to identify performance bottleｭ

necks in the Internet , regardless of underlying networking technologies being deployed.

A data collection and processing architecture for monitoring network performance is preｭ

sented, that makes it possible to identify failing or saturated networking devices without

manager's attendance.

4.1 Introduction

The increasing demand for Internet connectivity resulted in its growth in scale , variety

of networking devices , and in inc阿部ed number of possible combinations of networking

devices. These growth in number and added complexity in technology spectrum make it

di伍cult to manage even small part of the Internet. AIso, the emergence of new devices

49

based on new datalink standards such as ATM and 100baseT makes management tasks

more difficult. Typical problems observed in those enterprise or campus internetworks

that deployed these advanced technologies are slow response from servers, abrupt disconｭ

nection, and servers that do not respond at all. Such problems are getting more clearly

exposed in today's internetworks with the advent of performance-sensitive applications,

like WWW and video-conferencing, that need to carry tra伍c across several subnetworks.

Problems that occur in internetworks can be categorized as connectivity problem and

performance problem. Connectivity problems exhibit when packets cannot be successfully

delivered to hosts or routers because of their failure. Performance problems occur when

there are frequent bit errors due to failure in physicallayer, or when many packets are

dropped due to excess amount of tra伍c flowing into one particular device.

Most of existing network management systems have focused on the connectivity probｭ

lem , aiming at early detection of critical failure in hosts, routers or other networking deｭ

vices. These systems ensured packet reachability by periodically sending probe packets.

By the deployment of network management systems, administrators can make sure that

whole components of particular internetwork are functioning at the network layer.

Due to the proliferation of performance-sensitive applications, administrators of toｭ

day's internetworks are required to solve performance problems. Specifically, adminisｭ

trators are required to ensure that internetworking software, including applications that

interface to users and underlying subsystems that support applications, respond within

acceptable delay. If any internetworking software does not achieve expected performance,

administrators must improve its performance to meet the requirement by recon五guring

some part of the internetwork. For example, performance of a router can be improved

either by adding memory cards, offioading tra伍c by moving some subnetworks to other

routers , or by changing buffer allocation parameters. 1n this dissertation , these tωks of

solving performance problems are collectively called performance management.

50

4.1.1 Performance Management in the Internet

Performance management is a difficult task to accomplish in the 1nternet for many reaｭ

sons. Performance cannot be guaranteed in the 1nternet, since important performance

characteristics such as communication throughput and response time are not guaranteed,

unlike telephone networks. Since transport protocols hide most of troubles occurring beｭ

neath them , users are unaware of those troubles. However, users notice performance

problems quickly, since transmission problems in the network layer or datalink layer usuｭ

ally require packet retransmission at the transport layer, resulting in the slower system

response to users.

Because users cannot directly observe real problem in the network layer or datalink

layer, the real reason of the performance problem is not reported to administrators. Typｭ

ically, administrators get vague reports from users, such as "1 cannot send mail" or “自les

are inaccessible" , from which they must deduce the real reason of performance problem.

Since there are severallayers and several subsystems involved in end-to-end communicaｭ

tion , it is di伍cult to identify which component is failing , misbehaving, misconfigured or

saturated.

Users are unaware of troubles because of architectural nature of TCP j1P protocol

suite. Many of the troubles that occur beneath transport layer or network layer are

made invisible. Failure in subnetworks are made invisible by routing protocols, that

automatically select alternative routes after detecting subnetwork failure. Some routing

protocols, most notably OSPF, permit transitive routing loop. The 1nternet maintains

its operational state even if some routers advertise incorrect routes. Moreover, other

routers blindly accept these route advertisements, often forming routing loops. Many of

these routing troubles are invisible to users because of the failure resilience of routing

protocols. Also, when physical links are made unavailable for a short period of time ,

transport protocols attempt to maintain connections by retransmitting lost packets, that

are visible to users as longer round trip delay or slower data transfer.

Users notice performance problems very quickly, primarily because of nonlinear per-

51

formance characteristics of TCP. TCP, the most widely used windowing fiow control

protocol that many applications rely on, responds to packet losses very sensitively. The

performance of TCP degrades quickly when two or more packets are dropped within the

send window, since very long timeout for double packet loss stops send window from

advancing.

The biggest problem in managing network performance is that performance problems

reported by users do not help reveal the real source of problems in many cases. Adｭ

ministrators have difficulty in correlating phenomena described by users with possible

source of problems. Also, administrators may fail to enumerate complete list of routers ,

switches , :fibers or protocols that may be failing , misbehaving or miscon:figured. This is

not feasible task , since there are many components in typical internetworks.

In this chapter, attempts are made to establish common techniques for managing

network performance that are independent of networking devices. Proposed techniques

comprise of: periodical measurements of application performance in several combinations

of subnetworks, periodical collection of performance and error charaderistics at both

datalink and network layers ぅ and analysis of correlation between measured application

performance and various characteristics. Since these measurement and analysis requires

many steps, a system is needed to assist or automate the procedure.

A network performance management system called ipsh (internet performance shell) ヲ

aimed at assisting the measurement and analysis tasks in proposed techniques , is designed

and experimental implementation is being done. A procedural programming language

ha.s been designed for ipsh to describe measurement and analysis procedures briefiy.

Ipsh is considered to be better than other approaches for performance management

in the following aspects. First , ipsh can minimize the amount of collected data on large

internetworks, since it is possible to briefiy describe data reduction strategy such that

error characteristics are not collected when performance observed at the application layer

does not change since last meぉurement. Second, ipsh can probe the internetwork in

detail when performance problems are detected. When application performance suddenly

drops, performance and error characteristics can be collected for various combinations of

52

subnetworks to determine failing subnetwork. Third , language constructs like alia.s and

function make it possible to tersely describe complex operations and parameters. Default

behavior is de:fined so that optional parameters can be omitted for common expressions,

that simpli五es commands in many cases at interactive mode.

4.2 N etwork Management Technologies

We briefiy look at existing network management technologies. Although most of them

are designed to solve connectivity problems, some of them can be used as building blocks

for network performance management.

SNMP is a simple and general purpose protocol for network management. SNMP

provides common interface for monitoring devices like bridges or routers, and software

like name server or mail server. Information that are commonly available from networking

devices are defined in MIB-II[47]. The state information defir附 in MIB-II are limited

to information that are independent of vendors or implementation methods. To satisfy

these requirements, these information are often simpli:fied , thus limiting its usefulness.

Performance management in the real world therefore relies heavily on enterprise MIB ,

which contains more detailed information on performance and error status (Table 4.1)

Enterprise MIB is defined by each vendor speci:fically for their products.

There are several commonly available software across many operating systems that

have been used to diagnose problems in the Internet. These tools, named ping, traceroute ,

telnet and ttcp, are useful for testing end-to-end reachability and end-to-end perforｭ

mance. Because these tools can be used on most of the user terminals, and because these

tools use the same protocol stack as users rely on ヲ they are appropriate for evaluating perｭ

formance improvements or degradation from user's perspective. Various information can

be obtained through execution of these tools ぅ as shown in Table 4.2. However, obtained

information have not been fully exploited for the purpose of improving performance.

Network management software, such a.s HP Open View and Sun NetManager, can

perform many tasks , since they have many functions built in. These tools seem to be used

53

Name of variable

iflnDiscards

Meanmgs

number of discarded packets

iflnErrors I number of error frames

iflnUnknownProtos I frames with unknown protocol type

Datalink-layer errors that can be obtained with Mill-II

N ame of variable Meanings

loclflnRunts short frames

loclflnCRC CRC errors

loclflnOverrun interface overruns

loclfResets interface resets

loclfCarTrans carrier signal transitions

loclfCollisions collisions

Datalink-layer errors that can be obtained with cisco Mill

Table 4.1: Comparison of MIB-II and enterprise MIB.

Command name Information obtained

plng round trip time (min, max and average)
variance of RTT

packet loss rate

traceroute rou te to the destination

RTT to each router (average and variance)

telnet response time of the server

ttcp throughput of services (ftp , web etc.)

Table 4.2: Information provided by common diagnostic tools.

54

ー

for limited purposes, such as continuous display of backbone usage statistics using SNMP,

and monitoring and graphical status display of routers, name servers and file servers.

Reflecting its usage, these tools have many functions to continuously monitor critical

components of internetworks. After all, these tools are inappropriate for evaluating

performance from user's perspective , since they are primarily intended to monitor part

of the Internet , putting focus on network connectivity. Possible usage of these tools were

not fully investigated in this work.

It is helpful to optimize traffic flows by obtaining tra血c matrix using traffic measureｭ

ment tools like NNStat[48] and NeTraMet[49]. If redundant traffic 丑ows can be identi五ed ，

and if relocation of server or recon五guration of network topology is possible, there are

opportunity to reduce redundant traffic flows , which may improve network performance.

However, the traffic load on internetworks are dependent on applications deployed in it;

if newly introduced applications contribute to significant portion of traffic matrix, reconｭ

figuration of network topology may not make sense. Also, it must be pointed out that

tra伍c measurement tools cannot measure network performance from user's perspective.

4.3 Performance Management Procedures

Many existing networks have been using a heuristic technique , which detects the occurｭ

rence of problem just by collecting performance and error characteristics using SNMP.

Such technique is described in detail by Leinwand[50]. Although this technique is appliｭ

cable to networking devices whose characteristics are well understood (e.g., Ethernet) ,

it cannot be applied directly to advanced networking devices like ATM and 100baseT,

whose performance management procedures are not established. Recent introduction of

fair queueing, rate queueing and resource reservation makes it more di伍cult to establish

simple procedures for identifying the source of problem.

This section describes new techniques for managing network performance, that are

independent of datalink technology and router hardware architecture.

Proposed techniques consist of following procedures. First , by executing applications

55

between computers located in different subnetworks, accumulate application performance

measurements for various combination of subnetworks. Next , compare the combination

of subnetworks and the application performance measurements to identify one or more

subnetworks where the source of performance problem may be present. For example ぅ if

meωurement of file transfer throughput among several subnetworks revealed that perforｭ

mance degradation always occur for tra伍c going through subnetwork N ぅ the performance

problem can be considered to be somewhere inside N.

Next , the layer at which the performance problem is occurring must be determined

by collecting various statistics at multiple layers. SNMP can be used to investigate traffic

volume and error rates. If similar statistics were collected before at the same subnetwork ,

or if there are subnetworks with same configuration , they can be used for comparison with

current status of the subnetwork under investigation, that may help identify specific layer

the problem is occurring. For example, if there were surge in error rate at the network

layer although error rate at the datalink layer did not change, the problem resides in

network layer. Similar reasoning can be done for datalink and application layer cases.

Since these measurement and analysis tasks require many steps, it is desirable to auｭ

tomate some part of them by developing supporting software. Such systems are required

to possess the following properties: ability to measure and accumulate error characterisｭ

tics and performance characteristics for each layer, and the ability to perform statistical

analysis on collected data, generate summarized reports, and visualize results.

Periodic measurements, analysis and report generation can help administrators to

pinpoint the day the performance problem first exhibited. In some cases, the failing

component can be detected simply by comparing records ofnetwork configuration changes

with generated reports. For example, if a network performance problem hωoccurred

immediately after adding an workstation to FDDI ring, the source of the problem may

be either incorrect FDDI cabling, misbehaving network interface card of the workstation,

or the burst traffic generated by the workstation.

56

4.4 A Network Performance Management System

Most of the existing MIB give status of specific component of a system, the number of

discarded packets for example. In this respect , MIB gives us microscopic characteristics.

In contrωt ， experienced network managers need macroscopic performance measures like

those offered by ping and traceroute. When experienced network managers attempt to

solve network performance problems, they first determine the path on which performance

problems are observed , and then investigate routers or switches on the path, using telnet

or SNMP.

Considering the established procedures of experienced network managers, a proceｭ

dural programming language was designed which is capable of integrating macroscopic

performance meおurement tools and microscopic meぉurement tools. A network perforｭ

mance management system, called ipsh , was built around the language. Ipsh is similar

to command shells commonly available on Unix operating systems in that execution of

macroscopic process , such as ping, can be described briefly. At the same time , ipsh reｭ

sembles C and other procedural language in that obtained data can be processed with

microscopic operations. Ipsh attempts to integrate macroscopic and microscopic meaｭ

surement tools by blending desirable properties of these two entirely different language

families.

Ipsh makes measurement results from various tools accessible within single language.

Measurement results from SNMP, ping and traceroute are converted to common data

format , that makes it possible to easily compare application performance with perforｭ

mance characteristics of network and datalink layers.

In ipsh, procedure can be defined for periodic measurements across multiple layers and

multiple subnetworks, which is called watchpoint. By setting watchpoints, performance

and error characteristics can be automatically collected without human intervention.

Accumulated statistics can eliminate many of the steps in problem diagnosis.

Watchpoint facilitates identification of unusual behavior by comparing current charｭ

acteristics of networking devices with the ones collected before. Periodic probe makes it

57

possible to collect statistics not only for unusual cases but also for normal cases.

The language is designed to permit reference to these performance characteristics

from within various procedures. Ability to apply statistical filters , such as mean, median

or variance , to these values at the language level is essential for automated detection and

diagnosis of performance problems.

Ipsh simplifies diagnostic interface by providing uniform syntax and coherent interｭ

face for probing various functional components of internetworks. Managers can perform

pro bing sim ply by “probe component-name" , where disparate commands had to be used

in conventional environments. This simplicity can potentially improve manageability of

internetworks, since disparate command names, such as netstat -s , ping, nfsstat or

rpcinfo -p, have been the major obstacle in probing various subsystems.

4.4.1 Functions

Ipsh is intended to be a workbench for network performance management , supporting

various tasks as follows: periodic data collection and storage, detailed data collection

when symptoms of performance problems are observed, interactive probing of internetｭ

works , interactive analysis of accumulated data, and report generation.

Since many of these tasks require various operations such as data storage, extraction,

conversion, translation and visualization, ipsh has many functions that support seamless

interaction between data processing subsystems, while at the same time providing uniｭ

form interface to users. Ipsh also has a number of functions for processing collected data

in detail , at the language level. These functions together make it possible to generate

reports or visualize results depending on the current status of internetworks.

4.4.2 Module Organization

Ipsh comprises of the following components and interfaces between them: command shell

for interaction with users , data collector for gathering various performance and error

statistics，五lesystem ， data slicer , mathematical fìlter , visualizer , and report generator

58

I 一一一一一一一一一一一一一一一、

command shell

.
一一三> ControJ

一ーさ捧 Data

Figure 4-1: The structure of ipsh.

(Figure 4-1). The 自ow of control is depicted in dashed lines in the figure.

Data collector records statistics obtained with SNMP, ping, traceroute ぅ or netstat.

A common data structure used to store these statistics are described in the next section.

Data slicer extracts data, using user speci五ed range (time period, s山networks etc.) , from

one or more datasets. Data slicer also merges different datasets if necessary. Mathematiｭ

cal filter is then applied to matrices and vectors of time-series data. Visualizer takes data

of arbitrary dimension as an argument , and feeds it to visualization program specified

by the user. Report generator converts resulting graph, performance index or logged

messages to MIME format and then sends them by e-mail.

4.4.3 Data Structure

A common data structure is used among components of ipsh. First , a matrix is prepared

for each measured subsystem. Measured subsystems are uniquely identified by the hostｭ

name and the measured layer. A matrix comprise of a series of records (time, V, detail)

that are sorted by time stamps. The time interval of adjacent records may not be a 五xed

constant. V is a vector of data, either of integer, floating or string, that are obtained

59

iwe-rough iwe-detai卜し7

: if : ip : udp

rough measurements detailed measurements

Figure 4-2: The data format of ipsh.

through meぉurements of datalink, network or application layers. The detail field points

at particular record in other matrix. The detail field is used when unusual conditions are

detected , pointing at the data collected with detailed probe. An conceptual example is

illustrated in Figure 4-2.

The data structure is designed so that traversal from rough measurements to detailed

measurements are possible. There are close relationships between the structure of watchｭ

points and the structure of matrices. An watchpoint that probes various subsystems

conditionally will produce hierarchically organized matrices for one target host.

Since the time interval between measurements need not be fixed , it is possible to

perform fine-grained measurements when performance problems are detected. Also, colｭ

lected data can be reduced by making the time intervallarger on non-working days , for

example.

4.5 Implementation of the System

Ipsh has been implemented in Cヲ using yacc and lex for language parser. The current

implementation of data collector interfaces with SNMP, ping and traceroute. The

60

current version of data slicer is capable of slicing data by time period , hostname, and by

the column name in the matrix. In the visualizer, interfaces to xgobi[51] and xgraph are

implemented.

Current implementation use text format for representing common data format. Stanｭ

dard scie凶五c format such as HDF[52] may be used in the future

4.6 Discussion

There are a number of alternative approaches to implement a system for network perforｭ

mance management. Aside from incorporating management features into the language,

it is possible to implement necessary functions as a library of general-purpose scripting

languages like Perl, Tcl or Python. Although extending programming language with a

library would be much easier to implement than designing a new language, a programｭ

ming language was designed for interactive prototyping, since most of the general-purpose

scripting languages are does not support interactive prototyping.

Interactive prototyping of administrative tasks, perhaps the most useful feature of

Unix shell environments, are considered to be important in performance management

tasks , since the ability to prototype programs in interactive programming environment

makes it possible to capture patterns from repetition of similar commands.

Another important property of Unix shell environments are their syntactic constructs

that make it possible to simplify expressions. For example, alias and function can give

a name to a sequence of frequently used commands, while at the same time reducing

the number of characters typed. Also, their syntax are designed with reduced syntactic

complexity, eliminating the need to explicitly indicate the scope with special symbols like

(), [J or : :, in most of the cases (Figure 4.3). Many commands define commonly used

patterns as default behavior, making it possible to omit optional parameters that change

their behavior.

There seems to be a common rnisconception that seamless extension of existing proｭ

gramming language outweighs those benefits introduced by designing a new language

61

Table 4.3: Comparison of lexical simplicity.

Language I Syntax of function call

Perl I &func(a , b , c);
Bourne Shell I func a b c

that supports specific problem domain , primarily because learning a new language is

considered to be a major overhead. However, seamless extension of existing language

does not completely eliminate the overhead of learning new concepts that supports the

problem domain.

If syntactic constructs, such as if, while and for , and mathematical operators are

similar to C or other popular programming languages, learning a new language would

not be a major overhead. A new language based on this approach is Java. Since the

syntactic constructs of Java is quite similar to C or C十十， it is easy to learn the language.

Writing complex programs in Java requires significant amount of e狂orts however, since

it requires at least several hours to understand the structure of class libraries and usage

of many of the useful methods.

watchpoint widen-剖 1 {

ping all NOCs

probe ip ips1.nara.widen.ad.jp;

probe ip fuj4.kyoto.widen.ad.jp;

probe ip bay5.tokyo.widen.ad.jp;

afterprobe {

this pa吋 applied to all probes

if (ip.loss == 100) {

、
、
，
，
，，

'
・
E

/
a
t
、

alert terse;

} else {

if (ip. 吋t>

2 * median(ip.past.rtt[1..7])) {

(2)

aleけ"吋t surge";

log ip. 吋t;

(3)

4.7 Evaluation

We can verify the following characteristics of ipsh that facilitate performance management

tasks by the two examples presented here: i) performance problems can be identi自 ed

without manager's attendance by automated and conditional probing of subsystems, ii)

programs can be written as simple as shells in the Unix environment , iii) detailed data

analysis can be written as much as C , iv) collected data can be minimized by conditional

probes, v) r凶work performance can be measured from use内 viewpoint by the use of

end-to-end performance measurement tools like ping and tracerout弘前 well as SNMP.

1n the code fragment presented at Figure 4-3 , the reachability and delay variance

of several routers in widen.ad.jp domain were measured periodically, using ICMP echo.

mailto noc-ops@widen.ad.jp; (4)

Figure 4-3: Periodic measurements of reachability and delay variance.

62
63

里旦ー-こ一二三三一一一一一一一一「一 一一一一一一一一一ー田ーーー±þ ,

The code works as follows. First, it sends ICMP packets to sampled routers using probe

commands and then wait for their reply (1). For all probes performed , sentences enclosed

by afterprobe clause is executed. If there were no response within certain period , leave

simple message describing the symptom to the log 五le (2). If the measured round trip

watchpoint iwe-web-all {
time exceeds twice the median of previous seven measurements , the trend and the current

L7 reachability to all web servers
value is logged (3). If a町 abnormal conditions are observed during execution of the code,

probe http park.org; electronic mail wiII be sent to the address specified by mailto command (4).

、
、
，
，

，，l

f
s
t
、

probe http japan.park.org; The code fragment of Figure 4-4 periodically monitors the availability of web serve:rs.

probe http www.exp096.ad.jp;

afterprobe {

When any of the web servers does not respond , it attempts to determine which layer ,

(2) log http.吋t;

if (http.unreach) {

either DNS , IP, TCP or application , is causing the problem. The code works as follows.

First , it checks the availability ofweb servers using httpprotocol (1). For each web server ,

what's the problem? If the web server does not respond via http protocol , the response time is logged (2).

probe dns ns.exp096.ad.jp; availability of DNS server is checked, and then the reachability at the IP layer is tested.

(3)

.

.

.

.
. ーー

probe ip _; If the IP layer was the problem, associated route at the nearby router, cisco-itc1 in this
if (ip.unreach) {

log snmp cisco-itc1 {
example, is retrieved with SNMP and then recorded (3). If the web server responds at

ipRouteEntry ipRouteDest _ {
the IP layer but not at the http subsystem, an attempt is made to connect to the server

ipRoutelflndex ,

ipRouteMetric1

with echo protocol running on top of TCP (4) , to see if some systems at the application

layer are functioning.

Summary 4.8 (4) } else probe tcp(echo) _;

Failure modes of the internetworks running TCP /IP protocol suite 訂e analyzed. It was

mailto noc@exp096.ad.jp; pointed out that existing neiwork management system assist the task of ensuring connec-

Failure in delivering expected performance tivityヲ leaving other problems to be solved.

to users are becoming major problem with the emergence of tra伍c-intensive applications
Figure 4-4: Monitoring availability of web servers.

and new networking devices.

Techniques for automated identification of performance problems in the Internet are

presented, that are commonly applicable regardless of underlying networking technolo-

A performance management system and underlying programming language were gles.

developed to easily apply these techn�ues under var�us c�cumstances. The system can

help administrators automate management tasks that have been done manually.

66

Chapter 5

Conclusions and Further Work

5.1 Lessons Learnt

In this dissertation we examined scalability and manageability in the Internet environｭ

ment. Although the TCP /IP protocol suite was designed with scalability and manageｭ

ability, there are some problems around the protocol suite, not in the protocol suite itself,

that might fundamentally affect the scalability of the Internet. One of these problems

are simplicity of information access architecture , wh�h cannot cope with complex �sues

such as network outages, security, access cost and access policy. Another problem �

the simplicity of networking software implementation, which relies directly on the TCP

transport protocol and hence cannot properly handle subnetwork failure. The solut�n

proposed in this dissertat�n � to introduce access manager between servers and clìents,

where most of these pro blems can be addressed in seamless and transparent way.

The last problem described in this dissertation � the network performance probｭ

lem. S�ce the TCP /IP protocol su�e makes it possible to interconnect many kinds of

network�g devices in arbitrary topology, some part of them often become performance

bottleneck. The scale and complexity of constructed networks have been the major obｭ

stacles to maximize the� performance. The solut�n to this problem proposed in this

d�sertat�n � a device-independent performance management method and a software

67

system that supports proposed method.

5.2 Summary of Contributions

This dissertation hωmade a number of contributions to the areas of scalable networking

software architecture and scalable network performance management architecture. VVe

summarize the major contributions in this section.

• A discussion on the characteristics of protocols and underlying models of the Interｭ

net was presented. Three aspects were examined in detail: scalability of networkｭ

ing software, manageability in networking software and scalability in networking

hardware. Two problems were identified, that scalability has been achieved only

in transport , routing and name resolution protocols, and that scalability in the

hardware cannot be maximized without established techniques for detecting perｭ

formance bottlenecks.

• Evaluation criteria for scalability and manageability in networking software were

proposed.

• A new approach for improving scalability and manageability of information access

was introduced, which is based on the concept of access manager. An implementaｭ

tion of distributed file system based on the new approach, the cluster server, was

presented ぅ which eliminates many of the problems that existing information access

systems face.

• The mechanism for improving service availability in the face of machine crashes or

network troubles were implemented. Its effectiveness has been evaluated through

its deployment on operational internetworks.

• A general method for automated identification of network performance problelns

was proposed. A data collection and processing architecture to monitor network

performance is described.

68

5.3 Future W-ork

A. Applicαtion of the Scαlability Improvement Techniques to the Web

Most of the schemes proposed in this dissertation are directly applicable 1.0 the Web.

Although some of the techniques are implemented in several Web proxies, the automated

server selection based on performance and reliability statistics has not been incorporated

yet. We believe that the application of these schemes can greatly enhance scalability of

the Web on the Internet.

B. Stα ble Routing iη OpenαtioηαlInternetworks

Current routing protocols are vulnerable to human errors in router con五guration and

incorrect behavior in routing protocol implementation, resulting in their inherent instaｭ

bility. Technology developments are expected to realize ultimate stability in operational

internetworks.

C. Zero-Administrlαtion Internet Server

If the inherent instability in operational internetworks persist in the future , efforts

must be made to standardize the use of alternative servers. An area for further work is to

reduce the management overhead required for configuring, maintaining and re-configuring

each server. For example, an integrated system for configuring and replicating mail server,

directory server and name server would greatly reduce the administration cost.

D. Development of Design Patterns for the Internet

Most of instability in particular Internet sites stems from some of the following probｭ

lems: incorrect combination of internetworking devices, incorrect configuration of particｭ

ular internetworking devices, or excess load on some internetworking devices. An interestｭ

ing study would be to develop a design pattern for large-scale installations, with correct

combination of internetworking devices, scalable topology, and configuration guidelines.

69

70

Bibliography

[1] L. G. Roberts. The Evolution of Packet Switching. Proceedings of the IEEE,

66(11):1307-1313, 1978.

[2] J. M. McQuillan and D. C. Walden. The ARPA Network Design Decision. Computer

Networks, 1:243-389, 1977.

[3] Vint Cerf. The Catenet Model for Internetworking, IEN-48. Technical report ,

DARPA/IPTO , July 1978.

[4] Jon Postel. Internet ProtocoI, RFC791. September 1981.

[5] Jon Postel. Transmission ControI Protocol, RFC793. September 1981.

[6] Yakov Rekhter and Tony Li. A Border Gateway ProtocoI 4 (BGP-4) , RFC1771

March 1995.

[7] John Moy. OSPF Version 2, RFC1583. March 1994

[8] Jon Postel. Internet Control Message ProtocoI, RFC792. September 1981.

[9] Jeffrey D. Case, Keith McCloughrie, Marshall T. Rose, and Steven Waldbusser

Protocol Operations for version 2 of the Simple Network Management ProtocoI

(SNMPv2) , RFC1448. May 1993

[10] Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name

System. In Proceedings of ACM SIGCOMM J88, pages 123- 133, August 1988.

71

[11] We時yik Yeong, Tim Howes, and Steve Kille. Lightweight Directory Access Protocol ,

RFC1777. March 1995.

[12] Matt Blaze and Rafael Alonso ・ Lo時-term caching strategies for very large disｭ

tributed file systems. In Proceedings of Summer USENIX Coηference， pages 3- 1b ,

Nashville, TN , June 1991.

[13] Peter Danzig, Michae1 Schwartz, and Richard Hall. A case for caching file obｭ

jects inside internetworks. In Proceedings of A CM SIGCOMM'93, pages 239- 248 ,

September 1993.

[14] John H. Hartman and John K. 0凶erhout. Zebra: A striped network file systerIl

Technica1 report , University of California, Berkeley, 1992.

[15] Thomas E. Anderson , Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson ,

Drew S. Roselli, and Randolph Y. Wang. Serverless network 五le systems. In Proｭ

ceedings of the 15th A CM Symposium on Operating Systems P門ηcψles， Decem ber

1995.

[16引]Y北iぬo M urayama, You叫はki Kadobayaωshi ， and S昭lfU Ya釘組立I凶g

men川l凶ta叫tiぬon 0ぱf DBS仕: a Performance Evaluation System for TCP. In Pr、oceed必~rη~gs of

Iηteアηet CorηtfererηLce '96, pages 39一44 ， July 1996.

[17] Vern Paxson. End-to-end routing behavior in the internet. In Proceedings of ACM

SIGCOMM'96, August 1996.

[18] CERT Coordination Center. wuarchive ftpd Trojan Horse. April 1994. CERT

Advisory CA・94:07.

[19] Steven R. Kleiman. Vnodes: An architecture for multiple 五le system types in Sun

UNIX. In Proceedings of Summer USENIX Conference, pages 238- 247, Atlant .a,

GA, 1986.

72

[20] B. Clifford Neuman. The virtual system model for large distributed operating sysｭ

tems. Technical Report TR-89-01-07, Dept. of Computer Science, University of

Washington , April 1989.

[21] Gene H. Kim and El伊ne H. Spafford. Experiences with Tripwi陀 Using Integrity

Checkers for Intrusion Detection. In USENIX Systen Administrαtion， Networking

αηd Security Conference 111, pages 89- 101, April 1994.

[22] A viel D. R山in . Trusted Distribution of Software Over the Internet. In Symposium

on Network αηd Distributed System Security. Internet Society, 1995.

[23] David Muntz and Peter Honeyman. Multi-level cachi時 in distributed file sy悦ms

Number Proceedings of USENIX Winter Conference, pages 305- 313, January 1992.

[24] Mark Shand. unfsd- ωer-level NFS server. University of New South Wales , May

1988. Appeared on comp.sources. unix, Volume 15, Issues 1-2.

[25] Jan-Simon Pendry and Nick Williams. Amd: The 4.4BSD Automounter Reference

Mαnuαl. Imperial College of Science, Technology & Medicine, March 1991.

[26] Sun Microsystems. rpcgen programming guide. In N etωrk Progr，αmming Guide,

chapter 3. Sun Microsystems, 1990.

[27] Richard P. Draves, Brian N. Bershad, Richard F. Rashid , and Randall W. Deω.

Using continuations to implement thread management and communication in op-

erating systems. In Proceedings of the 13th A CM Symposium on Operating System

Principles, pages 122- 136, October 1991.

[28] Paul Mockapetris. Domain names -concepts and facilities , RFC1034. November

1987.

[ロ29到] Paul Mo侃ck句etris. Domain names -implementation and specification, RFC1035

November 1987.

73

[30] Andrew D. Birrell, Andy Hisgen, Chuck Jerian , Timothy Mann, and Garret Swart

The echo distributed file system. Technical report , DEC Systems Research Center,

September 1993.

[31] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels , Michael F. Schwartz, and

Kurt J. Worrell. A Hierarchical Internet Object Cache. In Proceedings of USENIX

1996 Aηηuαl Technicαl Coηference ， January 1996.

[32] James Gosling, Bill Joy, and Guy Steele. The JαvαLαηguαge 5pecificαtio凡 Addison

Wesley, 1997.

[33] Luca Cardelli. Obliq: A language with distributed scope. Technical Report 122,

DEC Systems Research Center, June 1994.

[34] D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Proceedings

of ACM 5IGCOMM'88, pages 106- 114, August 1988.

[35] Gary R. Wright and W. Richard Stevens. TCP /IP Il lustrαted: the implementαtio叫

volume 2. Addison-Wesley, 1995.

[36] Eric Allman. Sendmail-An Interr附work Mail Router. In 4.4B5D System Mαnαger's

Mαηuαl， pages SMM:9-1 -SMM:9-12. The USENIX Association , 1994.

[37] Fred Baker. Requirements for IP Version 4 Route民 RFC1812. June 1995

[38] Transarc Corporation. AF5-3 Programrr附

[39] Auspex Systems, Inc. Auspex versioη 1.8M150ft別問 Release Note, 1995.

[40] Michael A. Cooper. Overha凶時 Rdist for the '90s. In LISA VI. USENIX Associaｭ

tion , October 1992.

[41] Steven Shafer and Mary Thompson. The SUP Software Upgrade Protocol. Technical

report , School of Computer Science, Carnegie Mellon University, September 1989.

74

[42] Bilal Chinoy. Dynamics of Internet Routi時 Information. In Proceedings of A CM

5IG COMM '93, September 1993.

[43] Internet Engineering and Planning Group. Operational Advisory Note on Route

Flapping. Draft う March 1994.

[44] Cl川is Villamizar. Controlling BGP jIDRP Routi時Traffic Overhead , IETF BGP

Working Group. 1993.

[45] Takuo Tada. Studies on route management -design and implementation of a network

management system for the large scale internet. Master's thesis, Graduate School

of Information Science, Nara Institute of Science and Technology, February 1997.

[46] Radia Perlman. Netωork Lαyer Protocols with Byzαηtiηe Robωtr附s. PhD thesis,

MIT, 1988.

[47] Keith McClough白 and Marshall T. Rose. Management Information Base for Netｭ

work Management of TCP jIP-based inte口lets: MIB-II, RFC1213. March 1991

[48] Robert Braden and Annette DeSchon. NNStαt: Internet Statistics Collectioη Pack

αge. USC JISI.

[49] Nevil Brownlee. NeTraMet and NeM，αC Reference Mαnual. The University of Auckｭ

land , J une 1995.

[50] Allan Leinwand. Accomplishing Performance Management with SNMP. In Proceedｭ

ings 01 INET'93, August 1993.

[51] Deborah F. Shwayne, Dianne Cook, and Andreas Buja. User's Mαmαl for XGobi:

α Dynαmic Grα.phics ProgrαmforDαtα Anαlνsis. Bellcore, November 1991.

[52] National Center for S叩ercompl山19 Applications. HDF User

75

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046

