<table>
<thead>
<tr>
<th>Title</th>
<th>3D true FISP法を用いた冠動脈MRアンギオ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>東, 将浩; 山田, 直明; 堀, 祐郎 他</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 2002, 62(9), p. 490-491</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://hdl.handle.net/11094/16716</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
3D true FISP法を用いた冠動脈MRアンギオ

東 将浩1) 山田 直明1) 堀 祐郎1,2)
平井 伸彦1) 田中 良一1) 岡本 淳3)

1)国立循環器病センター放射線診療部 2)新潟大学医学部放射線科 3)シーメンス旭メディテック

Single Breath-hold Three-dimensional MR
Coronary Angiography with True FISP

Masahiro Higashi1, Naoki Yamada1, Yoshiro Horii1,2, Nobuhiko Hirai1, Ryoichi Tanaka1, and Jun Okano1

Single breath-hold MR coronary angiography with three-dimensional (3D) true FISP was performed in 6 volunteers. Every scan was performed in a single breath-hold, and no contrast material was used. The length of visualised vessels was 12.2±1.2 cm for the RCA and 6.6±1.1 cm for the LAD. The signal-to-noise ratio and contrast-to-noise ratio were 22.8±6.8 and 17.5±7.1, respectively. MR coronary angiography with 3D true FISP has the potential to obtain good coronary angiograms for the screening of coronary artery disease.

はじめに

近年MRIによる冠動脈アンギオが開発され1),撮影方法も当初の2Dだけではなく、3Dも可能となってきた。しかし従来の3D撮影法は撮影時間が長く、造影剂を併用しない限り、呼吸停止下での撮影は困難であった2)。安静呼吸下に撮影するため、呼吸によるアーチファクトを減らす目的で、呼吸マーキャーを呼吸補正の術がされている3)。

一方、FLASH法よりも高速撮影が可能なtrue FISP法を用いれば、撮影時間を大幅に短縮できる。データ収集の3D化と脂肪抑制の併用により、一回の呼吸停止下で冠動脈の三次元MRアンギオを得ることができる。この3D true FISP法を利用した冠動脈アンギオの初期評価を報告する。

方法

男性ボランティア6名（平均年齢36±14才）に対して3D true FISP法を用いた冠動脈アンギオを施行した。使用装置はSiemens社製MAGNETOM Symphony Quantum gradient (1.5T)、前胸部に配置したbody array coil単独あるいは背側のspine array coilを組み合わせて用いた。また撮影パラメーターは、TR/TE/FA = 3.8 msec/1.9 msec/70°、FOV = 28～30cm、matrix = 256 x 144、segmentation = 24 or 36、スラブ厚 = 20mm、partition = 12、voxel size = 1.1 x 1.2 x 1.9 x 3.4mmであった。データ収集時間は24ないし36心拍であっ

た。化学シフト選択法による脂肪抑制法を併用した。

撮影はすべて呼吸停止下で行った。まず始めに2D true FISP法を用いて冠動脈全体を含むように、10枚程度の横断像を撮影した。これを元に、右冠動脈（RCA）を最も良く含むdouble oblique断をMPR法で決定した。次いで、3D true FISP法を用いるdouble oblique断を中心とする断面を撮影し、これを冠動脈の基準とした(Fig. 1)。左冠動脈に関しては、まずは2D true FISP法にて左冠動脈起始部を含むような冠動脈断を撮影した。次いで3D true FISP法を用いて左冠動脈主幹部(LMT)、前下行枝(LAD)近位を含むような横断像を撮影し、これを冠動脈の基準とした。さらにそれに直接するoblique像の撮影を追加した。
RCA、LADそれぞれで描出できた血管長を求めた。さらに近位部(AHA分類セグメント1, 2, 6)において、冠動脈の信号対雑音比(SNR)、コントラスト対雑音比(CNR)を求めた。SNRは冠動脈内の信号強度を周囲野の信号の標準偏差で除して求めた。CNRは冠動脈の信号強度から周囲脂肪組織の信号強度を減算し、周囲野の信号の標準偏差で除して求めた。長方形FOVのため、体外での信号の計測が困難なため、肝野の信号で代用した。

結果

全例で良好な冠動脈MRAを得た。5名のポランティアでRCAの追跡を行い、3名のポランティアでLADの追跡を行った。描出された血管長はRCAで2.2±1.2cm、LADは左冠動脈幹部を含め6.6±1.1cmだった。また冠動脈のSNRは22.8±6.8、CNRは17.5±7.1であった。

考察

本法においてRCAではAHA分類のセグメント3、LADはセグメント7まで描出可能であり、SNR、CNRとも良好であった。本法と同様の冠動脈MRAはすでにいくつか報告されているが、true FISP法を用いて良好な画像を得るためには、均一な磁場と高性能の高感度磁場を有する装置が必要であり、過去の報告でもそのような装置を使用している(Siemens社製、MAGNETOM Symphony Sonata gradient, maximum slew rate 200 T/m/s)。今回われわれはそれに次ぐ装置を使用したが(maximum slew rate 125 T/m/s)、良好な冠動脈MRAを得ることができた。

本法は3Dで撮影しているため、血管の蛇行により冠動脈が一つの面内に納まらない場合でも、隣り合う断面での観察の連続性の確認が可能である。造影剤を使わないため、より非侵襲的であり、繰り返し撮影が可能となる。したがって、多方向からの観察や、より末梢への冠状動脈の追跡も行え、虚血性心疾患のスクリーニング検査としての発展が期待できる。

文献