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Abstract

A detailed ekperimental study on the Shubnikov-de Haas effect of
n-type Pbl_kSnxTe alloys of x=0 - 0.28 has been made in the temperature
range of 1.34 - 4.2 K, using the samples with relatively low carrier

concentrations ( n~1016- 1017

cm™3 ) prepared by a solution growth method.

The angular dependences of the period of the oscillation are measured
for the study of the shape of the Fermi surface. The results indicate
‘that the Fermi surfaces are four prolate [111] ellipsoids whose anisotropy
increases with decreasing band gap.

The effective masses ahd the effective g-values ( or the spin splittig
factor ) of the conduction band have been also obtained as a function of
alloy composition. These results are similar to those obtained by Nii,
and Melhgailis et al. for-fhe p-type materials. The analysis»by the
two-band non-parabolic model, similar to that presented by Cohen and Blount
for Bi, gives the transverse momentum matrix element 45?=0.58(1+0.211x)2 (au.),
and the longitudinal momentum matriX eiement 4%?50.046(1—0.142k)2 (au.),
‘and the energy gap EG=183(1-0.35/$) meV. These parameters give the fair
agreement with the present experimental results.

The spin effects on the oscillatory magnetoresistance have also been
studied. The spin effect observed in the transverse and the longitudinal
magnetoresistance in H // [100] are quite different. In the spin effects,
the most striking behavior in the longitudinal magnetoresistance is the -
complete missing of the corresponding highest field oscillatory peak.to
the transverse one. This result is in contrast to the well known feature
of other several narrow gap materials such as InSb and Hgl_xCdee in which
the two highést field peaks are missing in the longitudinal magnetoresistance.

Above anomalous feature of the longitudinal magnetoresistance is well

(ii)



interpreted in terms of the selection rules from the spin-flip scattering
due to the spin-orbit interaction in the free electron picture which havé
been taken into account in the study on the Shubnikov-de Haas effect of

Hg. _Cd_Te by Suizu and Narita.. From the analysis, we have concluded
y
-X X »

1
that the spin splitting is smaller than the Landau level separation for
the samples studied ( PbTe-sidé composition of the crossover ). We have
also assigned'the dscillatory peaks basing on the above conclusion.’

In this assignment, the features of the transverse and longitudinal
magnetoresistances are as follows: both the H& and H; series of
oscillatory peaks are observed in the transverse magnetoresistance though
the intensity of the H; peaks are weak, whereas in the longitudinal one
the H; series including the H; peak are missing théugh the H& series

are observed.

It is finally concluded that the transitions due to the spin~flip

scattering by non-magnetic impurity potential in the band electron picture

have also well interpreted the present experimental results.

( iii )
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I. Introduction

I.1. Historical Survey of Studies én Shubnikov-de Haas Effect

~Quantum oscillafions in the magnetoresistance were first reported for
bismuth crystal by Shubnikov and de Haasl) in 1930. This work was_followed’
by a discovery of the oscillatory behavior of the magnetic susceptibility

by de Haas and van Alphenz)

in 1933 also.in bismuth. The oscillatory
magnetoresistanée as wéll as the susceptibility oscillation known;as the

de Haas-van Alphen effect was accepted with a sensation at that time.
Especially the report of the Susceptibility oscillation caﬁsed»a strong
surprise, because it violated the accepted principle predicted by the classi-
- cal theory that the free electron should not exhibit the diamagnetism.

The theory of the oscillatory susceptibility was first provided by

3) and Peierls4)

Landau in their discussions of quantum theory of electrons
in solids in the presence of magnetic field. However, in the age, the
experimental knowledge was restricted to Bi.

On the other hand, a considerably long period was necessary until the
quantum effect in the transport phenomena was well understood. A great
progress had been made in the field by Titeica§)‘ who published a theory
of electrical conductivity of metalé in strong magnetic fields, though the
oscillatory behavior’héd not been discussed. = In 1940, an advance in the
understanding of the oscillatory magnetoresistancé in Bi was made by Davydov
and Pomeranchuk?) More detailed theoretical works for the quantum effects

of the transverse and longitudinal magnetoresistances have appeared one

after another, after the middle of 1950’s in articles by Zil?bermanz)
Lifshitz§) Argyres?JO)Kubo et al.,ll) Adams and Holstein}z) and Kahn and
Frederikse%S)

In order to understand the quantum effects, we require not only the

knowledges of the density of states of the free carrier gas in the presence
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of the magnetic field, but of the scattering mechanisms of the free carriers
and their field dependence. The scattering mechanisms treated in the
papers mentioned above are mainly elastic ones, such as the scattering by _
acoustic phonons and that by ionized impuritieé. - Using either scattering
mechanisms of the above two, they could obtain similar results both for
the transverse and longitudinal magnetoresistances.

On the other hand, the oscillatory magnetofesistances in.the degeneraté
semiconductors with very high carrier mobility and in meta;s, for instance;

14, 16,17) Zn18)
3

InSb, 15) InAs, and so on, were measured and experimental data

of the quantum oscillation were analyzed in detail on the basis of the
theories by the authors mentioned above. Then, in 1960°s, when high
quality cfystals had become available as a result of the advance in the
teéhﬁiques of preparing crystals, the observations of the oscillatory-

magnetoresistance, which is often called the Shubnikov-de Haas ( SdH )
AN

N

effect, were extended to other semiconductors, semimetals, and metals, such

%) grey tingo) HgSegl) HgTe%z-zs) Hgl_xCdee,26) 27)

-and more detailed analyses were carried out on these materials.

as GaAs} Mg, and so on,

‘At the present, the SdH effect is considered as one of the most powerful
tools for investigating the electronic properties of degenerate semicon-
ductors, semimetals, and metals; Various physical pérameters of these
materials can be obtained by the method: the effective mass, the carrier

concentration, the shape and the size of the Fermi surface in k-space, the

28)

Dingle temperature, ° and the band parameters such as the momentum matrix

element.

The spin splittings of the SdH oscillations were first observed in InAsgg)

30-32)
3

InSb and thén in HgTe?s) GaSb§4) Hgl_xCdee§5-37) PbTe?s) and

Pb SnxTe?9’40)

1-x We can estimate the effective g-value from the analysis



of the spin splittings of the oscillatory peaké.

However, we have few papers in which the spin effect of SdH oscillations
is discussed. Gurevich and éfros41) have presented a theory on the spin
splitting in the transverse magnetoresistance( TMR ), assuming that the
scattering does not give rise to the electron spin flip. éfro$42) has
provided an explanation of the vaﬁishing of H; peak in the longitudinal
magnetoresistance( LMR ) observed in InSb.  He also assumed that the
probability of the scattering transitions with spin reversal would be very
small. Recently, Suizu and Narita37’43) have studied the spin effects
on the SdH oscillations in Hgl_xCdee alloys for the TMR and LMR. They
paid their attention to the difference of the spin effects between the TMR
and LMR in the alloys with various x-values ranging from the semimetal to
the semiconductor side. In their measurements, for the TMR,'the épin
splitting peaks HE corresponding to the upper sublevel of N=0 Landau level
and HI, Hi, H;, H;,—--, H;} Hﬁ, corresponding to the upper and lower sublevels

of N=1, 2,---,N Landau levels, respectively, are observable, while in the

+

0
the above effects, they formulated a theory in which the spin flip scattering

IMR, H, and the series of Hﬁ peaks are missing. For the explanation of

due to the spin-orbit interactions was taken into account. As a result,
they obtained the selection rules both for the TMR and LMR,vand could explain
the difference of the spin effects between them and also the changes from
semimetal to semiconductor side.

Though we have many theories treating various scattering mechanisms,
the author wishes to restrict the review to the papers cbncerning the present
study.

I1.2. Historical Survey of Studies on Pbl_xSnxTe alloys

During the last ten years, the lead-tin chalcogenides, especially

pseudobinary PbTe-SnTe alloy systems have been of much current interests
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for their attractive physical properties such as the extremely small band

) small effective masses?4) large electronic g-values?5—47) and

large dielectric susceptibilities?s—sl) as well as for their possibilities

44-47)

44
gaps,

of applications to devices for infrared light emission

tion?g)

and detec-

In PbTe, the valence and conduction band edges are believed
to be located at the L-point of the Brillouin zone, and are designated

+ -

respectively as L6 and L6 According to the band model proposed by

Dimmock et al??) the energy gap of Pbl_XSnxTe alloy decreases with increas-

ing SnTe composition, and comes close to zero at some value of x, where'

the crossover 6f the valence and conduction bands fakes place. Since

both the Lg and L; states have only two-fold spin degeneracy, their cross-
over does not result in a semiconductor-semimetal transition but in a
semiconductor-semiconduetor transition, in contrast to the case of Hgi_xCdee
alloy system,

»Fig.l'is a!schematic diagram for the valence aﬁd conduction bands of PbTe,
PBi_XsnxTe (rét EG=0 ),'énd SnTe, iﬁithé viéinity of.the L-point of the
Brillouin zone.

The band inversion ﬁodel has been confirmed by mea;uremeﬁts of the
temperature dependence of the electrical conductivity in alloys with com-
positions'near the crossover point?z) and also by the measurements of the
Hall effect under high préssures?s)

Experimental studies of the Fermi surface of PbTe have been done through

38 55

the measurements of the de Haas-van Alphen effect§4) the SdH effect| )
. . 58

Azbel’-Kaner cyclotron resonance§6’57) the magnetoacoustic attenuation, )

59)

the magnetoelastic effect’ The conduction band g-factors of PbTe have

been determined by the measurements of electron spin-flip Raman scatter-

ing?o) the SdH effect?s’ss) and the laser emission under the magnetic
fie1a®)



Though less informations are available for the Pb Sn Te alloys, the

experimental studies of the Fermi surface and the band edge structures

have also been carried out upon the alloy system, by SdH effect39 140,62, 63)
interband magneto—absorptlon, 4) far infrared cyclotron resonance?s) and
45-47)

infrared laser emission under the magnetic field.
- From the results described_above,_the shape of the Fermi surface of
holes in PbTe and Pb1_¥SnxTe with relatively small x-value; is believed

to be almost perfect [111] ellipsoid, however the shapé of the Fermi sur-

face of SnTe still remains somewhat uncerta1n§6— 9)

To date, we have had the data of the band edge parameters of Pbl_xSnxTe

39,55,63)

alloys obtained only from the measurements of SdH effect, and the

70:71)

measurements of the Knight- Shlft However, these measurements and-

hence the knowledges are restricted almost only to the valence band, be-
cause preparing the n- type materlals has been difficult. Therefore the
structure of the conduction band edge has still remained obscure.

Recently, SnTe, and Pbi_XSnxTe have attracted gréat interest on their

49,50,72-76)

softening of TO-phonon and the relating carrier concentration

dependent temperature induced phase transition from NaCl to the ferro-

72- 75)

electric phase GeTe type crystal structure. In addition, by the

author, the pressure induced phase transition from NaCl to the orthorhombic
crystal structure were observed in Pb Sn Te and SnTe. 3)
On the other hand, the theoretical studies of the band.structure had

been carried out for the lead chalcogenides and lead-tin chalcogenides.

The band structures of PbTe and SnTe had been calculated by the APW77)

79-81) 82) 68,69,83)

OPW 8) pseudopotentlal KKR,”” and the k- p perturbation method.
These band structure calculations also indicate that the valence and con-

duction band extrema of PbTe to be located at the L-point and to have the



Lg and Lg symmetries, respectively. All the band structure calculations
so far performed on SnTe69’79'81) have well agreed with the band inversion
model. However, we have had no direct calculation on the band‘structure
of the lead-tin chalcogenides. Recently, the band structﬁre calculations
of the Pbl_*SnxTe alloys were carried out basing on the band inversion
model using the K-ﬁ perturbation theory§4’85) - These results have

showed considerably good agreement with the experimental results in p-type

PbTe, and Pbl_xSnxTe alloys at the PbTe-rich side of the crossover.



Fig.1 Schematic diagram for the valence and conduction bands of

PbTe, Pbl_xSnxTe( at EG=0 ), and SnTe, in the vicinity of
the L-point in the Brilloin zone.



II. Theory of Shubnikov-de Haas Effect
II.1. General Theory

The SdH effect can occur under the conditions‘that the Fermi energy
£ is much greater than the thermal energy kT ( degenerate statiéticé ),
£>>kT, and that a number of oscillator states are occupied, z>hw., and
~that the cyclotron motions are well defined, wWeT>>1.

When electrons are moving in a steady magnetic field, the energies
of the electrons are quantized into the harmonic oscillator states and
the uniform distribution of the quantum stateS'in k-space are replaced

by a series of inter-locking Landau cylinders with the cross sections AN

perpendicular to ﬁ, which is given by

A= 2 N1y2 ( 1I.1)

if the spin is omitted. The discrete nature of the Landau cylinders
is smeared out unless Tiwc>>kT, which is an additional requirement for the

quantum effects to be observed. 0nsager87)

showed that the eq.(II.1)
‘is valid for the Fermi surfaces of arbitrary shapes.
For an electron moving along a closed orbit perpendicular to ﬁ(0,0,H)

upon the Fermi surface, the cyclotron frequency wc is given by the equation

we= 2n[ § dt -1 = 21 BAEk) 1oy (11.2)
ch? oE
where A(E,kz) is an area enclosed by the orbit. ‘The cyclotron effective

~mass mz, related to the Landau level separation hw., is connected to a

cross section of the Fermi surface as

2 .
w = D BAEks) (113 )

2m JoE




If the energy levels are filled up to the Fermi level T with eiectrons,
and if z>>hwe, weT>>1, and hwe>>kT, the maxima in the scattering which
result in maxima in resistivity, will occur in the magnetoresistance
whenever the Fermi level coinsides with the Landau levels, as the scatter-
ing probability increases because of the singularity at the bottom of the
Landau levels. . If the Fermi ievel stays constant ( classical limit ),
the oscillations of the magnetoresistance are periodicvagainst 1/H.

The period both in the TMR and IMR isl3)

2me 1
ch A(C’kZ) :

P = A(l/H) = (I1.4)

Though the cross sectional area, in general, is a function of k; and
hence the cross sections at different k, give different periods, the domi-

nant contribution comes from cross sections whose periods are stationary

with respect to small change in k;. The area enclosed by such an
orbit is called the extremal cross section.. Thus the period is given
as
2re 1
P=A(1/H) = — I1.5
am = =2, ( )

where Agx is the extremal area of the Fermi surface perpendicular to the
magnetic field.

For the TMR and LMR, the explicit formulae of the quantum oscillations
have been deribed. According to Roth and Argyres?s) the LMR is given,

assuming an isotropic scattering and kT<<hw., by

-1_ -1 4;3/2 ) D :
W7 P Thmee g E[C-GWI/ZRDReSTTE . (11.6)

. where pg = m/nezTo(;o) is the resistivity without magnetic field,'and n,
is the density of electrons with spin up(+) and spin down(-), N is the
Landau quantum number, and v=ng/2m is the spin splitting factor. In the

above expression, the spin splittings of the Landau levels are taken into




account through the density of states. The above expression is a
little complicated, because the resistivities for two spin should be
coupled in parallel. For £>>hw., the relaxation times can be approxi-
mated by taking simple average for the two spins. -For arbitrary
kT/fwe, the oscillatory resistivity can be expressed explicitly, using

the Poisson’s summation formulass)

p = pol 1+ 1 bycos ( FrEr= 7)1 , (11.7,a )
r=1 : .
where _ .
D% (fwe) /2 onrkT/fwe -2mTr/iw. . ( II.7,b)
by = <7 Zg ; cos(mvr)e ¢ s
T 2- sinh (21 rkT/fiwc)

Moreover, for the TMR at 0 K is given by

L = Po > ? . Z T2 1/2 /4 1/2
1620 y N+ [E-(N+1/280/2)Twc] /% [g- (N+1/24v/2) T ] .
| | ( 1I.8 )
. Again, for finite temperature
27 \
b =p [ 1+3 2, Z b °°5( CT‘"’ )*R 1., - (11.9,a)
and
R = %-%%ﬁ { z b_(o, cos(ZWCr/ch) + B 51n(2ncr/ﬁwc))
r=1 "% _ :
-1n( 1-4wr/ﬁmc)} , ; ( 11.9,b )
where br is given by eq.(II.7,b) and
= 2 1/2020 1 e~4TfSI'/ﬁw(; ( II 9.¢c )
OLr = T :[>s(r+s)]1/2 ’ e
s=1 _
- and
1/;—1 1 1

s=1

In the above expressions I' represents collision broadning or the broadning

coming from inhomogeneity of carrier density in the cryStal, and can be
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expressed by T=ﬁ/T£ﬂkTD, where Tp, the broadning temperature, is called

28)

the Dingle temperature. In eq.(I1.9,a), the second term is the con-

tribution to the oscillatory part of the TMR due to the transitions chang-

-

ing the quantum number N. R represents the contribution of the transi-

tions which do not change N. In practice R would be unimportant when

the collisions are frequent enough to damp out r>1 harmonics. This con-
12)

clusion was reached by Adams and Holstein on the basis thaf the diver-
gent term is quadratic in the oscillatory part of p. Comparing eq. (II.6)
with eq.(II.8), it is seen that the divergence of eq.(II.6j is not so sharp
as that of eq.(I1.8) at r=( N+1/2%v/2 )ﬁ@c. Therefore in experiments,

clear spin splittings can be éxpected for the TMR compared to the longi-

tudinal one. However, the results of the present study on Pb
37)

1__xSnX'I'e

as well as the results on Hgl_xCdee could not be explained by this
theory where the effects of the spin up and down states upon the ampli-
tude are equivalent, whereas the experimeﬁtal results indicate that they

are not.

For the spin splitting peaks in the TMR, the peak positions are given

\
by the following formulae given by Gurevich and Efros;41)
2.2/3 N -
H; = Z%EE%_) n2/3] Y /s+/s-|glm*/2m 17%/3, ( IT.10,a )
' : s=0 ‘ )
- 2fcm?y2/3 / N - '
Hy = S=G) T n?/? ) Vs-vs-Tglm7am ] 2/s, ( 11.10,b )
s=1

In the above calculations, they assumed that the scattering does not flip

the electron spin.

11;2. Theory of Ellipsoidal Fermi Surface
For the ellipsoidal Fermi surface, and for oscillatory component of
the TMR, we will able to use the following expression which is slightly

8)

- modified the expression given by Roth and Argyregi

- 11 -



p = Cp z b_cos[ 2m(rchA _/2me)H™-2my -7/4 1 , ( I1.11,a )
0. T ex

where

éxp[:ZWzrkTD/ﬁwc] cos (mvr)

1/2 2
b - [ﬁwc] /% 2m?rkT/hw,
2rt) sinh(2m?rkT/hw,)

- ( II.11,b )

In the above expression, Po is the zero field resistivity, C‘is a constant
which depends upon the orientation of the magnetic field relafive to the
current direction, and Aex is the extremal cross sectional area of the
Fermi surface in k-space perpendicular to the field. The remaining
symbols have their usual meanings.

For the LMR, similar expression can be‘used.

If there exists only one extremal area, the period of the fundamental

oscillation is

_ -1 -7 -1 -
P = (21Te/cﬁ)Aex = 9,55X 10 Aex , . , (1I1.12)
where the unit of Aex is cm'2 , and P is in Oe—l. If the Fermi surface

has an additional extremal area, or as in the case of Pbl_XSnxTe, if there
are certain number of extremal areas, the summation over the additional
extremal cross sections should be simply included. _

For an ellipsoid of revolution, eq.(II.lZ)‘beédmes

P

(2ﬂe/cﬁ)(3ﬂ2ﬂ)’2/3K'l/s[ 1+ (K-1) cos2o ]1/2

3.18 107°(n/10%8)~2/3k-1/8[ 1+(K-1)cosa 11/2 , ( 11.13 )
where n is the number of carriers enclosed in an ellipsoid, and related

to the total carrier density n as n=4r, and o is the angle between the
direction of the magnetic field and the major axix of the ellipsoid, and

K is the anisotropy constant defined by the ratio of ‘the maximum-to-minimum

cross sectional area.

- 12 -



ITI. Material Preparation
Lead and tin combined with tellurium are known as PbTe and SnTe.
‘By mixing these two materials, we obtain pseudo-binary alloy system

Pbl_XSnxTe which exhibits cubic rocksalt™crystal structure for all x-values

( 0<x£1 ). Single crystals of Pbl_xSnxTe have been prepared by several
techniques: the Bridgman—?g’go) Czochralski-?s’gl)and closed tube vapor
48,90,92)

transport-techniques The temperature-composition phase diagram

93)

for Pb XSnXTe alloys through out the éomposition range is. shown in

1i-
Fig.2. Scince the separation of liquidus and solidus line is not so
wide, crystals with considerably homogeneous composition x have been able
to grow by Bridgman or Czochralski technique.  The crystals with more
homogeneous composition have been prepared by the vapor transport method.
However, as-grown crystals by above methods always exhibit p-type conduc-

19 4021 -3

tion and have very high carrier concentrations, 10 0"" cm 7, It has

been suggested that the predominant native defects in lead chalcogenides

are Pb and nonmetal Vacancies?4“96) It is now confirmed that the origin
of very large number of holes48’90) mentioned above is the metal lattice

vacancies which act as acceptors, and generally these vacancies form pre-
dominant native lattice point defects in all the IV-VI compounds.

The temperature-composition phase diagram for PbTegO) is shown in the
upper part of Fig.3. The lower part is a schematic representation of

the phase diagram for PbTe and Pb S Tego) on a greatly magnified

0.87°70.13
scale in the vicinity of stoichiometric composition. As one can see in
the lower part of Fig.3, solidus line of PbTe touches its liquidus line
at the maximum melting point, where the composition deviates about 9><IOR3
ém-s atoms from the stoichiometric composition to the Te rich side.

Therefore the crystals grown by above methods contain very large number

- 13 -



of holes. Though the Te-satﬁrated solidus line approaches the stoi-
chiometric composition with decreasing temperature, it never eross the
stoichiometric line, whereas the metal—saturated_solidus line crossover
the stoichiometric composition line. at consideraBly low temperature,
below which the chemical composition of the crystal becomes metal rich,

ie. the crystal contains less metal vacancies than Te vacancies which

act as donors, as is seen in the lower part of Fig.3. The above crossing
temperature decreases with increasing SnTe composition. This property
is common to the most of IV-VI compounds.' In the vicinity of these

temperatures the chemical composition of the crystal is nearly stoichio-
metric. In addition, since the equilibrium concentration of a particular
lattice point defect such as a vacancy or an interstitial can be expressed
by the equétion48) N=Ngexp[-E/kT], it is more preferable to grow crystals
at lower temperature, where N is the density of the defects, Nb is the
constant proportional to the lattice site, and E is the formation energy
for the defect.

As the crystals grown by above methods have very large number of holes,
the mobilities of the free carriers in the crystals are usually very small
even at low temperatures due to the scatterings by ionized 1attice vacancies.,
In order to reduce the hole concentration, or to comvert as-grown etystals
into n-type, annealing of the crystals for an extremely long period at

48,90)

low temperatur is required. However a difficulty still remains

for obtaining high quality crystals, especially the crystals with holes
less than 1016 cm_s, and in practice, it is almost impossible to convert
into n-type by annealing.

Considering the fact mentioned above, we attempted another entirely

different method for the present crystal growth: single crystal growth

by molten metal solution, a kind of flux growth method in which molten

- 14 -



~metals are the flux. By this meﬁhod, single crystals can be grown at

considerably low temperatures, near or lower than the temperature where

the metal saturated solidus line cross the stoichiometric composition

line. ‘In this method, single crystals of n—typé PbldenxTe alloy were

prepared from strongly ﬁon—stoichiometric melts. This melt contains

less than 10 atomic percent of Te, typically 5-8 atomic péicent of Te.

The upper part of Fig.3 shows that the solubility of Te in the melt is

about 5 atomic percent of Te, and when the temperature is lowered crossing

600°C, the melt becomes supersaturated with Te, and then PbTe begins to

crystallize in ‘the melt. The as-grown PbTe crystal has the composition

corfesponding to the metal-saturated solidus line fbr PbTe near 600°C.

This method can also be applied to PbTe-SnTe system, though the corresponding

temperature is quite different. Thus the crystals with nearly stoi-

chiometric composition, andvespecially n-type crystals, can be easily grown.

Moreover, the present crystal growth method has an additional merit that

the temperature of crystal growth is considerably low, so that the lattice

point defects can be minimized, because the equilibrium concentration of

the lattice point defects decreases exponentially with decreasing temperature.
For the preparation of the samples, possble commercially available

high purity elements: lead, tin, and tellurium of 99.9999 %, were used.

High purity Pb, Sn, and Te of non—stoichioﬁetric composition Were enclosed

in an evacuated.quartz ampoule, the inside wall of which is coated with

a thin layer of graphite produced by pyrolysis of acetone to prevent the

elements from reacting with quartz ampoule. Two different process for

the crystal growth were employed: (1) the ampoule was fixed in a furnace

and the temperature of the furnace was slowly decreased at the rate of

about 4 C/hour or (2) the ampoule was slowly pulled down at the rate of

about 0.1 mm/hour in a furnace having temperature gradient. After above
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processes were completed, the grown crystals in the ampoule were separated
from the melt, by raising the temperature again to about 350°C. The
temperature profile of the furnace used is given‘ih Fig.a. Cube, slab,
or bar shaped single crystals with smooth (100) surface were obtained.
Sometimes crystals with large (100) surface were grown. Fig.5 shows
the photographs of the typical crystals grown 5y the present method.
SnTe compositions of these crystals were about the half of those in the
initial melts, as shown in Fig.6.

Pbl_xSnxTe alloys, thus obtained, have exhibited useful properties
for the SdH meagurements, such as the very high electron mobility, the
good homogeneity of the carrier concentration and the alloy composition x,
and the sufficiently low carrier concentration, and in addition, these
crystals were always n-type. The homogeneity of carrier concentration
is especially necessary for the SdH study, because the inhomogeneity smears
the SdH signal seriously. Moreover, our main interésts for the alloys
are the band edge properties such as the extremely small effective mass
and 1argé g-value of carriers in the conduction band, it is preferable
to use low carrier n-type materials in the experiment, because the Fermi
level of high carrier material lies far from the band edge due to the
strong nonparabolicity of the conduction band.

The x values of the crystals were determined by an X-rayMicroanalyser
within a few percent error. |

In order to measure the magnetoresistance and the Hall effect, the
obtained crystals were cut into oriented specimens with a typical dimmension
of 1x4x0.25 mm3 , the long axes of which are parallel to the [100] or the
[110] crystalline axes. These orientations were necessary for the study
of these alloys with highly anisotropic Fermi surface. The samples were

then etched to remove the surface contaminations and damages, and then
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the electrodes for the measurements were soldered to the samples by

indium.,
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Fig.5 The photographs of typical as-grown Pbl_XSnXTe alloy crystals.
The composition x of the right hand side is approximately 0.05,
and that of the left hand side is approximately 0.2. The smooth

(100) surface are seen in both the photographs.
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‘IV. Experimental procedure

Measurements of the SdH oscillation were carried out in the tempera-
ture range, 1.32-4.2 K. The samples were directly immersed in the
liquid helium in a glass Dewar; as is iltlustrated in Fig.7. | The samples
were mounted on the specially prepared sample holders in order to set the
crystalline axis in various desired directions with respect to the magnetic
field, or on a single axis rotating sample holder shown in Fig.8 for the
study of anisotropy of the Fermi surface.

Temperatures below 4.2 K were obtained by pumping the helium vapor,
and were measured by vapor pressures using a calibrated pressure gauge.

Quasi static magnetic field was épplied to the sample by using a super-
conducting magnet. The magnetic field was slowly swept by the aid of
a constant current power supply at the sweep rate of 2.8 A/min.-0.3 A/min..

The scanning of the magnetic field was purely electronic so that the
current could be varied automatically up ,to 50 A, which was stabilized
within few milliampere fluctuation during sweeping. Such a stability
was necessary for the measurements of high S/N ratio.

The oscillatory magnetoresistance signals were measured by means of
conventional DC bucking technique or field modulation technique.

The upper and the lower parts of Fig.9 show block diagrams of the
apparatus. | In the DC measurements, signals of oscillatory magneto-
resistance from the voltage probes on samples were amplified by a DC

)

amplifier. When monotonous background magnetoresistance was large
compared with the oscillatory component which was in general approximately
linear in magnetic field, the bucking voltage‘was used to cancel the back-
ground magnetoresistance, before amplifying the oscillatory magnetoresistance

signal. Thus the SdH signal could be obseved with sufficient sensitivity.

On the other hand, the field modulation technique was also employed
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to obtain the field derivatives of the SdH signals so as to observe fine

structures due to small spin splittings and high field oscillations with
small amplitude with high resolution and higher S/N‘ratio. In this case,
the magnetic field was modulated at i4—4d-Hz with the amplitude of about
50—120-0e, by uéing an extra modulation coil. The voltage across the
sample was fed to a phase sensitive lock-in amplifierTT) detecting at the
modulation ffequency. The modulation coil was drived by a power ampli-‘
fier which amplified the reference signal from the lock-in amplifier.

In both measurements, the out put'signals from the DC amplifier or

the lock-in amplifier were recorded as the Y—éomponénts of anX-Y recorder,
while the X-components represent the magnetic field strength.

During the measurements, the current through the sample was maintained

constant, at eg. 15 mA, by using a battery.

~

) OHKURA ELECTRIC MODEL AM-1001 MICROVOLT METER containing a high grade
DC amplifier.

t+) P.A.R. MODEL HR-8.
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V. Experimental Results

As we have described in‘chapter I, the Fermi surface of holes and
electrons in Pbl_xSnxTe alloys are believed to be the [111] ellipsoids.
Hence the SdH signal in the magnetic field not parallel to the [100]
direction must be quite complicated, because in an arbitrary field direction,
we have several different size extremal cross sectioms for Pbl_XSnxTe
which result in complicated oscillatory signals being composed of several
different period oscillations.

Therefore, in the SdH measurements of‘Pbl_XSnxTe alloys, we chose the
[100] axis as the field direction, in order to study the difference be-
tween the TMR and LMR, especially in the spin effect of SdH oscillation.

In order to study the shape of the Fermi surfaces, we used various
samples in the measurements of TMR, having the axes parallel to various
crystalline axes or we rotated the sample with respect to the magnetic
field. In all the measurements, the accuracy of the sample orientation
was as good as an error of few degree, which was confirmed by the observation
of no beat signal in the SdH oscillations, when the magnetic field is-
directed to the [100] or the [110] crystalline axes.

The upper and the lower parts of Figs.10-14 show the recorder traces
of the transverse and longifudinal oécillatory magnetoresistance signals
as a function of the magnetic field, respectively, in the case of the
magnetic field parallel to the [100] axis. In general, as in the case
of InSb, and Hgl~XCdee, the monotonous backgrognd magnetoresistance in
Pbl_XSnxTe sample was very small in the longitudinal magnetoresistance
and relatively large in the transverse one. Moreover, in the [100]
field direction, only single period of oscillation in 1/H could be observed

beth in the TMR and LMR.

- 28 -



In the TMR, though the spin splittings of the oscillatory peaks
were not clear, doubling of oscillatory peaks which we assigned the HE
and HI, respectively the peak positions corresponding to he up spin
sublevel of N=0 Landau level and the down spin sublevel of N=1 Landau

level, were almost always observed. We have the case Pbl;XSnxTe { x=0.186 )

+ -

when even the doubling of H0 and H1 oscillatory peaks were not resolved,

as shown in Fig.14.

+

0
peak which is the highest field peak in the TMR, was completely missing

On the other hand, in the LMR, contrary to the TMR, H, oscillatory

for all the samples studied, in contrast to the case of many other narrow
gap materials such as InSb, HgTe, and Hgl_XCdXTe in the LMR: we observed

the missing of only the highest field oscillatory peak in n-type Pb %SnxTe

98)

L4

1-
( PbTe-side of the crossover ) in contrast to the case of InSb§6) HgTe
and Hg, _Cd Tes**>%) in which the two highest field oscillatory peaks
are missing. According to our peak assignment, which is discussed in
detail in chapter VII, the Hg peak énd perhaps the series of the Hg peaks
are missing in n-type Pbl_xSnXTe, but the most striking difference is the
appearance of the Hi peak in the LMR, in contrast to the case of InShb,
HgTe, and Hg, _Cd Te. | |

Moreover, the doubling of the oscillatory peaks due to the spin
splittings becomes inaccurate with increasing x-value.

In Fig.15, the recorder traces of the TMR signal versus magnetic field
for PbTe are given. The upper part represents the SdH signal when A // {1007},
whereas the lower part represents the one when ﬁ // {110]. in both
field directions, the clear spin splittings can be observed up to N=3.

Figs.16-17 show the recorder traces of the field derivatives of the TMR

signal versus magnetic field which represent the angular dependence of the
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SdH signals, when the samples were rotated in the (100) or (110) plane.
It can be noticed in Fig.16 (x=0.066) that the spin splitting of Hg and
H; is greater when ﬁ//[lll] than when ﬁ//[llo]. In Fig.17 it can easily

be seen that the pairs of the spin splitting peaks H+, HI due to smaller
+! -1 7 -
cross sections and HO , and Hl due to larger cross sections approaches

each other as 0 approaches the right angle ( ﬁ//[lOO] ).
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Fig.10 Recorder traces of transverse ( upper part ) and longitudinal (lower
part ) oscillatory magnetoresistance signal of PbTe as a function of
magnetic fields. Applied fields are parallel to the {100] axis.

Spin splitting peaks are indicated by the arrows.
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Fig.11 Recorder traces of transverse ( upper part ) and longitudinal ( lower
part ) oscillatory magnetoresistance signal of Pbl_XSnxTe ( X=0.056 )
as a function of magnetic fields. Applied fields are parallel to

the [100] axis. Spin splitting peaks are indicated by the arrows.
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Fig.12 Recorder traces of transverse ( upper part ) ‘and longitudinal ( lower part )
oscillatory magnetoresistance signai of Pbl_XSnxTe ( x=0.074 ) as a function
of magnetic fields. Apflied magnetic fields ére parallel to the_[iOO]

axis.  Spin splitting peaks are indicated by the arrows.
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-Fig.13 Recorder traces of transverse (upper part) and longitudinal (lower part)
oscillétory magnetoresistance signal of Pbl;XSnxTe ( x=0.160 ) as a
function of magnetic fields. | Applied fields are parallel to the [100]

axis. Spin splitting peaks are indicated by the arrows.
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Fig.14 Recorder traces of transverse ( upper part ) and longitudinal ( lower
part) oscillatory magnetoresistance signal of Pbl_XSnkTe‘(.ﬁ=0.186 )} as
a function of magnetic fields. Applied fields are parallel to the [100]

axis. Spin splitting peaks are indicated by the arrws.
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- Fig.15 Recorder traces of transverse oscillatory magnetoresistance signal of PbTe

as a function of magnetic fields. Applied fields are parallel to the [100]
axis (upper part) and the [110] axis (lower part), Spin splitting peaks

are indicated by the arrows.
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Recorder traces of field derivatives of transverse oscillatory
magnetoresistance signal for Pbl_XSnxTe (x=0.066) as a function of

magnetic fields. Rotation plane is (110), and © represents the

rotation angle from the [110] direction.
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Fig.16,b Recorder traces of field derivatives of transverse oscillatory magneto-

resistance signal for Pb xSnXTe (x=0.066) as a function of magnetic

1i-
fields. Rotation plane is (110), and 6 represents the rotation

angle from the [110] direction,
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Fig.17,a Recorder traces of field derivatives of transverse oscillatory magneto-
resistance signal for Pbl_xSnxTe (x=0.165) as a function.of magnetic
fields. Rotation plane is (100); and 6 represents the rotation

angle'from the [100] direction.
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Fig.17,b Recorder traces of field derivatives of transverse oscillatory magneto-
resistance signal for PblﬂxSnXTe (x=0.165) as a function of magnetic
fields. Rotation plane is (100), and 8 represents the rotation

angie from the [100] direction.

- 40 -



VI. Analysis of Experimental Results
VI.1. Amplitude, Period, and Phase
From the expression in the last chapter, the amplitude of the oscilla-

is related to

tion at the fundamental frequency ( r=1 ) at temperature T1
that at temperature T2 by

AT Ty sinh (2m%KT,/hw,)

A(T,) T, sinh(2n’kTy/fwe) , (VI.l,a)
where wc=eH7mtc. Using eq.(VI.1,a), the cyclotron effective mass at

the Fermi level can be obtained from the temperature and the field depend-
ence of the envelope where the oscillations are sinsoidal. When huwg

is small, the ratio of sinh functions can be apprdximated by exponential.
However, in the present case, as hw. is not sufficiently small,bexact form
of eq.(VI.l,a)'is required. - Eq.(VI.1l,a) can be written as

- A(Ty) sinh(X)

A(T,) I sinh(yX) , , (VI.1,b)
where X=2ﬁ2kT2/ﬁmc, and y=T;/T, . For any fixed values of Ty and Ty,
the amplitude ratio A(T;)/A(T;) can be calculated as a function of the
magnetic field H. Taking the inversion of eq.(VI.1,b), we get X as a
function of H. "By plotting the experimentally obtained values of X as
a function of 1/H, and drawing a best fit line passing through the origin;
we can obtain the cyclotron effective mass from the slope which is pro-
portional to the effective mass as follows,

* eh 1. X

e T T 7mIKT, T/H . (VI.2)
A typical example of the analysis is given in Fig.18. The excellent
fit of the experimental points indicates that the sample is exactly parallel
to the {100} direcfion, because deviations of points due to beats are not

detected.
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The spinvsplitting factor v=ng/2m can be obtained from the spin
splittings of the oscillatory peaks using the following equation,

meg  (V/H)y, - (1/H)
2m -~ (1/H), - /B y1ys ‘ (VI.3)

b4

where (l/H)N+ means the peak positions corresponding to the N+ and NV _
states. However, it is also possible to estimate v independently from

the field dependence of the émplitude of the TMR, by the use of the ex-
88)

pression given by Roth and Argyres, as follows:

Ap 1 1 2T -2 KT /Hw

TN e—— = - e—— —— o —— C
A o0 (ﬁwc)l/Z X o cos(ﬁmc 4)cos(ﬂv)e | D ,

Co sinhX
(VI.4,a)
where X=2ﬂ2kT/ﬁwC . Taking the logarithums of éq.(VI.4,a), we get
L
In A = In[-2cos(m)/V2] - 2mkTp/fuw. , ( VI.4,b )

where A' is the envelope of A. The plots of 1In Af against 1/H falls on
a line whose spole gives the Dingle temperature and whose vertical inter-
sept gives the value of cos(mv).

A typical example is shown in Fig.19. This method is applicablé
to the case when the spin splittings of oscillatory peaks are not remarka-
ble, The values of v obtéined from above method closely coinside with
those obtained from the spin splittings of oscillatory peaks, This fact
seems to indicate that the doubling of the oscillatory peaks observed in
the TMR comes from the spin-Zeeman splitting of the Landau levels.
The values of v thus obtained are close to unity and moreover more closely

approach unity with decreasing E This indicates that the interactions

G
between the conduction and the remote bands are second order compared with
the direct conduction and valence band interaction. = Therefore the system

can be approximated by the two-band model, where the spin splitting gugh
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is equal to the Landau level se?aration ﬁwc§5) if the free electron con-
tribution is ignored.

Typical examples of the analysis for the SdH périod and the spin
splitting are given in Fig.20, The lower part is the SdH signal of
PbTe as a function of 1/H, when H J [110]. The spin splitting peaks
are indicated by the arrows according to the assignment that the spin
splitting factor v is greater than unity. The upper part represents
the 1/H positions of the spin splitting peaks versus the Landau quéntum
number, taken from the lower part of the figure. The period is given
by the slope, whereas the spin splitting is. given by the vertical sepa-

ration of both the H§ and H& series.

The values of v expérimentally obtained are shown in Fig.21 as a func-
tion of the alloy composition.

The evidence of the large g-factor is given by the analysis of the
background phase shift of fhe oscillatibn. For band electrons, eq.(II;Q,a)

and (II1.9,b) becomes

P =0, [ 1+ g brcos( rcﬁAeXH—l/e -2myr-w/4 )] , ( Vi.5,a)

r=1
v where
1 T ) 1/2 2 o2
b_ - - [ c] 212 kT /Hwe o~ 2T rKTp /T, cos (mvr) |
T 2g sinh (2m*rkT/fwe)

(VI.5,b )
Aex is the extremal cross section, and Yy is a constant phase factor which
is 1/2 for free electrons. The cosine functions in the above expressions
are
cos( TchALH /e - ¢ ) ., (VI.6,a)
and the phasé is
¢ = 2myr + w/4 + § | ,‘ ‘ (VI.6,b)

where § is the back ground phase shift of the oscillation. When the
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back ground phase shift § is assumed to be either 0 or m, which is deter-
mined by the term cos(mvr) in eq.(VI.5,b) and thus influenced by the size
of the g factor. From eq.{(VI.6,a), the positions'of maxima and minima

of the SdH oscillation are

1/PH - ¢/27 = j ( maxima ) , (Vi.7,a )
and

1/PH - ¢/2m = j + 1/2 ( minima ) , ( VI.7,b)
where j is the integer and P_1= chirA /e . Whéﬁ Y is 1/2, the term

2myr in eq.(VI.5,a) is omitted, and (—1)r is introduced in front of
eq.(VI.5,b). flotting the integral multiples of one-half against the

1/H positions of the both extrema, and then fitting j, we obtain the value
of ¢/2m, comparing which value of § gives the y closest to 1/2, when §

is assumed to be either 0 or T, using'eqs.(VI.6,b), (vi.7,a), and (VI.7,b).
In other words, we search § which is assumed to be either 0 or w, that
gives the Yy closest to 1/2, varying the integer j. An example of the
analysis is given in Fig.22 for the sample F3504 when H A/T ( IMR ).

The best fit value is &=7 and y=0.515. If we assume 6=0 in this case,
the same analysis gives y=1.015, and letting j instead of j+1 gives y=0.015
for 8=0, or y=-0.485 for &=m. Similar analysis for other samples also

99)

give the nearly 7 phase shift, as in Bi. Thus, this analysis also

indicates the large g-value of Pbl_XSnXTe.

VI.2. Angular Dependence of Extremal Cross Sections
For the study of the anisotropy of the electron Fermi surface of
Pbl_XSnXTe, the transverse oscillatory magnetoresistance were measured

rotating the samples in the (100) or (110) plane, as described in the last

chapter. The upper and lower part of Fig.23 show respectively the rota-
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tion plane relative to the (100) and (110) planes, and é represents the
rotation angle of the samples f?om {110] and [110] directions, respeétively.
Let o be the angle between the magnetic field direction and the [111]‘di;
rection. For the [111] ellipsoids, the relations of o to 6, and of the
period to 6 are given in Appendix A.  The upper and lower part of Fig. 24
respectively show the experimentally obtaiﬁed pefiods as -a function of 6.
If the shape of the Fermi surface is nearly ellipsoidal whose major axis
is in the [111] direction, the:maximum cross section appears at 6=0° or
55° when the sample is rotated in the (110) plane, and 6=45° when the
‘sample is rotated in the (100) plane.

For the accurate determination of the shape of the Fermi surface or
the correct determination of the carrier number contained in the ellipsoids,
the maximum cross section is required which gives rise to the oscillation
of small amplitude and short period, so that we employ the field modulation
technique for the accurate measurements of the largest cross section.

When the sample is rotated in the (110) plane, three different cross
sections are observed, and these are given as A, B, and C in the upper
part of Fig.24, and when the sample is rotated in the (100) plane, fwo
different cross Sections are observed and are given as A, and B in: the
lower part of Fig.24.  In Fig.2s5, the polar plots of the xeciprocal
of the period, which is proportional‘to the eitremal area and henée pro-
portional to diameter of the ellipsoidal Fermi surface, are given for -
several samples as a function of 6, the angle between H and [111] direc-~
tion. The solid curves in the figures represent the perfect ellipsoidal
surface with the best fit values of n and K. The very good fit of the
experimental points to the solid curve indicates that the Fermi surface
of electrons in Pbl_xSnxTe with relatively small x-value.andliow carrier

density, is [111] ellipsoid,,and'no deviation from the perfect ellipsoid
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is appreciable, if we take the experimental error into account. The
Tresults also indicate that the anisotropy K becomes large with increasing
. 38,62)
x-value, as in the hole surface: However, the dependence of K upon
the carrier concentration is not accurate. In addition, the carrier
concentration has also been determined from the high field Hall coeffi-
cient. The carrier concentration thus determined closely coinsides
with that determined from the volume of the ellipsoids, and this indi-

cates that there are four ellipsoids.

VI.3. Band Parameters

The band parameters such as the effective masses, K’s, the spin
splitting factor v’s, or the electronic g-factors as a function of alloy
composition were obtained by the above methods. These values are
listed in Table I.

From these values, we can determine the momentum matrix elements or
the energy gaps which describe the energy band structure near the band
edge by fitting the experimentally obtained values to the band theory.

The detailed procedure is given in the next chapter.
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Table I. The experimentally obtained band parameters of n-type Pbl_xSnxTe
alloys,
. -3 .
Sample # { x-value jn ( cm ~ ) X Effective Mass v { g-value )
17 [100] 0.0430 [100] 0.774 (36)
F0002 0.0 5.6 x10 9.16
{110] 0.0328
[110] 0.720 (44)
[111] 0.0275 :
F0007 0.0 1.28 x1017 9.14 | [111] 0.0244 —_—
17 [100] 0.0291 [100] 0.78 (53.6)
F1001 0.056 1.18 x10 10.46
[111] 0.0183 [110] 0.762 (52.5)
F1002 0.066 7.01 xlO16 11.17 | [110] 0.0213
[100] 0.77 (72)
[111] 0.0175
F2001 0.074 | 7.24 x10%® | 195 | [100] 0.0270
[111] 0.0170
17 [100] 0.0281
F3501 0.160 2.48 x10 12.5
[110] 0.0213
[111] 0.0178
17
F3504 0.165 1.41 x10 14.06 [100] 0.0254 [100] 0.822 (64.7)
[111] 0.0157
F5001  |0.186 |- 16
{111] 0.0120
; 17
F7001 0.278 9.9 x10 -- [100] 0.0279 [100] 0.89 (63.8)




VII. Theoretical Consideration
> >

VII.1. k.p Band Models

As we have mentioned previously, both conduction and valence band
extrema of Pbl_xSnXTe are located at the L-point and their separation
in energy is very small, and varies with SnTe composition. This be-
havior is understood from Fig.26 as a relativistic effect of heavy
element lead. In Pbl_XSnxTe, six doubly degenerate bands are piled

up around the Fermi level and three of which are the conduction, and

remaining three are the valence bands. The other remote bands are
well separated at the L-point. From the results of pseudo-potential
79)

calculation by Bernick and Kleinman upon PbTe and SnTe, the energy
variation with SnTe composition of these six bands are represented
schematicly in Fig.27, assuming a linear variation of energy with com-
position. .It can be easily noticed that the cbnduction and valence
band are separated by an extremely small forbidden gap and the other
four bands are largely separated.

Thus at first, we consider the two band model: we consider only a
pair of bands. :

A. Two Band Mddel

The wave functions which diagonarize the Hamiltonian including the
83)

spin-orbit interaction were given by Mitchel and Wallis. After the

notation of Mitchel and Wallis, the wave functions describing the L, and

6
+
L6 levels are
|Lg¥ > = cosb™ Z¥ + sin®” X _*
|L24 > = cos®™ Z4 - sin®” X ¥ ,
6 +
[Lgt > = 1 cosd” R¢ + sing” St ,
+ . + .ot o
|L6+ > =-1i cos® RY¥ - sinb S+¢’ ( VII.1)
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)

where

(X +iY )/V2 ,

b
n

[72]
1

( Sy xiS,)/V2 .

In the above expression, the spin functions 4 and ¥ refer to the
»eigenétates of s, in the coordinate system with z along [111] axis, x
along [112], and y along [110]. The spatial parts have the following
transformation properties about the site of metal nucleus: R is s-like,
Xt and Z are p-like, and Si transform like atomic d-funﬁtions with m,=%1,
and cosei and sinei are thespin—orbit mixing parameters.

The band structure in the vicinity of L-point can be calculated by

> >
k.p perturbation theory. Assuming that the wave functions and the

energy at the L-point are exactly kﬁown, for usual one-electron Hamil-

tonian
H = i’;Y( D+ eh/c )%+ V(@) + %K.E + gB‘ﬁ.‘g , ( VII.2 )

the effective Hamiltonian operator describing the quasi-degenerate

conduction and valence bands can be written as a 4x4 matrix as follows,

- -, + +
lLgt > Ly > : fLet > fLgv >
( E
G _ h?
5 + -—-(k2+k2+k2)
2m"x Ty 2z - -
24~ s .
_ uycos“d (H_-iH ) —=P k =P (k_-ik )
+uBHZ(cosze-sin29 ) B Xy mtz m - x Ty
E 2
T ¥ IO
y 'z - . .
24" . s ‘
u,cos“@ (H_+iH ) N _ - P (k_+ik ) -—=Pk
B L 4 -uBHz(cosze -sin26”) ™ XY m ¥z
= E 2
eff : 6, h 2 2.2
: ) -7 Zm(kx+ky+kz)
h h st . 2.+ .
w Bk, m (kx'ﬂ‘y) *UugH, (cos?6*-sin?e*)y ~Hpeos @ (Hx_my)
E 2
G il
% 5 . -7 + ?ﬁ(lgx.ﬂgyd’kzz)
— 1 - — - 2 1 )
- P (kx+1ky) o B kz uBcos 0 (Hx+1Hy)

-ugH, (c0528+-sin28+)J

( VII.3 )




> 1~ = > > > 1 > = eh .
where k= ﬁ{p+eA/c), p=-1hV, A= E{er)’ Hp= 5= s and m is the free

electron mass. The zero of energy is taken at the center of the energy
gap BG=E(L8)—E(L;), which is positive at the PbTe side of the crossover.
The transverse and longitudinal momentum matrix elements P, and

3

respectively are

] '-j% sind cosd < XIE!R > = - —= sin6 cosB’< YlglR >,

V2

1l

P = -i cosd cos8 < Z|pIR > . ( VII.4 )
When H=0 in eq.(VII.3), we can obtain the dispersion relation describing
the conduction and valence bands, by making the secular equation
- EI |=0, ( VII.5 )

where 1 is the 4x4 unit matrix. When H=0, k= -iﬁ%, and the disper-

sion relation is given by

E 2 2 .
=G B 2.02.02 EG %% ,3.,2..2
{ 7 2m(kx+ky+kz) -EH - 7 7 Eﬁ{kx+ky+kz) - E}

- [B)%r b2 q2,02 21,2
B [m} { %—(kx+ky) Rk } . ( VII.6 )

Thus the energy of the conduction and valence bands are

BT = 3".2.(3(2+k2+k2) = l/EZ + @—2[ P? (k2+k2) + B2k2 ] ( VII.7 )
2mx vy z7 T 2 G mbttx Ty Wiy 4 :

where * signs refer to the energy of E(L;) and E(Lg), respectively.
If there are four ellipsoids as in the present case, the carrier concentra-
tion is |
n=— (KX, ), ( VII.8,a )
3T tl

where

2 ' '
K2 = ﬁ’—z'l {(B+PZ/m) - V (E+P?/m)? - (Ez._EéM) } ’ (VIL.S.b )
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and

k] = %’25 {(B+B?/m) - / (B+B?/m)* - (E*-E%/4) } . ( VII.8,c )

The subscripts t and 1 represent the transverse and longitudinal component
with respect to the major axis of the ellipsoid, and k1=kz’ kt=kx=ky'
The anisotropy of the Fermi surface, K, at the Fermi level, which is

equal to the mass anisotropy in the parabolic band, is defined as

' _p2 .2 v '
Klk=kF = kl/ktlk=kp ; ( VII.9,a )

 which is given by the equationr

_mE+R?) -/ (E+R")? + m? (BE/4-E7)
© (mE+R?) - ¥/ (mE+B2)? + m®(EZ/4-E%) . ( VII.9,b )

The cyclotron effective mass at the Fermi level is given by the

following equations,

1?2 At
s W2 A 1 PP smy
t 2T 3E 2 B2 E Hh? A
E”Z H“z’fn'ﬂ"v% ’ ( VII.10,a )
and
h? A
o o 0231 1 k- pr T
1~ 2r 3E 2 PZ E h2 A7 :
a"z“ﬁ‘iﬁ%‘r_ , , ( VII.10,b )

=k 2 — 1.2
where At~7rkt > Ag=mky .
. .
The mass anisotropy at the Fermi level K which is defined as
! * , % . ‘ |
K = ml/mt]E=EF is

, ( 2E - 8%k}/m* ) (B?/m + E - 7%ki/2m )
K =

(26 - B%k2/m* ) (B2/m+ E - B%k3/2m ) - (VH1La)
At the band edge ( Er=0 ), the above relation becomes

K' = _Ei;iliiﬁﬂ, '
edge + P2/ R o (VII.11,b)
" ,
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vhich is equal to the anisotropy of the Fermi surface at the band edge.
t .
However at finite Fermi level, K 1is slightly smaller than K.
From eq. (VII.8,a),

n2/3

( 4/3m2 )2/3E (VIiI.12 )

2 _
kt =

Letting ky=kz=0’ the energy of the conduction band becomes,

c _ .2 1 2 3.2 : '
E -kx+§-,/BG+16I1kx . , ( VII.13 )

Above equation is written in the atomic units ( au. ). The atomic units
. are employed instead of the CGS units through out the followings.
If'otherwise, the units are noted. The cyclotron effective mass at the

Fermi level is,

=
I
5|5

= (E-2k2)/(2R? + E+K2) . ( VII.10,c )
With eqs.(VII.10,c) and (VII.13), we have for small k
M) = 1+ 4B?( ER + 1687K2 )7H/2 | ( VII.14 )

Using eq.(VII.12), we have

( M; }2_ Eg . n2/3 |

M- D

1-M ) 16B" B2 (4/31%)%/°kM/° ( VII.15 ) .
Another definition of the effective mass m™!= %-%% also gives the same

result.

If we plot the experimentally obtained | Mt/(l-Mt)]2 against

N n2/3
(4/3ﬂ2)2/3K1/3
and the vertical intersection give the transverse momentum matrix element

» the eq.(VII.15) represents a straight line whose slope

P and the energy gap Eg, respectively. This relation for n-type PbTe
is given in Fig.28. As the results of the analysis, we have the
E;=183 meV and 4g?=0.58 (- au. ) for PbTe. Using the transverse momentum

matrix element P, determined for PbTe, we may obtain the enérgy gap for

the alloy system, assuming that the transverse momentum matrix element P,
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varies linearly with the alloy composition, scince P is proportional to

sinf cos6” . We assume that 4B?=0.58( 1 + 0.211x )2 ( au. )'using a result of
pseudo-potential calculation by Bernick and Kleinma: 29) . They reported

that sin8 = -0.493 and cosf =0.978 for PbTe, and sind = -0.695 and

cos® =0.987 for SnTe. The energy gaps, thus obtained for the alloy
system, are given in Fig.29 as a function of alloy composition. Using
the result of Bernick and Kleinman, we can‘also assuﬁe that |
4Rf=4gf[PbTe]( 1 - 0.142x )2, scince P is proportional to cose-cose+

Then we can determine the best fit value with the experimentally obtained |
anisotropy K’s and the [100] effective. masses. The best fit value of
the longitudinal momentum matrix element is 4B?=0.046( 1- 0.142x )2 (au.).

Though the six-band model is better approximation, too many parameters
make the physicél meanings and the behavior of the.band.edge structure
obscure. To determine many parameters for PbTé is a meaningful work,
however to calculate the band structure of alloys using the fixed parame-
ters at PbTe is far from a meaningful‘approximation for the alloy system,
because they dp vary across the alloy composition. Thus we have con- - -
sidered composition dependence of the parameters iﬁ the two-band model.

Figs.30-32'show the valﬁes of K and the effective mass as a func-
tion of the alloy composition togethef Qith their band edge values.

When §=O, eq. (VII.3) becomes complicated and cannot.be solved easily.
However; when H // [111] and k,=0, eq. (VII.3) can be decoupled into two .
2X2 matrix. In this case, the eigen value §f the Hamiltonian (VII.3)
can be obtained analyticaliy by.solving 2x2 resultant equations;'

Thus the energy of the conduction band is given by the following equation

C _ x~ 1. 20" cin24" _anc2at i 2t
’EN,G— ﬁmc(N+2) + Ug(cos®6 -sin“® -cos“® +sin”@ )st

. ——
E : - - . -, 2mw
+a/1—%-f 1g(cos?8™-sin?0 +c0526+-sin26+)sﬂz]i{%l?f—ﬁ—s{(N+%J+s] R

( VII.16 j
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where s= %— for o=+, s=—%— for o=¥, N is the Landau quantum number, and

&C=eHz/mc. When H, is very small, the conduction band edge g-factor
for H // [111] can be calculated, in CGS units,

2p? ]
mEG

il

g5 = 2[( cos?0™- sin?8” ) « ( VII.17 )

The detailed procedure is given in Appendix B.

B. Six Band Model
In the two band approximation described above, which is closelyv
similar to the case of Bi%“” the spin splitting of the Landau level gﬂBH'
‘is equal to the Landau level separation hw, when the free electron con-
tribution is neglected. However, if there are interactions with the
remote bands, the size of the spin splitting changes from the Landau level
separation. The size of the effective g-value at the Fermi level is

mainly determined by the size of the effective mass at the Fermi level.

Thus, the ratio of the spin splitting to the Landau level separation
v=ng/2m is a more sensitive parameter than the effective g valqe itself
to see the effect of the remote bands. The spin splittings in such
materials as PbTe, Pbl_xSnXTe, and Bi arise from the difference between
the cyclotron effective mass mz which detérmines the Landau level separa-
tion and the effective spin mass mz which determines the spin splitting.

Because the spin splittings in these materials are the second order
effect, we have to take the interactions with the remote bands into ac-
count, when the spin splitting is concerned.

Adler et al. 85) calculated the Fermi surface, the Landau levels,
and the effective g-value for Pbl_XSnxTe based on the band scheme shown
in Fig.33, treating the ilg couplings with the remote bands to the second

1
order perturbation theory according to the method of Luttinger and Kohn.OIJ
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According to Senturia et al., the longitudinal effective g-value ( 4 paral-
lel to the longitudinal axis of the ellipsoid ) at the band edge is given

by the equation ( in au. ),

+ ¥ 2 +
g = i8lp | * g1 ( VI1.18,a )

Eg

where

alpe 21| | 41Pg sol2
- E+p

+ ot . pt o .
g1 = 2[( cos“® -sin“6™ ) * } . (VI1.18,b)

. . + + :
In the above equation, * signs refer to the Lg bands, g7 is the free
electron and the remote band contributions to the g—value, Eiq, Eysy is
the energy of the remote bands measured from the center of the energy gap,
and Pt 11 Pt +p 2re the transverse components of the momentum matrix

t,t o

elements between the conduction ( or the valence ) band and the remote
bands. These quantities are also given in Fig.33.

They also calculated the transverse effective mass ratio at the band

edge:

-1
1 .
[ m } “E T ni - ( VII.19,a )

where

41Pt,21]% , 8|Pt,x2|?

+
mE )1 oo -
(™t ) ¥+ Eiq Bip . ( VII.19,b )

The effective spin mass mg is defined as

(mg* )7'= | &* |/2m ( VII.20 )

= | g* |
(CGS)
When ( mg )_1> ( m§ )_1, the Landau level separation is larger than spin

o, . +
splitting, where my

c is the transverse cyclotron mass, and when

( mi )7t < ( mi )™', vice versa.
' + -
Substituting eq.(VII.20) in eq.(VII.19,a) and (VII.19,b), {ms }°!

becomes
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o3 x |

(ms )P=1]¢g|. ¢ VII.21 )
If we compare eq.(VII.21) with eqs.(VII.19,a) and (VII.19,b), we have

+ y-1 * y-1

(mC} >(ms) E)
for the band scheme given in Fig.33. However, if the band ordering is
different, ie. the parity of the upper two and lower two bands are inter-
changed, then

- : + -

(mg )< (ms )77,

This means that the spin splitting is larger than the Landau level sepa-

ration.
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Schematic diagram of L-point energy levels for PbTe

near the energy gap. Energy shifts due to the relativ-

istic corrections and the spin-orbit correction are illus-
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Fig.33 Schematic diagram for the six L-point energy levels and the inpotant
momentum matrix elements which couple them. The band ordering
is so far accepted one which is appropriate to the PbTe-side of

the crossover.
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VII.2. Spin Effect

As one of our primary interests is the spin effect in the’oscillatory
magnetoresistance of Pbl_xSnxTe-alloys, we have to concern the theoretical
treatment in which the spin effects upon the transportbproperties are
correctly taken into account. In chapter V,-We have mentioned that the
TMR differs remarkably from the LMR, and that this, we considered, is origi-
nated in the spin effect. If we refer to the previous ekperimental
results on other materials which accurately exhibit the spin effgct, the
materials seem to be divided into the following categories according to
the difference of the spin effect betw;en the TMR and the LMR.

(i) Both H; and Hﬁ peaks including the HS peak appear in the TMR, and

H& peaks and also the Hg peak are missing or very small in the ’

36)

IMR. ( InSb, HgTed8) Hg1-xCde937’95) )

(i) H. spin s litting peak appears both in the TMR and the LMR.
o SP P P %%

\
N

( GaAslg) )
_ (iii) Both H;.and Hﬁ peaks appear in the TMR, and H; peaks. are missing -
but Hﬁ peak appears in the [MR. ( n-type PbTeéo) Pbl_xSnkTe40);
PbTe side )
The theory have to bear the test whether discrepancy to the facts
listed above arises or not. However, we have few articles in which
the theory of the quantum oscillation in resistivity is treated with the
spin effects taken into account, as we have mentioned in chapter I.
As far as we know, these are the articles by Gurevich and.éfros%l)
Roth and Argyfés%s) éfro§%2)and Suizu and Naritaﬁ3’37)v
The first two articles treated the spin splittings in the quantum
oscillations of the TMR in which the theory of Argyres,g) Adanms and
2)

1 L
Holstein, etc. are modified. In their treatment, they considered,
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if the quantum oscillations arise from the impurity or acoustic phonon

scattering, spin reversal scattering is negligible. That is, they only
replaced the Landau level energy ( N + %-)ﬁwc by (N + %—i %~)ch.

However, though these theory could explain the positions of the spin
splitting peaks, Hg peak can not appear in the TMR, if the spin-flip
scattering does not occur. So the case (i) given above can not be
explained by their theory. On the other hand, the theory of éfros

gave the explanation of the missing of Hg peak in the LMR obseved in

InSb?é) assuming that the probability of the spin reversal transition

is very small. - Though his assumption could well explain the missing of

_Hg peak, the missing of H& peaks in InSb,36 ). Hgl_XCdXTe§7’43’95)pb1_xsnXTef0)
‘and so on in the LMR could not be explained. In addition, the appearance

of the Hg peak in the LMR of GaAslg)'can not be explained.. Thus the

theory of éfros contradicts to the case (i), (ii), and (iii), However,

for the case (ii), there exists possibility that the TMR component is
mixed into the LMR, because of the eddy current due to the pulse magnet,
of the inhomogeneity of the sample, and of the contact effect.

Recently, Suizu and Narita considered that the spin flip scattering
playS a significant role in the quantum oscillations in.the magnetofesist-

ance of Hgl_XCdee, in their theoretical treatment?7’43)

A. Spin-Flip Scattering
Because their experimental results upon Hgl~xCd¥Te alloys show that
>the spin splitting oscillations of the TMR vividly differ from the LMR,
the spin is considered to play a significant role ih the scattering tran-
sitions. Thus considering that the strong spin-orbit interaction in
such materials give rise to the spin flip scattering, because thellarge

electronic g-values in these materials come from the strong spin-orbit
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interaction, they bbtained the selection rules for the TMR and LMR.
These selection rules can well explain the behavior of the spin effects
in Hgl_XCdXTe. Thus we consider their selection rules.

In Pbl_XSnXTe alloys, the constituent atoms, Pb; Sn, and Te have large
atomic numbers. Especially, Pb has the largest atomic number of all,
therefore the strong spin-orbit interaction in these alloys, particulary
in alloys withilarge PbTe coﬁposition, the spin-orbit intéfaction may
significantly affect the electronic properties of the crystal. Though
we cannot discuss the spin-orbit energy in the alloy crystals directly
from the atomic'one, such a large Valence.spin—orbit splitting of the
6p-electron inin atom known as 0.0936'Ry?7)which is greater in mégnitude
about an order than the energy gap of about 0.013 Ry. of PbTe, suggests
the existance of strong spin-orbit interactions in Pbl_xSnXTe alloys.

In addition, screening by the electron gas as well as the strong
screening effect due to the anomalously large dielectric constant inherent
in the small gap semiconductors largely reduce the Rutherford scattering
in Pbl_XSnxTe. When coulomb potential of an impurity atom ié strongly
screened, scattering due to the spin—orbit interaction will become dominant,
because electrons can approach close to the impurity atom whefe the
gradient 9U/dr is large without feeling the long range coulomb force.

Thus the scatterin transition due to the spin-orbit interactioﬁ must be
important process for the transport phenomena in the small gap semicon-
ductors.

Therefore we consider the séin flip scattering due to the spin-orbit
interaction, according to the treatment by Suizu and Narita37) B The
- derivation of the expression for the TMR and LMR given by Suizu and Narita

is briefly given in Appendix C.
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B. Selection Rules

The matrix elements of z and X appear in the expressions of o, and S
given in Appendix C determine the possible interlevel transitions.
Thus the matrix elements of z and X will lead to the selection rules for
the scattering transitions of the TMR and LMR. If we assume that the
transition with AN=1, As=0 is the most probable, in other words, the other
transitions aré treated as the cbrrection terms, the selection rules for
the TMR and LMR can be obtained. These are

Ny Z (N-1p , for the LMR

and

z
+

N-1¢
Ny Z (N-DY ,

Nt TNV R for the TMR.

These relations represenf the spin flip scatterings due to the spin-orbit
interaction. In addition, there exists the transition of AN=1, As=0
which has already been gonsidered by Argyres? ) éfrosfz) and some other
physicists.

However, in the narrow gap semiconductors sucﬁ as Pbl_xSnxTe, InSb,
Hgl_XCdee, and so on, the Bloch amplitudes are not pure spin functions.
The eigenfunctions of the effective hamiltonian for Pbl_XSnxTe must be
expressed as a linear combinations of the Landau levels with different
quantum number N, and of the mixed conduction and valence states with the
miXed spin states. These propertiés of the band wave functions will
introduce new features into the scattering process, which will give
different transport properties from the free electron case.

The wave functions for the Landau levels of the conduction and the

valence bands of Pbl_xSnxTe are given by Adler et al??ll They are given
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88)

in Appendii D. According to Roth and Argyres, the longitudinal

magnetoconductivity 1is

= = .- _e_. — i1/ _) -1
) 3By LT Waq Nk C1Ke/k) 170 (yrroz
g i/ .
Nka " Nk
where
) _2_1]' 177 2 V _

Woko Nkg = F < [ NKoJUINKG>[® >5 SC By - Bygd )

is the transition probability in the Born approkimation. As we can

see from eq. (VII.22), the scattering which gives rise‘to the oscillatory
LMR is one whicﬁ changes k,. As we can see from Fig.36,a, for elastic
scattering, such a scattering must change N or ¢, and the scattering

which does not change k, connot contribute o, since ( l—klz/kZ ) = O.

for k, = k;. Then we will consider the scattering which changes k,,

N, or ¢.in the band electron piéture. Moreover the transitions which
contribute the oscillatory phenomena through the singularity of the density
of states at the bottom of the Landau 1éve1 are such‘that ( kZ=O,N,O ) |
=z ( kZ%O,N:d,). As given in Appendix E, non-zero matrix elements of

the scattering potential U(;) can be known from the orthogonality of

cell periodic functions w30 and their coefficients Aﬁg,ﬁ’ which determiné
the size of matrix elements. Non-zero matrix elements are given in

Table II. From the Table II, we can see that the probabilities of the

transitions which changes kZ are,

0y Z 0+ --- Negligibly small

oOv 2T 1¥, 04 T 14 --- Large

N z Ni, Nt 2 N% --- Large

[\ N%, Nt 2 N¥ --- Small but increases with increasing k,.

Thus, the probability of the spin-flip scattering is negligibly small
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for N=Néo, and small but increases with increasing kZ for N ¥ 0. The
selection rules for the scattering transitions are given in Fig.37.
On the other hand, the transverse magnetoconductivity Oix’ is given

by the equation?g)

e? of

Ooo = - —=— — W (X, - X2 )2, VII.23
xx = 7 o NEG BBy Nko,NKGC Xk 7 Xy ( )
NéG
where Xk and XK are the centers of the cyclotron motion. The TMR is

expressed in terms of Orx 35

- o 2 2
ﬁ_— Qxx/( Txx +'ny )

and for large Hall angle, ie., when ka>>0xx » this becomes
~ 2. -
3;— (H/nec) Orx’

Thus, from eq.(VII.23), the scattering which contributes the oscillatory

TMR is one which changes Xk, hence which changes kx and ky’ since ( X X/ )

k ~ 7K

vanishes, if Xk=xf . | For elastic scattering, the transitions

(k. kK, =0,N0) 2 (KoK k,=0,80) , and (kK Lk, ,No) 2 (k;,k;,k;,NGS,
where kZ¥K; and NO%NG'will cpntribute the oscillatory magnetoresistance.
Such transitions are illuétrated in Fig.36,b. According to Adams and
Holstein}z) for the TMR, when broadening is strong ( ie. T/C is large,
wheie P=(wcT)'1), the contribution of the intraievel transition to the
oscillatory component ( the term represented by R in eq.(II!Q,a)) is
negligible, however for the high field oscillation ( ie. I'/z is small )
where only few oscillator states are occupied, the contribution of the
intralevel transition becomes significant, and hence all the peaks mayb

be observed whenever the Fermi level crosses the corresponding Landau

levels for low quantum number in the TMR.
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C. Discussion
In order to compare the present experimental.results with the other

results, we refered the previous works upon Hgl_XCdXTe?7) InSb§6) and

GaSb}OS) which accurately exhibit the difference between the TMR and IMR,
and are given in Figs.34(a), (b), and (c). Fig.SS‘represents the diagrams
for the selection rules given by Suizu and Narita§6’43) In the figure,34

(a) and (b) represent the diagrams for n-type Pb xSnxTe ( g20 ), (a)

1-
being the case mz]gI/Zm > 1, (b) being the case mélg]/ZmA< 1, and (c)'
represents the diégram for Hgl_xCdee ( g<o0, mZIgI/Zm <1). We can
easily understand from the diagrams that, if there exists upward arrow
to a certain energy level, an oscillatory peak corresponding to this energy
level may appear, and if not, peak cannot appear.

In the case of Hgl—xCdee’ it can be understood from Fig.35(c) that
the HS oscillatory peak and the series of H& peaks cannot appear in the

5 and the series of H; and H& peaks can appear in the TMR.

LMR, however H
Moreover, from the number of upward arrows, we can discuss qualitatively
the strength of the oscillatory peaks, if the transition probabilities
of N+ Z (N-1)4 and NV 2 (N-1)¥ are equal. From the above discussion,
we can say qualitatively that the series of H; is stronger than H& series
in the TMR of Hgl»xCdee’ which is in satisfactory agreement with the
previous ekperimental results upon Hgl_XCdXTe§5) |
| In the case of InSb and GaSb where g<0, the diagram in Fig.35(c) is
also applicable, and the previous experimental results, given in Fig.34 (b)
and (c), are also consistent with the diagram.

On the other hand, for n-type Pbl_xSnxTe ( g20), similarvdiagramS'
are given for both the assumed cases, hw, < gupH ( Fig.35(a) ) and

Hwe > gugH ( Fig.35 (b) ).

At first we consider the case Fwg > gupH, that is, the Landau level
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‘separation is greater than the spin-Zeeman splitting. From Fig.35(b),

we can see that the H; peak ( the highest field peak in the TMR ) and the
series of H; peaks cannot appear, whereas the series of H& peaks can appear
in the IMR, and that the series of H; and H& peaks can appear in the TMR,
though the intensity of H; series is stronger than that of H& series,
considering the number of upward arrows.

NeXt, we consider the case, ﬁmc < gugH. It can be seen from Fig.35(a)
that Hi ( in this case, the highest field peak in the TMR ) énd the series
of Hﬁ oscillatory peaks cannot éppear though H; peaks including H; peak
can appear in the LMR, and that the osciliatory peaks, H& and H; series
including Hg peak can appear in the TMR. In this case, the intensity
of Hg series is stronger than that of H& series, if we compare the number
of upward arrows |

If we compare the present experimental results with the above discus-
sion, and if we restrict the discussion within the peak missing in the LMR,
both energy level schemes are acceptable. However, if we discuss the
intensity of oscillatory peaks, the present experimental results can be
better explained by the latter case ( Fig.35(a) ), if the transitioﬁ
probabilities, N+ ¥ (N-1)4 and N 2 (N-1)¥, are equal.

© On the other hand, in the actual band electron picture, according to
the discussion by éfros?z) the H; peak is missing, since the transition
0+ Z 0+ does not occur, whereas the Hi peak can appear in the LMR for both

the conditionms, gugH > ﬁwc and gugH < fiw., and all the peaks, H;, Hl’ H;,

can appear for low quantum numbers in the TMR as discussed in the preceding

section. Then if ch > gugH, the highest field peak ( ie. HE ) is missing,
however if hw, < gugH, the highest field peak (ie. HI ) appears. though
the second highest field peak ( ie. H; in this case ) is missing in the

LMR. On the other hand, all the peaks ( for low N ) will be observed
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in the TMR for both the conditionms, gupH > fiw. and gugH < hw.. Thus,
in the band electron picture, since the HS peak cannot appear in the LMR,
ﬁwc must be greater than ngH.

Moreover, if we take the spin-flip scattering by non-magnetic impurity
potential ( ie. spin independent ), which is possible in the actual band
electron picture, the amplitude of the higher field side peak of a péir
peaks will be smaller, if the energy separation of the corresponding
energy levels is small and their spins are different, since the density
of states of each Landau levels have tailes toward higher energy side.
Thus the assumption that fw, > gﬁBH is consistent with the present
ekperimental results.

In addition, there is another experimental evidence that hwe > gﬁBH:
the magnetic field dependence of the laser emission wavelength reported

47)

bt Harman also suggests directly that hw. > gughH for alloys with
PbTe-side composition of the crossover.

Though the results of the meésurements of electroreflectance for.PbTe
reported by Glosser et a1%06) indicate that the highest valence band has
the same parity as the upper fwo conduction bands and the lowest conduction
band has the same parity as the lower two valence bands, being different
from the so far accepted one ( see Figs. 27 and 33.), almost all the
theoretical works upon thé band structure, ekcept for one_calculated by

77)

Conklin et al.,” support the so far accepted band ordering, where the
spin splitting becomes smaller than the Landau level sepération for alloys
with the PbTe-side composition of the crossover as discussed in chapter
VII.1.B.
For the scattering processes, as both the scattering due to the

spin-orbit interaction ( free electron picture ) and the spin-flip

scattering arises from the mixing of the different spin states of the
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actual band wave functions ( band electron picture ) can well interpret
the present experimental results, we cannot discuss further which process

is important in Pb _xSnXTe.

1

Though the introduction of the spin-orbit term in the perturbing

37)

Hamiltonian by Suizu and Narita seems to be particular and is lacking
generality, the scatterer in almost all the materials where the spin
effects were so far observed, are the vacancies of heavy elements, such

as Te and Sb atoms. Thus the scatterer is common for almost all the

materials.
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(a) Transverse magnetoresistance (I), longitudinal magnetoresistance

(b)

(c)

(II), and Hall coefficient (III) for InSb with n=1.66x10'7 cm~3

as a function of magnetic field.

2

After‘Amirkhanov and Bashrov?é)

Transverse ( upper part ) and longitudinal ( lower part )

magnetoresistance for Hgl—xCdee with x=0,069 and n=3.14x10%% cm™®

as a function of magnetic field.

2

After Suizu and Narita§7)

Transverse ( upper part ) and longitudinal ( lower part )

magnetoresistance for GaSb with n=2.10%x10*8 cm“s, as a function

of magnetic field.
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- Fig.35 Schematic diagrams representing the selection rules for the scatter-
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(b) Diagram for n-Pb;, Sn Te, when mz[g|/2m <1(g>0),

1-
(c¢) Diagram for Hgl_XCdee, with mz|g|/2m <1 (g<o0 )..
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Table II.

Coefficients of non-zero matrix elements appear in the

- - - - /
scattering transitions,( O,N,0 ) Z ( kH,NCG ).

N/

hw, > gﬁBH hw, < gﬁBH
0 =* 0 0 % 0
ov z ot ct, evied, v ct,viict, vi
) ’
/ 0=* N 0 = N/
>
0F = N Ac+,v+Ac+,c+ Ac+,c+Ac+,c+
/ 0+ N 0x N
>
ov * M Ac+,c+Ac+,c+ Ac+,c+Ac+,c+
/ o* N’ ox N/
0+ T N4 Ac+,c+Ac+,c¢ + Ac+,v+Ac+,v+ same to the left
) /7 ..
o o* N/ 0* N
o+ T NY Ac+,c+Ac+,c+ + Ac?,v+Ac+,v+ same to the left
' / N* N N+ N
AR Ac+,c+Ac+,c¢ * Ac+,v+Ac+,V+
( for N < N/) same to the left
> N« N’ Neo N
Nt < NA Ac+,c+Ac%,c¢ * Ac+,v+Ac+,v+
( for N < N/) same to the left
/ N N/ N N
N+ 7Nt Ac+,c+Ac+,c+ * Ac+,v+Ac+,v+ same to the left
( for N < N) ( for N s N)
N+ N N*
Ac+,c¢Ac¢,c+ * Ac+,v¢Ac+,v+
( for N=N1 )
> NN NN |
Nt © N AC*,C¢AC+,C+ * Ac+,v+Ac+,v+ same to the left
( for N g N,) ( for N g N/)
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’

N* N N* N
Ac+,c+Ac+,c+ * Ac+,v+Ac+,v+
( for N=N°1)



(a) | | (b)

- Fig.36 ( a ) Elastic scattering changing kz; which gives rise to the longitudinal
magnetoresistancéf
( h-) Elastic scattering changing ky and ky at kz = 0,. I represents
the transition which does not cﬁangé quantum number N and_spin,

while II representsvthe transition which does not change spin but

changes quantum number N.
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Fig.37 Possible interlevei transitions in the band electron ﬁiqtﬁre for
the LMR of n-type Pbl_xSnxTe. (a) representé the éase, when
gupH < fw., while (b) represents'the case, when ngH_> fwe.
Solid liﬁes indicate the transitions which,does‘not change spin
and dashed lines indicate the spin-flip scattering transitions.
For simplicity,‘bnly AN=1 cases are indicaﬁed for both fype

transitions
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VIII. Summary and Conclusion

We have presented a detailed experimental study of the SdH effect on
n-type Pbl_xSnxTe alloy crystals.  For the first time in n-type material
the informations concerning the conduction band edge structure such as
the shapé of the Fermi surface, effeqtive mass, and effective g-value ( or
the spin splitting factor v ) have been obtained as a function of alloy
composition. The shape of the Fermi surface was investigated through
the measurements of the angular dependence of the extremal cross sectiohs,
which gave the prolate [111] ellipsoidal surface at least.within the
eXperimental error. Anisotropy constant K increases with decreasing
energy gap. The spin splitting factor v approaches to unity when the
energy gap approaches to zero.

Though these results are considerably different from those obtained

by Cuff et a1§§) the results obtained by Melngailis et al?g) on p-type

57)

Pb xSnxTe, and the results obtained by Nii on n- and p-type PbTe, are

1-
closely similar to the present results on n-type materials. These facts

. that the propefties of both the conduction and the valence bands are closely
similar, seem to indicate that the f-g interaction between the quasi de-
generate conduction and valence bands are important.

In fact, fitting the transverse ( P, ) and the longitudinal ( B, )
momentum matrix elements to the two-band model gives satisfactory agreement
with the present experimental results. Moreover, the energy gaﬁs are
obtained from the analysis in the two band model, which give the fair
agreement with the previous experimental results on the laser emission471
and the photo—diode.48)

Though the analysis by the two-band model gives the fair agreement

with the experimental results, the appearance of the spin splittings
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iﬁdicates that there are interactions with the remote bandé even though
they are the second order effecfs.r The spin splittings were observed

in almost all the samples studied for the TMR; however in the LMR no

spin splitting was observed. The difference of the spin effects between
the TMR and IMR has been made accurate for the first time in this material,
from the studies on the TMR and LMR in the quantum limit region. |

The most striking feature of the spin effects is that the highest field
oscillatory peak only observed in the TMR is completely missing in the

LMR. This feature is different from the known feature of the LMR in

some other narrow gap materials, such as InSb§6) Hg Cd’Te§7’95)

1-x"7x and

(o) on,_where two highest field peaks appear in the TMR are missing in

the LMR, which is, so far as we know, the common to the narrow gap materials
with the grey-tin type band structure. Moreover, for the lowér field
oscillation, high field side of the pair peaks in the TMR are weak and

are completely missing in the LMR.

In order to interpret this anomalous features of the SdH oscillations;
we refered the theory on the spin effect in the oscillatory magnetoresistance
given by Suizu and Narita?7’43} and in terms of their selection rules
the anomalous features of the LMR can well be interpreted. In addition,
we have considered the spin-flip scattering transition by non-magnetic
( independent of spin ) iﬁpurities, which is possible in the band electron
pictufe. The anomalous behavior of the LMR can also be well interpreted
by the band electron picture.

From the_discussion upon the peak missing, we have assigned the
oscillatory peaks and reachéd the conclusion that the spin-Zeeman splitting
is smaller than the Landau level separation for the materials with the

composition of PbTe-side of the crossover.

Though we can interpret the present experimental results by considering
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the spin-flip scattering in the band electron picture and the spin-flip
scattering due to the spin-orbit interaction in the free electron picture,
‘the problem for the peak intensity of the spin splitting pair peaks,
especially in the LMR, remains somewhat obscure.

Thus to confirm the discussin upon the peak missing and the peak
intensity, the-ekperimental study on the spin effect of the oscillatory
' magnetoresistance for the alloys with the compositidn of SnTe-side of the
crossover will be helpful. However the preparation of the materials
with SnTe -side composition is very difficult, thus the future e*perimental
study concerning the spin effect of the SdH oscillations in the quantum
limit region of another materials as well as the theoretical study on
the spin effect of the SdH oscillation where the spin-flip scattering,
spin-orbit interaction, and the broadening are rigorously taken into

account in the band electron picture are desired.
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Appendix. A
A.1 When the sample is rotated in the (110) plane.

For pocket A, ,

cos o = cos( 0 - cos'1¢§7§-) s
and the period is
P(0) = (2%JK-1/6[1+(k-1)cosz(e-cos-1/§73)]1/2(3ﬂ2(n/4))_2/3.
| | (A1)
For pocket B,
cos o = cos( 6 + cos-1/§73) s

and the period is

P©O) = K615 (k-1)cos? (B+cos™1/273)] /2 (s amra 3,
(A.2)
For pocket C, '
cos 0 = 1/V/3 sin 0 ,
and the period is
P©) = AKX YO sin261Y 2 (502 4y 23 (A3)

A.2. When the sample is rotated in the (100) plane.
For pocket A,
cos o = 1/V/3 ( sin® + cos® ) ,

and the period is

-1/6

21172 (342 (ny4))"2/3 |

P(8) = czgax [1+(5§11{sine + cos0)

(A.4)
For pocket B,
cos o = 1/V/3 ( sin® - cosé ) ,

and the period is

-1/6[1+(K%1)($ine _ cose)2]1/2 <2/3.

P©) = K (31° (n/4))

( A.5)
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Appendix. B

When H= (0,0,Hz) and the gauge, X = %{ﬁx;), is used,
T =1 & h2.8 '
k= ﬁ( P 3¢ Hys Py+ 5c Hyo P) . (B-1)

The commutator of k becomes

ok d = Tkyk) = Tk ] = 0
[kx,ky]'; -ieHz/cﬁ (B-2)
[ky,kz] = [kz,kx] =0 .
+
if we write k™ = (k_* 2k ),
X y ,
-t 2e :
fk ,k'] = Eﬁ'Hz . : ( B-3)
Then we introduce a number operator,
al= St ( B-4.a )
z
- ch .- ( B-4.b )
a = -z-éﬁ' k
yA
From eqs. ( ‘B-3 ) and ( B-4.2 ) and ( B-4.b ) ,
[a,aJr] =1. ( B-5)
Thus the effective 4 X 4 Hamiltonian becomes,
[Lgt> [Lgy> IL;+> '.|L++>
. v 6 : 6
T
r_z TG D g - A
-mécosze_-sinze—)}lz @R 52 Y 0
5 . K t, 1
K 2mLuc_i_ -E—’-l-]{d)(aa-‘-—-)v
(E)g- n a 2 +c 2+ 2
-u(cos“0*-sin“e™)H 0 0
~ B <z
Boge= ) B ; :
.o 1 ~
"0 0 N mc(a a+ 5) E)P' zml"’c t
_}lécosze-—sinze-)Hz @h '@
E
0 0 (E)P — a - 2.+ . 2.+
\ m L R ﬂ,B(cos 6 -sin”6 )Hz
- eH | /
where iw = —2 , |
c mc 1

bThus 4 2 4 matrix can be decoupled into 2 X 2 matrix.

The energy can be obtained exactly from two 2 X 2 secular equations.
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Thus

C _ e 1 ' 2,0~ . 2.~ 2.+ . 2.+
EN,O_ ﬁwc(N + 59 +yB(cos 6 -sin"0 -cos" 6 +sin" 6 )SHZ

E N 2ms
G 2. - . 2= 2+ . 2+ 2 - h.2.,2 c 1
+-VG§—-+MB(cos Q -sin” 0 +cos“H +sin” 0 )SHZ] + @E) P —?{——[(N+ §J+S] ,

V( B—?.a )

Voo~ o1 2.- . 2.- 2.4 . 2+
EN,G- ﬁwC(N + §J -Hg(cos™@ -sin @ -cos™® +sin"6 )SHZ

E . 2mi
G 2,- .. 2.- 2.+ . 2.+ 2 H.2,2 c 1
f‘V[E— -Hp(cos™0 -sin“® +cos“® -sin” )SHZ] + (ﬁd P '3{“‘[(N+ EJfS] s

_ ( B-7.b )
Where S = %—for o=4%,8=- %-for*c = ¥, N is the Landau quantum
number, and C and V refer to the conduction and the valence band,

respectively. The conduction band g-factor is obtained from the

c c c l
equation, Eynj~ Eny = 8 ugHy -

Thus, when H, is very small and Eg >> [C cos?6™- sin?8” )
+ ( cos?8’ - sin26+)]vgﬁz holds,\

\

c c . 2 - .2~ 2+ . 2+
EN+ - EN% =Up(cos™ 6 -sin"9 -cos 9 +sin’g )HZ

E
u - -
+[(§§+ g{COSZG -sin’g +c0529++sin29+)ﬂz)

G
@B ~5=((¥1/2)+1/2)

]

+H%(cosze_—sin2§+cosze+-sin26+)HZA

_[Q§E -Hg(cos ~_sin® “+cos® *-sin? +)Hz)

f¢ ¥p._ 2 2o eor?a el o
5~ = 5(cos"® -sin"6 +cos“® -sin”@ JH,

~

omi , ,
=[2up(cos8 -sin’0") + () °p -gz(_ﬁ_c)] , © (B-8)
: ) 2
2P ‘
c - <inlpg -+ -
g = 2[(00526 -sin“®7) + E, ] . | | ( B-9)

and
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Appendix C
The Hamiltonian describing the motion of an electron in a periodic

lattice potential under the static magnetic field is
32
p h

_ > > > > > (C-1)
Ho—'z—m"" ZZG(WXP)*‘]JBH'O""' V(r) > .
dm ¢ :
where P = 3 + %K s ; = -iﬁ% R A= (O,HX,O) is the vector potential,
V(;) is the lattice potential, and ﬁB is the Bohr magneton. In the
effective mass approximation; this can be written
>2 H
P B = —»
Ho—-é-n-l'*'gz—-H'O' .

where the free electrons in the conduction band comes élose‘to the impurity
atoms or lattice vacancy, possibly the Te atom vacancy, to get‘intb the
orbit of the scattering center, they are scattered. Here we consider
the scattering is due to the spin-orbit interactions with the scattering

centers, and treat this as a perturvation, which can be written as

-y R y@TF.)B5 ~ ( C-2 )
J 4. %2 2 J
im ¢

S0
>, . . ' > . .
where rj is the position of the scattering center, and U(r-rj) is their

- potential. For sinplicity, we consider that an electron is scattered

by a scattering center due either to the spin-orbit interaction or to

the usual coulomb interaction. Then the perturbation becomes
! " =2 > > >
H = —55—= VU(r-r )xP.0c + W , (C-3)
22 o
im ¢

->
where T, is the position of a scattering center, and W is the scattering

potential. The total Hamiltonian is
t
H=H +H
o
>2 .
- e o Lo WS ew, (C-4)
2m dm “c - '

. Though we consider the transport phenomena, we neglect the term

concerning the electric field required for the current flow.
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If we choose the Landau gauge R = (O,Hi,O) the equation of motion for the

center of the cyclotron motion of an electron is

.

X=% X =% -06xX+Z[WX, (C-5)

':“V‘-

z
h
*

m

—?fii » ¥,z] is the coordinate of the center of the

E E*I*CH'

where X = [x + ky

cyclotron motion, and

83U (*-T.)
D = 1 1 ‘ 0 . ( C=6
T F2Tr_ N : =6)
4m c o B(r—ro) .

The eigen states corresponding to the conduction and the valence band
of the unperturbed Hamiltonian H  is the doubly degenerate Kramer's pairs

given in Appendix B.(eqs.B.7,a and b). Though they are not pure spin up or

down states but mixed states due to the strong spin-orbit interactions,
their spin states are almost rather up or down states. Thus we
approximate the wave functions of the conduction or valence band to be

a pair of pure spin up and down state as
WN =C exp[z(kyy + kzz)] ¢N(X)S s (C-7)

where S = o(4) or B(¥), and ¢N is the harmonic oscillator wave function
of the Landau quantum number N. |

As we are concerned in the transverse and longitudinal magneto-
resistances, we refer to the general formulae for the electronic
conductivity in the presence of the magnetic field given by Kubo et a1107)

we obtain

—ﬂﬁeszdE Ofy T [8 (E-H) 28 (E-H) 2]> Cc-8
0, =~ J_gE(- 5p)<Tr[8(E-H)zS (E- 121> (Cc-8)

and

'lThe2 o

% =T TdB(- §p<Txls (B-mX8 (E-BX D> o | ENEED
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where <"">Sc means the average for the scattering centers, and Q is
the unit volume. As we are treating the scattering Hamiltonian as the

perturbation, the lowest order expressions for 9 and o are given by

f

substituting the total Hamiltoinan by thebdiagonal‘elements of the
unperturbed Hamiltonian g, in the above expressions. The unperturbed

Hamiltonian H can be weitten as follows,
PZ

1 1 z | -
HO = (N + —2-)ﬁ(.&)c + '—Z—lthBH + —2—1;-; s » ( C-10 )
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Appendix D.

In order to obtain the Landau level wave functions, Adler et a1§5) carried

out a two-step coordinate transformation, the first step being the scale
change according to the relative,sizesvof P and B , the second step beingv
a rotation to align the z-axis of the final coordinate system with fhe

. transformed magnetic field. In this case the eigenfunctioh for the

transformed Hamiltonian is given by the following equation,

N, ki, k N,ko,ky >. T |
wu,oﬂ Y = E cp ' B Y(r) wp,o,(r) ;o ~ (D.1)
}l ‘g’ 03

where N is the Landau quantum number, ky is the wave vector in the direc-
tion of the magnetic field, u is the band index, 0 is the spin index ( q=1
for spin up and 0=0 for spin down ), and ¢E;o' is the band edge Bloch

state in the transformed coordinate system, which is given by the following

equation, v
(

(‘P’;\ ' ( cos —g— sin % 0 0 W |Lgt >\
Veo| —sin-% cos-g 0 0 |Lg¥>

T " < B . B +
LW 0 cos > sin 3 |Lgt>

T B 8 +
\w‘N/ \ 0 -sin 5~ cos 7} \ |L6+>/ ,

s on 2 2 _ 2pk 2p2p2 y1/2 s . ,
where sinf=A,P P /PH » Pg=( Azg_ + Xxg_% ) for a magpetlc field
with direction cosines Ay and A,, and ]L84~> etc. are given by eq.(VII.1).

The transformed Bloch states are orthogonal, that is,

fw oo+ 0 ()T = 86

UsH 0,0
cell

The form of the amplitude function C(;) is given as follows:

i( nkyz™ - kyy )

>

N kH, ,(r)-A

C
uo, U U0, u’o

- (kﬂ) ¢N+O‘-O" (u) €

where ¢N+0_0,(u) is the harmonic oscillator wave function of order

’ - o 2_ _p2 2 _~_COsB_ 51n8
( N+0-07), u=x"/€ + E(P_/m)/ky , E°=hic/eH, n=P'R, /Py , x P /m* " P 7m zZ,

~_ sinB + cosB

= X
R /m " Em

z , and A -(ky) is the coefficients which are given

z
wo,u’o
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22 4 S EET /Eg 'i
+ﬁkH+lG-].lH 1 EG a 0 E-Mqﬁkﬂ :
2my 2 B ' 1
- _l_'i_(z';_ + ﬁQ+ (afai- l} v
+ ' ' E
E-hQ a 52k G
G 1o / 5% Tky 0
?li .2. M
~ E -
7= —%~+ﬁﬂ @#a»%- K
t Y 5 » + ;
0 - M ﬁkH + -H - l G-UBH EGm a |
. _ZmH 2 |
E
- -% + 1’ (a a* %-)
ﬁzkﬁ 1 .+
. Ec - . o+ + =G H H .
\\ J E% Tikyy 0 i/ Egi a 2my 2 B / |
327 .22 . E~ph '
EG AZEG EgPh el 2 ﬁ
wh ” = my = + m/ Az +A2), Q= ===
] Sl
\
+ eH,..s ; + z 2%
Q = HE(A; + xg)l/z, and G~ —g[x p2 (cos20” -sin?0” ) FAZR P cos®0” ].

by diagonalizing the transformed Hamiltonian.

In the transformed coordinate, the two-band Hamiltonian (B.6) becomes,

/‘ Eg- + HQ™ (a'l'a+ %-)

%
\3

_L

When ky =0, above 4x4 matrix can be decoupled into two 2x2 matrices.

However when ky X0, N kH’k

Y must be expressed by the linear combinations

of the band edge Bloch states with different N, and it is the kyk0 case

that is important for the SdH effect.

In addition, the coefficients

AN (¢ , which are important for the spin-flip scattering transition,

uo, io

are non-zero only when kyk 0.

vector of the fdllowing form:

LC| ¢N 1

L[ &y ¥,

L[ ¢y wﬁc

LCL oy 4 ¥

Thus when ky ¥ 0, above matrik has eigen-

]
]
]

] ,

- 08 -

-



where LCJ[ ¢N wiq ] means the linear combination of harmonic oscillator
function { order N ) times wﬁc for all the combinations of u and o.

Thus, the conduction band wave functions are given by the following equa-

tions:
Y L e s
= oLty Ry ) Alif’chqSN‘PZf ¥ .A}c\‘i’l‘,ch(bN&-ler
* Repwatitur * Aor,vitartyy 1> (D-3,2)
wﬁikﬁ’ky = | N,K,C¥ >
= ot Mhyz + kyy )y Alj;dr,c'l‘(bN-l.wZ’l‘. ¥ A&,cﬂN"’L

N T N T
* AC¢,V+¢N—1wV¢ * Ac+,v+¢N¢v+ 1. (D.3,b)

N N , .
In eq.(D.3,a), Ac+,c¢ and Ac+,v¢ are zero, when ky=0, and in eq. (D.3,b),

N N _ . .
Ac+,c¢ and Ac+,v¢ are zero, when kH—O, and these coefficients play

important roles in the spin-flip scattering.
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Appendix E

For the scattering by impurity potential

'):

U@ = 3 u@-7,

J

the transition probability in the Born approximation is

EAL ‘< N k UG!U(T)IN k,uo >¥2 > 5( E]\{///— ENkuU )s

where <--->; denotes the average with respect to the scatterer’s variables.

When impurities are assumed to be distributed homogeneously in the crystal,

above matrix element becomes,

> >
n; 177 elqor

< < NKud|u|Nkpo >|2 >g = lv(§)|2]< NKid INkua >|2,

o
eldag

where njy is the concentration of the scatterer, ! is the volume of the

crystal, and
- -'++;+
V(@) = [ u@ e Tar//R

is the Fourier transform of the scattering potential, and

> >

U@ = ZZ v T

If the impurity potentlal is approximated by &-function, that is,

u(®-7;) = ad(r-7;),

J J
where a is the strength of the d-function, and in this case
>

V(q) =
Using eqs.(D.3,a) and (D.3,b), the transition probability can be calculated.
Thus,

1277 7
< NkCo|U|NkCo >

N . * . * -.-).' v,
= 2 Z L nl(K)'}H-k Z)qb 17 // N d i/’”ff‘T////elq * 1rS<YY+k Z)
> a or stal N*o O-HO WO
q p;//" y
1]
X ¢ Vi A //f///'(l_)T/” ///d—;
N+0-0 " "cO,pu0" o ?
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where Ky =nky. In the above equation, the integration over cell periodic
part can be calculated independently, if the impurity potential is a
slowly varing function over a unit cell. In this case, the integral

can be broken into two parts and one of the term becomes,

4 4 s T* T >
L 8(Kymay-Ky) (K maz-ky) Jyy (aeKpsK) [ v o dF (E.1)

q cell

where

<o .
: / - 2/ 105X 2p 5. -
I @eKyaK) = [ oy (v PR )eT e glxe1®K) dx

and 12Ky = ﬁKy/mmc .
9)

According to Argyres,

[113y Gagota Ky, K ) |? da dg = 2n/1% (E.2)

-C0

In eq. (E.1), we can substitute Z by integral, thus letting K; = Ky + qy
_}‘_
q

in eq. (E.2), we have,

/ / . ' T* T -
z §(K,-q,-K)) §(k,-q,-k,) | UPACHT S S, 121 [ vy drl?

cell Ll
q
B 0 i / *° 7 ; 2 ...
=7 { dq,8(K -q,-k ) fquxdqy' In/n (g Oy +Ry Ky | %5 Suo
Y ﬁr—(‘i'// . (E.3)

. /
Thus the scattering transitions can occur from state N to arbitrary N

states unless the cell periodic parts are not equal to zero.
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